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Abstract 

Background: Despite commercial breeding being part of the genomic era, routine use of genotype 

data to govern inbreeding is still scarce. Recent studies have found acceleration of inbreeding rates 

after implementation of GS. Development of robust and reliable genomic inbreeding metrics should 

therefore be a priority. Aim of this study was to optimize detection of runs of homozygosity (ROH) 

and use these along with inbreeding coefficients based on pedigree and genomic relationship matrix 

to examine trends in genome wide and region-specific inbreeding after implementation of GS in 

Norwegian Red Cattle (NR).  

Methods: Pedigree data from whole population and genotype data from 80.999 animals (on 777K 

chip) was used to estimate inbreeding coefficients and rates of inbreeding. FPED, FGRM and FROH was 

used to assess inbreeding trends in NR before and after implementation of GS. ROH was also used to 

examine inbreeding on individual chromosomes. Detection of ROH in PLINK was optimized using 

genome coverage validation method.   

Results: Parameter settings and density of data set was found to strongly influence ROH detection. 

No significant increase in rates of inbreeding was found after implementation of GS in NR, neither in 

genome wide nor chromosomal estimates. We detected an abundance of short ROH in the genome 

of NR, indicating little recent inbreeding. Rates of inbreeding were well within recommended 0.5-1% 

limits. High correlations between FROH and FGRM indicate that these metrics can be used for routine 

inbreeding estimation in NR.  

Conclusion: We lay the foundation for a framework that can be used to develop methodology for 

genomic inbreeding evaluation in NR. Calculations in this thesis only had 3,5 years of GS to base 

upon, and paucity of data strongly limits estimates. Estimates should be repeated when more time 

from implementation of GS has elapsed. Development of methods using genomic information to 

manage inbreeding in NR is advisable.  
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Background 

Inbreeding is an increase in autozygous (identical by descent (IBD)) alleles due to mating of related 

individuals. This may give expression of detrimental recessive alleles, reduce the genetic variation in 

the population and give decline in selection response. Governing of inbreeding is important, and to 

achieve this, reliable and robust estimators are required. The inbreeding coefficient (F) is an 

extensively used statistic for this purpose. Traditionally, F has been based on expected proportions of 

autozygous alleles between relatives given by pedigree (FPED). FPED is however prone to serious flaws 

(Howard et al., 2017). Firstly, their reliability highly depends on depth and quality of pedigree records 

and secondly, they are unable to capture added genetic variation due to random process of mendelian 

sampling and recombination during meiosis (Keller et al., 2011). Hence, development of alternative 

methods to compute F is alluring. In the genomic era, F can be estimated using genotypes rather than 

pedigrees. Genomic inbreeding metrics are deemed more accurate than FPED (e.g. Bjelland et al., 2013; 

Ferdosi et al., 2016) because they are based on realized rather than expected autozygosity, i.e. more 

adept at capturing true inbreeding. FPED often underestimate F (Keller et al., 2011), and studies 

conclude that genomic estimators can enhance inbreeding management (e.g. Ferenčaković et al., 

2013; Solé et al., 2017). Use of SNP data is prevalent. As with FPED, increases in genomic F give decrease 

in production and reproductive ability in dairy cattle (Bjelland et al., 2013). 

Genomic F can be estimated using segment-based methods looking at regions of consecutive SNPs or 

marker-by-marker methods considering single SNPs. Latter method includes genomic relationship 

matrix (GRM). This gives F as (1 + FGRM) on its diagonal. FGRM depends on allele frequency assumptions. 

These are unknown and challenging to assign. They can be estimated from sample or set to fixed value. 

Results show that using frequency of 0.5 can be beneficial. Simulation study by Forutan et al. (2018) 

found higher correlations between FGRM and FTRUE when using 0.5 compared to using known base allele 

frequencies.  Also, VanRaden et al. (2011) and Bjelland et al. (2013) used frequencies of 0.5 and got 

higher correlations between FPED and FGRM than with base allele frequencies. A GRM constructed using 

0.5 frequencies is basically an estimator of homozygosity that is adjusted to fit the distribution of the 

pedigree-based relationship matrix (A) (Bjelland et al., 2013). For segment-based methods, a common 

method is identifying homozygous regions called runs of homozygosity (ROH), and calculate F based 

on these (FROH). ROH have putatively arisen due to parental relatedness. They are presumed to be 

autozygous rather than allozygous because long homozygous stretches are unlikely to occur by chance. 

The term ROH was coined by Lencz et al. (2007), whose work validated antecedent presumptions of 

ROH reflecting autozygosity (Curik et al., 2014). Examination of ROH length, number of ROH and ROH 

distribution is useful as it gives indication of demographic history (Purfield et al., 2012), can help us 

detect selection sweeps (Hillestad, 2017) and is correlated with recombination rate and GC content 
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(Bosse et al., 2012). ROH also allows us to examine region-specific inbreeding, a useful feature as 

inbreeding in some regions of the genome is more detrimental than others (Howrigan et al., 2011).  

Application of genomic information in estimating breeding values (EBVs) has gained precedence. 

Routine use of same data to manage inbreeding in actual breeding schemes is however still scarce 

(Howard et al., 2017). Most metrics are underdeveloped. This applies especially for ROH for which 

there exists little consensus regarding definition. Neither identification criteria nor characterization is 

uniform even within species (Peripolli et al., 2016). This makes comparison of results challenging, and 

accuracy of estimates might be weakened (Hillestad et al., 2017). The most common program for 

detecting ROH is probably PLINK (Chang et al., 2015). By specifying parameter settings in PLINK we set 

defining criteria for ROH. Few studies has however looked at influence of these on detection, and only 

recently a method was developed to validate choice of parameters (Meyermans et al., 2020).  

Selection scheme influence trends in F. Since early 2000’s genomic selection (GS) (Meuwissen et al., 

2001) has predominated cattle breeding. GS gave reduction of generation intervals which could lead 

to higher annual inbreeding rates (∆F). But because GS allows us to capture mendelian sampling, it was 

predicted that GS would give less co-selection of siblings and reduced ∆F (Daetwyler et al., 2007; 

Sonesson et al., 2012). Simulation studies showing reduced ∆F due to GS supported these expectations 

(e.g. Lillehammer et al., 2011; VanRaden et al., 2011). Despite this, recent studies have found the exact 

opposite effect of GS. Substantial increase in ∆F after GS implementation has been found in several 

Holstein populations (Doekes et al., 2018; Doublet et al., 2019; Forutan et al., 2018; Makanjuola et al., 

2020) and in Jersey (Makanjuola et al., 2020). 

