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Abstract 

This master’s thesis presents algorithms and new methods for autonomous navigation of a grass 

cutting robot. For the purpose of the current research, the selected platform was the Thorvald 

II mobile grass cutting robot. Thorvald II is an agricultural robot capable of working in many 

different environments such as greenhouses and open fields. As the modular robotic system is 

developed to be flexible, the robot can perform many different operations and may be 

configured in different shapes and forms. However, this thesis studies the specific grass cutting 

robot configuration. 

For outdoor applications, the use of Global Navigation Satellite System (GNSS) based 

navigation has become a trend due to its ability to deliver high precision positioning. However, 

many fields lie in undulating terrain. This makes GNSS based navigation unreliable and error 

prone, resulting in ineffective and wasteful cutting of grass. Optimizing the robot’s ability to 

efficiently navigate and correct its course in real time, saves the farmer money and time which 

ultimately promotes the use of the Thorvald robotic system.  

In this thesis, a method is developed to allow the robot to identify the edge separating the cut 

and uncut grass. By detecting this line, the robot and its cutting tool can autonomously 

manoeuvre to precisely follow the line as the robot makes its way through the field. By applying 

a Multiple-criteria decision-making (MCDM) technique, the use of a Light Identification 

Detection and Ranging (LIDAR) sensor is suggested to generate the necessary point cloud data. 

Algorithms are developed to manipulate the point cloud and estimate the line, using the 

Random Sample Consensus (RANSAC) robust estimation model. The Robotic Operating 

System (ROS) framework and its key features are discussed, and finally used to implement the 

developed algorithms. A motion model is defined, and velocity control is implemented using a 

proportionate (P) controller, and a proportionate-derivate (PD) controller.  

Testing on captured field data and simulations show that the robot is successfully able to detect 

the line in the grass. The algorithm’s robustness is tested and performs well, even in 

environments with significant noise and obstacles present. Testing of the implemented velocity 

control have produced promising results, as the robot is able to navigate along the line 

autonomously.  
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Sammendrag 

I denne masteroppgaven presenteres algoritmer og nye metoder for autonom navigasjon av en 

grasklippende robot. Den mobile grasklipper-roboten Thorvald II ble valgt som plattform for 

denne oppgavens formål. Thorvald II er en jordbruksrobot som kan arbeide i mange forskjellige 

miljøer, som drivhus og åpne jorder. Ettersom det modulære robot-systemet er utviklet for å 

være fleksibelt, kan roboten utføre mange forskjellige operasjoner og kan konfigureres i 

forskjellige former og modeller. I denne oppgaven blir imidlertid den grasklippende 

robotkonfigurasjonen studert.  

Ofte blir Global Navigation Satellite System (GNSS) basert navigasjon brukt for applikasjoner 

som navigerer utendørs, på grunn av den høye presisjonen systemet leverer. Mange jorder 

ligger imidlertid i bølget terreng, noe som gjør GNSS basert navigering upålitelig og utsatt for 

feil, og som resulterer i ineffektiv og ikke-produktiv kutting av gress. Optimalisering av 

robotens evne til effektivt å navigere og korrigere kursen i sanntid, sparer bonden for penger 

og tid, og vil fremme bruken av robotsystemet Thorvald. 

I denne masteroppgaven utvikles en metode som lar roboten identifisere graskanten som skiller 

det klippede og uklippede graset. Ved å oppdage denne linjen kan roboten og dens 

klippeverktøy autonomt manøvrere for å følge denne linjen nøyaktig, mens roboten beveger 

seg over jordet. Ved bruk av multikriteria-analyse og seleksjonsteknikk (MCDM), foreslås bruk 

av en Light Identification Detection and Ranging (LIDAR) sensor for å danne den nødvendige 

punktskydataen. Algoritmer utvikles for å manipulere punktskyen og estimere linjen ved bruk 

av den robuste estimeringsmodellen Random Sample Consensus (RANSAC). Rammeverket 

Robotic Operating System (ROS) og dens nøkkelfunksjoner blir diskutert, og til slutt brukt i 

implementeringen av de utviklede algoritmene. Et bevegelsessystem blir definert, og 

hastighetskontroll implementeres ved hjelp av en proporsjonal (P) kontroller og en 

proporsjonal-derivat (PD) kontroller. 

Testing av feltdata og simuleringer viser at roboten er i stand til å oppdage linjen i graset. 

Algoritmens robusthet er testet og klarer seg bra selv i miljøer med betydelig støy og hindringer 

til stede. Testing av hastighetskontrollen har vist tilfredsstillende resultater, da roboten er i stand 

til å autonomt navigere langs linjen. 
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Chapter 1 

Introduction 

1.1 Background 

In the latter parts of the 18th century, the Industrial Revolution took place in Great Britain, 

harvesting the power of running water and steam. In the early stages of the 20th century, the 

first conveyor belts were introduced, allowing for a new age of mass production. A continuation 

of these advancements was the introduction of digital automatic control systems, now an 

integral part of today’s society. Since the introduction of these systems we rely on automated 

control to perform tasks and produce a vast selection of products for us, like the repetitive pre-

programmed tasks performed by a packaging-robot or a machine in an automized bottle filling 

factory.  

The advancements in technology and wireless communication have recently led to a new phase 

in automation technology: The introduction of autonomous robots. Whether the robot is a rover 

deployed on another planet, a reconnaissance drone or a driving-assisted car, there are many 

sectors that already benefit from autonomous robotics (or soon will). The use of autonomous 

robotics will only increase with the widespread implementation of internet of things and 

Industry 4.0, the latest advancement in the list of industry revolutions (1).  

One of the sectors that could greatly benefit from autonomous robotics is the agricultural sector, 

a sector that today relies on extensive manual labour. The agricultural domain has a relatively 

small degree of implemented automation and agricultural robotics. By developing robots to 

suit the needs of the agricultural sector, one can lessen the burden on farmers, reduce the 

packing of soil, and the use of pesticides, all while performing tasks more cost-efficient than 

in conventional farming. 
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One of these tasks is the cutting of grass fields, a process which can be greatly improved and 

made autonomous by implementing existing technology. In cooperation with the Norwegian 

University of Life Sciences (NMBU), the GrassRobotics-project was initiated in 2018. The 

goal was, and still is, to automate the task of forage production, envisioning a lightweight robot 

with the ability to cut and collect grass (2). If this goal can be achieved, it will be a significant 

step towards sustainable farming. A crucial part of achieving this goal, however, a milestone 

that has not yet been reached, is the development of an algorithm which gives the robot the 

ability to detect the ideal path in the grass field, and autonomously navigate along it.   

1.2 Motivation 

Since we first learned how to farm soil around ten thousand years ago, a lot has changed. A 

farmer would farm for his family, and perhaps a small community, only using a small patch of 

soil to do so. Farming is by its very nature wearing on the soil, and it was of course important, 

as is it now, to keep the soil healthy for future generations. By farming in such small scale, 

however, it was possible to simply move on to new land when the field was overused. This 

allowed for the overused fields to naturally recover.  

In today’s modern farming that is not the case, as it is simply not an option. Food production 

is a billion-dollar industry, and while the human population keeps increasing, that will most 

likely not change. The soil rarely has time to naturally recover, as the soil is constantly turned, 

ploughed, ripped, and sprayed with pesticides. Every acre is utilised for short term gain, as 

heavy tractors and equipment are responsible for compacting the soil.  

Soil is often wrongly regarded as a homogeneous dead substance, but that is certainly not the 

case. Fungi, bacteria, and microbes live in a healthy soil, and worms and roots are important 

for the symbiosis of the soil’s advanced ecosystem (3). Channels and pores in the soil are 

important to make sure the roots can reach the nutrients that are stored in the soil, and water 

can flow freely and unobstructed. When heavy machinery drives on the fields, these pores and 

channels are closed. This leads to a compacted structure and the complicated system of 

decomposers that thrive on dead plant material is disturbed.  

The strategy of making tractors and equipment larger and heavier to cope with ever increasing 

demands has reached its capacity. We must now think differently, and the Thorvald project can 

be part of a potential solution. The project has created an innovative robot that will automate 
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and simplify the farmer’s workday, while at the same time lessen the negative effects of tractors 

and the soil compaction their use entails.  

1.3 The Agricultural Robot Thorvald 

This thesis is written for the Robotics and Control Group at NMBU, contributing to the already 

developed robot named Thorvald. This robot is an agricultural robot, made modular to be 

flexible and applicable to several different environments, like greenhouses and open fields. It 

may be used in several different ways, for example as a harvester, a data collector and/or for 

disease management.  

The Thorvald robot is linked with, and produced by, the company Saga Robotics. This is a 

company that is working to mass produce and commercialize the robot which is developed at 

NMBU. Saga Robotics seeks to make the agricultural sector safer, sustainable and more 

productive, whilst producing nutritious food that cost less for the consumer (4).  

1.3.1  Thorvald I 

In 2014 a group of students developed the first version of the agricultural robot Thorvald, now 

known as Thorvald I, together with professor and leader of the robotic research team at NMBU 

Pål Johan From (5),(6),(7),(8). The idea was to design and build a lightweight autonomous 

agricultural robot, reducing soil compaction and providing an electrical alternative to the 

traditional heavy tractors running on fossil fuels.  

The result was a four-wheel drive robot, equipped with an electrical motor (600 W) on each 

wheel for four-wheel drive. The robot itself weighed no more than 150 kg and could be used 

for tasks like carrying seeds and equipment. Additionally, it was regarded as particularly 

practical to use the robot to plant seeds and implement disease-control. The robot can be seen 

in Figure 1.1.  
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Figure 1.1: Thorvald as presented in 2016 (9). 

1.3.2 Thorvald II 

In 2016 the next chapter of the Thorvald story commenced, as the approach diversified in a 

more modular direction. It was realised that for an agricultural robot to be truly innovative and 

effective from a farmer’s perspective, it had to be able to adjust to the plethora of challenges it 

may face in different farming environments. To be as flexible as possible in different topology 

and production systems, the hardware was made modular and the software generalised to work 

in the different configurations (10). This project was formed over a period of time by students 

working on their master’s theses and PhD dissertations. Configuring the robot in different 

modules with different rack width, power consumption, power distribution, sensor equipment, 

load capacity, etc., allowed the Thorvald project to easily and quickly transform to be used in 

completely different environments like greenhouses, tunnels and open fields. Some of the 

current fleet of robots assembled from Thorvald II modules are shown in Figure 1.2 below.  

 

Figure 1.2: Some of the different configurations of Thorvald II modules (11). 
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1.3.3 GrassRobotics: The Cutting-Edge Grass Cutter  

Several previous master’s theses and PhD dissertations have been written on the topic of 

Thorvald, and students at NMBU have been continuously developing the associated technology 

and hardware used by the robot. Particularly relevant to this thesis, is a thesis that was submitted 

in 2018 on the subject of researching energy efficient methods to configure Thorvald to be used 

to cut grass. The thesis was written by the students Nickolas Grelland and Andreas Xepapadakis 

Isaksen (12). 

The thesis that Grelland and Isaksen submitted, developing and equipping Thorvald with a tool 

for cutting grass, was a part of a continuing project named GrassRobotics. The project has 

several partners, including both the academic and private sector. They are (listed in no 

particular order): NIBIO, Norsk landbruksrådgiving Agder, Saga Robotics, Fylkesmannen i 

Vestland, HMR Voss, Orkel, Felleskjøpet Agri, TINE, and The University of Lincoln (2). The 

project span is from the 1st of April 2018 to the 31st of December 2021, and funded by the 

Foundation for Research Levy on Agricultural Products (FFL), as well as the Agricultural 

Agreement Research Fund (JA) (2). The objective of this project is to produce an agricultural 

robot that can be applied to the process of sustainable forage production. The lightweight 

robot’s main tasks will be to cut grass, gather and transport equipment (2).   

The aforementioned thesis by Grelland and Isaksen is relevant to the work presented in this 

thesis, as the aim is to further build on this configuration of Thorvald and contribute to the 

fulfilment of the GrassRobotics-project’s goals.  Figure 1.3 presents the current prototype of 

the grass cutting Thorvald configuration. 

 

Figure 1.3: The grass cutting Thorvald 
configuration (12). 
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1.4 Problem Statement 

In its current state, Thorvald uses the GNSS system to navigate both on and off the field. 

Although the use of a Real Time Kinematics (RTK) capable GNSS receiver allows for a very 

high positioning accuracy, it works rather inefficiently for example when used to navigate 

Thorvald in a sloped field. Time has shown that the current configuration is unable to efficiently 

cut the grass in such a field, leaving pieces of uncut grass behind. 

 It can also be a potentially fragile system susceptible to external influences like jamming, as 

well as being affected by potentially poor coverage in rural areas. Many of Norway’s fields are 

located in valleys or mountainous areas, particularly on Norway’s west coast. As these areas 

lie in regions of high northern latitude, the GNSS signals often have a lower elevation. This 

can lead to the signal being blocked, and never received (13).  

Most of the fields are found outside of cities, and so the mobile data coverage can also vary 

greatly. Access to mobile data is essential to maintaining the high RTK position accuracy, as 

the correctional data is transmitted over the internet. Alternatively, a local base station must be 

set up to broadcast the correction data over radio transmissions (usually in the ultra-high 

frequency range 300 MHz – 3 GHz). This can however be a costly and comprehensive solution.  

To increase Thorvald’s reliability and effectiveness, it is preferable to equip the robot with 

another sensor technology, supplementing the GNSS RTK receiver. An optimal solution would 

see these sensors work in unison with the GNSS RTK, weighting which sensor-input to listen 

to in real time as the robot navigates. Identifying and autonomously positioning the cutting tool 

along the edge of the uncut grass as the robot traverses the field, means that the robot will cut 

the grass more efficiently.  

Firstly, the robot will have to localize the line/edge of the grass that has not yet been cut, by 

differentiating between the cut and uncut grass (hereby referred to as the grass line or 

separation line). In Figure 1.4, this line is represented as a red arrow. The robot then has to 

realign and navigate itself to the separation line. Lastly, it must follow the line precisely enough, 

so that the grass is cut without the cutting tool overlapping the line or leaving uncut grass 

behind.  
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Figure 1.4: The robot as it cuts grass in the field, optimally aligned and following the 
separation line represented by the red arrow. 

1.4.1 Thesis Main Objective 

The following main objective have been defined for this thesis: 

This thesis’ main objective is to establish methods allowing a robot to identify, and 

autonomously follow, the line separating cut and uncut grass. The best suited sensor 

technologies will be selected and implemented in the real-time autonomous system. 

The main objective can be broken into four crucial steps: 

1. Observation: The robot must extract relevant three-dimensional information from its 

sensorRobot localization: To make decisions and navigate autonomously the robot 

must know its orientation and location relative to the grass line.  

2. Perception: The robot must be provided with the algorithms to determine what course 

of action will be taken to achieve its objectives, by interpreting the sensor data. 

3. Navigation Through Velocity Control: The robot must regulate the actuators to 

successfully perform its tasks and follow the grass line.  

1.4.2  Thesis Sub Objectives 

The following sub objectives have been defined for this thesis:
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 Research and select the best suited sensor technology for the detection of the 

separation line. 

 Develop algorithms for the real-time estimation of the separation line. 

 Develop feedback-control algorithms for the robot, to calculate its error offset and 

adjust its trajectory accordingly. 

 Test the algorithm with simulation software to evaluate the suggested detection and 

control algorithms. 

 Evaluate the suggested detection and control algorithms in field trials. 
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Chapter 2 

Theory and Technology 

2.1 GNSS RTK 

Modern society’s main tool for outdoor navigation is the Global Navigation Satellite System 

(GNSS). Satellites orbiting the earth transmit data so that the location of the receivers can be 

calculated. GNSS based navigation technology, however, has its limitation when it comes to 

position data precision.  

Errors like signal propagation due to the signal passing through the layers of the atmosphere, 

and orbital errors in the estimated orbits of the satellite, cause inaccuracies in the location 

calculations (14). These errors are approximately identical for a given area at a given time and 

so they can be removed by applying a differential processing technique, known as real-time 

kinematic GNSS (GNSS RTK). A base station compares the signal from a satellite with its own 

known, stationary position, thus calculating errors that exists in the GNSS signal.  

The errors are then passed on to non-stationary GNSS receivers via radio waves, allowing them 

to correct the signal they receive. Signal corrections can also be transmitted over the internet, 

via a cellular modem. The GNSS RTK technique allows for high accuracy localisation up to 1-

2 centimetres in the horizontal plane (15).

2.2 Topological Maps  

Before assessing the various ways one can improve the grass cutting robot’s efficiency, one 

must understand how the robot configuration’s use of navigation-technology and topological 

mapping works in its current state. To navigate in and around the fields, a topological map is 

defined as a graph. In graph theory (discrete mathematics), a graph (G) is a data structure used 
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to describe ordered pairs of vertices (V) and edges (E). Any graph can be described with the 

following graph equation: 

 𝐺 = (𝑉, 𝐸) (1) 

The vertices are connected by edges, as illustrated in Figure 2.1. These edges are either defined 

with an unspecified direction (undirected graphs), or with a specified direction (directed 

graphs). The two sets of vertices and edges in the example graph presented in Figure 2.1, are 

defined as follows: 

 𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ} (2) 

 𝐸 = {𝑒ଵ, 𝑒ଶ, 𝑒ଷ} (3) 

 

Figure 2.1: A directed graph with four vertices connected by 
three edges (specified direction). 

This data structure is used to represent connected data in a vast range of applications, one of 

which is the topological map used by Thorvald for navigation purposes. The environment is 

described in the map by applying graph theory, i.e. by using vertices and edges. The vertices, 

or nodes, represent locations. The directed and undirected edges connect the nodes and 

represent actions which implement controllers, which then move the robot from one node 

location to the next. Such a network is illustrated in Figure 2.2, illustrating a field and how the 

topological map may be set up. A set of nodes and edges are defined manually to contain certain 

positions, for example starting from a docking station to the field itself, as well as the edges 

specifying how the robot can move to and from these points. Different navigation behaviours 

may apply between nodes, for instance the robot may have to navigate between the nodes in a 

straight line. When asking the robot to move to a certain node’s position, for example from the 
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charging station to the edge of the field, it will calculate its route between the starting node and 

the final node. By using the edges that connect all the nodes, it will pass through other nodes 

on its path to reach its destination.  

 

Figure 2.2: Illustration of the topological map, demonstrating the placement 
of nodes around a field, and the edges connecting them. 

The nodes along the edges of the field are automatically generated from the dimensions of the 

field. A node is generated on each side of every row, as shown in Figure 2.2. The number of 

nodes generated depends on a user set distance between each row (L). This distance could for 

instance be the width of the cutting tool on Thorvald. The robot will be instructed to move to 

the field’s starting node (illustrated by the lower left node in the field, Figure 2.2), it knows 

where its next node is located (lower right node in Figure 2.2), and from there it works its way 

across the field controlled by the action defined by the edge. When it reaches the node at the 

end of the row, it navigates to the node located at the starting position of the next row, and so 

on. 

2.3 Navigation and Positioning  

The Thorvald robot is equipped with a GNSS RTK receiver. However, an obvious challenge 

with deriving topological maps from the GNSS RTK receiver, is that it is a 2D visualization of 

the 3D topography of the field. This might be a very effective approach in some places, for 

instance there is a Thorvald module running at the University of Florida, picking strawberries, 
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and treating them for mildew with UV-light. Equipped with just the GNSS RTK receiver and 

by following these nodes, this simple technique works well. Crucially, however, the fields in 

Florida are rarely sloped like the fields you would find in Norway, particularly along the west 

coast.  

With sloped fields, the two-dimensional mapping will lead to a topological map with an 

erroneous, smaller dimension of the field. This will lead to lines of uncut grass between the 

rows, with a width depending on the slope of the field.  

Imagining that the field illustrated in Figure 2.3 has a 45-degree rising slope, the Pythagoras 

theorem dictates that the two-dimensional projecting of the three-dimensional rows traversing 

the field, would result in the robot leaving behind a line of uncut grass with the width e: 

 𝑒 = ൫√2 − 1൯𝐿 (4) 

For a truly autonomous approach, instead of having pre-decided paths, the robot should “see” 

the environment, find the ideal path for the cutting tool, and adjust to it accordingly.  

