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Abstract 

The challenge of climate change in agriculture is a global threat and to meet the demand for food 

of future generations and ensure global food security, there is a great need to use agroecological 

measures to reduce or eliminate this threat. Wheat, both a staple crop and an export crop in France, 

is not an exception to suffering the negative impacts of climate change. This research aimed at 

simulating the impacts of climate change on brown rust development in wheat. In order to do so, 

the information on brown rust severity embedded within warning bulletins combined with weather 

data of twenty regions from 1986–2010 was used to create a simple classifier to predict brown rust 

severity on wheat. The machine learning tool WEKA was used to create a simple J48 (C4.5) 

pruned decision tree model using the data of the warning bulletins and the Safran weather database 

(8 km * 8 km grid, Météo France). Temperatures above 15 °C were found to increase the severity 

of brown rust. Relative humidity between 70% and 90%  were also predicted to affect brown rust 

development. For the simulation study, the risk of brown rust was quantified under climate change 

and an adaptation scenario that consisted of using mulch of pea residues for the 150 years using 

the dynamic model, STICS MILA. These simulated brown rust severity data were then used as 

input variables in the WHEATPEST model, to calculate the yield losses caused by the disease. 

Also, RUE values increased as temperature increased, and it was predicted that over the 150 years, 

temperature, RUE, and brown rust severity would continue to increase. Yield is predicted to be 

impacted either negatively or positively by climate change as in some cases, high temperature 

resulted in increased yield. For the decision tree model, the training set test option had a high 

performance as described by the ROC Area value of 0.974 whereas, in the cross-validation test 

option, the ROC Area value of 0.647 was recorded. Brown rust was predicted to cause yield losses 

for the simulated years and adapting agroecological cropping practices would be beneficial in 

suppressing these losses. 

Keywords: Triticum aestivum, Puccinia triticina, modelling, warning bulletins 
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1. CHAPTER 1: INTRODUCTION 

 Context and problem statement of the study 

The agri-food system is progressively under pressure due to several challenges (Hubeau et al., 

2017). Among such challenges, adaptation to climate change is a priority. Lower agricultural 

production caused by climate change would strongly impact the food system. In order to eliminate 

the defect in the agri-food system to meet the needs of the growing population, there is a need to 

ensure the sustainability of the food system (Francis et al., 2003). According to Béné et al. (2019), 

this increasing concern in food systems is a result of multiple challenges that range from 

ecological, equity and resources, trade, issues of diet, and health. It encompasses the understanding 

that feeding the population today and, in the future, involves more than just a 'more-food' approach 

and that extra emphasis needs to be placed on diet quality and safety, the ecosystem 'foodprint', 

and socio-economic imprints of supply chains (Béné et al., 2019). A bigger concern arose in recent 

years when specialists realized that making food systems more sustainable and nutrition-reactive 

is not sufficient to address the issue of malnutrition. Hence, more attention needs to be paid to the 

governance and stakeholders of the food systems in the populated world (Tschirley et al., 2013). 

Several challenges are encountered in the transformation of agri-food systems toward 

sustainability. These challenges can span from ecological, economic, and social perspectives at 

relevant levels in space and time. Anthropogenic greenhouse gas emissions are altering the 

climatic conditions in the world and this is likely to result in rising temperatures, shifts in rainfall 

patterns, and higher rates of weather extremities (IPCC, 2009). An ecological and social 

perspective of the impacts of climate change is the awareness and assessment of the effects of 

climate change on crop diseases that are becoming a priority in the sense of climate change and 

food safety issues (Lamichhane et al., 2015). Biodiversity conservation is not only essential to our 

environment, but it is also a critical prerequisite for safe, sustainable food systems. For more 

diverse, healthier, and more balanced nutrition and more resilient food systems, there is a need for 

sustainable diversified cropping and enhanced genetic qualities of crops (FAO, 2019). From an 

economic perspective, one challenge is access to funds to invest in agricultural production. When 

these funds are made available, they can efficiently and concisely help solve a variety of problems 

such as conserving the environment, reducing hunger and poverty through the development of a 

sustainable food system, as well as tackling climate change (FAO, 2019).  

Due to the need for the understanding of such challenges to eliminate or reduce the negative 

impacts of climate change on agricultural production, several agricultural research and 
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development actors have together come up with a research program named OPERATE (crOP 

disEase Response to climATE change adaptation), under the umbrella of the INRAE ACCAF 

metaprogram. The OPERATE project aims to quantify the impacts of climate change and farmers' 

adaptation scenarios for three arable crops (sunflower, potato, and wheat). 

Wheat is an important cereal grain in France, which is the biggest producer in Europe (Oishmaya, 

2019). As of 2015, wheat accounted for 54% of French cereals and occupied about 4 million 

hectares (Ministère de l'Agriculture et de l'Alimentation, 2015). The greatest production is done in 

the north of the country and winter wheat is the main type produced. Wheat is usually sown in the 

autumn season and harvested in August of the following year. In Europe, several diseases such as 

rusts and blotches cause yield and quality losses yearly with the most common control method 

being the application of fungicides (Curtis, 1992). At the end of the 20th century, brown rust was 

considered the most damaging foliar diseases on wheat in Europe (Goyeau & Lannou, 2011; Dean 

et al., 2012; Kolmer, 2013). This disease caused by Puccinia triticina is characterised by brownish-

orange and usually, circular spots are known as uredinia that appear on the upper surface of leaves 

(Robin et al., 2018) and is found in most regions in France where wheat is grown.  The main host 

is usually wheat and the alternate host is the meadow rue (Bolton et al., 2008). In France, the 

alternative host, Thalictrum speciosissimum, is not present and is very rare in Europe (Azzimonti, 

2012). Brown rust is documented as a prevalent pathogen in wheat production areas where it 

causes substantial yield losses (Roelfs, 1992; Kolmer, 2005). In wheat, 60-70% infection on the 

leaf during the emergence of the spike can lead to 30% of yield losses (Huerta-Espino et al., 2011).  

Lopes et al. (2018), confirm that sporadic weather conditions associated with rising temperatures 

and rainfall cause specific challenges for wheat producers, and such patterns can also decrease 

improvements in the genetics of winter wheat. Several studies showed the link between climate 

variability and wheat production. The CIMMYT, in 2017, reported that temperature increases as 

a result of climate change will cause a 20-30% decline in wheat production in developing 

countries. According to Gouache et al. (2012), several studies in France show a negative 

relationship between rising temperatures and crop yields for wheat, maize, and barley (Lobell et 

al., 2011). The optimum conditions for the development of brown rust are dewy environments, 

mild temperatures (15-25°C) usually during the flowering phase of hosts (Kolmer, 2017). 

The research conducted during the internship focused on the analysis of the effects of climate 

change and adaptation scenarios of cropping practices on brown rust development. To simulate 

the impact of climate change on the development of brown rust in winter wheat, a thorough reading 

of the literature on climate change, brown rust, and the 2 hard-system modelling approach used; 

https://www6.inrae.fr/recolad_eng/ReColAd/ACCAF-Metaprogram
https://www6.inrae.fr/recolad_eng/ReColAd/ACCAF-Metaprogram
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WHEATPEST and STICS-MILA, and the protocols needed to carry out simulations was done. 

The articles used were derived from web of science, google scholar, and some articles from my 

external supervisor. The dynamic model STICS MILA (Caubel et al., 2012) was used to quantify 

the risk of brown rust under climate change and the adaption scenario of the use of mulch with pea 

residues. These simulations of brown rust severities were run in the WHEATPEST model 

(Willocquet et al., 2008) to calculate yield losses caused by brown rust. 

 The following research questions were addressed: 

i. Does climate change promote the epidemics of Puccinia triticina responsible for brown 

rust on winter wheat in the regions documented?  

ii. How can cropping practices be adapted to control the development of the disease? 

iii. What is the risk of this biotic stress on winter wheat and can we quantify the associated 

damages? 

 Delimitations of the study 

This study only elaborated on the impact of climate change on wheat production with a focus on 

only one disease (brown rust). A comprehensive review describing the state of the art can be found 

in appendix I. 

  



4 
 

2. CHAPTER 2: RESEARCH METHODOLOGY 

This research was in two main parts; 1. the warning bulletins and 2. the simulation study. 

 Part 2: Warning bulletins 

To forecast the severity of disease over years, weather data from the SAFRAN database of Météo-

France, provided by the Agroclim unit and severity data from warning bulletins were used. The 

acquired data files were for the years 1982 to 2010 (depending on the available data for each 

region). A total of twenty regions (Alsace, Aquitaine, Auvergne, Basse-Normandie, Bourgogne, 

Bretagne, Center-Val de Loire, Champagne-Ardenne, Franche-Comté, Haute-Normandie, Île-de-

France, Languedoc-Roussillon, Limousin, Lorraine, Midi-Pyrénées, Nord-Pas de Calais, Pays de 

la Loire, Picardie, Poitou-Charentes and Provence-Alpes Côte d'Azur) were covered.  

 

Figure 1: Map of France showing the 20 regions for which warning bulletins were covered from 

1982–2010.  

