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Abstract 
 

The goal of this thesis is to implement an easy to use, user-friendly application to help researchers in 

the field of radiomics and image processing to extract radiomics features. The application also includes 

an easy way to test various feature selection methods and multiple machine learning algorithms. 

The application named Biorad was developed using the PythonTM programming language. The code is 

available at https://github.com/ahmedalbuni/biorad. 

The first version of Biorad was developed by Severin Langberg and it was intended for his research on 

head and neck cancer. The code for the first version of Biorad is available at 

https://github.com/gsel9/biorad. 

 

Biorad consists of two separate modules. The first module is the features extraction which is a 

command-line tool that allows the users to easily extract radiomics features from a set of images, with 

or without masks. Available features are: 

• First Order Statistics 

• Shape-based features (for both two-dimensional and three-dimensional images) 

• Grey Level Cooccurrence Matrix 

• Grey Level Run Length Matrix 

• Grey Level Size Zone Matrix 

• Neighbouring Grey Tone Difference Matrix 

• Grey Level Dependence Matrix  

All the radiomics features in the feature extraction module are extracted using a third-party Python 

library called pyradiomics (Griethuysen et al., 2017). 

The second module is the feature analysis which will give the user a cross-analysis of various feature 

selection tools and machine learning algorithms. Four different feature selection methods are 

available in the feature analysis module, and they are; ReliefF, Mutual Information, Fisher Score and 

Variance Threshold. Additionally, six different classifiers are available; Ridge, Light gradient boosting 

machine, C-Support Vector Classification, Decision Tree, Logistic Regression and Extra Tree Classifier. 

In the testing of the application, the main dataset of 198 head and neck cancer patients was used. One 

hundred ninety-two radiomics features were obtained from the CT and PET scan images and 13 clinical 

factors were added later. Other datasets used also are the wine dataset and the Breast cancer 

Wisconsin (diagnostic) dataset. Two other students, Grünbeck from NMBU and Langan from NTNU, 

used the application to analyse their datasets, Grünbeck in her study about the Effect of 

Methylphenidate (MPH) treatment in Attention deficit hyperactivity disorder (ADHD) Diagnosed 

Children (I. A. Grünbeck, 2020). And Langan in her study regarding MRI-based radiomics analysis for 

predicting treatment outcome in rectal cancer (Langan, 2020). 

In the head and neck cancer dataset, the ReliefF feature selector was superior to the other feature 

selectors used, and the most informative features to the response variable (The disease-free survival) 

were mostly shape features. 

  

https://github.com/ahmedalbuni/biorad
https://github.com/gsel9/biorad
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1 Introduction 
 

Radiomics is a process that extracts quantitative numerical features from medical images. Radiomics 

began in the field of oncology - the study and the treatment of cancer tumours, but it has the potential 

to be used in other diseases (Gillies et al., 2015). Moreover, there are possibilities of using radiomics 

in areas other than medical research (Lande, 2020). There are multiple types of medical images, 

including computed tomography (CT) scans, magnetic resonance imaging (MRI) scans, positron 

emission tomography (PET) scans and ultrasound (Bogowicz et al., 2019),(Chaddad et al., 2019). In 

radiomics, the extracted quantitative numerical features can describe the shape, size and the texture 

of a cancer tumour to help in diagnosis and selecting a proper treatment (Biological Basis of Radiomcs 

| ELife, n.d.). Radiomics features can provide additional information on top of the clinical data, as 

shown in research (Biological Basis of Radiomcs | ELife, n.d.). 

The radiomics field has several challenges like the lack of standardization of the radiomics analysis, 

which affects the reproducibility of the results (Griethuysen et al., 2017). This issue had been 

addressed by an open-source Python package called pyradiomics which offer the user a framework to 

extract both two-dimensional and three-dimensional features from images (Pyradiomics 

Documentation, n.d.). 

However, using radiomics in research requires programming knowledge and a deep understanding of 

machine learning. As a result, the need to make radiomics simpler for researchers becomes apparent. 

Having user-friendly tools to extract radiomics features and analyse them will help researchers to 

utilise the potentials of radiomics and machine learning without the need for programming 

knowledge.  

The main goal of this thesis is to develop user-friendly tools to extract radiomics features from various 

images. Furthermore, these radiomics features will be analysed with multiple feature selectors and 

machine learning classifiers. These tools should not require any programming knowledge, and the 

usage instructions should be easy to understand for non-IT expert users. 

The tools were tested for user-friendliness by collaborating with other master students at NMBU and 

NTNU in order to gain valuable input and feedback. Having other students from our university, 

Norwegian University of Life Sciences, and from the Norwegian University of Science and Technology 

(NTNU), working with image data that requires analysis made developing these tools more interesting. 

Working in parallel with these students helped all of us in getting continuous real-time feedback. 

In this thesis, there will be a brief introduction about radiomics and its importance and challenges, a 

description of the package used to extract the radiomics features (pyradiomics), a list of radiomics 

features extracted by pyradiomics, as well as descriptions of the two separate modules of the Biorad 

application (the feature extraction and the analysis), the features selectors used in the analysis 

module, the machine learning classifiers, and results of using the application on various datasets with 

various settings. 
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2 Radiomics 
 

According to research, radiomics can provide some insights regarding the clinical characteristics of 

cancer tumours, such as the spread of the cancer cells, predictions of treatment outcomes and the 

likelihood of the disease-free survival of the patient (Gillies et al., 2015). However, those 

characteristics have not yet been linked to the actual biological process of cancer tumour 

development and spread (Gillies et al., 2015). 

The predictive power of the radiomics features is shown in Figure 2-1. The clinical data is the most 

informative to predict the outcome. However, by combining the radiomics data with it, we can 

produce a more robust estimation model (Biological Basis of Radiomcs | ELife, n.d.). 

 

 

Figure 2-1: Concordance-index (CI) showing the importance of Radiomics features as compared to Clinical and Genomics 
features (Biological Basis of Radiomcs | ELife, n.d.) 

 

Radiomics consists of several steps, image acquisition, image pre-processing, defining the area of the 

tumour – the region of interest also called image segmentation, and lastly applying machine learning 

for feature selection, and predicting the response variable. 

 

2.1 Image acquisition 
 

Radiomics starts with image acquisition; some of the most common medical images are: 

• Computerized tomography (CT) scan: multiple X-ray images are taken from different angles 

and combined by an algorithm to create slices of a three-dimensional image (CT Scan - Mayo 

Clinic, n.d.). 
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• Positron emission tomography (PET) scan: a radioactive drug is either injected or swallowed 

by the patient, then the scan captures how different tissues and organs react to the drug. 

Radioactive glucose, for example, is used because cancer cells consume more energy than 

healthy cells. This may sometimes detect cancer cells earlier than other imaging tests (PET - 

Mayo Clinic, n.d.). 

• Magnetic resonance imaging (MRI): a magnetic field and computer-generated radio waves 

create highly detailed images of the scanned area of the body (MRI - Mayo Clinic, n.d.). 

 

2.2 Image pre-processing 
 

The next step of radiomics is the image pre-processing; medical images can be affected by artefacts. 

For CT scan images, the most common types of artefacts are metal streaks, mostly from dental fillings. 

This can be seen in Figure 2-2. Another common type of artefact is beam-hardening, where the edges 

of an object such as bone appear brighter than the centre (Artifacts and Partial-Volume Effects – UTCT 

– University of Texas, n.d.). 

 

Figure 2-2 Stacks from a CT scan image for a cancer patient that shows streaks from a dental filling. 

 

2.3 Image segmentation 
 

One of the essential steps in radiomics is the image segmentation. It is a very challenging and critical 

step because all the next steps of feature generation will be done based on the segmented image 

(Gillies et al., 2015). 

In image segmentation we define the Region of Interest (ROI), the unfolded stacked CT image is shown 

in Figure 2-3, and one slice of the CT scan with the mask is shown in Figure 2-4. 
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Figure 2-3 Stacked CT scan images on the left, the mask that identifies the cancer tumour (Region of Interest) is shown on 
the right image. 

 

Figure 2-4 One slice of the stacked images of a CT scan. The mask applied to the right picture shows the ROI (Region of 
Interest). 

 

Segmentation can be done either manually, semi-automated or fully automated. In many research 

studies, the manual segmentation by experts is considered as the ground truth (Radiomics: The 

Process and the Challenges, n.d.). However, there are many issues with manual segmentation. First, it 

suffers from high inter-reader variability. Second, it takes a very long time from the expert readers. 

Many semi-automated and fully automated segmentation methods have been developed for various 

regions like the brain, lung and breast, and for various image types, like CT, PET and MRI scan images. 

All segmentation methods should be as automated as possible, with minimal human interaction, and 

the results should be reproducible (Radiomics: The Process and the Challenges, n.d.). 
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2.4 Radiomics features 
 

After image pre-processing and image segmentation, we can extract the radiomics features which can 

be divided into three groups, size and shape-based features, image intensity histogram or first-order 

features and features regarding the relationships between image voxels (Rizzo et al., 2018). 

 

2.4.1 Size and shape-based features 
 

Size and shape-based features are extracted using the masks only (the mask is what defines the region 

of interest (ROI)), which means that shape features are independent of the distribution of grey level 

intensities in the image. Examples of shape features are volume, surface, maximum diameter and 

sphericity – which is a measure of roundness. 

 

2.4.2 Image intensity histogram features 
 

Image intensity histogram features, also known as the first-order features involve the histogram and 

is generated based on the intensity level, and the number of bins as shown in Figure 2-5, and in Figure 

2-6. That shows how different bins can affect the histogram and hence the features extracted from it. 

 

 

Figure 2-5 The graph on the right side shows a histogram for the image on the left side after converting it to greyscale, 32 
bins used in this histogram. 
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Figure 2-6 The graph on the right side shows a histogram for the image on the left side after converting it to greyscale, 128 
bins used in this histogram. 

 

Examples of histogram (first-order) features are mean, maximum, minimum, median, range, kurtosis 

illustrated in Figure 2-7 and skewness illustrated in Figure 2-8. 

 

Figure 2-7 Kurtosis values of a normal distribution and a logistic distribution, the fisher=False which means that 3 is 
subtracted from the kurtosis value 
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Figure 2-8 Normal distribution with skewness = 0, positive skewness and negative skewness 
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2.4.3 Voxels relationship features 
 

Voxels relationship features are features regarding the relationships between image voxels such as 

the Grey Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), Grey Level Size 

Zone Matrix (GLSZM) and Neighbouring Grey Tone Difference Matrix features (Griethuysen et al., 

2017). These features describe the changes in the images that cannot be described using the 

histogram, as shown in Figure 2-9. 

A table of the relationship between the voxels is constructed as shown in Figure 2-10 This figure shows 

how the GLCM table is constructed. An example of GLCM features is the contrast, two images with 

different contrast are shown in Figure 2-14. 

GLRLM table construction is illustrated in Figure 2-11, and GLSZM construction is illustrated in Figure 

2-12, and finally, the NGTDM construction is illustrated in Figure 2-13. 

 

 

Figure 2-9 Different images can have similar histograms. The histograms on the right side are similar, but they represent the 
different images shown on the left. 
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Figure 2-10 This figure shows how the GLCM table is constructed. The direction chosen here is from left to right, and the 
GLCM matrix shows the combination of the two values frequency 

 

Figure 2-11 This figure shows how the GLRLM matrix is constructed. The direction chosen here is from left to right, and the 
GLRLM matrix shows the length of the "run". 

 

Figure 2-12 This figure shows how the GLSZM matrix is constructed. The values show the frequency of the size zones for 
each grey level 
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Figure 2-13 This figure shows how the NGTDM matrix is constructed, on the left is the image intensities, and the NGTDM 
matrix is on the right 
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Figure 2-14 The original image is on the top; the image on the bottom is modified to have low contrast value as shown in 
the histogram. Histogram images were generated using ImageJ (ImageJ, n.d.) 
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3 Materials and Methods 
 

All tools used in this research were developed in the Python programming language. The radiomics 

features extractions were completed with the help of pyradiomics package (Computational Radiomics 

System, n.d.). 