In view of this, we aim to examine GS’ influence on ∆F in Norwegian Red Cattle (NR). NR is a composite 

dual-purpose cattle breed based on imported and national genetics. Effective population size is 197 

and census size ~210.000 (Geno, 2019). According to Geno (2018), a high priority in NR is maintenance 

of a broad breeding objective combining fertility and health with high productivity. Objective is ⅓ 

production, ⅓ functionality and ⅓ health and fertility traits (Nordbø et al., 2019). Because inbreeding 

effects fitness the most (Howard et al., 2017), improvement of management methods for ∆F might be 

especially important in NR. GS was introduced relatively late for NR, replacing traditional pedigree 

testing selection (PTS) in 2016 after a combination period (PTS/GS) using GS for preselection of young 

bulls. Comparison of these three selection schemes using stochastic simulation found that both GS and 

PTS/GS could increase genetic gain and reduce ∆F, and that GS could give higher genetic gain at same 

inbreeding rate as PTS/GS when selecting 20 sires (Lillehammer et al., 2011).  

The aim of this thesis was to 1) determine optimal detection of ROH using dense marker data from NR 

population 2) assess effect of GS on inbreeding trends in NR using FPED, FGRM and FROH, and 3) use ROH 

to assess genetic diversity and inbreeding on a region-specific level.  
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Materials and method  

Animals 

All data used was provided by Geno. Data set with genotypes consisted of animals born from 1960-

2019, and pedigree data with animals from 1990-2019. Due to paucity of some data, only animals from 

1994-2019 were used for calculations in this thesis. Pedigree data constituted   6̴.5 million individuals 

and genomic data consisted of 80.999 genotyped individuals. Figure 1 and 2 shows number of animals 

per year in pedigree and genomic data sets respectively.   

Genotyping had been done using different platforms: an Affymetrix 25K chip, a custom made 

Affymetrix 54K chip (Affymetrix, Santa Clara), an Illumina 54K v.1, Illumina 54K v.2 and a high density 

(HD) Illumina 777K chip (Illumina, San Diego). All data had been imputed to a subset of the HD Illumina 

777K chip using Fimpute (Sargolzaei et al., 2014). Prior to imputation. SNPs with minor allele frequency 

of less than 0.01, more than 10% missing, and/or deviations from Hardy-Weinberg Equilibrium with p-

value < 1e-7 was discarded. Pruning for mendelian errors was conducted, and samples missing for more 

than 20% were removed. Details on imputation procedure are also given in Nordbø et al. (2019) 

Inbreeding coefficients and inbreeding rates 

Inbreeding coefficients were estimated using three different methods; pedigree-based method (FPED), 

genomic method using GRM (FGRM) and method based on ROH (FROH). Coefficients based on pedigree 

and genomic relationship matrix were computed by Geno. Pedigree-based estimates were calculated 

using relax2 (Strandén, 2014) based on all animals in population born from 1990-2019. FPED estimation 

was done using VanRaden method (VanRaden, 1992). The genomic relationship matrix, GRM was 

computed using SNP data with allele frequencies set to 0.5 for all SNPs. Matrix was then scaled by 

multiplying a parameter to all matrix elements. This was done in order to make average diagonal 

elements equal to 1 (Nordbø et al., 2019). Inbreeding coefficients, FGRM were derived from diagonal 

elements in matrix given by (1 + FGRM). ROH was detected using PLINK and FROH was calculated used 

Figure 2: Number of genotyped animals 1994-2019 in 
genomic data set 

Figure 1: Number of animals by year of birth 1994-2019 in 
pedigree data set. 



7 
 

method from Meyermans et al. (2020) (details given below). Strength of association between FPED, FGRM 

and FROH was assessed using Pearson correlations. In order to look at how changes in selection scheme 

from PTS through PTS/GS and finally, pure GS effected inbreeding, rates of inbreeding ∆F per year were 

calculated for all three metrics ∆FPED, ∆FGRM and ∆FROH Two methods of calculating ∆F was performed; 

one based on average F-values using formula given in formula i. and one based on multiple model 

regression given by formula ii. Inbreeding rate per year was given by: 

i.           ∆𝑭𝒚𝒆𝒂𝒓 =
𝑭𝒕−𝑭𝒕−𝟏

𝟏−𝑭𝒕−𝟏
 

Where 𝑭𝒕 is the average inbreeding coefficient for year 𝒕. Regression was performed by fitting 

following multiple regression model to average inbreeding coefficient for each year:   

ii.      𝒚𝒊𝒋 = 𝜷𝒊 + 𝜷𝟏 × 𝒙𝒋 + 𝜷𝟐𝒊 × 𝒙𝒋 + 𝜺𝒊𝒋 

Where 𝒚𝒊𝒋 is the average inbreeding coefficient, 𝑭, for year 𝒋 and breeding scheme 𝒊, 𝒙𝒋 is the year, 𝜷𝒊 

is the intersect estimator for each breeding scheme, 𝜷𝟏 is the general regression on year and 𝜷𝟐𝒊 the 

regression on year for breeding scheme 𝒊 respectively. Inbreeding rates per generation was attained 

by multiplying generation interval, 𝑳, with annual rate of inbreeding.  

Runs of homozygosity detection 

Detection of ROH was done using PLINK 1.9 (Chang et al., 2015). ROH detection in PLINK is greatly 

influenced by a set of pre-defined parameters (Howrigan et al., 2011; Meyermans et al., 2020). PLINK 

provides default parameter settings, but customization of these to own data set provides more robust 

and reliable analysis (e.g. Hillestad et al., 2017; Meyermans et al., 2020). Settings used in this thesis, 

as well as their function and PLINK command are listed in table 1. Figure 2 illustrates the detection 

process. Choice of settings are for the most part based on recommendations from Meyermans et al. 

(2020). These authors’ validation method, genome coverage, was also used.  

Table 1: Parameter settings chosen for ROH detection in PLINK 1.9 (Chang et al. 2015). Recommendations from Meyermans 
et al. (2020) has been followed in choice of parameters. Genome coverage validation method was used for SNP density and 
gap length setting.  

DETECTION  PARAMETER PLINK 1.9 COMMAND VALUES 

Defining sliding 
window 

Sliding window size (number of SNPs) -homozyg-window-snp 64 

Number of heterozygotes allowed within window -homozyg-window-het 0 

Number of missing SNPs allowed within window -homozyg-window-missing 1 

Identifying ROH Proportion completely homozygous windows -homozyg-window-threshold 0.07 

Check point for  
putative ROH 

Largest interval between consecutive SNPs -homozyg-gap 200 

Number of heterozygotes allowed in final segment -homozyg-het 0 

Minimum SNP 
density and 
ROH length 

Minimum SNP density to call ROH -homozyg-density 60 

Minimum length in kb. to call ROH -homozyg-kb 500 kb 

Minimum number of SNPs to call ROH -homozyg-snp 64 
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Figure 3:  Step by step process for detection and classification of ROH. Figure inspired by Bjelland et al. (2013). PLINK 1.9 (Chang et al. 2015) 
is program used for detection.  
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Settings for length of sliding window and length of final ROH segment was calculated using formula 

from Lencz et al. (2007) and adapted by Purfield et al. (2012): 

ii.     𝑳 =  
𝒍𝒐𝒈𝒆

𝜶

𝒏𝒔𝒏𝒊

𝒍𝒐𝒈𝒆(𝟏−𝒉𝒆𝒕)
  

