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a b s t r a c t

This paper uses quantile regression to demonstrate how electricity price distributions are linked to
fundamental supply and demand variables. It investigates the California electricity market (zone SP15)
for selected trading hours using data from January 8, 2013 to September 24, 2016. The approach
quantifies a non-linear relationship between the fundamentals and electricity prices, just as predicted by
the merit order curve. Natural gas, greenhouse gas allowance prices and load all have a positive effect on
electricity prices, with the effect increasing with the quantiles. In contrast, solar production and wind
production both have a negative effect on electricity prices. The effect of solar production increases with
quantiles, whereas the effect of wind production decreases with quantiles. This paper also includes a
stress testing case study in which a producer faces the risk of high solar and wind production, and in-
vestigates the effect on the lower tail of the price distribution. Overall, the results demonstrate how the
proposed approach can be a helpful risk management tool for participants in the electricity market.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The recent transformation in renewable energy policies world-
wide, and the steady expansion of renewable resources in elec-
tricity markets, is rapidly changing the dynamics of these markets.
Market price uncertainty has increased the importance of methods
to hedge risk, improved forecasting, and a better understanding of
mechanisms driving electricity prices.

This paper quantifies the impacts of variable renewable elec-
tricity sources on electricity markets. We investigate the price dy-
namics at different trading hours at the SP15 zone in the California
wholesale electricity market. Furthermore, we look at how key risk
factors, such as load, generation capacity, solar and wind forecasts,
gas prices, and greenhouse gas allowance prices influenced price
formation in the period between January 8, 2013 and September 24,
2016. Electricity spot prices exhibit seasonality, mean-reversion,
occasional price jumps and time-varying volatility. These features
aard).

ier Ltd. This is an open access arti
are due to daily fuel-cost (oil, gas, coal, emissions) variations,
hourly and seasonal weather conditions (wind, solar, precipitation)
and load patterns, planned and forced outages, transmission con-
straints and other capacity restrictions. These characteristics of
electricity prices are also due to the non-linear merit order curve
that leads to a non-linear relationship between the price and its
fundamental supply and demand variables. Until recently, this
merit order curve in California has primarily consisted of natural
gas and nuclear power plants.1 Following the rapid increase in the
share of renewable energy, the market price set by the merit order
curve has been trending downwards. This is due to their low
marginal costs, thereby resulting in renewable production being
placed before traditional power plants in the merit order curve. The
impacts of wind and solar production on prices are therefore
important to analyze, in addition to fuel-based technologies.
Extreme low prices can occur when there is a high production of
solar and wind (that is difficult to store), together with a low load
(for example mid-day, during winter/spring days with minimal
1 In addition, import and export also plays a large role in CAISO.
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need for cooling or heating). Thus, in this paper we focus on the
effects of renewables on prices, as well as the effects of classic fuel-
based technologies.

Quantile regression models are well-suited for modeling elec-
tricity prices that depend non-linearly on supply and demand
variables. In this paper, we estimate quantile regression models
with the fundamentals for the different levels of electricity prices,
price areas and trading periods. From these approaches, we find
how the sensitivities to supply and demand variables vary over
these dimensions. In addition to the analysis and interpretation of
these sensitivities, the models we derive are useful in predicting
price distributions, and hence Value at Risk (VaR) for given values of
the independent variables.

The contribution of this paper is to show how such models can
be applied in the California electricity market. This paper further
shows how scenario analysis and stress testing can be performed
using quantile regression. That is, it shows how a change in the
value of one or more of the predictors influences the price distri-
bution and thus the Value at Risk measures. This analysis is new in
the context of the US powermarkets. Since eachmarket has distinct
characteristics through its input mix, transmission system, import/
export restrictions, etc., it is important to build specific models for
each market.

The rest of this paper is organized as follows: Chapter 2 presents
a literature review on risk modeling of electricity prices. Chapter 3
reviews the California electricity market and the specific price areas
we investigate. Chapter 4 describes the dataset and provides
descriptive statistics for the variables applied in the analysis.
Chapter 5 describes the methodology, while Chapter 6 reports the
results. Chapter 7 shows how the estimated models can be used for
scenario analyses, stress testing and risk management in general.
Finally, in Chapter 8 we conclude and offer suggestions for further
work.

2. Literature review

This work lies between the following strands of literature: (1)
Value at Risk forecasting for energy commodities, and (2) An
analysis of how supply and demand variables influence the elec-
tricity spot price formation.

Regarding Value at Risk forecasting for energy commodities,
parametric approaches such as GARCHmodels with heavy tail error
distributions, as well as long memory features, have been found to
perform well in predicting upper and lower Values at Risk for a
range of energy commodities. Giot and Laurent [1] argue for using
GARCH or ARCH models with skewed student t error distributions.
In their study, they use a 5-year hold out sample for a wide range of
commodities (including energy) and test various risk models for 1
day value-at-risk forecasts. Aloui [2] finds that long memory
models such as FIGARCH (with skewed t error distribution) pro-
vides the best value at risk prediction formain energy products. The
results are conformed in Aloui and Mabrouk [3]. These authors also
provides a detailed discussion on how this results can be applied in
energy risk management and hedging. Most of the studies above
concentrate on energy futures markets. Chilki et al. [4] also cover
both spot prices of energy commodities and a broader set of seven
linear and nonlinear GARCH-type. Again, their conclusion support
the usage of long memory GARCH models with skewed t
distributions.

VaR forecasts for very low and high quantiles can also be
improved using Extreme Value Theory (EVT). Key references here
are Bystrøm [5] and Chan and Gray [6].2 Bystrøm [5] analyze hourly
2 Additional references using extreme value error distributions are [7e12].
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spot prices on Nord Pool, and apply EVT to investigate the tails of
the price change distribution. They find a good fit of the generalized
Pareto distribution (GPD) along with an AReGARCH filtered price
change series, and accurate estimates as well as forecasts of
extreme quantiles are produced. Chan and Gray [6] extend the
analysis using an EGARCH-EVT specification. Compared to a num-
ber of other parametric models and simple historical simulation
based approaches, the proposed EVT-based model performs well in
forecasting out-of-sample VaR. As with Bystrøm [5]; they suggest
that GARCH EVT-based models are useful in forecasting VaR in
electricity markets.

