

Master Thesis 2020 ,30 ECTS
Faculty of Science and Techonology

Professor Cecilia Marie Futsæther

Automated volumetric delineation of
cancer tumors on PET/CT images using
3D convolutional neural network (V-Net)

Afreen Mirza

MSc Data Science

i

This page is intentionally left blank.

ii

Acknowledgments

Foremost, it gives me great pleasure in expressing my heartfelt gratitude to my ad-
visor, Prof. Cecilia Marie Futsæther, for her immense support, valuable feedback,
and help during this project.

Furthermore, I want to thank the scientists who participated in all the meetings
regarding my project and came with helpful feedback: Ms. Aurora Grøndahl and
Prof. Oliver Tomic.

I want to thank Mr. Yngve Mardal Moe for helping me throughout my thesis for
programmatical and technological guidance, which helped me in implementing the
project successfully.

Next, I am incredibly thankful to all my friends who helped me in this thesis and,
in particular, Ms. Bao Ngoc Huynh for her support at various stages of the project.

I thank my husband, Imroj Sheikh, who supported me through long days of writing
and helping throughout this period in completing the thesis.

I want to thank my parents for encouraging and supporting me through this thesis
and life in general.

Afreen Mirza

Ås, 2nd July, 2020

iii

iv

Abstract

Purpose
The process of delineation of tumors and malignant lymph nodes using medical
images is a fundamental part of radiotherapy planning. Still, this process is done
manually by radiologists. This process is time-consuming and suffers from inter-
observer variability. Hence, there is a need to fully automate this process of delin-
eation to reduce time consumption and inter-observer variability. Deep learning is
a division of artificial intelligence that has proven to be useful for the automatic
segmentation of medical images with the use of neural networks. We have to follow
a systematic procedure as these neural networks require a large number of para-
meters to be tuned during the delineation process, to guarantee reproducibility.
This thesis will present a complete theory of deep learning and a convolutional
neural network, for delineating 3D images. The project will use the deoxys frame-
work to implement the V-Net architecture for automatic delineation of gross tumor
volume and malignant lymph nodes in the head and neck region.

Methods
The project uses the deoxys framework developed by Ngoc Huynh Bao for imple-
menting a V-Net architecture for automatic delineation of 3D images to segment
cancer tumors and lymph nodes. This implementation includes designing a deep
learning model that is parametrized by a series of JSON configuration files that
contain the model hyperparameters. It also includes converting the dataset files
into the HDF5 file format which is done using an HDF5 Data-reader, which is an
accessible file format for storing massive data.

The dataset consists of medical images of 197 patients who have undergone treat-
ment at Oslo University Hospital, The Radium Hospital. The images are a com-
bination of contrast-enhanced CT scans and PET co-registered (i.e., contrast-
enhanced PET/CT scans) that are available for all patients. The dataset is di-
vided into a training set (142 patients), a validation set (15 patients), and a test
set (40 patients), without any stratification of tumor stages.

v

vi

All the models used in the project are based on the V-Net architecture used for
3D images. Dice loss, as well as binary Fβ loss, are introduced in the experiments.
For optimizing the loss, Adam optimizer is introduced. Models are tested only for
the standard convolutional layers. All the models were compared based on the
average Dice per image in the validation set. Only the highest performing models
using the PET/CT information were used to delineate the test set.

Results
The 3D convolutions have a higher memory footprint due to the use of 3D image
volumes. Hence, all the experiments were performed on the Orion cluster which
is an open-source platform hosted by NMBU and operated by CIGENE.

Orion is a remote server that helps a user to run experiments with large CPU
memory and GPU’s for fast processing speed and to meet the memory issues
with the use of a single GPU. The experiments were run with different parameter
combinations and with different set of filters in the downsampling and upsampling
layers of the model. The model that we used consisted of [32, 64, 128, 256, 512]
filters in the V-Net architecture. The Fβ loss was better than the Dice loss and
gave a good overall performance on the validation set. The highest performing
PET/CT model gave Fβ score of 0.6750 and Dice score of 0.6286 on the test set.
Tensorboard logger is used for automatic performance logging.

Conclusion

In this thesis, we implemented a V-Net model using the deoxys framework for
tumor segmentation of 3D PET/CT images of head and neck cancer patients.
This project makes use of 3D convolutions operations to take complete advantage
of volumetric information for multi-modality images. We successfully created an
HDF5 data-Reader for handling massive image data.

Previous studies have shown that deep learning can be very consistent, time-saving
in the medical image analysis field, and for the segmentation of tumors and ma-
lignant lymph nodes tissue in HNC patients. The 3D V-net model has shown
an adequate performance and can be a preferable choice over the 2D convolution
networks. However, our proposed model does not reach the expected Dice per-
formance, so we cannot conclude that the automatically generated segmentation
maps are similar to those produced by radiologists. Still, deep learning has a vast
potential, which can considerably change the way of delineation presently done by
radiologists and can serve as a second opinion in the delineation process.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Challenges with cancer treatment 2
1.1.2 Methods used for automated delineation of head and neck

cancer tumor . 2
1.1.3 Problem statement . 3

2 Deep learning 5
2.1 Deep Learning . 5

2.1.1 Introduction to Deep Learning 5
2.1.2 Artificial neural networks . 6
2.1.3 Multilayer perceptron . 6
2.1.4 Forward Propagation: Activating a neural network 8
2.1.5 Loss Functions . 9
2.1.6 Activation Functions . 10
2.1.7 Sigmoidal Activation Function 10
2.1.8 Softmax Activation Function 11
2.1.9 ReLU Activation Function 12
2.1.10 Convolution Neural networks 13
2.1.11 General model - Convolution neural network 13
2.1.12 Convolution Layer . 14
2.1.13 Downsampling operations 18
2.1.14 Upsampling Operation (Transposed Convolution) 20
2.1.15 Batch Normalization . 23
2.1.16 Fully Connected Layer . 24
2.1.17 Residual Connections . 24
2.1.18 Regularization . 26
2.1.19 Optimization . 28
2.1.20 Semantic Image segmentation using convolutional neural net-

work . 33
2.1.21 Architectures for semantic image segmentation 33

vii

viii CONTENTS

3 Code 41
3.1 The deoxys framework . 41

3.1.1 Architecture Loader . 41
3.1.2 Model . 42
3.1.3 Single and Multiple experiments 42

3.2 The HDF5 format . 44

4 Experimental Set-up 47
4.1 Experiments . 47

4.1.1 The Dataset . 47
4.1.2 Preprocessing . 51
4.1.3 Model Parameters . 52
4.1.4 Layer Type . 52
4.1.5 Loss Function . 52
4.1.6 Training Procedure . 52
4.1.7 Model Performance analysis 56

4.2 Tensorboard Profiling Outcomes . 56

5 Results 57
5.1 Initial Experiments . 57
5.2 Experiments on Orion cluster . 58

5.2.1 Model Performance on the validation set 59
5.2.2 Model performance on the test set 62

5.3 Tensorboard Profiling Outcomes . 64

6 Discussion 67
6.0.1 Architecture recommendation 67
6.0.2 Loss Functions recommendations 69
6.0.3 Further Recommendations 70
6.0.4 Performance comparison with 2D U-Net 71

7 Conclusion 73

CONTENTS ix

Appendices

A Experiment Structure 83

B Converting dataset into HDF5 format 89

C Orion Cluster Experiment 95

x CONTENTS

List of Figures

2.1 Different classifier approach using typical ML algorithm and DLC . 6

2.2 Illustration of a multilayer perceptron 7

2.3 Illustration of relationship between layers,optimizer and loss func-
tion of neural network . 8

2.4 Illustration of Sigmoidal activation function and its derivative . . . 11

2.5 Illustration Of the ReLU activation function and its derivative . . . 12

2.6 Illustration of LeNet-5 CNN architecture 14

2.7 Understanding the concept of local receptive field in CNN’s 15

2.8 Demonstration of 3D convolution operation 16

2.9 Effect of Zero-padding . 17

2.10 Illustration of 1D strided -convolution 18

2.11 Illustration of Max-Pooling operation 20

2.12 An illustration of different techniques of upsampling 21

2.13 Illustration of residual connection 25

2.14 Illustration of Dropout neural net model 27

2.15 Demonstration of choosing a direction of steepest descent by the
gradient . 30

2.16 Demonstration of stochastic gradient descent with momentum . . . 31

2.17 Illustration of semantic-wise CNN architecture 33

2.18 Illustration of U-net architecture 34

2.19 Illustration of V-Net architecture 36

3.1 Flowchart illustrating the components of Deoxys Framework 43

4.1 Demonstration of slices showing the image of patient-98 of the val-
idation set . 49

4.2 Demonstration of slices showing the image of patient-229 of the
validation set . 50

4.3 Illustration of Hounsfield windowing. 51

5.1 Illustration of Fβ performance . 58

xi

xii LIST OF FIGURES

5.2 Typical loss and Dice curves. 60
5.3 Slices showing the segmentation masks predicted by the PET/CT

model for patient 8. 63
5.4 Illustration of model performance using Tensorboard Profiling . . . 65

List of Tables

4.1 Total number of patients in each dataset used in the network. . . . 48
4.2 Demonstrating file structure of one group or fold used in the exper-

iment. 48
4.3 Overview of the V-Net architecture used in running experiment on

local machine. 53
4.4 Overview of the hyperparameters used for the V-Net architecture. . 54
4.5 Overview of the V-Net architecture used in the project. 55

5.1 Dice results on the validation set for the “loss” hyperparameter for
32 filters in the first layer. 61

5.2 Dice results on the validation set for the “loss” hyperparameter for
64 filters in the first layer. 61

5.3 Dice results on the validation set obtained for the dropout probab-
ility rate 0.3. 61

5.4 Dice results on the validation set obtained for the dropout probab-
ility rate 0.5. 61

5.5 Dice results on the validation set for the “windowing” hyperparameter. 61
5.6 The hyperparameters of the models that achieved highest Dice score

on the validation dataset. 62
5.7 Dice performance in the test set for the best models using multi-

modality images . 62

xiii

xiv LIST OF TABLES

Abbreviations

Abbreviation Meaning

CT Computed tomography

PET Positron emission tomography

MRI Magnetic resonance imaging

CPU Central proccessing unit

GPU Graphics processing unit

OAR Organs at risk

HNC Head and neck cancer

CTV Clinical target volume

GTV Gross tumor volume

ML Machine Learning

MLP Multilayer perceptron

DLC Deep Learning classifier

CNN Convolutional neural network

ReLU Rectified Linear Units

SGD Stochastic Gradient Descent

BN Batch normalization

TP and FP True positive and False positive

TN and FN True negative and False negative

TPR True positive rate

TNR True negative rate

PPV Positive predictive value

DSC Dice similarity coefficient

HDF5 Hierarchical data format

NMBU Norwegian University of Life Sciences

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Worldwide, cancer is the second leading cause of deaths, accounting for about 9.6
million deaths in 2018 [1]. There is a rise in cancer in many parts of the world due
to lack of early detection tools and screening programs that will help to detect the
disease early. Also, the high price associated with any cancer detection program
that helped many patients in wealthier countries is not readily available in other
parts of the world [2]. There is a need for creating different detection techniques
[2] that are less expensive and time-consuming which will help in curing cancer at
an early stage.

The most popular treatment for cancer, along with chemotherapy and surgery,
is radiotherapy, which is very cost-effective [3]. Radiotherapy is given to cancer
patients in the form of ionizing radiation that kills the cancer cells. Still, this
radiation dose can damage the healthy tissues around the cancer cells. One main
aim of health professionals in any cancer treatment planning is to identify the
boundary of cancer tumors such that the maximum radiation dose is given to
abnormal cells and hence minimize damage to healthy tissues [3]. Various image-
guided modalities are used for understanding the structural information [4], the
exact location of cancer tumors inside the patient body. Computed Tomography
(CT Scan), Positron Emission Tomography (PET scan), Magnetic Resonance Ima-
ging (MRI), and ultrasound are among the widely used imaging techniques in the
medical imaging field.

1

2 CHAPTER 1. INTRODUCTION

1.1.1 Challenges with cancer treatment

The medical imaging field generates a tremendous amount of image data, which is
segmented manually by an expert to delineate the boundary of the cancer tumor.
The total number of medical images generated by the radiology department in
every hospital is so vast, up to 3000 images [5], [6], which can be around 250 GB
of data [6], to analyze. This manual segmentation requires a considerable amount
of time.

In addition, the amount of data generated in the form of images is so vast that
processing and scaling them at a higher speed is not possible by a radiologist [6].
Therefore, there is a need for automation of this processing using some computer-
aided program such as Deep Learning [7], [8]. Deep learning can help perform this
processing more efficiently and in comparatively less time.

In medical image analysis, time plays a significant factor in the diagnosis and early
detection of cancer, which can save a patient’s life and provide them a longer life.
The new advancement in the field of deep learning and its frameworks has made
this processing more efficient, accurate, and fast. Also, the advanced, powerful
CPU (central processing unit) and GPU (graphics processing unit) processing
power is very helpful for radiologists for scaling their diagnostic results.

1.1.2 Methods used for automated delineation of head and
neck cancer tumor

Head and neck cancers are the type of cancer that originates in the larynx (voice
box), throat, lips, mouth, nose, and salivary glands [9]. These types of cancers
also contain malignant lymph nodes [10], which also have to be delineated by the
radiologists.

Radiologists delineate the boundary of the cancer tumors and specific organs at
risk (OAR), such that OAR receives a small dosage of radiation and can be protec-
ted from the ill effects of radiotherapy [11]. There are several imaging modalities
available to delineate tumors such as CT, MRI, and PET in HNC patients. Ac-
curate delineation of the tumor volume is a crucial task in HNC patients. If the
target volume is not appropriately delineated, it can cause damage to healthy
tissues [11]. Also, delineation process suffers from inter-intraobserver variability
(Multi-Institutional Target Delineation in Oncology, Hong et al.) [10], which arises
when different radiologists delineate different tumor boundaries.

1.1. MOTIVATION 3

There have been several efforts made to automate this process , which are being de-
veloped based on handcrafted approaches as well as machine learning approaches.
Semi-automatic graph-based algorithms such as graph-cut [13] and Markov ran-
dom field [14] , [15] implemented especially on PET images. In 2009 Yu et al. [16]
developed a machine learning decision tree-based algorithm based on local texture
features to segment HNC tumors. However, the performance accuracy of these
models is minimal.

To fully automate this delineation process, different deep learning approaches have
proven to be very beneficial. In this project, we use algorithms based on a convolu-
tional neural network that have demonstrated great success in different computer
vision tasks. For example, consider two deep learning studies done by Cardenas et
al., used for the delineation of malignant tissue for HNC patients [10], [17]. Both
studies used manually segmented clinical target volume (CTV)and gross tumor
volume (GTV) of CT images. They both used a different model one uses stacked
two-layer auto-encoder [17], and the other uses 3D CNN [10]. But the perform-
ance of both has shown a high Dice score ranging between 0.70 - 0.85. Many
other studies have demonstrated good performance of deep learning approaches in
delineating cancer tumors such as nodules in the lungs [18], [19]. Deep learning
approaches can be very beneficial for segmenting tumor volumes and organs at
risk and reduces the segmentation time by automating the process.

1.1.3 Problem statement

This project aims to provide an understanding of automation methods available
for the delineation of cancer tumors using deep learning techniques to the reader.

The first goal of the thesis is to introduce different concepts of deep learning for
the segmentation of images to the reader. Readers should have a basic understand-
ing of standard ’machine learning’ concepts and linear algebra (for understanding
vectors, matrices, matrix multiplication), also some knowledge of calculus (for
understanding differentiation used in some sections).

The second objective is to develop a deep learning framework using image seg-
mentation algorithms for automating the delineation process of cancer tumors.
The design of the project is chosen in such a way that it is reproducible and
created using a standardized method for performing different experiments. Also,
there is an automatic performance logging possible for different parameters and
results.

4 CHAPTER 1. INTRODUCTION

The final task is to test the developed framework for the automatic segmentation of
tumors and malignant lymph nodes. The input to the network used for delineation
will be 3D PET/CT images of head and neck cancer. At last, the benefit of the
3D model used for segmentation is compared with the 2D delineation framework
performance.

Chapter 2

Deep learning

2.1 Deep Learning

2.1.1 Introduction to Deep Learning

Deep learning is an artificial intelligence technique and a branch of machine learn-
ing [20], [21] which has gained popularity in various computer vision tasks such as
object detection, image classification, and semantic segmentation.

Different models consisting of several preprocessing layers [21], can quickly learn
patterns in data with the help of deep learning models, which is very useful in
identifying and quantifying different patterns in medical images.

Medical image segmentation works well with machine learning for segmenting the
healthier region as compared to the diseased area [20]. But a typical machine-
learning segmentation base model requires preprocessing steps (removing noise,
contrast enhancement), feature extraction techniques, and these extracted features
are fed to a machine-learning model.