Where 𝑳 is the length of sliding window/final ROH segment, 𝒏𝒔 number of SNPs per individual 

(622.179), 𝒏𝒊 the number of animals (80.999), 𝒉𝒆𝒕 the mean heterozygosity across all SNPs (0.35) and 

𝜶 the chosen significance level for type I errors. 𝑳 was calculated to 64 SNPs. Plotting 𝑳 against α 

showed that varying 𝜶 from 1%-5% only gave a change in L from 68-64 SNPs (data not shown), i.e. 𝑳 

was not deemed to be very sensitive of significance level, and a 5% level was chosen. With an average 

heterozygosity of 35% in population there’s a 65% chance of a SNP to be homozygous. When we have 

622.179 SNPs for 80.999 individuals, a minimum ROH length of 64 SNPs would be needed to produce 

<5% false positives across all subjects if we assume independence of all SNPs. PLINK provides a setting 

for defining length of final ROH segments in kb rather than number of SNPs, but Howard et al. (2017) 

found basing parameters on SNP outperformed detection done by using kb length.  

PLINK evaluates whether every single SNP is part of a ROH. Number of windows that cover the SNP 

and are completely homozygous is evaluated, and if this number supersede a pre-defined threshold, 

SNP is called as part of a ROH. Threshold was calculated using formula in Meyermans et al. (2020): 

iii.              𝒕 = 𝒇𝒍𝒐𝒐𝒓(
𝑵𝒐𝒖𝒕 + 𝟏

𝑳
, 𝟑) 

Where threshold is t, Nout is desired number of SNPs on outer sides of ROH segment that should not 

be included in ROH and L is same as in formula iii. Nout was set to 4 and 𝑡 was calculated to 0.07.  

In ROH detection it is possible to allow heterozygotes within ROH in order to account for genotyping 

errors. However results show that allowance of heterozygotes gives false positives (Hillestad et al., 

2017), and poorer detection results (Howrigan et al., 2011). Parameter was therefore set to 0 both in 

sliding window and final segment. Allowance of missing SNPs is another genotyping error setting. 

Hillestad et al. (2017) found that allowing 3 vs. 1 missing only had a minor effect on detection. 

Detection in this thesis uses 1, which is quite common in the literature (e.g. Bjelland et al., 2013; 

Meyermans et al., 2020; Scraggs et al., 2014). 

Genome coverage method (Meyermans et al., 2020) was used to validate settings for gap length and 

SNP density. Two completely homozygous individuals were simulated. One on 777K SNP array and one 

on a thinned down version of 54K SNPs. When the whole genome is completely homozygous, all the 

chromosomes will in practice be one long ROH, and the ROH detected using specific parameter settings 

in PLINK will be the maximum detectable ROH length. 
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Estimation of inbreeding coefficients based on ROH  

Inbreeding coefficients based on ROH measure the proportion of the total genome covered by ROH. 

Most common estimation method is from McQuillan et al. (2008). But Meyermans et al. (2020) has 

adjusted this to account for variation of SNP coverage across the genome. Rather than using total 

length of autosome (𝐿𝑎𝑢𝑡𝑜) calculated as sum of distance between first and last SNP on all 

chromosomes, the size of autosome where ROH is detectable (𝑳𝒂𝒖𝒕𝒐 𝒄𝒐𝒗) is used in formula. 

𝑳𝒂𝒖𝒕𝒐 𝒄𝒐𝒗 was calculated by doing ROH detection with specified parameters on completely homozygote 

individual. Total ROH length found for this is the maximum detectable ROH length in any individual. 

Formula from McQuillan et al. (2008) and adapted by McQuillan et al. (2008) is given by:   

iii.                                                                    𝑭𝑹𝑶𝑯 𝒄𝒐𝒗 =
∑ 𝑳𝑹𝑶𝑯

𝑳𝒂𝒖𝒕𝒐 𝒄𝒐𝒗
 

Where  𝑭𝑹𝑶𝑯 𝒄𝒐𝒗 is the inbreeding coefficient, ∑ 𝑳𝑹𝑶𝑯 is the sum of all ROH detected and 𝑳𝒂𝒖𝒕𝒐 𝒄𝒐𝒗 is 

length of autosome covered by SNPs. For 777K data set, 𝑳𝒂𝒖𝒕𝒐 𝒄𝒐𝒗 equaled 2.49𝑒9 while 𝐿𝑎𝑢𝑡𝑜, was 

2.51𝑒9. For simplicity, 𝑭𝑹𝑶𝑯 𝒄𝒐𝒗 is referred to as  𝐹𝑅𝑂𝐻 in this thesis.  

ROH distribution and chromosomal inbreeding and genetic diversity 

ROH was used to look at distribution of inbreeding across the genome. Changes in distribution and 

frequency in different ROH length classes before and after GS was examined. For comparisons sake, 

length classes was derived from previous studies (e.g. Ferenčaković et al., 2013; Forutan et al., 2018). 

They were <2 Mb, 2-4 Mb, 4-8 Mb, 8-16 and >16 Mb. On a chromosomal level, average length and 

average number of ROH as well as average FROH before and after GS was assessed. F per chromosome 

were estimated using the same method as was used for genome wide estimates. Formula was:  

iv.     𝑭𝑪𝑯𝑹 𝒌 =
∑ 𝑳𝑹𝑶𝑯 𝒌

𝑳𝒌 𝒄𝒐𝒗
 

Where 𝑭𝑪𝑯𝑹 𝒌 is inbreeding coefficient for chromosome 𝒌, ∑ 𝑳𝑹𝑶𝑯 𝒌 is the sum of all ROH on 

chromosome 𝒌 and 𝑳𝒌 𝒄𝒐𝒗 is the length of chromosome 𝒌 covered by SNPs (calculated same way as 

𝐿𝑎𝑢𝑡𝑜 𝑐𝑜𝑣 from formula iii). Inbreeding rates per chromosome ∆𝐹𝐶𝐻𝑅 𝑘 , were estimated with linear 

regression for each chromosome by fitting following multiple regression model to data: 

v.        𝒚𝒊𝒋 = 𝜷𝒊𝒌 + 𝜷𝟏𝒌 × 𝒙𝒋 + 𝜷𝟐𝒊𝒌 × 𝒙𝒋 + 𝜺𝒊𝒋𝒌 

Where 𝒚𝒊𝒋 is the ∆𝐹𝐶𝐻𝑅 𝑘, for chromosome 𝒌, year 𝒋 and breeding scheme 𝒊, 𝒙𝒋 is the year, 𝜷𝒊𝒌 is the 

intersect estimator for each breeding scheme for chromosome 𝒌, 𝜷𝟏𝒌 is the general regression on year 

for chromosome 𝒌, and 𝜷𝟐𝒊𝒌 the regression on year for breeding scheme 𝒊 for chromosome 𝒌.  
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Results 

Runs of homozygosity parameter settings 

Results obtained from varying PLINK parameter settings in ROH detection for 777K and 54K data sets 

are given in figure 4. For 777K data set, an increase in SNP density setting from 4 to 4.9 kb/SNP gave 

coverage increase from 55% to peak value of 99.7%. After this, no change in coverage was observed 

for increased densities, i.e. setting did not influence detection. For 54K data set on the other hand, the 

SNP density had a large effect on ROH detection. Genome coverage obtained was kept at 0% until 46 

kb/SNP where a steep increase occurred, and a 61% coverage was obtained. Maximum coverage 

reached was 98.2% at density of 65 kb/SNP. This coverage was not exceeded even when testing with 

very large values (1000 kb/SNP, data not shown).  