The machine used for testing was running Windows 10 on Intel Core i7 8th Generation, eight cores, 8 

GB of RAM. 

 

3.1 Datasets 
 

The Biorad application was tested using several datasets, the head and neck cancer, the Breast cancer 

Wisconsin (diagnostic) and the wine datasets. 

The head and neck cancer dataset was the primary dataset used to test the application. The dataset 

includes CT scan images and 18F-fluorodeoxyglucose PET scan images of 198 cancer patient that 

received radiotherapy at Oslo University Hospital between January 2007 and December 2013. Details 

about the dataset and value distribution are highlighted in Appendix A.1 Head and neck cancer 

patients' dataset. A sample from the dataset is shown in Figure 3-1, and Figure 3-2. The clinical data 

in Appendix A was available for all patients and were added to the features list. 

For binary classification, the disease-free survival data was used. The dataset is balanced, out of 198 

patients, the survival rate was 45.5%.  

Langberg used the same dataset in his thesis (Langberg, 2019), and we are going to compare his results 

with the results obtained from the Biorad application. 

 

Figure 3-1 Stacked CT scan images on the left, the mask that identifies the cancer tumour (Region of Interest) is shown on 
the right image. The images are from one of the patients in the head and neck cancer dataset 
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Figure 3-2 One slice from a cancer patient CT scan, with the mask applied to the right image 

Both Breast cancer Wisconsin (diagnostic) and the wine recognition datasets are part of the scikit-

learn datasets (Dataset - Scikit-Learn, n.d.). The wine recognition dataset has 178 samples, 3 classes 

and 13 features, while the Breast cancer Wisconsin (diagnostic) dataset has 569 samples, 2 classes 

and 30 features. Details on these two datasets can be found in Appendix A.2 Wine recognition dataset 

and Appendix A.3 Breast cancer Wisconsin (diagnostic) dataset. 

 

3.2 Grid and Randomized Search CV 
 

Grid Search CV is an exhaustive model selection from Scikit-learn. It will check all the combinations of 

different hyper-parameter values to get the best model. It can be very slow for large datasets, or a 

large domain of hyperparameters, which makes it not practical in some cases (Raschka & Mirjalili, 

2017). 

Same as the GridSearchCV, the RandomizedSearchCV is a model selection approach from Scikit-learn. 

The difference is that in RandomizedSearchCV, only a fixed number of parameter settings is picked 

from the distribution domain, the values of the parameters are picked randomly and not every 

combination is tested. Figure 3-3 shows the difference between the grid layout and the random layout 

(Bergstra & Bengio, 2012). 

GridSearchCV is optimal for small domains of hyperparameters. Otherwise, GridSearchCV can take a 

very long time to fit if the domain of hyperparameters to choose from is big. RandomizedSearchCV 

can give us very close results to GridSearchCV much faster. The model performance might be slightly 

lower than GridSearchCV, but usually, that would not be carried over to the hold-out test set 

(Comparing Randomized Search and Grid Search  - Scikit-Learn, n.d.). 
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Figure 3-3 This graph shows the difference in the layout between the grid, and the random search, in the X-Axis we have the 
important parameters to tune, and in the Y-Axis the unimportant parameters, with 9 iterations, we see that the grid search 
tests only 3 combinations of the important variables, whereas the random search tests 9 different combinations. Modified 

from (Bergstra & Bengio, 2012) 

 

RandomizedSearchCV uses sampling without replacement if all the tuning parameters are presented 

as a list. If at least one of the parameter is a distribution, then sampling with replacement is used when 

selecting the training set samples(RandomizedSearchCV - Scikit-Learn, n.d.). RandomizedSearchCV 

uses the k-folds cross-validation, which is illustrated in Figure 3-4 
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 Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5   

 Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5   

 Split 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5   

          

    Used in the final evaluation Test data  

          
Figure 3-4 k-folds cross-validation with k=5 (Raschka & Mirjalili, 2017). 
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3.3 Pyradiomics 
 

Pyradiomics is an open-source package written in the Python programming language to extract 

radiomics features for images. The aim of this package was to establish a reference standard for 

radiomics to assist for reproducibility of results. This package supports both the features extractions 

for 2-dimensional and 3-dimensional images (Radiomic Features - Pyradiomics, n.d.). 

Since pyradiomics uses an open-source library called SimpleITK to load and handle images, the same 

applies to the Biorad tool. However, currently, the Biorad application has been tested for the following 

image formats only: TIFF, NRRD and Nifty. 

The mask is what defines the Region Of Interest (ROI), as shown in Figure 2-3 Stacked CT scan images 

on the left, the mask that identifies the cancer tumour (Region of Interest) is shown on the right and 

in Figure 2-4 One slice of the stacked images of a CT scan. The mask applied to the right picture shows 

the ROI (Region of Interest). The provided mask should match the image dimensions, and this 

application assumes the value '1' represents the area to be cropped. Pyradiomics supports using 

different values, but it should be passed in a parameter called 'label'. However, in Biorad, the value 

should not be other than '1'. 

If no mask is provided, then the application will create a mask that covers the whole image; in this 

case, the shape features will not be extracted. 

 

3.4 Pyradiomics Features 
 

Features that can be selected are: 

• First Order Statistics (19 features). 

• Shape-based (3D) (16 features) – Mask should be provided, and the provided image should 

have three dimensions. 

• Shape-based (2D) (10 features) – Mask should be provided, and the provided image should 

have two dimensions. 

• Grey Level Cooccurrence Matrix (24 features) – Default distance is 1, the user can select other 

values. 

• Grey Level Run Length Matrix (16 features). 

• Grey Level Size Zone Matrix (16 features). 

• Neighbouring Grey Tone Difference Matrix (5 features) – Default distance is 1, the user can 

select other values. 

• Grey Level Dependence Matrix (14 features)- default cut-off value is zero, the user can select 

other values (Computational Radiomics System, n.d.). 

Details of the pyradiomics features are available in Appendix C: Pyradiomics features. 
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3.5 SimpleITK 
 

SimpleITK is an open-source image analysis library, available in multiple programming languages, 

including Python (Lowekamp et al., 2013). 

In pyradiomics, the loading and the pre-processing of the images are done by SimpleITK, for that 

reason, image formats that are supported by SimpleITK are supported by pyradiomics library 

(Pyradiomics Documentation, n.d.). The image formats that have been tested in this thesis are NRRD, 

Nifty and TIFF. 

Care should be taken while converting images from one format to another. Spacing and direction are 

two properties that can affect the images if not taken into consideration while converting an image 

from one format to another. The spacing describes the scale of the pixels in each axis, and wrongly 

assigning image direction can rotate the image (SimpleITK Documentation, n.d.). For a demonstration, 

see Figure 3-5. 

 

Figure 3-5 The original MRI image on top, and at the bottom, the image after conversion from nifty to NRRD without 
preserving the spacing and the direction. 
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3.6 Scikit-learn 
 

Scikit-learn is a free Python machine learning library (Pedregosa et al., 2011). It includes various 

classification and regression algorithms and various feature selection algorithms as well (Scikit-Learn, 

n.d.). 

In this thesis, the following classifiers from scikit-learn were used: 

• Extra Trees Classifier 

• Ridge Classifier 

• Logistic Regression 

• Decision Tree Classifier 

• C-Support Vector Classification (SVC) 

And the following feature selectors were used: 

• Mutual information classifier, mutual_info_classif 

• Univariate feature selector with configurable strategy, GenericUnivariateSelect 

• Variance Threshold, VarianceThreshold 

A few other classifiers and feature selectors were also used, and they are covered in later sections. 
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3.7 Feature selection 
 

In most real-world classification problems, many of the candidate features are often partially or 

entirely irrelevant to the target value or are redundant. Those features do not add anything to the 

target value. Furthermore, with large datasets, it is necessary to reduce the number of features to 

improve the running time of the classification algorithms (Dash & Liu, 1997).  

Having irrelevant features in the dataset can negatively affect the performance and the accuracy of 

the models because it makes the model learn based on those irrelevant features. Feature selection is 

done either by manually or automatically selecting those features which are more descriptive to the 

response variable (Shaikh, 2018). Therefore, in addition to reducing the training time, using feature 

selection can also improve accuracy by minimising the misleading data. Moreover, reducing the 

overfitting - the less amount of redundant data, results in the lesser the chance of making decisions 

based on noise. Keeping irrelevant data in the dataset can cause the machine-learning algorithm to 

make decisions based on those data that can be by chance relevant only to the training set, and for 

the test set the result will be negatively affected (Brownlee, 2014). The error in the classifiers usually 

decreases then increases as the number of features grows (Hua et al., 2005). For datasets with small 

samples, a large number of features can result in overfitting, and it is suggested that the optimal 

number of features is the optimal feature size which is around n – 1 where n is the number of samples 

(Hua et al., 2005). 

Five feature selection algorithms are used in this application, Univariate Filter Methods (Mutual 

Information, Fisher Score) and Multivariate Filter Methods (ReliefF) and the Variance Threshold. These 

algorithms were chosen because they run fast for a large number of features, and many of them gave 

good results for an experiment done by Langberg in his thesis (Langberg, 2019) 

 

3.7.1 Univariate Filter Methods 
 

Univariate filter methods for feature selection examine each feature individually and examine it for 

its relationship with the response variable. These methods are simple and fast to run, and they give a 

good understanding of the data. However, they are not always good in optimizing the features for 

better generalization and can lead to a sub-optimal subset of features (Feature Selection – Part I, n.d.). 

Two univariate filter methods are used in Biorad application; Mutual information and Fisher score. 

 

3.7.1.1 Mutual Information 

 

Mutual information selector estimates the values of the mutual information (MI) between the feature 

and the response variable, which is a non-negative value that measures the dependencies between 

two variables. The only parameter available in Biorad for mutual information is the number of features 

to select (Brown et al., 2012). 

The mutual information selector used in Biorad is part of the scikit-learn Python package. 
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3.7.1.2 Fisher Score 

 

Fisher score is one of the most used feature selection methods; it is a measure of the amount of 

information a variable is carrying about another variable. Fisher score has the same limitation as other 

univariate filter methods (Gu et al., n.d.). 

The Fisher score method used in Biorad is part of the skfeature-chappers Python package (Siu, 

2017/2020). 

 

3.7.2 Multivariate Filter Methods 
 

In Biorad, one multivariate filter method is used, which is the ReliefF. While univariate methods only 

examine one feature at a time, the multivariate filter methods consider the mutual relationship 

between features. For that reason, multivariate filter methods are effective in removing the 

redundancy in features (R. J. Urbanowicz, Meeker, et al., 2018). 

 

3.7.2.1 ReliefF 

 

ReliefF assigns scores for all the features. These scores range from -1 (worst) to 1 (best). The weight 

estimates the relevance of the feature to the response variable and since it is a multivariate filter 

method, it takes into account the relationship between the features (R. J. Urbanowicz, Meeker, et al., 

2018). 

For tuning, in addition to the number of features to select, one more hyperparameter can be tuned in 

Biorad which is the number of neighbours (n_neighbors). The n_neighbors defines the number of 

neighbours to consider in assigning features scores, for more clarification, refer to Figure 3-6. Larger 

numbers may give more accurate scores but it takes a longer time to process (Using Skrebate - Scikit-

Rebate, n.d.). 

ReliefF method used in Biorad is a part of skrebate Python package (R. S. O. Urbanowicz Pete Schmitt, 

and Ryan J., n.d.). 
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Figure 3-6 ReliefF number of neighbours, the target is the average distance of all pairs of the training data, and we are 
looking for the nearest neighbours from the target, Modified from (R. J. Urbanowicz, Olson, et al., 2018). 

 

3.7.2.2 MultiSURF 

 

MultiSURF is another multivariate selection method that has been tested by Langberg in his thesis 

(Langberg, 2019). It is an extension of the ReliefF algorithm, and the advantage of using it instead of 

ReliefF is that it can automatically determine the ideal value of the number of neighbours (Using 

Skrebate - Scikit-Rebate, n.d.). The classification scores were good in Langberg’s thesis and also in the 

early testing of Biorad. Nevertheless, as mentioned earlier, one of the criteria for choosing algorithms 

in Biorad was the execution speed, and the MultiSURF is a very slow algorithm for a large number of 

features. That is why the MultiSURF was not added to Biorad. 

