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Abstract

As a part of the fossil fuel phase-out, Norway is investing in electrification and there-
fore expansion of the transmission grid. This requires efficient and accurate methods
to assess long-term reliability and socioeconomic benefits of alternative expansions.
The Norwegian Transmission System Operator, Statnett SF, has developed a proba-
bilistic simulation tool, MONSTER, for reliability analysis and transmission system
planning.

This thesis evaluates methods used for verification of probabilistic results and as-
sesses their suitability for MONSTER predictions. Through a case study, the accu-
racy of the tool is assessed for different time spans to investigate the tools perfor-
mance for short-term reliability, and therefore possibility for future application in
other areas. A sensitivity analysis is also performed to assess the simulation tool’s
sensitivity to inputs.

After an assessment of the results fromMONSTER and methods used for verification
of probabilistic forecasts, Continuous Rank Probability Score (CRPS) was chosen
as the main method to evaluate the accuracy of the results. Reliability diagrams
and percentile diagram are used as complementary visual tools of assessment. The
CRPS score from probabilistic results – in form of a probability density function –
can be directly compared to the Mean Absolute Error (MAE) of point-predictions.
Therefore, the point-predictions from the simulation tool are assessed using MAE.

The case study is based on the Greater Oslo Region over 9 years. The point pre-
dictions for yearly intervals have higher accuracy than for 6-month and monthly
intervals. This indicates that the tool performs better for predictions with longer
time spans. The resulting CRPS score indicates better accuracy for monthly pre-
dictions compared to yearly and 6-month predictions. Examining the results closer
with the visual assessment tools shows that the CRPS score does not capture defi-
ciencies in the probability distribution and has therefore computed better results for
monthly predictions than expected. Use of score methods that detect probability
distribution deficiencies is suggested for future evaluations. It is further concluded
that the end results of this study are most sensitive to the remedial measures-input.
Therefore an expanded use of this feature could result in better predictions.
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Sammendrag

Som en del av utfasingen av fossile brensler satser Norge på elektrifisering. Dette
krever utbygging av overføringsnettet. Nøyaktige pålitelighetsanalyser er nødvendig
for å sikre pålitelig og samfunnsøkonomisk utbygging. Statnett SF har utviklet
et probabilistisk simuleringsverktøy, MONSTER, for å vurdere langsiktig lever-
ingspålitelighet ved å predikere sannsynlighet for ikke-levert energi (ILE) og kost-
nadene av dette (KILE).

Denne oppgaven evaluerer ILE-resultater fra MONSTER ved å først vurdere ulike
metoder som brukes i dag for verifisering av probabilistiske modeller. I en casestudie
blir nøyaktigheten til verktøyet vurdert for forskjellige tidsperioder for å undersøke
mulighetene til å utnytte verktøyet for kortsiktige analyser. Det utføres også en
sensitivitetsanalyse for å vurdere sensitiviteten til simuleringsverktøyet for endring
i input-variabler.

Etter et litteraturstudie blir Continuous Rank Probability Score (CRPS) valgt som
hovedmetode for å verifisere predikert Ikke-levert Energi fra MONSTER. I tillegg
brukes pålitelighetsdiagrammer og persentildiagrammer, som visuelle verktøy for
en grundigere analyse av resultatene. Siden CRPS kan sammenlignes direkte med
gjennomsnittlig absolutt feil (MAE) for punkt-prediksjoner, blir MAE for forventet
ILE fra MONSTER sammenlignet med CRPS-score av sannsynlighetskurven for
ILE.

Området som analyseres i studien er Stor Oslo i en 9 årsperiode fra 2010 til 2018.
Forventet ILE for årlige prediksjoner viser bedre nøyaktighet enn 6-måneders og
månedlige prediksjoner. Dette indikerer at verktøyet gir mer nøyaktige prediksjoner
for større tidsintervaller. CRPS-scoren viser bedre nøyaktighet for månedlige inter-
valler enn års-intervaller og 6-måneders intervaller. En nærmere analyse av resul-
tatene – ved bruk av valgte visuelle verktøy – viser at CRPS ikke fanger opp mangler
i sannsynlighetskurven, for eksempel ekstremutfall. CRPS har derfor beregnet bedre
nøyaktighet for månedlige prediksjoner enn forventet. Bruk av score-metoder som
fanger opp ekstremutfall kan bidra til bedre evalueringer av resultater for fremtidige
analyser. Det konkluderes videre med at tiltak-inputen påvirker sluttresultatet mest
i sensitivitetsanalysen. Derfor kan videreutvikling av denne funksjonen resultere i
bedre prediksjoner.
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Acronyms

CDF Cumulative Density Function

CENS Cost of Energy Not Served

CRPS Continuous Rank Probability Score

DSO Distribution System Operator

ENS Energy Not Served

GUI Graphical User Interface

IG Ignorance Score

MAE Mean Absolute Error

NCRPS Normalised Continuous Rank Probability Score

NMAE Normalised Mean Absolute Error

PDF Probability Density Function

PIT Probability Integral Transform

QS Quantile Score

TSO Transmission System Operator
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1 Introduction

1.1 Motivation

The growth in unpredictable energy production and liberalisation of the electricity
market create new challenges for traditional methods of planning and operation of
transmission systems. Power systems are becoming complex and unpredictable due
to renewable and dispersed energy entering the market (1). Alternative methods for
reliability and risk analysis for transmission system planning are becoming increas-
ingly important. Until now mainly deterministic methods have been used. In recent
years, however, there has been a growing interest in probabilistic methods (2).

In 2019 ACER, EU’s Agency for the Cooperation of Energy Regulators, adopted
a decision for Transmission System Operators (TSOs) to develop a methodology
for probabilistic risk assessment by 2027 (3). According to ENTSO-e, this is the
beginning of many steps moving away from deterministic criteria for reliability (4).
Probabilistic tools are already implemented in parts of North America (5). There
have been some initiatives in Europe. GARPUR – a project initiated by SINTEF
Energy Research with collaboration of 7 TSOs – researched alternative, probabilistic
reliability criteria (6).

With a goal of increased electrification – to reduce carbon emissions – Norway is
investing in expansion of the transmission grid (7)(8). According to a report by
DNV GL, the electric power consumption in Norway can increase with up to 30-35
TWh in 2040 (9) from the 2017 consumption of 132.9 TWh (10). The need for a
socioeconomic planning of expansion is one of the main drivers in the Norwegian
TSO, Statnett’s, development of a probabilistic tool for long-term reliability analysis,
MONSTER (11).

So far the accuracy of MONSTER has not been systemically assessed. There is a
need for general methods to evaluate results from the simulation tool. So far, most
of research done on probabilistic verification methods is within weather forecast-
ing. An assessment of probabilistic verification methods is required to develop a
foundation for general evaluation methodology. Therefore, this study aims to assess
probabilistic verification methods and evaluate their suitability to verify results from
the simulation tool.
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1.2 Problem Statements

The main aim of the research for this thesis is to assess methods to evaluate the
accuracy of MONSTER’s probabilistic predictions of Energy Not Served (ENS).
Chosen methods will then be used to assess the tool’s accuracy through a case
study in the Greater Oslo Region through a period of 9 years.

The objectives of this thesis are:

1. To assess verification methods for the probabilistic results of ENS from MON-
STER.

2. To examine the accuracy of the tool for different time intervals.
3. To perform a sensitivity analysis in order to examine the effect of different

inputs on the predicted ENS.

The main area of application for this simulation tool is long-term reliability, typically
10 to 40 years. Even so, testing for smaller time intervals will display the tool’s
performance for smaller time periods and therefore whether it can be used for short
term planning and operation in the future. Also, testing the tool’s sensitivity to
various inputs gives valuable insights on different inputs’ effect on the predicted
ENS.

1.3 Thesis Structure

This study is divided into a literature review of existing verification methods and a
case study of the Greater Oslo Region. Chapter 2 presents theory on the Norwegian
transmission system and existing reliability evaluation methods, as well as general
introduction to probabilistic models and a description of MONSTER. Chapter 3
is a literature review of existing verification methods in the weather forecasting
community and choice of methods for the case study. Chapter 4 describes the case
study and the methodology of the research. Results and discussion are merged in
chapter 5 and chapter 6 consists of conclusions and suggestions to further research.
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2 Theory

2.1 The Norwegian Transmission System

The Norwegian transmission system consists of three parts; the transmission grid,
the regional grid and the distribution grid. The transmission grid connects large
producers and consumers across the country. It operates at high voltages – mainly
between 300-420 kV, but also 132 kV – and connects to neighbouring countries’ grids
(12). The Norwegian TSO, Statnett, operates the transmission grid which consists
of 11 000 km of high voltage lines, submarine power cables, and approximately 170
electrical substations across the country. Consumers are usually directly connected
to the regional and distribution grids with lower voltage levels. Regional and distri-
bution grids are operated by 130 Distribution System Operators (DSO) per August
2018 (13). Figure 2.1 illustrates a simplification of the power system, from produc-
tion to consumers. Smaller power production plants can also be connected to the
regional grid and distribution grids and larger consumers can be directly connected
to the regional and transmission grids (14).