On the contrary, a deep learning model does not require any preprocessing, seg-
mentation, or feature extraction [20]. Images can be processed directly. Due to
limitations on the size of input images, sometimes they are resized before being fed
to the model. DLC (Deep learning classifier) has the capability of avoiding any er-
rors resulting from feature vectors or imprecise segmentation, and hence they have
an excellent classification accuracy. Figure 2.1 represents the comparison between

5

6 CHAPTER 2. DEEP LEARNING

Figure 2.1: Different classifier approach using typical ML algorithm and DLC [20].

the two different approaches used for image segmentation ML (Machine learning)
and DLC. The presence of several hidden layers inside DLC networks makes them
computationally very intensive [20]. DLC works on hierarchical feature learning
and higher feature extraction and abstraction level, which has contributed to their
success in the field of artificial intelligence.

2.1.2 Artificial neural networks

This section will build an intuition on the components required for constructing a
neural network for semantic image segmentation.

2.1.3 Multilayer perceptron

A multilayer perceptron as shown in Figure 2.2 is a fully connected neural network
where each input unit connects to every node in succeeding layers [22]. It consists
of an input layer to receive the different input signals and an output layer that
predicts outputs based on the input provided, and in between these two layers,
there are one or more hidden layers, that are the actual computational engines of
the MLP (Multilayer perceptron). If such a network consists of more than one
hidden layer, it is known as a deep artificial neural network [8].

2.1. DEEP LEARNING 7

Figure 2.2: Illustration of a multilayer perceptron where a represents an activation
unit, w is the weight of a connection, n is the number of units in the layer, and b is
the bias. The input layer represents layer ’zero’, the hidden layer is layer ’one’, and

the output layer is layer ’two’. a
[1]
2 indicates the activation of unit two in layer one.

Similarly, w
[1]
1,1 describes the weight of the connection between layer zero and node one

in layer one [8].

Each perceptron unit in a given layer receives input from all the units in the
preceding layer. A net-input is calculated by matrix multiplication of input values
with weights, added with a bias. We compute the final output of the activation
unit by applying a non-linear differentiable activation function as described in
section 2.1.6, that introduces non-linearity to the MLP. This function should be
differentiable to update the weights during backpropagation as discussed in section
2.1.19 .

8 CHAPTER 2. DEEP LEARNING

Figure 2.3: Illustration of relationship between layers, optimizer and loss function of
neural network [7].

2.1.4 Forward Propagation: Activating a neural network

The forward propagation starts at the input layer, where the patterns of training
input data X are propagated through the network to generate predicted output Ŷ
as shown in Figure 2.3. Based on the output of the network, the loss-functions as
discussed in section 2.1.5 compares the prediction to the true targets generating a
loss value or error which we want to minimize. This loss value signifies how well
the model prediction matches the actual target Y [7]. At last, the optimizer uses
this loss value to update the network’s weight.

By referring Figure 2.2, the net-input Z(h) and activation A(h) of the hidden layer
h by arranging the weights, activations and bias (bh) [8] for an input containing n
training samples, can be expressed as :

Z(h) = W (h)A(input) + bh (2.1)

2.1. DEEP LEARNING 9

A(input) is a (n x p) matrix, and the matrix-matrix multiplication with weights
results in an (n x k) dimensional net-input matrix Z(h). Lastly, activation function
φ(.) is applied to each value in the net-input matrix to get the n x k activation
matrix A(h) for the next layer (here, the output layer) [8]:

A(h) = φ
(
Z(h)

)
(2.2)

Here, h subscript denotes hidden layer. Activation function φ(.) can be chosen
from all the available functions for neural-networks discussed in section 2.1.6.

2.1.5 Loss Functions

The loss function, also known as the objective function, plays an essential role
in any deep neural network. The loss function observes the predictions obtained
from the model output value and the true target value (the value the user wants
to achieve from the network) [23]. A score is calculated between them known as
the distance score, which signifies how well the network has performed for a given
problem. Any deep learning model aims to yield weight values that decrease the
loss during a repeated loop of training. The type of loss function chosen can have
a large effect on the quality of the model.

There are many loss functions available based on a given task: Squared error
loss for regression problems, Binary cross-entropy for a two-class classification
and categorical cross entropy for many class-classification problem [7]. We will
introduce cross entropy loss in this section which is very popular in classification
and segmentation tasks [24]. It measures the performance of a classification model
whose output is expressed as a probability between 0 and 1. The definition of cross
entropy loss for a multi-class classification where M > 2:

CE(y, ỹ) = −
M∑
j=1

yo,jlog(ỹo,j) (2.3)

where y is the actual data or the true distribution and ỹ is the distribution that
network supposes the data follows. yo,j is a binary indicator (0 or 1), if class label
’j’ is the correct classification for observation o, and ỹo,j is the predicted probability
of observation o is of class label ’j’.

If M = 2, the task is a binary classification, and the binary cross entropy is

10 CHAPTER 2. DEEP LEARNING

expressed as [24]:

CE(ỹ, y) = − 1

M

M∑
j=1

[
yjlog(ỹj) + (1− yj)log(1− ỹj)

]
(2.4)

2.1.6 Activation Functions

In neural networks, activation functions act as transfer functions that map the
output of one node to the input of the next node. It is essential to select the best
activation functions and understand the effect of the function and its derivative on
transforming the data. Three commonly used activation functions are described
below.

2.1.7 Sigmoidal Activation Function

The sigmoidal activation function can be expressed by Definition 2.1.1 and the
plot illustrating this function can be seen in Figure 2.4.

Definition 2.1.1 (Sigmoidal activation function [25]). The sigmodal activa-
tion function is given by

Sigmoid(z) =
1

1 + exp(−z)
. (2.5)

A good quality about the sigmoidal function is that it is differentiable across its
entire domain and, therefore, easy to compute . Also it squashes the input between
0 and 1, which makes it easier to calculate the output as probabilities. Despite this
advantage, the sigmoidal function has an issue of vanishing gradient problem that
comes from its derivative [8], [25]. The problem arises when the input magnitude
to the activation becomes sufficiently large causing the derivative of the function
to approach zero as seen in the Definition 2.1.1. This makes the rest of the network
to stop learning during backpropagation.

2.1. DEEP LEARNING 11

Figure 2.4: Illustration of the Sigmoidal activation function and its derivative [26]

2.1.8 Softmax Activation Function

Definition 2.1.2 (Softmax activation function [25]). The softmax activation
function is given by

Softmax(zi) =
exp(zi)∑K
k=1 exp(zk)

. (2.6)

where z is an input vector to the output layer (if there are ten output units,
there are ten elements in vector z). i are the indices of the output units, so i
= 1, 2, ..., K.

The softmax activation function normalizes the input value into a vector of values
that follows a probability distribution, whose total sums up to one. Usually, all
other activations take scalars as input, whereas softmax accepts vectors. Since the
outputs are in the range of 0 and 1, it is helpful in accommodating many classes
or dimensions in the neural network making it an ideal activation function for
multi-class classification problems [25].

12 CHAPTER 2. DEEP LEARNING

Figure 2.5: Illustration Of ReLU activation function and its derivative [26]

.

2.1.9 ReLU Activation Function

Definition 2.1.3 (ReLU Activation function [27]). The ReLU activation is
given by

ReLU(z) = max(0, z). (2.7)

This activation function became very popular due to several properties. Firstly,
ReLU solves the problem of vanishing gradient as the derivative of ReLU, as de-
scribed by Definition 2.1.3, is zero for negative inputs and one for positive inputs as
illustrated in Figure 2.5. Secondly, it helps in efficient convergence by outputting
more significant update steps. Also, it does not involve any exponential, making it
very suitable to compute. All these properties makes it the most used nonlinearity
in deep neural networks, [7], [24], [27].

2.1. DEEP LEARNING 13

2.1.10 Convolution Neural networks

Convolution neural networks (CNN) are the most famous deep neural network
that have shown excellent performance in the field of image classification and
semantic segmentation [28]. These networks are capable of extracting localized
spatial features that are multi-scaled and are used for performing image analysis.
They create a hierarchical structure of features that are formed by the combination
of low-level features in a layer-wise pattern to generate high -level features. This
can be better understood with images, where low level features like edges and
blobs generated from the preceding layer build high-level features like the shape
of the different objects present in that image [8]. Also, CNN uses the idea of
weight sharing which significantly reduces the need for training a large number
of parameters and hence improving the model generalization. Less number of
parameters gives easier model training and the model is not prone to over-fitting.

These CNN models have many qualities. Firstly, they have built-in feature extrac-
tion in the classification stage and use the learning procedure. Secondly, it is very
easy to implement large networks on CNN’s as compare to using other artificial
neural networks [28], [29].

2.1.11 General model - Convolution neural network

CNN’s are gaining popularity because of their quality of image classification based
on contextual information [30]. This information describes the shape of an image
which produces a better result as compare to pixel-based classification. A key
feature discriminating CNN’s and ANN’s is the convolution layer, where the con-
volution operation is used instead of matrix multiplication for computing neuron
activations. The activations can pass from one layer to the next layer, and the
prediction error is backpropagated in the network to update the parameters.

A typical CNN architecture developed by LeCun et al. was named LeNet5, shown
in the Figure 2.6 [30]. The architecture consists of convolution layers that generate
feature maps after convolution operation discussed in section 2.1.12. The feature
maps are then downsampled using pooling layers as discussed in section 2.1.13.
There is series a of such convolution and pooling layers. The final layer is a fully
connected layer as discussed in section 2.1.16 which maps the final output to the
desired targets.

14 CHAPTER 2. DEEP LEARNING

Figure 2.6: Illustration of LeNet-5 CNN architecture used for handwritten character
recognition. An image of a character passes through a series of convolution and pooling
layers and finally classified using fully connected layers. Here, 16 @ 10 x 10 means 16
filters of size 10 x 10 [30].

2.1.12 Convolution Layer

This layer is the main building block for any convnet (convolution network) ar-
chitecture. This layer consists of a group of filters that has property of learning
different features of an image. These filters are small and spatially oriented along
width and height but also have the capability of extending towards full depth in
case of 3D input volume [31], [32].

Every element of an activation map comes from a local patch of pixels of the input
image known as a local receptive field (Figure 2.7). Receptive field is known as
the filter size [8]. The same weights are used across all the patches of the input
image. This connection of filters to an input image is local in space along width
and height but the filters extend fully to the entire depth of input volume. An
example of 3D convolutional operation is described in Figure 2.8 [31].

These filters consists of trainable parameters known as weights of a convolution
layer [8], [31]. A single convolution layer comprises of multiple such filters where
each filter is small in size as compare to the input volume, but has the same depth
or the same number of channels as input provided to the layer. These filters are
slid spatially over the height, and the width of the input image and dot products
between input and filter are computed at each position spatially during a forward
move in the network. This sliding of filters produces a two-dimensional activation
map that represents the outputs produced by filters at each spatial position. The
network will learn from these filters which get activated when they come across
several visual features such as edges of some orientation or color blotch on the first

2.1. DEEP LEARNING 15

Figure 2.7: Understanding the concept of local receptive field in CNN’s. The red
box represents the input image of volume (32 x 32 x 3). The blue box represents the
convolutional layer where each neuron is connected spatially to a local region of the
input volume but across the full depth (i.e., all color channels, 3 in this case). There
are five neurons on the depth (the number of filters users want to use), all looking to
the same region in the input [31].

layer, which may extend to advanced features like entire honeycomb or wheel-like
patterns on higher layers of the network [31].

The response of the filters at the different spatial locations of the input is presented
in the feature maps [8]. They also act as a feature identifier where the presence of
a given feature indicates a strong response provided by the filter in the receptive
field that the filters are observing. These responses can be edges or color changes
or anything inside the image that the network assumes to be useful. Choosing the
number of filters for a given convolution layer is entirely a design choice by a user
designing the interface. The number of filters allows the network to learn more
features but also increment the total number of parameters to train. The feature
maps outputted by each filter of a given convolution layer are stacked together
as a final output and served as input to the next layer of the network. A feature
hierarchy is built in any CNN network where it contains multiple convolution
layers. During training, filters in the initial layers classify simple features, and the
subsequent filters learn complex features of the network. 1

1Deep learning convolution operation consists of filters which are 3D structures and combina-
tion of multiple kernels (2D array of weights) stacked together. Kernel is a term used in 2D and
filters in 3D.

16 CHAPTER 2. DEEP LEARNING

Figure 2.8: Demonstration of 3D convolution operation: An arbitrary 3D RGB image
of size H x W x 3. Filters of size 5x5x3 or 3x3x3 are used for convolving input image.
A stride of 1 is used for convolving the input by filters and padding = 0. These filters
outputs are stacked together to generate a final output which will become an input to
the next layer of CNN [33].

The number of trainable parameters of a convolutional layer with n filters, calcu-
lated as (k1 ∗ k2 ∗ C + 1) ∗ n where k1 is the height, k2 is the width, and C is
the depth of each filter. The shape of the output of the convolutional layer is con-
trolled by three hyper-parameters: depth, stride, and padding [31]. The depth of
the output determines the number of filters used in the convolutional layer, where
each filter is trying to find some new feature in the input image.

Stride helps in controlling the step size with which the filter convolved over the
input image [8], [34]. Consider setting the stride to 1, the filters will then move by
one pixel at a time. If stride is set to 2 (or more than 2 which is very uncommon in
practice) the filter will slide over the image by two pixels horizontally and vertically
at a time. If the stride becomes equal to the filter size then every pixel in the image
will be used once by each filter. This will cause fewer border pixels participating
in convolutions as compared to pixels closer to the center [31]. It will eventually
cause loss of information contained by the border pixels.

Increasing the stride decreases the output size when passed through a large number
of convolution layers causing loss of information. For preserving the information
contained at the border pixels and output spatial dimensions, input images are
padded with zeros along the borders which is known as Zero-Padding [8], [34].

2.1. DEEP LEARNING 17

Figure 2.9: Illustration of Zero-Padding with 1D convolution. Input size is n = 5,
zero-padding p = 1, stride = 1 and kernel (1, 0, -1) of size m = 3. The output size is
calculated by convolution output formula as shown in eqation 2.1.12 : ((5 + 2 * 1 - 3)
/ 1) +1 = 5. The output (-2, 2, 1, 2, 1) size after convolution is same as input size,
this type of padding operation is known as same padding. The green line represents
the convolution operation when the kernel is slided over the input and the output is
generated with a stride of 1. For example when kernel (1, 0, -1) is slided over input
region (0, 1 ,2) the output value obtained is -2. The kernel is then move to next set of
pixels by a stride of 1 [31].

The effect of zero padding can be seen in the Figure 2.9.

Calculating the size of the convolution output

The size of the output obtained after a convolution operation, can be calculated
by obtaining the total frequency with which the filter has moved along the input.
Assuming an input vector of size n and size of filter as m. The output size resulted
from convolution operation with padding p and stride s can be calculated using
the below formula [8]:

output =

⌊
n+ 2 ∗ p−m

s

⌋
+ 1 (2.8)

18 CHAPTER 2. DEEP LEARNING

Figure 2.10: Illustration of 1D strided-convolution with zero-padding. The input size
n = 5, zero-padding p = 1, stride = 2 and kernel (1, 0, -1) of size m = 3. The final
output size is calculated by convolution output formula as described in equation 2.1.12
: ((5 + 2 * 1 - 3) / 2) +1 = 3. The output (-2, 1, 1) size after convolution is smaller
as input size, this type of padding operation is known as valid padding. The green line
represents the convolution operation when the kernel is slided over the input and the
output is generated with a stride of 2. For example when kernel (1, 0, -1) is slided over
input region (0, 1 ,2) the output value obtained is -2. Then the kernel is moved 2 pixels
ahead as stride is 2 and perform the convolutional operation so obtain the next output
i.e. 1 [31].

2.1.13 Downsampling operations

The filters or the feature detectors in a convolutional neural network should have
a large receptive field so that the network can recognize the feature that spans
more in the input. With small filter sizes the receptive field increases slowly. If
we want to increase this field, the number of layers in the network also increases
which in turn increases the number of trainable parameters of the network. It
is therefore very important to find some techniques that increase the receptive
field without increasing the number of parameters in the network. The technique
that works best for this is down-sampling operations [8] ,[24]. There are several
ways to down-sample the input in the CNN network such as strided convolutions,
Max-pooling and Average-Pooling.

Strided convolution generally refers to convolutions operations having stride
greater than 1. Figure 2.10 shows the operation of 1D strided convolution with a
stride of 2 and convolutions on an input of size 5 , with padding 1 and receptive
field (1, 0, -1) size is 3. In such strided convolution using stride as 2, the dimension
of the output feature map is downsampled and the size of output becomes 3 [31].

2.1. DEEP LEARNING 19

Pooling Layer

Downsampling operations prove to be very beneficial in convolutional neural net-
works. As discussed above, Strided convolutions are easy to implement, but there
are more efficient methods available for downsampling such as Max-pooling and
Average-Pooling [35], [8].

Max-pooling layer in CNN performs max-pooling operation where windows select
from the input feature maps, and the maximum value of each channel is yield as
output [36]. This operation is similar to convolution conceptually, except for the
fact that in convolution, the local patches from the input are transform using a
linear transformation (using the convolutional kernel) [31].