 

 

3.7.3 Variance Threshold 
 

Variance threshold selector removes features with variance below a threshold value 

(VarianceThreshold - Scikit-Learn, n.d.). For that reason, it is crucial to avoid scaling the features before 

using this method. In Biorad, for variance threshold, the scaling of the features is done after the 

feature selection. The threshold value used for data selection is the only hyperparameter to tune in 

Biorad. 

The variance threshold selector used in Biorad is part of the scikit-learn Python package. 
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3.8 Classifications 
 

In Biorad, six different binary classifications are used: Ridge, Light Gradient Boosting Machine 

(LightGBM), Support Vector Classification (SVC), Decision Tree, Logistic Regression, and Extra Tree. All 

of the classifier implementations used are from skit-learn, except the LightGBM, which is provided by 

LightGBM python package (LightGBM Documentation, n.d.). These classifiers were used in the first 

version of Biorad, and they performed well with the radiomics data (Langberg, 2019). 

 

3.8.1 Ridge regression 
 

Ridge classifier treats the classification problem as a regression after converting the target values into 

-1 and 1. 

In the Biorad application, the alpha parameter is used for the regularization, which is used to reduce 

the variance and control the overfitting. The bigger the alpha value, the stronger is the regularization. 

The type of regularization in ridge regression is L2 (Raschka & Mirjalili, 2017). 

The ridge classifier used in Biorad is part of the scikit-learn Python package. 

 

3.8.2 Light gradient boosting machine (LightGBM) 
 

Light gradient boosting machine (LightGBM) is a tree-based learning algorithm. This algorithm was 

selected to be used in Biorad because of its fast training speed and low memory usage. It also supports 

parallelisation, and it is capable of handling large-scale data (Mandot, 2018). 

The hyperparameters used in Biorad for tuning the model are: 

• max_depth: limit the maximum depth of the tree model; smaller values can help to deal with 

overfitting. 

• num_leaves: limit the maximum number of leaves in each single tree. 

• min_child_samples: also known as minimum data in leaf, and it helps to deal with overfitting. 

LightGBM is available via a free Python package called lightgbm (LightGBM Documentation, n.d.). 

 

3.8.3 C-Support Vector Classification 
 

SVC is known as C-Support Vector Classification. This classifier is not practical for a large number of 

samples, because the training time exhibits quadratic growth with the number of samples 

(Sklearn.Svm.SVC — Scikit-Learn 0.23.1 Documentation, n.d.). Nevertheless, the number of samples 

usually is not very large in radiomics which makes this classifier practical. 

The regularization parameter used in Biorad for this classifier is the "C". The strength of the 

regularization and the value of "C" is inversely proportional; the type of regularization is L2 

(Sklearn.Svm.SVC — Scikit-Learn 0.23.1 Documentation, n.d.). The kernel used in Biorad is the default 

in the classifier, which is 'rbf'. 
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The SVC classifier used in Biorad is part of the scikit-learn Python package. 

 

3.8.4 Decision Tree 
 

Decision tree is a supervised machine learning method that infers a set of decisions by portioning the 

features. They usually tend to overfit when the dataset has many features, like in the case of radiomics 

data (Decision Trees - Scikit-Learn, n.d.). 

Two regularization parameters are used in Biorad to tune the decision tree classifier: 

• min_samples_leaf: If the number of training samples in either the left or right of the leaf is 

not greater than or equal to the min_samples_leaf value, then the split will not be considered. 

• max_depth: The maximum depth of the tree, the default value is None, where the nodes of 

the tree are expanded until the number of samples per leaf is less than the min_samples_split 

value, or until all leaves are pure. 

The decision tree classifier used in Biorad is part of the scikit-learn Python package. 

 

3.8.5 Logistic Regression 
 

Logistic regression is a linear classifier; it assigns probabilities for each class. For regularization the 

parameter 'C' was used, and it is similar to the same parameter in SVC, it is inversely proportional to 

the regularization strength(Sklearn.Linear_model.LogisticRegression — Scikit-Learn 0.23.1 

Documentation, n.d.). The regularization used in Biorad is the classifier default value which is 'L2'. 

The logistic regression classifier used in Biorad is part of the scikit-learn Python package. 

 

3.8.6 Extra Tree classifier 
 

Extra tree classifier, also known as Extremely randomized trees is a tree-based classifier. It is an 

ensemble classifier that fits multiples of randomized decision trees on different subsets of the training 

data. The classifier uses the average of all the trees which helps control the overfitting and improves 

the results (Geurts et al., 2006). 

For regularization, min_samples_leaf parameter is used, and it is similar to the same parameter in the 

decision tree classifier. It restricts the splits of the leaves which helps to control the overfitting. 

The extra tree classifier used in Biorad is part of the scikit-learn Python package. 

 

3.9 t-test for difference of means between two samples 
 

To check if the two results from the Biorad are statistically significantly different, we used the t-test. 

In this test, we assume a hypothesis about the distribution of the variables in the population, then we 
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either accept or reject this hypothesis with a certain probability of error (Sá, 2007). In Biorad, our 

hypothesis would be that there is no difference between two scores from the selectors/classifiers 

cross-validation, then based on the probability of error we either accept or reject this hypothesis. 

The calculation of the t-test was done using an online calculation tool from GraphPad (GraphPad 

QuickCalcs: T Test Calculator, n.d.).  
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4 Biorad Application 
 

The biorad application was developed using the PythonTM programming language. The code is 

available at https://github.com/ahmedalbuni/biorad. 

 Biorad consists of two different modules, the feature extraction, and the feature selection and 

classification module. These two modules are entirely independent of each other, and the user can 

run each one separately. The radiomics features extracted from the feature extraction module can be 

analysed using other applications, and the features selection and classification module can be used to 

analyse any binary or multiclass classification problem, not just radiomics data. 

The installation guide of the software is available in Appendix B: Biorad installations and use 

instructions. 

 

4.1 Features extraction module 
 

The feature extraction module is used to generate radiomics features for medical and non-medical 

images. The user can select the group of radiomics feature needed for the analysis. This module 

provides a command-line interface for the users, which makes the feature extraction possible without 

programming. 

 

4.1.1 Input and configurations 
 

The command-line interface of the feature extraction module requires a specific CSV file format as 

shown in Figure 4-1. Sample extraction module parameters for the CSV input file 

This CSV file should have the following fields: 

• image_dir: This should contain the paths of the images. 

• mask_dir: This should provide the paths of the images' masks, make sure the mask names 

match the names of the corresponding images. If there is more than one mask for each image, 

then a new row for each mask should be inserted in this CSV file. 

• output_file_name: The desired name of the output file. If the path is not included with the file 

name, then the files will be created at the current working directory in the command line 

window. 

• bin_width: The default bin width in pyradiomics in 25, each bin represents specific greyscale 

intensity values, for demonstration of the effect of different bin widths on the results check   

Figure 2-5 and Figure 2-6. The user can use a different value if required. 

• shape: if it has a value of '1', then the shape features will be generated. These features will 

depend on the image dimensions. 2D Shape features will be extracted for 2-dimensional 

images, and 3D shape features for 3-dimensional images. 

• first_order: if it has a value of '1', first-order features will be extracted. 

• glszm: if it has a value of '1', the grey level size zone matrix features will be extracted. 

• glrlm: if it has a value of '1', grey level run length matrix features will be extracted. 

https://github.com/ahmedalbuni/biorad
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• ngtdm: if it has a value of '1', neighbouring grey tone difference matrix features will be 

extracted. 

• gldm: if it has a value of '1', grey level dependence matrix features will be extracted. 

• glcm: if it has a value of '1', grey level cooccurrence matrix features will be extracted. 

 

 

Figure 4-1. Sample extraction module parameters for the CSV input file. 
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The features selection tool has additional parameters, as shown in Figure 4-2. 

These parameters are: 

• glcm_distance: This specifies the distances between the centre voxel and the neighbours used 

for GLCM features generation. The list should be provided with a comma-separated list, 

without spaces. More on GLCM table in 2.4.3 above. 

• ngtdm_distance: This specifies the distances between the centre voxel and the neighbours 

used for NGTDM features generation. The list should be provided with a comma-separated 

list, without spaces. 

• gldm_distance: This specifies the distances between the centre voxel and the neighbours used 

for GLDM features generation. The list should be provided with a comma-separated list, 

without spaces. 

• gldm_a: An integer value, α cut-off value for dependence. A neighbouring voxel with grey level 

j is considered dependent on centre voxel with grey level i if |i−j|≤α (Radiomic Features - 

Pyradiomics, n.d.). 

 

 

Figure 4-2. Additional parameters to be specified for the feature selection tool. 
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Once the user enters all the required parameters, the progress screen will look like the one in Figure 

4-3. 

 

Figure 4-3. A screenshot of the command-line interface (CLI) of the feature extraction tool. 

 

4.1.2 The output 
 

The feature extraction module generates as output, CSV files that contain the name of the images, 

along with the features. 

For each folder provided, the tool will generate a CSV file that contains the file names along with the 

selected groups of pyradiomics features, like the sample output in Figure 4-4. 

 

Figure 4-4: Sample feature extraction output CSV file generated by the feature extraction tool. 
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4.2 Feature selection and classification module 
 

The feature selection and classification module is one of the two modules of the Biorad application. 

Optimal parameters will be selected using Randomized Search CV that was discussed in 3.2 above. 

 

4.2.1 Data Scaling 
 

Many machine learning algorithms required the data to be standardized, and they might misbehave if 

the data does not look like a standard distribution. Scikit-learn standard scaler standardizes the 

features by removing the mean and scales them by the unit variance (StandardScaler - Scikit-Learn, 

n.d.). 

In Biorad application, the StandardScaler from scikit-learn is used to scale the data. The data are scaled 

before the feature selection except for Variance Threshold because this algorithm is based on the 

variance of the data which will be lost if the scaling is done before. 

 

4.2.2 Scoring 
 

The Biorad application supports different scoring metrics. For binary classification the following are 

supported (Raschka & Mirjalili, 2017): 

• roc_auc 

• accuracy 

• f1-score 

• precision 

• recall 

For multiclass classification the following are supported (Raschka & Mirjalili, 2017): 

• accuracy 

• f1_micro 

• f1_macro 

• f1_weighted 

• precision_micro 

• precision_macro 

• precision_weighted 

• recall_micro 

• recall_macro 

• recall_weighted 

By using the confusion matrix illustrated in Table 4-1 Confusion matrix, we can calculate some of the 

different scoring used in the Biorad feature selection and classification module. 

Table 4-1 Confusion matrix 
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Confusion 
matrix Predicted False Predicted True 

Actual value 
False 

True Negative 
(TN) 

False Positive 
(FP) 

Actual value 
True 

False Negative 
(FN) 

True Positive 
(TP) 

 

The following shows the calculation of some scoring metrics using the confusion matrix: 

• Accuracy = (TP+TN)/total predictions 

• Precision = TP/(FP+TP) 

• Recall = TP/(FN+TP) 

• F1 = 2 x (Precision * Recall)/(Precision + Recall) 

The micro average for multiclass classification is calculated from individual confusion matrixes, while 

the macro average is calculated as the average of the different systems. The micro average is used 

when the user wants to evaluate each prediction equally, and the macro average is used to weight all 

classes equally to get the overall performance (Raschka & Mirjalili, 2017).  