When it came to maximum gap length setting (figure 4 b), patterns are similar to those shown for SNP 

density. Both data sets display a steep increase in genome coverage. 777K data being the most 

pronounced with a coverage that rises from 5 to 85% when maximal gap length allowed is increased 

from 20 to 30 kb. Increase in coverage for 54K data is steepest around 200 kb, moving from 4.5 to 52% 

when increasing gap length from 195 to 200 kb, and declines in rate of increase after this, not reaching 

77% until using  a gap length of 250 kb, and peak coverage of 100% at 1200 kb (data not shown). A 

genome coverage of >99% was obtained at maximum gap set to 200 kb in 777K data set, while a length 

of 900 kb was required to exceed 99% in 54K data set. It is favorable to keep gap length as small as 

possible. Maximum gap length of 200 kb gave >99% and was chosen for detection in this thesis. 

 

Figure 4: Genome coverage obtained by varying a) SNP density and b) maximum gap length in ROH detection using 
PLINK 1.9 (Chang et al. 2015) for two different density data sets (777K and 54K). 
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Inbreeding coefficients and rate of inbreeding 

Inbreeding coefficients, F, were estimated using pedigree (FPED), genomic relationship matrix (FGRM) and 

runs of homozygosity (FROH). To examine trends in inbreeding before and after implementation of GS, 

rates of inbreeding per year and per generation were compared for the three different selection 

schemes (PTS, PTS/GS and GS). Rates per generation was calculated by multiplying annual rate with 

generation intervals which were 4.55, 4.58 and 3.83 years for PTS, PTS/GS and GS respectively.  

Average FPED, FGRM and FROH per year from 1994-2019 are shown in figure 6. GRM-based estimates are 

centered around 0 because of scaling. All three metrics display an increase across the years, and the 

slopes of the linear trend lines (estimated increase for whole period) are very similar with 0.0004 for 

both FROH and FPED and 0.0003 for FGRM. Estimates for FROH display the largest fluctuations with a R2 value 

of 0.592 compared to 0.878 and 0.968 for FGRM and FPED respectively.  

Average inbreeding coefficients (FPED, FROH, and FGRM) and rate of inbreeding, ∆F, per year and 

generation for the three different selection schemes are presented in table 2. All three inbreeding 

metrics showed a continual increase in average F from progeny testing scheme (PTS) through 

combination PTS/GS and to genomic selection scheme (GS). Increase is moderate in FPED and FROH and 

more prominent for FGRM. When it came to inbreeding rates, ∆FPED was the only metric that showed 

continual increase from PTS through PTS/GS and onto GS with rates of 0.038, 0.044 and 0.098% for the 

three schemes respectively. Increase in rate is small from PTS to PTS/GS period, but more than doubled 

during GS period when it rises from 0.044 to 0.098% per year. 

Figure 6: Average estimated inbreeding coefficients per year 1994-2019. F based on pedigree (FPED), genomic 
relationship matrix (FGRM) and runs of homozygosity (FROH). 
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Both ∆FROH and ∆FGRM displayed noticeable increases when looking at PTS versus GS period isolated. 

The former increased from 0.060 to 0.102% and the latter from 0.035 to 0.083% per year. However, 

both estimates also exhibit a considerable drop during the combination PTS/GS scheme. ∆FROH from 

0.060 to -0.010% and ∆FGRM from 0.035 to 0.005% per year. Inbreeding rates per generation displays 

the same general trend as rates per year, but increases are lower, with e.g. FPED not doubling from 

PTS/GS to GS period. Average generation interval across the three periods change, with a slight 

increase from PTS to PTS/GS period from 4.55 to 4.58 and then decreasing during GS to 3.83.   

Large standard errors are observed for both inbreeding rates per year and per generation. Standard 

errors for ∆FROH are the highest and for both ∆FROH and ∆FGRM they surpass estimated rates for all 

periods. ∆FPED standard errors are smallest, but still large. Generally, the standard errors increased 

throughout the three periods being lower for PTS than for PTS/GS and GS periods.    

 

Looking at standard errors, we see that none of the inbreeding rates can be said to be significantly 

different from 0. Estimation of significance in changes of rates can therefore not be done accurately. 

Because of this, a multiple regression model was used to try and examine changes more closely. 

Percentage estimated inbreeding rates per year and per generation from regression are presented in 

table 3. As seen, ∆FROH is the only statistic exhibiting continual increase from PTS through PTS/GS and 

onto GS period, with rates of 0.035, 0.040 and 0.068% per year and 0.157, 0.183 and 0.259% per 

generation. ∆FROH estimates are also the highest for all periods except for during PTS for which ∆FPED 

gives the largest estimate. Standard errors for ∆FROH are the smallest of all metrics and for all periods. 

∆FPED shows a drop from PTS to PTS/GS period with 0.042 to -0.035% per year and from 0.193 to -

0.162% per generation respectively. During GS period, ∆FPED increases to 0.031% per year and 0.117% 

per generation, but these rates are still lower than during PTS period, and the lowest for GS period 

  
F % ∆F per year  % ∆F per generation  

    Average Std.error Average Std.error Average Std.error 

 PTS 0.024 0.001 0.038 0.013 0.174 0.058 

FPED PTS/GS 0.028 0.000 0.044 0.042 0.199 0.194 

 GS 0.030 0.001 0.098 0.107 0.348 0.388 

 PTS 0.092 0.001 0.060 0.081 0.283 0.373 

FROH PTS/GS 0.097 0.001 -0.010 0.148 -0.040 0.677 

 GS 0.098 0.001 0.102 0.128 0.335 0.481 

 PTS 0.000 0.001 0.035 0.037 0.164 0.171 

FGRM PTS/GS 0.003 0.000 0.005 0.059 0.024 0.270 

  GS 0.005 0.001 0.083 0.076 0.299 0.299 

Table 2: Estimated inbreeding coefficients and rates of inbreeding. PTS = progeny testing scheme, GS = genomic selection,        
PTS/GS = combination selection scheme, F = inbreeding coefficients, PED = pedigree, ROH = runs of homozygosity, GRM = genomic 
relationship matrix, % ∆F = percentage inbreeding rates, std.error = standard error. 
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compared to other two metrics. For ∆FGRM, the same pattern can be discerned in table 3 as that in table 

2. The rate of increase is higher during GS than PTS period, but (as for ∆FPED) rate displays a considerable 

drop during middle (PTS/GS scheme). Rates are 0.029, 0.013 and 0.041% per year and 0.13, 0.06 and 

0.16% per generation for PTS, PTS/GS and GS respectively. ∆FGRM has the largest standard errors of the 

three metrics, but standard errors for PTS/GS and GS periods are also considerable for both ∆FPED
 and 

∆FGRM estimates. PTS period exhibits the smallest standard errors for all metrics.  