The data provided included several indicators of weather and the brown rust severity data 

documented for these regions over the years. The weather data consisted of varying indicators for 

the following weather conditions; temperature, relative humidity, global radiation, and rainfall. 

For each weather variable, data was taken for each trimester in each year (January–March (t1), 

April–June (t2), July–September (t3), and October–December (t4)); (see appendix V). 
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Figure 2: A map of the 20 regions documented with their cumulated distributions of BRS.  

Severity 1= low, severity 2= intermediate and severity 3= high. 

 Collation of warning bulletins data files 

For each scenario, that is, a region per year, the brown rust severity data was bulleted by collecting 

the corresponding brown rust severity and inputting them into excel. For recording the warning 

bulletins, the selected range was 1–3, where 1 is low, 2–intermediate, and 3–high. Aside from the 

bulletin for the severity of the disease, a detailed remark and justification for the particular bulletin 

for each scenario were added. See appendix II for an example of the raw excel datasheet. The 

weather data consisting of varying indicators were all placed in one excel sheet with their 

corresponding collated region per year per severity data (appendix III). 

 Processing of warning bulletins data files 

After gathering the needed warning bulletin data, the open-source data mining machine learning 

tool, Weka, was used to process and analyse the data. This tool was used to create a simple model 

for the bulletin of brown rust severity. The dependent variable used to create this model was the 

severity of the disease whereas the independent variables were the varying indicators for the 

selected climatic conditions. The j48 classifier, a C4.5 decision tree, was used to produce a simple 

pruned tree model. Two approaches were conducted: a training set and cross-validation at 10 folds. 

For more information on the C4.5 decision tree, see Ross Quinlan (1993) and detailed information 

on WEKA can be found by Eibe et al. (2016). 
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 Simulation Study 

 Data retrieval 

Data processed using the STICS-MILA model to acquire input variables needed to run simulations 

on WHEATPEST (disease inoculum data, and climatic data and scenarios– daily records of 

rainfall, maximum temperature, minimum temperature, solar radiation, and other input variables), 

was provided by Arvalis for the location Mons. These data files comprised of weather data and 

scenarios, crop data, and inoculum data for the cropping adaptation scenario of “Mon_MUP” from 

the year 1951 to 2100. The inoculum data used was 10000 inoculums (the intensity of simulated 

rust pathogen released to stimulate the development of the disease).  The management practices 

for Mon_MUP were cultivation using mulch with pea residues at an early sowing date of 24th 

September, no-tillage, and an available water storage capacity (RU) value of 200 mm. 

Table 1: Variables used for the simulation in the WHEATPEST model, the state variables of 

WHEATPEST, and the output variable derived from WHEATPEST and their units. 

Input variables State variables Output variable 

Maximum temperature 

(°C) 

 

Minimum temperature  

(°C) 

 

Radiation Use Efficiency  

(g MJ-1) 

 

Brown rust severity (% leaf 

surface)  

Leaf Biomass  (g m-2) 

 

 

Steam Biomass  (g m-2) 

 

 

Ear Biomass  (g m-2) 

 

 

Root Biomass  (g m-2) 

 

Simulated yield  

(g m-2) 

 

 Calculations 

2.2.2.1 RUE 

After receiving the large data files simulated by STICS-MILA, to ease the complexity and aid the 

use of these data, the files were split into the various years (from 1950-2100) using R studio. The 

daily RUE values for each weather scenario and crop data were calculated using the R script 
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presented in appendix VI. For each year, using the ratio between the daily increase of aboveground 

biomass divided by the Intercepted Photosynthetic Active Radiation increase as described by 

Tripathi et al. (2018) and Mariscal et al. (2000). After the calculation, in order to get the correct 

units for the calculated values, the values were multiplied by 100 g. 

Rue was calculated as: 

𝑅𝑈𝐸 =  
[masec(n)–  masec(n − 1)]

[cumraint(n)–  cumraint(n − 1)]
 

where, 

masec(n)= aboveground biomass of current day (t.ha-1) 

masec(n-1)= aboveground biomass of previous day (t.ha-1) 

cumraint(n)= cumulative intercepted radiation of current day (MJ m-2) 

cumraint(n-1)= cumulative intercepted radiation of previous day (MJ m-2) 

2.2.2.2 Temporal Integration of RUE 

Due to the need for an indicator to summarize RUE during the cropping seasons over the 150 

years, RUE was integrated over time using the following formula: 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑈𝐸 = ∑(
𝑥𝑖 + 𝑥𝑖−1

2

𝑛−1

𝑖=1

)(𝑡𝑖+1 − 𝑡𝑖) 

where,  

xi= the temporal integration of RUE of the previous day   

xi+1= the temporal integration of RUE of the current day   

ti= the previous day 

ti+1= the current day 

n= number of observations 

2.2.2.3 Area Under Disease Progress Curve (AUDPC) 

The disease severity recorded on a daily basis for the 150 years were used to produce the AUDPC 

using the following formula as proposed by CIMMYT (Jeger et al., 2001): 

𝐴𝑈𝐷𝑃𝐶 = ∑(
𝑥𝑖 + 𝑥𝑖−1

2

𝑛−1

𝑖=1

)(𝑡𝑖+1 − 𝑡𝑖) 

where,  

xi= the rust severity of the previous day   

xi+1= the rust severity of the current day   

ti= the previous day 
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ti+1= the current day 

n= number of observations 

2.2.2.4 Thermal time 

Yearly values of thermal time (º C day) were calculated using the formula proposed by Willocquet 

et al. (2008):  

DTEMP = max (0, (
𝑡𝑚𝑎𝑥 + 𝑡𝑚𝑖𝑛

2
) − 𝑇𝑏𝑎𝑠𝑒) 

where, 

DTEMP= daily increase in thermal time 

tmax= maximum temperature 

tmin= minimum temperature 

Tbase = 0 °C 

2.2.2.5 Yield estimation 

The yield was calculated using the simulated biomass of leaf, stem, and ear in WHEATPEST using 

the simulated weather data from STICS-MILA and the above-ground biomass values from STICS-

MILA. 85% of ear biomass was used and the formula used was:  

𝑦𝑖𝑒𝑙𝑑 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = [
85% (𝐸𝑎𝑟𝐵𝑀)

𝑠𝑢𝑚 𝑜𝑓 𝐿𝑒𝑎𝑓𝐵𝑀, 𝑆𝑡𝑒𝑚𝐵𝑀 𝑎𝑛𝑑 85% (𝐸𝑎𝑟𝐵𝑀)
] ∗ 𝑚𝑎𝑠𝑒𝑐(𝑛) 

where, 

EarBM= ear biomass 

LeafBM= leaf biomass 

StemBM = stem biomass 

masec(n)= aboveground biomass 

This formula and the use of the combination of datasets from both WHEATPEST and STICS-

MILA used was because the dataset simulated with STICS-MILA did not include ear, leaf, and 

stem biomass but only above-ground biomass. WHEATPEST was then used to simulate these 

biomasses to simulate yield.  

 Data splitting and data organization 

After the RUE calculation, the weather scenarios, the inoculum, and crop characteristics data files 

were organised. For each weather scenario, their corresponding inoculum data were matched to 
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get the accurate and needed data for the simulation analyses. The organisation was done by 

computing each weather scenario data, their corresponding RUE data as well as their 

corresponding disease severity data. These three categories (weather data, RUE data, and disease 

severity data) were then used for the simulation. 

 Models and their operations   

2.2.4.1 STICS-MILA 

STICS-MILA is a suitable tool to identify and assess the role of various effects on disease pressure. 

STICS simulates crop operation at a daily time step at field level for an average plant, with input 

variables (climate, soil, and the crop system) while MILA simulates continuous epidemiological 

cycles at the crop level. STICS-MILA is a mechanistic, process-based, dynamic model that 

predicts significant variations in disease intensity between climatic periods and between scenarios 

(Caubel et al., 2017). Although it is complicated, it helps explain the evolution of disease 

development and simulate complex interactions. A detailed description of STICS-MILA is 

provided by Caubel et al. (2017). 

 

Figure 3: STICS coupled with MILA daily calculations and exchange variables (Caubel et al., 

2017). 
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2.2.4.2  WHEATPEST  

WHEATPEST (Willocquet et al. 2008) is a simple winter wheat crop model based on the 

physiological structure of plants (agro-physiological mode) that integrates damage mechanisms 

caused by multiple pests (pathogens, insects, weeds) and simulates the physiological effects of 

these pests on plant growth and yield. It considers the impacts of harmful organisms; it takes into 

13 pests. WHEATPEST was implemented under Model Builder, a free web-based online 

modelling platform that is used to create and share dynamic models of diverse scientific fields 

(Aubertot et al, 2015). Model builder is user friendly and helps develop, edit, use and share models 

(https://xpest.inra.fr). Further details on WHEATPEST can be seen in Willocquet et al. (2008). 

 

 Figure 4: A simplified structure of the WHEATPEST model (Willocquet et al., 2008).  
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Figure 5: The interface of the WHEATPEST model used in ModelBuilder  (https://xpest.inra.fr). 