For imbalanced datasets, the accuracy usually is not the best choice for scoring the classification 

model, the best scoring depends on what we care about in the classification problem, for example, if 

our goal is to identify most of the malignant cancer patients, then the recall should be used. However, 

if we are identifying spam emails, and we do not want to label a genuine email as spam by mistake, 

then the precision would be more suitable in this case. F1 score also is good to deal with imbalanced 

data, and it is a combination of precision and recall (Raschka & Mirjalili, 2017).  
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4.2.3 Parallelisation 
 

Parallelisation is a part of the Scikit-learn implementation of the RandomizedSearchCV used in the 

Biorad tool. It is possible to choose the number of jobs in the configuration JSON file shown in Figure 

4-5. However, by utilising the power of parallelisation, we lose the producibility of the results because 

the order of running the various jobs cannot be guaranteed, which means every time we run the same 

configuration file the results can differ even though we are using the same seed number. So, if the 

producibility is essential, then the user should opt off this feature. 

 

4.2.4 Settings 
 

The settings to be provided in order to use the tool should be in a specific JSON format. A sample 

configuration JSON file is provided in the root directory of the Biorad application on GitHub 

(config.json). This file is to be validated using a JSON schema file for errors before being processed. A 

snippet from the sample JSON file is shown in Figure 4-5. 

The JSON file consists of several parts: 

• The General configurations 

• Feature selectors configurations 

• Classifiers configurations 
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Figure 4-5: A snippet of a sample configuration JSON file. 

 

4.2.4.1 General configurations 

 

The general configurations such as the number of CV folds, seed number, parallelisation, the number 

of iterations to try out the hyperparameters combinations, and the dataset, the user will need to 

provide a JSON file with the parameters are specified in Table 4-2. There are no default values for 

these parameters, but a sample configuration file with sample parameter values is available within 

the application. 

Table 4-2 General configurations for Biorad feature selection and classification module. 

CV Integer, the number of cross-validation folds 
should be greater than 2. 

SEED Integer: The random seed number – used for 
reproducing the results. 

N_JOBS Parallelisation 
1: No parallelisation – choose this for 
reproducibility 
-1: Use all available cores. 
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Other positive integers – max (number of 
available CPU cores, provided number) will be 
used. 

MAX_EVALS Integer: Maximum number of parameter 
settings for both classifiers and features 
selectors together, to be tried out. Choose a 
higher number for better accuracy, and a lower 
number for faster processing. 

features_file The path of the input CSV file the contains the 
dataset along with the response variable as the 
last field.  

output_dir The directory to store the output files 

 

 

4.2.4.2 Feature selector configurations 

 

The configurations related to the hyperparameters for the feature selectors are described in Table 

4-3. Same as the general configuration, there are no default values for these parameters. 

Table 4-3 The hyperparameters configurations for the feature selectors in Biorad. 

ReliefF 

n_neighbors_from The number of neighbours to consider when 
assigning feature importance scores. 

n_neighbors_to Integer, the maximum number of neighbours to 
consider. 

n_features_to_select_from Integer, the minimum number of features to 
select. 

n_features_to_select_to Integer, the maximum number of features to 
select. 

VarianceThreshold 

threshold_from Features with variance less than this value will 
be removed. 

threshold_to The maximum threshold value to consider. 

mutual_info 

param_from Integer, the minimum number of features to 
select. 

param_from Integer, the maximum number of features to 
select. 

fisher_score 

param_from Integer, the minimum number of features to 
select 

param_from Integer, the maximum number of features to 
select 

 

 

4.2.4.3 Classifier configurations 
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The configurations related to the hyperparameters for the feature selectors are described in Table 

4-4. Same as the general configuration, there are no default values for these parameters. 

Table 4-4 The hyperparameters configurations for the classifiers in Biorad 

Ridge 

alpha_from Regularisation strength. Should be a positive 
float value. 

alpha_to Maximum Alpha value to consider. 

LGBM 

max_depth_from Integer, the depth of the tree model start value, 
to deal with overfitting 

max_depth_to Integer, the maximum depth of the tree model. 

num_leaves_from Integer, 1 < num_leaves <= 131072 

num_leaves_to Integer, 1 < num_leaves <= 131072 

min_child_s_from Integer, > 0, Minimum child samples start value, 
also called min_data_in_leaf. 

min_child_s_to Integer, > 0, Minimum child samples end value, 
also called min_data_in_leaf. 

SVC 

C_from Positive float value. It is the inverse of 
regularisation strength. 

C_to The maximum C value for the regularisation. 

LR 

C_from Positive float value. It is the inverse of 
regularisation strength. 

C_to The maximum C value for the regularisation. 

 
 

4.2.5 The output 
 

The Biorad feature selection and classification module generates several output files, one of them is 

the heatmap of the cross-validation scores of all the Biorad feature selectors and classifiers, an 

example of which is shown in Figure 4-6. The heatmap data will be stored in a CSV file to make it easier 

for further analysis as shown in Figure 4-7. 
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Figure 4-6 An example of a heatmap of the cross-validation for the Scikit-learn breast cancer dataset. 

 

 

Figure 4-7 The cross-analysis scores for the breast cancer dataset. 

 

Also, one CSV file per feature selector is generated by this module. The CSV file includes the optimal 

hyperparameters selected, train and test scores, the standard deviation of train and test scores, time 

elapsed in each test, the features selected and the features scores given by the feature selector 

algorithm, see Figure 4-8. One additional CSV file will be created for running the classifiers without 

feature selection. 
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Figure 4-8 The CSV file that contains the details of experiments run with the ReliefF feature selector. 

 

Another output is the features frequency file that displays how many times each feature got selected 

by the different feature selectors across all the cross-validation tests. An example is shown in Table 

4-5. 

Table 4-5 Most selected features using Biorad from the scikit-learn breast cancer dataset. 

Features Selection 
count 

Frequency 

worst texture 24 100% 

worst radius 24 100% 

worst area 23 96% 

mean perimeter 23 96% 

perimeter error 21 88% 

area error 20 83% 

worst concave points 18 75% 

worst perimeter 18 75% 

mean concave points 18 75% 

mean radius 17 71% 

mean area 17 71% 

mean concavity 17 71% 

worst concavity 16 67% 

radius error 16 67% 

mean texture 12 50% 

 

As we are running 24 different tests with feature selectors, which is four different features selector 

multiplied by six different classifiers, then the selection count of 24 means that this feature was 

selected in all the tests. 

And finally, the log file which includes the start time, end time and the JSON file used for 

configurations. 
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5 Results and discussions 
 

Multiple tests were performed to test the Biorad application in both extracting the radiomics features 

and the cross-analysis between the feature selectors and the classifiers. In this chapter, we discuss 

those results and compare some of them to other studies that were done using the same data. 

 

5.1 Extracting radiomics features 
 

Tests in chapters 5.2 and 5.3 were done using the head and neck dataset. Overview of the dataset is 

available in Appendix A.1 Head and neck cancer patients' dataset. 

The radiomics features were extracted from the head and neck cancer dataset using the feature 

extraction module in Biorad with default settings, bin width used for CT scan images was five and for 

PET scan images were 0.2. A total of 89 textural features from the PET scan images and 89 textural 

features from the CT scan images were extracted in addition to 14 shape features. 

 

5.2 Selecting the optimal parameters 
 

An experiment was done with both Grid search CV and Randomized Search CV, which are both used 

for parameter tuning by selecting the optimal hyperparameters for both feature selector and 

classifiers among a pool of provided ranges and discreet values. From the result of the experiment, it 

shows that RandomizedSearchCV can give very close results to the GridSearchCV, but it takes a much 

shorter time to do so, as shown in Figure 5-1 GridSearchCV results with 80 iterations, the time elapsed 

was 14.92 seconds. And in Figure 5-2 RandomizedSearchCV with 80 iterations results, the time elapsed 

2.66 seconds. 

According to Scikit-learn, the performance of RandomizedSearchCV might be slightly worse, but that 

is likely due to noise, and would not be carried to the test set (Comparing Randomized Search and Grid 

Search  - Scikit-Learn, n.d.). 

 

5.2.1 Grid Search CV 
 

A simple test was performed with the head and neck cancer dataset mentioned in 3.1 above, including 

all the radiomics features from both CT/PET scan images and the clinical factors. The domain of the 

hyperparameters was: 

• Ridge regression alpha: 1 to 20 

• Fisher score number of features to select: 10 to 40 

The total number of hyperparameters combinations to try in GridSearchCV was 20 multiplied by 31 + 

20 where no feature selector is used, so the total size of the domain is 640. Two CV folds were used 

in the experiment. The results are shown in Figure 5-1, the total time taken was 14.92 seconds. 
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Figure 5-1 GridSearchCV results with 80 iterations, the time elapsed was 14.92 seconds. 

 

5.2.2 Randomized Search CV 
 

A similar experiment to the one in 5.2.1 above was conducted, but with RandomizedSearchCV, using 

'80' as the maximum number of interactions to try out hyperparameters configurations. Results are 

shown in Figure 5-2. 

 

Figure 5-2 RandomizedSearchCV with 80 iterations results, the time elapsed 2.66 seconds. 
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5.2.3 MultiSURF 
 

For testing the MultiSURF, it was added temporary to Biorad, and we ran the application for the head 

and neck dataset using all radiomics and clinical features. The number of iterations was 10, and the 

number of CV folds was 5. The ReliefF experiment took 46 seconds to complete (number of 

neighbours' range was from 1 to 3), while the MultiSURF took 11 minutes and 3 seconds, which means 

it is more than 14 times slower than the ReliefF. 

On the other hand, the ReliefF results on average were only 0.04% better than MultiSURF, as shown 

in Figure 5-3. 

 

Figure 5-3 MultiSURF and ReliefF performance for the head and neck cancer dataset 

 

  

5.3 Head and neck cancer dataset 
 

In the first test, only clinical data in Appendix A.1 Head and neck cancer patients' dataset were used, 

the purpose of the test is to assess how the clinical data alone will perform in predicting the disease-

free survival rate, compare the results to other studies on the same dataset and the added value of 

the radiomics features when they are added later. The maximum number of iterations to try different 

hyperparameter configurations was 80.  

All settings used to run the test are stated in Table 5-1 for general settings, Table 5-2 for features 

selectors settings, and Table 5-3 for classifiers settings. 

 

Table 5-1 General settings for the first test. 

CV 5 

SEED 123 

N_JOBS 1 
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MAX_EVALS 80 

 

Table 5-2 Feature selectors configurations for the first test. 

ReliefF 

n_neighbors_from 1 

n_neighbors_to 3 

n_features_to_select_from 5 

n_features_to_select_to 10 

VarianceThreshold 

threshold_from 0.1 

threshold_to 0.9 

mutual_info 

param_from 5 

param_from 10 

fisher_score 

param_from 5 

param_from 10 

 

Table 5-3 Classifiers configurations for the first test. 

Ridge 

alpha_from 1 

alpha_to 5 

LGBM 

max_depth_from 2 

max_depth_to 10 

num_leaves_from 3 

num_leaves_to 20 

min_child_s_from 2 

min_child_s_to 5 

SVC 

C_from 1 

C_to 5 

LR 

C_from 1 

C_to 2 

 

The test took 11 minutes and 20 seconds. The best result we got from this test was from the Ridge 

classifier with combination with ReliefF feature selection method 0.745±0.035, 0.035 is the standard 

error Logistic Regression and Extra Tree both gave good results also, 0.744±0.036 and 0.72±0.023, 

respectively. Cross-validation results are shown in Figure 5-4. 
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Figure 5-4 Heatmap for running the classification tool with 80 iterations, only clinical data from the head and neck cancer 
dataset were used to generate this graph. 

Selected features in all the feature selectors and classifiers combinations are shown in Figure 5-5, A 

total of 24 experiments with features selection was conducted, and this table shows how many times 

each feature was selected among these experiments. The Pack Years Smoking features were selected 

by all feature selection methods in combination with all classifiers. 
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Figure 5-5 Most selected features in all classifiers and feature selectors in Biorad for the head and neck cancer dataset 
when using the clinical data only. 

 

Table 5-4 shows the number of selected features, test scores, standard deviation between the five 

cross-validation folds and the standard error for the best score by algorithm. From Figure 5-6, we 

picked the least overlapping two values by the standard error, which are the mutual information and 

the fisher score and performed the t-test to check if they are statistically significant. 

P-value and statistical significance: 

The two-tailed P value equals 0.2920 

By conventional criteria, this difference is considered to be not statistically significant. 