 

Figure 2.3: Illustration of a field with a 45-degree 
slope, visualised in 2D. 
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2.4 Thermographic Camera 

A Forward-looking infrared camera (FLIR) is a thermographic camera that registers radiation 

in the infrared spectrum, i.e. thermal radiation. By registering the different emission levels of 

natural infrared radiation, it creates and divides an image in regions of different temperatures. 

Furthermore, these regions can then be represented in different shades of colour. The 

convention is to assign warm objects a colour in a shade of red and yellow, and cold objects in 

a shade of blue and green. There are many different thermographic cameras on the market, 

designed to fit specific purposes. Difference in wave range detection, software compatibilities 

like digital image processing and design in terms of weight and/or how compact the camera is, 

varies. Naturally, so does the price.  

A collaborating project between the educational institutions NMBU and the Pontifical Catholic 

University of Rio de Janeiro, partially supported by the UTFORSK Partnership Program from 

The Norwegian Centre for International Cooperation, has explored thermal based navigation. 

By utilizing a FLIR® One V2 infrared camera in a smartphone, mounted to a robot moving 

though corridors of vegetation in a sugarcane crop, thermal images and videos of the 

surroundings were captured (16). As presented at the International Conference on Robotics and 

Automation (ICRA) in 2019, the different heat signatures of the environment produced infrared 

images that allowed for effective navigation through the narrow crop corridors (17). The 

method is based on the simple fact that the ground emits more heat, i.e. infrared radiation, than 

the surrounding vegetation.  

 

Figure 2.4: a) The TIBA Robot in the field; b) the RGB pictures it took in the 
sugarcane tunnels, compared to the correlating IR-images (17). 

As seen in Figure 2.4, compared to an RGB camera, the poor visibility conditions of the 

environment are made better with the thermal camera.  
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2.5 RGB-D Camera 

Another possible sensor to be used for position estimation and autonomous navigation is one 

that produces camera image streams. The RGB-D camera produce digital images in colour 

(RGB refers to the colour space with red, green and blue primaries) and with depth data on 

each pixel (D). This means that the colour images are accompanied by an interrelated point 

cloud, allowing for high level feature manipulation like plane segmentation. The depth 

information can be acquired either by active or passive methods, depending on camera model 

and manufacturer.  

A passive approach to depth calculation uses stereo vision and is simply two cameras that take 

advantage of the known relationship between the two produced images. By triangulating and 

comparing the points in the two images, considering the known transformation from one frame 

to the other, the depth can be accurately calculated (18).  

There are also several active approaches to acquire depth information of the environment, 

where the word active refers to the actively altering of the scene in the process. The two most 

common active approaches are known as Time-of-Flight (ToF) and Structured Light (SL). The 

active ToF-method works in many ways like a LIDAR (see Chapter 2.5), emitting infrared 

pulses and detecting the reflected rays. The distance to the objects in the scene can continuously 

be calculated by knowing the respective flight time of the registered ray. The SL-method, 

however, replaces one of the cameras in the stereo system with a projector or other light source. 

It projects a distinguishable structured light pattern into the scene, effectively simplifying the 

triangulation operation (19). The patterns can be points, lines or light sheets, and by projecting 

them in known arrangements, they can be transformed to the camera’s frame and used as 

reference to calculate depths.  

Combinations of the technologies also exists, where a projector or other light source is present 

in addition to the two cameras in the stereo system. This way the best suited approach can be 

chosen, either active or passive. For example the Intel RealSense line of RGB-D cameras offer 

such a combination, being equipped with two IR-cameras as well as an IR-projector (19). The 

Intel RealSense Depth Camera D415, one of the sensors previously used by the Thorvald-

project, is such an RGB-D camera. The images produced by this camera can be seen in Figure 

2.5, and the camera itself is pictured in Figure 2.6. 
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Figure 2.5: a) A coloured image showing the RGB component of the image; b) The depth 
component of the image produced by the RGB-D camera.  

The Intel RealSense Depth Camera D415 has a frame rate of 30 frames per second (fps) and 

an output resolution of 1920x1080p. The minimum distance to target for depth measurements 

is 0.3m. The depth sensor has a vertical view of 40 ± 1 degrees and a horizontal view of 65 ± 

2 degrees (20). The maximum range for depth calculations is 10 metres, but it is specified by 

the producer that it varies with lighting conditions and calibration of the camera. 

 

Figure 2.6: The RGB-D camera RealSense  D415 from 
Intel (20). 

2.6 LIDAR 

LIDAR is an acronym for Light Identification Detection and Ranging, and is a technology 

widely used in robotics and autonomous vehicles for navigational purposes. The LIDAR 

provides three-dimensional spatial information and allows for accurate position measurement 

and motion calculation. The sensor works by pulsating emissions of a laser beam, and then 

registering the returning beams and their intensities as they hit objects and reflect back to the 

sensor’s light receiver. The distance to the object (d) is then calculated as a function of flight 
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time (t = tsent - treceived) and the speed of the laser beam propagation through space (c) (21). As 

the registered flight time covers both the time to and back from the object reflecting the laser 

beam, it must be divided by 2 (as presented in equation 5). 

 
𝑑 =

𝑡

2
⋅ 𝑐 (5) 

LIDAR sensors come in several varieties, however, the grass cutting robot is already equipped 

with a VLP-16 produced by Velodyne. The VLP-16 is a widely used LIDAR sensor and has 

been equipped by the Thorvald-project at NMBU to detect and avoid humans as a safety 

implementation on the Thorvald grass cutter. 

 

Figure 2.7: The VLP-16 has a 30 degree field of view, it is mounted on Thorvald and angled  
according to the range needed (the illustration is not to scale). 

The VLP-16 has, as its name implies, 16 channels where each laser beam has a wavelength of 

905 nm (22). The laser’s (and receiver’s) vertical alignment is depicted in Figure 2.7, 

illustrating the 30-degree vertical field of view. The lasers spin around the vertical axis at a rate 

of 5 – 20 Hz, allowing for a 360-degree horizontal field of view. The sensor has a range of 

around 100 metres, and with its low weight (830 grams), small size, and low power 

consumption (around 8 W), it can easily be fitted on Thorvald and powered by the robot’s 

batteries (22). 

The generated sensor data is structured in header files containing time stamps, sensor model, 

etc., as well as the generated point cloud data like distance and angle to each point. The data 

also contains a scaled intensity factor based on the reflectivity of the reflecting surface. By 

decoding this data, a point cloud can be visualised in a Cartesian coordinate system. The VLP-

16 has the ability to produce around 300 000 such points per second, which allows for high 

quality and accurate information of the environment surrounding Thorvald.  
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2.7 Point Clouds 

Point clouds are an effective format for manipulating, visualizing and mapping 3D data, and as 

such the format is the data output of many 3D data capturing systems and depth sensors like 

the discussed LIDAR and RGB-D camera. It is also a flexible format which allows for easy 

conversions to and from other types of surface representation, like a surface mesh. This 

conversion can be done by sampling, simply performed by generating points within a random 

sample of a polygonal mesh (23). Figure 2.8 shows an example of a point cloud in the shape 

of a house, superposed over an image of the outer wall. 

 

Figure 2.8: An example of a point cloud of a house (24). 

The point cloud data output consists of a number of data points which are all defined in a 3D 

Euclidian coordination system. This means that every single point in the point cloud can be 

located by their x, y and z coordinates. Figure 2.9 illustrates how the point cloud’s 

representation of a geometric shape in space, like a meadow of grass, can be represented as an 

m x 3 matrix where every row represents a single point in a cloud with a total of m points.   
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Figure 2.9: The coordinates of points in a point 
cloud, arranged in a matrix form. 

2.8 Estimation Models 

2.8.1 Least Squares Regression  

The Least Squares Regression method is a common statistical analysis technique used to fit a 

line, a plane, or other geometric shapes to a set of points in a dataset. In the case of fitting a 

regression line to the linear relationship of paired data (x,y), it is done by attempting to 

minimize the squares of the residuals, i.e. the variance. The fitted line is defined by the 

following linear equation: 

 𝑦 = 𝑎𝑥 + 𝑏 (6) 

Here a represents the slope of the line and b is the intercept of the y-axis. To minimize the 

squares of the residuals, the unique values of a and b are found to minimize the following 

equation: 

 
𝐹(𝑎, 𝑏) =  ෍(𝑦௜ − 𝑎𝑥௜ − 𝑏)ଶ

௡

௜

 (7) 

Points in the dataset are represented by (xi,yi), and n represents the number of points in the set. 

To minimize the function F(a,b) the derivative with respect to a and b are taken and the 

equations are solved for equal to zero : 

 𝜕𝐹

𝜕𝑎
= 0 (8) 
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 𝜕𝐹

𝜕𝑏
= 0 (9) 

These equations are linear in a and b and will therefore produce unique solutions for the two 

variables. Alternatively, the following equation (equation 10) is also true for variable a and the 

system can then be solved for variable b. 

 
𝑎 =

∑ (𝑥௜ − 𝑥̅)(𝑦௜ − 𝑦ത)௡
ଵ

∑ (𝑥௜ − 𝑥̅)ଶ௡
௜

 (10) 

Here 𝑥̅ and 𝑦ത are the means of the x and y values respectively. The least squares regression 

model can also be extended to the process of fitting points to a plane P, as the plane is nothing 

more than a linear object where the number of dimensions is higher than two. The equation of 

a plane P can be expressed by a point p0 on the plane (x0,y0,z0) and a non-zero normal vector 

𝑣 = [𝑎, 𝑏, 𝑐] ∈ ℝଷ. Any point p on the plane can then be found by a vector orthogonal to the 

normal vector (x,y,z). An expression of the plane can then be written as: 

 𝑃(𝑎, 𝑏, 𝑐) =  𝑣 ⋅ (𝑝 − 𝑝଴) = 𝑎𝑥 +  𝑏𝑦 +  𝑐𝑧 +  𝑑 (11) 

Here d is dependent on the point p0, as d can be expressed by the following relation: 

 𝑑 = −𝑎𝑥଴ − 𝑏𝑦଴ − 𝑐𝑧଴ (12) 

Another way of expressing the same plane is through a minimum of three points on the plane, 

{p1,p2.p3}∈ P. The alternative way of writing the plane equation is then: 

 𝑧 = 𝑑 + 𝑚𝑥 + 𝑟𝑦 (13) 

The d variable represents the interception on the z-axis, and the m and r variables represent the 

slopes of the x- and y-axis respectively. To fit a plane to a set of points (xi,yi,zi) by using the 

least squares (plane) method the residuals are minimised, i.e. the values of d, m and r are found 

so that the following function is minimised: 

 
𝐻(𝑑, 𝑚, 𝑟) =  ෍(𝑧௜ − 𝑑 − 𝑚𝑥௜ − 𝑟𝑦௜)

ଶ

௡

ଵ

 (14) 

To minimize the function H(d ,m, r) the derivative with respect to d, m and r are taken and the 

equations are solved for equal to zero : 
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 𝜕𝐻

𝜕𝑑
= 0 (15) 

 𝜕𝐻

𝜕𝑚
= 0 (16) 

 𝜕𝐻

𝜕𝑟
= 0 (17) 

These equations are linear in d, m and r, and so the system can be represented and solved as a 

system of linear equations, using the following matrix equation (AX = B): 
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Solving this matrix equation will give a single solution for the variables d, m, and r, as long as 

matrix A is linearly independent. If matrix A is linearly independent it has a non-zero 

determinant (the matrix is invertible), and a single plane is fitted to the inliers. 

2.8.2 RANSAC 

RANSAC is an acronym for RANdom Sample Consensus and is an algorithm that is often used 

in manipulation and segmentation of point clouds. Processing the 3D data obtained from 

sensors is an integral part of autonomous navigation, and the RANSAC algorithm is perceived 

as a particularly robust method. The reason why is that unlike most other estimators, the 

RANSAC algorithm can be effective even in cases where there are as many as 50 % outliers 

present in the dataset (25). RANSAC can also be used to estimate many different shapes, like 

cylinders, lines, cones and spheres (26). Because the method is so general and applicable to a 

vast set of problems, there are many examples of practical applications of the technique. As a 

recent example, the RANSAC algorithm was used to identify roof slopes in a 3D city model 

generation project (27). The algorithm is an iterative process that repeatedly takes a small 

random sample of the dataset to form a hypothesis of the shape, then chooses the solution that 

maximizes the amounts of inliers based on a threshold parameter. The threshold parameter is 
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defined as the maximum distance a point can be from the hypothesised shape and be considered 

an inlier. Sometimes the model coefficients are further improved by applying an estimation 

model that is more sensitive to outliers, like Least Squares Regression, on the solution 

containing the most inliers found by the RANSAC algorithm.  

To fit a line or a plane to the data, the RANSAC algorithm works by iterating the following 

process: 

1. The dataset is represented in a point cloud  𝛽 = {𝑝ଵ𝑝ଶ … 𝑝௡} . The smallest possible 

initial data sample-set is randomly selected. If the model is a line, then a sample-set of 

two points (𝑝௜𝑎𝑛𝑑 𝑝௝) is selected. 

 {𝑝௜𝑝௝} ∈ 𝛽 (19) 

If the model is a plane, then three non-collinear (the points cannot all lie on a straight 

line) points (𝑝௜, 𝑝௝  𝑎𝑛𝑑 𝑝௞) in the data set are sampled, as this is the minimum points 

needed to create a plane. 

 {𝑝௜𝑝௝𝑝௞} ∈ 𝛽 (20) 

2. The coefficients of the respective models are calculated by applying the least squared 

method. For a line model the six coefficients produced by the algorithm are a point 

(x,y,z) on the line, and a non-zero vector parallel to the line, i.e. the direction (x,y,z). 

These coefficients, and the scalar 𝜆.  give the following vector equation: 

 
𝑓൫𝑝௜𝑝௝൯ → ℓሬ⃑ (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) =  ቈ

𝑎
𝑏
𝑐

቉  + 𝜆 ൥
𝑑
𝑒
𝑓

൩  (21) 

In the case of a plane model however, there are four coefficients calculated; The plane’s 

normal (x,y,z) and the distance from the origin to the plane. 

 𝑓൫𝑝௜𝑝௝𝑝௞൯ →  𝑃(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 (22) 

3. Define a set 𝑆 ∈ 𝛽 of inlier points. These are points in the point cloud that are within 

the specified threshold distance T from the model: 

 𝑆 = {𝑝 ∈ 𝛽 | 0 ≤ |𝑑(𝑝, 𝑃(𝑎, 𝑏, 𝑐, 𝑑)| ≤ |𝑇| } (23) 
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After a set number of iterations, the hypothesised line or plane that contains the highest 

number of inliers, is chosen as the most likely solution. However, post processing 

coefficient optimization can also be performed. The initial solution is then optimised 

with the Least Squares method applied on all the inliers in the solution set S. 

2.9 Multi Criteria Selection 

A Multi-Criteria Decision Making (MCDM) technique can be described as a way to identify, 

rank and select an alternative from a defined set of alternatives. This is done by defining criteria 

and applying personal judgement (28). The technique is applied over four steps: 

1. Defining criteria and alternatives 

Firstly, the alternatives must be known, and the criteria of which the alternatives are 

evaluated and is chosen by, must be well defined. The criteria are divided in the following 

two categories: 

 Benefit: These criteria have positive characteristics, meaning that a higher value is 

always preferred.  

 Cost: These criteria have negative characteristics, meaning that a smaller value is 

always preferred.  

 

2. Weighting of criteria 

The different criteria are ranked, then the rank is converted to a more precise weight. 

Assigning weights straight away can be tedious and often imprecise. Ranking the criteria 

by priority, however, has been shown to be more effective (29). By using a defined formula 

to determine the weights of each criteria, i.e. its importance, makes the process less error 

prone and more reliable. Each of the criteria weights sum up to a value of 1 (w1 + … + w5 

= 1) and represent the impact each criterion has on the final choice.  

The Rank Order Centroid (ROC) method is applied to generate the weight vector  

W = [w1,w2,…,wi], in which  w1 > … > wi . All potential weights can be imagined as a 

simplex, a triangle shape where datapoints are arranged in a specific pattern with a uniform 

weight-vector distribution. As the name implies, the ROC method then calculates the 

centroid of this simplex, thus minimizing the potential error of the weights. The (ordinal) 

weights are calculated by the following ROC formula: 
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𝑊௜ =

1

𝑚
෍

1

𝑘

௠

௞ୀ ௜

 (24) 

Here m is the total number of criteria. 

3. Determining the decision matrix 

The relationships between the alternatives (Si) and the criteria (Cj) are established in the 

decision matrix D = [dij]nxm, where every alternative is evaluated numerically with a 

performance score against the criteria. The performance score is dependent on the criteria’s 

category, which means that for a benefit criterion, a sensor that perfectly fills the criteria is 

valued as a 5, whilst for a cost criterion it would be valued at 1. 

To be measured on the same scale so that all the criteria can be considered benefit criteria, 

the criteria in matrix D must be normalised to create matrix N = D[nij]nxm. Several 

normalization techniques could be applied, however vector normalization is the chosen 

method as studies have found it to be the optimal technique when dealing with similar 

MCDM problems (30). Benefit criteria is normalised by equation 25 and cost criteria by 

equation 26: 

 
𝑛௜௝ =

𝑑௜௝

ට∑ 𝑑௜௝
ଶ௡

௜ୀଵ

 
(25) 

 
𝑛௜௝ = 1 −

𝑑௜௝

ට∑ 𝑑௜௝
ଶ௡

௜ୀଵ

 
(26) 

4. Scoring the alternatives 

The last step is to apply the Simple Additive Weighting (SAW) technique to rank the 

alternatives and ultimately choose the one most applicable to the project. The technique is 

implemented to score the alternatives by establishing a weighted average based on the all 

the different criteria and their established importance. The score R is the sum of the 

normalised values of the decision matrix multiplied with the relevant criteria weight, 

specifying each criterion’s importance. The method is sometimes referred to as a weighted 

linear combination, as it is simply a proportional linear transformation of the normalised 

matrix data.  
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Thus, the relative order of magnitude of the data stays the same. The scoring equation is 

defined as following: 

 
𝑅௜ = ෍ 𝑑௜௝𝑤௝

௡

௝ୀଵ

 (27) 
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Chapter 3 

Control Systems 

3.1 Laplace Transform  

The Laplace integral transform maps a function in the time domain to a frequency domain, 

known as the s domain. The Laplace transform is defined below, where f(t) represents the 

function in the time domain, and ℒ{𝑓(𝑡)}  or F(s) represents the Laplace transform of this 

function. 

 
ℒ{𝑓(𝑡)} =  𝐹(𝑠) = න 𝑓(𝑡)

ஶ

଴

𝑒ି௦௧𝑑𝑡 (28) 

The s represents a complex frequency, i.e. a frequency which is expressed as a complex number. 

The frequency of the oscillation is expressed in a real number, and how the oscillation 

amplitude is changing over time (amplifying or shrinking) is expressed by a complex number. 

The s plane is simply a complex frequency plane allowing for the plotting of the Laplace 

transform and its behaviour in respect to these complex frequencies. 

 A linear time invariant system (LTI) is a system, like the name implies, where the input has a 

linear relation to the output, and the output does not change if the input is applied at different 

times. Calculating the output of an LTI system given any input signal, can be done by 

determining the system’s impulse response. This response is simply the output of the system 

when the input is an impulse function, a function that can be described as an infinitively short 

pulse containing all frequencies in equivalent quantities. This means the Laplace transform of 

the impulse function is equal to 1, and the impulse response embodies the response of the 

system to any frequency. An RLC circuit is an example of such a system, where the output 



Chapter 3    Control Systems 

26 

 signal can be predicted if the impulse response is known. The same is true for many other 

systems, and even systems which are not linear and time independent are often modelled as if 

they were, as it allows us to predict an estimated output of the system.  