Table 3: Estimated rate of inbreeding from regression. PTS = progeny testing scheme, GS = genomic selection, PTS/GS = 
combination selection scheme, % ∆F = percentage estimated rate of inbreeding, PED = pedigree, ROH = runs of 
homozygosity, GRM = genomic relationship matrix. 

    % ∆F per year % ∆F per generation 

    Estimate Std.error Estimate Std.error 

∆FPED 

PTS 0.042 0.003 0.193 0.012 

PTS/GS -0.035 0.034 -0.162 0.157 

GS 0.031 0.034 0.117 0.132 

∆FROH 

PTS 0.035 0.000 0.157 0.002 

PTS/GS 0.040 0.012 0.183 0.053 

GS 0.068 0.012 0.259 0.044 

∆FGRM 

PTS 0.028 0.003 0.129 0.012 

PTS/GS 0.013 0.060 0.059 0.273 

GS 0.041 0.060 0.156 0.228 

Using ANOVA to compare ∆F before and after implementation of GS gave p-values of 0.408, 0.794 and 

0.774 for ∆FPED, ∆FROH and ∆FGRM respectively. This means that rates of inbreeding were not significantly 

different for the three selection schemes. High correlations were found between FROH and FGRM while 

correlations between both genomic estimation methods and pedigree method were moderate. 

Correlations were 0.966 for FROH and FGRM, 0.612 for FROH and FPED and 0.683 for FPED and FGRM. 

Correlations were observed to be similar both across and within the three selection periods. 

ROH distribution and chromosomal inbreeding 

ROH was used to look at inbreeding differences across the genome and for individual chromosomes. 

A small increase in average number of ROH per animal was seen during GS with 137.3 compared to 

131.1 for PTS and 127.6 for PTS/GS (table 4). Figure 7 clearly shows that the majority of ROH found 

were small (>2 Mb), constituting 73.8-74.8% of all ROH. Change in frequencies of length classes is 

negligible across the three periods. Relative frequencies of ROH in the different length classes ranged 

around 74% (<2 Mb), 14% (2-4 Mb), 7.5 (4-8 Mb), 2.4% (8-16 Mb) and 1.2% (>16 Mb).  
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Except for BTA 12, 13 and 14, all chromosomes show a higher number of ROH after GS than during PTS 

(figure 8). However, only BTA 11, 17, 22 and 27 display continual increase from PTS through PTS/GS 

and onto GS. All other chromosomes display a drop in number during PTS/GS scheme. Average number 

of ROH across all chromosomes was 4.63, 4.49 and 4.84 for PTS, PTS/GS and GS respectively.  

Figure 9 shows average total length of all ROH on each chromosome for the three periods. All 

chromosomes except BTA 6, 12, 13, 18 and 23 have longer average ROH for GS than PTS. Only 12 of 29 

chromosomes show continual increase. I.e. drop in average length during PTS/GS applies for over half 

of the chromosomes. Both average number of ROH and average length displays a pattern that coincide 

with total length of chromosomes; chromosome 1 displaying the longest average length and highest 

average number, but both measures generally decreasing for chromosomes of higher number (that 

are also shorter). Notable exceptions are number of ROH on BTA 5 and 14 in figure 8 and average 

length of ROH at BTA 4, 5, 14 and 20, representing peaks in figure 9. Total ROH length across genome 

was 8308.5 for PTS, 8607.4 for PTS/GS and 8705.6 for GS scheme.  

 

 

 

 PTS PTS/GS GS 

  % n % n % n 

nROH 131.1 127.6 137.3 

<2 74.8 98.0 73.8 94.2 74.3 102.0 

2-4 14.2 18.6 14.1 18.0 14.8 20.3 

4-8 7.3 9.6 7.7 9.9 7.4 10.1 

8-16 2.6 3.4 2.2 3.9 2.5 3.4 

>16 1.2 1.5 1.3 1.7 1.1 1.5 

Figure 7: Distribution of ROH in different length classes. 

Table 4: Percentage distribution of ROH in different length 
classes <2, 2-4, 4-8, 8-16 and >16 Mb. nROH = average 
number of ROH per animal, n = number of ROH,                    
% = percentage distribution 

 

Figure 8: Average number of ROH per chromosome for three selection periods 
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Variation in FROH for different chromosomes is given in figure 10. Relatively large variations in FROH can 

be seen, ranging from 0.077 on BTA 2 during PTS to 0.155 on BTA 14 for PTS/GS. BTA 14 stands out, 

clearly having the largest FROH for all three periods (0.145, 0.155 and 0.149 for PTS, PTS/GS and GS 

respectively). BTA 4, 5, 20 and 27 also distinguishes themselves as peaks in the figure, all these have 

a FROH ≥ 0.114. In contrast to figure 8 and 9, FROH does not follow pattern of general chromosome 

length. Lowest FROH is observed for BTA 2 with 0.077, 0.082 and 0.086 for PTS, PT/GS and GS periods 

respectively. BTA 7 and 21 also display low FROH, (<0.09 for GS period).   

 

 

 

 

 

 

 

Estimated percentage ∆F per year for all chromosomes during the three selection schemes are given 

in table 5. Higher ∆F can be seen when comparing GS to PTS for 18 of the chromosomes. However, 

using ANOVA to compare ∆F showed that increase was not significant for any chromosome. Only 7 

chromosomes display continual increase in ∆F from PTS, through PTS/GS and onto GS. Both the highest 

and lowest ∆F was observed during PTS/GS period (∆F = 0.396% for BTA 27, and -0.546% for BTA 1). 

PTS/GS generally displayed the largest ∆F. BTA 13, 17, 27, 28 and 29 had ∆F ranging from 0.295 to 

0.396%. During GS period the highest observed F was found on BTA 1, 5, 9, 10, 20 and 26 (from 0.219 

to 0.338%). GS and PTS period display fewer extreme values than PTS/GS period. This is reflected in 

Figure 9: Average length of ROH per chromosome for the three selection periods 

Figure 10: Average FROH per chromosome for the three selection periods 
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average standard errors which are 0.297 for PTS and 0.296 for GS, but noticeably higher for PTS/GS 

(0.418). Standard errors are however large for all periods and all chromosomes, superseding actual 

estimates for all but four cases (these being negligibly larger). BTA 14 distinguishes itself during PTS 

period by having a ∆F of 0.254%, being by far the largest for this period, but also in comparison to 

estimates for PTS/GS. ∆F for BTA14 decreases and reaches a negative value during GS period (-0.079%).   