In addition to ownership over the transmission grid, Statnett is also responsible for
operating the grid and ensuring quality for the electricity delivered to the consumers.
The TSO is also responsible for planning and developing the transmission grid (15).

Figure 2.1: This figure roughly illustrates the Norwegian transmission system. In-
spired by (13)
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2.1.1 Transmission System Operation

The Norwegian TSO is responsible for operating the transmission grid, delivering
electricity at an adequate quality, and minimising interruptions (15). The voltage
level can have a deviation of maximum± 10%, frequency has to be in the 50 Hz± 2%
range, and the voltage symmetry between the phases can have a maximum deviation
of 2% (16). The TSO is also responsible for keeping the balance between production
and consumption at all times (15). Since the Norwegian grid has connections to other
European countries, the balance expression can be extended as shown in Equation
2.1.

import+ production = export+ consumption+ losses. (2.1)

Ensuring that Equation 2.1 is maintained at all times equates to momentary balance.
In the government’s regulations – relating to the system responsibility in the power
system – the system operator is responsible for maintaining momentary balance
(17).

2.1.2 Reliability Evaluation

Operating and planning the transmission grid includes socioeconomic beneficial
planning. The TSO is also responsible for ensuring secure and reliable power sys-
tems, which includes investing in reliability. Considering that increased reliability
naturally equate to higher costs, these two objectives contradict. Therefore, a TSO
should always have an objective of optimising the trade-off between investment costs
and reliability (2). Figure 2.2 demonstrates this trade-off.

Reliability refers to a power system’s ability to deliver electricity within the given
constraints. Energy is categorised into served and not served, which also incorporates
electricity with lower quality than admissible levels as non-delivered energy (18).
The term Energy Not Served (ENS) will be used to describe this energy.

The reliability worth is an important aspect in transmission system planning and
operation. There are many existing models used to quantify reliability worth. In
MONSTER the reliability worth is estimated using a cost function accordant with
the Norwegian Energy Regulatory Authority (11)(19). The estimated cost of ENS
will be referred to as Cost of Energy Not Served (CENS) in this paper.
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The quantification of reliability worth can be used to evaluate and prioritise invest-
ments. As seen in Figure 2.2, the optimum level is the minimum total societal cost.
The difficulties of estimating consumer interruption costs complicates the accurate
prediction of socioeconomic costs. This affects the estimated optimal reliability level
(18).

Figure 2.2: The cost vs. reliability for investment and operation costs, and consumer
interruption costs. Inspired by (18)

2.1.2.1 N-1 Criterion

The N-1 criterion is a deterministic criterion that has provided a guideline for trans-
mission system planning and operation to ensure reliability. The criterion states that
a power system should be able to withstand disturbance of one element, for example
line, transformer or generator, without transgressing the operating constraints (2).

Multiple variations of this criterion is used by European TSOs in different situations.
So far, this criterion has worked to ensure reliability in transmission systems, because
power systems have largely had centralised and predictable production. Determin-
istic criteria, like N-1, may not ensure reliability as systems grow more complex and
electricity production becomes less predictable (20).

5



2.2 Probabilistic Models

Probabilistic modelling is a common term for models that take include the uncer-
tainty in input variables. For complex systems including uncertainties in all parts of
the model will provide a wider range of possible outcomes (21). Unlike deterministic
models – that produce point-result – probabilistic models mainly produce results in
the form of a probability density function (PDF). This provides more information
for risk assessment and decision making (22).

The deterministic methods used for reliability analysis do not take the uncertainties
of inputs into account. This disregards many possible scenarios. With the increase
of variable and decentralised power production, uncertainties also increase (20). The
fossil fuel phase-out, also requires increased electrification, which amplifies the need
for further development of the transmission grid in Norway (23). A disadvantage
with deterministic reliability analysis is that probabilities of the scenarios are not
taken into account. This practice may lead to investing in reliability for unlikely
events while overlooking more probable occurrences (2). As the interest in optimising
the trade-off between reliable power systems and low costs investments has increased,
so has the interest of probabilistic models for reliability evaluation (20).

The N-1 criterion overlooks the probability of a component failure as well as the
likelihood of multiple components failing. In situations where the likelihood for
failure is very low, this criterion may lead to an over-investment, while areas with
higher probability of multi-component failure might be ignored. Furthermore, out-
ages on a larger scale are usually due to multiple component failures, which proves
that N-1 alone may not be appropriate to ensure system reliability. Using more se-
cure deterministic criteria, such as N-2 or N-3, require higher investments. Utilising
probabilistic methods to complement the N-1 criterion during decision making can
increase system reliability and reduce costs (2).
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2.3 MONSTER Simulation Tool

This subsection gives a description of the probabilistic simulation tool, that is used
for this study. MONSTER is a tool developed by Statnett for probabilistic reliability
analysis and is based on individual, weather dependent failure rates, with Bayesian
Updating and Monte Carlo simulations (24). An overview of the simulation tool’s
modules is illustrated in Figure 2.3. Before describing the different modules of the
tool, a description of Monte Carlo and Bayesian Methods will be given.

2.3.1 Monte Carlo Simulations

Monte Carlo Methods is generally used to describe methods that use randomness,
often to solve problems in complex systems. The methods include uncertainties
in inputs of the model by drawing random values for the inputs. Usually, a large
number of simulations are computed. An advantage of Monte Carlo Methods is the
ability to perform risk analysis in a system (25).

Given a simple model, M(x) with one input, x – where x has an uncertainty repre-
sented by the probability distribution, f(x) – the probability distribution f(x) gives
the probabilities for each possible outcome of x. In a Monte Carlo method – with n
number of simulations – n random values of x are chosen based on the probability
distribution f(x). For each randomly chosen value, M(x) is computed. To make
sure the number of simulations – in other words, samples of x – are enough to be
representative for the whole distribution, convergence is controlled for. Equation
2.2 illustrates the mean of simulated results, called the expected value (26). How
to determine which simulation number to use depends on the convergence of the
Monte Carlo simulations (27).

µ̂n = E[M(x)] =
1

n

n∑
i=1

M(xi). (2.2)
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2.3.2 Bayesian Updating

Bayesian Updating uses Bayes Theorem, where the prior probability of an event,
P (A), is updated to estimate conditional probabilities based on given information,
B. Bayes Theorem is stated in Equation 2.3, where P (A|B) is the updated, posterior
probability (28).

P (A|B) =
P (B|A)P (A)

P (B)
(2.3)

In the simulation tool, Bayesian updating is used to compute individual failure rates
for components. The prior probability can either be based on general failure rates of
components with similar properties or expert evaluation. Components of the same
type can have different sensitivity when exposed to the same weather. To take this
into account, each individual component’s prior failure rate is updated by using its
individual failure rate. The method is explained in more detail in (29).

2.3.3 The Simulation Tool

The simulation tool computes weather dependent failure probabilities using histor-
ical failure rates and weather data. This way failure rates for lines are increased
simultaneously depending on weather conditions. This increased probability of fail-
ure is more realistic, since weather conditions affect lines’ probability of failure,
simultaneously (24). The failure probabilities for cables, station components, and
transformers in his tool, are not weather dependent (11). This is due to low or no
sensitivity to weather changes in these components (30).

Figure 2.3 depicts the tool’s modules. The Time Series Manager computes hourly
failure rates for the components in the analysis using failure statistics from FASIT
– the official Norwegian database for reporting failures – and weather data. Failures
for lines are divided into 8 types, as seen listed in Table 2.1. For each failure type
and component, hourly time series of failure probabilities are computed in the Time
Series Manager. These time series are then used in the Monte Carlo module, where
a number of outages are drawn per simulation and distributed across the simulation
period. A start time and duration of failure are also drawn (24).