The Laplace transform simplifies several mathematical operations when dealing with LTI 

systems. However, the main advantage of using Laplace transformation in control theory, is 

that one avoids having to deal with convolution operations. Solving convolution equations is 

often required to solve problems in the time domain. In the s domain, however, convolution is 

performed by a straightforward multiplication, thus allowing the output functions of LTI 

systems to be calculated with a smaller degree of complexity. 

3.2 Transfer Functions  

The block diagram shown in Figure 3.1 shows an LTI system where the Dirac delta δ(t) function 

is the input. The Dirac delta function is a mathematical model, a generalised function, that is 

used to represent a unity impulse. Its amplitude is equal to zero for all values of t, except for 

when t is equal to zero, where its amplitude is infinite. Therefore, the integral of the Dirac delta 

function is equal to 1, and thus such an input is called a unit impulse input.   

 

Figure 3.1: A block diagram of an LTI system, the input is a Dirac delta function which 
operates through the system’s impulse response and produces the output function. 

By determining the system’s impulse response function g(t), operating in the time domain, the 

output of the system y(t) can now be calculated by convolving the impulse response function 

with any input signal u(t).  

 𝑦(𝑡) = 𝑢(𝑡) ∗ 𝑔(𝑡) (29) 

Operating in the s-domain, this relationship can also be expressed as follows: 

 𝑦(𝑠) = 𝑢(𝑠) ⋅ 𝑔(𝑠) (30) 
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The Laplace transform of the unit impulse function 𝛿(𝑡) is unity, thus the Laplace transform of 

the output response of an LTI system, y(s), to a unit impulse input is equal to the impulse 

response g(s) (when the initial conditions are zero).  

This impulse response of an LTI system, i.e. the ratio of y(s) to u(s), is called the transfer 

function (again, given that every initial condition is equal to zero). The transfer function can 

therefore be described as the relationship between any input signal and the output signal, as 

shown in Figure 3.2. The transfer function can be expressed mathematically as follows:  

 
𝐺(𝑠) =

𝑌(𝑠)

𝑈(𝑠)
 (31) 

The equation shows how any input function U(s) multiplied with the transfer function G(s) 

produces the output function Y(s). In other words, the control system receives an input which 

is processed through the transfer function, which then leads to the generation of the output. 

This means that a transfer function is a function that can be used to model and analyse different 

types of components, like an actuator, a controller, or a filter, simplifying the process of control 

system design. The transfer function also simplifies the process of analysing control systems, 

as it can be used to describe its properties, like its stability.  

 

Figure 3.2: A block diagram of an input signal operating on a transfer function to 
produce an output signal. 

The block diagram presented in Figure 3.2 can now be extended to control the output signal in 

a closed-loop system. Figure 3.3 illustrates the block diagram of such a system, where the 

output signal Y(s) is compared to the reference input R(s) (the desired value) at the summing 

point. Thus, the input signal U(s) is the reference input minus the output signal, where the 

output signal is obtained by multiplying the transfer function G(s) with the input signal U(s).  
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Figure 3.3: A block diagram of a closed-loop system. 

The block diagram presented in Figure 3.3 assumes that the form of the output signal is the 

same as the reference input signal. If the input and output dimensions are not the same, 

however, the output signal has to be changed before it is compared to the reference signal at 

the summing point. Figure 3.4 shows the closed-loop system that includes a feedback element, 

for example some sensor that reads the signal output, to handle this manipulation of the output 

signal. The manipulated output signal B(s) is produced by multiplying the feedback element’s 

transfer function H(s) with the output signal.  

 

Figure 3.4: A block diagram of a closed-loop system including a feedback 
element. 

3.3 Proportional-Integral-Derivative Control 

There are several types of feedback control systems, but perhaps the most popular one is the 

proportional-integral-derivative (PID) controller (and its different variations).  The controller 

is widely used for its simple and intuitive form, as well as the effective control loop feedback 

algorithm that can be useful for many different applications. The PID controller C(s) in its ideal 

form is expressed by the following equation: 
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𝐶(𝑠) =

𝑈(𝑠)

𝐸(𝑠)
= 𝐾௣(1 +

1

𝑇ூ𝑠
+ 𝑇஽𝑠) (32) 

With the relationship defined in equation (33), the PID controller can also be expressed in the 

parallel form shown in equation (34): 

 𝐾௣ = 𝐾ூ𝑇ூ = 𝐾஽𝑇஽ (33) 

 
𝐶(𝑠) =

𝑈(𝑠)

𝐸(𝑠)
= 𝐾௣ + 𝐾ூ

1

𝑠
+ 𝐾஽𝑠 (34) 

In these equations E(s) is the input and U(s) is the output of the controller in the loop, called 

error and control signal, respectively. S is the complex argument in the Laplace transform, Kp 

represents a proportional gain, KI represents an integral gain and KD represents a derivative 

gain. Finally, the two constants TI and TD are the integral time constant and the derivative time 

constant, respectively. When written in its parallel form it is obvious that the PID control 

consists of three terms: 

 The proportional (P) term is the overall control response, containing a value that is 

proportional to the error signal, which means that if Thorvald is following the grass line 

perfectly and the error offset is zero, the expected proportionate value is also zero.  

 The integral (I) term minimizes the steady state error by introducing an integrator, 

meaning that it will represent the history of Thorvald’s overall combined movements 

by summing up the P-values.  

 The derivate (D) term minimizes the transient response of the system by introducing a 

differentiator, handling the rate at which the proportional term changes values.  

The terms all depend on the control error. This error can be expressed as a function of time 

where the proportional term depends on the present error, the integral term depends on the past 

error, and finally the derivative depends on the estimated future error. Independently, the three 

terms have different effects on the performance of the system. By increasing the Kp gain there 

will be a decrease in the time to target-value (or rise time), as well as a decrease in the steady 

state error. There will, however, be downsides as well, as the overshoot and settling time will 

increase as the overall stability of the system is reduced. By increasing the KI gain, the time to 

target-value will decrease slightly, although the biggest effect will be a reduction in the steady 

state error. The gain increase will, however, lead to a bigger overshoot and a longer settling 
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time, and again the overall stability of the system is reduced. By increasing the KD gain, the 

time to reach target-value will increase somewhat along with the steady state error, but the total 

period of the loop may in fact decrease as the system recovers faster from any oscillation or 

other disturbance. The overshoot and settling time will decrease as the overall stability of the 

system generally increases. 

A combination of the P, I and D terms may be used as a control loop mechanism, as it is often 

not necessary to apply all the terms. Depending on the intended application and factors like the 

dynamics of the system, a P-controller, PI-controller, or a PD-controller may be the best suited 

controller type.  
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Chapter 4 

Robot Programming  

4.1 Introduction to Robot Programming 

Robot programming can be described as a subdivision of conventional computer programming, 

where input and output devices are extensively used. Inputs can be received from the data 

generated by equipment like sensors or control boxes. The outputs can be sounds, lights, or 

messages appearing on displays. The main purpose of robot programming, whether its 

Thorvald or any other robot, is the application of the robot’s actuators to perform a specific 

task. For this reason, many would not define a machine as a robot unless the system’s outputs 

include actuator devices, which can mechanically move the joints and parts of the system. 

Potential sensor feedback is often required to successfully execute said task. To evaluate data 

and ultimately decide to perform an action based on its inputs, a robot will use its “brain”. This 

computing unit can be a microcontroller or a more advanced computer.  

All programming languages can be applied to the programming of robots, but there are some 

that are better suited than others. Although languages like C# and Java are used, Python and 

C++ are by many still considered the most popular languages (31). 

4.2 Robot Operating System (ROS) 

ROS is an open source robotic software framework, which means that is it free and openly 

distributed. The name can be slightly misleading, as it is not a full-scale operating system, but 

a  meta-operating system (32). This means that it is more advanced than middleware, but not a 

complete operating system either. It provides many extremely useful services, like facilitatin 

interprocess communication (message passing interface) allowing programs and/or processes 
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 to work together. It also provides package management for effectively managing and 

distributing software, low level device control, and making sure the distribution of hardware 

resources is well organised (31), (33). Most importantly, ROS also has a vast community of 

dedicated users and third-party libraries, open source robotic algorithms, as well as sensor 

visualization tools like RViz and simulation tools like Gazebo (both discussed in more detail 

later in this chapter). The software framework supports client libraries and several 

programming languages like C++ and Python.  

4.3 Brief History of ROS 

In 2007 a collection of robot orientated software was developed at Stanford University, which 

later that same year was continued by a company named Willow Garage (31). At the time of 

writing this company still develops hardware and open source software, and it was with Willow 

Garage that the name ROS was first used. The first version of ROS was released in 2009 (ROS 

0.4), and an early version of a ROS developed research-robot named R2 was released. One 

year later the first full-scale ROS software framework was released, with libraries and tutorials 

for open source use. Since then the ROS project has been managed by the Open Source 

Robotics Foundation (OSRF), and at the time of writing the twelfth version of ROS is currently 

the latest, named Melodic Morenia. 

4.4 The Benefits of Using ROS 

Modern robots can serve many different purposes, with a wide variety of options when it comes 

to sensor inputs. Hardware can also be very different from one robot to another, making the 

software and code required quite extensive if one were to build it all from scratch for every 

new robot. Before the release of ROS, this was exactly what developers were doing. With every 

new robot one would be required to rewrite code and algorithms specifically for that 

configuration. The objectives of the makers of ROS was from the very beginning to make a 

tool-based and multi-lingual framework, making ROS applicable to very different hardware, 

sensor usage and other project requirements (33).  

ROS software is maintained and supported by a vast user community, and one of the main 

advantages with ROS is its use of highly independent libraries. This allows the different 

processes that perform computations to be written in different languages. There are reusable 

libraries available, a common platform of small parts of code that can be used together and 
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modified to suit a specific purpose or work environment. In addition, many different sensor 

packages are supported by ROS. That makes the packages stable, well documented, and safe 

to use. If necessary, code written in Python can also easily be implemented in an application 

running mostly on C++ code, and vice versa. If a sensor is changed, there is no need to change 

the whole code, simply the parts that subscribe to that specific sensor output. For these reasons, 

ROS can be used to create highly capable robot-applications while minimizing development 

time.   

4.5 ROS Architecture and Key Features 

A robot equipped with several sensors and actuators will have many processes and programs 

running, needing to communicate with one another. Thorvald is no exception. Allowing one 

program to handle all these processes is possible but may result in an ineffective use of power 

and a high degree of complexity (which increases with every added sensor and actuator). A 

modular approach where there are several smaller programs in charge of sensor data and other 

programs in charge of actuators, working independently, is for many the preferred way of robot 

programming. It does, however, require the programs and processes to communicate, and that 

is exactly the service the software framework ROS provides.  

In ROS terminology a node is a program (or a process) that computes using ROS API. Nodes 

that send data are known as publisher nodes, and nodes that receive data are known as 

subscriber nodes. However, a node is not restricted to strictly either subscribe or publish. The 

node can do both if required. Publisher-subscriber communication happens through messages, 

and the data itself can consist of several types of data values. The values in these messages are 

described by a message description language and the message path where the messages are 

sent are known as topics, to which individual names are given.  

A starting program will automatically communicate with the ROS master, a ROS program that 

receives the complete information of the node, facilitating its ability to communicate with other 

relevant nodes. Figure 4.1 shows a simple block diagram of how the communication between 

nodes and the ROS master is set up in the ROS environment.  
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Figure 4.1: Block diagram of the ROS environment's inter process communication (34). 

Launching the ROS master will also generate the ROS parameter server. In the parameter 

server global variables (ROS parameters) of many different data types can be stored, allowing 

any node to access the values of these parameters, change them or create new ones. An obvious 

advantage of storing ROS parameters in a parameter server, is that the parameters do not have 

to be hard coded in the node itself. Thus, one can easily change important parameters in the 

code, without having to recompile everything. In addition, the ROS parameters can be stored 

in a YAML format, an easily read configuration file. This YAML file can then be loaded directly 

into an XML configuration file (a ROS launch file). Such a launch file can (among other things) 

start all the nodes, as well as load the ROS parameters defined in one or more YAML files. 

Another fundamental aspect of the ROS framework is the concept of services. A service is 

mainly another way nodes can exchange information, used when standard messages are not 

sufficient. The service differentiates itself from the message by being a two-way 

communication channel (bi-directional). A node does not simply publish a message, it waits 

for a response to the sent data. The other differentiating factor is that this two-way 

communication channel is strictly between the data-sending node and the receiving node. The 

node sending the data, referred to as a request (as there is a request for a response), is called a 

client. The node receiving the information is called a server. The client then performs some 

action, and then sends back the reply that the server is waiting for.  

The data exchanged between the two nodes are referred to as the type service data type, and 

subsequently divided into request and reply. Like in the case of subscribers and publishers, 

however, a node can be both a client and a server at the same time. In fact, a single node can 

be both a subscriber and a publisher of different topics, as well as a client and a server of 

different services. As there is no feedback from the client as it performs its action, a service is 
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simply meant for procedures that do not run for too long. To be able to cancel and/or monitor 

the action being performed, to continuously evaluate the feedback in a closed loop, an action 

server must be defined.  

The action server and the action client communicate with five defined topics. Two topics can 

be published by the client, containing a goal and a cancel message. The goal message is simply 

the intended goal of the action, and the cancel message can be sent to request a cancelation of 

the action at any time during its execution. In turn, three topics can be published by the action 

server, containing the status, feedback and result messages. The status message informs the 

client of the current state of all goals, and the feedback message is periodically sent to give 

additional information on the execution of the action. The result message can be sent once, to 

inform the client of the final state of the goal upon its completion.  

The actionlib package is a useful ROS package for the implementation of an action server in 

the server node, and once it is set up, any other node that has an action client can call the task 

or action to be performed.  

4.5.1 Reference Frames and the ROS Transform Library  

There are many ways and different perspectives from which to describe the motion of the robot, 

through fixed global reference frames or moving reference frames that can be transformed and 

rotated. As Thorvald moves around in a three-dimensional environment while taking in sensor 

data, there must exist a relationship between multiple reference frames over time. Only this 

way can Thorvald efficiently manoeuvre in the field, as the localization system continually 

updates the robot’s position in the map. The ROS transform (tf) library is one of the ROS core 

components and is a useful tool, as the relationship of the different coordination systems of the 

nodes are continuously broadcasted to tf.  

As shown in Figure 4.2, all the components of the Thorvald configuration considered in this 

thesis, have their own reference frame. In addition, other reference frames are defined which 

are not related to a physical part, like the base_link frame located between the two front wheels.  
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Figure 4.2: The Thorvald grass cutter (not equipped with its cutting tool), 
shown with all its reference frames. 

4.5.2 RViz: Data Visualizing Software  

RViz is a powerful open source tool for three-dimensional visualization of many different 

datatypes and information, published on different topics. RViz stands for ROS Visualization, a 

ROS package that provides a simple yet effective interface to present the data provided by the 

robot’s sensors. Three-dimensional data, including, but not limited to, point clouds and camera 

images, can be visualised in real time or from a recorded file. The data can be inspected and 

interacted with efficiently by using interactive markers and selection methods, as the user is 

able to move around in the three-dimensional visualised environment. Published markers, 

depicting primitive shapes like lines and arrows, can be read by RViz and utilised to further 

visualize information like topological maps, current paths, and goals of the robot.  

The software can be very useful in robot programming, by visualizing the environment that the 

robot is registering from its sensors, which is essentially what the robot “sees” and bases its 

decisions on. Complex and unintuitive units and systems like quaternions can be difficult to 

understand without the aid of proper visualization software. The software can be applied in 

development, post-processing and when debugging, as well as for the visualization of the final 

results of any applied algorithm.  
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4.5.3 Gazebo: Robot Simulation Software  

Gazebo is a powerful open source simulation tool. The software simulates the physics of an 

open and dynamic three-dimensional world, as well as providing simulated sensor feedback. 

The virtual worlds in Gazebo can be custom built to simulate specific conditions and 

environments, and there exists many prebuilt objects and shapes one can utilize in the 

simulation. Nearly all conditions of the simulation can be completely controlled by the user, as 

aspects like mass, friction- and reflectivity-coefficients are all parameters that can be tuned and 

changed. The powerful physics engine use these, and several other parameters, to efficiently 

simulate dynamic velocities, accelerations, and forces (angular and linear), allowing for 

realistic testing of the system. Specific robot configurations and their (joint) mobility in 

different environments can be dynamically simulated in these virtual worlds, by launching 

configuration files and kinematic models of the robot alongside the simulation software. 

The simulation software can be efficiently integrated with ROS by implementing a few ROS 

packages, allowing ROS wrappers to establish an interface to communicate with the software 

using messages.   

4.6 Point Cloud Library 

When manipulating and working with point cloud data, one can greatly simplify the process 

by taking advantage of the Point Cloud Library (PCL). By using PCL there is no need to write 

a parser to convert the data published by the sensor into workable formats. The library is also 

a framework that provides powerful algorithms for efficient processing of point cloud data. The 

software can be applied to and included in Thorvald’s algorithms, as it is open source licensed 

under Berkeley Software Distribution (BSD). This means it can be used for commercial and 

research purposes (35). PCL boasts a big user community and has become somewhat of a 

reference for the handling of 3D-data.  

There are a plethora of tools and algorithms available from PCL, organised in different 

sectioned libraries. These libraries can be used for standalone applications or combined to 

perform tasks like cloud segmentation, object recognition, and surface construction. There are 

numerous examples of different possible applications of the PCL library and the algorithms it 

contains. For example, it has been used in research projects to build Digital Face-Inspection 
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systems, and to detect buildings and separate clusters in urban areas (36), (37). PCL also 

includes several types of robust estimation models in its library, RANSAC being one of them. 
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Chapter 5 

Sensor and Software Selection 

5.1 Application of Sensors for Grass Line Detection  

The theoretical background of three potential sensor technologies were presented in Chapter 2: 

Thermographic cameras, RGB-D cameras, and the LIDAR sensor. These sensors all have 

applicational upsides and downsides, as the selection and use of a sensor will always depend 

on the specific task at hand, in this case finding the separation line in a grass field. 

Thermographic Camera 

Thermographic camera technology could potentially be used for autonomous navigation in a 

grass field if the temperatures of the cut grass and the uncut grass vary sufficiently. Unlike 

laser-based systems, the upsides of using a thermographic camera are that it is not as affected 

by fog, smoke or other atmospheric conditions as visible light-based systems (38). For 

Thorvald there exists thermographic cameras that do not weigh too much and are compact 

enough to be securely fixed on the robot and powered by its batteries.  

In theory, the surface of the uncut grass will be cooler than that of the cut grass. The tall grass 

will be further away from the ground and have a smaller area of the blade of grass in the sun, 

and a larger area in the shade. In addition, the uncut grass will also have a less dense structure 

compared to the cut grass, allowing for a greater cooling effect by the wind. The cut grass will 

be laid out, allowing for a greater area to receive the sun’s rays, as well as being compact and 

close to the ground which will shield the grass from cooling wind gusts. A colour thresholding 

(CT) technique based on a Hue Saturation Value (HSV) scale to quantifying colours, may be 

enough to find the line between the cut and uncut grass. However, the Norwegian climate 
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 differs vastly from the South American climate, and testing would be required to see how 

effective the sensor would perform on a cloudy, sunny, or rainy day in Norway. 

RGB-D Camera 

An active sensor could be unadvisable for the project discussed in this thesis, as the robot will 

work in an open outdoor environment. The fields most likely offer little or no shielding from 

the sun, and as the sun emits infrared light it will often interfere with an IR emitting pulse from 

the sensor. This can saturate the sensor, potentially causing missing depth data (19). 

A passive sensor, however, or a hybrid sensor offering the possibility to change between active 

and passive methods depending on the amount of sunlight, could produce a satisfying result. 

This sensor’s main advantage is that it is low-cost, lightweight, and mobile, as well as having 

a low power consumption. 

Figure 5.1 shows an RGB-D image taken in a field of grass with an Intel RealSense Depth 

Camera D415 on a cloudy day. The image shows that the depth difference of the cut and uncut 

grass is registered, thus the separation line on the right of the field is visible. The image could 

also be represented as a point cloud. However, the quality of the depth data diminishes with 

distance from the sensor, and it can still be sensitive to outside environments with heavy and 

direct sunlight.  