Non-parametric approaches such as historical simulation with
mean and volatility filtering have been found to be successful in
predicting price distributions (see Cabedoa and Moyab [13]; Cost-
ello et al. [14]; and Gurrola-Perez and Murphy [15]. Cabedoa and
Moyab [13] analyze three VaR calculation methods: the historical
simulation standard approach, the historical simulationwith ARMA
forecasts, and a varianceecovariance method based on autore-
gressive conditional heteroskedasticity models forecasts. The re-
sults obtained indicate that the latter methodology provides the
best VaR forecast, which fits the continuous oil price movements
well and provides an efficient risk quantification. Costello et al. [14]
find that a semi-parametric GARCH model generates VaR forecasts
that are superior to the VaR forecasts from the ARMAwith historical
simulation and traditional GARCH models. Gurrola-Perez and
Murphy [15] apply filtered historical simulation VaRmodels. This is
an extension of historical simulation which provides the ability to
incorporate information on recent market returns and thus pro-
duce risk estimates conditional on them. The authors finds that
these estimates are superior to the unconditional ones produced by
classical historical simulation. The paper explores the properties of
various filtered historical simulation models and suggest to use
them in producing VaR forecasts.

Lastly, there is also support for using semi-parametric ap-
proaches such as Quantile regression. VaR forecasting for com-
modities (including energy) using quantile regression and a
comparison to other methods are found in Füss et al. [16]; Haugom
et al. [17] and Steen et al. [18]. A general finding from these studies
is that they perform very well relative to other models, and are
easier to implement. Füss et al. [16] his paper examines the in- and
out-of-sample performance of a wide range of value at risk models.
The results suggest that the CAViaR models generally outperform
the other models. A CAViaR model is an autoregressive model for
the quantiles. The estimation is done through various quantile
regression models with various specifications. Those models are
able to incorporate the time-varying volatility adequately and are
sensitive to changes in the return distribution over time as well.
Haugom et al. [17] proposes a parsimonious quantile regression
model for forecasting Value-at-Risk. The model uses various
observable measures of volatility at different horizons as input into
a quantile regression. They apply the model to a selection of
financial assets, including oil. When subjected to formal coverage
tests for out-of-sample VaR predictions, model performance is
similar tomore complicatedmodels. The approach is howevermust
easier to implement and understand. Steen et al. [18] implement
this approach and a range of benchmark models for a wide range of
commodity futures markets (including energy) and confirm the
results.

Most of the studies discussed above involve energy commod-
ities such as oil and gas futures, but very few look at electricity spot
prices. Hence, there is a need for more research in this direction.
Nowotarski and Weron [19] point out that the majority of the
studies on electricity spot price forecasting are point forecasting,
and that very few involve distributional forecasts. Our paper will
therefore contribute in this context, investigating distributional
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forecasts of electricity spot prices.
Turning to the literature investigating the formation of spot

electricity prices using fundamental supply and demand variables,
the aim of the papers mentioned below is to capture features such
as mean reversion, time varying volatility, seasonality, spikes and
the non-linear relationships to fundamentals. Variables used in
these models include market concentration, demand forecasts, the
forecasting of reservemargins and prices of fuels. As for the UK day-
ahead electricity market, approaches such as state space, regime
switching, logistic smooth transition models and quantile regres-
sion models appear in the literature (see Refs. [20e23]. For the
Nordic region, Huisman et al. [24,25] investigated how funda-
mentals influence the electricity price using various non-linear
models. Similar studies for the German market exist that use
state space models, logistic regression and quantile regression (see
Ref. [23,26,27]. The first insight from these studies is that the
complex non-linear relationship between fundamentals and the
price of electricity needs to be taken into account when choosing an
appropriate econometric model. In addition, including fundamen-
tals will generally increase the performance of the models, both in
and out of the sample.

For the California market, there are several papers that provide
key insights regarding market structure and the deregulation pro-
cess over the last decades. Examples include Borenstein and
Bushnell [28]; Borenstein et al. [29] and Borenstein et al. [30]. Over
the past few years, a surge in subsidized renewable generation,
combined with low natural gas prices, has driven wholesale prices
steadily lower. According to the papers mentioned above, the role
of variable renewable generation at both wholesale and distributed
level is likely to continue to dominate the economics and policy of
the industry in the future. This will be a great challenge for the
producers of electricity, and creates a need for quantifying the price
effects of renewables. There are a few papers studying the rela-
tionship between fundamentals and their implications for the price
dynamics of the California electricity market. Woo et al. [31]
investigate the effect on prices from a nuclear plant shutdown.
They perform a regression analysis of hourly real-time price data
from the California Independent System Operator (CAISO) from
April 2010eDecember 2012. Their analysis indicates that the 2013
shutdown of the state’s San Onofre plant raised the CAISO real-time
hourly market prices by $6/MWh to $9/MWh, and that the price
increases could have been offset by a combination of demand
reduction, thereby increasing both solar generation wind genera-
tion. Woo et al. [32] studied the effect of virtual bidding in the
CAISO market. They found that virtual bidding has reduced the
volatility of the state’s day-ahead hourly forward premiums, and
that rising wind generation has altered the level and volatility of
the premium. These findings suggest virtual bidding has improved
market-price convergence in California’s day-ahead and real-time
markets. Woo et al. [33] investigate the merit order effects of
renewable energy in the CAISO’s day-ahead and real-time markets,
as well as the relationship between the prices. Using a sample of
approximately 21,000 hourly observations of CAISO market prices
and their fundamental drivers from 2012 to 2015, they document
statistically significant estimates of the so-called merit order effect,
i.e., the price reduction caused by low marginal cost renewables, in
the day-ahead and real-time markets. Woo et al. [34] also quanti-
fied the effect of California’s CO2 cap-and-trade program on the
wholesale electricity prices of four interconnected market hubs in
the Western US. A recent paper from Wiser [35] provides a
comprehensive analysis on the effects of growth in variable types of
renewable energywith respect to bulk power system assets, pricing
and costs for different regions in the US. The paper discusses how
power system planners, operators, regulators and policymakers
will continue to be challenged to develop methods to smoothly and
3

cost-effectively manage the reliable integration of these new and
growing sources of electricity supply.