 Modelling analysis 

The analysis was done after all data had been computed and organised. The three categories of 

data organised (weather data, RUE data, and disease severity data) were then used for the 

simulation test. The model was evaluated by comparing the simulated output of the model with 

the observed data set. 
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3. CHAPTER 3: RESULTS  

 Warning bulletins 

 Analysis of data for region per year 

In total, for the twenty regions, there were three hundred and four (304) instances of which 

Franche-Comté had the highest documented years as seen in figure 6. The region with the least 

logged years was Provence-Alpes Côte d'Azur. The range of years with the highest available data 

for all regions was between 2004–2006 (figure 7). 

 

Figure 6: Documented warning bulletins over the years per region.  

The lines indicate the range of years for each region and the black boxes show the distribution. 
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Figure 7: The frequency at which warning bulletins were documented for each year from 1982–

2010. 

 The severity of brown rust documented 

The brown rust severity for the documented years was mainly low at a frequency of 207. Only 

thirty-five (35) instances recorded a high severity of brown rust whereas intermediate cases were 

sixty-two (62) as seen in figure 8. In figure 9, it can be seen that of all instances of high severity 

of brown rust, the highest frequency was 6 and was recorded in the regions Aquitaine and Midi-

Pyrénées whereas Bourgogne recorded the highest number of low cases at a frequency of 20. In 

all regions for all years, the most number of high brown rust severity cases at a frequency of 11 

was recorded in 2007 while the highest number of low brown rust severity cases at a frequency of 

16 was documented in the years 1997, 2003, and 2006 (figure 10).  
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Figure 8: The frequency of brown rust severity for 1, 2, and 3: 1–low, 2–intermediate, and 3–high 

from 1982–2010 for the twenty regions.  

Figure 9: The frequency of brown rust severity per region from 1982–2010 for the twenty regions. 
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Figure 10: The frequency of brown rust severity per year from 1982–2010 for the twenty regions. 

 Decision tree (effects of varying climate indicators on BRS) 

For the model, the number of instances (total number of cases) was three hundred and four (304) 

with one hundred and nine (109) potential explaining variables. The dependent variable being the 

rust severity and the independent variable being the 108 weather-based indicators. The tree has 

thirty-four (34) leaf nodes and the total number of nodes (tree size) is sixty-seven (67). In figure 

11, it is observed that the first split is on V63 (med,tp,ther5,t1– median of the thermal time (5°C) 

during t1) which is supported by V81 (med,moy,tn,t3– median of daily average minimum 

temperatures in t3) and V77 (med,j,tx,sup32,t3– median of the number of days with tmax above 

32°C in t3) if V63= 278.8 whereas the second split on V77 and V81 are supported by V69 

(med,j,tx,sup25,t3– median of the number of days with tmax above 25°C in t3), V48 

(med,sin,tm5<25,t2– median of the temporal integration during t2 of the sin2 function (0 when 

temp is below 5°C or above), and V86 (med,tn,t4– median of minimum temperatures in t4). Hence, 

V63, V81, and V77 are the most significant to differentiate among classes. Of all 108 attributes, 

only twenty-six (26) were captured and segregated among classes. See appendix V for the 

meanings of each variable. 
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Figure 11: J48 (C 0.25) pruned decision tree of all weather-based indicators of climate generated 

on WEKA. See appendix IV for the detailed J48 (C 0.25) pruned decision tree and appendix V for 

the meanings of each variable. 

As seen in figure 12, there were 304 instances of which in the 10-fold cross-validation, 201 

(66.1%) were correctly classified whereas, in the training set, 291 (95.7%) were correctly 

classified with a precision of 0.649 and 0.958, respectively. The average of the percentage of the 

captured data (recall), classified in a category in the training set was 0.957 and  0.661 for the cross-

validation test option. The F-measure, the harmonic mean of the precision and recall, was higher 

in the training set (0.956). In all cases, 10-fold cross-validation and training set, the percentage of 

time an instance was correctly classified, ROC Area (shows the performance of classifiers, values 

recorded were higher than 0.5, the threshold for a random classifier). The ROC area for the training 

set (0.974) was higher than that of the 10-fold cross-validation (0.647). The training set option had 

the highest value of kappa statistic at 0.908 whereas the cross-validation test recorded a value of 

0.2821. 
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(a)  

(b)  

Figure 12: Results of the J48 classifier decision tree for; (a) 10-fold cross-validation and (b) 

training set. 
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Table 2: Summary of the classification accuracy statistics for the two algorithms runs above. 

Test option Correctly classified 

instances % 

Kappa Statistic  Average ROC Area 

Cross-validation 66.1184 0.2821 0.647 

Training set 95.7237 0.908 0.974 

From this summary, it can be seen that in all classification accuracy results, the training set had 

better scores as compared to the cross-validation test. 

 

 Simulation study 

To evaluate the impact of climate change in the promotion of the epidemics of Puccinia triticina 

responsible for brown rust on winter wheat, the results of the simulation analysis was as follows: 

 Temporal integration of Rue  

The temporal integration of RUE was used as an indicator for summarising the RUE over each of 

the 150 years. From the simulation, the prediction indicates an irregular pattern in the use of 

radiation over the one hundred and fifty (150) years. The average temporal integration of RUE 

was 391 g MJ−1.d over the years. The maximum would be 501.6 g MJ−1.d in 2080 and the minimum 

temporal integration of RUE was 240.79 g MJ−1.d in 1961 (figure 13).     
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Figure 13: The temporal integration of RUE from January 1st to August 7th for each year of the 

1951–2100 period. 

 Thermal time 

Thermal time gives information about the daily increase in temperature over some time. From the 

simulations, it is predicted that thermal time over the years is inconsistent and it also indicates that 

in 2042, it will reach a peak at 3008 °C.d. The average thermal time predicted is 2312 °C.d and 

the minimum for the years recorded is 1777 °C.d in 1970 (figure 14). 

 

Figure 14: Thermal time with a base temperature of 0°C from January 1st to August 7th for each 

year of the 1951–2100 period. 

 Area Under Disease Progress Curve (AUDPC) 

AUDPC gives an idea of the predicted disease progression for the 150 years. It can be observed 

that there is an uneven distribution of disease severity over the one hundred and fifty (150) years. 

The average AUDPC was 7093 %.d over the years. The maximum was 9859 %.d in 2000 and the 

minimum AUDPC was 4120 %.d in 1981 (figure 15).   
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Figure 15: AUDPC of brown rust from January 1st to August 7th for each year of the 1951–2100 

period. 

 The estimated yield for 1951–2100 

To assess the risk of the biotic stress on winter wheat and the associated damages, the yield was 

simulated. The simulated yield was calculated using the data of the aboveground biomass from 

STICS-MILA and the biomass variables (with the exception of root biomass) simulated by 

WHEATPEST. For the ear biomass, only 85% of it was used for the calculation. For predictions, 

it can be noted that simulated yield varied across the years. For the 150 years, the average yield 

was 1235 g m-2. The highest yield recorded is predicted to be 1666 g m-2 in 2065 and the lowest 

yield was 651 g m-2 in 1998 (figure 16). 
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Figure 16: Simulated yield over from January 1st to August 7th for each year of the 1951–2100 

period. 

 Analysis for one scenario (1951) 

3.1.5.1 Effects of tmax and tmin on the development of brown rust 

In figure 17 below, it can be seen that there is a steady rise in temperature from the beginning of 

the year to the end of the growing season. BRS remains below 1 for a long time and only begins 

to develop into a new phase in the latter part of May. BRS reaches a peak (100%) at increased 

temperatures in the second half of June and remains that way till the wheat is harvested. The 

highest temperature for tmax was recorded on the 26th of June at 29.2°C with a 100% severity of 

brown rust while the lowest tmax, -8.4°C was recorded on 1st January with a BRS of 0%.  For 

tmin, the same trend is noticed as the highest temperature was on the 19th of June at 17.2°C with a 

BRS of 97.3% while the lowest tmin recorded was -12.4°C on the3rd of January with a BRS of 

0%.  For both cases, BRS increased when temperatures were between 15℃ and 25℃.  
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(a) 

 

(b)  
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Figure 17: Dynamics of brown rust for tmax and tmin variables for one scenario (1951). (a) tmax,   

(b) tmin. 

3.1.5.2 RUE 

In figure 18, there are fluctuations in RUE at the beginning of the development phase of the crop 

(flowering and milk stage). Rue decreases towards the end of April till May and starts to increase 

and reaches the highest point of 4.033 g MJ−1 on the 29th of June. The lowest RUE value recorded 

was 0 on the day of harvest (7th August).  

 

Figure 18: The dynamics of RUE in 1951 from January 1st to August 7th (harvest).  

The 0 value recorded was at harvest. 

 

3.1.5.3 State variables (biomass) for the 1951 simulation 

Biomass production varied across the year 1951 and this production was proportional to the RUE. 

The start of the year recorded the low production of biomass for all variables as compared to the 

later phase of development. Biomass production starts increasing and then remains stable and for 

some variables, it later decreases at the end of the development phase. For ear biomass, at the 

beginning of the development phase of the wheat, it recorded a value of  0 and recorded the highest 

value at 177928 g m-2  for all variables at the end of the growth period. Leaf biomass was 10 g m-
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2  at the start of the year and reached  22 g m-2 at the end of the growth period. Stem biomass 

steadily increases, reaches a peak of 28086 g m-2 in May, and records the lowest biomass (9.35*10 

-5   g m-2) for all variables at the end of the development phase. For root biomass, its start value was 

5 g m-2, however, it increases along the cycle to 3188 g m-2 and then remains stable till the end of 

the development phase of the wheat (figure 19). 