 

Figure 5.1: a) The RGB coloured image depicting a field of grass, with a section of cut 
grass in the top-right corner; b) The depth component of the picture. 

LIDAR 

The LIDAR sensor will produce the most detailed and dense point cloud, compared to the 

RGBD camera. The perception range is the highest of the three sensors, and the sensor offers 

high accuracy. Sunlight does not affect the sensor in the same way as the RGB-D camera, and 

so the application of this sensor would provide a more robust system. The cost of the system 

is, however, quite high. It is the most expensive sensor of the three considered. 
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5.2 Multicriteria Selection of Sensor Technology 

To best select the appropriate sensor, an MCDM technique (as presented in Chapter 4) has been 

applied to determine ranked weights for all the criteria, and consequently find the sensor that 

best suits the needs of this project. 

1. Defining criteria and alternatives:  

Three different sensor-alternatives have been considered in this chapter and are listed in Table 

5.1: 

Table 5.1: Defining the sensor alternatives. 

Sensor no. Sensor 

S1 RBG-D camera 

S2 Thermographic camera 

S3 LIDAR 

 

A selection will be made based on the following criteria, listed in table 5.2:   

Table 5.2: Description of the criteria used to select the sensor. 

Criteria 

no. 

Attribute Description 

C1 Effectiveness How precise is the sensor expected to be able to provide the 

information required, to produce a good enough estimate of 

a line in the grass that Thorvald can follow? 

 

C2 Versatility How well will the sensor work in different environments, 

like night-time versus daytime, clear weather versus fog, 

etc.? 
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Table 5.2: Description of the criteria used to select the sensor. (continued). 

Criteria no. Attribute Description 

C3 Generality Can the sensor and the data it outputs be used for any other 

relevant tasks across the Thorvald platform? 

C4 Complexity 

of data 

manipulation 

How easy is it to work with the data format produced by 

the sensor? 

 

C5 Price Although the university is in possession of all the 

considered sensors at the time of writing, the price is an 

important factor to consider for potential mass production 

in the future. It might also be necessary to repair and/or 

replace damaged sensors. 

 

The criteria are divided in the following two categories: 

 C1-C3 are benefit criteria. 

 C4-C5 are cost criteria.  

 

2. Weighting of criteria:  

The criteria are ranked as presented in Table 5.3, where criteria 1, Effectiveness, is deemed as 

the most important criterion, and Price is considered the least important: 

Table 5.3: Ranking of criteria from 1-5. 

Criteria Rank 

C1 1 

C2 2 

C4 3 

 



Chapter 5    Sensor and Software Selection 

43 

Table 5.3: Ranking of criteria from 1-5 (continued). 

Criteria Rank 

C3 4 

C5 5 

The ROC method is applied to generate the following weight vector W:  

 𝑊 = [ 0.45,0.26,0.16,0.09,0.04]. (35) 

 
3. Determining the decision matrix:  

The relationships between the sensors (Si) and the criteria (Cj) are presented in the decision 

matrix D = [dij]3x5 below, where the scale has values from 1 - 5. Benefit and cost criteria are 

evaluated as previously defined, for example, the sensor deemed the most versatile (benefit 

criteria) is valued at 3, and the most expensive sensor (cost criteria) is valued at 4. The author’s 

evaluation of the sensor alternatives in relation to the criteria is as presented in matrix D: 

 

𝐷 =

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓

𝑺𝟏 3 2 5 1 2
𝑺𝟐 2 1 2 2 2
𝑺𝟑 5 3 4 1 4

 (36) 

The criteria in matrix D are then normalised, and the following normalised matrix N is obtained: 

 

𝑁 =

𝑪𝟏 𝐂𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓

𝑺𝟏 0.49 0.53 0.74 0.59 0.59
𝑺𝟐 0.32 0.27 0.30 0.18 0.59
𝑺𝟑 0.81 0.80 0.60 0.59 0.18

 (37) 

4. Scoring sensor alternatives:  

The SAW technique explained in Chapter 2.9 is applied to rank the three sensors, and ultimately 

choose the best suited sensor for the task of identifying the separation line in the grass field. 

The result is presented in Table 5.4. The three sensors are scored by the scoring equation, also 

defined in Chapter 2.9, producing three scores: R1, R2, R3, belonging to alternatives S1, S2, S3 

respectively: 
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Table 5.4: The final score of the three sensors. 

Sensor Final score Position 

RBG-D camera (S1) 0.553 (R1) 2 

Thermographic camera (S2) 0.302 (R2) 3 

LIDAR (S3) 0.729 (R3) 1 

As the table above shows, by applying a multicriteria decision making technique to the 

specified criteria, defining the weights with the ROC method, and finally scoring the sensors 

with the SAW equation, the LIDAR is chosen as the best suited sensor. 

5.3 Software Selection 

To further build on the Thorvald project’s established software platform and modular code, 

ROS has been selected as the software framework. The latest ROS distribution Melodic 

Morenia is utilised in this master’s thesis, as the core packages are maintained until the 

distribution’s end of life, May 2023. Furthermore, Gazebo is chosen as the main simulation 

platform to simulate real world environments and situations that the robot might encounter, and 

RViz is used as the main data visualization software.  

While manipulating and working with the data produced by the LIDAR sensor, the approach 

presented takes advantage of the open sourced Point Cloud Library. The PCL algorithms have 

been used in the process of filtering, segmenting, and concatenating point cloud data, as well 

as to implement robust estimators to estimate model coefficients and to transform reference 

systems. Linear Squares Regression and RANSAC is used as explained in the model algorithms 

presented in Chapter 2.8, to fit lines and planes to a given set of inliers. RANSAC is chosen 

for its conceptual and applicational simplicity by using the PCL library, as well as its robust 

nature.  

5.4 Programming Language Selection 

Though one can use several different programming languages with ROS, C++ was chosen as 

the programming language used during this project. The use of C++ does not mean that it 

cannot be supplemented with code written in other languages, that is after all one of the benefits 
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when working with ROS, as covered in Chapter 4. However, C++ has been chosen for the 

development of this thesis’s algorithm for several reasons: 

 C++ is a typed language. All variable types are defined, and any errors or unwanted 

behaviour are more likely to be found at an early stage in the process, during 

compilation. This means that the code is less likely to contain serious bugs, crash or 

perform differently in the field during runtime. The algorithms are well defined and 

rigid which allows for scalability and further development. This was deemed important 

for the continuation of the Thorvald project in the years to come. 

 ROS is fully supported and developed in C++, and there will rarely be libraries not 

available in C++. 
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Chapter 6 

Control System Design 

6.1 Reference Systems of the Thorvald Robot 

The tf library is used in this thesis to transform sensor-centric data from the LIDAR to a body-

fixed reference frame called base_link. The origin of base_link is located in the front of 

Thorvald, between the two front wheels as shown in Figure 6.1. This local frame is defined as 

the thorvald frame 𝐸ሬ⃑ ௧ = {𝑥⃑௧, 𝑦⃑௧, 𝑧௧}. The orientations of 𝐸ሬ⃑ ௧ are as illustrated in Figure 6.1, 𝑥௧ሬሬሬ⃑  is 

forward orientated and 𝑦௧ሬሬሬ⃑  is pointing to the robots left as the robot is moving forward. The unit 

vector 𝑧௧ሬሬሬ⃑  is normal to the skeleton of the robot. As a first step on the way to defining a closed-

loop control system, a second world-fixed frame of global reference is defined: 𝐸ሬ⃑௙ =

{𝑥⃑௙ , 𝑦⃑௙ , 𝑧௙}. The global reference frame is used to implement the control system, where the 

position and orientation of the robot is described to assess Thorvald’s movement in the 

environment and produce feedback.  

By simplifying the three-dimensional world to a flat surface (z = 0), the position and velocity 

of the robot at any point in time as it is moving through space can now be expressed by the 

state vector: 

 
𝜓(𝑡) =  ൤

𝑞(𝑡)

𝑣(𝑡)
൨ (38) 

Here the position-vector q and the velocity-vector v are defined by the Cartesian coordinates 

(X,Y) and the angle α (see Figure 6.1). The coordinates (X,Y) are those of the origin of the 
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thorvald frame 𝐸ሬ⃑ ௧, expressed in the fixed frame 𝐸ሬ⃑௙. The angle α represents the angular offset 

of the thorvald frame in reference to the fixed frame. 

 

Figure 6.1: Illustration of Thorvald with the global (𝐸ሬ⃑௙) and 

local (𝐸ሬ⃑ ௧) reference frames defined. 

The position- and velocity-vector are mathematically described in the following way: 

 𝑞 = [𝑋, 𝑌, α]் (39) 

 𝑣 = 𝑞̇ = [𝑋̇, 𝑌̇, 𝛼̇]் (40) 

Having defined the state vector wherein each variable is obtainable, the control system can be 

designed to use the variables as the origin of feedback signals. Relative displacement to the 

line can be calculated, with the referent point being a position in the world-fixed reference 

frame.  

6.2 Error Estimation  

For the robot to be able to navigate autonomously, the robot must detect the separation line and 

then estimate its position in relation to said line. The objective is therefore twofold: 
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1. Grass line estimation: The complete process of filtering and segmenting the raw sensor 

data to extract meaningful information, so that robust estimators can produce the 

desired model coefficients and fit the most probable grass line.  

2. Error offset calculation: To compute and quantify how far the robot is from following 

its desired path, which in this case is a straight line. This is quantified by the lateral 

displacement 𝑒௬ and the angular displacement 𝑒ఝ of Thorvald, in reference to the line. 

These two displacements make up the total error offset, which can therefore be 

expressed as 𝑒 = [𝑒௬, 𝑒ఝ]். 

The suggested perception strategy for the grass line estimation approach will be discussed in 

detail in Chapter 7, but first the error offset calculation must be defined. Once the line is 

detected, this error offset can be calculated. The separation line will be defined by two points, 

p1 and p2. The lateral displacement ey is then defined as the minimum distance between the line 

and the part of Thorvald that should touch said line. As the robot follows its determined path, 

the tip of the cutting tool should be exactly on the line. This way the grass is efficiently cut 

without overlapping or leaving rows of uncut grass behind. The cutting tool is 1800 mm wide 

and is placed as illustrated in Figure 6.2 with its centre of mass in origo (Ot). The point of 

contact, i.e. the tip of the cutting tool, is referred to as pk and is located 900 mm along the y-

axis in the local thorvald frame.  

As illustrated in Figure 6.2, the minimal distance between the tip of the cutter and the line will 

always be the norm of a vector, u⊥, between an intersection point on the line, pi, and the point 

pk, orthogonal to the line: 

 
𝑒௬ = ‖𝑢ୄ‖ = ට(𝑝௜,௫ − 𝑝௞,௫)ଶ + (𝑝௜,௬ − 𝑝௞,௬)ଶ (41) 

Also illustrated in Figure 6.2, the angular displacement is defined as the misalignment of the 

orientation of Thorvald in relation to p1 on the line: 

 
𝑒ఝ = 𝑡𝑎𝑛ିଵ ቆ 

𝑝ଵ,௬ − 𝑝௞,௬

𝑝ଵ,௫ − 𝑝௞,௫
 ቇ − 𝛼 (42) 

As in Figure 6.1, the angle α represents the angular offset of the thorvald frame in reference to 

the world-fixed frame. The sign convention is such that a counterclockwise angular offset (like 

in Figure 6.2) translates to a positive α value. 
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Figure 6.2: Illustration of the error estimation from the line. 

6.3 Motion Modelling and Velocity Control 

To control the robot’s movements, a motion model must be defined. The robot can be actuated 

by two velocity controllers working independently of each other to control the robot’s 

movement. One controller is implemented to control the linear velocity v in the 𝑥⃑௧ direction, 

and the other controller controls the angular velocity 𝜔.  

The grass cutting Thorvald configuration is configured with a kind of Ackerman-steering which 

will behave very similarly to a differential drive robot, meaning that the linear velocity in the 

𝑦⃑௧ direction is always equal to zero, in the robot’s body-fixed frame base_link. The velocity of 

the robot in the world-fixed reference frame can be expressed as follows: 

 𝑋̇ = 𝑣𝑐𝑜𝑠(𝛼)  (43) 

 𝑌̇ = 𝑣𝑠𝑖𝑛(𝛼)  (44) 

However, the kinematic model that governs the movement and engagement of individual 

actuators is pre-existing and outside of the scope of this thesis (39). By taking advantage of this 

pre-existing internal kinematic model though, velocity commands can be published to activate 

the actuators and move the robot with the desired orientation and forward-moving motion. The 

velocity commands ut, that are passed to the robot’s motors at time t is dependent on the error 

offsets, and can be expressed in the following way:  
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 𝑢௧(𝑒௬, 𝑒ఝ) = [𝑣൫𝑒௬൯, 𝜔(𝑒ఝ)]்  (45) 

The sign convention is chosen arbitrarily: Positive linear velocities (v) translate to a forward 

moving motion, and positive angular velocities (𝜔)  represent the robot turning left 

(counterclockwise).  

The development of a control algorithm is done under the assumption that the mobile robot 

system can be approximated as an LTI system. A feedback system will control the robots “free-

spaced” velocity by the two parameters, i.e. the linear and angular velocity vectors. There are 

several possibilities for such a system, however, this thesis considers the most popular and 

simplest form of control loop feedback: The PID controller introduced in Chapter 3.3. It is 

chosen for its simple directness and transparent functionality. The following are important 

vocabulary used to describe the variables of the controller: 

 Setpoint Values: These are the values that define the goal of the robot, the reference 

values. In our case we want Thorvald to move towards a point on a line. From the 

setpoints the angular displacement is calculated, i.e. the angle that Thorvald must turn 

to face this point. The setpoint also defines the line, together with a second point.  There 

will be a constant renewal of setpoints and lines to follow as Thorvald moves forward 

and the line detection algorithms are run repeatedly at set intervals. 

 Current Position Values:  These are the repeatedly updated position and orientation 

values. 

 Error: The error offset has been described as in Chapter 6.2. This error will be the input 

of the velocity controllers, as the objectives in this thesis requires the design of 

controllers that will force the angular displacement and linear displacement towards 

zero.  

The dynamics of the systems can be explained by simplifying the process, without loss of 

generality, as using a force to move the mass of the robot. As a simplification, the models for 

driving and steering are assumed identical, and independent. The two actuated velocity-vectors 

are both represented as second-order systems, i.e. the output (being the acceleration of the 

robot) are two integrations away from the input (the displacement distances from the error 

estimation).  

The robot is equipped with brushless DC motors to regulate velocity, which is a motor that 

exhibits a linear speed to torque relationship. In addition, the motor has a high dynamic 
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response due to small amounts of rotor torque. For these reasons, the motor is a good fit for 

servo-applications, meaning that it is applied in a closed-loop system with a feedback element 

as shown in Figure 3.4. If the robot is represented as such a servo system, composed of a 

proportional controller, an inertia element and a viscous-friction element, the transfer function 

of the plant Gplant (s) (the pre-existing kinematic models of Thorvald) can be expressed in a 

second-order system’s standard form: 

 
𝐺௣௟௔௡௧(𝑠) =

𝜔௡
ଶ

𝑠ଶ + 2ξ𝜔௡𝑠 + 𝜔௡
ଶ
 (46) 

Here ωn is the natural frequency and ξ is the damping ratio of this system. 

6.3.1 Angular Velocity Control 

The purpose of the angular velocity control is to turn the robot to face the desired direction, i.e. 

the generated setpoint. The speed at which Thorvald turns is dependent on the magnitude of 

the angular displacement error. The robot must be able to adjust its course quickly, and by 

introducing a proportional term, the velocity commands will be proportionate to the angular 

displacement error of the robot. However, as the angular velocity control is modelled a second 

order system, it could be prone to overshoot and oscillation.  

As the robot turns, the acquired angular speed and the fact that the proportional term is still 

producing acceleration until the angular displacement is equal to zero, might lead to the robot 

overshooting its desired orientation. If that happens, the sign of the angular displacement error 

will change, and the robot will turn back the other way, and so on. The higher the proportionate 

gain, the higher the risk of overshoot and oscillation in the system.  

To avoid this overshoot and oscillation in the case of the angular velocity control, the second-

order degree system justifies the use of a derivative term to dampen the system. The derivative 

term is introduced to account for the rate of change of the angular displacement error. This term 

will restrain the robot’s angular velocity, to make sure it does not turn too quickly.  

Every time a new setpoint is introduced, it can be described as a new step input. However, it is 

important to note that the steady state error ess of the system will never be zero without an 

integral term. This is evident when ess is expressed in the following way, as there will always 

be an error present: 
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𝑒௦௦ = Φ ⋅

1

1 + 𝐾௣
 (47) 

In equation 47, Φ  represents the new step value which is introduced. The integral term is, 

however, deemed unnecessary in this system, as the setpoints are updated rapidly and the long-

term steady state error is not assumed to be important enough to warrant the added complexity. 

Testing will have to decide if the steady state error is deemed acceptable, however, it can be 

reduced by increasing the proportional gain. For these reasons, a PD-controller is chosen, and 

the output u(t) of the controller can be mathematically expressed both in the time domain 

(equation 48) and the frequency domain (equation 49) in the following way: 

 
𝑢(𝑡) = 𝐾௣ ⋅ 𝑒(𝑡) + 𝐾஽ ⋅

𝑑𝑒(𝑡)

𝑑𝑡
 (48) 

 𝑈(𝑠) = ൫𝐾௣ + 𝑠 ⋅ 𝐾஽൯𝐸(𝑠) (49) 

As setpoints will be updated and changed continuously, the derivative gain must, however, be 

small enough so the system does not experience a derivative kick. This term is used to describe 

what happens when a sudden change in angular displacement error leads to the derivative of 

the error suddenly increasing. This can lead to erroneous control outputs. Figure 6.3 illustrates 

the block diagram for angular velocity PD-controller. The system’s transfer function (closed-

loop) with the angular velocity controller is expressed as follows: 

 
𝐺(𝑠) =

(𝐾௣ + 𝐾஽𝑠)𝜔௡
ଶ

𝑠ଶ + (𝐾஽𝜔௡
ଶ + 2ξ𝜔௡)𝑠 + 𝜔௡

ଶ(1 + 𝐾௣)
 (50) 

 

Figure 6.3: A block diagram of the robot’s angular velocity controlled by a PD-controller. 
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6.3.2 Linear Velocity Control 

The purpose of the linear velocity control is to move Thorvald forward. The speed at which 

Thorvald should move forward is decided by the Robotics group at NMBU, set to between 0.6 

and 1.5 m/s. However, the lateral displacement error from the line will be the determining factor 

for the exact speed, within this range. A constant speed of 0.6 m/s will be applied, and then the 

further away the robot finds itself, the faster it should move to get back to its intended path. 

Again, the linear velocity control is modelled as a second order system which could be prone 

to overshoot and oscillation. Even so, a simple P-controller has been chosen as the preferred 

controller of this velocity. The reasons are two-fold, a low complexity necessity being the first. 

Figure 6.4 shows an example of the path Thorvald follows. The first line l1 and the setpoint p1 

are generated by the algorithm, and the robot moves towards it. As the robot gets within a set 

distance of the point, symbolised by the circles encapsulating the points, another setpoint and 

line is generated by the algorithm (p2 and so on). Consequently, the risk of overshooting the 

line is virtually non-existent, as every setpoint is renewed before the previous setpoint is 

reached. 

 

Figure 6.4: An illustration of the intended path generation, where a setpoint and line is 
generated to which the robot navigates until it reaches a set distance to the setpoint, at 
which time another setpoint is generated, and so on. 

The reality of a constant steady state error is also uninteresting, as the lateral displacement error 

ey only impacts the speed at which the robot moves toward the defined setpoint. As a constant 

speed of 0.6 m/s is applied, the robot can in fact find itself exactly on the line at which time the 
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lateral displacement error ey will be zero. In addition, the speeds at which the robot moves are 

quite low, never more than 1.5 m/s, which also brings stability to the system. 