Most of the studies mentioned above use linear models, while
the approach in this paper using quantile regression will better
capture the non-linearities between the electricity prices and in-
dependent variables. This paper also extends the use of indepen-
dent variables to explain price formation.
3. The CAISO (California Independent System Operator)
electricity market

3.1. Market structure

The CAISO market operates within the Western Electricity
Coordinating Council (WECC) that encompasses the western re-
gions of Canada and the United States, as well as parts of northern
Mexico. CAISO is the only restructured market in this region; the
remainder of electricity trading in the WECC takes place through
bilateral contracts. The CAISO market consists of both a day-ahead
market (DAM) and a real-time market with locational marginal
prices (LMPs) calculated for each system node based on a detailed
model of the physical power system network. The development of
the CAISO system is also impacted by California energy and envi-
ronmental policy initiatives driving changes in the electric grid.
These include goals of a 60% renewable electricity generation by
2030, greenhouse gas emission reduction to 1990 levels by 2020,
and policies to increase distributed generation (for more informa-
tion, see Refs. [36,37].2

The CAISO system consists of three main regions: NP15, SP15
and ZP26 - each region having one or more load-serving entities. In
this paper, we focus on the SP15 price zone. Fig. 1 shows the
geographical locations of the zones and their major load-serving
entities.
3.2. Generation mix

The electricity generation mix in CAISO has changed substan-
tially over the past few years, primarily due to the ambitious
renewable energy goals set by the California Energy Commission.
Still, natural gas is the main source of electricity generation, sup-
plemented by nuclear and a large share of imports (about 30%). In-
state coal and oil contribute less than 1%. The proportion of
renewable energy generation has increased rapidly since 2010,
with hydro, solar, and wind being the main sources of renewables,
see Fig. 2 below. For more information, see California Energy
Commission [38] and CAISO [37].
3.3. Supply curve

Figs. 3 and 4 show CAISO supply curves for the years 2013 and
2016, respectively (covering the start and end years of our dataset).
The demand for electricity is rather inelastic for normal price
ranges in the short run. The supply function reflects the merit order
of short-run marginal costs, which increase steeply as the plants
move from base load to peak load. This non-linear relationship
indicates the necessity to use a non-linear model to capture the
relationship between fundamental variables and the price of elec-
tricity. The figures illustrate how increased renewables from 2013
to 2016 have shifted the supply curve further “to the right.” This has
also led to lower average prices, which we show in the next section.
Themarginal cost of electricity when demand ismoderate to high is
usually set by the price of natural gas. Natural gas prices therefore
have a significant impact on price when there is high demand.



Fig. 1. CAISO price zones and local distributional companies (sources: CAISO [37] and FERC [36]).

Fig. 2. Electricity generation mix in California, 2010e2018. (Source: California Energy Commission, Energy Almanac).
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4. Data and descriptive statistics

This section analyzes the characteristics of different variables
and trading periods in the CAISO zone SP15, with all fundamental
variables considered summarized in Table 1. The analysis is of the
hourly DAM price over the timespan from January 8, 2013 to
September 24, 2016. All data are from LCG Consulting [39] and
CAISO’s OASIS database [40]. The timespan considered is appro-
priate due to the increase in installed solar capacity over this time
period (0.92% in 2012 increasing to 7.67% in 2015 as reported by the
California Energy Commission [38]. Furthermore, data prior to 2013
was not available to download for all of the variables considered.
4

Table 2 shows a summary of descriptive statistics for the DAM
price for selected periods in SP15. Hour 4 represents an off-peak
night hour, while hour 9 allows us to investigate a trading period
where there is substantial ramping, as well as an increase in
renewable energy production. Hour 12 contains both themaximum
renewable energy production and high load. Hours 17 and 20
present steep ramping needs, as well as the occurrence of peak
load. Fig. 5 displays the data graphically. From the figure, the known
features of electricity prices are evident: spikes, seasonality and
time-varying volatility. Late afternoon prices seem to be the most
erratic. The highest average prices are in hour 20, whereas the
lowest is in hour 4. Themaximumprice is at hour 17when there is a



Fig. 3. Illustration of California wholesale electricity supply curve 2013 (Source: CA energy Almanac).

Fig. 4. Illustration of California wholesale electricity supply curve 2016 (Source: CA energy Almanac).
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high demand, with the minimum at hour 12 when there could be a
high production of wind and solar power. For hour 12, there are also
occurrences of negative prices. The skewness and kurtosis of the
price distributions vary over hours, but fat tails appear in all series.
Price distributions are skewed to the right. We have also performed
a Jarque-Bera test (not shown in the table), thus rejecting a
normality assumption for all series.

Tables 3e7 show a summary of descriptive statistics for the
fundamentals (independent variables) for hours 4, 9, 12, 17 and 20
of the SP15 price. Note that the gas and greenhouse gas (GHG)
allowance price remains the same for all hours (these are daily
prices), while wind, solar and load forecasts are specific for each
hour. The gas price is positively correlated (as expected) with the
DAM prices in the range between 0.55 and 0.68. The effect of the
GHG allowance price is relatively small, and even negative for some
hours. Regarding wind production, the average production is
highest in hour 20 and lowest in hour 12. As expected, there is a
negative relationship between wind production and prices in the
range between �0.14 and �0.33. The relationship seems to weaken
monotonically over the day. On average, solar production is highest
5

midday and insignificant for hour 4 and hour 20. As expected, the
relationship is negative for the hours with production. On average,
load is highest for hour 17 and has (as expected) a positive corre-
lation with prices. In general, the correlation increases over the
course of the day.

Further analysis shows that the correlation of the independent
variables also varies with the level of electricity price (not shown in
the tables). This is expected, given the non-linear supply function.
In order to capture these non-linear relationships, we therefore
estimate quantile regression models for each of the selected hours
in our analysis.