In contrast, in pooling, these patches are processed using a max- tensor operation
that is hardcoded. It is a kind of action where there is a dimension reduction or
downsampling of the input, reducing the number of feature map coefficients that
need to be processed by the network. This layer consist of no trainable parameters
(Figure 2.11). There are plenty of other pooling operations available [24], and those
will not be discussed here, as strided convolution and max-pooling are the methods
commonly used for downsampling. Max-pooling generally gives better results as
compare to strides. Strides are used because of their easy implementation and
simplicity [7], [35].

20 CHAPTER 2. DEEP LEARNING

Figure 2.11: A max-pooling operation with filter size 2x2 and stride 2 is used during
convolution operation. The Max-pooling operation down-sampled 4x4 input to a 2x2
output matrix. Each element in the output corresponds to the largest value in the
corresponding quadrant of the input , for example consider the red box entries (1, 1, 5,
6) in the input, the max pooling operation will select the maximum entry (6) and store
this value in the output [31].

2.1.14 Upsampling Operation (Transposed Convolution)

Neural networks, used for generating images, involve upsampling of the generated
feature maps from lower resolution to higher resolution [7], [37]. This upsampling
plays a significant role in semantic segmentation networks where the user wants
to obtain the output segmented image to have the same dimension as the input
image. The Figure 2.12 illustrates few methods of upsampling the feature maps
that do not require any trainable parameters and are only dependent on the factor
of upsampling and content in the feature map.

The other option of upsampling is known as Transpose convolution or fractionally
strided convolution, that does not require any trainable parameters [37] ,[38]. In
this type of convolution, the upsampled feature map are generated by a periodic
shuffling of several intermediate feature maps that are created by applying multiple
convolution operations on the input feature maps.

Equation 2.9 illustrates the convolution operation where a 3 x 3 input matrix is
flattened into a column vector of size (9,1) denoted by the vector [x1, x2, · · · , x9].
The kernel (w1, w2, w3, w4) is of size 2 x 2 , rearranged in the form of convolution
matrix C (4,9). Each row of C determines a convolution operation. Now, a
matrix multiplication operation of convolution matrix C (4,9) with column input

2.1. DEEP LEARNING 21

(a)

(b)

Figure 2.12: An illustration of different techniques of upsampling. Figure (a) Down-
sampling the input using the max pooling operation similar to shown in figure Figure 2.11
and corresponding upsampling of input using Max unpooling where the de-pooled area
of the output is filled with the maximum element position in the max-pooling opera-
tion and remaining elements are set to zero. (b) In nearest neighbours upsampling, the
nearest neighbor goes to the pooled output by filling in the de-pooled area with the
current element of the input and in bed of nails technique the input element is arranged
in the upper left corner of the de-pooling area, and other elements are set to zero. Both
these techniques do not require any trainable parameters CNN:convolutionallayer.

22 CHAPTER 2. DEEP LEARNING

vector (9,1) generates an output (z1, z2, z3, z4) of shape (4,1). The output is
then rearranged as the final output matrix of size (2 x 2). The input (3 x 3) is
downsampled to the output of size (2 x 2) by convolution operation.

C


w1 w2 0 w3 w4 0 0 0 0

0 w2 0 w3 w4 0 0 0

0 0 0 w1 w2 0 w3 w4 0

0 0 0 0 w1 w2 0 w3 w4





x1

x2

x3

x4

x5

x6

x7

x8

x9


=


z1

z2

z3

z4

 (2.9)

Equation 2.10 illustrates a transpose convolution operation where an input of size
(2 x 2) will be upsampled to (3 x 3) using transpose matrix CT . Here a kernel
with weights (c1, c2, c3, c4) of size (2 x 2) is arranged as a transpose convolution
matrix CT (9,4). The input size is (2 x 2), where (z1, z2, z3, z4) denotes the entries
of input arranged as a column vector (4,1). The matrix multiplication between
input vector and CT will obtain an output vector (9,1) denoted as (x1, x2, · · · , x9)
,which is rearranged to obtain the final output matrix of size (3 x 3).

CT



c1 0 0 0

c2 c1 0 0

0 c2 0 0

c3 0 c1 0

c4 c3 c2 c1

0 c4 0 c2

0 0 c3 0

0 0 c4 c3

0 0 0 c4




z1

z2

z3

z4

 =



x1

x2

x3

x4

x5

x6

x7

x8

x9


(2.10)

The main thing to keep in mind while using transpose convolution is the connectiv-
ity pattern used in CT . There is an association between the input and the output,
which is handled in the backward direction as compared to standard convolution
matrix C (one-to-many relationship as compared to many-to-one in regular con-
volution operation) [38], also we can not take convolution matrix C and use the

2.1. DEEP LEARNING 23

transpose as transpose convolution matrix. That is the reason the entries of C
and CT are different.

2.1.15 Batch Normalization

Batch Normalization (BN) is a widely selected procedure that helps in fast and
stable training of deep neural networks [39]. The effectiveness of why the batch
normalization works is not entirely understood, but still, it has been used in most
of the modern neural network architectures [40]. This technique is introduced by
Ioffe and Szegedy [39] for accelerating the training process of deep neural network
by standardizing the inputs for each layer and therefore reducing the internal
covariance shift.

Reduction of Internal covariance shift [39] is a normalization step that helps in
fixing means and standard deviation of inputs before feeding it to the next layer.
This is achieved by subtracting the batch mean from input and dividing by the
batch standard deviation. It will help a model to have high training speed as the
output is linearly transformed, having zero mean and unit standard deviation. BN
is applied after convolution and before introducing non-linearity in the layer [41].

Assuming the output of a hidden layer X is a matrix of dimension (N,D), where
N is the number of input samples present in the batch and D is the number of
hidden units, the first step is normalizing X as shown below :

X̃ =
X − µb√
σ2
B + ε

(2.11)

where µb is the mean of the input batch, σ2
B is the standard deviation and ε is a

constant added to the standard deviation for numerical stability to avoid division
by 0. As it is clear from the above equation, µb and σ2

B are differentiable, making

X̃ also differentiable. The linear transformation of y is given by:

y = γX̃ + β = BNγβ(X) (2.12)

Then we refer to this transform as Batch Normalizing Transform represented by
BNγβ(X). γ and β are learnable parameters of the network. The BN transform
can be added to a network for transforming the output of activation layer.

24 CHAPTER 2. DEEP LEARNING

There are many advantages of using batch normalization. One among them is
tackling the problem of exploding or vanishing gradient. The reason for exploding
gradients in the deep neural network is due to the high learning rate that makes
the network stuck in local minimum [39]. BN solves this issue of vanishing gradient
by transforming input layers into a form that ensures zero mean and unit variance.
Also, it makes the network more robust as we get layers that are not affected by
the scale of the parameters and hence solving the issue of exploding gradient.

2.1.16 Fully Connected Layer

The convolutional neural network used for classification problems consists of a
series of convolution, activation, and pooling layers that are followed by a couple
of fully connected layers, as shown in the Figure 2.6. A set of feature maps
are created by a series of convolution and pooling operations. The feature maps
describe information about the high-level features present in an input image (out
of a collection of learned features that the network considers useful for separating
them into different classes available in the datasets). The fully connected layers
used the feature maps and flattened them into a vector of class probabilities [8],
[31].

There are two main downsides of using a fully connected layer. Firstly, a fully
connected layer has (n x m) parameters, which will generate a large number of
parameters for most layers, leading to high memory usage and overfitting [42].
Therefore networks using a fully connected layer are not feasible for image pro-
cessing tasks.

Secondly, all spatial information about the location of the feature is lost due to
the use of dense layers. It is not a concern if the purpose is to predict a class
label for an entire image. However, for the network that is performing semantic
segmentation, this will create an issue, as the aim of the model will be pixel-wise
dense predictions, i.e., to predict a class label for each pixel of the image.

2.1.17 Residual Connections

The depth (number of layers) of a CNN network has a significant impact on its
performance [43]. More layers are usually more beneficial as it enables a system to
create a rich feature hierarchy. The problem with going deeper in a network is that
the gradients have to propagate through more number of layers while training, and

2.1. DEEP LEARNING 25

that will lead to a vanishing gradient problem. The vanishing gradient problem
can be decreased with the use of batch normalization but can not be entirely solved
by it.

Generally, increasing the depth of a network should improve the accuracy, but in
some cases, deep networks have resulted in worse performance than their counter-
part shallower CNN’s. For example, consider a shallow CNN performing at some
level. Let us increase the model depth by k layers. There is an expectation that
the deeper network will perform better than the shallow system as it learns iden-
tity mapping while training. However, in practice, this does not happen, as the
deeper network faces difficulties in learning identity mappings, which leads to the
problem of degradation. To solve this, He et al. proposed the concept of residual
connections, also known as short skip-connections [44].

Figure 2.13: Illustration of residual connection. A weight layer denotes a layer that
modifies the input (for example, a convolution layer). A residual connection, z, skips
the weight layers and adds the unmodified information to the output of weight layers
[44].

Residual-connections allow information to skip one or more layers in the CNN
network. The Figure 2.13 illustrates how residual connections implemented using
identity mapping. The output feature map obtained from the skip connections is
added to the output feature maps resulted from the stacked convolutional layers
to generate a final output y, as shown in the below equation :

26 CHAPTER 2. DEEP LEARNING

y = f (res) (z) + z (2.13)

Here, f (res) is the residual function and z is the input which is being fed to the
model. There is one problem related to the formula stated above. It will not
operate if output dimension changes after a convolution operation, either with the
use of strides or with a change in the number of channels. Instead, an approximate
identity map is learned by the network which will modify the Equation (2.13) as,

y = f (res) (z) + id(z) (2.14)

here, id is a function that approximates the identity function. It is known as iden-
tity map if the output dimension is equal as input and it permits in constructing
deeper CNN’s network.

2.1.18 Regularization

Regularization in deep neural network [7], refers to a set of different methods
that help in lowering the complexity of the model while training, such that the
model generalizes better and hence prevent over-fitting. It also improves model
performance when the model is run on unseen data.

One technique of reducing over-fitting is to reduce the complexity of the network
by making the weights take only smaller values making their distribution more
regular. This technique is known as weight regularization, which is achieved by
adding a cost associated with having larger weights to the loss function. One such
method of transforming the loss function is known as L2 regularisation, also known
as weight decay in neural networks. Mathematically it is equivalent to making the
gradient small [24], [7].

The loss function in L2 regularisation is modified as shown below,

J̃ = J + α||W ||22, (2.15)

Here, J is the original loss function, J̃ is the modified loss function, α is the
parameter describing the amount of regularisation, ||W ||22 is the sum of squared
weights. Both together are known as the regularization penalty term added to
the cost function for encouraging lower weights and hence introducing stability for
input [7].

2.1. DEEP LEARNING 27

One more popular method for regularizing a deep neural network is known as early
stopping [24]. An issue while training neural networks is the choice of the specified
number of iterations to use for training, where a large number of iterations can
cause overfitting, and less can cause underfitting. Early stopping therefore, can
help in stopping the optimization early so that the network has very little time to
overfit the training data .

Finally, we will discuss the most effective and most commonly used method for
regularization: Dropout [45]. Dropout helps in preventing overfitting and provides
an efficient way of exponentially combining different neural network architectures.
The term ’Dropout’ introduced by Srivastava et al., is an averaging technique based
on randomly dropping some units (visible and hidden) during training, which may
be input data points to a layer or activation’s from the previous layer. These
units are dropped temporarily from the network along with all their incoming and
outgoing connections.

During every iteration of training, a fraction of hidden units are randomly dropped
with a probability as shown in Figure 2.14, The dropout probability pdrop(or the
keep probability pkeep= 1-pdrop)[8], which is known as dropout rate is usually set
between 0.2 and 0.5. Weights of the remaining neuron are re-scaled for accounting
for the missing units [7], [24].

Figure 2.14: Illustration of Dropout neural net model, Left :A neural network with
two hidden layers. Right :A neural net obtained using Dropout. The circle with ”X”
denotes the neurons or nodes of the network that are randomly dropped during training
[45]. The dropout rate chosen to be 0.5.

28 CHAPTER 2. DEEP LEARNING

For example, during training, consider for a given input, a layer is giving an output
vector [0.3, 0.4, 1.3, 1.8, 0.4]. After applying dropout to this layer, the output will
have some zero entries at random, which will produce an output vector [0.3, 0,
1.3, 1.8, 0]. This dropout helps the network to learn redundant representations of
data.

During testing, no units are dropped, and all the layer’s output values are scaled
down by a dropout rate factor to compensate for the fact that more units are
active as compared to the training phase [7]. For example in Figure 2.14 consider,
that during training if we drop 50% of the units in the output i.e. the dropout
rate is 0.5 then at test time, we will scale down the output by the dropout rate.
So the layer output will become 0.5 * layer output.

2.1.19 Optimization

Gradient Descent

One of the most popular algorithms used for performing optimization is Gradient
Descent and a standard method of optimizing neural networks. This a way to find
the global-local minimum of the objective function, which helps in exploring the
weights and biases that result in lowering the loss and giving the most accurate
predictions [8], [24].

This derivative of the loss function is known as the gradient . In every iteration,
steps are taken in a direction opposite to gradient descent where the step size in
determined by the learning rate and slope of the gradient. This process continues
until the metric used to estimate performance reaches a predetermined value, or
there is no performance improvement in the network.

Using the concept of Gradient Descent weights are updated by taking steps in the
opposite direction of the gradient (∇J(w(t))) of our cost function J(w(t)).

The weight update using gradient descent :

wt+1 = wt + ∆wt (2.16)

Here, the weight change ∆wt is calculated as the negative gradient multiplied by
the learning rate η:

∆wt = −η(t)∇J(w(t)) (2.17)

2.1. DEEP LEARNING 29

Here, w(t) are the weight parameters at time step t. J is the loss we want to
minimise.

The above equation causes problems of using gradient descent with large datasets
in neural networks. Calculating the derivative of the cost function and looping
through the entire dataset for each step of gradient descent requires high compu-
tational power and is very expensive.

There is a solution to solve the above problem, where gradient ∇J is replaced with
a random variable ∇Jrand with the following property

E[∇Jrandom] = ∇J. (2.18)

Here, E represents the expected value of Jrandom which is equivalent to the loss.
The algorithm used for finding the gradient of the loss using a random variable
∇Jrandom is called stochastic gradient descent or SGD [46], [24], which is the
most popular optimization algorithm used in deep neural networks. Generally, we
choose ∇Jrandom to be equal to

∇Jrandom =
∑

x,yi∈C(i)
∇J(w(t);xi,yi) (2.19)

This algorithm performs parameter update on each training example xi and their
labels yi such that the gradient of the loss ∇Jrandom is now chosen from Ci, which
is a small random subset of the training set.

This random subset of data is generally chosen with a without replacement tech-
nique. To understand this, if during an iteration one data-point is selected from
the whole dataset, then this data-point will not be chosen in the following iteration.

One drawback of using SGD is that it does not converge fast [24], [46]. An os-
cillating behavior of the gradient occurs due to choosing the direction of steepest
descent as shown in Figure 2.15, which can be overcome by using other algorithms
such as SGD with momentum and Adam [47]. There are more algorithms present,
but we will discuss the above two.

Momentum Gradient Descent

Momentum gradient descent is one method of reducing the oscillations in SGD
[49]. Momentum can be defined as the average of the gradients, which is then use

30 CHAPTER 2. DEEP LEARNING

Figure 2.15: Demonstration of choosing a direction of steepest descent by the gradient
that lead to oscillations and hence reduction in convergence speed. The orange path
shows the direction followed by the SGD optimizer with too large learning rate. The
ellipses are level curves of quadratic loss [48].

to update the weight of the network. This can be expressed as follows:

V t = βV t−1 + η∇J(wt);xi,yi) (2.20)

Here, β ∈ (0, 1) acts as a hyperparameter, which effectively replaces the gradient
by the one that has averaged over multiple past gradients. V is known as the
momentum (its typical value is about 0.9). The value of V incorporates past
gradients similar to how a ball rolling down the loss function landscape integrates
over past forces.

And the final update of weights using momentum gradient descent can be calcu-
lated as:

wt+1 = wt − V t (2.21)

The notion behind momentum is understood by considering the optimization pro-
cess as a small ball rolling down in the direction of the loss curve. If the ball
has sufficient momentum, it will not be stuck at the ravine or the local minimum
and can reach the global minimum. In this situation, momentum implemented by

2.1. DEEP LEARNING 31

Figure 2.16: Demonstration of stochastic gradient descent with momentum. The
orange arrows corresponds to the path followed by the SGD and the purple arrows
correspond do the path followed by momentum gradient descent.The ellipses are level
curves of quadratic loss [48].

moving the ball at each step is based on the current slope (current acceleration)
value as well as on the current velocity (resulted from past acceleration) [7], [49].
This is shown in Figure 2.16.