The second reason for choosing a P-controller is its simplicity. A P-controller is easy to test and 

tune, simple to create and is easily understood for different users of the algorithm developed in 

this thesis. Although the least complex of the PID controllers, one must not mistake its lack of 

complexity for ineffectiveness. For these reasons a P-controller is chosen, and the output u(t) 

of the controller can be mathematically expressed in the time domain (equation 51) and the 

frequency domain (equation 52) in the following way: 

 𝑢(𝑡) = 𝐾௣ ⋅ 𝑒(𝑡) (51) 

 𝑈(𝑠) = 𝐾௣𝐸(𝑠) (52) 

The system’s transfer function (closed-loop) with the linear velocity controller is then: 

 
𝐺(𝑠) =

𝐾௣𝜔௡
ଶ

𝑠ଶ + 2ξ𝜔௡𝑠 + (1 + 𝐾௣)𝜔௡
ଶ
 (53) 

Figure 6.5 illustrates the closed-loop control system block diagram of the linear velocity P-

controller. 

 

Figure 6.5: A block diagram of  Thorvald’s linear velocity controlled by a P-controller. 
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Chapter 7 

Perception and Navigation Strategy 

7.1 Package Architecture  

This thesis presents an efficient, yet simple, algorithm for line detection in an unorganised point 

cloud, and the consequent velocity control along the separation line. A package called 

package_find_line was created, the nodes and files were organised to obtain a high degree of 

maintainability and readability.  

The package contains two nodes, a header file, a launch file, a parameter server, the package 

manifest, and the CMakeLists file used to create the necessary build files. The first node is 

named line_node, henceforth referred to as the perception node, and the second node is named 

move_thorvald, henceforth referred to as the navigation node.  

The navigation node contains a class named RobotCommandAction and the header file 

PointCloudSensor.h contains the class PointCloudSensor. The latter was created to be used in 

the algorithms defined in the perception node. Unlike the RobotCommandAction class, the 

PointCloudSensor class definition is placed in a header file. The reason for this is that the class 

in the perception node is considered more general than the class in the navigation node. Thus, 

to make it easier to access and potentially use the class in multiple projects, the 

PointCloudSensor class definition is placed in the header file.  

The parameter server grass_cutter_params.yaml contains ROS parameters stored in a YAML 

file, which are loaded in the launch file named autonomous_cutter.launch. When launched, the 

launch file will also run the two nodes. An overview of the developed package architecture is 

presented in Figure 7.1.  
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Figure 7.1: The package architecture. 

7.2 Perception and Navigation Algorithm 

Although the algorithm is developed for, and will be tested on, a Velodyne 16 LIDAR sensor, 

the code is general and may be applied to any sensor that produces point cloud data. The code 

is written in C++ and attached in its entirety in Appendices.  

This subchapter will explain the developed algorithm and present selected pseudocode for a 

better understanding of the process. To achieve the objective of the robot identifying and 

autonomously following the separation line, the suggested algorithm is divided into two 

sections. These sections are separated by nodes that perform the task of perception and 

navigation: 

A) The perception part of the algorithm is contained in the perception node. This is the process 

of detecting the line that we want Thorvald to follow. This includes all the processing, filtering, 

manipulation, and segmentation of the original point cloud produced by the sensor, before 

finally publishing the line.  
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B) The navigation part of the algorithm is contained in the navigation node, subscribing to the 

published line from the perception node. This includes the error offset calculation and the 

action server which implements the velocity control, moving Thorvald along the separation 

line so the robot can efficiently cut the grass. Here the robot’s offset from the desired path is 

calculated and PID velocity control is applied to minimize said error. This error offset is, as 

explained in Chapter 6.2, a function of two variables: The lateral displacement from the 

detected line and the angular displacement from a setpoint on this line. Figure 7.2 shows the 

flowchart of the algorithm suggested in this thesis. 

 

Figure 7.2: Flowchart of the suggested algorithm, and how it is divided in two nodes. 

7.2.1 Perception Algorithm in Node 1 

This section will give a thorough explanation of the algorithm contained in the perception node. 

1. Transforming sensor-centric data 

Firstly, the node subscribes to the point cloud produced by the sensor. However, the point cloud 

is received in the reference system of the sensor. By transforming the point cloud to a reference 

system defined by a ROS transformation message (the base_link  frame described in Chapter 

6.1), the LIDAR can be placed in any direction and position, and then be transformed to the 

coordinate system frame assumed in the method.  
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2. Defining the area of interest by applying pass-through filters 

The second step in the point cloud manipulation is to identify the plane of the grass we would 

like to cut. Making use of more open source PCL algorithms, the point cloud is filtered to 

remove point cloud data that is deemed unnecessary. This is done by utilizing a pass-through 

filter. The points that are associated with the ground are removed first, by filtering the point 

cloud based on the height of the grass measured in metres. This value should be a little lower 

than the actual height of the grass, so that the points relating to the plane of the uncut grass are 

not removed. Only the points which fall within the segment starting from this height to an 

arbitrary set maximum limit are kept in the point cloud. Then a second and third passthrough 

filter is applied, to filter out any point that is not within three metres on either side of Thorvald, 

and not within 2 – 4,5 metres ahead of the robot. This zone, depicted in Figure 7.3, will 

henceforth be referred to as the critical zone, as only the information that is contained in this 

zone will be used to identify the separation line.  

 

Figure 7.3: The critical zone where Thorvald will detect the 
grass line (the xt, yt, zt axis are shown as red, green, and 
blue respectively). 

3. Plane segmentation 

To make the code more robust, a plane segmentation is then performed. At this point, the point 

cloud data that is left in the critical zone can still contain any object that finds itself within the 

critical zone (meaning it is also high enough to reach the specified height segment defined in 

the passthrough filter). Detecting objects and people on the field is of course important, 
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however, object detection and avoidance is outside of the scope of this thesis, and only the 

detection of the separation line is considered. Parts of trees, nearby people, fences, equipment, 

or big rocks are examples of non-relevant points that, potentially, would not be filtered out in 

the previous pass-through filters. This can negatively affect the algorithm’s ability to fit a line 

at a later step in the process. However, by locating the most dominant plane in the critical zone, 

that which does not belong to this plane will be filtered out.  

In addition, the raw data from any 3D sensor working in a field of grass is expected to produce 

a significant output of outliers. It will most certainly be unorganised data with a significant 

degree of unpredicted data points in the dataset, as the environment consists of moving blades 

of grass that are of different individual heights, not a solid predictable surface. The law of large 

numbers, however, assumes overall order and predictability in the field, as most of the blades 

of grass will grow in the same direction, be in the same plane and have roughly the same height. 

Plane segmentation takes advantage of this and will leave a point cloud that is more uniform 

and with less noise. 

A RANSAC robust estimator is applied, and the most dominant plane perpendicular to the z-

axis is found (with a specified tolerance of 20 degrees, arbitrarily chosen and user specified, to 

account for sloped fields). A threshold value was chosen empirically to be 15cm, to define how 

close a point would have to be to the plane to be considered an inlier in the RANSAC model. 

This ensures a dense point cloud of only the uncut grass. This plane, depicted in Figure 7.4, 

will be that of the uncut grass under normal operating conditions.  

 

Figure 7.4:  a) A possible noisy environment  b) The same environment represented as a point 
cloud, the extracted plane (+/- 15 cm) that is perpendicular to the z-axis has been coloured 
red, points that do not lie on the plane are coloured black, points that do lie on the plane are 
enlarged and coloured dark red.  

The RANSAC model returns four model coefficients specifying the plane: The x, y and z 

coordinate of the plane’s normal (i.e. the normal vector), as well as the fourth Hessian member 
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of the equation representing the plane (the offset from the origin). The RANSAC algorithm 

also returns the indices of the points in the plane. The indices themselves hold no point cloud 

data but are the index of the points representing the plane that we want to extract to a new point 

cloud. From these index values the plane is extracted from the point cloud. 

4. Isolating points along the separation line 

At this point in the process, the point cloud is now representing only the plane of uncut grass. 

Before a line can be fitted, the points that are likely to lie on the separation line must be isolated 

and extracted. Firstly, the plane is divided into 25 segments as shown in Figure 7.5, all with the 

width of 10 cm. 

Then, another pass-through filter is applied to the data. Each segment is incrementally checked 

to find if it contains points. If the segment does contain one or more points, the points that hold 

the maximum and minimum values on the local 𝑦௧-axis are located. If Thorvald is driving with 

the cut grass to its left (like in Figure 7.5), the point with the highest value on the 𝑦௧-axis passes 

through the filter. If the robot is driving with the cut grass to its right, however, the point with 

the lowest value in the 𝑦௧-axis passes through the filter. Either way, only one point can pass 

through the pass-through filter in each 10 cm segment. 

 

Figure 7.5: a) A point cloud representing the plane of the uncut grass in the critical zone; b) 
The same point cloud divided into 25 segments with a width of 10 cm.  

Assuming all segments contains a point, there will be 25 unique points along the edge of the 

uncut grass as shown in Figure 7.6, to which a line can be fitted. 
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Figure 7.6: The green points represent the points having the highest value on the 
local 𝑦௧-axis in their respective segment. 

5. Estimating line with RANSAC models 

At this point the point cloud consists of the (up to) 25 remaining points. A line is now fitted to 

these points with a PLC RANSAC algorithm. The threshold was chosen empirically to be 8 

cm, meaning a point would have to be this close to the line to be considered an inlier in the 

RANSAC model.  

Individually, there is expected to be several blades of grass that for any number of reasons will 

be placed as outliers. Any robust estimator where outliers produce a disproportionate effect on 

the fitting of the model, would thus be expected to fail. RANSAC, however, being not that 

sensitive to outliers, is therefore applicable to the work environment in a field of grass.  

The RANSAC model produces six model coefficients that are calculated to describe the line. 

The first three describe the position of a point in the Cartesian coordinate system (P0) as shown 

in Figure 7.7. The next three coefficients describe the orientation of the line from the point in 

Euler angles: Roll about the x-axis, pitch about the y-axis and yaw about the z-axis. 
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Figure 7.7: An example of a line estimated by a RANSAC model (threshold value in 
dashed lines), using a dataset with 22 inliers (coloured green) and three outliers (coloured 
yellow). 

7. Averaging the line  

As the data is received at a high frequency, the lines are also fitted at a high frequency. To make 

the fit more robust and stable, the difference between one line to the next is minimised by 

averaging a set numbered of estimated lines.  

8. Generate and publish two points used for navigation 

Another way of defining the line, compared to one point and a direction vector, is by using two 

points on the line. The point P0 that was defined by the first three coefficients from the 

RANSAC model is placed halfway between the first and the last inlier.  

Assuming the critical zone contains points from 2 – 4,5 metres in front of the robot, and 

assuming the first and last segment contains inliers, then P0 would be located roughly 3,25 

metres ahead of the robot. As explained in Chapter 6.2, the angular displacement error, and 

thus the angular velocity, is defined in reference to a setpoint on the line. This point can be any 

point on the defined line. The closer this setpoint is to the robot, the faster it will reach the set 

distance to the point where a new line (and setpoint) is generated for velocity control. If the 

point is too close to the robot, the updates happen too rapidly, and the system loses stability. 

On the other hand, if the setpoint is too far away from the robot, the system updates too slowly, 
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and loses flexibility and adaptability to rapid path adjustments. In other words, the setpoint 

should be a value that can be adjusted, depending on the environment.  

The suggested solution is to define the line by two points, P1 and P2, with an equal (user set) 

distance L from P0. This distance is set as a multiplication of the directional vector (in 

quaternions). Figure 7.8 depicts how the two points now define the line. Finally, the two points 

P1 and P2 are published, along with a marker that visualizes the line in RViz. 

 

Figure 7.8: The points P1 and P2 are defined a set distance from P0. 

7.2.2 Navigation Algorithm in Node 2 

A topological navigation system has previously been adapted for Thorvald, allowing the robot 

to navigate to and position itself at a starting node in front of the field. The topological system 

will function as the action client, communicating with the node move_thorvald which contains 

the action server. The topological navigation system will call the action server by sending a 

message containing a goal, i.e. a move_base_msgs/MoveBaseGoal message. This goal message 
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is defined as a target_pose consisting of a Pose message (a position and orientation expressed 

in quaternions), as well as Header message (a sequence ID, time stamp and frame ID). In other 

words, the goal will contain the information on where Thorvald should move, i.e. the position 

of the node on the other side of the field. The action server in the node move_thorvald will be 

executed until Thorvald reaches this position.  

The topological navigation system is outside of the scope of this master’s thesis, however, the 

goal message generated by the client can be “faked” by implementing the action client in the 

terminal and sending the move_base_msgs/MoveBaseGoal message directly from there. Using 

the axclient, a tool included in the actionlib package, facilitates interaction directly with the 

action server. This way goal messages can easily be sent in the general user interface (GUI). 

The algorithm of the node is as follows: 

1. Looking up the robot's pose in the map/world frame 

Firstly, the node must look up the robot’s pose in a global reference system. When working in 

Gazebo, the navigation node assumes that the robot’s estimated pose in a world-fixed frame is 

available as nav_msgs/Odometry type messages, published by a separate (pre-existing) node. 

In the real world, however, the robot’s pose would be looked up in a map frame, possibly 

estimated by the GNSS RTK system. 

As the robot will be moving towards a position defined in a goal message sent from the Action 

Client, as well as using an error input to control velocity with closed-loop feedback, it is 

necessary to update the position and orientation of the robot in the global reference frame. 

When working in Gazebo, the orientation of Thorvald in the world frame is expressed as a 

quaternion, and so it is transformed to Euler angles. 

2. Rotation to determine cutting tool’s position 

The two-dimensional position and orientation that we want, is that of the tip of the cutting tool 

(which side depending on which way Thorvald is moving). The position in the Gazebo world 

frame provided by the nav_msgs/Odometry message, however, is that of the origin of the 

base_link reference frame. The cutting tool is 1,8 metres long and (for the purpose of this thesis) 

placed 30 cm in front of base_link. To determine the position of the cutting tool’s tip in the 

global reference frame, the position must be rotated on the two-dimensional global XYf-plane 

depending on the orientation of the robot. The rotation expressed in matrix form is as follows: 
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൤
𝑋ோ௢௧

𝑌ோ௢௧
൨ = ൤

cos (𝛼) −sin (𝛼)

sin (𝛼) cos (𝛼)
൨ ൤

𝑋ఈୀ଴

𝑌ఈୀ଴
൨ (54) 

Figure 7.9 illustrates the rotation of the point P1, representing the tip of the cutting tool, as the 

robot rotates in the global reference frame with an angle 𝛼. 

 

Figure 7.9:As the orientation of Thorvald changes in the global 
reference system, the position of the tip of the cutter is rotated 
about the base_link frame. 

. 

3. Subscribe to and rotate points published in the perception node 

The two points that define the calculated line are now updated, and their positions in the global 

reference system are registered. As the points are defined locally in relation to base_link, they 

must also be rotated in the two-dimensional plane in the same way the position of the tip of the 

cutting tool was rotated. The points are then stored in containers, hereby referred to as point-

holders, which are constantly updated. 

4. Execute Action  

At this point, the position of the line and the robot are fully defined in the global frame. The 

points defining a line are continuously updated and placed in a point-holder container. When 

the goal message is received from the client as a move_base_msgs::MoveBaseGoal message, 

the first thing that is done is to calculate the distance between the current position of Thorvald 

and the client goal position (the node on the other side of the field). This way the robot can stop 



Chapter 7    Perception and Navigation Strategy 

68 

when it reaches its destination. Secondly, the two points that currently define the line and are 

in the point-holder at that time, are registered and the distance to the setpoint is calculated. If 

the distance is less than one metre, the robot is asked to keep updating the setpoint without 

moving. The robot can stay in this loop for 10 seconds, however, if it remains idle for more 

than that the action is cancelled.  

When the setpoint is further than one metre away, two line-equations are calculated. One 

equation is that of the line separating the uncut and cut grass that we want the robot to follow. 

The second line equation defines a line that is orthogonal to the first line, spanning between it 

and the robot’s position. Solving for where these two line equations are equal, the intersection 

point is found. The magnitude of this second line is then the smallest distance from the 

separation line and the robot, i.e. Thorvald’s lateral displacement.  

The objective is for Thorvald to move towards the setpoint and converge on the line until it 

gets within one metre of the setpoint, then take in another setpoint and so on. Throughout the 

process it will also always be possible to end the action if it is pre-empted. If Thorvald does 

not reach the setpoint within 10 seconds, it is considered likely to be the result of an error or 

an obstacle, and the robot will look for another setpoint.  

The error offset is calculated, and the velocity is controlled, as explained in Chapter 6.2 and 

Chapter 6.3, respectively. A proportional controller is implemented to apply the linear velocity 

by multiplying the lateral displacement error ey with the proportional gain Kv. The angular 

velocity is regulated with a proportional-derivative controller. The angular displacement error 

𝑒ఝ is multiplied with the proportional gain Kh, and there is also a differentiator term where the 

derivative gain Kd is multiplied with the rate of change of the angular displacement error.  

Thorvald’s maximum forward speed is set to 1.5 m/s until the lateral error is sufficiently small 

(less than 1 metre), and the robot’s speed converges on 0.6 m/s plus the steady state error. Once 

Thorvald has reached the client goal position, or the action has been pre-empted at any point, 

a command will be sent to stop the robot until a new request is received from the client. 

 To summarise the series of actions that commences when the robot receives the goal message 

from the action client, pseudocode is presented in Figure 7.10 showing the flow of this part of 

the algorithm. Cancelation and shutdown of ROS is accounted for in all steps of the algorithm, 

but for simplicity, these loops have been left out of the pseudocode.   
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Table 7.1: Action server algorithm. 

Input: Goal message. Continuously updated point holder. Odometry information 
Output: Thorvald autonomously moving along grass line 
BEGIN 
Calculate distance to goal; 
while not at goal and action is active do 
| Calculate distance to setpoint; 
| while distance to setpoint < 1m do 
| | take in new points from point holder; 
| | calculate distance to setpoint; 
| | if in this idle state for 10s then 
| | | break loop and cancel action; 
| | end if 
| end while 
| while distance to setpoint >= 1m do 
| | calculate the line equation based on the two points fetched; 
| | calculate the line equation of orthogonal line to the first line; 
| | find the intersection point; 
| | for 10s and distance to setpoint > 1m and not at goal do  
| | | calculate lateral displacement; 
| | | calculate angular displacement; 
| | | if lateral displacement < 1m then 
| | | | apply P controller so linear velocity converges on 0.6 m/s; 
| | | else 
| | | | apply a constant linear velocity of 1.5 m/s; 
| | | end if else 
| | | apply PD controller to regulate angular velocity; 
| | | if angular velocity control signal > 0.3 rad/s then 
| | | | cap angular velocity at a constant 0.3 rad/s; 
| | | end if 
| | | update distance to setpoint; 
| | | update distance to goal; 
| | end for 
| | if action has been cancelled or client goal is reached then 
| | | break loop; 
| | else 
| | | take in new points from point holder; 
| | | calculate distance to setpoint; 
| | | while distance to setpoint < 1m do 
| | | | take in new points from point holder; 
| | | | calculate new distance to setpoint; 
| | | | if in this idle state for 10s then 
| | | | | break loop and cancel action; 
| | | | end if 
| | | end while 
| | end if else 
| end while 
end while 
stop robot; 
END 
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Chapter 8 

Testing and Verification 

8.1 Simulation Testing 

This chapter will test the developed method to assess the robot’s ability to perform according 

to the main and sub objectives defined in Chapter 1 of this thesis. The tests are divided into 

simulation testing and tests on captured field data. 

Two test-objectives are defined: To further test the line detection algorithm in both simulated 

environments and on field data, and to evaluate the velocity control and autonomous navigation 

of the robot. The grass cutting configuration and its configuration files are used in the 

simulations, as well as the Velodyne simulation package to simulate the use of a VLP-16 

LIDAR.  