 

Figure 19: The dynamics of the output variables (leaf, stem, root, and ear biomass) in 1951. 
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4. CHAPTER 4: DISCUSSION 

 Warning bulletins 

 Evaluation of the model produced by the J48 classifier 

In all cases, 10-fold cross-validation and training set, for the ROC area/AUC (Area Under Curve) 

(shows the performance of classifiers, values recorded were higher than 0.5, the threshold for a 

random classifier). This means that the classifiers in both tests had good performance rates. 

However, the ROC Area of the training set classifier (0.974%), close to 1 indicates the better 

performance of the test option. Narkhede (2018), reports that AUC close to 1 is an excellent model 

with a good degree of separability and that a random prediction is made when ROC area = 0.5.  

Moreover, the reliability of the classifier was tested by the kappa statistic value. McHugh (2012) 

confirms that in testing reliability either by intrarater or interrater testing, the kappa statistic is very 

essential for this purpose and this signifies how well the data collected represents the variables 

measured in the study. Hence, the highest value of kappa statistic at 0.908 for the training set 

option according to Cohen (1960) suggests a perfect agreement while that of the cross-validation 

test (0.2821) indicates just a fair agreement.  

 Predictions and accuracy assessment  

From the model produced, the variables that were highly  significant to differentiate among classes 

were; V63 (med,tp,ther5,t1), V81 (med,moy,tn,t3) and V77 (med,j,tx,sup32,t3) followed by V69 

(med,j,tx,sup25,t3), V48 (med,sin,tm5<25,t2) and V86 (med,tn,t4). Of all 108 attributes, only 

twenty-six (26) were captured to be segregated among classes (having an impact on BRS). The 

other 23 variables to be captured by the model as having an impact on the development of BRS 

were; V 7, V21, V15, V70, V80, V38, V72, V36, V28, V16, V68, V13, V5, V6, V25, V2, V4, 

V55, V99, and V12. See appendix V for the meanings of each attribute.  

From the test options, it can be deduced that all attributes that were found highly significant to be 

segregated among classes (having an impact on BRS) were all indicators of temperature V63 

(med,tp,ther5,t1– median of the thermal time (5°C) during t1), V81 (med,moy,tn,t3– median of 

daily average minimum temperatures in t3), V77 (med,j,tx,sup32,t3– median of the number of 

days with tmax above 32°C in t3), V69 (med,j,tx,sup25,t3– median of the number of days with 

tmax above 25°C in t3), V48 (med,sin,tm5<25,t2– median of the temporal integration during t2 of 

the sin2 function (0 when temp is below 5°C or above) and V86 (med,tn,t4– median of minimum 

temperatures in t4).  Maximum, minimum temperatures (V81, V86, and V69) between 5 and 25°C 
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or above 25°C and thermal bases of 5°C (V63and V48) predicted to have an impact on BRS is 

expected as optimal temperatures for the development and progress of the disease is between this 

range (Kolmer, 2017). However, the prediction of average temperature above 32 °C in July–

September (V77) affecting BRS could be a negative impact. As Barrera et al. (2013), reported that 

temperatures above 32 °C declined severe epidemics of brown rust in sugarcane.  

Aside from the indicators of temperature, some indicators of rainfall and relative humidity were 

captured in the prediction to have an impact on BRS: however, these impacts were not significant. 

Examples of such attributes are; V7 (med,j,hr,sup70,t1– median of the number of days when 

relative humidity is above 70% during the 1st trimester), V21 (med,cum,p,t3– median of the 

cumulative rainfall during the 3rd trimester), V15 (med,j,hr,sup90,t1– median of the number of 

days when relative humidity is above 90% during the 1st trimester), V12 (med,j,hr,sup80,t2–  

median of the number of days when relative humidity is above 80% during the 2nd trimester) and 

V38 (med,j,p,sup5,t4– median of the number of days with rainfall above 5mm during the 4th 

trimester). This finding is in line with Junk et al. (2016), who confirm that other factors that aid 

the progress and infection of the disease are rainfall and humidity. 

 Simulation study 

 Climate change promotes the epidemics of Puccinia triticina responsible for 

brown rust on winter wheat 

From the simulation analysis, it can be predicted that temperatures would continue to rise over the 

150 years for the location, Mons. The increase in the thermal time for the 150 years is also an 

indicator of this basis. This corresponds to the report by Asseng et al. (2009) that states that in the 

past few decades, the average global temperatures have increased and have been forecasted to 

continue with the incidence of hot days.  

The predicted increase in temporal integration of RUE along the years can be attributed to the 

increased temperatures predicted. This is because RUE is positively proportional to increased 

temperatures. This has been reported by the study conducted by Andrade et al. (1993) on the effects 

of temperature on radiation use efficiency in maize and it was observed that there is a positive and 

significant association between RUE and mean temperature. Likewise, the increase in RUE could 

be due to the high nitrogen content of the leaves of wheat due to the use of mulch with pea residues. 

Nitrogen in wheat has been found to be the most vital nutrient to have an impact on RUE 

(Muurinen & Peltonen-Sainio, 2006). Willocquet et al. (2008) also confirm that cropping practices 

can affect RUE and when conditions for development are not favourable, RUE decreases.  
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For the production of the biomass of root, stem, ear, and leaf, the diversity across the year 1951 

was proportional to the RUE. The low production of biomass recorded at the start of the year as 

compared to the later phase of development was because RUE was low at the beginning of the 

year: RUE has been found to have a positive impact on biomass production (Murchie & Reynolds, 

2013). Ear biomass recorded the highest value (177928 g m-2)  for all variables at the end of the 

growth period because of wheat development. Leaf biomass decreased at the end of the growth 

period due to leaf senescence and this is in line with the study conducted by Willocquet et al. 

(2008). Stem biomass steadily increases, reached a peak in May, and drastically decreased at the 

end of the development phase, having the lowest biomass (9.35*10 -5 g m-2) for all variables and 

according to  Willocquet et al. (2008), this can be attributed to carbohydrate re-mobilization to the 

ears.  

The large values recorded for ear, leaf, stem, and root biomasses is as a result of an error 

encountered in the simulation analysis. In ModelBuilder (the model used for the simulation 

analysis), to simulate biomass of ear, leaf, root, and stem,  daily global radiation is used as an input 

variable. However, due to the unavailability of the daily global radiation from the datasets 

simulated by STICS-MILA, cumulative global radiation was used as an alternative. The large 

values of cumulative global radiation affected the values for the various biomasses; hence, 

resulting in the huge values recorded for leaf, stem, root, and ear biomass.  

Climate change poses great threats to the development of brown rust in winter wheat as seen in 

the simulation studies. AUDPC also increases over the years and this is in line with the claim from 

the study conducted by Chakraborty and Newton (2011) that states that climate change affects the 

incidence and development of crop diseases and changes the geographic dissemination of 

pathogens. In the study for Mons, the development of brown rust was affected by temperature and 

as observed, the predicted increase in temperature over the 150 years would result in an increase 

in BRS. Besides, both cases of tmax and tmin recorded in the scenario of 1951, increased disease 

severity rates when temperatures were above 15℃. This finding corresponds with the study 

conducted by Kolmer (2017), who reported that the optimum conditions for the development of 

brown rust are dewy environments and mild temperatures (15℃–25℃) usually during the 

flowering phase of hosts.  

Furthermore, mulch generates humidity and plays a significant role in soil moisture conservation 

by changing the microclimate of the soil. These changes contribute to the prevention of the growth 

of weeds, increasing infiltration, and reducing evaporation during the growing season of crops 

(Teame et al., 2017). Nevertheless, according to Junk et al., (2016), some factors that contribute 
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to the development of brown rust are; relative humidity, air temperatures, and precipitation, hence, 

the increase in the severity of the disease when the mulch of pea was used as seen in the simulation 

study can be attributed to this fact. This result is also in line with the study conducted by 

Devallavieille-Pope et al. (2002) which states that the brown rust disease is influenced by three 

main weather factors, namely, humidity, temperature, and wind, and as a result, this affects the 

frequency and severity of the disease (Shaw et al., 2008). However, for this simulation analysis,  

wind was not considered due to the unavailability of the dataset. 

 The risk of brown rust on winter wheat 

One of the objectives of this research was to find out the risk of this biotic stress on winter wheat 

and if the associated damages could be quantified: from the simulation, it can be predicted that 

wheat yields would be indirectly affected by brown rust. This indirect impact is as a result of the 

direct effect of increased temperatures that would aid the development of the disease. Similarly, 

the study conducted by Brisson et al. (2010), showed that, in France, during grain filling, high 

temperatures result in reduced wheat yields and due to climate change, in the future, heat stress 

will increase throughout grain filling (Gouache et al., 2012). Moreover, it can be seen from the 

simulation analysis that yield decreased in certain years where temperatures and BRS were high.  