The Outage Manager module goes through each hour in the simulation period and
collects contingencies. Contingencies here are defined as instances where at least
one component is unavailable. Components may be unavailable because of failures
drawn in the Monte Carlo-simulations or due to maintenance, added through the
Service Plan (11).

8



Figure 2.3: An overview of the structure of MONSTER. Inspired by (11)

Table 2.1: An overview of the 8 types failure rates in lines are categorised into.

9



The contingencies from the Outage Manager -module are analysed in the Contin-
gency Analysis-module. To estimate the ENS, consequences of each contingency is
assessed for the modelled system state in the time period of the contingency. The
system state consists of load levels throughout the year, line transfer capacities, and
flow patterns. Thermal rates are also added since temperatures affect line transfer
capacities. In this module, remedial measures are also added, imitating measures
taken by the system operator to prevent or reduce outages. These include chang-
ing production, moving loads etc. For simulated contingencies that lead to power
outages, ENS is predicted. The Cost Model-module predicts the CENS – based on
the ENS, the duration of the outage, time of the year and, the type of load – using
methods proposed by the Norwegian Energy Regulator Authority (11)(19).

2.3.4 Predicted ENS from MONSTER

Cost estimations are out of the scope of this thesis. Therefore, to exclude uncer-
tainties in estimations of the reliability worth, predicted ENS from MONSTER is
analysed. The ENS results are presented as a cumulative density function (CDF)
based on the computed ENS per simulation.

A cumulative distribution function, F (x), is described as the probability that the
predicted value, η is equal to or less than x. The definition is described in Equation
2.4. The function is non-decreasing, ∆F (x) ≥ 0, F (−∞) = 0, and F (∞) = 1 (31).
An example of a CDF-plot produced by MONSTER is shown in Figure 2.4.

F (x) = P (η ≤ x) (2.4)

A point prediction for ENS is also estimated, based on the mean of computed ENS
per simulation per year. This value will be referred to as the expected value. The
calculation for the expected value, E, is shown in Equation 2.5, where y represents
the year, N represents the number of Monte Carlo simulations in the prediction,
and f(x)ij is the computed ENS for the j th simulation on the ith year.

E(f(x)) =

∑N
j=1

∑y
i=1 f(x)ij

yN
. (2.5)
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Figure 2.4: Cumulative density plot for a MONSTER-run for year 2010. The func-
tion has a hight valye ENS = 0MWh, because of high probability density at this
point.

2.3.5 Extreme Values

The CDF in Figure 2.4 flattens out around ENS = 40, 000MWh. The long, almost
flat tail – caused by a very small increase in cumulative density at high ENS values
– will be referred to as extreme values. These values are important for conducting
risk analysis. However, when predicting accurate reliability worth, these extreme
values will significantly affect the expected value. Considering that the expected
ENS value is based on an average of all computed ENS per year per simulation for a
MONSTER run, extreme values can negatively affect the expected value’s accuracy.
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3 Choice of Methods for Verification

Verifying probabilistic results is more complex than deterministic point-predictions.
It is easier to quantify and evaluate a point-prediction against an observed value
compared to a Probability Density Function (PDF) (32). This chapter will go
through the theory of probabilistic verification and the process of assessing methods
to evaluate the accuracy of MONSTER. First, a brief introduction will be given on
probabilistic models for wind forecasting, since the wind forecasting community is
leading in verification research for probabilistic results (33). Second, multiple verifi-
cation methods will be discussed and evaluated to choose methods fit for evaluating
ENS predictions from MONSTER.

3.1 Probabilistic models for Wind Forecasting

There are different types of probabilistic wind forecasting methods. Parametric
methods are based on the assumption that the prediction frequency follows a pre-
defined shape, for example, a Gaussian distribution (34). Non-parametric methods’
PDFs do not follow a predefined shape. An example of a non-parametric method is
ensemble forecasting. Ensemble forecasting is a scenario-based forecasting method
that takes into account the uncertainties in the input variables. A PDF is produced
based on the results from the number of ensembles used for the model (35). The
process of this type of model is presented in Figure 3.1. Ensemble models are not
necessarily based on probabilistic criteria, since ensemble models can consist of a
set of deterministic forecasts, but they do produce a PDF-predictions (34).

3.2 Required Qualities and Evaluation Diagrams

There are multiple requirements mentioned in various literature for probabilistic
forecasts (36)(33). This paper will discuss reliability, sharpness, and resolution.
Reliability, also called calibration, refers to the model’s ability to consistently predict
results similar to historical observations (33). Resolution is a forecast’s ability to
predict different predictions based on different input variables (32).
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Figure 3.1: Illustrates the process of ensemble modelling (35). Reprinted with per-
mission 1.

Sharpness is the attribute of concentration of the probability distribution. For ex-
ample, as seen in Figure 3.2, both PDFs are centred around the same value of the
parameter of interest, x. However, one PDF is more concentrated than the other
and therefore gives a more informative prediction. Contrary to the reliability, the
sharpness attribute does not depend on the historical observations, but only the
predicted PDF’s shape (33).

There are multiple existing methods for assessing these qualities. Score methods,
which will be discussed more in-depth in the next subsection, give quantitative
measures of the prediction quality. Visual assessment tools are also used, such as
reliability and sharpness diagrams (33).

1This Figure was published in Sub-seasonal to Seasonal Prediction: The Gap Between Weather
and Climate Forecasting, 1st Edition, Andrew Robertson and Frederic Vitart, Page 38, Copyright
Elsevier (2018).”
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Figure 3.2: The figure displays the PDFs for two different estimates, with the same
central value but different sharpness.

Reliability diagrams are visual assessment tools used to evaluate probabilistic pre-
dictions. Using reliability diagrams provides information on possible error causes in
the prediction. In a reliability diagram the prediction percentiles, q̂α, for different
nominal levels, α, are plotted against observed frequency. For example, for a quan-
tile forecast with a nominal level of α = 0.5, 50 % of the PDF is below the q̂0.5-value.
For a perfect probabilistic prediction, 50 % of the observed values, y, should also be
below q̂0.5. As shown in Figure 3.3, the stapled line in the diagonal shows the ideal
prediction. Evaluating a reliability diagram can give information on the effects of
small sample sizes, lack of resolution and, the predictions’ reliability (37).

The observed relative frequency, aα, per nominal value is given by:

aα =

N∑
i=1

ξαi

N
. (3.1)

ξαi is the indicator given by Equation 3.2 and N is the number of predictions.

ξαi =

{
1, y < q̂α

0, otherwise
(3.2)

14



Figure 3.3: An example of a reliability diagram. The nominal levels, in the x-
axis, are plotted against the relative, observed frequency of the observed values (38).
Reprinted with permission 2.

Sharpness diagrams for forecast verification can be produced by plotting the width
of interval forecasts, Îβ for different nominal coverage rates. The sharpness, δβ of
an interval forecast Îβ is given by Equation 3.3 (39).

δβ = q̂(1−
β
2
) − q̂(

β
2
). (3.3)

2This figure was published in Quarterly Journal of the Royal Meteorological Society, Vol 136,
Pierre Pinson, Patrick McSharry and Henrik Madsen, Non-parametric probabilistic forecasts of
wind power: required properties and evaluation, Page 88, Copyright John Wiley and Sons (2010).
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3.3 Score Methods

Scoring methods quantify probabilistic predictions’ quality by giving a numerical
score (40). Score methods make an overall assessment of prediction quality (41).
This simplified way of assessing a model’s performance may not be informative
enough (36). Some scoring methods can be decomposed to assess different attributes
separately (42) (43). In this subsection, multiple score methods will be introduced
and discussed.

3.3.1 Brier Score

The most widely used Brier Score evaluates probabilistic predictions for binary re-
sults. The score value can be compared to the mean squared error (36) and is one of
the oldest probabilistic verification methods (43). Although mostly used for binary
outcomes, the original definition allows it to be used for non-binary (44). However,
only the equation for binary results is presented in this thesis.