The sensor itself is positioned 90 centimetres above ground level, in the front section of the 

robot (with equal distance to each front wheel). The sensor is angled downwards with a pitch 

of 20-degrees. Figure 8.1 shows Thorvald visualised in RViz with the body-fixed base_link 

frame, the sensor frame lidar_frame, and the Gazebo world-fixed odom frame. 
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Figure 8.1: Thorvald as visualised in RViz. 

8.1.1 Line Detection with Increasing Lateral Displacement 

One cannot always guarantee that the robot will start off in the ideal position, or that the grass 

line will be continuously produced in the same lateral distance to Thorvald. As the robot’s 

lateral distance to the line increases, naturally the angular displacement will increase as well. 

This test is conducted in Gazebo, to test the algorithms ability to identify the line as the robot 

is positioned with increasing lateral displacements from the line. The true line position will be 

compared to the estimated line by comparing the true lateral and angular error offsets with the 

corresponding estimated error offsets. 

The stationary robot is placed in the Gazebo simulated environment, with a rectangular object 

meant to represent a field of grass. The rectangle’s dimensions are 800 cm x 800 cm x 50 cm. 

The exact position of this simulated field is defined in the simulation software’s world-fixed 

frame, as is the robot’s position and orientation. This allows for the true angular displacement 

error to be calculated manually with equation 42, as the robot’s true lateral displacement values 

are incrementally set. The robot’s reference frame is aligned with the fixed reference frame, so 

that 𝑥⃑௧ ∥ 𝑥⃑௙. The robot is then laterally displaced in increments of 10 centimetres, up to 1 metre 

on each side of the line. Figure 8.2 shows the design of the simulated environment. 
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Figure 8.2: The simulated environment, showing how the robot is placed in relation to the 
"grass", and moved laterally in relation to the line. 

8.1.2 Autonomous Navigation Test 

Again, Gazebo is used to simulate a real environment. The purpose of this simulation test is to 

assess the proposed solution as a whole, including the controller in the action server. A goal 

message will be sent through the GUI of the previously described axclient. The robot will detect 

the line, assess its error offset, and autonomously navigate in the simulated grass field.  

The simulated field is 24 metres long, with changing width to assess the line detection 

algorithm’s efficiency when the line is not straight. This also tests the controller’ ability to 

successfully change trajectories and realign the robot. The field consists of three sections of 8 

metres length each, all with a height of 50 centimetres.  

The robot’s starting position (its position is measured from the left tip of the cutting tool) is 

1.55 metres from the field, with an error offset of 22 degrees. The robot will navigate along the 

first section for 8 metres, then the width of the field will increase with one meter to the robot’s 

left side. After executing a left turn, the robot should then be able to realign its cutting tool to 

the new grass line. This line shall again be followed for 8 metres, until the robot reaches section 

three. This section of “grass” has a decreasing width of 0.5 metres, so the robot will have to 

turn right and realign itself again. Figure 8.3 shows the setup of this test. 

The controller’s parameters used in the test are: 

 Proportional gain for linear velocity: Kv = 0.5. 

 Proportional gain for angular velocity: Kh = 0.032. 

 Differential gain for angular velocity: Kd = 0.01. 
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Figure 8.3: The simulated field in the autonomous navigation test, seen from a side-view on 
the left, and top-view on the right. 

8.2 Testing on Captured Field Data  

The objective of these tests is to evaluate the line detection algorithm in a real field, under 

different conditions that the robot might encounter. To accomplish this, applicable recorded 

data-streams were selected from a series of field trials already conducted by the GrassRobotics 

project.  

The grass cutter configuration was tested on May 21st 2019, in a field on the west coast of 

Norway. The original purpose of this field test, in 2019, was to gather data and build a dataset 

that would be used to train a neural network to differentiate between humans and grass in the 

field. 

By subscribing to the topics containing the message data produced by the sensor in real time, 

the point cloud data (as well as a raw video file recorded by a mounted RGB-camera) was 

saved in several rosbag files. This useful ROS format allows the LIDAR-data produced that 

day to be applied to the methods developed in this thesis as well. All the raw sensor data, as 

well as the messages produced by the algorithms (like the markers), are visualised in RViz by 

subscribing to the published topics (see Figure 8.2). 

The existing prototype of the grasscutter configuration was used when testing the robot in the 

field, with Ackerman steering (angular and forward moving linear velocity control) and a 

Velodyne VLP-16 LIDAR sensor mounted 90 cm above ground level. Like in the simulation 

tests, the LIDAR is placed in the front section of the robot (with equal distance to each front 

wheel). The sensor is also tilted downwards with a pitch of around 20-degrees. Figure 8.4 

shows the setup of the robot as it is cutting grass in the field during the field trial in 2019.  
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Figure 8.4: Thorvald during a field trial on May 21st 
2019. 

Table 8.1 lists the series of rosbags that were selected for testing. 

Table 8.1: Specifications of the captured data. 

Bagfile no. Runtime [s] Height of Grass 

[cm] 

Position of line  Slope of field 

1 33.9  ~ 70  On Thorvald’s 

left side 

Uphill  

2 86.6 ~ 70  On Thorvald’s 

right side 

Downhill  

3 89.1 ~ 70 On Thorvald’s 

right side 

Downhill  

8.2.1 Non-stationary Left-Sided Line Detection Uphill  

In this test, based on data contained in bagfile no. 1, the robot was placed in the field and its 

velocity and steering was manually controlled. The robot moves uphill at a speed between 0.6 

and 1.5 m/s, cutting the grass as it moves. An ideal trajectory was attempted to be maintained 

by the person controlling the robot, and the field test was recorded on a partly clouded day. 

Figure 8.5 shows an image taken by the depth camera, and the correlating point cloud produced 

by the LIDAR. With the naked eye it is quite easy to distinguish the line that separates the cut 

and uncut grass, and subsequently draw the line, as shown in Figure 8.6.a. If successful, the 

line should be produced by the algorithm with no significant diversions.  
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Figure 8.5: The RGB-D image at an instance in bagfile 1, compared to the equivalent point 
cloud. The edge where the uncut and cut grass meets is clearly visible in both pictures, as 
is the person standing in the field. 

The test will show the algorithm’s ability to detect a line in the grass while moving in a field 

with an uphill slope, with the cut grass to the robot’s left side. This means that the line is also 

generated to the left of the robot, and the left tip of the cutting tool will be following the line 

(in the code, this translates to the variable right_side set to true). The grass is cut low, thus 

presenting low amounts of noise in the data. 

At times, the robot is turned manually to adjust its course, and so the algorithm’s ability to 

detect the line whilst in different orientations is tested. People are also present in the field 

(although not in the critical zone), which allows for testing of the algorithm’s robustness and 

its ability to filter out objects that are undesirable. The setup of the sensor produces point cloud 

data as shown in Figure 8.6, visualised in RViz. 

 

Figure 8.6: a) A top-view of the point cloud environment, the dense point cloud representing 
the uncut  grass visible to the robot's right. The dashed line represents the desired line to be 
produced by the algorithm; b) A close up of the environment, in front of Thorvald the uncut 
grass can clearly be distinguished by its elevation over the ground. 
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The bagfile is played and the perception node is run as well, applying the developed algorithms 

on the data.  

8.2.2 Non-stationary Right-Sided Line Detection Downhill 

The conditions in this field test, contained in bagfile no. 2, differ from those in bagfile no. 1. 

The robot is placed in another field, with the cut grass on the robot’s right side. This means that 

the error offset is calculated from the right tip of the cutting tool this time, and the line is also 

detected on the right side of the robot (in the code, this translates to the variable right_side set 

to false). In contrast to the environment in bagfile no. 1, it is now a downhill slope, which 

allows for testing of the algorithm’s flexibility.  

The present cut grass is cut quite roughly and collected in piles, so there is a substantial element 

of noise in the data. This noise is accentuated because the height of the uncut grass is quite low 

in May, compared to what it would be at the time of harvest. Parts of the cut grass reaches 

heights of around 70 cm, and thus could be registered as part of the plane of the uncut grass. 

However, this provides excellent conditions to test the applied RANSAC robust estimation 

model, to fit the correct plane and line. In addition, one of the goals of the GrassRobotics project 

is to be able to increase the amount of harvests each season. Consequently, the grass is expected 

to be shorter at the time of cutting, and so it is beneficial to test the algorithm on grass that is 

not that tall. In this field test, during which data was captured, the robot was placed in the field 

and its velocity and steering was again manually controlled. As shown in Figure 8.7, comparing 

the image produced with the RGB-D camera and the point cloud produced by the LIDAR, the 

separation line is clearly visible. 

 

Figure 8.7:The RGB-D image at an instance in bagfile 2 (on the left), compared 
to the equivalent point cloud (on the right).  
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In the recorded field trial, the robot moves downhill at a speed between 0.6 and 1.5 m/s, again 

cutting the grass as it moves. An ideal trajectory is once more attempted to be maintained by 

the person controlling the robot, and the field trial data was recorded on the same partly clouded 

day. 

To test the algorithm, the bagfile is played so the sensor data is published, whilst running the 

perception node. The setup of the sensor produces point cloud data that is visualised in RViz, 

as shown in Figure 8.8.  

Figure 8.8: a) A birds-eye view of the point cloud environment, with the dense point cloud 
representing the uncut  grass visible to the robot's left. The dashed line represents the desired 
line produced by the algorithm; b) A close up of the environment, in front of Thorvald the 
uncut grass can clearly be distinguished by its elevation over the ground. 

8.2.3 Stationary Line Detection Test with Moving Objects 

In this test, using captured field data contained in bagfile no. 3, the robot is stationary and 

placed in the same field as in bagfile no. 2. There is a slight downhill slope and the weather 

conditions are partly cloudy. The algorithm will have to produce the line even as up to three 

people are present in front of the robot, moving in and out of the critical zone. As seen in Figure 

8.9 (only two of the three people are visible), the motion of the people in the field is 

intentionally diversified. The people in the critical zone are running, walking, and crouching, 

to be as unpredictable and disturbing to the sensor as possible.  

This will test the robot’s ability to find the line even under these extreme conditions, emulating 

conditions the robot might face for example if it comes across a group of deer in the field, or a 

flock of birds. In which case, obvious steps should be taken as safety procedures, like 

immediately stopping the cutting tool. However, safety procedures are not the topic of this 

thesis, and the ability to maintain the line detection algorithm is still important in these 

circumstances, so as to not lose control of the navigation. 
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Figure 8.9: An image taken by the RGB-D camera, where two people move around in the 
critical zone. 
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Chapter 9 

Results 

The following results are obtained from the tests conducted in Chapter 8. The results have been 

divided into those found in simulation testing, and those found using captured field trial data. 

9.1 Simulation Testing 

9.1.1 Line Detection with Increasing Lateral Distance 

The average estimated lateral displacement was 1.90 centimetres from the true lateral 

displacement. The average angular displacement estimation was 0.38-degrees from the true 

angular displacement. The trend showed an estimated angular displacement that was slightly 

higher than the true value when the robot was placed to the left of the line (represented as 

negative displacement values in the graph of Figure 9.1), and slightly lower compared to the 

true angular displacement as the robot was moved to the right of the line (as seen in Figure 

9.2).  

The results showed no apparent pattern of estimated lateral displacements being either greater 

or lower than the true values. Only one estimation to the left of the line deviated more than 2 

cm from the true value (at 10 cm true lateral displacement), and the average deviation was 1.19 

cm, whereas to the right of the line the estimations had larger errors. When the robot was placed 

to the right of the line, the average estimated lateral displacement was 2.78 cm from the true 

lateral displacement. The highest deviation in lateral displacement values was 8.28 cm, and the 

highest deviation in angular displacement values was 2.44-degrees, both found at 80 cm to the 

right of the true line. 
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Figure 9.1: True lateral and angular displacement values compared to 
estimated values, when the robot was placed the left of the line. 

 

 

Figure 9.2: True lateral and angular displacement values compared to 
estimated values, when the robot was placed to the right of the line. 
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9.1.2 Autonomous Navigation Test 

For the duration of the test, the robot detected the separation line and autonomously navigated 

along this line. The setpoints on the line were generated and applied in the controller, and the 

controller successfully updated the setpoint when the robot was within 1 metre of the used 

setpoint. Figure 9.3 illustrates the trajectory of the robot during the test (the cutting tool is not 

included in the illustration of Thorvald). The tip of the cutting tool, which is the position the 

algorithm aligns to the line, would be situated just in front of the front left wheel.  

 

Figure 9.3: The sequence of positions and orientations of the robot as it navigates 
autonomously in the simulated environment. 

The sequence of motion can also be presented graphically as in Figure 9.4, by plotting the 

robot’s position relative to the true line over time. 

 

    Figure 9.4: The robot’s tracked path exhibiting slight overshoot but little oscillation. 

Figure 9.5 presents the recorded linear velocity during the test. The linear velocity of the robot 

remained quite stable, between 0.6 m/s and 1.0 m/s. The linear velocity reaches maximum 

values at around 12 seconds, as the robot reaches section two of the field and the estimated 

separation line is at the highest lateral distance from the robot. 

3,00

3,50

4,00

4,50

5,00

5,50

6,00

6,50

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0

Y
-P

os
it

io
n 

[m
]

Time [s]

Ground Truth vs Followed Path Followed
Path

Ground
Truth



Chapter 9    Results 

84 

 

Figure 9.5: Linear forward-velocity of the robot recorded over 30 seconds. 

Figure 9.6 presents the recorded angular velocities during the test. Similar to the linear velocity, 

the angular velocity exhibited quite stable tendencies. The maximum angular velocity (a left 

turn) occurs in the turn to transition to section 2 of the field at around 12 seconds. 

 The minimum angular velocities (right turn) occurs in the following seconds as the robot 

reorients itself after a slight overshoot, and in the first few seconds as the robot adjusts its 

starting angle of 22 degrees.  

 

Figure 9.6: Angular velocity of the robot recorded over 30 seconds. 
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9.2 Testing on Captured Field Data 

9.2.1 Non-Stationary Left-Sided Line Detection Uphill 

The positively sloped plane of the uncut grass was extracted continuously without noticeable 

errors, filtering out the ground and the surrounding environment with the applied passthrough 

filter. As seen in Figure 9.7, the implemented RANSAC algorithm is successfully able to 

produce an estimate of the plane, based on maximizing the amount of inliers.    

 

Figure 9.7: a) The robot seen from its left side, before a plane is estimated; b) The plane of 
the uncut grass is coloured white, estimated by the RANSAC method applied in the node. 

The points that lie along the edge of the uncut grass were successfully segmented from the 

point cloud, as can be seen in Figure 9.8.  

 

Figure 9.8: a) The points in the estimated plane are coloured green. The white points along 
the left side of the plane will be fitted to a line; b) The estimated plane with the white points 
on the left edge of the plane at another instance.  

The line was continuously produced and showed no signs of significant errors throughout the 

runtime of the test. The RANSAC model was able to find the line even when the point 

distribution in the field was not ideal. The published blue marker is visualized in RViz and 

shown in Figure 9.9. 
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Figure 9.9: a) The RANSAC method demonstrated as it estimates a line along the edge of the 
uncut grass, with five outliers present in the last 50 cm of the critical zone; b) Another 
instance of a successful line estimation under the presence of six outliers. 

Figure 9.10 illustrates the effectiveness of the algorithm during the test, depicting the successful 

generation of a line on which the robot could align its cutting tool with and follow. 

 

Figure 9.10: a) The estimated line produced by the algorithm, shown as the blue marker is 
visualized in RViz; b) Another example of the detected line, which Thorvald will navigate 
along. 

As the robot turned, the line was still generated with a satisfactory result. Figure 9.11 illustrates 

an example of such conditions, as the robot is manually turned about 35-degrees to the left.  
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Figure 9.11: The robot is turned up to ca. 35-degrees, showing no 
effect on the generation of the line. 

9.2.2 Non-Stationary Right-Sided Line Detection Downhill 

As can be seen in Figure 9.12, the RANSAC algorithm was successful in filtering out the 

dominant, negatively sloped plane as well, which represents the uncut grass. The plane was 

again estimated continuously without noticeable errors after filtering out ground and the 

surrounding environment efficiently. However, the plane was slightly more unevenly spread 

out, compared to the plane in the previous non-stationary test. 

 

Figure 9.12: a) The robot seen from its right side, the plane of the uncut grass clearly 
distinguishable; b) The plane of the uncut grass coloured white, estimated by the RANSAC 
method applied in the node. 

As Figure 9.13 shows, the algorithm was also successful in identifying the points that form the 

edge of the uncut grass, which were used to fit the line. In the figure, the estimated plane is 

coloured green, and the enlarged, white points represent the filtered edge of the uncut grass. 
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Figure 9.13: a) An estimated plane with selected points in white; b) 
Another estimated plane with selected points.  

The RANSAC algorithm estimated the lines continuously and was able to fit a line successfully 

to the inliers, showing no significant and important signs of errors throughout the runtime of 

the test.  

At a few instances, piles of the cut grass reached high enough to be falsely considered as inliers 

in the RANSAC algorithm that estimated the plane. This led to segmented points which were 

supposed to be representing the line of the uncut grass, being located to the right of this line 

(see Figure 9.14.a). Despite these disturbances, the robot was successful in estimating the grass 

line, and did so consistently throughout the test. 

 

Figure 9.14: a) A line successfully estimated by the RANSAC method 
under the presence of three outliers in the field of cut grass; b) The 
RANSAC method successfully estimating a line in the presence of four 
outliers. 
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Figure 9.15 illustrates how effective the algorithm performed during the test. The figure depicts 

the successful generation of a line, represented by the blue marker published in the perception 

node.  

 

Figure 9.15: a) A successful estimation of the line at an instance of time; b) The robot and 
the detected line as seen from the right, as it makes its way along across the field. 

9.2.3 Stationary Line Detection Test with Moving Objects 

The line was continuously and successfully generated in this test as well, showing no signs of 

being affected by the three people in the critical zone. The line is detected and generated even 

as the subjects in the test walk in and out of the critical zone.  

 

Figure 9.16: a) The line is successfully generated (coloured blue) as three people are 
situated in the critical zone; b) The presence and motion of the people have no effect on the 

line generation algorithm, even when the person is crossing the line. 
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Chapter 10 

Discussion 

10.1 The ROS framework 

ROS has proven a good option for prototyping throughout this thesis, as it is timesaving and 

lightweight. It is, however, important to realise it might not be the software framework used in 

a final commercialised grass cutting robot. In some cases, efficiency and real-time processing 

is sacrificed for higher stability and management of complexity, by placing core services in a 

modular design (31), (33). The lack of safety protection can also be an issue, and on a robot 

equipped with knives, safety is obviously a crucial aspect that must be addressed before mass 

production. The communication between nodes in ROS is not encrypted. This makes it fast, 

easy to use, and results in general high performance, however, it also means that it might be 

exposed to external interference that can lead to dangerous situations. It is quite simple to pick 

up a message externally and also deceive the node to generate false messages (40). The modular 

approach of ROS can also be a security risk, as the way publishers and subscribers are used to 

pass messages between the nodes, also ensure that the nodes are completely independent and 

anonymous. This means that in a topic where there are several subscribers, each subscriber is 

unaware of the other subscribers. Perhaps more worrying, the publisher is also unaware of the 

subscribers, or even if there are other publishers publishing data to the same topic. This means 

that anyone, that for whatever reason is able to access the same network that the grass cutting 

robot is running on, will have access to all of its data. With this access one is able to send 

commands, overload the network, and tap into published sensor data to watch point clouds or 

camera-streaming. It is also worth noting that the transmission control protocol (TCP), which 

handles the communication between the internet protocol (IP) and the running application, is 

also unprotected. This means that unauthorised third parties can quite easily send external  
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packages to the ROS ports, put in messages, and even completely replace publishers or 

subscribers. At the time of writing, however, a ROS 2.0 project is currently in development, 

addressing these issues. ROS 2.0 could perhaps be an option for future Thorvald production.  

10.2 Simulation Testing 

10.2.1 Line Detection with Increasing Lateral Distance 

The results presented in Chapter 9.1.1 illustrated the robot’s ability to generate the line for the 

duration of the test. The algorithm was proficient at estimating both the lateral displacement 

offset, and the angular offset. The estimated displacement values generally coincide well with 

the true values, though the estimated angular and lateral displacement does appear to be more 

accurate to the left of the line.  