This is expected as it has been reported that, Puccinia triticina is a vital pathogen in wheat 

cultivation that causes substantial losses in cultivated areas on a global scale (Kolmer, 2005). 

Correspondingly, Robin et al. (2018), stated that yield losses can reach up to 70% in severe cases 

of brown rust development if it is not controlled due to the results of reduced kernel biomass and 

kernel number per head. The large values recorded for the simulated yield is as a result of the huge 

values of leaf, stem, root, and ear biomass due to the error of using cumulative global radiation 

instead of daily global radiation.  

Besides reducing the yield of wheat, this indirect impact of BRS could affect the quality of the 

grains. On a national scale, this could be an issue because this can contribute to nutrition insecurity 

due to the lack of quality cereal grains as according to Gouache et al. (2012), several studies in 

France show a negative relationship between rising temperatures and crop yields for wheat, maize, 

and barley (Lobell et al., 2011). Also, the resilience of cultivars used as germplasms could be 

affected. Lopes et al. (2018), confirmed that sporadic weather conditions associated with rising 

temperatures and rainfall cause specific challenges for wheat producers as this can decrease 

improvements in the genetics of winter wheat. 

Although in certain instances, where temperatures were high and yield still increased, such as 

predicted for 2065, this could be attributed to high carbon dioxide concentration due to high 
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temperatures. Meteorological factors, including increasing temperatures, altering precipitation 

regimes, and elevated levels of atmospheric carbon dioxide, have been reported to influence crop 

production biophysically (Parrya et al., 2004). Broberg et al. (2019) confirm the non-linear yield 

response of increased carbon dioxide levels on wheat. 

The associated risk can be quantified given the scenario and weather data used for this simulation. 

The quantification can be done considering different situations of BRS: 

No disease: 0 

Low severity: 20 

Intermediate severity: 50 and above 

High severity: 80 and above 

This quantification is only considered for the dataset used for this simulation analysis and might 

change depending on several factors under certain conditions and cropping practices. 

 How to adapt cropping practices to control the development of the disease 

NASA reports that the period for crop development is prolonged when temperatures are warm, 

and this implies that crops will need extra water for development. This change in the weather 

pattern will then result in short and less extreme winters that are not strong enough to kill dormant 

pests, hence, resulting in severe infestations that lead to massive yield and quality loss in crops 

(NASA, 2010). This, therefore, instigates the need to find alternate cropping practices that reduce 

or inhibit the development of brown rust. 

Gouache et al. (2012) propose strategies like using improved cultivars (earlier heading cultivars) 

and modifying sowing dates. Also, phenology and heat stress focused breeding programs as 

studied by Olesen et al. (2011), have the potential to reduce the negative impact of climate change 

on wheat production. Therefore, integrating management practices that ensure resource use 

efficiency as well as increase the hardiness of wheat would be a step towards making wheat fields 

less susceptible to the disease. Likewise, incorporating practices that aid evapotranspiration and, 

reduce humidity and warmth can be very beneficial as these factors promote the development of 

the disease.  

Finally, using unconventional control methods such as biological controls or using integrated 

approaches to prevent leaves and the wheat plant in general from being susceptible to brown rust 

would be a good option to eliminate and suppress or reduce the disease development and also the 

impact of the disease while protecting the environment. Moricca and Ragazzi (2008), report the 
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ecological compatibility of biological control of rust diseases as it conserves the environment and 

human health without the release of harmful elements into the ecosystem. 

 Contribution of findings to different spatial and temporal levels 

There are several benefits to be derived from this study and these can contribute to future 

developments as well as solve some current agricultural challenges (over time and across future 

generations). Challenges in building resilient and sustainable food and farm systems can be 

alleviated with some findings of this study. 

At the field-level, identifying promoters of this biotic stress and eliminating or reducing these 

promoters can lead to improved agroecosystems. This study gives insight into the soil-crop-

pathogen relationship in the wheat cultivation agroecosystem in Mons. In this study, it is observed 

that soils with higher nitrogen contents contribute to an increase in RUE, and increased RUE is a 

good driver of photosynthesis. The study conducted by Murchie and Reynolds (2013) shows the 

importance of RUE to photosynthesis in the production of biomass and the rate of growth. Also, 

through predictions, farmers can plan ahead of time as well as put in place good management 

measures. Farmers can decide on when to sow (either considering climatic conditions or crop 

characteristics) and use practices that suppress the development of BRS. All these measures can 

lead to increased productivity at the farm-level and increase the income of wheat growers in Mons 

which will eventually better their livelihoods. 

At the national level, if these predictions are adopted, BRS would be well managed and 

productivity and the quality of wheat could be improved. This will result in improved resilient 

varieties and quality wheat grains would help enhance the diets of the population while ensuring 

nutrition security since wheat is one of the most consumed cereals in France and also used as food 

for livestock. Shewry and Hey (2015) confirm the economic impact of wheat and its contribution 

to the nourishment of individuals and livestock. When productivity is enhanced, the excess wheat 

can be exported to countries that do not produce wheat or even countries that under-produce as it 

has been reported that in developing countries, the demand for wheat is projected to increase by 

60% (CIMMYT, 2017). 

Globally, food and nutrition security is an essential policy concern and the present challenge of 

malnutrition worldwide is a major concern in all countries (Allen & Prosperi 2016). Hence, 

considering the benefits at the farm and national level and the exportation of excess to countries 

who are in demand, global food security can be ensured. Moreover, improvements can be made 

on models to facilitate accurate predictions in farm systems and improve food systems to secure 



31 
 

food for now and future generations. Allen and Prosperi (2016) also suggest that government 

institutions should formulate policies and monitor the advancement of sustainability of farm and 

food systems. This would ensure developments by detecting and modelling the fundamental 

properties of these systems; hence, policies should be put in place to facilitate modelling as it is 

time convenient and more cost-effective for making predictions for long years as compared to 

actual fieldwork. 
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5. CHAPTER 5: CONCLUSION 

In accordance with other studies, it can be noted that from this research, climate change promotes 

the epidemics of brown rust. Temperatures above 15 °C greatly promote the development of the 

disease. Scenarios from this study indicate that till 2100, temperatures would continue to rise, 

hence, RUE and disease severity of brown rust would also increase. Relative humidity between 

70% and 90% were also found to promote the epidemics of brown rust. Also, it can be deduced 

that RUE increases when nitrogen content is high. The associated risk of the development of the 

disease is its impact on yield. Yield is predicted to be impacted either negatively or positively by 

climate change and simulation analysis is a better option to predict scenarios for the future as this 

analysis is time convenient. AUDPC was convenient in quantifying the brown rust severity in 

Mons over many years. However, to fully predict and quantify brown rust severity for the 150 

years in Mons, results for other cropping practices simulated by STICS-MILA for the location 

should also be studied to understand the impact of adaptation strategies on the disease dynamics. 

Furthermore, many improvements could be made in the simulation analysis by replacing RUE as 

an input variable with other readily available data such as the use of soil properties as RUE was a 

limitation because it is not easy to obtain. A sub-model that predicts RUE could be produced to 

ease this limitation. 

Also, a more comprehensive study for a publication on the model created for the warning bulletins 

would be undertaken by Dr. Jean-Noël Aubertot (INRAE), Dr. Marie-Hélène Robin (Ecole 

d'Ingénieurs de Purpan), Dr. Gustavo Azzimonti (former post-doc INRAE), Dr. Camilo Corrales 

(post-doc INRAE) and myself to upgrade the model using larger datasets in order to give a better 

prediction quality and explanations of the contributions of the various weather indicators to the 

development of brown rust severity.    
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APPENDICES 

Appendix I: 1. Comprehensive literature review 

In this section, the keywords of this research, namely “climate change”, “wheat” and “brown rust” 

will be described regarding the current situation and future developments. These keywords will be 

elaborated and certain components that attribute to these keywords will also be explained. For 

climate change, after a global view, an emphasis on France will be made and the impacts of climate 

change on crops in relation to pests will also be described. Wheat, precisely winter wheat, and its 

production in France, as well as the effects of climate change on production, will be elaborated. A 

review of brown rust, its life cycle, epidemiology, and symptoms will be made. Then finally, the 

development of brown rust in wheat production, control strategies, and epidemiological models 

for brown rust will be reviewed and described. 