Table 5: Estimated rate of inbreeding per year on individual chromosomes (BTA) for three selection schemes.  
∆FROH = rate of inbreeding based on runs of homozygosity. PTS = progeny testing scheme. PTS/GS = combination 
scheme. GS = genomic selection scheme, std.error = standard error of estimates. avg. = averages  

 PTS PTS/GS GS 

BTA % ∆FROH std.error % ∆FROH std.error % ∆FROH std.error 

1 -0.245 0.305 -0.546 0.430 0.308 0.304 

2 -0.027 0.153 0.135 0.215 0.087 0.152 

3 -0.020 0.243 0.108 0.342 0.067 0.242 

4 0.018 0.196 0.143 0.276 0.099 0.195 

5 -0.148 0.299 -0.024 0.421 0.221 0.297 

6 0.122 0.269 0.172 0.378 -0.037 0.267 

7 0.004 0.303 -0.213 0.427 0.080 0.302 

8 -0.049 0.335 -0.254 0.472 0.104 0.334 

9 -0.207 0.282 -0.043 0.396 0.253 0.280 

10 -0.149 0.275 -0.008 0.386 0.246 0.273 

11 -0.157 0.147 -0.058 0.207 0.189 0.146 

12 0.051 0.255 -0.091 0.359 -0.006 0.254 

13 0.068 0.291 0.295 0.410 -0.088 0.290 

14 0.254 0.452 0.156 0.636 -0.079 0.450 

15 0.057 0.237 0.033 0.334 0.006 0.236 

16 -0.091 0.260 -0.330 0.365 0.160 0.258 

17 0.122 0.237 0.342 0.334 -0.103 0.236 

18 0.123 0.367 -0.278 0.516 -0.033 0.365 

19 -0.081 0.344 -0.231 0.484 0.142 0.342 

20 -0.150 0.322 -0.102 0.453 0.338 0.320 

21 -0.023 0.232 0.038 0.326 0.022 0.231 

22 0.128 0.265 0.084 0.373 -0.098 0.263 

23 -0.267 0.280 -0.154 0.394 0.198 0.279 

24 0.026 0.365 -0.139 0.513 0.129 0.363 

25 -0.133 0.327 0.167 0.460 0.196 0.325 

26 -0.232 0.382 -0.361 0.538 0.219 0.380 

27 0.128 0.426 0.396 0.599 -0.078 0.424 

28 -0.025 0.404 0.310 0.569 -0.030 0.402 

29 0.152 0.365 0.274 0.514 -0.184 0.364 
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Discussion 

Using genomic and pedigree inbreeding measures. trends in inbreeding before and after genomic 

selection in Norwegian Red Cattle was examined. First aim was to determine optimal method of 

detecting runs of homozygosity in PLINK. Secondly, FPED. FGRM and FROH was used to examine inbreeding 

trends and thirdly, patterns in ROH was used to assess inbreeding rates and genetic diversity on a 

chromosomal level before and after GS implementation.  

Optimizing runs of homozygosity detection 

ROH-based inbreeding metrics are increasingly popular. Lack of consensus regarding definition is 

however an issue that makes it challenging to compare results across studies (Hillestad et al., 2017). 

Also. few efforts have been put towards development of robust detection methods. resulting in 

questionable reliability of estimates. By using genome coverage method proposed by Meyermans et 

al. (2020) we were able to evaluate effect of minimum SNP density and maximum gap length settings 

on ROH detection using PLINK (Chang et al., 2015) for high density (HD) and medium density data.  

SNP density parameter (kb/SNP) lets us exclude autosomal regions with low SNP coverage and avoid 

false positives (type I error). Our results show that SNP density is rendered redundant in HD data. This 

is no surprise. Because, as argued by Hillestad et al. (2017), SNPs in a 777K array will on average be 

positioned >5 kb apart. Thus, density criterion does not take effect unless using <5 kb/SNP. For our 

data, using 4 kb/SNP gave genome coverage of 55.04% while 4.9 kb/SNP resulted in maximum 

coverage (99.7%). For 54K data, density criterion strongly influenced ROH detection. Maximum 

genome coverage was obtained at 65 kb/SNP. This coincide with results in Meyermans et al. (2020) 

who got maximum genome coverage at 60-70 kb/SNP. Default setting in PLINK is 50 kb/SNP. Using 50 

kb/SNP in our data, genome coverage dropped to 83.5%, and Meyermans et al. (2020) showed that 

using 50 kb/SNP in Australian Polled Merino Sheep data, coverage of only 0.6% was obtained. Their 

results, and ours, suggest that default PLINK setting might weaken reliability of ROH detection in 

medium density data. Meyermans et al. (2020) also found parameter to be population dependent. 

Hence, it is advisable that optimal setting is determined for individual populations and array density.  

As with SNP density, gap length reflects our expectation regarding true homozygosity status of 

nucleotides positioned between SNP markers. Results in this thesis show that gap length setting should 

be adjusted to density of data set. While maximum gap length of 200 kb gave genome coverage >99% 

in HD data. 54K data needed 900 kb for coverage to exceed 99%. PLINK default setting of 500 kb 

resulted in coverage of 98% and using a setting of 200 kb (as in HD data) led coverage to drop to 52% 

in 54K data. To the best of our knowledge, no previous study has examined effect of gap length on 

ROH detection in PLINK. Meyermans et al. (2020) was unable due to lack of HD data. In the literature. 
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values ranging from 100-1000 is used. and few justify their choice (Howrigan et al., 2011; Meyermans 

et al., 2020). Hillestad et al. (2017) argued that gap length setting was redundant in ROH detection in 

HD, but our results show that using lengths <200 kb would give slight coverage reduction (e.g. 98% for 

100 kb). As with density setting. optimization of gap length setting to individual data set is preferable.  

Not surprisingly, we found that density of array strongly influences robustness and reliability of ROH 

detection. When using HD array, assumption regarding true homozygosity status is more likely to hold 

true, avoiding type I errors. Our results are in accordance with Hillestad et al. (2017) who also analyzed 

ROH in NR. Their study concluded that higher density data set contributed to increased accuracies in 

ROH detection by discarding false positives, detecting shorter ROH and resulting in redistribution of 

long ROH to shorter ROH. Data set used in our study was not pruned for LD. Although Howrigan et al. 

(2011) recommended this based on simulation results. Meyermans et al. (2020) found that no pruning 

was preferable. Our data was however pruned for MAF (0.01) prior to imputation. Meyermans et al. 

(2020) advice against this in medium density data as it can lead to ignoring long homozygous regions 

and Hillestad et al. (2017) found the same to be true for HD data as it led to detection of fewer ROH 

(especially short ones) and that low MAF ROH can signalize selection signatures and trace selection. 

Optimally, analysis should be repeated using unpruned data. 