A possible explanation for this finding could be that when the sensor is placed to the left of the 

line, it is positioned over the “cut grass”. This means that the edge of the “field” will be more 

distinct, as the horizontal side of the “uncut grass” is visible from the sensor’s perspective. 

When the robot is moved to the right of the line, it is positioned over the “uncut grass”, and so 

the edge is not as distinct. An option that can be explored to take advantage of these findings, 

is equipping the current rigid sensor mount with an automated motorised slider, where the 

sensor is slid from side to side depending on which side the uncut grass is on.  

The difference between the true and estimated values shows no apparent linear relation with 

the lateral distance to the line on either side. The differences did not increase constantly as the 

robot was placed further away from the line during the simulated test. However, the overall 

accuracy of the estimations appears to be the most stable within 20 cm true lateral displacement 

on either side of the line. The average difference that was found when comparing lateral 

displacement estimation and true values (1.19 cm and 2.78 cm depending on which side of the 

separation line the robot was placed), suggest that requiring the tip of the cutting tool to position 

itself 2-3 cm over the estimated line could improve results when cutting. Overall, the results 

are promising, and show that the algorithm can deliver quite stable and consistent results, 

somewhat independently of lateral displacement up to one metre from the line.  
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10.2.2 Autonomous Navigation Test 

The autonomous navigation test showed that the robot was able to detect the edge of the “uncut 

grass” and generate the line effectively. The idea behind the algorithm seemed to work well, as 

the setpoints were consistently updated and used by the controller.   

During the design of the velocity control, the gain was tuned by simple trial and error methods. 

To reach a satisfactory transient response, the parameters were tuned to satisfy certain 

conditions: The goal of the tuning was to have minimal overshoot as the robot reached the line, 

while balancing the response time of the system. The rise time (the time the robot used to reach 

its setpoints) and the settling time (the time before the robot stabilised its trajectory) also had 

to be balanced.  

The rise time seemed quite good, as even the unnaturally sharp turns of the field are quickly 

addressed, and the new lines are reached quickly. The trajectory of the robot (see Figure 9.3 

and 9.4) showed that some overshoot was present, but with very little oscillation as the robot 

seemed to be able to stabilize its course within few seconds. The steady state error did not affect 

the overall result noticeably, as expected. Overall, the P- and PD-controller implemented in the 

action server seemed to work well, but to address the slight overshoot the parameters of the 

PD-controller could be tuned more extensively.  

In the straight sections, the robot seemed to keep a very consistent trajectory, showing that 

every new line estimation did not vary much from the previous line. During the test, every two 

lines which were generated were averaged to produce one line. This averaging frequency 

seemed to work well, but it would be interesting to see how much more stability could be 

produced by further increasing the amount of individual line estimations that are averaged. By 

increasing the amount of lines that are averaged, however, the lines would not be generated as 

often, and the system would be slower. 

The linear velocities presented in Figure 9.5 shows that the velocities stay within the desired 

speed range of 0.6 m/s to 1.5 m/s, disregarding the horizontal lines that are likely insignificant 

errors in the simulated values. These horizontal “jumps” likely stem from the fact that the 

simulation was run with a low real time factor (ca. 0.1) due to a high complexity of the models, 

meaning that the simulation was lagging a little bit. The angular velocities graphically 

presented in Figure 9.6 also stay within the desired range of -0.3 rad/s to 0.3 rad/s (again 

disregarding horizontal lines). 
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10.3 Testing on Captured Field Data 

10.3.1 Non-Stationary Line Detection  

The algorithm performed well throughout the recorded tests. The grass field environment 

proved to yield quite a few outliers, but the robustness of the estimation model seemed to be 

sufficient. The line was successfully and consistently estimated correctly, even under presence 

of a high number of outliers. For example, the RANSAC-produced line in Figure 9.8.b, has a 

total of six outliers and 19 inliers. This means that the line seemed correctly estimated, even 

though 24 % of the points in the data set are correctly classified as outliers.  

The results of the test suggest that the applied threshold distance of 15 cm in the RANSAC 

plane estimation model, as suggested in Chapter 7, produced an estimated plane that remained 

sufficiently dense. The threshold distance of the RANSAC line estimation model was set to 8 

cm, a value that seemed to perform well during the tests. 

The critical zone was defined in Chapter 7.2 as 2.5 metres long, and 6 metres wide, an area that 

proved big enough to gather all the information required to produce the line. The slope of the 

field had no apparent effect on the algorithm, as it was able to deal with the unstructured 

environment in both a positively and negatively sloped field. The orientation of the robot did 

not affect the successful generation of the line either. 

10.3.2 Stationary Line Detection Test with Moving Objects 

It was shown that placing people (or objects) in the critical zone did not disrupt the algorithm, 

even when people were moving on the line itself.  The RANSAC model successfully fit the 

planes to the points that were classified as inliers, independently of the people present in the 

critical zone. The planes were dense with points, making further manipulation of the point 

cloud possible. This attests to the efficiency of the plane segmentation algorithm, and to the 

line fitting model, even under similar conditions with high level of noise.  

10.4 Assumptions and Simplifications 

During the control system design in Chapter 6, certain potentially unrealistic assumptions were 

made to simplify the presentation of the problem. Specifically, the assumption that the robotic 

system can be approximated as a linear and time invariant system, that the models for driving 
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and steering are identical and independent and can be represented by a second order transfer 

function.  

This approximation of an LTI system might not be realistic, as there most certainly will exist 

nonlinearities in the real world like static friction and actuator limitations. By linearizing the 

system, however, allowed for the mathematical expression of the system’s closed-loop transfer 

function, and implementation of linear PID control that will hopefully prove effective at 

keeping the system in a linear operational region. All the stated assumptions and simplifications 

most be further tested to be proven acceptable (see Chapter 11.2 Further Work). 

10.5 Achievement of Objectives 

The main objective of this thesis was to implement sensor technology and develop a method 

for a robot to autonomously identify the separation line and be able to follow it whilst cutting 

grass in the fields. Sub objectives were defined to find the best suited sensor technology for the 

task, to develop an algorithm to find the separation line, and to control the robot in a feedback 

system. The sub objectives also included testing the suggested solution with simulation 

software and in the field. 

The objectives have been reached satisfactorily, as this thesis has presented an approach based 

on the best suited sensor and the ROS framework. The solutions have been thoroughly tested 

in simulation software, as well as on captured field trial data. Due to efforts to contain the 

spread of the COVID-19 virus in the Spring of 2020, however, new field trials were difficult 

to organize and conduct. Fortunately, by having access to applicable field trial data from May 

2019, the perception and line detection methods presented in this thesis could be tested on this 

captured data.  

The tests, both simulated in Gazebo and conducted on captured field trial data, were all 

successfully conducted and achieved their respective objectives, defined in Chapter 8. 
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Chapter 11 

Conclusion and Future Work 

11.1 Conclusion 

The work presented in this thesis shows that a grass cutting robot can detect the line separating 

uncut and cut grass, calculate the ideal path for the cutting tool, and ultimately adjust to and 

follow this line. By taking advantage of the data produced by a single LIDAR-sensor, Thorvald 

can cut grass without leaving behind unnecessarily large rows of uncut grass in the field.  

Preliminary testing showed promising results, although further field trial testing is required. 

The testing on captured field data showed that the developed algorithms and methods were 

effective at detecting the ideal path through the grass field. The detection methods proved 

successful in a series of different environments. Negatively and positively sloped fields, 

orientation of the robot, and obstacles in the immediate surroundings of the robot showed no 

negative effects on the estimation of the line. Furthermore, the robustness of the RANSAC 

estimation model produced promising results and showed that a grass-field is an environment 

that the Thorvald system can operate in successfully. The simulations illustrated the methods’ 

ability to estimate the line with different lateral distances to the robot, efficiently calculating 

error offsets with increasing angles. The simulations also proved that a proportional controller 

is sufficient for linear velocity control, and a PD-controller can proficiently control the angular 

velocity, although the current implementation of closed-loop angular velocity control leads to 

small degrees of overshoot and oscillation.  

Furthermore, the general process described in this thesis is one that could be applied to several 

other types of crops, and the algorithms developed are general enough to be applied to any 

sensor producing point cloud data.
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11.2 Future Work 

11.2.1 Sensor Placement 

During the field trials and simulation testing presented in this thesis, the LIDAR sensor was 

placed at around 90 centimetres above ground level, centrally placed in the front section of the 

robot and with equal distance to each front wheel. The simulated tests of line detection with 

increasing lateral displacement from the robot, however, showed that the estimated error offsets 

were more precise when the sensor was located to the left of the line (over the uncut grass).  

Future work can consider taking advantage of these findings, by testing different placements 

and mounts of the sensor. Placing the sensor in different distances to ground level and recording 

its effect on data density and overall efficiency has not been explored in this thesis but should 

be explored in future work.     

11.2.2 Further Testing  

In the future, more rigorous field trials should be performed to test the complete autonomous 

perception and navigation system in a grass field. The future field trials should include different 

weather conditions that may impact the system. For instance, the reflectivity of the grass blades, 

and thus the data produced by the sensor, might differ in rain. Additionally, it would be 

interesting to see how the data is affected by fog, mist, and other atmospheric conditions.  

Further field testing is also required to test the suggested control system design, to see if the 

nonlinear dynamics are in fact negligible. If the tests prove unsuccessful, one might have to 

implement a nonlinear controller.  

11.2.3 Tuning of Controller 

A more extensive tuning can be performed in the future, to optimize the selection of controller 

parameters. Although the control design performs satisfactorily in the test performed in this 

thesis, it could be even better adjusted by applying popular tuning techniques like the Ziegler 

Nichols Method.   
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11.2.4 Algorithm Development 

The algorithm should be continued to define what happens when the client goal is reached, and 

how it is reached. Currently, the robot stops, and the action is completed when the distance to 

the client goal is 0.0 m. This is an unlikely precision that can only be obtained during 

simulations, and so a tolerance should be applied. Future algorithm development can explore 

the idea of adding a line based on the client goal, that runs along the edge of the field, so that 

the robot never crosses this line.  

In addition, for a higher degree of control of the trajectory of the robot, the algorithm can be 

developed to define a line between the starting node and the end node defined in the topological 

map (on opposite sides of the field). This way, if the robot moves too far from the projected 

row, some action can be taken.  
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Appendix A 

C++ Code 

A.1 ROS Nodes 

A.1.1 Perception Node 

This source code is located in the file line_node.cpp: 

1   #include <package_find_line/PointCloudSensor.h> 
2  
3   int main(int argc, char **argv) 
4   { 
5       ros::init(argc, argv, "line_node"); 
6       ros::NodeHandle nh; 
7  
8       // The class is instantiated 
9       PointCloudSensor pointcloudSensor(&nh); 
10     ros::spin(); 
11  }; 

A.1.2 Navigation Node 

This source code is located in the file move_thorvald.cpp: 

1    #include <ros/ros.h> 
2    #include <actionlib/server/simple_action_server.h> 
3    #include <move_base_msgs/MoveBaseAction.h> 
4    #include <geometry_msgs/Twist.h> 
5    #include <iostream> 
6    #include <cmath> 
7    #include <sstream> 
8    #include <nav_msgs/Odometry.h> 
9    #include <tf/tf.h> 
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10  #include <tf/transform_datatypes.h> 
11  #include <geometry_msgs/PoseArray.h> 
12  #define PI 3.14159265 
13  
14  class RobotCommandAction 
15  { 
16  protected:  
17      ros::NodeHandle nh_; 
18      ros::Publisher cmd_pub_;  
19      ros::Subscriber line_sub_; 
20      ros::Subscriber odom_sub_; 
21      // action server object 
22      actionlib::SimpleActionServer<move_base_msgs::MoveBaseAction> as_;  
23      std::string action_name_; 
24      bool right_side_ = true; 
25      float pointDistance_; 
26      geometry_msgs::Point pointHolder1_; 
27      geometry_msgs::Point pointHolder2_; 
28      double grassCutterPos_x_ = 0.0; 
29      double grassCutterPos_y_ = 0.0; 
30      double thorOrientation_ = 0.0; 
31      double thorOrientationRad_; 
32      float Kv_ = 0.5; 
33      float Kh_ = 0.032; 
34      float Kd_ = 0.001; 
35      float knife_x_ = 0.3; 
36      float knife_y_ = 0.9; 
37      double prev_error_o_ = 0.0; 
38      double freq_ = 10.0; 
39      double baselinkPos_x_; 
40      double baselinkPos_y_; 
41  
42  public: 
43  
44      RobotCommandAction(std::string name) : 
45      as_(nh_, name, boost::bind(&RobotCommandAction::executeCB, this, _1),   
          false), 
46      action_name_(name) 
47      { 
48          // Subscribes to estimated line, pose data and initializes the   
              ROS publishers 
49          cmd_pub_ = nh_.advertise<geometry_msgs::Twist>("nav_vel", 1); 
50          line_sub_ = nh_.subscribe("output_line_estimated", 10,  
              &RobotCommandAction::makeLine, this); 
51          odom_sub_ = nh_.subscribe("odometry/gazebo",10,  
              &RobotCommandAction::thorvaldOdomCB, this); 
52          // Parameter values are loaded from the parameter server 
53          nh_.getParam("/lin_vel_P_gain_float", Kv_); 
54          nh_.getParam("/ang_vel_P_gain_float", Kh_); 
55          nh_.getParam("/ang_vel_D_gain_float", Kd_); 
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56          nh_.getParam("/tip_of_cutter_length", knife_x_); 
57          nh_.getParam("/tip_of_cutter_width", knife_y_); 
58          nh_.getParam("/grass_right_side_bool", right_side_); 
59          nh_.getParam("/loop_freq_double", freq_); 
60  
61          ROS_INFO("Starting action server.."); 
62          as_.start(); 
63          ROS_INFO("Waiting for requests.."); 
64      } 
65  
66      void thorvaldOdomCB(const nav_msgs::OdometryConstPtr& input_odo) 
67      { 
68          // This code updates the position of the  
              robot’s cutting tool tip in the Gazebo world frame 
69   
70          // Orientation is transformed to euler angles (roll,pitch,yaw) 
71          tf::Quaternion quatOdom( 
72              input_odo->pose.pose.orientation.x, 
73              input_odo->pose.pose.orientation.y, 
74              input_odo->pose.pose.orientation.z, 
75              input_odo->pose.pose.orientation.w ); 
76          tf ::Matrix3x3 matrixOdom(quatOdom); 
77          double roll, pitch, theta; 
78          matrixOdom.getRPY(roll,pitch,theta); 
79          thorOrientationRad_ = theta; // radians 
80          thorOrientation_ = theta *180 / PI; // degrees 
81 
82          // The position of the cutting tool is rotated with reference to  
              the orientation of the robot 
83          double knife_x_rot = (cos(thorOrientationRad_)*knife_x_) -  
              (sin(thorOrientationRad_)*knife_y_); 
84          double knife_y_rot = (sin(thorOrientationRad_)*knife_x_) +  
              (cos(thorOrientationRad_)*knife_y_); 
85          baselinkPos_x_ = (input_odo->pose.pose.position.x); 
86          grassCutterPos_x_ = (input_odo->pose.pose.position.x) +    
              knife_x_rot; 
87          baselinkPos_y_ = (input_odo->pose.pose.position.y); 
88          if (right_side_ == true) 
89          { 
90              grassCutterPos_y_ = (input_odo->pose.pose.position.y) +    
                  knife_y_rot; 
91          } 
92          else 
93          { 
94              grassCutterPos_y_ = (input_odo->pose.pose.position.y) -  
                  knife_y_rot; 
95          } 
96      }  
97   
98      void makeLine(const geometry_msgs::PoseArray input) 
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99      {    
100         // This code receives the two points that define the estimated  
               separation line 
101         // The points are rotated and pointHolder variables are updated  
               for further error offset calculation 
102  
103         geometry_msgs::Point point1 = input.poses[0].position; 
104    geometry_msgs::Point point1_rot; 
105    geometry_msgs::Point point2 = input.poses[1].position; 
106    geometry_msgs::Point point2_rot; 
107  
108         // Rotating point1_ and point2_ according to the robot's orientation in the global  
               coordinate system 
109    point1_rot.x = (cos(thorOrientationRad_)*point1.x) -  
               (sin(thorOrientationRad_)*point1.y); 
110    point1_rot.y = (sin(thorOrientationRad_)*point1.x) +  
               (cos(thorOrientationRad_)*point1.y); 
111 
112         point2_rot.x = (cos(thorOrientationRad_)*point2.x) -  
               (sin(thorOrientationRad_)*point2.y); 
113    point2_rot.y = (sin(thorOrientationRad_)*point2.x) +  
               (cos(thorOrientationRad_)*point2.y); 
114 
115    // Storing points for later use 
116    pointHolder1_.x = point1_rot.x + baselinkPos_x_; 
117    pointHolder1_.y = point1_rot.y + baselinkPos_y_; 
118 
119         pointHolder2_.x = point2_rot.x + baselinkPos_x_; 
120    pointHolder2_.y = point2_rot.y + baselinkPos_y_; 
121 
122    point1.x = 0; 
123         point1.y = 0; 
124    point1.z = 0; 
125    point2.x = 0; 
126    point2.y = 0; 
127         point2.z = 0; 
128     }        
129 
130     // When a client sends an action request, this code is executed 
131     void executeCB(const move_base_msgs::MoveBaseGoalConstPtr &goal) 
132     { 
133         ROS_INFO("Request received!"); 
134         // Calculating distance to client goal 
135    double clientGoal = (sqrt(pow((goal->target_pose.pose.position.x- 
               grassCutterPos_x_),2))); 
136    // Defining containers 
137    double error_y, error_o; 
138    bool success = true; 
139    float a1,a2,b1,b2,i_x,i_y; 
140    int counter = 0; 
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141    // The current setpoint is defined 
142    float goalPos1_x = pointHolder1_.x; 
143    float goalPos1_y = pointHolder1_.y; 
144    float goalPos2_x = pointHolder2_.x; 
145    float goalPos2_y = pointHolder2_.y; 
146 
147         while (clientGoal > 0.0 && success == true) 
148    { 
149        //The distance to the setpoint is calculated 
150        pointDistance_ = sqrt(pow((goalPos1_x-grassCutterPos_x_),2) +  
                   pow((goalPos1_y-grassCutterPos_y_),2)); 
151        // If the setpoint is too close (1m), wait for the next point               
152        ros::Rate rate1(freq_); 
153        while (pointDistance_ < 1.0) 
154             { 
155            // If the action is pre-empted, the loop is broken and the   
                       action is stopped 
156            if (as_.isPreemptRequested() || !ros::ok()) 
157            { 
158                ROS_INFO("%s: Preempted", action_name_.c_str()); 
159                as_.setPreempted(); 
160                     success = false; 
161                break; 
162            } 
163            // Update setpoint and calculate distance to it 
164                 goalPos1_x = pointHolder1_.x; 
165                 goalPos1_y = pointHolder1_.y; 
166            goalPos2_x = pointHolder2_.x; 
167            goalPos2_y = pointHolder2_.y; 
168            pointDistance_ = sqrt(pow((goalPos1_x- 
                       grassCutterPos_x_),2) + pow((goalPos1_y-    
                       grassCutterPos_y_),2)); 
169            counter ++; 
170            //If the robot remains idle for more than a user set time,  
                       it cancels the action 
171                 if (counter > 100) 
172            { 
173                ROS_INFO("%s: Preempted", action_name_.c_str()); 
174                as_.setPreempted(); 
175                success = false; 
176                break; 
177                 }      
178            rate1.sleep(); 
179             } 
180        // When a setpoint that is further than 1m away is registered: 
181        while (pointDistance_ >= 1.0) 
182        { 
183            // if the action is preempted, the loop is broken and the    
                       action is stopped 
184            if (as_.isPreemptRequested() || !ros::ok()) 
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185            { 
186                ROS_INFO("%s: Preempted", action_name_.c_str()); 
187                as_.setPreempted(); 
188                success = false; 
189                break; 
190            } 
191            // Calculate separation line equation: y = ax + b 
192            a1 = ((goalPos2_y - goalPos1_y) / (goalPos2_x-  
                       goalPos1_x)); 
193            b1 = goalPos1_y - (a1 * goalPos1_x); 
194            // Calculating line equation of orthogonal line 
195            a2 = -(1/a1); 
196            b2 = grassCutterPos_y_ - (a2*grassCutterPos_x_); 
197            // Solving for y1 = y2 will give the point of intersection  
                       of the lines (i_x,i_y) 
198            i_x = (b2 - b1)/(a1-a2); 
199            i_y = a1*i_x + b1; 
200 
201            ros::Rate rate2(freq_); 
202                 // Update line/setpoint at a set interval, or when it gets        
                       within 1m of the goal point 
203                 // If at any point the action is preempted, the loop is   
                       broken and the action is stopped 
204            for (int i=0; i<100 && pointDistance_ >= 1.0 &&  
                       clientGoal > 0.0; i++) 
205              {     
206                     if (as_.isPreemptRequested() || !ros::ok()) 
207                { 
208             ROS_INFO("%s: Preempted",  
                               action_name_.c_str()); 
209                    as_.setPreempted(); 
210             success = false; 
211             break; 
212         } 
213 
214                     geometry_msgs::Twist cmd_msg; 
215                // Calculating lateral displacement to separation line 
216                error_y = (sqrt(pow((i_x-grassCutterPos_x_),2) +  
                           pow((i_y-grassCutterPos_y_),2))); 
217                // Calculating angular displacement to setpoint 
218                error_o = (atan((goalPos1_y-grassCutterPos_y_) /  
                           (goalPos1_x-grassCutterPos_x_))*180 / PI) -  
                           thorOrientation_; 
219                // Proportional controller with a predefined gain 
220                // The operating speed is set in the range of [0.6:1.5] m/s: 
221                if (abs(error_y) < 1.0) 
222                    cmd_msg.linear.x = 0.6 + Kv_ * error_y; // m*s^-1 
223                // Lateral displacement greater than 1m means maximum  
                           operating speed: 
224                else 
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225                    cmd_msg.linear.x = 1.5; 
226                cmd_msg.linear.y = 0.0; 
227         cmd_msg.linear.z = 0.0; 
228                // Angular velocity is controlled by a PD-controller 
229                // The maximum angular speed is set to 0.3 rad/s 
230                cmd_msg.angular.z = Kh_ * error_o + (Kd_ * ((error_o- 
                           prev_error_o_)/(1.0/freq_))); // rad/s 
231                if (cmd_msg.angular.z > 0.3) 
232             cmd_msg.angular.z = 0.3; 
233                if (cmd_msg.angular.z < -0.3) 
234             cmd_msg.angular.z = -0.3; 
235                cmd_pub_.publish(cmd_msg); 
236                     pointDistance_ = sqrt(pow((goalPos1_x-grassCutterPos_x_),2) +         
                           pow((goalPos1_y-grassCutterPos_y_),2)); 
237                     clientGoal = (sqrt(pow((goal-   
                           >target_pose.pose.position.x-grassCutterPos_x_),2))); 
238         prev_error_o_ = error_o; 
239                rate2.sleep(); 
240            } 
241            if (success == false || clientGoal <= 0.0) 
242                break; 
243            else 
244            { 
245                int counter2 = 0; 
246                goalPos1_x = pointHolder1_.x; 
247         goalPos1_y = pointHolder1_.y; 
248                goalPos2_x = pointHolder2_.x; 
249                     goalPos2_y = pointHolder2_.y; 
250                     pointDistance_ = sqrt(pow((goalPos1_x- 
                           grassCutterPos_x_),2) + pow((goalPos1_y- 
                           grassCutterPos_y_),2)); 
251                      
252                ros::Rate rate3(freq_); 
253                while (pointDistance_ < 1.0) 
254                { 
255             goalPos1_x = pointHolder1_.x; 
256             goalPos1_y = pointHolder1_.y; 
257                    goalPos2_x = pointHolder2_.x; 
258             goalPos2_y = pointHolder2_.y; 
259             pointDistance_ = sqrt(pow((goalPos1_x- 
                               grassCutterPos_x_),2) + pow((goalPos1_y- 
                               grassCutterPos_y_),2)); 
260             counter2 ++; 
261             // If the robot remains idle for more than a user  
                               set time, it cancels the action 
262             if (counter2 > 100) 
263             { 
264                 ROS_INFO("%s: Preempted",    
                                   action_name_.c_str()); 
265                 as_.setPreempted(); 
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266                 success = false; 
267                 break; 
268             } 
269                    rate3.sleep(); 
270         } 
271            } 
272        } 
273    } 
274         // Sending a zero command to stop the robot 
275         geometry_msgs::Twist zero_cmd_msg; 
276    cmd_pub_.publish(zero_cmd_msg); 
277 
278    move_base_msgs::MoveBaseResult result; 
279    as_.setSucceeded(result); 
280    ROS_INFO("Action completed!"); 
281     }   
282 }; 
283  
284 int main(int argc, char** argv) 
285 { 
286     ros::init(argc, argv, "move_thorvald"); 
287     // The class is instantiated 
288     RobotCommandAction move_thorvald("move_thorvald"); 
289     ros::spin(); 
290 
291     return 0; 
292 } 