Adaptive Moment Estimation(Adam)

Adam is an algorithm [47], [49], used to enhance momentum gradient descent and
invented by Kingma and Ba. This method calculates the adaptive learning rate
for each parameter from estimates of the first and second moments of the gradient.
This algorithm is represented as:

m(t) = (1− β1)∇Jrand(w(t)) + β1m
(t−1) (2.22)

v(t) = (1− β2)
(
∇Jrand(w(t))

)2
+ β2v

(t−1) (2.23)

32 CHAPTER 2. DEEP LEARNING

Here, m(t) is the estimates of the first moment (the mean)and v(t) is the second
moment (the uncentered variance) of the gradients. Also, β1, β2 ∈ (0, 1) are the
hyper-parameters which helps in controlling the decay rates of the moving averages
(m(t) and v(t)). ∇Jrand(w(t)) is the gradient with respect to weight parameters at
time step t.

The v term in Adam differentiates it with momentum gradient descent. The
thought behind using this term is that if a parameter is facing large updates than
the previous iterations, then we can decrease the learning rate. This reduction
in learning rates is generally related to numerical instabilities. The illustration of
this phenomenon is represented in Figure 2.15.

The moving averages (m(t) and v(t)) are initialised as zero, leading vectors m and
v biased towards zero during the initial time steps, and mainly when the decay
rates are low (i.e., β1, β2 are approaching one).

To fix this initialization issue, Kingma and Ba created the terms m(t) and v(t):

m̂(t) =
m(t)

1− βt1
(2.24)

v̂(t) =
v(t)

1− βt2
(2.25)

The weight parameters are finally updated using the Adam algorithm as shown
below:

w(t+1) = w(t) − η(t) m̂(t+1)

√
v̂(t+1) + ε

(2.26)

Here, η is the learning rate, and ε is used to give numerical stability [47], hence to
prevent division by zero.

The advantage of using Adam is that it is extremely fast [47]. But the drawbacks
associated with using Adam is that the generalization properties are not good as
compare to SGD and momentum SGD [50] while training different models. So, the
model trained using Adam will sometimes perform poorly on unseen data that is
not used while training the model. But it is still in use as an optimizer, as it saves
time during training and helps the user in modifying other model design related
tasks such as hyperparameter tuning.

2.1. DEEP LEARNING 33

2.1.20 Semantic Image segmentation using convolutional
neural network

Semantic image segmentation has become one of the essential applications in im-
age processing and computer vision domain, which is widely used in the medical
imaging field [51]. It is a method of grouping parts of the image together that
belong to the same object class.

A typical semantic segmentation network consists of an encoder-decoder architec-
ture shown in Figure 5.3, use to delineate the boundary of the tumor in a brain
MRI image [52]. The higher-level features are produced by the encoder using con-
volution, and these features are interpreted by the decoder using the class targets.
The encoder uses max-pooling layers as discussed in section 2.1.13 to decrease the
spatial dimension gradually, and the decoder will slowly recover the spatial di-
mension and object details using transpose convolution operation as discussed in
section 2.1.14. There are several such encoder-decoder architectures available for
semantic segmentation, but we will discuss the two popular designs mainly used
in medical image analysis: U-Net [53] and V-Net [23].

Figure 2.17: Illustration of semantic-wise CNN architecture used for segmenting brain
tumor from a brain MRI image [52].

2.1.21 Architectures for semantic image segmentation

U-Net

U-Net is a well known encoder-decoder architecture proposed by Ronneberger et al.
[54], which is used for semantic image segmentation. It consists of the contracting

34 CHAPTER 2. DEEP LEARNING

path and an expansive path, which are applied during image object detection.
Figure 2.18 is an illustration of the U-net architecture. A limited amount of image
data in any medical image analysis task is a big challenge for better performance.
U-Net helps in utilizing the annotated data samples more efficiently and hence
reduces the need for a larger dataset [53].

Figure 2.18: Illustration of U-net architecture (example for 32x32 pixels in the lowest
resolution). Blue boxes represent feature map with multiple channels. The number of
channels is written on top of each box. The dimension of image is written at the lower
left edge of the box. White boxes represent copied feature maps. The arrows denote the
different operations [54]. The blue arrow signifies the convolution operation with apply-
ing ReLU non-linearity, gray arrow describes the skip connections for concatenating the
features from the contracting path to the expansive path for preserving the image pixel
information. Red arrow is for max-pooling operations , green arrow for up-convolution
operations and, finally the light blue arrow is the final 1 x 1 convolution operation.

The contracting path follows the architecture of a convolutional network, having
repeated operation of 3x3 convolutions (unpadded convolutions). Non-linearity
can be applied using a non-linear activation function, mainly a rectified linear unit

2.1. DEEP LEARNING 35

(ReLU) max(0,x) as discussed in section 2.1.3 [27]. For further downsampling of
the image, max-pooling operation with stride two is executed on the output feature
map. Each step of down-sampling doubles the number of feature channels.

In the decoding or expansive path, 2x2 up convolutions are applied that decrease
the number of available feature channels to half. This path hence up-samples the
image dimension.

Max-pooling in the contraction path helps in achieving high translation invari-
ance with small shifts spatially in the input image. Several layers of max -pooling
causes a loss of spatial resolution of the feature maps. There is a high-frequency
information loss around the borders of the image, which is not beneficial for any
segmentation task where boundary delineation plays a vital role. This loss is
reduced by using long -distance skip connections introduced in the U-net architec-
ture[53]. Long-distance skip connections signify that cropped feature maps from
the contracting path are concatenated correspondingly in the respective feature
maps of the expansive path to preserve the border pixel information as shown in
Figure 2.18 by the gray arrows, which is then followed by a ReLU.

In the last layer, a 1x1 convolution is applied to map all the components in the
feature vector to the desired class labels. There are 23 convolutional layers in total
used in the model [53], [54]. This architecture can help in processing 2D image
data.

V-Net

Medical image analysis mostly uses data that consist of three dimensional image
data. We will illustrate one such architecture used for volumetric image segment-
ation termed as V-Net [23].

In the compression path, every convolution step uses a volumetric kernel of size
5x5x3 voxels. The resolution of the data is reduced by performing convolution
with a kernel of size 2x2x2 voxels with a stride of 2 as shown in Figure 2.19. The
size of the resulting feature map after this operation is halved as the feature is
extracted by only considering nonoverlapping 2x2x2 volumes patches.

The advantage of replacing pooling layers with convolutions is that it saves memory
during training.Also, there will be no switching in mapping the output of pooling
layers back to their inputs during back-propagation . It can be better understood
while applying transpose-convolution in place of unpooling operation. During

36 CHAPTER 2. DEEP LEARNING

each stage in the V-net compression path in Section 2.1.21, the number of feature
channels is doubled. Non-linearities like ReLU [27] are applied through the whole
network.

The decompression path of the network in Section 2.1.21, includes extracting fea-
tures and expanding the spatial support of the low-resolution feature maps to
gather and assemble the useful information to produce an output with two-channel
volumetric segmentation. At each stage, a transpose convolution is applied to in-
crease the size of inputs. This operation is followed by one or three convolutional
layers with half the kernels compare to the previous layer. The residual function
is learned similarly to the left part of the network.

Figure 2.19: Illustration of V-Net architecture which uses 3D image data and perform
volumetric convolutions. The contracting path involves 3D convolutions with applying
ReLU nonlinearity and downsampling the image using max pooling. The orange arrow
are used for concatenating the image border pixel information from the contracting path
to the expansive path accounting for any information loss. The de-convolutions operation
up-samples the image and finally softmax activation function maps the output with the
desired target [23].

2.1. DEEP LEARNING 37

The last convolutional layer of the network contains a kernel size of 1x1x1, which
computes the two feature maps, producing an output with the same size as in-
put volume. The output feature maps can be transformed into segments of the
foreground and background pixels by applying the soft-max activation function,
with one voxel at a time. The features from the encoder path are forwarded to the
decoder using the skip connections represented in the Figure 2.19 by the horizontal
orange arrows. These skip connections will help in gathering fine details that can
be lost in the compression path, improving the quality of the segmented mask’s
final prediction. These connections also help in improving the convergence time
in medical image analysis, which mostly uses 3D image data [23].

Performance Metrics for image segmentation architectures

Image semantic segmentation algorithms generally face the problem of dealing with
class imbalance as compare to other image analysis algorithms [8]. Class imbalance
occurs where the number of background pixels are comparatively higher than the
pixels in the infected area in a network dealing with images.

Usually, the performance metric chosen in such segmentation models is accuracy,
which is defined as the fraction of pixels correctly classified. However, accuracy is
not an ideal measure of network performance in the segmentation of images. To
explain this, consider an image having 9000 pixels in the background class and
1000 pixels in the infected tissue class. In this case, a network that classify all
pixels as background pixels will achieve an accuracy of 90% and ultimately failing
in the task of identifying the infected area class pixels.

Due to this, we are introducing several other performance metrics for evaluating
network performance, which are designed for binary classification problems. Con-
sider a binary classification task of cancer detection in medical image analysis;
pixels in an image are grouped as cancerous (positive class) and non-cancerous
(negative class). It is essential to understand four terms that are a fundamental
part of any performance metric, and they are true positives, false positives, true
negatives, false negatives. Refer definitions 2.1.4 - 2.1.6 for a complete understand-
ing of these terms:

38 CHAPTER 2. DEEP LEARNING

Definition 2.1.4 (True positives). The number of true positives (TP) is the
number of pixels that belongs to the positive class that are classified correctly
as a member of that class.

In our case, TP is the count of instances that were correctly classified as
cancerous (positive class).

Definition 2.1.5 (True negatives). The number of true negatives (TN) is the
number of pixels that belongs to the negative class and are correctly classified
as members of that class.

In our case, TN are the instances that were correctly classified as non -
cancerous (negative class).

Definition 2.1.6 (False negatives). The number of false negatives (FN) is the
number of pixels that belongs to the positive class that are classified wrongly
as members of the negative class .

In our case FN are the instances that are wrongly classified as non-cancerous.

Definition 2.1.7 (False positives). The false positives (FP) are the number
of pixels that belongs to the negative class, but they are classified wrongly as
members of the positive class.

In our case, FP are the instances that were classified wrongly as cancerous
(positive class) but belongs to a non-cancerous (negative class).

Sensitivity and Specificity are among the two very common performance metrics
used in image segmentation tasks [55]. These are defined using Definition 2.1.8
and Definition 2.1.9.

Definition 2.1.8 (Sensitivity). The sensitivity also known as recall is the
true positive rate (TPR) of a segmentation model. It measures the proportion
of positive pixels, that are correctly classified as positives by the network.
Mathematically, it is represented as,

TPR =
TP

TP + FN
(2.27)

here, TP is the number of true positives and FN is the number of false neg-
atives.

2.1. DEEP LEARNING 39

Definition 2.1.9 (Specificity). The specificity is the true negative rate (TNR)
of a segmentation model. It measures the proportion of the negatives that
are correctly classified as negatives by the network. Mathematically, it is
represented as,

TNR =
TN

TN + FP
(2.28)

here, TN is the number of true negatives and FP is the number of false
positives.

One other performance metrics that is used to measure performance of segmenta-
tion model is termed as precision, or positive predictive value (PPV) [55], which
is explained by the Definition 2.1.10.

Definition 2.1.10 (Positive predictive value). The positive predictive value
(PPV), or precision, is a metric, computed as the proportion of the total
number of positive samples that a network predicts correctly divided by the
total number of predicted positive samples.

In our case, it defines the possibility of a positively predicted pixel that belongs
to the positive class (cancerous). Mathematically, it is expressed as,

PPV =
TP

TP + FP
, (2.29)

here, TP is the number of true positives and FP is the number of false posit-
ives.

Dice similiarity coefficient (DSC) also known as, overlap indices, Dice score, F -
score and F1-score is a very popular metric used in segmentation tasks [56], [55].

Definition 2.1.11 (Dice score). The Dice score (DSC) is computed as the
harmonic mean of the precision (PPV) and the sensitivity (TPR). Mathem-
atically, DSC is expressed as,

DSC =
2

1
TPR

+ 1
PPV

=
2TP

2TP + FN + FP
, (2.30)

here, TP is the number of true positives, FN is the number of false negatives
and FP is the number of false positives.

The value of the Dice score ranges between 0 and 1 [56].

40 CHAPTER 2. DEEP LEARNING

The Fβ score is first introduced in [57], is also a metric used in image segmentation
tasks, which is defined in Definition 2.1.12.

Definition 2.1.12 (Fβ score). The Fβ score is calculated as the weighted
harmonic mean of the precision (PPV) and the sensitivity (TPR). Mathem-
atically, it is expressed as,

Fβ =
(β2 + 1)× PPV × TPR

(β2 × PPV) + TPR
=

(1 + β2)TP

(1 + β2)TP + β2FN + FP
, (2.31)

here, TP is the number of true positives, FN is the number of false negatives
and FP is the number of false positives.

β is the configurable parameter [57] that assigns relative weights to precision and
recall. For example, if β has a low value of 0.5, it will assign more weight to PPV
and less to TPR, however a high value of β such as 2.0 will assign more weight
TPR and less weight to PPV .

Chapter 3

Code

3.1 The deoxys framework

The framework used for implementing volumetric delineation of cancer tumors of
PET/CT images using V-Net is named deoxys and is developed by Ngoc Huynh
Bao. The framework is build using Python version 3.7 and is based on Keras with
Tensorflow 2.0.0 backend. Detailed information about the installation and usage of
the framework is available on the GitHub page https://github.com/huynhngoc.

The framework aims to implement any model using CNN. Model creation is the
first task of any segmentation procedure, here the model refers to any CNN model
like sequential CNN, U-Net CNN, or customized CNN like V-Net. As we are deal-
ing with 3D image segmentation, a V-Net, as discussed in section 2.1.21, is created,
which is the first modification in the framework according to the requirement. The
other change done on the original structure is the making of HDF5 (Hierarchical
Data Format) Reader. The architecture with the modification is shown in the
Figure 3.1.

3.1.1 Architecture Loader

The first change in the original framework is done by creating a V-Net architec-
ture capable of handling 3D images for delineation, as shown in the Figure 3.1,
section Architecture loader. The user can decide the architecture of the model by
choosing the different network hyperparameters such as layers, activation and loss

41

https://github.com/huynhngoc

42 CHAPTER 3. CODE

function, optimizers, regularisers, performance metric and callbacks, which all act
as a wrapper for Keras model. The main task of the loader is to be able to create
a Keras model from a configurable JSON file that contains the architecture of the
model as described in Appendix A.

3.1.2 Model

This module should be a wrapper of the Keras model. Firstly, It contains all the
necessary methods of a keras model such as loading a model, saving of model to a
file, fitting the model with data, predicting the desired target and hence evaluating
the performance of the current state of the model. Secondly, It also contains a
data reader and preprocessor used if any preprocessing is needed in the data.

Data Reader

The task of the data reader is to provide input data required for training and
evaluating a model. This data reader should split the input data into three sets:
training, validation, and test. These datasets are wrapped into a Data generator.
Since we are dealing with 3D medical image data, which is very large and causes
memory issues, a Python generator is used to deal with memory related prob-
lems by feeding small parts of data to the network. This framework enables the
use of large data by storing them into HDF5 format, as discussed in section 3.2.
Also, it transforms the data into HDF5 form before feeding it to the data reader.
The second modification implemented in the framework is by creating an HDF5
Data Reader, which processes data from an HDF5 file. The general structure and
transformation of data into the HDF5 file format is described in Appendix B.

3.1.3 Single and Multiple experiments

The single experiment performs one experiment at a time. It has the capability of
logging the complete performance of a given model by using the Keras callbacks,
saving model at disk at a given checkpoint. Users can visualize the performance
and predictions resulting from the model and also obtain the best model of each
performance metric based on log files. However, in multiple experiments, several
single experiments execute simultaneously.

3.1. THE DEOXYS FRAMEWORK 43
A

rc
hi

te
ct

ur
e

Lo
ad

er

M
O

D
EL

D
AT

A
G
EN

ER
AT

O
R

PR
E-

PR
O
C
ES

SO
R

Si
ng

le
 E

xp
er

im
en

t

T
ra
in
in
g
	m
o
d
e
l

sa
vi
n
g
	a
n
d
	p
re
d
ic
ti
n
g

m
o
d
e
l	
ch
e
ck
p
o
in
ts

e
va
lu
a
ti
n
g
	a
n
d
	p
re
d
ic
ti
n
g

te
st
	d
a
ta

P
e
rf
o
rm
a
n
ce
	L
o
g
g
e
r

S
e
le
ct
in
g
	b
e
st
	m
o
d
e
l,

T
ra
in
in
g
	a
n
d

p
re
d
ic
ti
n
g
	a
ll
	d
a
ta

u
si
n
g
	t
h
e
	b
e
st
	m
o
d
e
l

D
AT

A
SE

T

K
ER

A
S

 M
O

D
EL

H
D
F5

D
AT

A
SE

T

H
D

F5
 D

AT
A

R
EA

D
ER

N
o
rm
a
li
ze
r

A
ct
iv
a
ti
o
n

R
e
g
u
la
ri
ze
r

C
re

at
e

3D
-C

N
N

 (V
-n

et
)

ar
ch

ite
ct

ur
e

fr
om

m
od

el
 p

ar
am

et
er

s

LO
SS

LA
YE

R
S

M
od

el
 P

ar
am

et
er

s

LA
YE

R
S

M
ul

tip
le

 E
xp

er
im

en
ts

C
al

lb
ac

ks
O
pt
im
iz
er

In
it
ia
li
ze
r

F
ig
u
re

3
.1
:

F
lo

w
ch

ar
t

il
lu

st
ra

ti
n

g
th

e
d

iff
er

en
t

m
o
d
u

le
s

of
T
h
e
d
eo
xy
s
F
ra
m
ew

o
rk

th
at

ar
e

u
se

d
to

p
er

fo
rm

ex
p

er
im

en
ts

o
n

H
ea

d
an

d
n

ec
k

ca
n

ce
r

d
at

a
se

t.
T

h
e

d
iff

er
en

t
m

o
d

u
le

s
an

d
th

ei
r

ro
le

in
th

e
d

el
in

ea
ti

on
p

ro
ce

ss
is

ex
p

la
in

ed
in

se
ct

io
n

3.
1.