1.1 Climate change  

Every continent is being affected by the consequences of climate change and this has subsequently 

affected the economies of nations. According to Reilly et al. (2001), climate change is likely to 

impact developed and developing countries differently, with greater vulnerability emerging in low 

latitude regions. In the past few decades, the average global temperatures have increased and have 

been forecasted to continue with the incidence of hot days as reported by Asseng et al. (2009). In 

history, greenhouse gas emission has reached the highest ever recorded and this has resulted in a 

massive change in climatic patterns (UN SDGs). These changes in weather patterns pose great 

threats to agriculture production (Asseng et al., 2011) and threaten the permanency of food 

security. Climate change caused by greenhouse gas emissions is projected to directly impact 

agricultural production systems and change the trade pattern and balance of food and food products 

(Wheeler & von Braun, 2013). The evidence of the increased level of atmospheric carbon dioxide 

since the Industrial Revolution as reported by Luthi et al. (2008) can be seen in appendix 1. NASA 

(2010), predicts that towards the end of the 21st century, the average temperature of the earth´s 

surface could increase between 2°C and 6°C. Apart from this prediction, there are other interesting 

scenarios presented by NASA that confirm the fast rate of climate change. Some of this evidence 

is: 

i. The worldwide rise in temperature- towards the end of the 19th century, the average 

temperature of the earth’s surface has increased to about 0.9℃. This increase has been 

attributed to the emissions of gases and increased carbon dioxide levels as a result of human 

activities. 

ii. Rise in sea level- globally, in the last century, the sea level has risen to about 0.2 meters 

and this is increasing every year. Also, the Intergovernmental Panel on Climate Change 
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(IPCC) forecasted that by 2099, due to the melting of glaciers and the expansion of 

seawater as a result of warming, sea levels will rise between 0.18 and 0.59 meters. 

iii. Extreme events- records of high temperatures, lower rainfall rates as well as reduced rates 

of precipitation, wildfires, and droughts. An example is an increased rate of high 

temperatures in the US. 

iv. Ocean acidification and warming- the industrial revolution has led to a 30% acidity 

increment in the ocean surface waters. Also, the high temperatures recorded globally has 

resulted in the absorption of heat by oceans. 

The UN predicts that soon, solving the problem of climate change will be much harder if it is not 

tackled today. Risks from the energy, food, and water sectors may overlap spatiotemporally as a 

result of global warming from 1.5 °C to 2 °C and this would cause new and worsening risks, 

vulnerabilities, and threats which would affect people all over the world but particularly 

economically disadvantaged populations (IPCC, 2013). All these implications of climate change 

have forced the world to seek solutions to this widespread issue. Currently, there are several 

initiatives to tackle this issue and one major initiative is the Paris Agreement which seeks to ´´to 

strengthen the global response to the threat of climate change by keeping a global temperature rise 

in this century well below 2 ℃ above pre-industrial levels and to pursue efforts to limit the 

temperature increase even further to 1.5 ℃´´. This agreement also fortifies countries to combat the 

impacts of climate change (UNFCCC, 2016).  

1.1.1 A focus on France 

Beniston et al. (2007), reports the direct relationship between climate change and flooding in 

Southern France and its ability to increase the occurrence of storms and heatwaves. Ever Since the 

beginning of the 20th century, the average temperature in France has risen by 1°C as compared to 

that of the whole word (0.6℃) (Poumadere et al., 2005). Brisson and Levrault (2010) also reported 

that, in France, towards the end of the 21st century, warming could rise to around 3.2ºC with a 

reduction in the rate of rainfall and a contrasting weather pattern (decline in the rate of rainfall 

during summer).  

1.1.2 Effects of climate change on crops in relation to pests 

Biophysical and socioeconomic factors are the primary drivers of the agricultural reactions to 

climate change. Meteorological factors, including increasing temperatures, altering precipitation 

regimes, and elevated levels of atmospheric carbon dioxide, influence crop production 

biophysically. (Parrya et al., 2004). Current researches have focused mainly on the direct impacts 

of climate change, for example on crop growth and the spread of agricultural pests. In 2011, 

Chakraborty and Newton stated in their study that, climate change affects the incidence and 
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development of crop diseases and changes the geographic dissemination of pathogens. Luck et al. 

(2011) report the effects of high temperature and increased carbon dioxide concentrations on the 

development of plant biomass which serve as hosts for fungi growth. The fungi then multiply and 

cause epidemics and biotic stress at the early stages of plant development when plants are more 

vulnerable. 

NASA also reports that the period for crop development is prolonged when temperatures are warm, 

and this implies that crops will need extra water for development. This change in the weather 

pattern will then result in short and less extreme winters that are not strong enough to kill dormant 

pests, hence, resulting in severe infestations that lead to massive yield and quality loss in crops 

(NASA, 2010).  

1.2 Wheat and its production in France 

Wheat (Triticum spp.) is a staple food for most people, it is one of the first domesticated crops and 

is the most cultivated crop with a production rate of over 600 million tons. Wheat is extremely 

nutritious, containing most nutrients, and is a major source of carbohydrate (Curtis, 1992). This 

crop grows in most conditions although the optimum conditions for growth are latitudes of 30° 

and 60°N and 27° and 40°S, 25°C, with the lowest and highest temperatures of 3° to 4°C and 30° 

to 32°C, respectively with a growing period of 10 to 11 months (Nuttonson, 1955; Briggle 1980). 

To initiate development, most wheat varieties need a cool climate in their early stages. Globally, 

the highest producer of wheat is China followed by India, Russia, USA then France (Oishmaya, 

2019). In Europe, several diseases such as rusts and blotches cause yield and quality losses yearly 

with the most common control method being the application of fungicides (Curtis, 1992). In 

developing countries, the demand for wheat is projected to increase by 60% (CIMMYT, 2017). 

As reported by Curtis (1992), intensifying the production of wheat to meet the growing demand 

can be done by expanding the area of wheat cultivation and enhancing the yield per unit sown. 

Additionally, reducing losses before and after harvest will allow more wheat available for 

consumption.  

As at 2015, wheat accounted for 54% of French cereals and occupied about 4 million hectares 

(Ministère de l'Agriculture et de l'Alimentation, 2015). Oishmaya (2019), reported that the largest 

wheat producer in Europe is France (37 Mt) and the 5th globally. The greatest production is done 

in the north of the country and winter wheat is the main variety produced. Production is usually in 

the autumn season and harvested in August of the following year. 

1.2.1 Impact of climate change in wheat production 

Lopes et al. (2018), confirm that sporadic weather conditions associated with rising temperatures 

and rainfall cause specific challenges for wheat producers, and such patterns can also decrease 
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improvements in the genetics of winter wheat. Several studies show the link between climate 

variabilities and wheat production. CIMMYT in 2017 reported that temperature increases as a 

result of climate change will cause a 20-30% decline in wheat production in developing countries. 

Although wheat can be grown in diverse environments, usually in countries where wheat is grown, 

grain filling occurs when temperatures are high and soil moisture is low (Asseng et al., 2009).  

According to Gouache et al. (2012), several studies in France shown a negative relationship 

between rising temperatures and crop yields for wheat, maize, and barley (Lobell et al., 2011). In 

the study conducted by Xiao et al. (2018), the yield of wheat increased with an increase in carbon 

dioxide concentration, and Batts et al. (1998) also confirmed that wheat yield is very sensitive to 

carbon dioxide concentrations. The study conducted by Lopes et al. (2013) proved that optimal 

phenology is extremely associated with the temperature and rainfall at which genotypes of winter 

wheat were exposed during heading time; that is 20 days before and after heading. Currently, in 

France, heading dates occur earlier as a result of earlier stages of development due to increased 

temperatures (Gate et al., 2008). Similarly, in France, the study conducted by Brisson et al. (2010), 

shows that, during grain filling, high temperatures result in reduced wheat yields and due to climate 

change, in the future, heat stress will increase throughout grain filling (Gouache et al., 2012).  

For control of these crises, some researchers have carried out studies to find solutions. Gouache et 

al. (2012), propose strategies like using improved cultivars (earlier heading cultivars) and 

modifying sowing dates. Also, phenology and heat stress focused breeding programs as studied by 

Olesen et al. (2011), have the potential to reduce the negative impact of climate change on wheat 

production. 

1.3 Brown rust 

Brown rust, also known as wheat leaf rust, is caused by the fungus Puccinia triticina. P. triticina 

belongs to the kingdom Fungi, phylum Basidiomycota, class Urediniomycetes, order Uredinales, 

family Pucciniaceae and genus Puccinia (Bolon et al., 2008). This fungus is a biotroph because 

of how it extracts nutrients from the cells of living hosts. It is also an obligate parasite because it 

needs a living organism for survival (Kolmer, 2013). To complete its life cycle, it requires two 

hosts, the main host (uredinial) and an alternate host (pycnial/aecial); making this fungus 

heteroecious. The main host is usually wheat and the alternate host is the meadow rue (Bolton et 

al., 2008). However, in France, the alternative host, Thalictrum speciosissimum, is not present and 

is very rare in Europe. At a global level, the absence of an alternative host and genotyping 

information for the mainstream wheat production zones indicate that the sexual phase is not 

involved in this disease's epidemiology, and is a marginal cause of genetic variation in the fungus 

(Bolton et al., 2008; Azzimonti, 2012). P. triticina reproduction is exclusively asexual in France, 
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and segregates with the same phenotype are of the same SSR genotype, except for unusual 

mutations (Goyeau et al., 2007; Azzimonti, 2012). Brown rust can occur anywhere in the world 

where wheat is cultivated. The optimum conditions for its development are dewy environments, 

mild temperatures (15-25℃) usually during the flowering phase of hosts (Kolmer, 2017). P. 

triticina is an airborne pathogen that is slightly endocyclic (an organism with a low level of 

persistence), as opposed to highly endocyclic pests, as defined by Aubertot and Robin (2013).  

 

Figure 2: Close-up of leaf rust on wheat (Kolmer, 2006). 