BS =
1

N

N∑
i=1

(fi − oi)2. (3.4)

Here, N is the number of instances, fi is the probability of the event occurring for
instance i, and oi is a binary value that depends on whether the event occurred in
instance i or not, as shown in Equation 3.5.

oi =

{
1, occurrence

0, non− occurrence
(3.5)

3.3.2 Continuous Rank Probability Score

Continuous Rank Probability Score (CRPS) can be used for continuous and discrete
results. The method compares the predicted and observed CDFs. Figures 3.4 and
3.5 illustrate the probability and cumulative probability of predicted and observed
values, respectively. The vertical line in Figure 3.4 represents the observed value
of the parameter of interest. For Figure 3.5, the cumulative probability Fobs = 0

up to the observed value, where Fobs = 1. CRPS penalises based on how much the
predicted cumulative density function (CDF) deviates from the observed CDF (41).
This allows CRPS to evaluate the prediction’s reliability and sharpness. Equation
3.6 presents the CRPS calculation for one instance.
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CRPS(F, xobs) =

∫ −∞
∞

[F (x)− Fobs(x)]2 dx. (3.6)

F (x) and Fobs(x) are cumulative frequency distributions of the probabilistic predic-
tion and the historical observation. For observed value, xobs, Fobs(x) is:

Fobs(x) =

{
0, x < xobs

1, x ≥ xobs.
(3.7)

The mean CRPS of N instances is given by:

CRPS =
1

N

N∑
i=1

CRPS(Fi, xi,obs). (3.8)

Figure 3.4: The PDF of a prediction of parameter of interest, x. The vertical line
represents the observed value at x=55.

3.3.3 Ignorance Score

The Ignorance Score (IG) is a score method that is also used for continuous results
(33). With the predicted PDF, f(x), and observed value xobs, the ignorance score
for N observations can be calculated by:
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Figure 3.5: The CDF of a predicted and observed value. The CRPS score penalises
based on the deviation between the two CDFs.

IG = − 1

N

N∑
i=1

log(fi(xi,obs)). (3.9)

IG gives a higher penalty to predictions that deviate from the observed value, than
CRPS. However, because of its logarithmic scale, IG cannot be implemented on
PDFs with null probabilities. The score cannot be normalised either (33).

3.4 Evaluation of Methods for Case Study

Predictions from MONSTER are simulations over a longer time period and not fore-
casts. However, the main idea in the verification methods for probabilistic forecasts
is comparing PDF-predictions to point observations. Therefore, the same methods,
with some adjustments, can be used to evaluate ENS results from MONSTER.

From the score methods discussed, CRPS is the best fit to use, since it can be
utilised for continuous data. Both Brier and CRPS can be decomposed into relia-
bility, resolution and uncertainty terms (42) (33), which gives more information on
prediction quality. Although the IG can be utilised for continuous results, it cannot
be decomposed or normalised (33). An other possible challenge with the IG is it’s
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inability to calculate a score for null-probabilities. If the observed value, xobs has a
predicted probability f(xobs) = 0, IG will not be able to compute a score. This will
become challenging for results from MONSTER, since the PDF has many points
where f(x) = 0, as illustrated in Figure 3.6. The figure is a histogram plot where
the PDF is grouped by a width of w = 10MWh. As seen in the histogram, there
are many points where the PDF has null values.

Since CRPS can be directly compared to MAE for point predictions, using CRPS
for this study enables direct comparison of the MAE from MONSTER’s point pre-
dictions and the CRPS from the predicted CDF.

Figure 3.6: This figure illustrates the PDF of a MONSTER-run for year 2010.
The histogram is zoomed so the full length of 0MWh ≤ ENS < 10MWh and
ENS ≥ 400MWh are not included.
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4 Case Study

This chapter presents an outline of the area of analysis for the case study and the
methodology. The methodology consists of a description of how MONSTER-runs
are carried out for this study as well as data retrieval. In addition, the type of
MONSTER-predictions that are made to examine the accuracy and sensitivity of
the tool are described. Lastly, the methods chosen to evaluate the results of the
case study are discussed.

4.1 Description of Case Study

The area of analysis is the Greater Oslo Region in the time period 2010 to 2018.
Lines, cables, and components in electrical substations, as shown in Figure 4.1 are
included in the study. The 7 stations that are included in the analysis are repre-
sented by red nodes in Figure 4.1. Lines and cables are represented by solid and
dashed red lines, respectively. All components in the stations are included in the
analysis. Transformers and station components will be collectively referred to as
station components in this paper.

Figure 4.1: This figure illustrates the components in this analysis. Dotted lines
illustrate cables and solid lines illustrate transmission lines. The nodes represent
electrical substations. The grey coloured stations are not included in the analysis.

20



4.2 Methodology

4.2.1 Simplifications and Limitations in the Analysis

To test the accuracy of the tool, the input variables for this analysis have been set as
similar to the historical conditions as possible. However, some simplifications were
made. Since there have not been significant changes in the system state in the area
and time of analysis, the modelled system state for 2019 is used for all runs. Service
plans used for the analysis are the exact same as the historical service plans.

The available weather data to run MONSTER is at the moment up to 2014. There-
fore, the analysis made for monthly and 6-month intervals are only for 2010 to 2014.
Therefore, predictions for 2015 to 2018 uses weather data from 1980 to 2014.

4.2.2 Setting up MONSTER-runs

To set up a MONSTER-run, the network configurations are modelled in the Case
Set-module. Multiple case files that represent the transmission system, and roughly
the changes in power flow throughout the year. These case sets are used to map
the changes in power flow throughout the year in the Case Time Mapping-module
where one case file is chosen to represent the power flow per date. Electrical power
usage is usually higher during the winter and lower during the summer. The power
flow – modelled in the Case Time Mapping – affects the predicted consequence
of a simulated contingency. For example a simulated contingency during winter
will have a higher ENS compared to the same contingency with the same duration
during summer. The same case time mapping is used for all MONSTER runs in the
analysis, because yearly variations in power flow has been relatively similar Greater
Oslo during the analysis period. Both the Case Set and Case Time Mapping are set
up by Statnett, since this is outside of the scope for this thesis.

The Probability Set-module is where the probabilities of failure per component per
hour are computed. All components for the analysis are added as well as all possible
years of weather data. The available dates are January 2nd, 1979 to February 28th,
2015. The probability of failure per hour for all components in this time period are
calculated in the Probability Set.
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Figure 4.2: Process diagram that demonstrates the process of setting up a
MONSTER-run in this study. Adding service plan and remedial measures is op-
tional.

To get an ENS prediction a MONSTER-run is set up as illustrated in Figure 4.2.
The process diagram shows how MONSTER-runs have been set up for this study,
once Case Set, Case Time Mapping, Probability Set, and Service Plans were set up.
In the Graphical User Interface (GUI), a Case Time Mapping and Probability Set
are chosen first. All runs done for this analysis use the same case time mapping.
Different Probability Sets are used for runs with changed failure rates. Figure 4.3
shows the GUI where further inputs are added. A service plan for the selected time
period is added. For each MONSTER-run, the exact service plan for the selected
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Figure 4.3: Snapshot of the MONSTER-run page

period and the exact weather data is added. For example, in a MONSTER-run
for February 2011, the exact service plan of 2011 and weather data for February
2011 are added. The tool will therefore use the failure probabilities computed in
the Probability set for February 2011 as well as service plan for February 2011.
All components for the analysis are added as potential contingency components and
monitored components. Potential contingency components are the components that
can get failures in the simulations. Monitoring components in the MONSTER-run
allows overloads to be registered and therefore handled in the simulations. Compo-
nents that are not in the Probability Set cannot be added as potential contingency
components.

4.2.3 Choosing Number of Simulations

As illustrated in the snapshot of the GUI in Figure 4.3 and the process diagram in
Figure 4.2, the number of simulations for the MONSTER-run is also asserted. The
numbers of simulations used in this study have been chosen based on an analysis of
how well the simulations converge. For each type of run, a simulation number was
chosen and the predictions’ convergence plots was evaluated. Figure 4.4 illustrates
the convergence plot of a MONSTER-run with 20 000 simulations. If an instance

23



had not converged, a higher simulation number was chosen for all predictions of the
same type and the process was repeated. This way, convergence was controlled for
all runs before data retrieval. For runs using weather data for a year or 6 months, 20
000 simulations have been used. For the yearly 2015-2018 runs, using weather data
for 35 years, 5000 simulations have been chosen, and runs for monthly predictions
use 100 000 simulations.

Figure 4.4: Convergence plot for a MONSTER-run for 2010.

4.2.4 Remedial measures in MONSTER-runs

There are multiple remedial measures that can be added in MONSTER. The reme-
dial measure used in this study is move load. The System Control Centre can use
the regional transmission system as an alternative transmission method, in case of
a contingency. For example, in the case of a contingency in the the electrical sub-
station, Smestad, leading to the station not being able to transmit power to loads
supplied by this station, power can be supplied from other electrical substations
and through the regional system to those loads. The amount of power that can be
transmitted this way depends on the capacity of the regional transmission system
and the load flow at that exact time.
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Figure 4.5: This figure shows part of the area of analysis. Regional and distribu-
tion systems and consumers are all modelled as a load connected to the electrical
substation in MONSTER.