44 CHAPTER 3. CODE

3.2 The HDF5 format

It is essential to keep the dataset in the project organized when dealing with deep
learning problems with large datasets. In the project, we are using the HDF5 file
format (or Hierarchical Data Format) [58]. For a deeper understanding of this
file format and how to use it with Python, refer Python and HDF5: Unlocking
Scientific Data by Collette [59].

The implementation of V-Net as discussed in section 2.1.21, using the deoxys
framework needs images that should be converted into HDF5 format, which is the
main requirement of using this framework.

HDF5 file format, known as Hierarchical Data Format, is a versatile file format
with the capability of representing complex data objects and a wide variety of
metadata [59]. It stores the data in binary form with no limit on the size of the
image file. It can handle different types of data, making it very flexible and efficient
for dealing with high volume and complex data.

One main component of HDF5 files is datasets, which are data arrays similar to
NumPy arrays that can be stored on disk directly or in compressed form. Different
methods of compression are available in the h5py library like chunked compression.
The syntax for slicing and extracting elements at a particular index can be easily
used with datasets similar to that performed on NumPy arrays, removing the
need for reading and writing a complete array every time from disk. An example
of creating a dataset in h5py file is described in Example 3.2.1

Example 3.2.1 (HDF5 datasets).

1 import h5py
2 import numpy as np
3

4 arr=np.ones ((5,2,3))
5 with h5py.File('h5py_test.h5','w') as hf:
6 hf.create_dataset('dataset ',data = arr)
7

8

9 with h5py.File("h5py_test.h5", "r") as hf:
10 array_slice = hf["dataset"][0 ,:2 ,:1]

Here we can see that we have created a h5py.File("h5py_test.h5", "w")
file which is being opened using the append mode (represented by ’w’) and
created a dataset inside this file with data from a multidimensional array. We

3.2. THE HDF5 FORMAT 45

can read the contents of this dataset from h5py.File("h5py_test.h5", "r")
in read mode (represented by ’r’).

Other main component of any HDF5 file are Groups as described in Example 3.2.2
,which are containers similar to folders in any file system. They can store others
groups and datasets. These groups are responsible for building up the hierarchical
structure of any HDF5 file, creating objects that are nicely organized as groups
and subgroups.

Example 3.2.2 (HDF5 Groups).

1 import h5py
2 import numpy as np
3

4 arr1= np.ones ((5,3,2))
5 arr2 = np.ones ((4,2,3))
6

7 #create groups
8 with h5py.File('test_h5py.h5','w') as hf:
9 group = hf.create_group('group ')
10 data_array1 = group.create_dataset('data_array1 ', data =

arr1)
11 data_array2 = group.create_dataset('data_array2 ',data = arr2

)
12

13 data_array1 [...] = arr1
14 data_array2 [...] = arr2
15

16 with h5py.File('test_h5py.h5','r') as hf:
17 array_slice = hf['group/data_array1 '][0,:2,:]

In the above example we created a group in h5py.File("h5py_test.h5",
"w") and then created two datasets within that group with data from the
multidimensional arrays arr1 and arr2. Then we read this data from h5py
.File("h5py_test.h5", "r"). Data at any index can be read using slicing
similar to Numpy arrays.

46 CHAPTER 3. CODE

Chapter 4

Experimental Set-up

4.1 Experiments

4.1.1 The Dataset

The data provided for implementing the deoxys framework contains 3D CT/PET
images and segmentation masks made by an expert of 197 patients that have
gone through treatment at the Oslo university Hospital, the Radium Hospital.
The goal of this project is to delineate affected lymph nodes and gross tumor
volume (GTV). The model used the union of the ground truth and segmentation
masks where multiple delineations existed. Each image was cropped in 3D to
reduce the class imbalance. The final 3D images contained between 0.02% and
32% tumor/lymphatic node voxels.

Data has initially been in Matlab Format. Before proceeding with any modific-
ation in data, it is converted into an HDF5 format. The images consist of two
channels CT and PET. These images are stacked over each other such that 3D
image dimensions after stacking become: width x height x depth x channel, where
Channel = 2 (CT and PET). Users should not confuse with RGB (Red, Blue,
Green) channels of color images with these channels provided, and they are the
different values of the image. The targets (segmentation masks) were formed by
the union of the tumors and lymphatic nodes for each patient, if multiple delin-
eations are present in the image. The one thing to keep in mind while creating
different groups for an HDF5 file is that images and targets should have the same
dimension.

47

48 CHAPTER 4. EXPERIMENTAL SET-UP

Table 4.1: Total number of patients in each dataset used in the network.

Dataset No.of patients

training 142

validation 15

testing 40

In the experiment, we created three datasets in which the data is divided, which
is a need for any deep-learning task. The first dataset is the training dataset
used to train the network, and the second is a validation set used for parameter
selection, avoiding overfitting, and tuning the parameters of the model, also used
for comparing models. The final dataset is the test set, use to assess the equality
of the final model. A summary of the different datasets and their sizes is given in
the table 4.1.

The delineation process uses the two-class classification for the dataset, one is
healthy tissue, and the other is affected tissue. Any voxel in the head and neck
images belongs to the affected tissue class if it is delineated as either tumorous or
lymph nodes. The structure of each dataset file used in the project is as follows:
Three groups in the file root ”training” contain 142 patients, ”test” that comprises
of 40 patients and a ”validation” that includes 15 patients, without stratification
based on tumor stages. Some image slices of patients 98 and 229 from validation set
is described in Figure 4.1 and Figure 4.2. Each group here contains three dataset
information: images, masks, and patient id’s. The summary of the structure of
groups and datasets used is described in the table 4.2.

Table 4.2: Demonstrating file structure of one group or fold used in the experiment.

Dataset Shape Datatype Contents

images [n patients, x, y, z, c] float32 The input images.

masks [n patients, x, y, z, m] float32 The segmentation masks.

patient id [n patients] uint16 The patient ID number

Table 4.2 describes the complete overview of the structure of the HDF5 files used in the exper-
iments. n images are the total number of images in the particular dataset, x is the number of
pixels in the x direction, y is the number of pixels in the y direction, z is the number of pixels in
the z direction, We have three directions of pixels as the experiment is dealing with 3D images. c
is the number of input channels used (for PET/CT this is 2) and m is the number of segmentation
masks.

4.1. EXPERIMENTS 49

(a)

(b)

Figure 4.1: Demonstration of image slices showing (a) CT slices and (b) PET slices of
head and neck cancer patient 98 of the validation set describing the gross tumor volume
marked with yellow color.

50 CHAPTER 4. EXPERIMENTAL SET-UP

(a)

(b)

Figure 4.2: Demonstration of image slices showing (a) CT slices and (b) PET slices of
head and neck cancer patient 229 of the validation set describing the gross tumor volume
marked with yellow color.

4.1. EXPERIMENTS 51

Figure 4.3: Illustration of Hounsfield windowing preproccessing on head and neck CT
image. The left image represents a CT image slice with full dynamic range, whereas the
right image shows the same CT image slice but with a reduced dynamic range.

4.1.2 Preprocessing

Two types of preprocessing was performed on the 3D head and neck cancer dataset
in our experiments. Firstly, all the 3D PET and CT images have been resampled
to isotropic voxels of size 1x1x1 mm3. Also, PET image values are modified to
standardized uptake value (SUV) with normalized body weight by an expert [60].

Secondly, Thresholding was used for reducing the dynamic range of the CT chan-
nel known as Hounsfield windowing. Possible combinations of preprocessing (i.e.,
PET/CT, PET/CT + windowing) were performed on the 3D image dataset in
the experiments. The parameters of Hounsfield windowing like window center and
window width used in the experiments were set after consulting with a radiologist.
The window size was set to surround most of the soft tissue dynamic range, and
the window centers were chosen nearly equal to the average and median tumor
value. The parameters used for windowing are illustrated in the Table 4.4. An
illustration of Hounsfield windowing applied on a head and neck cancer patient is
shown in the Figure 4.3.

52 CHAPTER 4. EXPERIMENTAL SET-UP

4.1.3 Model Parameters

Architecture

Several experiments were run using the V-Net architecture [23] , as discussed in
the Section 2.1.21 with the same number of layers and convolution per layer. The
number of filters chosen respectively for each downsampling and upsampling layer
for the architecture are [32, 64, 128, 256, 512]. The architecture summary is
described in the table 4.5. All the hyper-parameters used during experiments are
listed in the table 4.4.

4.1.4 Layer Type

The layers used for performing experiments are termed as convolutional layers as
discussed in section 2.1.12. These layers consist of kernels of size 3 x 3 x 3 which
are followed by a ReLU nonlinearity as discussed in section 2.1.3 and finally batch
normalization as discussed in section 2.1.15.

4.1.5 Loss Function

Two different type of loss functions are used while performing experiments. The
detailed information about these losses is discussed in section 2.1.5. The loss
function used for the experiments is the Dice loss as stated in section 2.1.11 , the
Fβ with with β = 2.

4.1.6 Training Procedure

Initial experiments are performed on a local machine with processor - Intel(R)
Core™ i5-8250U CPU and 8 GB RAM. Operations started with a 4-layer V-net
architecture [23], with only one filter in the first convolutional layer. Then we
moved to 5-layer V-Net architecture with one filter in the first layer. The sum-
mary of the 5-layer V-Net architecture used is described in the table 4.3. Since our
dataset contains 3D images, running experiments with a higher number of filters
and layers required more memory and hence needed a system with higher compu-
tational power. Still, we tried to increase the number of filters in the first layer to

4.1. EXPERIMENTS 53

Table 4.3: Overview of the V-Net architecture used in running experiment on local
machine.

Name Type Input No. output channels

Conv 1 Convolutional Input image 1

MaxPool 1 Max Pooling Conv 1 1

Conv 2 Convolutional MaxPool 1 1

MaxPool 2 Max Pooling Conv 2 1

Conv 3 Convolutional MaxPool 2 2

MaxPool 3 Max Pooling Conv 3 2

Conv 4 Convolutional MaxPool 3 2

UpConv 1 Upconvolutional Conv 4 2

UpConv 2 Convolutional UpConv 1, Conv 3 2

Upconv 3 Convolutional Upconv 2 ,Conv 2 1

Conv 5 Convolutional Conv 1, Upconv 3 1

The Convolutional and upconvolutional layers are standard 3D convolutional
layers.

4. The operation leads to memory-related issues, which signifies that computation
of such a V-net model for delineating 3D images needs a system with high memory
capacity and fast processing speed.

The experiments are then performed using the Orion computer cluster, an open-
source platform hosted by NMBU (Norwegian University of Life Sciences) and
operated by CIGENE. The Orion cluster is a remote server that helps a user to
run experiments with large CPU memory and GPU’s for fast processing speed. It
is a Linux operating system that needs SSH (Secure Shell) command to build a
secure encrypted connection with the remote Orion cluster. Firstly, a user should
establish a remote connection using Visual studio code and entering the credential
provided by the Orion team. As soon as a remote connection builds, users get
access to a home directory where one can edit scripts, manage different files, and
submit different jobs to the cluster environment. The next step is to have all
the source code, the head and neck dataset, and JSON configuration files of our
experiment set up in the Visual studio code application. Every single experiment
a single GPU.

This information is defined in the slurm script before submitting the jobs. The

54 CHAPTER 4. EXPERIMENTAL SET-UP

Table 4.4: Overview of the hyperparameters used for the V-Net architecture.

Hyperparameter Value(s)

Learning rate [0.0001, 0.00001]

Optimiser Adam

Nonlinearity ReLU

Normalizer Batch Normalisation

Initializer Normally distributed He

Dropout 3D regularizer Dropout rate: 0.3 and 0.5

Layer type Convolutional layers

Window center 70 HU

Window width 200 HU

Loss [F1, F2, F4]

Batch size 2

Number of epochs 100− 300

Iterations between checkpoints 10

slurm script, also known as the job scheduler application, is used to get exclusive
access to the cluster resources. A user should also create a Singularity container
that contains all the necessary libraries, software, scientific workflows needed while
running our experiment. The deoxys framework, as discussed in the section 3.1, is
also installed using a Singularity container. Finally, a slurm script is submitted to
the Orion cluster to run the experiments on a server machine. Sample slurm script
and singularity container are described in the Appendix C. The complete code
used for performing experiments, all the parameters including JSON configuration
files, slurm script, and singularity container, can be found on the GitHub page:
(https://github.com/afreenmirza3010/msc-cluster-code/). Different Orion-
related queries and steps can be found on the Orion cluster GitLab page: (https:
//gitlab.com/cigene/computational/orion-support/-/wikis/home). 1

1Visual studio code is a code editor software that is available for free, with several features like
debugging, code compiling , code refactoring, and embedded git. Also, it has a remote extension
that helps users to open a remote folder on any remote machine. In our experiments, the remote
device is the Orion cluster.

https://github.com/afreenmirza3010/msc-cluster-code/
https://gitlab.com/cigene/computational/orion-support/-/wikis/home
https://gitlab.com/cigene/computational/orion-support/-/wikis/home

4.1. EXPERIMENTS 55

Table 4.5: Overview of the V-Net architecture used in the project.

Name Type Input No. output channels

Conv 1 Convolutional Input image 32

Conv 2 Convolutional Conv 1 32

MaxPool 1 Max Pooling Conv 2 32

Conv 3 Convolutional MaxPool 1 64

Conv 4 Convolutional Conv 3 64

MaxPool 2 Max Pooling Conv 4 64

Conv 5 Convolutional MaxPool 2 128

Conv 6 Convolutional Conv 5 128

MaxPool 3 Max Pooling Conv 6 128

Conv 7 Convolutional MaxPool 3 256

Conv 8 Convolutional Conv 7 256

MaxPool 4 Max Pooling Conv 8 256

Conv 9 Convolutional MaxPool 4 512

Conv 10 Convolutional Conv 9 512

UpConv 1 Upconvolutional Conv10 256

Conv 11 Convolutional UpConv 1, Conv 8 256

Conv 12 Convolutional Conv 11 256

UpConv 2 Upconvolutional Conv12 128

Conv 13 Convolutional UpConv 2, Conv 6 128

Conv 14 Convolutional Conv 13 128

UpConv 3 Upconvolutional Conv14 64

Conv 15 Convolutional UpConv 3, Conv 4 64

Conv 16 Convolutional Conv 15 64

UpConv 4 Upconvolutional Conv14 32

Conv 17 Convolutional UpConv 4, Conv 2 32

Conv 18 Convolutional Conv 17 32

Conv 19 Convolutional Conv 18 1

The Convolutional and upconvolutional layers are standard 3D convolutional
layers.

56 CHAPTER 4. EXPERIMENTAL SET-UP

4.1.7 Model Performance analysis

The average Dice score value as described in section 2.1.11 is used to analyze
and compare performance between different models. The model training is done
using the most suitable hyperparameters combination, and the dice score on the
validation set is recorded. The best model is then evaluated based on model
performance on the validation set. The model with highest average Dice is used
to run the final experiment on the test data to get the model’s performance on
unseen data.

4.2 Tensorboard Profiling Outcomes

Deep learning algorithms are very memory-intensive, especially when we are deal-
ing with 3D images. Thus, it is essential to quantify the performance of the deep
learning algorithm to ensure that we are running the most optimized version of
the model. Hence we need a system to track Keras model performance. For
this purpose, Tensorflow Profiler is used, which is embedded within Tensorboard.
Profiling the model performance can be understood as a tool that helps a user
understand the hardware resource consumption, i.e., the time and memory of the
various operations in the model. Profiling allows users to find the bottlenecks in
the model that produces delays. Hence, a user can resolve the bottlenecks and
make the model works faster.

In our experiments, we used Tensorboard profiling to understand the bottlenecks
that are causing delays in the performance. Generally, In any CNN model, it
has been found that the max pooling operations took more time during the back-
propagation step, hence causing delays. As suggested by Milletari et al., the solu-
tion for this is to replace max-pooling layers with convolution layers that can make
the computation faster with smaller memory footprint during training [23]. There
will be no mapping of the pooling layer’s output back to their input as needed for
backpropagation.