5. Method (quantile regression)

In order to attempt to capture the non-linear relationship be-
tween fundamentals and the electricity price, we apply a quantile
regression model (see Ref. [41,42]; and [43] for more details). In
ordinary regression, one finds the conditional mean of the elec-
tricity price given the set of explanatory variables by minimizing
the squared residuals. In quantile regression, one finds a set of



Table 1
Description of explanatory variables used in model. More details are in LCG consulting [39] and OASIS [40].

Variable Granularity Hourly Daily Unit Source

DAM Price SP15 X USD/MWh LCG Consulting
Gas Price X USD/mmBtu OASIS
GHG Allowance Price X USD/Mt CO2e OASIS
Wind Forecast X MW OASIS
Solar Forecast X MW OASIS
Load Forecast X MW OASIS

Table 2
Descriptive statistics of the DAM price SP15 ($/MWh) for hours 4, 9, 12, 17 and 20. Data for the period from January 8, 2013 to September 24, 2016 All data is
retrieved from LCG consulting [39] and OASIS [40].

Hour 4 ($MWh) Hour 9 ($MWh) Hour 12 ($MWh) Hour 17 ($MWh) Hour 20 ($MWh)

Mean 28.61 35.78 37.69 45.90 52.58
Standard deviation 6.90 11.42 14.81 17.61 12.07
Excess Kurtosis 2.69 1.38 2.18 5.26 0.99
Skewness 0.56 0.48 0.46 1.06 0.73
Maximum 66.67 94.30 125.74 183.73 109.23
Minimum 2.39 0.58 �3.90 0.11 25.41

Fig. 5. DAM Price SP15 ($/MWh) for hours 4, 9, 12, 17 and 20. Data for the period from January 8, 2013 to September 24, 2016 All data is retrieved from LCG Consulting [39] and
OASIS [40].

Table 3
Descriptive statistics for the independent variables for hour 4 in the price area SP15. Correlationwith the hour 4 price is also included. Data for the period from January 8, 2013
to September 24, 2016 All data is retrieved from LCG consulting [39] and OASIS [40].

H4 Gas Price (USD/mmBtu) GHG Allowance Price (USD/Mt C02e) Wind Forecast (MW) Solar Forecast (MW) Load Forecast: (MW)

Mean 4.27 12.80 897 0.02 11363
Standard deviation 1.01 0.86 615 0.07 990
Excess Kurtosis 3.44 0.93 �0.73 40.86 �0.05
Skewness 0.90 1.16 0.46 5.40 0.81
Maximum 12.44 16.45 2634 0.S7 15008
Minimum 2.26 11.60 28.00 0.00 9428
correlation with H4 0.65 �0.1S �0.33 0.19 0.08
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quantile lines where the weighted sum of absolute residuals is
minimized according to the specific quantiles q. For example, in a
20% quantile line, the absolute residuals above this line are
weighted 80% (1-q), whereas the absolute residuals below this line
6

are weighted 20% (q). In this way, all observations can be used to
calculate the conditional distribution given the set of independent
variables.

Using this approach, we can also investigate the non-linear



Table 4
Descriptive statistics for the independent variables for hour 9 in the price area SP15. Correlationwith the hour 9 price is also included. Data for the period from January 8, 2013
to September 24, 2016 All data is retrieved from LCG consulting [39] and OASIS [40].

H9 Gas Price (USD/mmBtu) GHG Allowance Price (USD/Mt C02e) Wind Forecast (MW) Solar Forecast (MW) Load Forecast (MW)

Mean 4.27 12.80 586 1558 13960
Standard deviation 1.01 0.86 523 1026 1640
Excess Kurtosis 3.44 0.93 1.00 �1.04 �0.09
Skewness 0.90 1.16 1.26 0.34 0.05
Maximum 12.44 16.45 2510 3747 19108
Minimum 2.26 11.60 24.34 62.93 10031
Correlation with H9 0.57 �0.05 �0.21 �0.64 0.27

Table 5
Descriptive statistics for the independent variables for hour 12 in the price area SP15. Correlation with the hour 12 price is also included. Data for the period from January 8,
2013 to September 24, 2016 All data is retrieved from LCG consulting [39] and OASIS [40].

H12 Gas Price (USD/mmBtu) GHG Allowance Price (USD/Mt CO2e) Wild Forecast (MW) Solar Forecast (MW) Load Forecast (MW)

Mean 4.27 12.80 535 2528 15348
Standard deration 1.01 0.86 514 1446 2497
Excess Kurtosis 3.44 0.93 2.00 �1.15 0.18
Skewness 0.90 1.16 1.56 0.04 0.71
Maximum 12.44 16.45 2782 5383 23942
Minimum 2.26 11.60 21.94 122 10404
Correlation with H12 0.56 0.03 �0.25 �0.58 0.40

Table 6
Descriptive statistics for the independent variables for hour 17 in the price area SP15. Correlation with the hour 17 price is also included. Data for the period from January 8,
2013 to September 24, 2016 All data is retrieved from LCG consulting [39] and OASIS [40].

H17 Gas Price (USD/mmBtu) GHG Allowance Price (USD/Mt C02e) Wind Forecast (MW) Solar Forecast (MW) Load Forecast (MW)

Mean 4.27 12.80 904 1472 16680
Standard deviation 1.01 0.86 658 1321 3649
Excess Kurtosis 3.44 0.93 �0.40 �1.04 0.00
Skewness 0.90 1.16 0.63 0.54 0.90
Maximum 12.44 16.45 3027 4304 28717
Minimum 2.26 11.60 20.36 2.00 11399
Correlation with H17 0.55 �0.07 �0.19 �0.21 0.61

Table 7
Descriptive statistics for the independent variables for hour 20 in the price area SP15. Correlation with the hour 20 price is also included. Data for the period from January 8,
2013 to September 24, 2016 All data is retrieved from LCG consulting [39] and OASIS [40].