The regional and distribution systems are not modelled in MONSTER. Everything
below the transformation station is modelled as a load as seen in Figure 4.5. To
imitate the use of the regional transmission system in case of a contingency, move
load is used as a remedial measure in MONSTER. Since the move load-measure
in MONSTER cannot be customised for load flow the same maximum load can be
moved regardless of the system state at the time of the contingency.

For each electrical substation in this study move load, has been added as a measure
as listed in Table 4.1, where 100% of the load can be moved to one neighbouring
station.

Table 4.1: The table shows the specific remedial measures added in the MONSTER
runs for this study. Max load is set as the maximum load that can be transferred
from one station to an other in the model.
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4.2.5 MONSTER-runs for Time Intervals and Sensitivity Analysis

To test MONSTER’s accuracy for different time intervals, 3 time intervals have
been chosen; year intervals, 6-month intervals and month intervals. Because of the
unavailability of weather data for the years 2015 to 2018, the yearly runs made for
this period use weather data from 1980 to 2014. For the 6-month intervals, the
periods are divided into summer and winter, where April to September are chosen
as summer months and October to March are chosen as winter months.

For the sensitivity analysis, the yearly intervals with all inputs, is used as a base
case. Predictions are run removing different inputs, such as remedial measures and
service plan to examine their effect on the predicted ENS. This analysis gives insights
on the tool’s sensitivity to the these inputs. MONSTER-runs are also made with
changed failure rates. Since the failure rates for lines and cables are low compared
to failure rates for station components, failure rates in this part of the analysis is
changed only for station components. Table 4.2 gives an overview of all predictions
made in this study.

Table 4.2: This table provides an overview of all the runs made for this study.

4.2.6 Data Retrieval and Processing

Historical data were retrieved from the Norwegian database for observed failures,
FASIT. Failures for the selected components that have not lead to interruptions
are filtered out. The data has then been grouped by date so that ENS per date is
summed in case there are multiple interruptions on the same date. This results in
a data frame with time series with the total daily ENS for the area of analysis. To
analyse failures more closely, failures that have lead to interruptions were retrieved
together with power and duration of the interruption.
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The predictions from the MONSTER-runs were retrieved from the GUI, where com-
puted ENS per year, per simulation is sorted from lowest ENS to highest. This is
used to plot the CDF graph. Figure 4.6 shows a plot of the raw data as a scatter
plot. Since the data frame does not have points for cumulative probability for ENS
levels between the simulation points, this is added by grouping data in bins and
recalculating cumulative frequencies for each bin. Figure 4.7 shows the scatter plot
of the grouped data with a bin width of 1 MWh. The smaller the bin width used
for the analysis, the better resolution. Larger bin widths may give a rough estimate
of the numerically calculated CRPS. Therefore, the smallest possible bin width is
used for this study.

Figure 4.6: Scatter plot of the raw data from a MONSTER prediction. There are
parts of the x-axis, especially for higher values, without values
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Figure 4.7: Scatter plot of grouped data with bin width, w=1 MWh.

4.2.7 Estimating the Accuracy of predicted ENS

When calculating CRPS numerically Equation 4.1 is used, where N is the number
of instances, Mj is the number of bins in the jth instance, and xi is the mean value
of the bin interval in the jth instance. For example, bin[0,1000] MWh would have a
xi = 500MWh. The number of bins are different per prediction, depending on how
big the interval for simulated ENS values is. However, bin width is controlled for
and all calculations are done with the same bin width, w = 1MWh.

CRPS =
1

N

N∑
j=1

Mj∑
i=1

w[Fj(xi)− Fobs,j(xi)]2. (4.1)

Fj(xi) is the cumulative density for instance j at point xi, w is the bin width and
Fobs,j(xi) is the observed cumulative density. The normalised CRPS score, NCRPS,
is given by Equation 4.2, where ENSobs,j is the observed ENS for instance j.

NCRPS =

∑N
j=1

∑Mj

i=1w[Fj(xi)− Fobs,j(xi)]2∑N
j=1ENSobs,j

. (4.2)
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To compare the accuracy of the CDF predicted by MONSTER to the accuracy of the
expected value, the Mean Absolute Error (MAE) of the expected value is estimated.
This is given in Equation 4.3, where ENSpred is the expected value of ENS predicted
by MONSTER and ENSobs is the observed ENS value. The normalised MAE is
given in Equation 4.4.

MAE =
1

N

N∑
j=1

|ENSpred,j − ENSobs,j|. (4.3)

NMAE =

∑N
j=1 |ENSpred,j − ENSobs,j|∑N

j=1ENSobs,j
. (4.4)

Instead of sharpness diagrams, plots with percentile bands are used to visually assess
the results from MONSTER. This is because the results generally have a high cumu-
lative probability at ENS = 0MWh. Therefore, using Equation 3.3, the sharpness,
δβ, of an interval prediction, Îβ, would be equal to the percentile prediction, q̂(1−

β
2
),

since q̂(
β
2
) = 0 for all predicted instances in this study.

Reliability and percentile diagrams are used in this study, both for the purpose of
evaluating whether they can be used to assess MONSTER-predictions and also as
complementary tools to evaluate the results from the case study.

A suggested way of exclude extreme values is by using a confidence interval of the
CDF instead of the full CDF. This will be tested for the yearly predictions, where
the accuracy of the full density predictions will be compared to the accuracy of an
interval prediction with 95 % confidence interval.

4.2.8 Percentile Diagrams

Plots with percentile bands, as shown in Figure 4.8, can be used to visually observe
the sharpness of predictions as well as extreme values. Percentiles provide informa-
tion on data distribution. The nth percentile is the value where n% of the data have
that value or lower (45). For a cumulative density function, F (x), the nth percentile
is the value of x when F (x) = n. Figure 4.9 illustrates the CDF of one of the
nine predictions in the percentile diagram 4.8. The 80th, 95th, and 100th percentile
are highlighted in this CDF plot. As highlighted, the difference between the 95th
and the 100th percentile is large compared to the difference between the 80th and
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95th. This is due to extreme values of predicted ENS with very low probabilities.
The flatness of the CDF curve at the highest ENS values give relatively wide gaps
between percentile bands in the percentile diagram. In Figure 4.8 the gap between
the 95th and 100th percentile is larger than gaps between the rest of the percentile
gaps. This enables visual detection of outliers and extreme values.

In this study, percentiles from resulting CDFs are plotted in the y-axis with predic-
tion periods on the x-axis, as shown in Figure 4.8. This is to be able to visually
compare the sharpness of the predicted CDFs and also locate extreme values.

Figure 4.8: Example of a percentile diagram. Percentile diagrams enable visual
assessment and comparison of multiple predictions.
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Figure 4.9: Cumulative density plot of pred3 in Figure 4.8 with 80th, 95th and 100th
percentile highlighted.

.

31



5 Results and Discussion

In this section, the findings of the research is presented and discussed. In the first
subsection, the chosen verification methods for evaluating results from MONSTER
will be discussed. In subsection 5.2 the results from MONSTER’s accuracy for dif-
ferent time intervals will be presented and discussed. Subsection 5.3 will go through
the sensitivity analysis and the changes for predicted ENS with changed input.

5.1 Evaluation of Methods for Verification

Methods chosen for this analysis are the CRPS score, reliability diagrams, and
percentile diagrams. When computing the CRPS scores, dividing the raw data
from the predictions into bins affect the resolution of the CDF, as discussed in the
method section. The optimal bin width is the smallest possible, however, depending
on the size of data, computing power could be a limitation. Due to the sample
size of this study, computing power is not a problem, therefore the smallest possible
width is chosen. Table 5.1 shows the CRPS score computed for each year in the
yearly predictions, using two different bin widths. As illustrated in the table, most
CRPS scores are not significantly affected by bin width. However, in years like
2012 and 2018 the CRPS score is significantly different for w = 1MWh compared
to w = 100MWh. This is because some of the variations in the CDF disappears
when the data is generalised in a larger bin width. Using a a larger bin width – and
therefore lower CDF resolution – can affect the end results remarkably. This should
be taken into account when choosing bin width.

Table 5.1: This table lists CRPS scores per instance for bin widths, w1 =
1MWhandw2 = 100MWh, foryearlypredictions.