Chapter 5

Results

5.1 Initial Experiments

Initial experiments on the 3D head and neck datasets were performed on a local
machine using a 5-layer V-net architecture as described in section 4.1.6 . The
performance is measured using the Dice score as discussed in section 2.1.11 using
the Fβ values of each trained model. Summary statistics like training Dice score,
training loss, validation Dice score, and validation binary Fβ loss are recorded and
stored in the log files for evaluating the performance of a given model with all the
hyperparameters provided.

The plot obtained for the Dice score of the 5-layer V-net model ran for 30 epochs
is described below Figure 5.1. We were only able to run 30 epochs with a model
described in Table 4.3 due to memory issues. The Dice score obtained is not
satisfactory. Still, these values were increasing with epochs, which led us to run
more experiments on the same dataset on a machine with high computational
power and memory available.

57

58 CHAPTER 5. RESULTS

Figure 5.1: Illustration of Fβ performance based on Dice score on training and valida-
tion set. The blue line shows the Dice score for training dataset. The orange line shows
the Dice score for validation dataset. The model ran for 600 iterations (30 epochs).
From the curve it is clear that both training and validation Dice score are increasing
with iterations.

5.2 Experiments on Orion cluster

Various experiments were performed on the 3D head and neck data set using a
V-Net architecture described in section 4.1.6 using the Orion cluster.

The first thing that we started experimenting with our model was with the number
of filters. The first set of filters for each upsampling and downsampling convolu-
tional layers used in the experiment was [16, 32, 64, 128, 256], respectively. Then
we updated the number of filters and used [32, 64, 128, 256, 512] in the final ex-
periment. Increasing the number of filters also increased the training time for the
model. Still, it has given a adequate boost in the model performance. The final
architecture summary is described in the table 4.5.

5.2. EXPERIMENTS ON ORION CLUSTER 59

5.2.1 Model Performance on the validation set

The Fβ loss and Dice score curves obtain as the result of our delineation method
using [32, 64, 128, 256, 512] filters in the upsampling and downsampling layers
are shown in Figure 5.2. All the experiments used Adam optimizer and a learning
rate of 0.0001.

A total of 100 epochs were run on the Orion cluster to obtain the results. The
model performance is measured, and all the checkpoint weights are tested and
stored in logs files that are in CSV(Comma-Separated Value) format. Model check-
points are added after every 10 epochs to capture the details of all the parameters
used by the model. The highest performing model was at epoch 98, obtained
from the log files. A combination of PET/CT channels is considered in all the
experiments.

We also ran experiments on the dataset by increasing the number of filters in the
first layer. We used [64, 128, 256, 512, 1024] set of filters in the downsampling and
upsampling layers of the V-Net architecture. The summary statistics obtained is
described in Table 5.2.

Table 5.1 describes the summary statistics of the effects of the “loss” hyperpara-
meter on model performance. The Fβ loss for all values of beta are calculated and
F2 had higher performance than Dice with respect to all performance summary
statistics.

As suggested by Erden et al. [61], Dropout regularization as discussed in section
2.1.18 seems to enhance performance of CNN models. Hence, we applied dropout
with probability 0.3 and 0.5 to the V-Net architecture. The statistics summary
obtained from the experiments is discussed in Table 5.3 and 5.4. The dropout
probability rate 0.5 did not perform well on our dataset.

The details of all the hyperparameters used in the V-net architecture that provided
the best overall performance on the validation set (15 patients) in our experiment
are described in the Table 5.6. The highest performing model was found at epoch
98.

60 CHAPTER 5. RESULTS

(a)

(b)

Figure 5.2: (a)Dice curves and (b) The loss curves for a typical model. Note that the
model has not converged, as the loss is still decreasing, however, the validation lines have
plateaued. In both figures, the dark blue lines represents the Dice and loss performance
evaluated on the training set and the orange lines show the the Dice and loss performance
evaluated on the validation set.

5.2. EXPERIMENTS ON ORION CLUSTER 61

Table 5.1: Dice results on the validation set for the “loss” hyperparameter for 32 filters
in the first layer.

Loss Value

F2 0.6221

Dice 0.6115

Table 5.2: Dice results on the validation set for the “loss” hyperparameter for 64 filters
in the first layer.

Loss Value

F2 0.6339

Dice 0.5704

Table 5.3: Dice results on the validation set obtained for the dropout probability rate
0.3.

Loss Value

F2 0.4577

Dice 0.4352

Table 5.4: Dice results on the validation set obtained for the dropout probability rate
0.5.

Loss Value

F2 0.0187

Dice 0.0244

Table 5.5: Dice results on the validation set for the “windowing” hyperparameter.

Modality

Hyperparameter PET/CT

60 HU 0.5818

70 HU 0.6136

62 CHAPTER 5. RESULTS

Table 5.6: The hyperparameters of the models that achieved highest Dice score on the
validation dataset.

Modality

Hyperparameter PET/CT

Loss F2

Optimiser Adam

Learning rate 0.0001

F2 0.6221

5.2.2 Model performance on the test set

The best predictive model is selected based on the performance on the validation
set (15 patients). The network which is well optimized is then used to evaluate
the test set.

The model with the highest Dice score value as mentioned in the Table 5.6 is
used to run experiment on the test set (40 Patients). The summary statistics
on the performance of test set is described in the Table 5.7. Slices showing the
segmentation masks predicted by the PET/CT model for patient 8 are shown in
Figure 5.3.

Table 5.7: Dice performance in the test set for the best models using multi-modality
images

Loss Value

F2 0. 6750

Dice 0.6286

From the summary statistics obtained from the model with layers [64, 128, 256,
512, 1024] in the downsampling and upsampling layer as described in Table 5.2,
The F2 score measured is 0.6339, which is higher than the model with 32 filters
in the first layer. However, the performance of this model on the test set scored a
F2 : 0.6010, which is less as compared to the model with layers [32, 64, 128, 256,
512]. Therefore, we proceeded with the model as described in section 4.5 for all
other experiments.

5.2. EXPERIMENTS ON ORION CLUSTER 63

Figure 5.3: Slices showing the segmentation masks predicted by the PET/CT model
for patient 8. The ground truth is represented by yellow colour and the predicted mask
is represented by red colour. The average Dice for this patient was 0.435.

64 CHAPTER 5. RESULTS

5.3 Tensorboard Profiling Outcomes

As discussed in section 4.2, we used Tensorboard profiling to find the bottlenecks
in the V-net architecture, which are causing delays and consuming more memory
in the overall performance of the experiments. From the Figure 5.4 (a), it is appar-
ent that the max-pooling operation was causing delays to the model performance
during the backpropagation operation and hence is the main bottleneck causing
memory issues.

Hence, as suggested by Milletari et al. [23], we replaced the max-pooling layers
with the convolutional layers and the profiler output after replacement of layers is
shown in Figure 5.4 (b). It significantly reduced the overall time consumption of
the experiment and decreased the memory issues in our experiments.

The performance summary of our model can we viewed using the Tensorboard
profile tab. More information about using Tensorboard with Keras can be found
on https://www.tensorflow.org/tensorboard/tensorboard profiling keras

https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras

5.3. TENSORBOARD PROFILING OUTCOMES 65

(a)

(b)

Figure 5.4: The figures explain the performance of the V-Net model capture using the
Tensorboard profiler. The figure (a) illustrates the model performance using max-pooling
layers. The time taken for each step mentioned at the top of the figure. The figure (b)
illustrates that the replacement of max pooling with convolutional layers significantly
reduced the performance delays and, hence, the memory consumption, thus increasing
overall model performance.

66 CHAPTER 5. RESULTS

Chapter 6

Discussion

In medical image analysis, volumetric image data is in abundance [62]. However,
annotating large volume images with segmentation labels in a slice-by-slice manner
is a tedious process, as neighboring slices contains similar information. In such
scenario, considering the complete image volume can provide more spatial feature
information than 2D image slices.

3D neural networks enable users to extract features in an image in three dimensions
and help in establishing a relationship between three dimensions (width, height,
and depth). Many studies have proven that 3D neural networks have improved
performance compared to 2D networks for the segmentation of tumors [23], [62].

The study already performed by Yngve Mardal Moe [48] on the head and neck
data using the 2D U-net has given very good performance in segmenting tumors.
It gave us great interest in extending our analysis for understanding the effect of
using the 3D convolutional neural network on the same dataset considering the
whole volumetric image and not slice by slice as used in the 2D network , and can
compare the overall performance of the 3D model to the 2D U-net.

6.0.1 Architecture recommendation

As our project deals with 3D head and neck PET/CT images, 3D convolutional
neural networks like V-Net [23], 3D Dense net [63], and AnatomyNet [64] can
become a desirable choice for segmentation tumors.

67

68 CHAPTER 6. DISCUSSION

However, we chose the V-net architecture in our experiments because it was easy
to implement, which helped in reducing the development phase of the project. It
is very similar to the 2D U-net, and can be created by replacing 2D operations
with 3D operations, such as 3D convolutional layers, 3D max-pooling, and 3D
up-convolutional layers and take 3D images as input.

There are other architecture suitable for 3D images that can yield better results.

An example of such architecture is the 3D Dense-Net [63], which has used a dataset
containing 250 head and neck cancer patients PET/CT images. For comparison,
all the configurations of Dense-Net and V-Net are kept similar in their experiments,
such as filter size and strides. This architecture consists of dense blocks as well as
transition down and transitions up modules. The Dice score obtain for their 3D
dense network is 0.73 on the test set (75 patients) and for the 3D U-net they have
a Dice score of 0.71. The binary Fβ score obtained by our V-net model is 0.6750
on the test set (40 patients). Hence, 3D Dense network can be a preferable choice
for our experiments for boosting the performance.

This study found that the segmentation accuracy of the dense model is better as
compare to the 3D U-net. Some reasons for the better performance of the Dense
net can be understood from their analysis as stated below.

Firstly, the main point in any semantic segmentation is the memory issues that
are caused while increasing the network depth as the 3D convolutions increase the
computational burden as we observed while performing experiments with V-Net.
Memory issues are dealt using residual network with skip connections in their 3D
dense network, as discussed in section 2.1.17.

Secondly, the dense block in the architecture uses extreme connecting patterns
between layers that map the output of one layer to all subsequent layers by skip
connections. For more information on model design, refer the Dense architecture
proposed by Guo et al. [63]. This type of pattern connection helps each layer
to gather more information from other layers hence reduces vanishing gradient
problems, strengthens feature reuse and feature propagation, and thus reduces the
number of trainable parameters. Therefore, this architecture can be an excellent
alternative for our experiments in the future dealing with 3D images.

Another architecture proposed by Zhu et al. [64] is the AnatomyNet, which is
commonly used for 3D image segmentation. The dataset used in the experiments
contain 261 head and neck cancer patients CT images.

The AnatomyNet architecture is similar to 3D U-net except it has only one down-

69

sampling layer, which accounts for the trade-off between network learning ability
and extreme GPU memory consumption. This downsampling layer is used in
the first encoding block so that the subsequent blocks occupy less GPU memory.
Also, the standard convolutional layers will be replaced by the 3D SE (Squeeze
and excitation) [65] residual blocks known to be beneficial in learning features.
This method should be tested for future work. The Dice score on the test set (10
Patients) obtained in their experiments is 0.768.

.

6.0.2 Loss Functions recommendations

The choice of loss functions is crucial in semantic image segmentation due to the
need to segment small volumetric objects. The main challenge is in any segmenta-
tion process is the imbalanced data distribution, as it requires pixel-wise labeling.
In our experiment, we have chosen Dice loss as the loss function as it is commonly
used when the data is imbalanced.

However, Zhu et al. proposed a loss function that has shown better performance
when dealing with 3D volumetric data, i.e., the hybrid loss [64]. Hybrid loss is a
combination of Dice loss and focal loss. Here, Dice loss learns the class distribution
by reducing the imbalanced dataset problem, whereas focal loss makes the model
classify the poorly classified voxels better.

The Dice score on the test set (10 Patients) obtained in their experiments is 0.768.
Whereas, The Dice score with hybrid loss is 0.777. Therefore, it is evident that
the use of focal loss gave a boost in Dice score.

Also, Çiçek et al. suggested using weighted cross-entropy loss in the V-Net archi-
tecture[62]. The Cross validation score on the test set obtained in their 3D network
is 0.704. This loss should be tested in future in our experiments.

The F2 loss has yielded an increase in Dice performance with a value between 0.02
- 0.05 for multi-modality input in all our experiments. The F2 loss was better
in performance than F1 loss, as shown in the Table 5.1 and 5.7 describing the
performance summary statistics on the validation and test set respectively. Thus,
introducing generalized F2 loss in this thesis proved to be beneficial in enhancing
the overall performance.

To understand the difference between the Dice loss and the Fβ loss for higher

70 CHAPTER 6. DISCUSSION

values of beta, we have to refer the equation 2.1.12 of the Fβ metric. The two
losses Fβ and Dice are similar except that Fβ weighs sensitivity β times more
than the precision. Therefore, an increase in performance for higher values of
beta signifies that the generalization gap between sensitivity is more significant
than that for precision [66] (i.e, performance decrease between the training set
and validation/testing set for sensitivity is larger than that for precision.)

6.0.3 Further Recommendations

The process of delineating 3D images involves a high level of expertise while design-
ing the network for segmentation. One has to decide on numerous features, in-
cluding model design, hyper-parameters, imaging modality, image sizes, and many
more [67]. A little modification in any of them can cause a drastic decline in per-
formance. Hence experimenting on all hyperparameter combinations is essential
for the model to provide better performance in the delineation process.

The experiments performed in this project have resulted in some recommendations
that we were unable to complete due to time limitation and memory that may help
boost overall performance in segmenting tumors and lymph nodes in PET/CT
images.

Preprocessing

Data augmentation like rotating, mirroring, and elastic deformations should also
be tested [68]. Zhu et al. [64] and Çiçek et al. [62] have suggested that prepro-
cessing, like Data augmentation such as rotation, has given a considerable boost
in performance.

Also, the use of Windowing preprocessing is recommended for future projects. It
gave an adequate performance in our dataset as described in the Table 5.5 with a
window center of 70 HU and a window width of 200 HU. However, other windowing
parameters [69] should be tested.

Architecture and Hyper-parameters

The Architectures mentioned above in the section 6.0.1 should all be tested in
the future. Dense 3D convolutional neural networks [63], have proven to perform

71

exceptionally well as compare to 3D U-net in many tumor delineation tasks. Also,
the loss functions mentioned in the section 6.0.2 should be introduced along with
the dense architectures.

Choosing the right optimizer is also very important in the segmentation process.
The only optimizer used in the project was Adam, with a learning rate of 0.0001.
The other optimizer, like SGD+momemtum, should be tested.

The batch size chosen in our experiments was 2. It is chosen dependent on the
available memory, and therefore training network with batch size larger than three
on a single GPU gave memory issues.

However, It is preferable to gradually increase the batch size while training com-
pared to reducing the learning rate [70]. This way of increasing the batch size will
help in the larger exploration of parameter space in early iterations and precise
optimization in later layers.

Dropout regularization with dropout probability 0.5 also has proven to give good
results in 3D convolutional networks as suggested by Erden et al. [61]. However,
we implemented a Dropout regularization with a dropout probability of 0.3 and
0.5 as described in Table 5.3 and Table 5.4. But, unfortunately introducing the
dropout regularization does not help in boosting the performance in our model.

6.0.4 Performance comparison with 2D U-Net

Our project’s main aim is to compare the performance of the V-Net model with
the 2D U-net model [48], on the same head and neck dataset. Yngve Mardal Moe
has designed the 2D U-net model.

In the 2D U-net, 3D image data is transformed into slices before it is being fed to
the network. Whereas, in the V-Net, the entire 3D volumetric PET/CT images
are given to the model for performing experiments.

The average dice score on the test set obtained for the combination of PET/CT im-
ages by the 2D U-Net is 0.66. However, on the same test dataset, the average dice
score of the V-Net is 0. 6750 which is slightly higher than the 2D U-net perform-
ance. The loss functions, filter size, activation functions, and batch normalization,
were kept similar in the 2D U-net network.

Hence, it is evident from our experiments that the 3D U-net (V-net) can be a good

72 CHAPTER 6. DISCUSSION

alternative for the segmentation of the tumor. Also, 3D images contain more spa-
tial feature information about cancer tumors and provide more information than
2D image slices. Therefore, with all the architecture and hyperparameter recom-
mendations, the 3D convolutional neural network’s performance can be increased,
and these models can become beneficial for the medical image analysis field in the
future.

Chapter 7

Conclusion

In this thesis, we implemented a V-Net model using deoxys framework for tumor
segmentation of 3D PET/CT images of head and neck cancer patients. This pro-
ject makes use of 3D convolutions operations to take complete advantage of volu-
metric information for multi-modality images. We successfully created an HDF5
Data-Reader for handling massive image data. The architecture is successfully
applied to HNC patients for the automatic segmentation of GTV using the Orion
cluster with access to GPU to reduce the memory consumption and computational
burden. The project also uses a Tensorboard performance logger.