Our results suggest that using HD data is preferred for ROH detection. As argued by Bosse et al. (2012), 

reduced number of markers makes it challenging to discover variation in inbreeding across the 

genome. These authors found that use of 60K sufficed for detection of ROH > 5 Mb, but that short ROH 

were challenging to find and medium density arrays underestimated cumulative ROH size. This is 

supported by Purfield et al. (2012) who found that 50K was enough for detection of almost all ROH > 

5 Mb, but that detection accuracy was strongly reduced for 0.5-1 Mb ROH. Challenges was especially 

pronounced for populations with many short ROH. Although Zhang et al. (2015a) found that ROH 

detection using 50K data gave similar results as when using sequence data, it is important to consider 

differences in populations and distribution of ROH. As Marras et al. (2015) points out, use of medium 

density arrays may provide good estimates in populations with recent inbreeding and high linkage 

disequilibrium (LD), but precise detection of autozygosity in populations with more ancient inbreeding 

and low LD will require higher density data. Considering that NR is a population with many short ROH 

(figure 7) and more ancient inbreeding, use of HD arrays might be advisable when detecting ROH. 

Genome wide inbreeding trends before and after genomic selection 

Genomic selection has had a major impact on animal breeding. Despite this. investigation into GS’ 

effect on inbreeding trends in real populations are still scarce (Doekes et al., 2018; Doublet et al., 

2019). In a simulation, Forutan et al. (2018) found that GS gave decrease of ∆F, but using real data 
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from North American Holstein, the opposite was seen; ∆F increased at a faster pace after 

implementation of GS.  

This study assesses inbreeding trends after implementation of GS in Norwegian Red Cattle. Estimates 

for FPED. FGRM and FROH were used to compare ∆F before and after GS. Results show that increase in ∆F 

were not significant. This does not coincide with other studies. Increase in ∆F after GS has been found 

in several Holstein breeds (Doekes et al., 2018; Forutan et al., 2018; Makanjuola et al., 2020) and in 

Jersey (Makanjuola et al., 2020). Our results are however in accordance with Doublet et al. (2019) who 

found significant increases in French Holstein, but not in national breeds (Montbéliarde and 

Normande). Their results, and ours, might suggest that Holstein, which is an international breed with 

large census size, but relatively small effective population size, might be more prone to GS mechanisms 

that accelerate ∆F than smaller national breeds. As discussed by Doublet et al. (2019), factors here 

might be use of imported bulls or number of inseminations per bull. Among other things, they point to 

massive use of few elite bulls in Holstein as probable cause for ∆F increase.  Also, Miglior and Beavers 

(2014) found that although GS led to a higher number of bulls screened, a corresponding increase in 

diversity of selected bulls was not seen in US Holstein. On the contrary, number of bulls siring 50% of 

the young bulls entering artificial insemination was kept rather constant. Hence, even though it is 

possible, opportunity of less co-selection of relatives may not have been exploited in Holstein.  

Results in our study is not in accordance with expectations regarding inbreeding and GS in NR. A 

simulation study done by Lillehammer et al. (2011) showed stagnation of decrease of ∆F for both 

PTS/GS and GS schemes. Decrease in ∆F was expected if ≥20 elite bulls were selected (Lillehammer et 

al., 2011), but although as many as 50, 34, 46 and 46 elite sires was selected for the four GS years 

(2016-2019 respectively), no decrease in ∆F is observed in our results. A decrease in PTS/GS was found. 

but standard errors suggest that these might be inaccurate estimates. Most likely due to paucity of 

data. This is supported by observation that different statistical analysis gave large variations in PTS/GS 

period (data not shown). Also, the number of elite bulls chosen for these years (2012-2015) was 

uncharacteristically low for NR with 10, 11, 9 and 6. This should lead to an increase in ∆F, not a 

decrease. Paucity of data is also a problem for GS estimates. PTS/GS estimates are based on 4 years 

and GS only 3.5 years. This is a short period, most likely giving insufficient data to base estimates upon. 

This is reflected in large standard errors given for PTS/GS and GS period in regression results.  

Correlations between the different inbreeding metrics were in range with previous studies. We found 

correlations of 0.683 between FROH and FPED. Ferenčaković et al. (2013) who also looked at NR and 

found correlations of 0.53-0.62 between FPED and FROH. Studies in other breeds show corresponding 

results; Pryce et al. (2012) got 0.65. Makanjuola et al. (2020) 0.52-0.76 and Doublet et al. (2019) 0.50-

0.59. Similarly. our observed correlations between FROH and FGRM of 0.96 coincide with other findings 
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ranging from 0.81 (Bjelland et al., 2013), 0.90 (Makanjuola et al., 2020) to 0.94 (Forutan et al., 2018). 

Moderate correlations between genomic metrics and FPED but high correlations between FROH and FGRM, 

support assumption that genomic metrics are more adept at capturing biological sources of variation 

between relatives such as mendelian sampling and recombination. When we compare ∆FPED estimates 

obtained in regression to ∆FROH, our results also point toward the possibility of underestimating ∆F 

when this is based on pedigree rather than genomic data. Hillestad (2017) found that FPED 

underestimated ∆F compared to FROH in NR. Because of this, in addition to large consensus regarding 

increased accuracy of genomic rather than pedigree based inbreeding metrics (e.g. Baes et al., 2019; 

Bjelland et al., 2013; Ferdosi et al., 2016; Howard et al., 2017), it is advisable to improve NR breeding 

scheme by implementing routine evaluation of genomic inbreeding. Our results suggest that both FROH 

and FGRM are proficient at capturing inbreeding levels in NR population. An advantage of using GRM is 

that Geno already constructs this as part of ssGBLUP procedure and development of methodology 

framework should require little effort. The downside is that GRM is sensitive to allele frequencies, and 

studies has shown that FGRM overestimates inbreeding because it is less proficient than FROH at 

distinguishing IBS from IBD alleles (Baes et al., 2019). Forutan et al. (2018) found that FROH was a more 

appropriate metric because it was not sensitive to allele frequencies. Using FROH for routine inbreeding 

management will most likely require some more effort on part of NRs’ breeding scheme, but our study 

provides a starting foundation and framework for doing this that can be built upon. 

Region-specific inbreeding and trends in ROH  

ROH is a useful feature of the genome that allows us to investigate inbreeding on a region-specific 

level.  This study has looked at genome wide distribution of ROH and their frequency in different length 

classes. Average length and number of ROH as well as average inbreeding coefficient and annual 

inbreeding rates per chromosome was examined to try and discern trends in inbreeding before and 

after implementation of GS.   

Comparing ∆FROH for the three selection schemes allowed us to examine inbreeding trends per 

chromosome before and after GS. Results show that increase in ∆F after GS was not significant for any 

chromosomes. Using observed homozygosity, Hillestad (2017) also investigated chromosomal ∆F per 

in NR, and found the highest rates for BTA 5, 6, 14, 20 and 24. In our study, three of these were among 

the chromosomes with highest ∆F. Those were BTA 5, 14 and 20. We showed that BTA 14 also 

distinguished itself by having high average FROH compared to other chromosomes (figure 10). This 

chromosome contains many gene variants influencing economically important traits in cattle 

(Hillestad, 2017), and it is the chromosome at which the well-known DGAT1 gene with major effect on 

milk characteristics is positioned (Grisart et al., 2002). Our results show high average FROH for BTA 14 

for all three periods, but noticeably decline in ∆F from 0.254 to -0.079% for PTS and GS periods 
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respectively. This might correspond with Hillestad (2017) who found fixed haplotypes on this 

chromosome and signs of a historical selective sweep, but no ongoing sweep nor total fixation.  