H20 Gas Price (USD/mmBtu) GHG Allowance Price (USD/Mt C02e) Wind Forecast (MW) Solar Forecast (MW) Load Forecast (MW)

Mean 4.27 12.80 1053 51.45 16823
Standard deviation 1.01 0.86 649.95 92.86 2454
Excess Kurtosis 3.44 0.93 �0.78 2.77 0.82
Skewness 0.90 1.16 0.22 1.95 1.09
Maximum 12.44 16.45 2752 402.2 25976
Minimum 2.26 11.60 25.19 0.00 12598
Correlation with H20 0.68 �0.25 �0.14 �0.01 0.38
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effect of the different independent variables. This is crucial, as the
supply curve implies a non-linear relationship between the elec-
tricity price and its fundamentals. The sensitivity of natural gas
prices is expected to be higher with higher levels of electricity
prices, while the same will be expected for emission prices and
load/demand. On the other hand, we expect a negative relationship
between prices and renewables, with its highest effect when prices
are low. We also control for remaining price dynamics not captured
by the fundamentals, such as lagged prices and the volatility of
prices.

The following quantiles are modeled in this paper: 1%, 5%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 99%. The linear
quantile regression model is given by:
7

ln
�
Pqh;t

�
¼aqh þ bq1;hlnPh;t�1 þ bq2;hlnPh;t�7

þbq3;hlnVOLh;t þ bq4lnGASt þ bq5lnGHGt

þ bq6;hlnLOADh;t þbq7;hlnSOLARh;t

þbq8;hlnWINDh;t þ ε
q
h;t

(1)

Here, q represents the quantile, t is time, and h is the hour under
investigation (i.e. hours 4, 9, 12, 17, and 20). Pt-1 and Pt-7 are the
lagged prices at lag 1 and 7, respectively. Prices are in $/MWh. VOLt
refers to the exponentially weighted volatility using information up
to t, and is the variation in relative price changes as a percent. Other
features of seasonality and volatility dynamics are captured by the
other independent variables. GASt is the natural gas price at t in
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$/MMBtu. GHGt is the greenhouse gas emission price at t in $/ton
C02. LOADt is the load forecast for tþ1 available at t in MWh. SOLARt
is the solar production forecast for tþ1 available at t in MWh.WINDt

is the wind production forecast for tþ1 available at t in MWh. εt is
the error term. GAS and GHG are not specific for any hour, while the
rest of the variables are specific for hour h. All variables are trans-
formed by the natural logarithm. The reasons for applying this
transformation are: 1) smoothing out spikes in the data, and 2)
being able to interpret all betas as elasticities.

Model (1) allows us to estimate the price for a given quantile and
hour with a specific set of elasticities to the independent variables.
For example, for hour 4 and quantile 1% we expect weaker sensi-
tivity to gas (as demands/prices tend to be lower at night and gas is
only in use when there is high demand). If we look at hour 20 and
quantile 99% (h ¼ 20 and q ¼ 0.99), we might have stronger
sensitivity to gas (as demand/prices tend to be higher in the af-
ternoon). Similar justifications can be made for other choices of h
and q.

The estimation of (1) minimizes the weighted sum of absolute
error deviations where the weights are q or 1-q. We used EViews
software for the estimation using the qreg procedure. We obtain
the standard errors of the parameters using the Huber Sandwich
Method. This method is robust when residuals are not indepen-
dently and identically distributed, see Koenker [43] for more de-
tails. The Pseudo R-square (see Refs. [42] is used to measure the
goodness-of-fit of the models for each period and quantile.
4 We have also performed a bucket regression. The detailed results of this can be
found by contacting the authors. Bucket regression are performed in many ways to
capture the non-linearities between the dependent variable and the independent
variables. One application is to split the data into bins for the dependent variable
and run separable regressions on the independent variable using the conditional
data. For example, one might select the data according to the highest 1% of the data
for the dependent variables (the 99% quantile) and run a regression on the corre-
sponding set of values for the independent variables in the dataset. Similarly, one
can select data between the 99% and 95% quantile for the dependent variable and
run a regression the independent variables accordingly. And so on, for all the
selected quantiles/buckets. What is the difference using quantile regression instead
of splitting the data in quantiles and calculating multiple linear regressions? In the
bucket regression, a subsample of data is used and parameters are found mini-
mizing the sum of squared residuals for the specific regression line. In quantile
regression, all data is used and parameters are found minimizing the weigthed sum
of absolute residuals for the specific regression line. The weights are the values
according to the specific quantile. For example in the 99% quantile line, the absolute
value of the residuals above this line is weigthed 99%, absolute value of residuals
below 1%. Again, all the data is used, not just the 1% of the highest values according
to the dependent variable. Hence, Quantile regression provides more robust esti-
6. Results and discussion

After running themodel (1) for the price area SP15 for hours 4, 9,
12, 17 and 20, the results are as follows. Table 8 shows the co-
efficients for the selected trading periods and hours. Pseudo R2 is in
the range 0.59e0.73 for the different models.3 Moreover, most of
the variables are significant at 5% or lower over the hours and
quantiles (a significance below 5% is indicated with bold letters).

In the results for the log-log quantile regression model in
Table 8, we can interpret all coefficients as elasticities. E.g. Hour 17,
quantile 99% in Table 8 gives a coefficient of 0.904 for lnLoad. That
means if load goes up 1% for Hour 17, the 99% quantile of electricity
prices will go up 0.904%. Another example is Hour 4, 1% quantile
and lnWind. Here the coefficient is �0.072, meaning that if wind
production goes up 1% for Hour 4, the 1% quantile of electricity
prices goes down by 0.072%. From Table 8 we see that the most
significant variable overall is.

We have included a serial-correlation of prices as controls, since
not all of the price persistence features can be captured by the in-
dependent variables. In general, there is a consistent positive serial-
correlation in prices for both lag 1 and lag 7 (lnPh,t-1 respectively
lnPh,t-7). The effects do not vary much over hours and quantiles. A
positive serial-correlation is an indication of price adaption (high
prices one day followed by high prices the next day), which can be
due to the adaptive behavior of the market participants (see Bunn
et al. [22]. for a discussion of this). Another control variable used is
the volatility of the prices (measured by exponential weighted
moving average volatility with a smoothing parameter of 0.97). In
many commodity markets, we have the so-called “inverse-
leverage” effect. That is, volatility goes more up when markets go
up than down. Here, we find no clear pattern in the effect of
volatility (lnVolh,t), and for many of the hours (e.g. hour 4) it is not
3 For hours with negative values of the dependent variables, a constant is added
to the variable value. This ensures a positive value of the variable, such that
ln(variable) is possible to perform. When making predictions, we revert the
process.
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significant. This could be because the model captures much of the
effect of volatility through other independent variables.