32



Like MAE, lower CRPS values represent a higher accuracy. Therefore, when com-
paring scores, lower values imply a more accurate result. Normalising the score
gives a better understanding of the level of deviation from the actual value. How-
ever, what makes the value of a CRPS score good is difficult to define. This depends
on the intended use of the model and the level of accuracy required.

Reliability and percentile diagrams are used as complementary visual assessment
tools. Since the data set is small, the reliability diagram is not expected to follow a
diagonal line, however it can give valuable insights.

5.2 Prediction Accuracy

5.2.1 CRPS and MAE of Time Intervals

Table 5.2 shows the MAE, CRPS, NMAE, and NCRPS values for yearly, 6-month
and monthly intervals. The NMAE is lower for year-intervals than for monthly
and 6-month intervals. This suggests that the expected values of ENS are more
accurate for yearly intervals. The NCRPS is lower for monthly time intervals than
yearly, which indicates that the ENS-predictions for lower time intervals are more
accurate. This was not expected, since MONSTER is suited for long-term reliability
assessment and analysing the mean ENS in an area over a longer period of time
should give a more accurate prediction. Possible reasons for the lower NCRPS score
for monthly predictions will be discussed in subsection 5.2.2.

Table 5.2: MAE, CRPS, NMAE and NCRPS of predictions for different time inter-
vals.

Looking more closely at the predicted CDFs from MONSTER, the cumulative fre-
quency is high for ENS = 0MWh for all instances. As listed in Table 5.3, the
average simulations that result in ENS = 0MWh is 90.06 % for yearly intervals,
94.37 % for 6-month intervals and less than 1 % for monthly intervals. Figures 5.1
and 5.2, demonstrate the predicted and observed CDFs for an arbitrary yearly in-
terval. In this specific instance, over 90 % of simulations do not have any predicted
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interruptions. This can be deducted from the CDF where the cumulative frequency
at ENS = 0MWh is above 90 %. Since CRPS is a score based on how much the
predicted CDF deviates from the observed CDF, instances where the predicted CDF
has a high cumulative frequency value for ENS = 0MWh and an observed value of
ENS = 0MWh may score higher on accuracy, not necessarily because the results
are more accurate, but because of the shape of the CDF. Monthly intervals have a
larger number of observed instances with ENS = 0MWh and this may contribute
to the low CRPS score for monthly intervals, although they are not necessarily more
accurate than yearly interval predictions. Subsection 5.2.2 will look more closely at
predicted failures and interruptions to further explain the shape of the CDFs in this
study.

Table 5.3: Average percentage of simulations per prediction type with ENS=0 MWh.

Figure 5.1: Cumulative density plot for an arbitrary prediction and the historically
observed value.
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Figure 5.2: Zoomed cumulative density plot for an arbitrary prediction and the ob-
served value.

5.2.2 The CDF and Probability

Assuming that the CDF represents the cumulative probability of ENS, for a perfectly
reliable prediction, the mean cumulative probability of a given ENS-value should be
equal to the mean observed cumulative frequency. Provided with enough data, the
predicted cumulative probability and the observed cumulative frequency should be
equal, for a perfect prediction. Since MONSTER’s current use is long-term reliability
it is unsure if enough data points can be provided. Even so, the reliability diagram
can still give important insights to assess reliability in the predictions.

Figure 5.3 illustrates a reliability diagram for yearly intervals. The horizontal line
up to x = 0.57 is due to nominal levels to that point having ENS = 0MWh. The
observed curve crosses the y-axis at y = 0.33, which means the observed frequency of
ENS = 0MWh is 33 %. The predicted probability of not having any interruptions
is higher than 33 %. Also, the reliability function is steep from x = 0.93 to x = 97.
This indicates that the majority of the observed yearly ENS-values fall within a 4
% portion of the predicted ENS-values. This further confirms that predictions for
this analysis contain a high number of simulations that lead to ENS = 0MWh

compared to observed values and the highest simulated years with ENS 6= 0MWh

have significantly higher ENS-values than observed.
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Figure 5.3: Reliability diagram for yearly ENS-predictions. The diagonal line is the
ideal.

To look closer at interruptions simulated by MONSTER, duration, and power have
been retrieved from the interruptions for yearly intervals. These are compared with
power and duration of observed values. Observed interruptions from 1998 to 2018
are used as well as a random sample of 200 interruptions from the yearly predic-
tions. Figure 5.4 presents the power and duration of interruptions in predicted and
observed data. The predicted and observed interruptions seem to have the same
power range. However, the durations predicted by MONSTER are much higher
than the observed durations. The high predicted durations will lead to a higher
ENS per predicted interruption in MONSTER compared to historical ENS. This
may contribute to the long tail in the CDF.

To inspect more closely, all interruptions from the yearly predictions are plotted in
Figure 5.5. Since there are over 100 000 points, the scatter plot is made with an
opacity to clarify areas with a higher concentration of points. As illustrated in the
figure, most points are concentrated in lower durations. The predicted durations,
however, are still significantly higher than observed durations. There is a high
concentration of points around 400 hour and 500 hour durations. This is due to
discrete failure durations, which will be discussed in later sections.
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Figure 5.4: Scatter plot of power vs. duration for predicted and observed failures.
This is for all observed failures in the historical data for the area of analysis and
200 randomly selected samples from the yearly predictions from 2010 to 2018.

Figure 5.5: Scatter plot of power vs. duration for all predicted interruptions in the
yearly predictions. The plot has opacity to clarify areas with high concentration of
points.

.
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Table 5.4: Average interruptions per year per simulation for all yearly predictions
and average interruptions per year from historical data.

5.2.3 Extreme Values

Although the extreme values are important for risk analysis, they do significantly
affect the expected value of ENS predicted by MONSTER. A suggested way of
decreasing this effect and acquiring more accurate predictions is by using an interval
of the predicted CDF instead of the full density. Table 5.5 illustrates the MAE and
CRPS of yearly intervals with full density and the a 95 % confidence interval. Both
MAE and CRPS are lower for the 95 % confidence interval results. However, with
the shape of CDF in the results presented, filtering out the top 2.5 % of the full
CDF will remove out a large amount of the CDF resulting ENS > 0MWh. Based
on the results of NMAE and NCRPS the accuracy may seem to have increased for
these specific predictions. Even so, using an interval prediction with 95 % confidence
interval for monthly predictions, may filter out all simulations where ENS > 0MWh

for some predictions. For example, for monthly predictions – where less than 1 %
of the simulations result in ENS 6= 0 – a 95 % confidence interval would remove
all simulations where ENS 6= 0. Therefore, using interval predictions require an
assessment of the CDF and detection of extreme values.

There is, however, a significant reduction in the NMAE from full density prediction
to the 95 % confidence interval prediction. This further strengthens the assumption
that extreme values highly affect the predicted expected value, and therefore the
importance of their detection.

Table 5.5: MAE, CRPS, NMAE and NCRPS for full density prediction and 95 %
central interval prediction.
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5.3 Sensitivity Analysis

This subsection goes through the results and discussion for the sensitivity analysis.
The base case for the sensitivity analysis is yearly intervals including all inputs. Sen-
sitivity analysis were performed on yearly predictions by excluding different inputs
and changing the failure rate for station components.

5.3.1 Analysis with only Lines and Cables

Predictions including lines and cables and excluding station components were made
for 2010 and 2011. They did not result in any interruptions and therefore did not
compute ENS predictions. This is because the failure rates for lines and cables
in the area of analysis are low. Because of this, no more runs were made of this
type. MONSTER runs were also made for only lines, and cables, excluding remedial
measures. This is because it is more likely that an analysis of only lines and cables
will have interruptions if remedial measures are excluded. These predictions did
either not result in any interruptions or did not converge. Therefore, analysis with
lines and cables are excluded from the result tables and figures. This is a great
indication that failures in lines and cables may not contribute much to the results
of this analysis.

5.3.2 Without Remedial Measures

Looking at Table 5.6 and Figure 5.6, it is clear that the remedial measures input
is essential for the predicted ENS. The MAE and CRPS are significantly higher
for predictions without remedial measures compared to the base case. Figure 5.6
presents the expected value of ENS predicted each year in the analysis. The ex-
pected ENS values without remedial measures are 3 times higher than the expected
ENS values for the base case, as shown in Table 5.8. The lack of remedial measures
in the model leads to more of the simulated contingencies resulting in interrup-
tions. As seen in Table 5.7 average interruptions per year are significantly higher for
MONSTER-runs without remedial measures than for the base case. Additionally,
excluding remedial measures as an input in the predictions does not correlate with
reality, since the System Operations Center operates the power system and continu-
ously takes measures to prevent and reduce the consequences of interruptions. Not
including remedial measures overlooks this work, and therefore an essential factor
that affects the transmission system’s reliability.