We found that short (<2 Mb) and medium (2-4 Mb) ROH are highly predominant in NR. This coincides 

with other studies (Forutan et al., 2018; Marras et al., 2015; McQuillan et al., 2008). Frequency 

distribution is however inconsistent with other results. Forutan et al. (2018) found relative frequencies 

in North American Holstein to be 43.5% (<2 Mb), 23.9% (2-4 Mb), 17.7% (4-8 Mb), 10.5% (8-15 Mb) 

and 4.7% (>16 Mb). Similar frequencies is shown in Italian Holstein (Marras et al., 2015). We found 

relative frequencies of 74% (<2 Mb), 14% (2-4 Mb), 7.5% (4-8 Mb), 2.4% (8-16 Mb) and 1.2% (>16 Mb). 

(averaged for three periods). These results point towards ROH in NR being much more accumulated as 

short and medium regions than ROH in Holstein. Looking at 5 different cattle breeds, Marras et al. 

(2015) found that dual-purpose and beef cattle had fewer long ROH compared to dairy cattle. Highest 

frequency of short ROH was 66.6% and found in dual-purpose Italian Simmental. This coincides with 

Kim et al. (2013) who found higher frequency of long ROH in populations with small effective 

population size and intense selection. Also, Zhang et al. (2015b) observed that New Danish Red Cattle, 

which is a composite breed, displayed more small size ROH than other Danish cattle breeds. As NR is 

both a composite and a dual-purpose cattle breed with relatively large effective population size, 

finding high frequencies of short and medium ROH in this population is thus no surprise.  

However, selection scheme cannot explain all the differences in our results compared to other studies. 

Ferenčaković et al. (2013) looked at ROH distribution in NR and found mean number of ROH to be 80.8 

per animal. This is similar to 82.3 and 81.7 found in Holstein breeds by Forutan et al. (2018) and Marras 

et al. (2015), but considerably lower than number found in our study (which ranged 127.6-137.3 for 

three periods). This difference in results are probably due to differences in ROH detection. We have 

most likely detected many short ROH not found by Ferenčaković et al. (2013). For one, we used HD 

rather than medium density data. As Hillestad et al. (2017) showed, use of HD data detected more 

ROH and gave redistribution from long to short ROH. Also, unlike Ferenčaković et al. (2013), we were 

able to validate our choice of detection parameters. This way, we could set appropriate criteria and 

detect ROH that would have been omitted otherwise. Also, minimum length for ROH detection used 

in this study was 500 kb, while Ferenčaković et al. (2013) and Marras et al. (2015) used 1000. 0.5-1 Mb 

ROH is thus not detected. On the one hand, exclusion of short ROH such as these is understandable 

because chances are higher that they originate due to chance. Also, they rarely contribute considerably 

to total autozygosity in the genome (Forutan et al., 2018) On the other hand however, short ROH (> 3 

Mb) has been found to be enriched with deleterious variants (Zhang et al., 2015b), and detection of 

these contribute to our understanding of inbreeding in the genome. 
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Our results with many short ROH indicate little recent inbreeding in NR. Other studies has found 

significant changes in ROH after GS, Forutan et al. (2018) detecting a higher number of ROH and 

increased frequency of short and medium ROH, while Doublet et al. (2019) observed a significant 

increase in mean ROH length for French Holstein, (but not Montbéliarde and Normande) after GS. 

Although small, some increase in average length and average number of ROH can be discerned in our 

results. Considering that our estimates are based on only 3.5 years of data, development should be 

monitored closely in the future. It should be noted however that both for genome wide and 

chromosomal estimates, ∆F are well within recommended limits of 0.5-1% (FAO, 1998). However, our 

estimates found, that estimated genome wide ∆F can hide considerably higher rates on individual 

chromosomes. For instance, genome wide ∆FROH was 0.068% for GS period, but ∆F for same period was 

estimated at 0.338% on BTA 20. Using region-specific metrics will in other words give a more thorough 

control of inbreeding rates in the population. Although not done in this study, consideration of intra-

chromosomal regions might also help us to detect regions that need specific management (Kleinman-

Ruiz et al., 2016). These methods also hold great potential in selecting for genetic gain as, pointed out 

by Howrigan et al. (2011), it allows us to breed animals with similar genome wide inbreeding levels if 

these are not in same regions, or found to be in regions less detrimental than others.  

Large standard errors apply for both genome wide and chromosomal estimates obtained in this study. 

The reason is most likely lack of data. This is supported by observation that PTS/GS period displays the 

largest standard error. These estimates are based on only 4 years of data and consists of much fewer 

genotyped animals than for GS period (figure 2). Number of genotyped animals probably also 

influenced fluctuations in FROH and FGRM estimates, as these were noticeably large for initial period 

(figure 6) when number of genotypes is low. Another factor influencing standard errors is that 

regression was based on yearly averages rather than individual data points. This reduces effective 

number of degrees of freedom and power of statistical analysis. Regression on individual data was 

preformed to compare results from different statistical treatments. The largest differences were 

however found for PTS/GS period which has contributed to a lot of statistical noise in all analysis in 

this study. Ideally, source of this noise should be identified, and estimations repeated with statistical 

treatments that can buffer against it.  
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Conclusion 

An important aim of this study was to try and investigate trends in inbreeding after implementation of 

GS in NR. Results from FROH, FGRM and FPED revealed no significant increase in rates of inbreeding. 

Detection of many short ROH indicate little recent inbreeding in population and both genome wide 

and chromosomal inbreeding rates were well within recommended limit of 0.5-1%. Paucity of data due 

to few years having elapsed since GS implementation makes it necessary to repeat evaluations in some 

years’ time. Our study lay preliminary foundations for development of methods to manage genomic 

inbreeding in NR population. Comparison of inbreeding metrics indicate that FPED might underestimate 

inbreeding rate, but high correlations between FROH and FGRM indicate aptitude of both metrics when it 

comes to estimating inbreeding in NR.  

Optimization of ROH detection in HD data from NR enabled us to investigate trends in inbreeding and 

genetic diversity both genome wide and region specific. An abundance of short ROH was detected, and 

our detection was able to locate larger number of short ROH than previous studies.  Results show that 

using HD data and validating detection parameters highly influence ROH analysis. We found that ROH 

are a genomic feature that can provide much information regarding both inbreeding and genetic 

diversity. Looking at distribution, length and number of ROH in the genome gives us indications of 

demographic history as well as the intrinsic structures around genomic regions of interest. Region-

specific inbreeding holds great promise for more meticulous management of inbreeding in commercial 

breeding schemes.  
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