Confidence interval: 

The mean of Mutual Info minus Fisher Score equals 0.03000 

95% confidence interval of this difference: From -0.03132 to 0.09132 

Intermediate values used in calculations: 

t = 1.1281 

df = 8 

standard error of difference = 0.027 

This statistical calculation was done by GraphPad (GraphPad QuickCalcs: T Test Calculator, n.d.). 

 

Table 5-4 Number of selected features, test scores, standard deviation and the standard error for the best score by 
algorithm. 

Selection algorithm Number of 
selected 
features 

Test scores  Test scores 
standard 
deviation 

Standard 
error 

ReliefF 8 0.745 0.078 0.035 

Mutual Information 9 0.742 0.040 0.018 

Fisher Score 9 0.712 0.044 0.020 

Variance Threshold 13 0.736 0.064 0.029 
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No feature selection 13 0.741 0.077 0.034 

 

 

 

 

Figure 5-6 Feature selectors average scores with the standard error. 

 

Figure 5-7 from Langberg thesis shows the results he got from the clinical factors only: In these results 

and in Biorad results, the Logistic regression and the ridge classifier performed better than the other 

classifiers. In Biorad, some of the tests scores were better than expected, and the variance was small 

in Mutual Information selector, they were better than the results obtained by Langberg experiments 

in Figure 5-7. But we do not have the standard deviation of Langberg's results so we could not do 

statistical tests to check the significance of the difference in these results. 
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Figure 5-7 scores from the clinical factors only (Langberg, 2019), with permission. 

 

The second test was done using the radiomics features from both CT scan images and PET scan images, 

without including the clinical data. The purpose of this test was to see if the radiomics features alone 

had enough information to describe the response variable (disease-free survival) and also to compare 

the results with the clinical data in the previous test. The configurations used were very similar, except 

for the number of features to select. Here we used 10 to 35 instead of 5 to 10, and the maximum 

depth of the lgbm tree used was 5 to 50 instead of 2 to 10, and the maximum depth for decision tree 

was 10, 20, 50 instead of 2, 5, 10. Those changes were necessary because of the size of the features; 

192 features compared to only 13 features when the clinical data were used. 

The test took 47 minutes and 24 seconds to complete, and the results are shown in Figure 5-8. 
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Figure 5-8 Heatmap for running the classification tool with 80 iterations, both CT scan images and PET scan images from 
the head and neck cancer dataset were used to generate this graph 

In this dataset, the SVC classifier has done the best among the other classifiers, and with combination 

with ReliefF feature selector the AUC was 0.725±0.047. However, the standard deviation among the 

five different CV fold was 0.10475, which is much higher than the clinical data test. Table 5-5 shows 

the number of selected features, test scores, standard deviation between the five cross-validation 

folds and the standard error for the best score by algorithm. From Figure 5-9, we picked the least 

overlapping two values by the standard error, which are the Refieff and the variance threshold and 

performed the t-test to check if they are statistically significant. 

P-value and statistical significance: 

The two-tailed P value equals 0.2217 

By conventional criteria, this difference is considered to be not statistically significant. 

Confidence interval: 

The mean of ReliefF minus VarianceThreshold equals 0.08800 

95% confidence interval of this difference: From -0.06514 to 0.24114 

Intermediate values used in calculations: 

t = 1.3251 

df = 8 

standard error of difference = 0.066 (GraphPad QuickCalcs: T Test Calculator, n.d.). 

 

Features that were selected more than 50% of the times in all the feature selectors, classifiers 

combinations are shown in Figure 5-10.  
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Table 5-5 Number of selected features, test scores, standard deviation and the standard error for the best score by 
algorithm. 

Selection algorithm Number of 
selected 
features 

Test scores  Test scores 
standard 
deviation 

Standard 
error 

ReliefF 25 0.725 0.105 0.047 

Mutual Information 29 0.708 0.107 0.048 

Fisher Score 29 0.706 0.107 0.048 

Variance Threshold 128 0.637 0.105 0.047 

No feature selection 129 0.689 0.096 0.043 

 

 

Figure 5-9 Feature selectors average scores with the standard error. 
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Figure 5-10 Most selected features in all classifiers and feature selectors in Biorad for the head and neck cancer dataset 
while using the radiomics features only for both CT and PET scan images. Shape features are in green, and texture features 

are in blue 

The shape features were the most informative to the output variable. The top six selected features 

were all shape features. The MajorAxisLength and the Maximum2DDiameterColumn were selected by 

all the features selectors with combination with all classifiers. This means that the model is mostly 

using the gross tumour volume for classifications. The correlations between the selected textural 

features and the volume should be examined. In another study by Welch, the model predictions were 

made using the volume information only, and that is one of the radiomics vulnerabilities (Welch et al., 

2019). 

 

The third test was conducted using both clinical data and radiomics features from both CT scan images 

and PET scan images. The purpose of this test was to see if adding the radiomics feature can provide 

us with additional information about the response variable or not. The configurations used were 

similar to the second test. Results are shown in Figure 5-11 The test took 49 minutes and 34 seconds 

to complete. 
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Figure 5-11 Heatmap for running the classification tool with 80 iterations, both CT scan images and PET scan images from 
the head and neck cancer dataset were used to generate this graph, the clinical data also were added. 

The best result is improved compared to using clinical data, or radiomics only, with an AUC of 

75.6±0.028 here, 72.5±0.47 for radiomics data only, and 74.5±0.035 when using clinical data only. The 

test score standard deviation for the best result was also improved, and it was 0.06168. However, that 

small improvement in the results does not give us hard evidence that the radiomics features had 

actually given us advantages, especially with the high variance in the results shown by the standard 

deviation. Table 5-6 shows the number of selected features, test scores, standard deviation between 

the five cross-validation folds and the standard error for the best score by algorithm. From Figure 5-12, 

we picked the least overlapping two values by the standard error, which are the Relief and no selection 

algorithm, and performed the t-test to check if they are statistically significant. 

P-value and statistical significance: 

The two-tailed P value equals 0.2522 

By conventional criteria, this difference is considered to be not statistically significant. 

Confidence interval: 

The mean of Group One minus Group Two equals 0.04800 

95% confidence interval of this difference: From -0.04170 to 0.13770 

Intermediate values used in calculations: 

t = 1.2340 

df = 8 

standard error of difference = 0.039 (GraphPad QuickCalcs: T Test Calculator, n.d.). 

 

 



Results and discussions 

48 
 

Table 5-6 Number of selected features, test scores, standard deviation and the standard error for the best score by 
algorithm. 

Selection algorithm Number of 
selected 
features 

Test scores  Test scores 
standard 
deviation 

Standard 
error 

ReliefF 11 0.756 0.062 0.028 

Mutual Information 29 0.725 0.099 0.044 

Fisher Score 19 0.708 0.115 0.052 

Variance Threshold 136 0.706 0.072 0.032 

No feature selection 205 0.708 0.061 0.027 

 

 

 

Figure 5-12 Feature selectors average scores with the standard error. 
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Figure 5-13 Results of clinical factors in addition to the radiomics data (Langberg, 2019), with permission. 

 

Figure 5-14 Average AUC for 40 tests of classification algorithms in combination with the feature selectors. The dataset 
includes features extracted from the square root transformed PET and CT images, shape properties and clinical factors. 

These results were obtained by Midtfjord in her thesis using the same head and neck cancer dataset (Midtfjord, 2018), with 
permission. 

By comparing the results of the test done in Biorad with both Langberg results in Figure 5-13 and 

Midtfjord results in Figure 5-14, we notice that the best results are very similar between the last two, 

but the Biorad achieved higher AUC, that might be partially because of the high variance in the results 

between the different CV folds. However, in both Biorad and Midtfjord results, the ReliefF was the 

best feature selector. 
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The two most selected features were the same as the previous test, and the third one was the first 

one on the first test, where we used the clinical data only as shown in Figure 5-15. 

 

Figure 5-15 Most selected features in all classifiers and feature selectors in Biorad for the head and neck cancer dataset 
while using both radiomics and the clinical data. Shape features are in green, texture features are in blue and medical 

factors are in orange. 
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Figure 5-16 The rate of the most selected features regardless of the category, results from  (Langberg, 2019), with 
permission. 

 

In both Figure 5-15, the most selected features by Biorad and Figure 5-16, the most selected features 

in Langberg's thesis, we notice the dominance of the shape features in the list, which brings us back 

to Welch's study (Welch et al., 2019).  

 

Below are more details about the selected features by each selector. The mutual information score 

for the top 15 features is shown in Figure 5-17. The mutual info score did not give the clinical data high 

scores. The highest scores are for the ECOG and was rated as the 23rd feature, and the Pack Years 

Smoking which was rated as the 35th feature. Most selected features by Variance Threshold are shown 

in Figure 5-18, and it includes textural features only. 
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Figure 5-17 Average mutual information score among all the experiments, head and neck cancer dataset used with CT, PET 
scan images and the clinical data. Shape features are in green, and texture features are in blue 

 

The variance that is used in variance threshold favoured the radiomics features also, as shown in 

Figure 5-18. 

 

Figure 5-18 Top features by variance (logarithmic scale), head and neck dataset, CT, PET scan images and Clinical data. All 
top variance features are texture features 
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Only the multivariate filter selection, which is the ReliefF method favoured the clinical data, and at the 

same time, it did perform best in almost all classifiers. The top features shown in Figure 5-19. and in 

Figure 5-20. So, it would be a good idea to add more multivariate filter methods to the Biorad 

application in the future, as the univariate methods seem to select sub-optimal subsets of the 

features. The Fisher scores are unfortunately not available in Biorad because the method used does 

not provide a way of retrieving the scores. 

 

 

Figure 5-19 ReliefF top score features when the number of neighbours = 2. Shape features are in green, texture features are 
in blue and medical factors are in orange. 

 

 

Figure 5-20 ReliefF top score features when the number of neighbours = 1. Shape features are in green, texture features are 
in blue and medical factors are in orange. 
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In five out of six experiments with ReliefF, the number of neighbours selected was 2, and in the 

remaining experiment it was 1. So, another experiment was conducted to estimate the best range to 

tune the number of neighbours in ReliefF. This time the range was (5 to 6) instead of the previous one 

which was (1 to 3). In the results, in all six experiments the lower limit, which is five was selected, and 

the scores were not improved compared to the previous test, but the opposite, as shown in Figure 

5-21. 

 

Figure 5-21 ReliefF scores for the head and cancer dataset, the number of neighbours selected was 5. 

 

In chapter 3.7.2.1, we mentioned that the larger the number of neighbours, the better sub-set of 

features we get, but that was not the case in this experiment. The best value of the number of 

neighbours was 2, and the results tend to get worse when we increase this value; that can happen 

because the ReliefF algorithm converges to univariate selectors as the number of neighbours increase 

(Mckinney et al., 2013). In Figure 5-22, we have the top 10 features selected with the number of 

features = 5. 

 

 

Figure 5-22 Top features scores by ReliefF when the number of neighbours = 5 Shape￼ features are in green, texture 
features are in blue and medical factors are in orange. 

 

 

For comparison, the following results are from the same experiment but with '20' as the maximum 

number of iterations to select the optimal hyperparameters. 
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The trial took 12 minutes and 13 seconds. Results were slightly worst then the experiment done with 

80 different iterations to find the optimal parameters. The heatmap of the results is shown in Figure 

5-23. And the most selected features are shown in Figure 5-24. 

 

Figure 5-23: Heatmap for running the classification tool with '20' iterations, head and neck dataset was used to generate 
this graph 
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Figure 5-24 Most selected features in all classifiers and feature selectors in Biorad for the head and neck cancer dataset 
while using both radiomics and the clinical data, maximum iterations is 20. Shape features are in green, texture features are 

in blue and medical factors are in orange. 

 

 

 

For the next test, the F1 score was used, all other configurations were similar to the third test that 

included all the radiomics features of the CT/PET scan images and the clinical factors with a maximum 

of 80 iterations to find the optimal parameters. The test took 51 minutes and 53 seconds to complete. 