The results for predictions without remedial measures compared to the base case
indicate that this input has a notable effect. Table 5.8 depicts a 207.23 % increase
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in the average expected ENS. This raises question on to what degree simplification
of the input for this study affects the accuracy of predictions. The system operation
centre operates using multiple remedial measures. Also, the move load-measure
that is added to the MONSTER-predictions allows 100 % of a load to be transferred
to the neighbouring electrical substation, regardless of the system state. This is
a simplification that may lead to more interruptions being prevented in the model
compared to what is realistically possible. For example, during winter – since the
power loads are higher – the system capacity will be low compared to summer.

Table 5.6: MAE, CRPS, NMAE and NCRPS for sensitivity analysis.

Figure 5.6: Expected value of ENS for predictions from sensitivity analysis.
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Table 5.7: Average predicted failures and interruptions per simulation per year for
predictions and historically observed values.

5.3.3 Failure Rates

Changing the failure rates – and therefore the failure probabilities – affect the num-
ber of contingencies in the simulation period. In this part of the sensitivity analysis,
failure rates for station components were doubled and halved to analyse the effect on
the predicted ENS. As seen in Table 5.8 the expected ENS is roughly twice as high
for increased failure rates and a half for the halved failure rates. Since the failure
rates for lines and cables in the Greater Oslo Region are low, most of the resulting
ENS from these predictions are presumably based on failures in station components.
Therefore this correlation between predicted ENS and change in failure rates could
indicate a linear association. A more in-depth analysis of failure rates could reveal
if there is a linear association. However, looking at the average number of failures
on Table 5.7 there is no indication that the number of simulated failures doubled
or halved with the failure rate. Nevertheless, as Table 5.7 illustrates, there is an
increase in average interruptions and failures for predictions with a double failure
rate and a decrease for predictions with half failure rates.

Table 5.8: Percentage change of average predicted ENS from base case.
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5.3.4 Service Plan

MONSTER-runs without a service plan were made for only 5 years. Figure 5.7 plots
the expected values from predictions without a service plan and the base case. As
seen here, a lack of service plan generally decreases the expected ENS value. Adding
planned maintenance as an input in the model makes components unavailable for
the service period. The transmission system is therefore more sensitive in case of
a failure. Therefore, lower ENS is expected for predictions without a service plan
input. The effect of the service plan input is not as significant as remedial measures.
As listed in Table 5.8, the percentage difference in predicted expected ENS from
the base case is 7.39 %. This is much smaller than for predictions without remedial
measures and for changed failure rates.

Figure 5.7: Expected value of ENS for base case and predictions without a service
plan.
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5.4 Analysis of Percentile Diagrams

5.4.1 Extreme Values

Percentile diagrams provide information on CDF distributions. The gap between
band widths can also be a useful tool to detect extreme values. The percentile dia-
gram for predictions without remedial measures in Figure 5.8 illustrates a relatively
high gap between bands clearly. The top 2.5 % of values are much higher than the
rest of the percentile bands. The base case too shows a higher band hap between
the 100th and 99.5th percentile in Figure 5.10. When excluding the top 2.5 % of
the CDF, by using the 95 % confidence interval, the years 2010 to 2013, as seen
in Figure 5.11, do not have any percentiles q̂n > 0. Assuming the CDF represents
probability, using an interval prediction of 95 % will result in there being no proba-
bility of interruptions for these years. Although the results indicate that an interval
prediction is more accurate, in subsection 5.2.3, these results are not informative.

Figure 5.8: Percentile diagram for predictions without remedial measures, to 100th
percentile.
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Figure 5.9: Percentile diagram for predictions without remedial measures, to 95th
percentile.

Figure 5.10: Percentile diagram for base case, to 100th percentile.

5.4.2 Remedial Measures

The percentile diagram for predictions without remedial measures show a higher
number of percentiles being above ENS = 0MWh than for the base case. The high-
est percentiles also have higher ENS values. This illustrates that simulated failures
without remedial measures lead to significantly higher predicted ENS. Excluding
remedial measures in the predictions overlooks the System Operation Center’s work
by taking measures to prevent power outages. These results complement the earlier
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Figure 5.11: Percentile diagram for base case, to 95th percentile.

presented average interruptions per year for predictions without remedial measures
compared to the base case. The average expected ENS is also around 3 times as
high for predictions without remedial measures. The simulation tool’s sensitivity to
the remedial measure input is evident.

The simplifications made when adding remedial measures may lead to more inter-
ruptions being prevented than is feasible. The move load-measure allows 100 %
of the load to be moved to the neighbouring transformation station. It does not
consider limited capacity in the regional transformation system due to, for example,
high loads. Since this input has the largest effect on the results from MONSTER,
an expansion of this input, and possibly adding multiple remedial measures, could
increase accuracy.

5.4.3 Variations in Yearly Prediction

The percentile diagram for the base case in Figure 5.10 does not show much variation
between the predicted ENS per year. For this study, the inputs that have been
changed are service plans and weather. MONSTER has weather dependent failure
rates only for lines and not for cables, and station components. This is because
these components are not as exposed to weather changes as lines. In the area of
analysis for this study, the failure rates for lines are low and therefore insignificant
compared to failure rates for other components. Weather is therefore not expected
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to have a notable effect on the predicted ENS. This can explain some of the lack of
variation in the predicted ENS.

However, there is a notable difference in the year 2014, which peaks in the percentile
diagrams for the base case and predictions without remedial measures. 2014 is the
only simulated year that has more than 40 % of the simulations leading to ENS > 0.
The year 2016 also peaks, although not as much as 2014. These peaks are most
probably caused by the service plans input. Looking at the percentile diagram for
predictions without service plans in Figure 5.12 there is no peak in 2014. Also, the
plot of expected values in Figure 5.7, the difference between the predicted ENS for
the base case and the predictions without a service plan were highest in 2014. This
indicates some effect of changing the service plan input on ENS results.

Figure 5.12: Percentile diagram for predictions without a service plan.

5.4.4 6-month and monthly intervals

6-month predictions and monthly predictions have much fewer simulations that lead
to interruptions. For both predictions, summer months have more simulations with
ENS 6= 0. For the 6-month predictions, winter months have higher ENS for the
highest percentiles. Since the load is higher during the winter it is expected that
interruptions in this period will have a higher ENS. There are also significantly
higher numbers of service plans during the summer months compared to the win-
ter months. This can explain the higher number of predicted interruptions during
summer periods.
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The peaks, in the percentile diagrams, for 6-month and monthly predictions were
analysed to inspect for any correlations that might exists between these pinnacles,
and the periods with historically observed interruptions. Some trends were observed
for 6-month predictions. No trends were found for monthly predictions.

Figure 5.13: Percentile diagram for 6-month intervals.

Figure 5.14: Percentile diagram for month intervals.
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5.5 General Discussion

5.5.1 The Cumulative Density Function

The results presented indicate that interruptions are not simulated in the tool as
often as historically observed. For yearly predictions, except 2014, all other years
in the analysis have ENS = 0MWh for more than 90 % of the simulated years.
There are also some simulations resulting in high ENS values. This leaves the CDF
very steep at low ENS values and flat at high ENS values. A possible explanation
for this is the failure durations drawn in MONSTER for station components. Since
the failure durations are discrete for station components and cables, failures in these
components may result in either low or very high predicted ENS. An other expla-
nation for the steep CDF at low ENS values is redundancy in the power system
for the area of analysis, therefore few contingencies lead to interruptions. Table 5.7
show that average simulated failures in the yearly predictions are much higher than
the average predicted interruptions. This is also the case for predictions without
added remedial measures. This indicates that most simulated failures do not lead
to interruptions in the simulation tool. Since there are no remedial measures added
to these predictions, this further strengthens the assumption of redundancy.