1.3.1 Life cycle, epidemiology, and symptom 

According to Kolmer (2013), P. triticina has a complex life cycle in that; it grows on two unrelated 

hosts and has five different spore formation stages, namely; (i) on cereal hosts- teliospores, 

basidiospores, and urediniospores and (ii) on alternate hosts- pycniospores and aeciospores.  

The rust develops when the asexual uredinial stage advances into sporulation under favourable 

conditions. When a crop is infected at an early stage, this disease can result in poor root and tiller 

formation, which subsequently results in a weak plant. In large cultivations, yield losses can range 

between 1-20%, whereas in favourable conditions, losses can be very devastating. In extreme 

cases, due to shrivelled grain and damaged tillers, losses can be up to 50% (Roelfs et al., 1992). 

The symptom of P. triticina is characterised by brownish-orange and usually circular spots known 

as uredinia that appear on the upper surface of leaves. When infections are more severe, spots can 

also appear on sheaths. These spots can be dispersed by wind over long distances and constitute 

several spores (Robin et al., 2018). The establishment of the rust is usually a result of uredinia on 

volunteer plants that are transferred by the wind into fields causing severe infections on vulnerable 

crops. Germination occurs within 1-3 hours when the urediniospores get into contact with available 
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moisture when there is a favourable temperature. The development of rust occurs when wind or 

rain transfer the urediniospores onto the surface of wheat leaves and these leaves absorb water or 

get into contact with moisture. These spores then swell up and form a germ tube usually after 4-8 

hours under optimum conditions (Zhang et al., 2003; Bolton et al., 2008). The germ tube grows 

until it gets in touch with a stoma and produces an appressorium. According to Hirst and Hurst 

(1967), sometimes, during the transfer of the spores over long distances, these spores suspend in 

the air until they are cleared by rain. Although the spores are usually dispersed by wind, they can 

also be rain deposited.  

 

 Figure 3: Life cycle of Puccinia triticina (Singh et al., 2002). 

 Table 1: Environmental conditions required for the development of wheat rust (Roelfs et al., 

 1992). 

Stage Temperature (°C) Light Free 

water 

 Minimum  Optimum  Maximum    

Germination 2 20 30 Low Essential 

Germling 5 15-20 30 Low Essential 

Appressorium - 15-20 - None Essential 

Penetration 10 20 30 No 

effect 

Essential 

Growth 2 25 35 High None 

Sporulation 10 25 35 High None 
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1.3.2 Brown rust in wheat production  

A prominent disease of wheat is the brown rust, which causes adverse damages to wheat fields 

(Roelfs, 1992; Bolton et al., 2008). Worldwide, P. triticina is known to be a vital pathogen in 

wheat cultivation that causes substantial losses in cultivated areas (Kolmer, 2005). Yield losses 

can reach up to 70% in severe cases if not controlled (Robin et al., 2018), which results in reduced 

kernel biomass and kernel number per head. In past times, brown rust was not considered important 

as it caused less detrimental effects compared to other wheat diseases that affected grain quality 

(Leonard & Szabo, 2005; Bolton et al., 2008). According to Anikster et al. (2005), on wheat hosts, 

the urediniospores formed are dikaryotic and in the presence of leaf surface water and optimum 

temperature can re-infect the alternate host.  

1.3.3 Control methods (impact of cropping practices notably)  

The key approaches for leaf rust control depend on the use of cultivars with genetic resistance and 

the use of fungicides. Using resistant cultivars is the most desirable and most cost-effective method 

to reduce the effects of brown rust. Subsequently, Robin et al. (2018) describe the key control 

methods against brown rust as follows:  

• Genetic resistance (mainly the use of resistant cultivar alone or in a cultivar mixture; Bolton 

et al., 2008; Goyeau and Lannou 2011).  

• Fungicides application (Roelfs et al., 1992). 

• Modify the status of the crop (balancing nitrogen fertilisation; sowing at appropriate rates; 

Robert et al., 2002; Robert et al., 2004). 

• Escape strategy (sowing at a later date; Mishra et al., 1994) and  

• Control of primary inoculum sources at field level by spatially distributing wheat fields 

and managing wheat volunteers; Anderson & Soper, 2003; Papaix et al., 2011). 

1.3.4 Epidemiological models for brown rust in wheat 

In the development of models for diseases, several methods can be used. Mechanistic models are 

developed based on theories, concepts, or hypotheses of how developments happen, and data 

gathered afterward can be used for improving the existing theories or concepts. Models established 

to describe observed phenomena or connection between variables using existing statistical 

ideologies are known as empirical models (El Jarroudi et al., 2018). 

According to Nikolaev et al. (2019), due to the damages caused by brown rust in wheat, several 

tools have been developed to help monitor and predict its development as well as find measures 

for control. Most of these tools use several factors (biotic and abiotic) to critically assess the 

prevalence of brown rust (de Vallavieille-Pope et al., 2000). Other factors used may include 
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meteorological factors and some epidemiological factors such as latent period, spore formation, 

infestation efficacy, and the ratio of developed lesions. Moreover, to properly develop these tools, 

an appropriate estimate of the growth of the pathogen must be ensured by comparing the ratio of 

developed lesions on a number of individuals (de Vallavieille-Pope et al., 2000). These models 

can be used to forecast infections under different weather conditions and future climates (Nikolaev 

et al., 2019). Some models used in predicting and controlling brown rust development are:  

i. The RustDEp (Rust Development of Epidemics) model- a dynamic model for monitoring 

the daily progress of brown rust severity on wheat (Rossi et al., 1997). 

ii. IPSIM-WHEAT model- a hierarchical, qualitative model used to predict the severity of 

brown rust as a function of cropping practices, climate, soil, and field environment (Robin 

& Aubertot, 2015). 

iii. WHEATPEST model- A basic mechanistic winter wheat crop growth model that integrates 

damage mechanisms caused by multiple pests and simulates the physiological effects of 

these pests on plant growth and yield (Willocquet et al., 2008). 

iv. STICS-MILA model- predicts significant variations in disease intensity between climatic 

periods and between scenarios (Caubel et al., 2017). 

 

Appendix II: Analysis of warning bulletins 

a.  Example for Aquitaine 1985 

 

b. Example for Auvergne 1988 

 

YEAR/DAY/MONTH REGION BROWN RUST SEVERITY REMARK JUSTIFICATION

1985/28/Mar AQUITAINE 1 First pustules observed.

1985/4/Apr AQUITAINE 1 The risk of brown rust gets worse with the hot weather.

1985/12/Apr AQUITAINE 1

Only a few rare plots, sown before October 15-20 in 

Talent, Fidel, Gala and Hardi are affected by the Brown 

rust.

1985/18/Apr AQUITAINE 1

New outbreaks can be noted, mainly in the Dordogne, on 

Gala and Talent. It's still just first pustules on 1 leaves.

1985/24/Apr AQUITAINE 1

A little change since last week and it is stagnant on the 

leaves.

1985/3/May AQUITAINE 2

This disease is currently evolving in the plots sown in 

varieties Talent, Fidel, Gala, Hardi, Frandoc, Castan and 

Festival.

1985/15/May AQUITAINE 2

The disease is in notable progression on Talent varieties, 

Fidel, Gala, Hardi, Frandoc, Festival and Castan.

1985/23/May AQUITAINE 3 Rapid spread of the disease.

YEAR/DAY/MONTH REGION BROWN RUST SEVERITY REMARK JUSTIFICATION

1988/16/Mar AUVERGNE 1

Brown Rust is already observed on susceptible varieties in 

many situations and in late October sowing.

1988/7/Apr AUVERGNE 1 Pustules on 1 leaves in some plots (sensitive varieties).

1988/21/Apr AUVERGNE 1 Has not evolved since last bulletin.

1988/17/May AUVERGNE 1

S1 evolution; especially observed in the ALLIER. Pustules 

are rare in PUY-DE-DOME and HAUTE-LOIRE.

1988/31/May AUVERGNE 2

Given the current cooler weather, moderate progress 

observed on the varieties: THESEE, FESTIVAL, TALENT, 

CAMP-REMY.
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Appendix III: Warning bulletins with varying weather indicators 
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Appendix IV: The detailed J48 pruned decision tree generated with WEKA. 
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Appendix V: Model attributes of the decision tree and their meanings. 
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med,j,hr,inf50,t3-     median of the number of days when relative humidity is below 50% during the 3rd trimester. 

med,j,hr,inf50,t4-     median of the number of days when relative humidity is below 50% during the 4th trimester. 

med,j,hr,inf50,t1-     median of the number of days when relative humidity is below 50% during the 1st trimester. 

med,j,hr,inf50,t2-     median of the number of days when relative humidity is below 50% during the 2nd trimester. 

med,j,hr,sup70,t3-    median of the number of days when relative humidity is above 70% during the 3rd trimester. 

med,j,hr,sup70,t4 -    median of the number of days when relative humidity is above 70% during the 4th trimester. 
med,j,hr,sup70,t1-    median of the number of days when relative humidity is above 70% during the 1st trimester. 

med,j,hr,sup70,t2-    median of the number of days when relative humidity is above 70% during the 2nd trimester. 

med,j,hr,sup80,t3-  median of the number of days when relative humidity is above 80% during the 3rd trimester 

med,j,hr,sup80,t4-  median of the number of days when relative humidity is above 80% during the 4th trimester. 