Results are shown in Figure 5-25. The best result was given by the Ridge classifier and the ReliefF 

feature selector,0.661±0.022. 
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Figure 5-25 Heatmap for running the classification tool with 80 iterations, both CT scan images and PET scan images from 
the head and neck cancer dataset were used to generate this graph, the clinical data also were added. The F1 score used 

here. 

 

 Figure 5-26, gives the frequency of each feature getting selected using F1 scoring. Five out of the top 

ten selected features are shape features, including the top three, and three of them are clinical data. 

Pack Year Smoking feature is still among the top of the clinical data and was selected the same number 

of times as when using the roc_auc scoring. 

F1 score is mostly useful when dealing with unbalanced datasets, but the head and neck cancer 

patients' dataset was balanced, and since we are here focusing on both positive and negative classes, 

the AUC would be more informative as a measure for the model performance (Aoullay, 2018), (Shung, 

2020). 
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Figure 5-26 Most selected features in all classifiers and feature selectors in Biorad for the head and neck cancer dataset 
while using both radiomics and clinical factors, and F1 for scoring. 
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5.4 Other datasets 
 

The biorad application was used and tested with several datasets: 

• The scikit-learn wine dataset, as a sample test for multiclass classification. 

• The Effect of MPH-treatment in Attention deficit hyperactivity (ADHD) Diagnosed Children, by 

Master student Inger Annett Grünbeck from NBMU. 

• The rectum cancer radiomics survival rate, by Master student Aase Mellingen Langan from 

NTNU. 

 

5.4.1 Scikit-learn Wine recognition Dataset 
 

The biorad application supports the multiclass classification as well. For testing, the scikit-learn wine 

dataset was used. In the configurations, F1_weighted scoring was selected and 80 was the maximum 

number of iterations. Details of the dataset are available in Appendix A.2 Wine recognition dataset. 

The heatmap is shown in Figure 5-27. 

 

Figure 5-27 Multiclass classification of the scikit-learn wine dataset. 
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In the wine recognition test, the decision tree did overfit the training data with a perfect score almost 

every time and performed poorly in the test set with high variance between the test folds. On the 

other hand, all other classifiers performed well on this dataset, with a low variance between the 

multiple folds – (standard deviation between 0.011 to 0.030). The most selected features are shown 

in Figure 5-28.  

 

Figure 5-28 Most selected features from scikit-learn wine dataset in all classifiers and feature selectors. 
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5.4.2 The Effects of MPH-Treatment in ADHD-Diagnosed Children. An Explorative Analysis 

Using Radiomic Feature 
 

Master student Inger Annett Grünbeck studied the effect of Methylphenidate (MPH) treatment in 

Attention deficit hyperactivity (ADHD) diagnosed children in her thesis (I. A. Grünbeck, 2020).  

It was a binary classification problem with 42 samples, 22 Class MPH-treated and 24 placebo-treated 

children. T1-weighted MR images were obtained to analyse the differences between placebo and MPH 

treated participants in different parts of the brain. Figure 5-29 shows the right thalamus part of the 

brain in one patient; other areas of interest are caudate, hippocampus, pallidum and putamen. 

The radiomics features from the MRI images were extracted using Biorad feature extraction module 

and then she analysed the data with Biorad also. The heatmaps of the radiomics analysis of different 

parts of the brain are shown in Figure 5-30. 

Some of the results were good (above 0.7 roc_auc) but the standard deviation of the results among 

the different five cross-validation folds was high, most probably due to the limited number of samples 

(only 46 samples). For example, in the Pallidum region of the brain (Variance Threshold features 

selector, and the Extra Tree classifier), The ROC AUC was 0.786, but the standard deviation was 

0.16305 which is too high. 

 

 

Figure 5-29 MRI image of a child, the region of interest delineated is the right thalamus. 
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Figure 5-30 Radiomics analysis of the Effect of MPH-treatment in ADHD-Diagnosed Children on different parts of the brain 
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5.4.3 MRI-based radiomics analysis for predicting treatment outcome in rectal cancer 
 

Master student Aase Mellingen Langan worked on the MRI-based radiomics analysis for predicting 

treatment outcome in rectal cancer for her research (Langan, 2020). 

Dataset used in her research:  

• T2-weighted (T2W) and diffusion-weighted (DW) MR images from 81 patients with rectal 

cancer, all had surgery. Thirty-five of these patients had preoperative treatment, referred to 

as the nCRT cohort.  

• Seven DWIs obtained for each patient.  

• Tested four combinations of samples and response varieble (RV):  

o All patients + progression free survival (PFS)  

o nCRT cohort + PFS  

o nCRT cohort + tumor regression grade (TRG) 

o nCRT cohort + ypT  

  

Some of the main results were as follows: 

Model performance: 

• All patients (n = 81) predicting PFS, features from T2W images and one DWI for each patient 

(number of features per patient = 214), Figure 5-31. 

 

Figure 5-31 All patients (n = 81) predicting PFS, features from T2W images and one DWI for each patient (number of features 
per patient = 214). Test standard deviation ranges from 4.9 - 20.0 % (excluding models with no feature selection). 

 

Mutual information and Extra trees:   
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• Test: 67.5 ± 15.0% (15% is the standard deviation) 

• Train: 76.0 ± 3.7 % 

 

Fisher score and Logistic regression:  

• Test: 59.1 ± 9.6 % 

• Train: 60.5 ± 1.4 % 

 

• nCRT predicting TRG, features from T2W images and one DWI for each patient (number of 

features per patient = 214), Figure 5-32. 

 

Figure 5-32 nCRT predicting TRG, features from T2W images and one DWI for each patient (number of features per patient = 
214). Test standard deviation ranges from 3.4 - 24.2 %. 

 

Mutual information and Decision tree:  

• Test: 76.7 ± 4.6 % 

• Train: 79.0 ± 2.6 %  

 

Mutual information and Logistic regression: 

• Test: 84.0 ± 16.9 % 

• Train: 87.2 ± 5.5 % 

 

• Selection rates from experiments performed with all patients (n = 81) predicting PFS 
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Figure 5-33 Features from T2W images only. 

 

 

Figure 5-34 Features from T2W images and one DWI for each patient. Features with rates > 0.33 (8/24) only included.  

The small area high grey level emphasis feature also most selected (rate 0.75) when predicting PFS for 

the nCRT cohort based on features from T2W images.  

The first evaluation of reproducibility:  experiments performed with changed bin width (before 25, 

now 35), delineation of the volume of interest (before mask1, now mask2), and resampling of voxel 

size (before not isotropic in the z-direction, now 1x1x1 mm3), respectively.  

• All over: poor reproducibility of results, especially with respect to the features 

selected. Evaluating feature correlation and getting rid of redundant features may 

improve this.  
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6 Recommendation and conclusions 
 

The Biorad application has been used already in many applications. The feature extraction module, 

for example, was used by Isak Biringvad Lande in his thesis about nuclear forensics for analysing 

scanning electron microscope images of uranium concentrate ores (Lande, 2020). And both of Biorad 

application modules were used by both Grünbeck in her research regarding The Effect of MPH-

treatment in ADHD-Diagnosed Children, and Langan in her research about MRI-based radiomics 

analysis for predicting treatment outcome in rectal cancer. 

The results varied, but in general, the smaller number of samples, the less reliable the results. In both 

Grünbeck and Langan, the standard deviation of the scores was very high. 

On the other hand, in the main test of the application that used the head and neck dataset, the results 

were promising, the scores were higher than a similar experiment with the same dataset done by 

Langberg, and the most informative features were very similar in both experiments. However, we can 

notice that the shape features were the most selected, which means that the models are mostly 

predicting the response based on the gross volume of the tumour, not on the textural features. Further 

work should be done to examine the correlations between the selected textural features and the 

volume of the tumour (Welch et al., 2019). 

The best results in the tests of the application were given by ReliefF, which is a multivariant feature 

selection method. On the other hand, other feature selection methods seemed to fail to select the 

optimal subset of the features, and the worst result was given by the Variance Threshold feature 

selection method, which seemed to favour the texture features only and omit the most informative 

features from the clinical factors and shape features. 

The programming work was in parallel with the other students' usage of the application. So, the 

feedback was beneficial to add features that end-users are interested in. However, some of the 

suggestions were received too late to be implemented and tested properly, and it would be valuable 

if they were added in the future to the application. For example, it would be very beneficial to have 

the feature selection rate for each feature selection method. It is possible to get all the data from the 

output CSV file, but it takes too much time to do this task manually. Another good addition to the 

application would be adding more flexibility, such that the users can be able to choose which algorithm 

they want to run, and which parameters they want to tune from the configuration JSON file. Also 

generating informative graphs, like the error bars from the data, is a lengthy process. It will save much 

time from researchers if the Biorad application is able to generate such graphs. 

It would also be useful to add the more feature selectors even those that require long processing time 

but give the users the option to use them or not like the MultiSURF and the Recursive Feature 

Elimination (RFE) and Chi-Square which performed well in Langberg's thesis (Langberg, 2019). More 

classifiers such as the random forest and the k-nearest neighbours, which performed well in a study 

for the survival rate of head and neck cancer could also be implemented (Parmar et al., 2015). 
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Appendix A:  
 

Appendix A.1 Head and neck cancer patients' dataset 
 

The total number of patients in the head and neck cancer dataset is 198, pre-treatment and tumour 

characteristics referred to as clinical factors of the patient cohort (Langberg, 2019). 

• Number of samples: 198 

• Number of features: 15 

• Number of classes: 2 

• Class distribution: Disease free survival (DSF) = True (90), DSF = False (108) 

 

Factor Description Values Distribution 

Age (years)  60 (40,80) * 

   

Gender   

 Male 25% 

 Female 75% 

Tumour stage   

 T1/T2 48% 

 T3/T4 52% 

   

Packs per year  22 (0,128) * 

   

Naxogin (days)  39 (0,45) * 

   

Cisplatin(treatments)   

 0 22% 

 1-3 10% 

 4-6 68% 

   

Stage   

 0 0.50% 

 I 1% 

 II 8% 

 III 19% 

 IV 69% 

   

Degree of spread   

 N0 61% 

 N1 24% 

 N2 12% 
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 N3 4% 

   

Tumour site   

 Oral cavity 9% 

 Oropharynx 73% 

 Hypopharynx 8% 

 Larynx 10% 

   

Tumour volume (square cm)   

  

147 (0.8, 285) 
* 

   

HPV status   

 Positive 42% 

 Negative 9% 

 Unknown 49% 

   

ICD-10   

 C01 17% 

 C02 4% 

 C03 0.50% 

 C04 1.50% 

 C05 2% 

 C06 0.50% 

 C09 37% 

 C10 18% 

 C12 3% 

 C13 5% 

 C32 11% 

   

Histology   

 0 70% 

 1 26% 

 2 5% 

 3 0.50% 

   

ECOG performance status   

 0 65% 

 1 33% 

 2 2% 

   

Charlson Comorbidity Index   

 0 66% 

 1 23% 

 2 8% 

 3 2% 
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 4 2% 

 5 0.50% 

* median (minimum, maximum) 

 

 

 

Appendix A.2 Wine recognition dataset 
 

Wine recognition dataset it is one of the standard datasets available in scikit-learn (Dataset - Scikit-

Learn, n.d.).  

• Number of samples: 178 

• Number of features: 13 

• Number of classes: 3 

• Class distribution: class_0 (59), class_1 (71), class_2 (48) 

 

Summary statistics: 

Feature Minimum Maximum Mean Standard Deviation 
Alcohol: 11 14.8 13 0.8 

Malic Acid: 0.74 5.8 2.34 1.12 

Ash: 1.36 3.23 2.36 0.27 

Alcalinity of Ash: 10.6 30 19.5 3.3 

Magnesium: 70 162 99.7 14.3 

Total Phenols: 0.98 3.88 2.29 0.63 

Flavanoids: 0.34 5.08 2.03 1 

Nonflavanoid 

Phenols: 

0.13 0.66 0.36 0.12 

Proanthocyanins: 0.41 3.58 1.59 0.57 

Colour Intensity: 1.3 13 5.1 2.3 

Hue: 0.48 1.71 0.96 0.23 

OD280/OD315 

of diluted wines: 

1.27 4 2.61 0.71 

Proline: 278 1680 746 315 
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Appendix A.3 Breast cancer Wisconsin (diagnostic) dataset 
 

Breast cancer Wisconsin (diagnostic) dataset it is one of the standard datasets available in scikit-learn 

(Dataset - Scikit-Learn, n.d.).  