5.5.2 Time Span of Predictions

Considering that MONSTER is currently not suited for short term analysis, the
time intervals of the predictions in this analysis is a disadvantage when assessing the
accuracy of the tool. As discussed in previous sections, MONSTER is a simulation
tool for assessing long-term reliability. However, the purpose of using shorter time
spans in this study was also to evaluate the tool’s ability to predict accurately for
short term analysis. The overall results indicate a better performance for longer time
intervals. A comparison between results from this study and long-term accuracy –
of 10 years or more – requires a more in-depth study of multiple areas, since there
is not enough historical data to conduct a long-term reliability accuracy assessment
with one area of analysis.
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5.5.3 Data Points

The main challenge of this study was the amount of data. MONSTER is currently
not suited for predicting ENS for the short time periods of this research. Therefore,
analysing the accuracy for smaller time intervals goes against the tool’s intended
use. On the contrary, using longer time intervals results in a smaller data set, and
therefore not enough foundation to conclude on the tool’s performance.

Analysing of a longer time period than 9 years or more areas would result in more
work to set up MONSTER runs, which was limited by the scope of this study.
Although yearly intervals over 9 years does not give enough grounds for a conclusion
on the tool’s performance, the results have given interesting insights and grounds
for further research.

Also, a significant part of this study is the assessment of methods to use for ver-
ification of probabilistic simulation models for reliability in transmission systems
in general and MONSTER in specific. This part of the research did not require
much data and the results from the case study did provided insights to the chosen
verification methods’ limitations.

5.5.4 Simplifications and Limitations

Many simplifications have been made for this research, for instance, the same system
states have been used for all runs. This simplification was made due to few changes
in the system state in the period of analysis.

Individual and weather dependent failure probabilities are a very important feature
in the simulation tool. This feature is added for lines, since overhead lines are more
exposed to weather changes than station components and cables. Considering that
the Greater Oslo Region has very low failure rates for lines, this study does not
examine that feature. Therefore the accuracy assessment in this research may be
biased.

The failure durations in Figure 5.5 illustrates a higher concentration of failures for
lower durations. However there is a concentration of points at points 400h and
500h. The randomly drawn failure durations for temporary failures for lines follow
continuous distributions based on historical durations for each failure type. Because
of the priority of modelling failure in lines and the simulation tool still being under
development, the durations drawn for outages due to failure in transformers are
discrete, hence outages will have specific values representing short or long outage
durations. The permanent failures durations are also discrete (46).
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5.5.5 N-1 Criterion

As discussed in the theory section, the N-1 criterion overlooks the probabilities of
component failures, as well as the likelihood of multiple components failing. This
can lead to an over-investment and therefore a probabilistic tool that accurately
predicts reliability worth would be in the interest of the TSO in optimise socioe-
conomic costs. This study has tested the accuracy of the simulation tool in the
Greater Oslo Region and there are some indications of higher predicted ENS for
instances that have higher observed ENS, a more expanded research is required to
make a general evaluation. Replacing the N-1 criterion is not necessarily the goal.
However, probabilistic tools like MONSTER open up for a more flexible use of the
N-1 criterion in transmission system planning. Since the simulation tool includes
uncertainty of inputs, it can also recognise areas where higher reliability than N-1
is socioeconomically beneficial. Probabilistic tools do not necessarily have to re-
place the N-1 criterion but can complement and support in decision making when
prioritising expansion plans in the transmission grid.

Disregarding whether probabilistic tools can serve as an alternative to the N-1 cri-
terion, MONSTER provides the possibility of a holistic, informative, and effective
evaluation of reliability worth, and is nonetheless valuable for future transmission
planning.

5.5.6 Verification Methods

Although the chosen score method, CRPS, has worked well for this study, the low
score for monthly intervals has revealed its challenges. Since CRPS averages over
the whole range of thresholds and probabilities, it does not identify deficiencies in
the predicted CDF. In Decomposition and graphical portrayal of the quantile score,
Sabrina Bentzien and Petra Friederichs suggest using the Quantile Score (QS) for
different probability levels to detect tails in the probability distribution (47).

In this study, reliability and percentile diagrams are used to visually inspect the
distributions and detect extreme values. Other visual tools, such as the Rank His-
togram and Probability Integral Transform (PIT) diagrams are also useful when
detecting tails in the probability distribution (33). A more in-depth study of ver-
ification methods and the use of multiple assessment tools would be beneficial for
future evaluations of MONSTER predictions.
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6 Conclusion and Further Research

6.1 Conclusion

The main objective of this thesis was to assess methods for verification of probabilis-
tic results. Methods from the weather forecasting community have been assessed
and applied to evaluate the results from MONSTER. The score method, CRPS, was
chosen to evaluate probabilistic ENS predictions from MONSTER. Complementary
visual assessment tools have been used, which have given more insights for the re-
sults. It was discovered, by analysing percentile and reliability diagrams, that the
percentage of simulated years with ENS > 0MWh is very low compared to histori-
cally observed years with ENS > 0MWh. Furthermore, the yearly simulations with
ENS > 0 have very high ENS-values. It was also discovered that CRPS overlooks
deficiencies in the probability distribution.

The accuracies given by CRPS for predicted ENS were better for smaller time in-
tervals. This does not necessarily denote that MONSTER predicts better for lower
time intervals, but that the CDFs are closer to the observed values for monthly
intervals. Looking at the shape of the CDFs, the cumulative frequency is high for
ENS = 0, and there are more points with ENSobs = 0 for monthly intervals. This
may lead to a lower CRPS and NCRPS score for monthly intervals. It is suggested
that including verification methods that detect deficiencies in the probability dis-
tribution will give better grounds for evaluating results from MONSTER. NMAE
is lowest for yearly intervals, as expected. This indicates that the expected ENS
values are more accurate for predictions with larger time spans.

The sensitivity analysis shows that this study is most sensitive to remedial measures.
This does not mean that the tool in general is most sensitive to remedial measures.
The results do show strong indications that this is an important input for the ENS
significantly. It is suggested that an expansion of this input for further research will
increase accuracy. Removing the service plan input did not have a notable effect
on the results, for this study. It is also clear that in this area of analysis, lines and
cables do not have as much effect on the predicted ENS as station components.
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6.2 Further Research

The assessment of results from the case study have clarified the limitations of cho-
sen verification methods. Further research of verification methods would be useful
to ensure a holistic assessment of the probabilistic results from MONSTER. Since
CRPS is not fit to detect extreme values, further research on verification methods
is required. Additionally, using multiple scoring methods would give better grounds
for evaluating the results from the simulation tool.

Since the main application for the simulation tool is long-term reliability, typically
10 to 40 years, assessing MONSTER’s accuracy requires an analysis of multiple
areas. An analysis of multiple areas can also be beneficial for developing a general
method for handling the effect of extreme ENS values.

Furthermore, because of low failure rates in lines for Greater Oslo Region, individual,
weather dependent failure rates have not been tested in this study. An assessment
of MONSTER’s performance in more areas can give more insights on this feature.
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A Appendix A: CRPS code

Listing 1: Functions used compute CRPS per instance.

def H( thre sho lds , a c tua l ) :
""" Heav i s ide func t i on . Makes CDF fo r observed va lue g iven :
1D array o f t h r e s h o l d s .
1 f l o a t . Observed va lue .
"""
r e s u l t = [ 1 i f t >= actua l else 0 for t in th r e sho ld s ]
return r e s u l t

def i s_cdf_val id ( case ) :
"""Checks i f a l l p r o b a b i l i t i e s are in wi th in the i n t e r v a l [ 0 , 1 ]

and CDF increas ing , g i ven :
1D array o f cumula t ive p r ed i c t i on s , P( y <= t ) , f o r each t h r e s h o l d .

"""
i f case [ 0 ] < 0 or case [ 0 ] > 1 :

return False
for i in range (1 , len ( case ) ) :

i f case [ i ] > 1 or case [ i ] < case [ i −1] :
return False

return True

def ca lc_crps ( thre sho lds , pred , actua l , width=1):
""" Ca l cu l a t e s the Continuous Ranked P r o b a b i l i t y Score g iven :

1D array o f t h r e s h o l d s .
1D array c on s i s t i n g o f rows o f cumula t ive p r ed i c t i on s ,

F( y <= t ) , f o r each t h r e s h o l d .
1 f l o a t . Observed va lue .
Threshold width . De fau l t va lue at 1 . """

num_thresh = len ( th r e sho ld s )
num_pred=len ( pred )
crps = 0
i f (num_pred == num_thresh ) and i s_cdf_val id ( pred ) :

cdf_actual = H( thre sho lds , a c tua l )
for fprob , oprob in zip ( pred , obscd f ) :

c rps = crps + ( width ∗( fprob − oprob )∗∗2)
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