As expected, the natural gas prices (lnGast) overall have a pos-
itive and non-linear effect on the electricity price. In general, the
effect is higher with higher quantiles, as expected from the supply
curve. However, some results are not so clear. There are negative
(unexpected) coefficients for low quantiles at hour 4, 9,12, and 17. It
might be that at low quantiles, gas power is not used, resulting in
“strange” elasticities. Keep also in mind that all elasticities are in-
direct effects, controlling for the effect of all other variables.

Regarding GHG allowance prices, there is a mixture of negative
and positive effects which is unexpected and hard to interpret. For
hour 4 the impact of GHG allowance prices are in general not
significant.

A higher load (lnLoadh,t) is an indication of a higher demand;
hence, the observed positive effect is expected. For most hours the
effect is also higher with higher quantiles. For hours 4 and 9, the
opposite occurs and is hard to explain. There are also negative signs
for some hours and quantiles.

Increased solar production should lead to lower prices, which is
also generally the case. The effect is higher with higher quantiles.
There are however also some positive values which are perplexing.
For hours 4 and 20, solar production has (as expected) a very low
(close to 0) effect.

Increased wind production should also lead to lower prices,
which is generally the case in our results. There is however no clear
pattern to indicate that the effect increases over the quantiles.

It is important to note that sensitivities vary according to the
quantile (level of electricity price), as well as hours. Some funda-
mental factors are significant for low quantiles and certain hours
(e.g. wind power at hour 12), whereas others are significant for high
quantiles and certain hours (e.g. natural gas at hour 9). Some fun-
damentals have an increasing effect with quantiles (e.g. natural
gas), while others have a decreasing effect (e.g. wind power pro-
duction). These non-linear influences are built into the quantile
regression models. In such a way, we can predict the whole price
distributions given the set of fundamentals for each specific hour.4

The next chapter describes applications of the model within the
area of risk management.
mation technique in the presense of outliers. Bucket regression will (please contact
authors for more details) provide insignificant parameter values in the tails as few
observations is used. In quantile regression however, many parameter values are
significant for the tail regressions. As the aim of our paper is to estimate pricing
models for very low and high electricity prices, we therefore choose quantile
regression as the proposed method.



Table 8
Quantile regression results for selected trading periods in price area SP15. The following models have been applied for hour 4, 9 12, 17 and 20 for quantiles ranging from 1% to
99% OLS estimates are also included. Bold numbers indicate significance at 5% or lower. Pseudo R2 is in the range of 0.59e0.73 for the different models. ln ðPqh;tÞ ¼ aqhþ
bq1;hlnPh;t�1 þ bq2;hlnPh;t�7 þ bq3;hlnVOLh;t þ bq4;hlnGASt þ bq5;hlnGHGt þ bq6;hlnLOADh;t þ bq7;hlnSOLARh;t þ bq8;hlnWINDh;t þ ε

q
h;t .

Hour Quantile 0.01 0.05 0.1 0.2 0.3 0.4 0.5 OLS 0.6 0.7 0.8 0.9 0.95 0.99

4 aan ¡7.663 ¡6.355 ¡3.566 ¡2.097 ¡1.465 �0.7 �0.569 ¡4.052 �0.221 0.208 0.686 1.121 1.628 1.164
ln Pn;t�1 0.628 0.566 0.612 0.678 0.671 0.639 0.63 0.246 0.594 0.545 0.462 0.426 0.388 0.338
ln Pn;t�7 0.364 0.247 0.249 0.165 0.178 0.195 0.191 0.394 0.191 0.188 0.1 6 0.131 0.108 0.099
ln VOLn;t �0.037 �0.026 �0.024 �0.003 0.004 0.014 0.024 0.000 0.028 0.028 0033 0032 0.029 0.044
ln GASt ¡0.297 0.004 0.012 0.067 0.081 0.085 0.125 0.336 0.162 0.218 0.346 0.461 0.555 0.685
ln GHGt 0.028 0.109 �0.098 �0.093 �0.015 �0.062 0.039 0.560 0.04 0.038 0.117 0.192 0.35 0.726
ln LOADn;t 0.885 0.744 0.475 0.32 0.226 0.164 0.122 ¡0.037 0.097 0.065 0.01 ¡0.043 ¡0.132 ¡0.167
ln SOLARn;t 0.000 ¡0.001 ¡0.002 ¡0.001 0000 0.000 0.001 ¡0.025 0001 0001 0.001 0 0 0.008
ln WINDn;t ¡0.072 ¡0.059 ¡0.045 ¡0.041 ¡0.034 ¡0.03 ¡0.026 ¡0.008 ¡0.027 ¡0.031 ¡0.031 ¡0.031 ¡0.032 ¡0.021

Hour Quantile 0.01 0.05 0.1 0.2 0.3 0.4 0.5 OLS 0.6 0.7 0.8 0.9 0.95 0.99
9 aan ¡27.488 ¡10.971 ¡5.242 ¡2.847 ¡1.74 ¡0.889 ¡0.212 ¡3.448 0.458 0.812 1.110 1.823 1.824 1.289

ln Pn;t�1 0.699 0.848 0.58 0.512 0.389 0.323 0.261 0.240 0.234 0.194 0.165 0.132 0.084 0.025
ln Pn;t�7 1.073 0.5 0.336 0.345 0.365 0.367 0.33 0.385 0.296 0.236 0.145 0.091 0.076 0.069
ln VOLn;t ¡0.112 ¡0.082 ¡0.02 �0.005 0.003 0.012 0.019 �0.003 0.021 0.028 0.036 0.032 0.023 ¡0.011
ln GASt ¡0.583 ¡0.446 ¡0.034 0.036 0.086 0.129 0.186 0.337 0.246 0.373 0.53 0.593 0.666 0.89
ln GHGt 1.433 0.299 ¡0.082 ¡0.242 ¡0.315 ¡0.315 ¡0.397 0.596 ¡0.425 ¡0.368 ¡0.359 ¡0.341 ¡0.308 ¡0.132
ln LOADn;t 2.186 0.971 0.639 0.451 0.403 0.344 0.344 ¡0.061 0.307 0.281 0.265 0.255 0.276 0.282
ln SOLARn;t 0.103 0.05 ¡0.022 ¡0.032 ¡0.051 ¡0.062 ¡0.085 ¡0.027 ¡0.099 ¡0.105 ¡0.12 ¡0.151 ¡0.171 ¡0.181
ln WINDn;t ¡0.011 ¡0.043 ¡0.037 ¡0.03 ¡0.029 ¡0.031 ¡0.031 ¡0.313 ¡0.03 ¡0.029 ¡0.027 ¡0.027 ¡0.026 ¡0.019