The highest performing PET/CT model gave Fβ score of 0.6750 and Dice score
of 0.6286 on the test set. While performing the delineation process, it has been
shown that deep learning can be very consistent, time-saving in the medical image
analysis field, and for the segmentation of tumors and malignant lymph nodes
tissue in HNC patients. The 3D V-net model has shown an adequate performance
and can be a preferable choice over the 2D convolution networks. However, our
proposed model does not reach the expected dice performance as expected, so we
cannot conclude that the automatically generated segmentation maps are similar to
those produced by radiologists. Still, deep learning has a vast potential, which can
considerably change the way of delineation being observed by radiologist presently
and can serve as a second approach in the delineation process.

73

74 CHAPTER 7. CONCLUSION

Bibliography

[1] World Heath Organization, All cancers fact sheet, http://www.who.int/
news-room/fact-sheets/detail/cancer, Downloaded 2019-02-14, 2018.

[2] C. Wilson, S. Tobin and R. Young, ‘The exploding worldwide cancer burden’,
International Journal of Gynecologic Cancer, vol. 14, no. 1, pp. 1–11, 2004.

[3] Baskar, R. Lee K. A.and Yeo, Yeoh and K. W., Cancer and radiation therapy:
Current advances and future directions, https://doi.org/10.7150/ijms.
3635, 2012.

[4] C. K. Kaushal, Deep learning for automatic tumor delineation of anal cancer
based on mri, pet and ct image, 2019.

[5] FDA Artificial Intelligence, Regulating the future of healthcare, https://
missinglink.ai/guides/deep-learning-healthcare/fda-artificial-
intelligence-regulating-future-healthcare, Downloaded 2020-02-13.

[6] C. Njeh, ‘Tumor delineation: The weakest link in the search for accuracy in
radiotherapy’, Journal of medical physics/Association of Medical Physicists
of India, vol. 33, no. 4, p. 136, 2008.

[7] F. Chollet, Deep Learning with Python. Manning Publication Co., 2018.

[8] S. Raschka and V. Mirjalili, Python machine learning. Packt Publishing Ltd,
2017.

[9] National Cancer Institute, Head and neck cancers, https://www.cancer.
gov/types/head-and-neck, Downloaded 04-04-2020, 2018.

[10] C. E. Cardenas, R. E. McCarroll, L. E. Court, B. A. Elgohari, H. Elhalawani,
C. D. Fuller, M. J. Kamal, M. A. Meheissen, A. S. Mohamed, A. Rao et
al., ‘Deep learning algorithm for auto-delineation of high-risk oropharyngeal
clinical target volumes with built-in dice similarity coefficient parameter op-
timization function’, International Journal of Radiation Oncology* Biology*
Physics, vol. 101, no. 2, pp. 468–478, 2018.

75

http://www.who.int/news-room/fact-sheets/detail/cancer
http://www.who.int/news-room/fact-sheets/detail/cancer
https://doi.org/10.7150/ijms.3635
https://doi.org/10.7150/ijms.3635
https://missinglink.ai/guides/deep-learning-healthcare/fda-artificial-intelligence-regulating-future-healthcare
https://missinglink.ai/guides/deep-learning-healthcare/fda-artificial-intelligence-regulating-future-healthcare
https://missinglink.ai/guides/deep-learning-healthcare/fda-artificial-intelligence-regulating-future-healthcare
https://www.cancer.gov/types/head-and-neck
https://www.cancer.gov/types/head-and-neck

76 BIBLIOGRAPHY

[11] Z. Guo, N. Guo, K. Gong, Q. Li et al., ‘Gross tumor volume segmentation
for head and neck cancer radiotherapy using deep dense multi-modality net-
work’, Physics in Medicine & Biology, vol. 64, no. 20, p. 205 015, 2019.

[12] T. S. Hong, W. A. Tomé and P. M. Harari, ‘Heterogeneity in head and
neck imrt target design and clinical practice’, Radiotherapy and Oncology,
vol. 103, no. 1, pp. 92–98, 2012.

[13] Q. Song, J. Bai, D. Han, S. Bhatia, W. Sun, W. Rockey, J. E. Bayouth, J. M.
Buatti and X. Wu, ‘Optimal co-segmentation of tumor in pet-ct images with
context information’, IEEE transactions on medical imaging, vol. 32, no. 9,
pp. 1685–1697, 2013.

[14] J. Yang, B. M. Beadle, A. S. Garden, D. L. Schwartz and M. Aristophanous,
‘A multimodality segmentation framework for automatic target delineation
in head and neck radiotherapy’, Medical physics, vol. 42, no. 9, pp. 5310–
5320, 2015.

[15] Z. Zeng, J. Wang, B. Tiddeman and R. Zwiggelaar, ‘Unsupervised tumour
segmentation in pet using local and global intensity-fitting active surface and
alpha matting’, Computers in biology and medicine, vol. 43, no. 10, pp. 1530–
1544, 2013.

[16] H. Yu, C. Caldwell, K. Mah, I. Poon, J. Balogh, R. MacKenzie, N. Khaouam
and R. Tirona, ‘Automated radiation targeting in head-and-neck cancer us-
ing region-based texture analysis of pet and ct images’, International Journal
of Radiation Oncology* Biology* Physics, vol. 75, no. 2, pp. 618–625, 2009.

[17] C. E. Cardenas, B. M. Anderson, M. Aristophanous, J. Yang, D. J. Rhee,
R. E. McCarroll, A. S. Mohamed, M. Kamal, B. A. Elgohari, H. M. El-
halawani et al., ‘Auto-delineation of oropharyngeal clinical target volumes
using 3d convolutional neural networks’, Physics in Medicine & Biology,
vol. 63, no. 21, p. 215 026, 2018.

[18] C. Zhang, X. Sun, K. Dang, K. Li, X.-w. Guo, J. Chang, Z.-q. Yu, F.-y.
Huang, Y.-s. Wu, Z. Liang et al., ‘Toward an expert level of lung cancer
detection and classification using a deep convolutional neural network’, The
Oncologist, vol. 24, no. 9, pp. 1159–1165, 2019.

[19] A. Chon, N. Balachandar and P. Lu, ‘Deep convolutional neural networks
for lung cancer detection’, Standford University, 2017.

[20] I. R. I. Haque and J. Neubert, ‘Deep learning approaches to biomedical
image segmentation’, Informatics in Medicine Unlocked, p. 100 297, 2020,
issn: 2352-9148. doi: https://doi.org/10.1016/j.imu.2020.100297.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S235291481930214X.

https://doi.org/https://doi.org/10.1016/j.imu.2020.100297
http://www.sciencedirect.com/science/article/pii/S235291481930214X
http://www.sciencedirect.com/science/article/pii/S235291481930214X

BIBLIOGRAPHY 77

[21] K. Men, X. C. Y. Zhang, T. Zhang, J. Dai*, J. Yi and Y. L, ‘Deep deconvo-
lutional neural network for target segmentation of nasopharyngeal cancer in
planning computed tomography images.’, National Cancer Center/Cancer
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China, 2017.

[22] J. M. Nazzal, I. M. El-Emary and S. A. Najim, ‘Multilayer perceptron neural
network (mlps) for analyzing the properties of jordan oil shale 1’, 2008.

[23] F. Milletari, N. Navab and S.-A. Ahmadi, ‘V-net: Fully convolutional neural
networks for volumetric medical image segmentation’, pp. 565–571, 2016.

[24] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[25] C. M. Bishop, Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006, isbn: 0387310738.

[26] K. Pokrass, ‘Neural networks – activation functions’, 18-10-2019, Down-
loaded 16-03-2020.

[27] X. Glorot, A. Bordes and Y. Bengio, ‘Deep sparse rectifier neural networks’,
in Proceedings of the fourteenth international conference on artificial in-
telligence and statistics, 2011, pp. 315–323. [Online]. Available: http://
proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.

[28] H. Li, Y. Tian, K. Mueller and X. Chen, ‘Beyond saliency: Understanding
convolutional neural networks from saliency prediction on layer-wise relev-
ance propagation’, Image and Vision Computing, vol. 83-84, pp. 70–86, 2019,
issn: 0262-8856. doi: https://doi.org/10.1016/j.imavis.2019.02.005.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0262885619300149.

[29] M. D. Zeiler and R. Fergus, ‘Visualizing and understanding convolutional
networks’, in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele
and T. Tuytelaars, Eds., Cham: Springer International Publishing, 2014,
pp. 818–833, isbn: 978-3-319-10590-1.

[30] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning
applied to document recognition’, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[31] ‘Cs231n: Convolutional neural networks for visual recognition’, Downloaded
2020-02-20. [Online]. Available: http://cs231n.github.io/convolutional-
networks/.

http://www.deeplearningbook.org
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://doi.org/https://doi.org/10.1016/j.imavis.2019.02.005
http://www.sciencedirect.com/science/article/pii/S0262885619300149
http://www.sciencedirect.com/science/article/pii/S0262885619300149
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

78 BIBLIOGRAPHY

[32] J. Koushik, ‘Understanding convolutional neural networks’, arXiv preprint
arXiv:1605.09081, 2016.

[33] S. J. Cruchon-Dupeyrat, ‘Deep learning - convolutional neural networks for
image classification’, 2017, Downloaded 08/03/2020.

[34] A. Deshpande, ‘A beginner’s guide to understanding convolutional neural
networks part 2’, July 29, 2016, Downloaded 05/03/2020.

[35] J. T. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, ‘Striving for
simplicity: The all convolutional net’, arXiv preprint arXiv:1412.6806, 2014.

[36] V. Dumoulin and F. Visin, ‘A guide to convolution arithmetic for deep learn-
ing’, arXiv preprint arXiv:1603.07285, 2016.

[37] H. Gao, H. Yuan, Z. Wang and S. Ji, ‘Pixel transposed convolutional net-
works’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. PP, pp. 1–1, Jan. 2019. doi: 10.1109/TPAMI.2019.2893965.

[38] Naoki Shibuya, Up-sampling with transposed convolution, https://medium.
com/activating-robotic-minds/up-sampling-with-transposed-convolution-
9ae4f2df52d0, Downloaded 07-04-2020, 2017.

[39] S. Ioffe and C. Szegedy, ‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift’, arXiv preprint arXiv:1502.03167,
2015.

[40] S. Santurkar, D. Tsipras, A. Ilyas and A. Madry, ‘How does batch normal-
ization help optimization?’, pp. 2483–2493, 2018.

[41] I. Gitman and B. Ginsburg, ‘Comparison of batch normalization and weight
normalization algorithms for the large-scale image classification’, arXiv pre-
print arXiv:1709.08145, 2017.

[42] Q. Xu, M. Zhang, Z. Gu and G. Pan, ‘Overfitting remedy by sparsifying
regularization on fully-connected layers of cnns’, Neurocomputing, vol. 328,
pp. 69–74, 2019.

[43] H. A. Al-Barazanchi, H. Qassim and A. Verma, ‘Novel cnn architecture with
residual learning and deep supervision for large-scale scene image categoriza-
tion’, in 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), IEEE, 2016, pp. 1–7.

[44] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image
recognition’, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

https://doi.org/10.1109/TPAMI.2019.2893965
https://medium.com/activating-robotic-minds/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://medium.com/activating-robotic-minds/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://medium.com/activating-robotic-minds/up-sampling-with-transposed-convolution-9ae4f2df52d0

BIBLIOGRAPHY 79

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
‘Dropout: A simple way to prevent neural networks from overfitting’, Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Avail-
able: http://jmlr.org/papers/v15/srivastava14a.html.

[46] M. Zinkevich, M. Weimer, L. Li and A. J. Smola, ‘Parallelized stochastic
gradient descent’, in Advances in neural information processing systems,
2010, pp. 2595–2603.

[47] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization’,
arXiv preprint arXiv:1412.6980, 2014.

[48] Y. M. Moe, ‘Deep learning for automatic delineation of tumours from pet/ct
images’, 2019.

[49] S. Ruder, ‘An overview of gradient descent optimization algorithms’, arXiv
preprint arXiv:1609.04747, 2016.

[50] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro and B. Recht, ‘The marginal
value of adaptive gradient methods in machine learning’, in Advances in
Neural Information Processing Systems, 2017, pp. 4148–4158.

[51] X. Liu, Z. Deng and Y. Yang, ‘Recent progress in semantic image segment-
ation’, Artificial Intelligence Review, vol. 52, no. 2, pp. 1089–1106, 2019.

[52] Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin and B. J. Erickson, ‘Deep
learning for brain mri segmentation: State of the art and future directions’,
Journal of digital imaging, vol. 30, no. 4, pp. 449–459, 2017.

[53] V. Badrinarayanan, A. Kendall and R. Cipolla, ‘Segnet: A deep convolutional
encoder-decoder architecture for image segmentation’, IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495,
2017.

[54] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for
biomedical image segmentation, Springer, 2015.

[55] A. A. Taha and A. Hanbury, ‘Metrics for evaluating 3d medical image seg-
mentation: Analysis, selection, and tool’, BMC medical imaging, vol. 15,
no. 1, p. 29, 2015.

[56] L. R. Dice, ‘Measures of the amount of ecologic association between species’,
Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[57] N. Chinchor, ‘The statistical significance of the muc-4 results’, in Proceedings
of the 4th conference on Message understanding, Association for Computa-
tional Linguistics, 1992, pp. 30–50.

http://jmlr.org/papers/v15/srivastava14a.html

80 BIBLIOGRAPHY

[58] Dr Christopher Lovell, H5py: Reading and writing hdf5 files in python, https:
//www.christopherlovell.co.uk/blog/2016/04/27/h5py-intro.html,
Downloaded 09-02-2020.

[59] A. Collette, Python and HDF5: Unlocking Scientific Data. ” O’Reilly Media,
Inc.”, 2013.

[60] J. M. Moan, C. D. Amdal, E. Malinen, J. G. Svestad, T. V. Bogsrud and
E. Dale, ‘The prognostic role of 18f-fluorodeoxyglucose pet in head and neck
cancer depends on hpv status’, Radiotherapy and Oncology, vol. 140, pp. 54–
61, 2019.

[61] B. Erden, N. Gamboa and S. Wood, ‘3d convolutional neural network for
brain tumor segmentation’, Computer Science, Stanford University, USA,
Technical report, 2017.

[62] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox and O. Ronneberger, ‘3d
u-net: Learning dense volumetric segmentation from sparse annotation’, in
International conference on medical image computing and computer-assisted
intervention, Springer, 2016, pp. 424–432.

[63] Z. Guo, N. Guo, K. Gong, Q. Li et al., ‘Gross tumor volume segmentation
for head and neck cancer radiotherapy using deep dense multi-modality net-
work’, Physics in Medicine & Biology, vol. 64, no. 20, p. 205 015, 2019.

[64] W. Zhu, Y. Huang, L. Zeng, X. Chen, Y. Liu, Z. Qian, N. Du, W. Fan and X.
Xie, ‘Anatomynet: Deep learning for fast and fully automated whole-volume
segmentation of head and neck anatomy’, Medical physics, vol. 46, no. 2,
pp. 576–589, 2019.

[65] J. Hu, L. Shen and G. Sun, ‘Squeeze-and-excitation networks’, in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7132–7141.

[66] S. S. M. Salehi, D. Erdogmus and A. Gholipour, ‘Tversky loss function for
image segmentation using 3d fully convolutional deep networks’, in Interna-
tional Workshop on Machine Learning in Medical Imaging, Springer, 2017,
pp. 379–387.

[67] F. Isensee, P. F. Jäger, S. A. Kohl, J. Petersen and K. H. Maier-Hein, ‘Auto-
mated design of deep learning methods for biomedical image segmentation’,
arXiv preprint arXiv:1904.08128, 2020.

[68] F. Isensee, J. Petersen, A. Klein, D. Zimmerer, P. F. Jaeger, S. Kohl, J.
Wasserthal, G. Koehler, T. Norajitra, S. Wirkert et al., ‘Nnu-net: Self-adapting
framework for u-net-based medical image segmentation’, arXiv preprint arXiv:1809.10486,
2018.

https://www.christopherlovell.co.uk/blog/2016/04/27/h5py-intro.html
https://www.christopherlovell.co.uk/blog/2016/04/27/h5py-intro.html

BIBLIOGRAPHY 81

[69] H. Lee, M. Kim and S. Do, ‘Practical window setting optimization for medical
image deep learning’, arXiv preprint arXiv:1812.00572, 2018.

[70] S. L. Smith, P.-J. Kindermans, C. Ying and Q. V. Le, ‘Don’t decay the learn-
ing rate, increase the batch size’, arXiv preprint arXiv:1711.00489, 2017.

82 BIBLIOGRAPHY

Appendix A

Experiment Structure

Dataset parameters

The Experiment class has a definite structure for its input. This input is structured
in the form of JSON(JavaScript Object Notation) configuration files. Below, we
provide examples of such files that we use, to provide input in a structured manner
to experiment class. The first one is the dataset parameters.