med,j,hr,sup80,t1-    median of the number of days when relative humidity is above 80% during the 1st trimester. 

med,j,hr,sup80,t2 -    median of the number of days when relative humidity is above 80% during the 2nd trimester. 

med,j,hr,sup90,t3-    median of the number of days when relative humidity is above 90% during the 3rd trimester. 

med,j,hr,sup90,t4-    median of the number of days when relative humidity is above 90% during the 4th trimester. 

med,j,hr,sup90,t1-    median of the number of days when relative humidity is above 90% during the 1st trimester. 

med,j,hr,sup90,t2-    median of the number of days when relative humidity is above 90% during the 2nd trimester. 

med,cum,hr,t3-         median of the cumulative relative humidity during the 3rd trimester.  

med,cum,hr,t4-         median of the cumulative relative humidity during the 4th trimester.  
med,cum,hr,t1-         median of the cumulative relative humidity during the 1st trimester.  

med,cum,hr,t2-      median of the cumulative relative humidity during the 2nd trimester.  

med,cum,p,t3-      median of the cumulative rainfall during the 3rd trimester.  

med,cum,p,t4-      median of the cumulative rainfall during the 4th trimester. 

med,cum,p,t1-      median of the cumulative rainfall during the 1st trimester. 

med,cum,p,t2-      median of the cumulative rainfall during the 2nd trimester. 

med,j,sans,p,t3-      median of the number of days without rainfall during the 3rd trimester. 

med,j,sans,p,t4-      median of the number of days without rainfall during the 4th trimester. 

med,j,sans,p,t1-        median of the number of days without rainfall during the 2nd trimester. 

med,j,sans,p,t2-        median of the number of days without rainfall during the 1st trimester. 

med,j,avec,p,t3-       median of the number of days with rainfall during the 3rd trimester. 
med,j,avec,p,t4-       median of the number of days with rainfall during the 4th trimester. 

med,j,avec,p,t1-       median of the number of days with rainfall during the 1st trimester. 

med,j,avec,p,t2-       median of the number of days with rainfall during the 2nd trimester. 

med,j,p,sup2,t3-       median of the number of days with rainfall above 2mm during the 3rd trimester. 

med,j,p,sup2,t4-       median of the number of days with rainfall above 2mm during the 4th trimester. 

med,j,p,sup2,t1-       median of the number of days with rainfall above 2mm during the 1st trimester. 

med,j,p,sup2,t2-       median of the number of days with rainfall above 2mm during the 2nd trimester. 

med,j,p,sup5,t3-       median of the number of days with rainfall above 5mm during the 3rd trimester. 

med,j,p,sup5,t4-       median of the number of days with rainfall above 5mm during the 4th trimester. 

med,j,p,sup5,t1-       median of the number of days with rainfall above 5mm during the 1st trimester. 

med,j,p,sup5,t2-       median of the number of days with rainfall above 5mm during the 2nd trimester. 

med,cum,rg,t3-        median of the cumulative global radiation during the 3rd trimester. 
med,cum,rg,t4-   median of the cumulative global radiation during the 4th trimester. 

med,cum,rg,t1-   median of the cumulative global radiation during the 1st trimester. 

med,cum,rg,t2-   median of the cumulative global radiation during the 2nd trimester. 

med,sin,tm5<25,t3- median of the temporal integration during t3of the sin2 function (0 when temp is below 5°C or above 25°C)  

med,sin,tm5<25,t4- median of the temporal integration during t4 of the sin2 function (0 when temp is below 5°C or above 25°C) 

med,sin,tm5<25,t1- median of the temporal integration during t1of the sin2 function (0 when temp is below 5°C or above 25°C) 

med,sin,tm5<25,t2- median of the temporal integration during t2 of the sin2 function (0 when temp is below 5°C or above 25°C) 

med,sin,tm5<25,hr80,t3- median of the temporal integration during t3 of the sin2 function (0 when temp is <5°C or >25°C, or RH <80%)  

med,sin,tm5<25,hr80,t4- median of the temporal integration during t4 of the sin2 function (0 when temp is <5° C or >25°C, or RH <80%) 

med,sin,tm5<25,hr80,t1- median of the temporal integration during t1 of the sin2 function (0 when temp is <5° C or >25°C, or RH <80%) 

med,sin,tm5<25,hr80,t2- median of the temporal integration during t2 of the sin2 function (0 when temp is <5° Cor >25°C, or RH <80%) 
med,j,tm,inf0,t3-            median of the number of days with temp below 0°C in t3 

med,j,tm,inf0,t4-            median of the number of days with temp below 0°C in t4  

med,j,tm,inf0,t1-            median of the number of days with temp below 0°C in t1 

med,j,tm,inf0,t2-            median of the number of days with temp below 0°C in t2 

med,j,tn,inf0,t3-             median of the number of days with tmin below 0°C in t3 

med,j,tn,inf0,t4-             median of the number of days with tmin below 0°C in t4 

med,j,tn,inf0,t1-             median of the number of days with tmin below 0°C in t1  

med,j,tn,inf0,t2-             median of the number of days with tmin below 0°C in t2 

med,tp,ther5,t3-             median of the thermal time (5°C) during t3 

med,tp,ther5,t4-             median of the thermal time (5°C) during t4 

med,tp,ther5,t1-             median of the thermal time (5°C) during t1 

med,tp,ther5,t2-             median of the thermal time (5°C) during t2  
med,j,tm,sup25,t3-        median of the number of days with temp above 25°C in t3  

med,j,tm,sup25,t4-        median of the number of days with temp above 25°C in t4  

med,j,tm,sup25,t1-        median of the number of days with temp above 25°C in t1  

med,j,tm,sup25,t2-        median of the number of days with temp above 25°C in t2  

med,j,tx,sup25,t3-         median of the number of days with tmax above 25°C in t3 

med,j,tx,sup25,t4-         median of the number of days with tmax above 25°C in t4  

med,j,tx,sup25,t1-         median of the number of days with tmax above 25°C in t1  

med,j,tx,sup25,t2-         median of the number of days with tmax above 25°C in t2 

med,j,tm,sup32,t3-        median of the number of days with temp above 32°C in t3  

med,j,tm,sup32,t4-        median of the number of days with temp above 32°C in t4  

med,j,tm,sup32,t1-        median of the number of days with temp above 32°C in t1 
med,j,tm,sup32,t2-        median of the number of days with temp above 32°C in t2  

med,j,tx,sup32,t3-         median of the number of days with tmax above 32°C in t3 

med,j,tx,sup32,t4-         median of the number of days with tmax above 32°C in t4 

med,j,tx,sup32,t1-         median of the number of days with tmax above 32°C in t1 

med,j,tx,sup32,t2-         median of the number of days with tmax above 32°C in t2 

med,moy,tn,t3-             median of daily average minimum temperatures in t3 

med,moy,tn,t4-             median of daily average minimum temperatures in t4 

med,moy,tn,t1-             median of daily average minimum temperatures in t1 

med,moy,tn,t2-             median of daily average minimum temperatures in t2 

med,tn,t3-                     median of minimum temperatures in t3  

med,tn,t4-                     median of minimum temperatures in t4  

med,tn,t1-                     median of minimum temperatures in t1  
med,tn,t2-                     median of minimum temperatures in t3  

med,moy,tx,t3-             median of daily average maximum temperatures in t3 

med,moy,tx,t4-             median of daily average maximum temperatures in t4 

med,moy,tx,t1-             median of daily average maximum temperatures in t1 

med,moy,tx,t2-             median of daily average maximum temperatures in t32  

med,tx,t3-                     median of maximum temperatures in t3  

med,tx,t4-                     median of maximum temperatures in t4   

med,tx,t1-                     median of maximum temperatures in t1   

med,tx,t2-                     median of maximum temperatures in t2   

med,moy,tm,t3-            median of daily average temperatures in t3  

med,moy,tm,t4-            median of daily average temperatures in t4 
med,moy,tm,t1-            median of daily average temperatures in t1  

med,moy,tm,t2-            median of daily average temperatures in t2 

med,3j,tm,sup25,dis,t3- median of number of dissociated sequences of 3 consecutive days with temp above 25°C in t3  

med,3j,tm,sup25,dis,t4- median of number of dissociated sequences of 3 consecutive days with temp above 25°C in t4  

med,3j,tm,sup25,dis,t1- median of number of dissociated sequences of 3 consecutive days with temp above 25°C in t1  

med,3j,tm,sup25,dis,t2- median of number of dissociated sequences of 3 consecutive days with temp above 25°C in t2  

med,3j,tm,sup25,nd,t3- median of number of non-dissociated sequences of 3 consecutive days with temp above 25°C in t3  

med,3j,tm,sup25,nd,t4- median of number of non-dissociated sequences of 3 consecutive days with temp above 25°C in t4  

med,3j,tm,sup25,nd,t1- median of number of non-dissociated sequences of 3 consecutive days with temp above 25°C in t1  

med,3j,tm,sup25,nd,t2- median of number of non-dissociated sequences of 3 consecutive days with temp above 25°C in t2 
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Appendix VI: R scripts used for RUE calculation 

 



 

 

 