Hour Quantile 0.01 0.05 0.1 0.2 0.3 0.4 0 .5 OLS 0.6 0.7 0.8 0.9 0.95 0.99
12 aan ¡7.241 ¡7.039 ¡4.258 ¡2.414 ¡1.436 ¡0.848 ¡0.701 ¡3.258 ¡1.033 ¡1.179 ¡1.205 ¡1.009 ¡1.207 ¡1.761

ln Pn;t�1 2.073 0.861 0.867 0.63 0.533 0.474 0.391 0.322 0.28 0.183 0.146 0.088 0.031 0.034
ln Pn;t�7 1.029 0.715 0.371 0.336 0.276 0.203 0.167 0.280 0.123 0.056 0.044 0.032 0.031 0.025
ln VOLn;t ¡0.285 ¡0.092 ¡0.045 ¡0.008 0.000 0.007 0.012 0.003 0.02 0.018 0.022 0.017 0.014 0.01
ln GASt ¡1.951 ¡0.408 ¡0.208 ¡0.01 0.08 0.186 0.317 0.410 0.497 0.686 0.741 0.825 0.862 0.939
ln GHGt ¡0.218 0.749 0.227 ¡0.103 ¡0.235 ¡0.283 ¡0.246 0.603 ¡0.145 �0.052 0.013 0.133 0.164 0.325
ln LOADn;t ¡0.249 0.3 0.321 0.333 0.341 0.347 0.359 ¡0.098 0.418 0.462 0.465 0.451 0.523 0.537
ln SOLARn;t 0.317 0.12 0.037 ¡0.018 ¡0.054 ¡0.081 ¡0.096 ¡0.031 ¡0.116 ¡0.138 ¡0.145 ¡0.174 ¡0.227 ¡0.222
ln WINDn;t ¡0.06 ¡0.108 ¡0.086 0.056 ¡0.048 0.039 ¡0.033 ¡0.317 ¡0.03 ¡0.031 ¡0.027 0.022 ¡0.015 ¡0.023

Hour Quantile 0.01 0.05 0.1 0.2 0.3 0.4 0.5 OLS 0.6 0.7 0.8 0.9 0.95 0.99
17 aan ¡5.525 ¡3.761 ¡3.069 ¡2.178 ¡1.96 ¡1.791 ¡2.024 ¡5.869 ¡2.375 ¡2.765 ¡3.373 ¡3.972 ¡4.702 ¡7.442

ln Pn;t�1 0.565 0.508 0.55 0.585 0.57 0.55 0.524 0.443 0.49 0.423 0.375 0.336 0.346 0.313
ln Pn;t�7 0.255 0.235 0.161 0.137 0.112 0.093 0.072 0.080 0.075 0.064 0.027 0.027 0.027 �0.094
ln VOLn;t ¡0.087 ¡0.051 ¡0.029 �0.02 �0.01 �0.003 0.004 �0.004 0.008 0.016 0.02 0.027 0.035 0.013
ln GASt ¡0.129 0.023 0.088 0.098 0.166 0.208 0.277 0.420 0.316 0.405 0.479 0.532 0.555 0.713
ln GHGt ¡0.092 0.081 0.164 0.04 0.03 ¡0.005 0.053 0.754 0.086 0.178 0.316 0.416 0.489 0.631
ln LOADn;t 0.711 0.501 0.413 0.343 0.332 0.337 0.36 ¡0.021 0.398 0.442 0.499 0.551 0.611 0.904
ln SOLARn;t ¡0.04 ¡0.029 ¡0.025 ¡0.021 ¡0.019 ¡0.02 ¡0.019 ¡0.044 ¡0.02 ¡0.022 ¡0.027 ¡0.031 ¡0.029 ¡0.043
ln WINDn;t �0.055 �0.053 �0.045 �0.033 �0.03 ¡0.029 0.03 0.107 ¡0.028 ¡0.032 ¡0.029 0.027 ¡0.036 ¡0.015

Hour Quantile 0.01 0.05 0.1 0.2 0.3 0.4 0.5 OLS 0.6 0.7 0.8 0.9 0.95 0.99
20 aan ¡3.646 ¡2.173 ¡1.305 0.07 ¡0.089 0.068 ¡0.089 ¡1.238 ¡0.116 ¡0.496 ¡0.369 ¡0.534 ¡1.096 ¡3.149

ln Pn;t�1 0.357 0.397 0.432 0.573 0.574 0.615 0.623 0.559 0.635 0.639 0.616 0.596 0.604 0.578
ln Pn;t�7 0.105 0.137 0.14 0.099 0.128 0.106 0.104 0.077 0.117 0.151 0.137 0.134 0.131 �0.044
ln VOLn;t �0.033 �0.022 �0.019 �0.006 �0.001 0.007 0.01 0.008 0.012 0.021 0.036 0.054 0.064 0.066
ln GASt 0.122 0.148 0.184 0.182 0.177 0.164 0.168 0.173 0.161 0.158 0.215 0.263 0.246 0.454
ln GHGt 0.593 0.109 ¡0.055 ¡0.195 ¡0.128 ¡0.14 ¡0.087 0.307 ¡0.095 0.007 0.039 0.064 0.118 0.558
ln LOADn;t 0.403 0.365 0.306 0.162 0.151 0.136 0.138 ¡0.004 0.135 0.135 0.127 0.152 0.214 0.38
ln SOLARn;t 0.002 0.002 0.001 0.001 0.001 0.001 0.000 ¡0.015 0.000 0.000 0.000 0.001 0.000 0.002
ln WINDn;t ¡0.02 ¡0.026 �0.032 ¡0.026 ¡0.024 ¡0.024 ¡0.023 ¡0.153 ¡0.022 ¡0.019 ¡0.02 ¡0.024 ¡0.037 ¡0.042
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7. Risk management case study: application of the model

It is of interest to discuss how the proposed model applies to
scenario analysis and stress testing. As a starting point, consider a
producer of electricity concerned with low prices. The hour of in-
terest is hour 17. The risk the producer is facing is a scenario with a
lower demand than expected together with a higher production of
wind and solar than expected. As a base scenario, we can use the
last values of the data points in our analysis.