1 "dataset_params" : {
2 "class_name": "HDF5Reader",
3 "config": {
4 "filename": "../ script/head_neck_new4.h5",
5 "batch_size": 2,
6 "x_name": "input",
7 "y_name": "target",
8 "batch_cache": 5,
9 "train_folds": [
10 4,5,6,12,18,25
11],
12 "val_folds": [
13 29,30,31
14],
15 "test_folds": [
16 33,
17 35,
18 37
19]},
20 "preprocessor": {
21 "class_name":"WindowingPreprocessor",
22 "config": {
23 "window_width": 100,

83

84 APPENDIX A. EXPERIMENT STRUCTURE

24 "window_center": 70
25 }
26 }
27 }

This dataset_parameters enables the experiment class to extract the dataset from
the described HDF5 file using the filename provided. Also describing the batch
size , and which fold number to use for training ,validation ad testing containing
3D images.

Train and Input parameters

Once we read the dataset using the HDF5 reader we also have to provide the
parameters required during training of dataset such as epochs and a user can
also use any automatic performance logger such as Tensorboard and provide the
necessary arguments for using it in callbacks of train_params. The actual size
needed for any input image can be provided using input_params

1 "train_params" : {
2 "callbacks":{
3 "class_name": "TensorBoard",
4 "config": {
5 "log_dir": "logs",
6 "update_freq":"batch",
7 "profile_batch": 2,
8 "histogram_freq": 1
9 }
10 },
11 "epochs": 100
12 }

1 "input_params": {
2 "shape": [
3 173,
4 191,
5 265,
6 2
7]
8 }

Here, train_params provide the information about how many epochs a user want
to set to run the experiments and Tensorboard logger setup in callbacks. A user can
provide more than one automatic performance logger in callbacks. input_params

85

signifies the standard shape that the dataset posses for any data provided for the
experiment.

Model parameters

The model_params are used to provide information such as optimizer, loss, per-
formance metric and model architecture for V-Net, which a user wants to use
to perform experiments on the dataset. This information is provided to the
Experiment class utilizing the structure as described below :

1 "model_params": {
2 "loss": {
3 "class_name": "BinaryFbetaLoss"
4 },
5 "optimizer": {
6 "class_name": "adam",
7 "config": {
8 "learning_rate": 0.0001
9 }
10 },
11 "metrics": [
12 {
13 "class_name": "BinaryFbeta"
14 },
15 {
16 "class_name": "Fbeta"
17 }
18]
19 },
20 "architecture": {
21 "type": "Vnet",
22 "layers": [
23 {
24 "name": "conv1",
25 "class_name": "Conv3D",
26 "config": {
27 "filters": 32,
28 "kernel_size": 3,
29 "activation": "relu",
30 "kernel_initializer": "he_normal",
31 "padding": "same"
32 },
33 "normalizer": {
34 "class_name": "BatchNormalization"
35 }
36 },

86 APPENDIX A. EXPERIMENT STRUCTURE

37 {
38 "class_name": "MaxPooling3D"
39 },
40

41 {
42 "name": "conv2",
43 "class_name": "Conv3D",
44 "config": {
45 "filters": 32,
46 "kernel_size": 3,
47 "activation": "relu",
48 "kernel_initializer": "he_normal",
49 "padding": "same"
50 },
51 "normalizer": {
52 "class_name": "BatchNormalization"
53 }
54 },
55 {
56 "class_name": "MaxPooling3D"
57 },
58 {
59 "name": "conv3",
60 "class_name": "Conv3D",
61 "config": {
62 "filters": 64,
63 "kernel_size": 3,
64 "activation": "relu",
65 "kernel_initializer": "he_normal",
66 "padding": "same"
67 },
68 "normalizer": {
69 "class_name": "BatchNormalization"
70 }
71 },
72 {
73 "class_name": "MaxPooling3D"
74 },
75 {
76 "class_name": "Conv3D",
77 "config": {
78 "filters": 64,
79 "kernel_size": 3,
80 "activation": "relu",
81 "kernel_initializer": "he_normal",
82 "padding": "same"
83 },
84 "normalizer": {
85 "class_name": "BatchNormalization"

87

86 }
87 },
88 {
89 "name": "conv_T_1",
90 "class_name": "Conv3DTranspose",
91 "config": {
92 "filters": 64,
93 "kernel_size": 3,
94 "strides": 1,
95 "kernel_initializer": "he_normal",
96 "padding": "same"
97 }
98 },
99 {
100 "name": "conv_T_2",
101 "class_name": "Conv3DTranspose",
102 "config": {
103 "filters": 32,
104 "kernel_size": 3,
105 "strides": 1,
106 "kernel_initializer": "he_normal",
107 "padding": "same"
108 },
109 "inputs": [
110 "conv3",
111 "conv_T_1"
112]
113 },
114 {
115 "name": "conv_T_3",
116 "class_name": "Conv3DTranspose",
117 "config": {
118 "filters": 32,
119 "kernel_size": 3,
120 "strides": 1,
121 "kernel_initializer": "he_normal",
122 "padding": "same"
123 },
124 "inputs": [
125 "conv2",
126 "conv_T_2"
127]
128 },
129

130 {
131 "class_name": "Conv3D",
132 "config": {
133 "filters": 1,
134 "kernel_size": 3,

88 APPENDIX A. EXPERIMENT STRUCTURE

135 "activation": "sigmoid",
136 "kernel_initializer": "he_normal",
137 "padding": "same"
138 },
139 "inputs": [
140 "conv1",
141 "conv_T_3"
142]
143 }
144]
145 }

The architecture defined for V-Net above is an example provided for experiments.
A user can increase the number of layers ,number of filters, loss functions and
optimizers based on requirement.

Appendix B

Converting dataset into HDF5
format

The first step in the project is to convert the head and neck dataset into HDF5
format. Its very important that all the data should be of same size. The code below
shows reading indices of training ,validation and test patient’s using different H5
files.

1 # importing all the necessary libraries for creating HDF5 files
2 import numpy as np
3 import math
4 import h5py
5 from tqdm import tqdm
6

7

8 # used for visual(text based) progress during long running
operations

9 def progress_bar(iterable):
10 return tqdm(list(iterable))
11

12

13 # Extracting and printing the training(train_indices) , validation(
val_indices) and

14 testing(test_indices) from head and neck dataset containing 3D
images

15

16 with h5py.File('../ Dataset_3D_U_Net/Pnr.h5', 'r') as Patient_num:
17 patient_id_indices = Patient_num['dataset1 '][:]. squeeze ().astype

(int)
18

19 with h5py.File('../ Dataset_3D_U_Net/PnrVal.h5', 'r') as val_num:

89

90 APPENDIX B. CONVERTING DATASET INTO HDF5 FORMAT

20 val_indices = val_num['dataset3 '][:]. squeeze ().astype(int)
21 val_new_indices = list(val_indices)
22 print(val_new_indices)
23

24 with h5py.File('../ Dataset_3D_U_Net/PnrTest.h5', 'r') as test_num:
25 test_indices = test_num['dataset2 '][:]. squeeze ().astype(int)
26 test_new_indices = list(test_indices)
27 train_indices = list(set(patient_id_indices) - set(val_indices) -

set(test_indices))
28 assert len(train_indices) == len(patient_id_indices) - len(

val_indices) - len(test_indices)

The code below will create a function to combine CT and PET images into CT/-
PET multi-modality image. The function returns a 4D image tensor with two
channels. For example input shape of CT and PET image is (173, 191, 265), after
combination using extract_input_image function, the output image shape will
become (173, 191, 265, 2).

1 # Method for combining CT and PET images and returns a 4D input
image tensor with two channels

2

3 def extract_input_image(h5):
4 ct_image = h5['imdata/CT']
5 pt_image = h5['imdata/PT']
6 final_image = np.stack([ct_image [:], pt_image [:]], axis=-1).

squeeze ()
7 expected_shape = (173, 191, 265, 2)
8

9 if final_image.shape != expected_shape: # Check for expected
shape after stacking CT and

10 # PET images and reshaping it to desired shape if not
correct

11 print(f"{h5} has shape {final_image.shape}")
12 try:
13 print("Trying to reshape")
14 final_image.reshape(expected_shape)
15 except:
16 print("Failed to reshape ")
17 return None
18

19 return final_image.astype('float32 ')

The final target images are combined using extract_mask function which is formed
by combination of tumor and lymphatic nodes. The final target is 4D image tensor.

1 def extract_mask(h5): # method extract_mask to combine tumor and
nodes to create the final target

91

2 # (mask) 4D image tensor
3 tumor = h5['imdata/tumour '][:]. squeeze ()
4 nodes = h5['imdata/nodes '][:]. squeeze ()
5 return np.logical_or(tumor , nodes).squeeze ().astype('float32 ')

[..., np.newaxis]

The next step is to create two separate lists for storing images and their target
masks .using the method extract_fold_data.

After this, we create an HDF5 file structure using create_fold function where
data is divided into folds, which is an HDF5 group containing datasets (images,
masks, patient numbers).

1 # method that extract fold data into two separate lists for images
and masks i.e. 4D images and masks for all the head and neck
patients.

2

3 def extract_fold_data(fold_indices ,
4 file_pattern='../ Dataset_3D_U_NET/imdata/

imdata_P{patient_id :03d}.mat',
5 verbose=True):
6 if not verbose:
7 def iterate(x):
8 return x
9 else:
10 iterate = progress_bar
11

12 images , masks = [], []
13 for patient_id in iterate(fold_indices):
14 with h5py.File(file_pattern.format(patient_id=int(patient_id

)), 'r+') as h5:
15 input_image = extract_input_image(h5)
16 if input_image is not None:
17 images.append(input_image)
18 target = extract_mask(h5)
19 masks.append(target)
20

21 return images , masks
22

23

24 # method that create folds which are hdf5 group containing dataset
input ,targets and patient numbers of all the 197 head and neck
patients.

25

26 def create_fold(fold_indices , fold_num , filename , verbose=True):
27 fold_indices = list(fold_indices)
28

29 if verbose:

92 APPENDIX B. CONVERTING DATASET INTO HDF5 FORMAT

30 print(f"Creating fold {fold_num}")
31 images , masks = extract_fold_data(fold_indices)
32

33 # The groups(the different folds) are created with dataset(input
, targets , and patient number)

34 with h5py.File(filename , 'a') as hdf:
35 group = hdf.create_group(f'fold_{fold_num}') # create a

group with name eg. 'fold_0 '
36 group.create_dataset('input ', data=images , compression='lzf'

, chunks=True)
37 group.create_dataset('target ', data=masks , compression='lzf'

, chunks=True)
38 group.create_dataset('pat_num ', data=fold_indices)
39

40 return group

The last step is to define an HDF5 file where we want to store the training,
testing and validation folds. It is named as head_neck_new4.h5. This name can
be anything of user’s choice.

The next step is to divide training, validation, and test patient indices into differ-
ent folds using the create_chunks method. We then define the total number of
patients in each fold, which we choose five . Define the total number of patients
in train folds, validation folds, and test folds. Finally, iterate over train folds,
and store the group into the defined HDF5 file. The same procedure repeated for
validation and test set. Just make sure that always check the counting of indices
for validation set start from where the training indices end and counting indices
for testing set begin from where the validation indices end.

1 # methods to chunk groups into train ,validation and testing
2 def create_chunks(length , n):
3 # looping till length
4 for i in range(0, len(length), n):
5 yield length[i:i + n]
6

7

8 patient_each_fold = 5 # choosing the number of patients in each
fold

9 train_num_patients = len(train_indices) # total number of patient 's
in training set

10 val_num_patients = len(val_new_indices) # total number of patient 's
in validation set

11 test_num_patients = len(test_new_indices) # total number of patient '
sin test set

12

13

14 fold_num_train = int(np.ceil(train_num_patients / patient_each_fold)

93

) # total no of folds
15 # for training patient 's
16 fold_num_val = int(np.ceil(val_num_patients / patient_each_fold)) #

total no of folds
17 # for validation patient 's
18 fold_num_test = int(np.ceil(test_num_patients / patient_each_fold))

total no of folds
19 # for testing patient 's
20

21

22 file_name = "head_neck_new4.h5" # the name of HDF5 file that will
be generated with train ,

23 # validation and test folds
24 num = 0
25

26

27 train_windows = list(create_chunks(train_indices , patient_each_fold)
) #splitting training patients

28 # list with 5 patient each
29

30 for i in range(fold_num_train):
31 train_fold = create_fold(fold_indices=train_windows[i],
32 fold_num=num , filename=file_name)
33 print(train_fold)
34 num += 1
35

36 # Create folds for val
37 val_windows = list(create_chunks(val_new_indices , patient_each_fold)

)
38 for s in range(fold_num_val):
39 val_fold = create_fold(fold_indices=val_windows[s],
40 fold_num=num , filename=file_name)
41

42 num += 1
43

44 # Create folds for test
45 test_windows = list(create_chunks(test_new_indices ,

patient_each_fold))
46 for t in range(fold_num_test):
47 test_fold = create_fold(fold_indices=test_windows[t],
48 fold_num=num , filename=file_name)
49 num += 1

The final Experiment class uses this HDF5 file and the JSON configuration file for
running experiments on the head and neck dataset.

94 APPENDIX B. CONVERTING DATASET INTO HDF5 FORMAT

Appendix C

Orion Cluster Experiment

It is essential to define a slurm script, and a singularity container while running
an experiment on the Orion cluster, as discussed, is section 4.1.6. The below
code describes the sample Slurm script used in the project. It contains all the
information regarding the memory usage ,number of GPU’s to be used and combine
the experiment with the methods define in the Singularity container.

1 #!/bin/bash
2 #SBATCH --ntasks=1 # 1 core(CPU)
3 #SBATCH --nodes=1 # Use 1 node
4 #SBATCH --job-name=vnet_test # sensible name for the job
5 #SBATCH --mem=196G # Default memory per CPU is 3GB.
6 #SBATCH --partition=gpu # Use the verysmallmem -partition for jobs

requiring < 10 GB RAM.
7 #SBATCH --gres=gpu:1
8 #SBATCH --mail-user=afmi@nmbu.no # Email me when job is done.
9 #SBATCH --mail-type=ALL
10 #SBATCH --output=outputs/vnet-%A.out
11 #SBATCH --error=outputs/vnet-%A.out
12

13 # If you would like to use more please adjust this.
14

15 ## Below you can put your scripts
16 # If you want to load module
17 module load singularity
18

19 ## Code
20 # Hack to ensure that the GPUs work
21 nvidia -modprobe -u -c=0
22

23 # Run experiment

95

96 APPENDIX C. ORION CLUSTER EXPERIMENT

24 echo "Copying data ..."
25 bash copy_dataset.sh
26 echo "Copy finished"
27 singularity exec --nv deoxys.sif python experiment.py

The Singularity container contains all the necessary libraries, software, scientific
workflows needed while running our experiment.

1 Bootstrap: docker
2 From: tensorflow/tensorflow:latest -gpu-py3
3 Stage: build
4

5 %post
6 apt update -y
7 apt upgrade -y
8 pip install ipython
9 pip install http:// github.com/huynhngoc/deoxys/archive/master.

zip
10 pip install tensorflow==2.0.0
11 pip install comet-ml
12 pip install scikit -image

More information on running experiment ont the Orion cluster can be found on
my Github page: https://github.com/afreenmirza3010/msc-cluster-code.

https://github.com/afreenmirza3010/msc-cluster-code

97

98

Thank you.

	Introduction
	Motivation
	Challenges with cancer treatment
	Methods used for automated delineation of head and neck cancer tumor
	Problem statement

	Deep learning
	Deep Learning
	Introduction to Deep Learning
	Artificial neural networks
	Multilayer perceptron
	Forward Propagation: Activating a neural network
	Loss Functions
	Activation Functions
	Sigmoidal Activation Function
	Softmax Activation Function
	ReLU Activation Function
	Convolution Neural networks
	General model - Convolution neural network
	Convolution Layer
	Downsampling operations
	Upsampling Operation (Transposed Convolution)
	Batch Normalization
	Fully Connected Layer
	Residual Connections
	Regularization
	Optimization
	Semantic Image segmentation using convolutional neural network
	Architectures for semantic image segmentation

	Code
	The deoxys framework
	Architecture Loader
	Model
	Single and Multiple experiments

	The HDF5 format

	Experimental Set-up
	Experiments
	The Dataset
	Preprocessing
	Model Parameters
	Layer Type
	Loss Function
	Training Procedure
	Model Performance analysis

	Tensorboard Profiling Outcomes

	Results
	Initial Experiments
	Experiments on Orion cluster
	Model Performance on the validation set
	Model performance on the test set

	Tensorboard Profiling Outcomes

	Discussion
	Architecture recommendation
	Loss Functions recommendations
	Further Recommendations
	Performance comparison with 2D U-Net

	Conclusion
	Experiment Structure
	Converting dataset into HDF5 format
	Orion Cluster Experiment