• Number of samples: 569 

• Number of features: 30 

• Number of classes: 2 

• Class distribution: 212 - Malignant, 357 - Benign 

 

Summary statistics: 

Feature Minimum Maximum 
radius 

(mean): 

6.981 28.11 

texture 

(mean): 

9.71 39.28 

perimeter 

(mean): 

43.79 188.5 

area (mean): 143.5 2501 

smoothness 

(mean): 

0.053 0.163 

compactness 

(mean): 

0.019 0.345 

concavity 

(mean): 

0 0.427 

concave 

points 

(mean): 

0 0.201 

symmetry 

(mean): 

0.106 0.304 

fractal 

dimension 

(mean): 

0.05 0.097 

radius 

(standard 

error): 

0.112 2.873 

texture 

(standard 

error): 

0.36 4.885 

perimeter 

(standard 

error): 

0.757 21.98 

area 

(standard 

error): 

6.802 542.2 

smoothness 

(standard 

error): 

0.002 0.031 

compactness 

(standard 

error): 

0.002 0.135 
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concavity 

(standard 

error): 

0 0.396 

concave 

points 

(standard 

error): 

0 0.053 

symmetry 

(standard 

error): 

0.008 0.079 

fractal 

dimension 

(standard 

error): 

0.001 0.03 

radius 

(worst): 

7.93 36.04 

texture 

(worst): 

12.02 49.54 

perimeter 

(worst): 

50.41 251.2 

area (worst): 185.2 4254 

smoothness 

(worst): 

0.071 0.223 

compactness 

(worst): 

0.027 1.058 

concavity 

(worst): 

0 1.252 

concave 

points 

(worst): 

0 0.291 

symmetry 

(worst): 

0.156 0.664 

fractal 

dimension 

(worst): 

0.055 0.208 
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Appendix B: Biorad installations and use instructions 

Requirements: 

• Install Anaconda version 3.7 or above from: 

https://www.anaconda.com/distribution/ 

Mac users will need to install Homebrew, instruction can be found here: https://brew.sh/. Then they 

need to install libomp in the terminal window, which is a non-python dependency. Libomp provides 

OpenMP bindings to llvm, which is used by parallel numba code and the clang compiler. 

installation command: install libomp 

Biorad project: 

The Biorad project is available on GitHub in the following location: 

https://github.com/ahmedalbuni/biorad 

 

• Download or clone the code to the local machine:  

 

 

• Open Anaconda prompt on Windows or the command line in macOS, navigate to the directory 

(inside the biorad folder) where you placed the code on your local machine, and type the 

following command to install the project requirements:  

pip install -r requirements.txt 

 

If the user is not familiar with the command line window, the user can change the current 

working directory by using this command cd c:\newpath 

Go through this quick tutorial for more information: 

https://www.digitalcitizen.life/command-prompt-how-use-basic-commands 

 

After installing the project requirements, the user should be able to run both the classifications and 

the features extraction tools. 

For features extraction, use the command prompt and navigate to the following folder:  

https://www.anaconda.com/distribution/
https://brew.sh/
https://github.com/ahmedalbuni/biorad
https://www.digitalcitizen.life/command-prompt-how-use-basic-commands
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biorad\features_extraction 

 

 

Modify the template.csv file 

image_dir mask_dir output_file_name bin_width shape first_order glszm glrlm ngtdm gldm glcm 

C:\tmp\250\ C:\tmp\250\m\ i_250_2 25  1 1 1  1 1 

C:\tmp\500\ C:\tmp\500\m\ i_500_2 25 1 1 1 1  1 1 

 

• Modify image_dir to the list of directories of the images, and the mask_dir to the locations of 

the masks. The names of the masks should match precisely the image names. If the mask is 

not provided, a dummy mask that covers the whole image will be automatically generated, 

but the shape features will not be applicable in that case. 

• The output file where the results are stored; if the user did not specify the full path, it will be 

stored at the current working directory. 

• The bin_width, the default value is 25; each bin represents specific greyscale intensity values; 

the user can modify this value based on the needs. 

• At the end of the CSV file, there is a list of radiomics features categories, the user should write 

'1' for the category features to be extracted. 

 

• Write the following command in the command prompt to run the tool: 

python feature_extraction.py -file template.csv 

 

 

• Additional parameters can be provided for advanced settings: 
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Features selection and classifications: 

This tool tests random combinations of hyperparameters specified in a JSON file, and provide the user 

with the following heatmap, which can help in selecting the optimal features selector and classifier 

for the problem: 

 

To run the tool, the user will need to provide the dataset in a CSV file, where the response variable is 

the last field. All data should be numerical, with no missing information. This tool supports both binary 

and multiclass classification problem, but the correct scoring should be selected. For binary 

classification the following are supported: 

• roc_auc 

• accuracy 

• f1 

• precision 

• recall 

And for multiclass classification: 

• accuracy 

• f1_micro 

• f1_macro 

• f1_weighted 

• precision_micro 

• precision_macro 
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• precision_weighted 

• recall_micro 

• recall_macro 

• recall_weighted 

 

Also, users will need a JSON file with the configurations, config.json, and under the biorad directory, 

a sample file is given. Users can modify it to select the range of selected features, regularisation 

parameters range and others. 

To modify a JSON file the user can use any text editor, that can be done by right click on the file, open 

with, then select notepad. 

In the JSON file, the user will need to modify the path of the dataset file as follows: 

"features_file": "c:\\tmp\\hn_ct_c.csv", remember to use the escape character "\" in the path, which 

means you should replace all single backslash characters with double backslashes, and do not forget 

the file extension ".csv" 

Also, the user needs to update the output directory, where the results are stored. 

• In command prompt navigate to the biorad directory 

• Run the following command: 

python main.py -file config.json 

 

In addition to the heatmap, the tool will provide CSV files with the details of all the random 

experiments. The location of the CSV file is provided in the configuration JSON file. 
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Appendix C: Pyradiomics features 
 

For more information about this table, refer to the pyradiomics website (Pyradiomics 

Documentation, n.d.). 

• X is the set of Np Voxels in the ROI area defined by the mask 

• P(𝑖) is the histogram of Ng unique intensity values 

• V is the Volume of the mesh in mm3 

• A is the Surface of the mesh in mm3 

• HX = -∑ 𝑝𝑥(𝑖)log2(𝑝𝑥(𝑖) + 𝜖)
𝑁𝑔
𝑗=1

 

• HY = −∑ 𝑝
𝑦
(𝑖)log

2
(𝑝
𝑦
(𝑖) + 𝜖)

𝑁𝑔

𝑗=1
 

• −HXY+HXY1=∑ ∑ 𝑝(𝑖, 𝑗)log2(𝑝(𝑖, 𝑗))
𝑁𝑔
𝑗=1

𝑁𝑔

𝑖=1
−∑ ∑ 𝑝(𝑖, 𝑗)log2(𝑝𝑥(𝑖)𝑝𝑦(𝑗))

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 

Feature Formula 

First-order features 

1. Energy 
∑ (𝑋(𝑖) + 𝑐)2

𝑁𝑝

𝑖=1
 

2. Total energy 
𝑉𝑣𝑜𝑥𝑒𝑙 .∑ (𝑋(𝑖) + 𝑐)2

𝑁𝑝

𝑖=1
 

3. Entropy 

∑𝑝(𝑖)𝑙𝑜𝑔2

𝑁𝑔

𝑖=1

(𝑝(𝑖) + 𝜖) 

4. Minimum 𝑀𝑖𝑛(𝑋) 

5. 10th percentile  

6. 90th percentile  

7. Maximum 𝑀𝑎𝑥(𝑋) 

8. Mean 
1

𝑁𝑝
∑𝑋(𝑖)

𝑁𝑝

𝑖=1

 

9. Median  

10. Interquartile Range 𝑃75 − 𝑃25 
11. Range 𝑀𝑎𝑥(𝑋) −𝑀𝑖𝑛(𝑋) 

 

12. Mean Absolute 
Deviation (MAD) 

1

𝑁𝑝
∑|𝑋(𝑖) − 𝑋̅

𝑁𝑝

𝑖=1

| 

13. Robust Mean 
Absolute Deviation 
(rMAD) 

1

𝑁10−90
∑|𝑋10−90(𝑖) − 𝑋̅10−90

𝑁𝑝

𝑖=1

| 

14. Root Mean 
Squared (RMS) 

√
1

𝑁𝑝
∑(X(𝑖) + 𝑐)2

𝑁𝑝

𝑖=1
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15. Standard Deviation 

√
1

𝑁𝑝
∑(X(𝑖) − 𝑋)2

𝑁𝑝

𝑖=1

 

16. Skewness 
𝜇3
𝜎3
=

1
𝑁𝑝
∑ (X(𝑖) − 𝑋)3

𝑁𝑝

𝑖=1

(√
1
𝑁𝑝
∑ (X(𝑖) − 𝑋)2

𝑁𝑝

𝑖=1
)

3 

17. Kurtosis 
𝜇4
𝜎4
=

1
𝑁𝑝
∑ (X(𝑖) − 𝑋)4

𝑁𝑝

𝑖=1

(
1
𝑁𝑝
∑ (X(𝑖) − 𝑋

𝑁𝑝

𝑖=1
)2)

2 

18. Variance 
1

𝑁𝑝
∑(X(𝑖) − 𝑋)2

𝑁𝑝

𝑖=1

 

19. Uniformity 

∑𝑝(𝑖)2

𝑁𝑔

𝑖=1

 

Shape Features (3D) 

1. Mesh Volume 
𝑉𝑖 =

𝑂𝑎𝑖 · (𝑂𝑏𝑖 × 𝑂𝑐𝑖)

6
 

 

𝑉 =∑𝑉𝑖

𝑁𝑓

𝑖=1

 

2. Voxel Volume 

∑𝑉𝑘

𝑁𝑣

𝑘=1

 

3. Surface Area 
𝐴𝑖 =

1

2
|a𝑖b𝑖 × a𝑖c𝑖| 

𝐴 =∑𝐴𝑖

𝑁𝑓

𝑖=1

 

4. Surface Area to 
Volume ratio 

𝐴

𝑉
 

5. Sphericity √36𝜋𝑉2
3

𝐴
 

6. Compactness 1 𝑉

√𝜋𝐴3
 

7. Compactness 2 
36𝜋

𝑉2

𝐴3
 

8. Spherical 
Disproportion 

𝐴

√36𝜋𝑉2
3  

9. Maximum 3D 
diameter 

 

10. Maximum 2D 
diameter (Slice) 

 

11. Maximum 2D 
diameter (Column) 
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12. Maximum 2D 
diameter (Row) 

 

13. Major Axis Length 
4√𝜆𝑚𝑎𝑗𝑜𝑟 

14. Minor Axis Length 4√𝜆𝑚𝑖𝑛𝑜𝑟 

15. Least Axis Length 4√𝜆𝑙𝑒𝑎𝑠𝑡 

16. Elongation 
√
𝜆𝑚𝑖𝑛𝑜𝑟
𝜆𝑚𝑎𝑗𝑜𝑟

 

17. Flatness 

√
𝜆𝑙𝑒𝑎𝑠𝑡
𝜆𝑚𝑎𝑗𝑜𝑟

 

Shape Features (2D) 

1. Mesh Surface 1

2
Oa𝑖 × Ob𝑖 

∑𝐴𝑖

𝑁𝑓

𝑖=1

 

2. Pixel Surface 

∑𝐴𝑘

𝑁𝑣

𝑘=1

 

3. Perimeter 𝑃𝑖 = √(a𝑖 − b𝑖)
2 

𝑃 =∑𝑃𝑖

𝑁𝑓

𝑖=1

 