On September 24, 2016we had the following observations of the
dependent variables in levels and log levels for hour 17 (Table 9):

A risk manager might ask, “What is the 5% Value at Risk given
this base scenario for our independent variables?” In other words,
what is the value such that 95% of the time, price will be higher
than this value (in 5% of the occasions the price will be lower)?
9

From the basis scenario above, we can calculate directly the 5% VaR
using the parameters for quantile 5% and hour 17, and using the
quantile regression model with the parameters given in Table 8:

ln ðP5%h¼17;tÞ ¼ � 3:761þ 0:508lnP12;t�1 þ 0:235lnP12;t� 7 �
0:051lnVOL12;t þ 0023lnGASh;t þ 0:081lnGHGt

þ 0:501lnLOAD12;t � 0:029lnSOLAR12;t � 0:053lnWIND12;t

ln ðP5%h¼17;tÞ ¼ � 3:761þ 0:508*3:636þ 0:235*3:558� 0:051*ð�
1:542Þ þ 0023*ð1:840Þþ 0:081*ð2:562Þ þ 0:501*ð9:812Þ�
0:029*ð8:310Þ� 0:053*ð5:270Þ ¼ 3:608

Taking e3.608, we get a price of 36.89 $/MWh. This means that it
is 95% likely that prices will be 36.89 $/MWh or higher. Prices will
be lower than 36.89 $/MWh 5% of the time.

The risk manager might also be concerned about possible
(“stressed”) scenarios for hour 17 prices. One such situation could



Table 9
Observations of dependent variables for September 24th, 2016 at hour 17.

Dependent variable Level In

Ph¼17,t-1 37.93 3.64
Ph¼17,t-7 35.09 3.56
V0lh¼17,t-7 0.21 �1.54
Gast 6.30 1.84
GHGt 12.96 2.56
Loadh¼17,t-7 18254 9.81
Solarh¼17,t-7 4065 8.31
Windh¼17,t-7 194 5.27

Table 10
Range of solar and wind production values
in MWh for stress testing.

Solar Wind

10 10
100 100
500 250
1000 500
1500 1000
2000 1250
2500 1500
3000 1750
3500 2000
4000 2500
4500 3000
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be a scenario of a high production of solar and wind. What will be
the 5% Value at Risk under such a scenario (keeping everything else
equal)?

Themin/maxobserved range of solar andwind in our dataset for
hour 17 are 2.00e4304 MWh and 20.36 to 3026MWh, respectively.
(Theoretically, these bounds could be even wider.) The model can
be recalculated using inputs for wind and solar following a range of
values for solar and wind, keeping all the rest of the other variables
at the values for the base scenario above.

We first need to select a range of solar and wind production. As
an example, we can consider the values in Table 10, ranging from
the minimum to the maximum in our dataset:

When solar and wind are both at 10 MWh, we get:
ln ðP5%h¼17;tÞ ¼ �3:761þ 0:508*3:636þ 0:235*3:558� 0:051*

ð�1:542Þ þ 0023*ð1:840Þ þ 0:081*ð2:562Þ þ 0:501*ð9:812Þ�
0:029*ðln ð10Þ Þ� 0:053*ðlnð10ÞÞ ¼ 3:939

Taking e3.939, we get the 5% VaR at 51.39 $/MWh.
Continuing in this way, one obtains the following results in

Table 11:
The higher production of solar and wind (assuming load and

other variables remaining the same) will decrease the 5% Value at
Risk substantially from 51.39 $/MWh to 31.82 $/MWh.
Table 11
The 5%VaR for hour 17 at increasing levels of solar and wind production.

Solar Wind 5% VaR H17

10 10 51.39
100 100 42.55
500 250 38.68
1000 500 36.55
1500 1000 34.82
2000 1250 34.12
2500 1500 33.58
3000 1750 33.13
3500 2000 32.75
4000 2500 32.24
4500 3000 31.82

10
In addition, one could look at scenarios in which both load, and
perhaps gas and GHG prices, also changed individually or simul-
taneously. Ultimately, quantile regression allows us to investigate
how fundamental supply and demand variables influence the
whole price distribution and to evaluate risk measures such as
Value at Risk.

8. Conclusions

This paper explored the dependence of electricity spot price
distributions on fundamentals in the California electricity market
using a quantile regression model. Natural gas, GHG allowance
prices and load all have a positive effect on electricity prices, which
increases with quantiles. Solar production and wind production
have a negative effect on electricity prices. The effect of solar pro-
duction increases with quantiles, while the effect of wind produc-
tion decreases with quantiles. In our model, we quantify these
effects over different hours and quantiles.

This paper also demonstrated how to use this framework for
scenario analysis and stress testing in risk management. Results of
the case study show the impact of increasing wind and solar on the
5% VaR. Performing such scenarios and quantifying the effect on
risk are crucial for effective risk management.

Further research could extend the analysis to include more
variables/proxies for supply and demand. For example, it would be
of interest to investigate how reserve capacity and import/export
conditions influence prices. This will be an important factor - in
particular as CAISO increasingly relies on import and export from
neighboring states for flexible capacity to help integrate California’s
increasing renewable generation. It would also be interesting to
extend the analysis to other price areas, such as NP15, as other areas
have a different input mix and thus different sensitivities to fun-
damentals. Lastly, investigating price formation and risk in CAISO’s
real-time market and energy imbalance market using the approach
in this paper would also be of interest.
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