4. Perimeter to Surface 
ratio 

𝑃

𝐴
 

5. Sphericity 2√𝜋𝐴

𝑃
 

6. Spherical 
Disproportion 

𝑃

2√𝜋𝐴
 

7. Maximum 2D 
diameter 

 

8. Major Axis Length 
4√𝜆𝑚𝑎𝑗𝑜𝑟 

9. Minor Axis Length 4√𝜆𝑚𝑖𝑛𝑜𝑟 

10. Elongation 

√
𝜆𝑚𝑖𝑛𝑜𝑟
𝜆𝑚𝑎𝑗𝑜𝑟

 

Grey Level Co-occurrence Matrix (GLCM) Features 

1. Autocorrelation 

∑∑𝑝(𝑖, 𝑗)𝑖𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

2. Joint Average 

∑∑𝑝(𝑖, 𝑗)𝑖

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
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3. Cluster Prominence 

∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
4𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

4. Cluster Shade 

∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
3𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

5. Cluster Tendency 

∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

6. Contrast 

∑∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

7. Correlation 
∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗 − 𝜇𝑥𝜇𝑦

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
 

8. Difference Average 

∑ 𝑘𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=0

 

9. Difference Entropy 

∑ 𝑝𝑥−𝑦(𝑘)log2(𝑝𝑥−𝑦(𝑘) + 𝜖)

𝑁𝑔−1

𝑘=0

 

10. Difference 
Variance ∑ (𝑘 − 𝐷𝐴)2𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=0

 

11. Joint Energy 

∑∑(𝑝(𝑖, 𝑗))2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

12. Joint Entropy 

−∑∑𝑝(𝑖, 𝑗)log2(𝑝(𝑖, 𝑗) + 𝜖)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

13. Informational 
Measure of 
Correlation (IMC) 1 

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max{𝐻𝑋,𝐻𝑌}
 

14. Informational 
Measure of 
Correlation (IMC) 2 

√1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) 
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15. Inverse Difference 
Moment (IDM) 

∑
𝑝𝑥−𝑦(𝑘)

1 + 𝑘2

𝑁𝑔−1

𝑘=0

 

16. Maximal 
Correlation Coefficient 
(MCC) 

= √second largest eigenvalue of Q 

𝑄(𝑖, 𝑗) =∑
𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)

𝑁𝑔

𝑘=0

 

17. Inverse Difference 
Moment Normalized 
(IDMN) ∑

𝑝𝑥−𝑦(𝑘)

1 + (
𝑘2

𝑁𝑔
2)

𝑁𝑔−1

𝑘=0

 

18. Inverse Difference 
(ID) 

∑
𝑝𝑥−𝑦(𝑘)

1 + 𝑘

𝑁𝑔−1

𝑘=0

 

19. Inverse Difference 
Normalized (IDN) 

∑
𝑝𝑥−𝑦(𝑘)

1 + (
𝑘
𝑁𝑔
)

𝑁𝑔−1

𝑘=0

 

20. Inverse Variance 

∑
𝑝𝑥−𝑦(𝑘)

𝑘2

𝑁𝑔−1

𝑘=1

 

21. Maximum 
Probability 

max(𝑝(𝑖, 𝑗)) 

22. Sum Average 

∑𝑝𝑥+𝑦(𝑘)𝑘

2𝑁𝑔

𝑘=2

 

23. Sum Entropy 

∑𝑝𝑥+𝑦(𝑘)log2(𝑝𝑥+𝑦(𝑘) + 𝜖)

2𝑁𝑔

𝑘=2

 

24. Sum of Squares 

∑∑(𝑖 − 𝜇𝑥)
2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Grey Level Run Length Matrix (GLRLM) Features 

1. Short Run Emphasis 
(SRE) 

∑ ∑
P(𝑖, 𝑗|𝜃)
𝑗2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

2. Long Run Emphasis 
(LRE) 

∑ ∑ P(𝑖, 𝑗|𝜃)𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

3. Grey Level Non-
Uniformity (GLN) 

∑ (∑ P(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1 )

2𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
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4. Grey Level Non-
Uniformity Normalized 
(GLNN) 

∑ (∑ P(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1 )

2𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
2

 

5. Run Length Non-
Uniformity (RLN) 

∑ (∑ P(𝑖, 𝑗|𝜃)
𝑁𝑔
𝑖=1

)
2𝑁𝑟

𝑗=1

𝑁𝑟(𝜃)
 

6. Run Length Non-
Uniformity Normalized 
(RLNN) 

∑ (∑ P(𝑖, 𝑗|𝜃)
𝑁𝑔
𝑖=1

)
2𝑁𝑟

𝑗=1

𝑁𝑟(𝜃)
2

 

7. Run Percentage (RP) 𝑁𝑟(𝜃)

𝑁𝑝
 

8. Grey Level Variance 
(GLV) 

∑∑𝑝(𝑖, 𝑗|𝜃)(𝑖 − 𝜇)2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

9. Run Variance (RV) 

∑∑𝑝(𝑖, 𝑗|𝜃)(𝑗 − 𝜇)2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

10. Run Entropy (RE) 

−∑∑𝑝(𝑖, 𝑗|𝜃)log2(𝑝(𝑖, 𝑗|𝜃) + 𝜖)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

11. Low Grey Level Run 
Emphasis (LGLRE) 

∑ ∑
P(𝑖, 𝑗|𝜃)
𝑖2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

12. High Grey Level 
Run Emphasis (HGLRE) 

∑ ∑ P(𝑖, 𝑗|𝜃)𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

13. Short Run Low 
Grey Level Emphasis 
(SRLGLE) 

∑ ∑
P(𝑖, 𝑗|𝜃)
𝑖2𝑗2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

14. Short Run High 
Grey Level Emphasis 
(SRHGLE) 

∑ ∑
P(𝑖, 𝑗|𝜃)𝑖2

𝑗2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

15. Long Run Low Grey 
Level Emphasis 
(LRLGLE) 

∑ ∑
P(𝑖, 𝑗|𝜃)𝑗2

𝑖2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
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16. Long Run High Grey 
Level Emphasis 
(LRHGLE) 

∑ ∑ P(𝑖, 𝑗|𝜃)𝑖2𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

Grey Level Size Zone Matrix (GLSZM) Features 

1. Small Area Emphasis 
(SAE) 

∑ ∑
P(𝑖, 𝑗)
𝑗2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

2. Large Area Emphasis 
(LAE) 

∑ ∑ P(𝑖, 𝑗)𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

3. Grey Level Non-
Uniformity (GLN) 

∑ (∑ P(𝑖, 𝑗)
𝑁𝑠
𝑗=1 )

2𝑁𝑔

𝑖=1

𝑁𝑧
 

4. Grey Level Non-
Uniformity Normalized 
(GLNN) 

∑ (∑ P(𝑖, 𝑗)
𝑁𝑠
𝑗=1

)
2𝑁𝑔

𝑖=1

𝑁𝑧
2

 

5. Size-Zone Non-
Uniformity (SZN) 

∑ (∑ P(𝑖, 𝑗)
𝑁𝑔
𝑖=1

)
2𝑁𝑠

𝑗=1

𝑁𝑧
 

6. Size-Zone Non-
Uniformity Normalized 
(SZNN) 

∑ (∑ P(𝑖, 𝑗)
𝑁𝑔
𝑖=1

)
2𝑁𝑠

𝑗=1

𝑁𝑧
2

 

7. Zone Percentage 
(ZP) 

𝑁𝑧
𝑁𝑝

 

8. Grey Level Variance 
(GLV) 

∑∑𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

9. Zone Variance (ZV) 

∑∑𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

10. Zone Entropy (ZE) 

−∑∑𝑝(𝑖, 𝑗)log2(𝑝(𝑖, 𝑗) + 𝜖)

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

11. Low Grey Level 
Zone Emphasis (LGLZE) 

∑ ∑
P(𝑖, 𝑗)
𝑖2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

12. High Grey Level 
Zone Emphasis 
(HGLZE) 

∑ ∑ P(𝑖, 𝑗)𝑖2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
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13. Small Area Low 
Grey Level Emphasis 
(SALGLE) 

∑ ∑
P(𝑖, 𝑗)
𝑖2𝑗2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

14. Small Area High 
Grey Level Emphasis 
(SAHGLE) 

∑ ∑
P(𝑖, 𝑗)𝑖2

𝑗2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

15. Large Area Low 
Grey Level Emphasis 
(LALGLE) 

∑ ∑
P(𝑖, 𝑗)𝑗2

𝑖2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

16. Large Area High 
Grey Level Emphasis 
(LAHGLE) 

∑ ∑ P(𝑖, 𝑗)𝑖2𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

Neighbouring Grey Tone Difference Matrix (NGTDM) Features 

1. Coarseness 1

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔
𝑖=1

 

2. Contrast 

(

  
 1

𝑁𝑔,𝑝(𝑁𝑔,𝑝 − 1)
∑∑𝑝𝑖𝑝𝑗(𝑖 − 𝑗)

2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1 )

  
 
(
1

𝑁𝑣,𝑝
∑𝑠𝑖

𝑁𝑔

𝑖=1

) 

3. Busyness ∑ 𝑝𝑖𝑠𝑖
𝑁𝑔
𝑖=1

∑ ∑ |𝑖𝑝𝑖 − 𝑗𝑝𝑗|
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

4. Complexity 

1

𝑁𝑣,𝑝
∑∑|𝑖 − 𝑗|

𝑝𝑖𝑠𝑖 + 𝑝𝑗𝑠𝑗

𝑝𝑖 + 𝑝𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

5. Strength 
∑ ∑ (𝑝𝑖 + 𝑝𝑗)(𝑖 − 𝑗)

2
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

∑ 𝑠𝑖
𝑁𝑔
𝑖=1

 

Grey Level Dependence Matrix (GLDM) Features 

1. Small Dependence 
Emphasis (SDE) 

∑ ∑
P(𝑖, 𝑗)
𝑖2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

2. Large Dependence 
Emphasis (LDE) 

∑ ∑ P(𝑖, 𝑗)𝑗2
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
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3. Grey Level Non-
Uniformity (GLN) 

∑ (∑ P(𝑖, 𝑗)
𝑁𝑑
𝑗=1 )

2𝑁𝑔

𝑖=1

𝑁𝑧
 

4. Dependence Non-
Uniformity (DN) 

∑ (∑ P(𝑖, 𝑗)
𝑁𝑔
𝑖=1

)
2𝑁𝑑

𝑗=1

𝑁𝑧
 

5. Dependence Non-
Uniformity Normalized 
(DNN) 

∑ (∑ P(𝑖, 𝑗)
𝑁𝑔
𝑖=1

)
2𝑁𝑑

𝑗=1

𝑁𝑧
2

 

6. Grey Level Variance 
(GLV) 

∑∑𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

, where𝜇 =∑∑𝑖𝑝(𝑖, 𝑗)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 

7. Dependence 
Variance (DV) 

∑∑𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

, where𝜇 =∑∑𝑗𝑝(𝑖, 𝑗)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 

8. Dependence 
Entropy (DE) 

−∑∑𝑝(𝑖, 𝑗)log2(𝑝(𝑖, 𝑗) + 𝜖)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 

9. Low Grey Level 
Emphasis (LGLE) 

∑ ∑
P(𝑖, 𝑗)
𝑖2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

10. High Grey Level 
Emphasis (HGLE) 

∑ ∑ P(𝑖, 𝑗)𝑖2
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

11. Small Dependence 
Low Grey Level 
Emphasis (SDLGLE) 

∑ ∑
P(𝑖, 𝑗)
𝑖2𝑗2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

12. Small Dependence 
High Grey Level 
Emphasis (SDHGLE) 

 

13. Large Dependence 
Low Grey Level 
Emphasis (LDLGLE) 

∑ ∑
P(𝑖, 𝑗)𝑗2

𝑖2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

14. Large Dependence 
High Grey Level 
Emphasis (LDHGLE) 

∑ ∑ P(𝑖, 𝑗)𝑖2𝑗2
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
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