A.2 PointCloudSensor Class 

This source code is located in the file PointCloudSensor.h: 

1    #include <ros/ros.h> 
2    #include <pcl_conversions/pcl_conversions.h> 
3    #include <visualization_msgs/Marker.h> 
4    #include <pcl/filters/passthrough.h> 
5    #include <pcl/common/common.h> 
6    #include <pcl/segmentation/sac_segmentation.h> 
7    #include <tf/transform_listener.h> 
8    #include "pcl_ros/transforms.h" 
9    #include "pcl/common/angles.h" 
10  #include <pcl/filters/extract_indices.h> 
11  #include <geometry_msgs/PoseArray.h> 
12  #define PI 3.14159265 
13  
14  #ifndef      
PACKAGE_FIND_LINE_INCLUDE_PACKAGE_FIND_LINE_POINTCLOUDSENSOR_
H_ 
15  #define      
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PACKAGE_FIND_LINE_INCLUDE_PACKAGE_FIND_LINE_POINTCLOUDSENSOR_
H_ 
16  
17  class PointCloudSensor 
18  { 
19  private: 
20      ros::Publisher pcpub_line_; 
21      ros::Publisher pcpub_plane_; 
22      ros::Publisher marker_pub_; 
23      ros::Publisher pose_pub_; 
24      ros::Subscriber pcsub_; 
25  
26      // True if the robot has the uncut grass on its right side. 
27      bool right_side_ = true; 
28      float height_grass_ = 0.25; 
29      float slope_ = 0.02; 
30      tf::TransformListener tf_listener_; 
31      int setOfLines_; 
32      int AveragingSet_; 
33      std::vector<geometry_msgs::Point> pointsToAverage1_; 
34      std::vector<geometry_msgs::Point> pointsToAverage2_; 
35      visualization_msgs::Marker sepLineMarker_; 
36      // Defines the space between the points that form the line 
37      int length_factor = 2; 
38  
39  public: 
40      PointCloudSensor(ros::NodeHandle *nh) 
41      { 
42          // Subscribes to the point cloud topic and initializes the ROS publishers 
43          pcsub_ = nh->subscribe("velodyne_points", 10,  
              &PointCloudSensor::callbackPointCloudSensor, this); 
44    pcpub_line_ = nh->advertise<sensor_msgs::PointCloud2> ("output_line", 1); 
45          pcpub_plane_ = nh->advertise<sensor_msgs::PointCloud2>  
              ("output_plane", 1); 
46          marker_pub_ = nh->advertise<visualization_msgs::Marker>   
              ("output_marker", 1); 
47          pose_pub_ = nh- 
              >advertise<geometry_msgs::PoseArray>("output_line_estimated", 1); 
48  
49    setOfLines_ = 0; 
50          AveragingSet_ = 2; 
51    pointsToAverage1_.clear(); 
52          pointsToAverage2_.clear(); 
53          //Variables get their values from parameters in a parameter server 
54    nh->getParam("/height_grass_float", height_grass_); 
55    nh->getParam("/field_slope_float", slope_); 
56    nh->getParam("/length_of_line", length_factor); 
57    nh->getParam("/grass_right_side_bool", right_side_); 
58    nh->getParam("/avaraging_no_int", AveragingSet_); 
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59      }; 
60  
61      sensor_msgs::PointCloud2 findPointCloudSensorPlane(const   
          sensor_msgs::PointCloud2ConstPtr& sensorPCloud) 
62      {     
63         // This code reads the point cloud data and applies a RANSAC model to extract     
             relevant indices 
64         // Returns and publishes a point cloud with the segmented dominant plane of the     
             uncut grass 
65  
66         // Defining containers 
67         sensor_msgs::PointCloud2 cloud_tf; 
68         pcl::PCLPointCloud2* cloud = new pcl::PCLPointCloud2; 
69         pcl::PCLPointCloud2ConstPtr cloudPtr(cloud); 
70         pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2; 
71         cloud2 = pcl::PointCloud<pcl::PointXYZ>::Ptr (new  
             pcl::PointCloud<pcl::PointXYZ>); 
72  
73        // Transforming sensor coordination-system to base_link 
74        pcl_ros::transformPointCloud ("base_link", *sensorPCloud, cloud_tf,  
            tf_listener_); 
75        // Convert to PCL data type to be able to use filtering algorithms 
76        pcl_conversions::toPCL(cloud_tf, *cloud); 
77  
78        // Applying initial pass-through filtering to remove ground and  
            unwanted data 
79        pcl::PassThrough<pcl::PCLPointCloud2> criticalZone; 
80        criticalZone.setInputCloud (cloudPtr); 
81  
82        criticalZone.setFilterFieldName("z"); 
83        criticalZone.setFilterLimits(height_grass_,2.5); 
84        criticalZone.filter(*cloud); 
85  
86  criticalZone.setFilterFieldName("y"); 
87        criticalZone.setFilterLimits(-3,3); 
88  criticalZone.filter(*cloud); 
89  
90  criticalZone.setFilterFieldName("x"); 
91  criticalZone.setFilterLimits(2,4.5); 
92  criticalZone.filter(*cloud); 
93        pcl::fromPCLPointCloud2(*cloud, *cloud2); 
94  
95        // Segment out dominant grass-plane 
96        pcl::PointCloud<pcl::PointXYZ>::Ptr plane_cloud (new  
            pcl::PointCloud<pcl::PointXYZ>); 
97        pcl::ModelCoefficients::Ptr grassPlaneCoefs (new  
            pcl::ModelCoefficients); 
98  pcl::PointIndices::Ptr indPlane (new pcl::PointIndices); 
99  pcl::SACSegmentation<pcl::PointXYZ> seg; 
100 seg.setOptimizeCoefficients(true); 
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101 // Estimate plane using a PLC RANSAC algorithm. 
102 seg.setModelType(pcl::SACMODEL_PERPENDICULAR_PLANE); 
103 seg.setMethodType(pcl::SAC_RANSAC); 
104      seg.setMaxIterations (1000); 
105 // Setting threshold to 15 cm 
106 seg.setDistanceThreshold(0.15); 
107 seg.setInputCloud(cloud2); 
108 // Defining the plane to be perpendicular to the z-axis, 20-degree slope tolerance 
109 Eigen::Vector3f zAxisPerp; 
110 zAxisPerp << 0, 0, 1; 
111 seg.setAxis(zAxisPerp); 
112 seg.setEpsAngle(pcl::deg2rad(20.0)); 
113 // grassPlaneCoefs will contain the coefficients of the plane: ax + by + cz + d = 0 
114 seg.segment(*indPlane, *grassPlaneCoefs); 
115 if (indPlane->indices.size() == 0) 
116 { 
117     ROS_ERROR("Unable to find surface."); 
118      } 
119       
120 // Extracting the plane into plane_cloud and plane_cloudPCL 
121 pcl::ExtractIndices<pcl::PointXYZ> grassPlaneExtraction; 
122 grassPlaneExtraction.setInputCloud(cloud2); 
123 grassPlaneExtraction.setIndices(indPlane); 
124 
125 // All indices are returned, including those contained in "indices" 
126 grassPlaneExtraction.setNegative (false); 
127 grassPlaneExtraction.filter (*plane_cloud); 
128 pcl::PCLPointCloud2* plane_cloudPCL = new pcl::PCLPointCloud2; 
129 pcl::PCLPointCloud2ConstPtr cloudPtr2(plane_cloudPCL); 
130 pcl::toPCLPointCloud2(*plane_cloud, *plane_cloudPCL); 
131 
132 // Finally, the plane is returned and published 
133 sensor_msgs::PointCloud2 output_plane; 
134 pcl_conversions::fromPCL(*plane_cloudPCL, output_plane); 
135 output_plane.header.frame_id="base_link"; 
136 output_plane.header.stamp=sensorPCloud->header.stamp; 
137 pcpub_plane_.publish(output_plane); 
138      return output_plane; 
139 } 
140 
141 sensor_msgs::PointCloud2 readPointCloudSensorLine(const  
       sensor_msgs::PointCloud2ConstPtr& sensorPCloud) 
142 { 
143     // This code will take in the segmented plane of the uncut grass in front of Thorvald 
144     // Returns and publishes a point cloud of points outlining the separation line 
145      
146     // Defining containers 
147     pcl::PCLPointCloud2* cloud = new pcl::PCLPointCloud2; 
148     pcl::PCLPointCloud2ConstPtr cloudPtr(cloud); 
149     pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2; 
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150     cloud2 = pcl::PointCloud<pcl::PointXYZ>::Ptr (new  
           pcl::PointCloud<pcl::PointXYZ>); 
151     pcl::PointXYZ minPt, maxPt; 
152     pcl::PointCloud<pcl::PointXYZ> cloud_seg; 
153     //Fetching the point cloud-plane 
154     sensor_msgs::PointCloud2 output_plane =  
           findPointCloudSensorPlane(sensorPCloud); 
155      
156     // Filtering the point cloud in segments, each segment 10 cm wide 
157     for (float i = 0.0; i < 2.5; i+= 0.1 ) 
158     { 
159         // Convert to PCL data type 
160         pcl_conversions::toPCL(output_plane, *cloud); 
161         pcl::PassThrough<pcl::PCLPointCloud2> criticalZoneSeg; 
162         criticalZoneSeg.setInputCloud (cloudPtr); 
163         criticalZoneSeg.setFilterFieldName("x"); 
164         criticalZoneSeg.setFilterLimits(2+i,2.1+i); 
165    criticalZoneSeg.filter(*cloud); 
166          
167    // Storing the min & max valued points (if there are points) 
168    pcl::fromPCLPointCloud2(*cloud, *cloud2); 
169         size_t num_points = cloud2->size(); 
170    if (num_points > 0) 
171         { 
172        pcl::getMinMax3D(*cloud2, minPt, maxPt); 
173        pcl::toPCLPointCloud2(*cloud2, *cloud); 
174             // Selecting points depending on where the separation line is 
175        if (right_side_ == true) 
176        { 
177            criticalZoneSeg.setFilterFieldName("y"); 
178                 criticalZoneSeg.setFilterLimits(maxPt.y,maxPt.y); 
179                 criticalZoneSeg.filter(*cloud); 
180            pcl::fromPCLPointCloud2(*cloud, *cloud2); 
181            cloud_seg += *cloud2; 
182        } 
183             else 
184             { 
185            criticalZoneSeg.setFilterFieldName("y"); 
186            criticalZoneSeg.setFilterLimits(minPt.y,minPt.y); 
187            criticalZoneSeg.filter(*cloud); 
188            pcl::fromPCLPointCloud2(*cloud, *cloud2); 
189            cloud_seg += *cloud2; 
190             } 
191             // Cloud_seg now holds the desired line of points 
192    } 
193     } 
194     // Converting final point cloud back to PCLPointCloud2 format 
195     pcl::toPCLPointCloud2(cloud_seg, *cloud); 
196     // Converting to ROS data type, returns and publishes the point cloud 
197     sensor_msgs::PointCloud2 output_line; 
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198     pcl_conversions::fromPCL(*cloud, output_line); 
199     output_line.header.frame_id="base_link"; 
200     output_line.header.stamp=sensorPCloud->header.stamp; 
201     pcpub_line_.publish(output_line); 
202     return output_line; 
203 } 
204 
205 void callbackPointCloudSensor(const sensor_msgs::PointCloud2ConstPtr&  
       sensorPCloud) 
206 { 
207     // This function estimates the line with a RANSAC model 
208     // Publishes two points that define the line, as well as a marker 
209 
210     // Defining containers 
211     pcl::PCLPointCloud2* cloud = new pcl::PCLPointCloud2; 
212     pcl::PCLPointCloud2ConstPtr cloudPtr(cloud); 
213     pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2; 
214     cloud2 = pcl::PointCloud<pcl::PointXYZ>::Ptr (new  
           pcl::PointCloud<pcl::PointXYZ>); 
215     geometry_msgs::Point point1; 
216     geometry_msgs::Point point2; 
217 
218     // Generating a set number of lines for averaging 
219     if(setOfLines_ < AveragingSet_) 
220     { 
221         // Fetching the pointcloud holding the line of points 
222         sensor_msgs::PointCloud2 cloud_line =  
               readPointCloudSensorLine(sensorPCloud); 
223         pcl_conversions::toPCL(cloud_line, *cloud); 
224     pcl::fromPCLPointCloud2(*cloud, *cloud2); 
225          
226         //Apply RANSAC algorithm to fit line, threshold set to 8 cm. 
227         size_t num_points = cloud2->size(); 
228         if (num_points > 0) 
229         { 
230        pcl::ModelCoefficients::Ptr sepLine (new  
                   pcl::ModelCoefficients); 
231        pcl::PointIndices::Ptr indSepLine(new pcl::PointIndices); 
232             pcl::SACSegmentation<pcl::PointXYZ> seg2; 
233        seg2.setOptimizeCoefficients(true); 
234        seg2.setModelType(pcl::SACMODEL_LINE); 
235             seg2.setMethodType(pcl::SAC_RANSAC); 
236        seg2.setDistanceThreshold(0.08); 
237        seg2.setInputCloud(cloud2); 
238             seg2.segment(*indSepLine, *sepLine); 
239 
240              if (indSepLine->indices.size () == 0) 
241              { 
242             ROS_ERROR ("Could not estimate a LINE model."); 
243         } 
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244 
245             else 
246        { 
247            // Defining quaternions from the direction coefficients 
248            tf::Quaternion quat =  
                       tf::createQuaternionFromRPY(sepLine->values[3],  
                       sepLine->values[4], sepLine->values[5]); 
249            // Creating a LINE_STRIP marker_ to visualize the line 
250            sepLineMarker_.ns = "vehicle_orientation"; 
251            sepLineMarker_.header.frame_id = "base_link"; 
252            sepLineMarker_.header.stamp = ros::Time::now(); 
253            sepLineMarker_.type =  
                       visualization_msgs::Marker::LINE_STRIP; 
254            sepLineMarker_.action =  
                       visualization_msgs::Marker::ADD; 
255            sepLineMarker_.pose.orientation.w = quat.w(); 
256            sepLineMarker_.id = 0; 
257            sepLineMarker_.scale.x = 0.05; 
258            sepLineMarker_.color.b = 1.0; 
259            sepLineMarker_.color.a = 1.0; 
260  
261                 // Defining two points to draw a line between 
262            geometry_msgs::Point p1; 
263            p1.x = sepLine->values[0] - (length_factor*quat.x()); 
264            p1.y = sepLine->values[1] - (length_factor*quat.y()); 
265            p1.z = sepLine->values[2] - (length_factor*quat.z()); 
266            geometry_msgs::Point p2; 
267            p2.x = sepLine->values[0] + (length_factor*quat.x()); 
268            p2.y = sepLine->values[1] + (length_factor*quat.y()); 
269            p2.z = sepLine->values[2] + (length_factor*quat.z()); 
270                  
271            // Placing the points in a vector for averaging 
272            pointsToAverage1_.push_back(p1); 
273            pointsToAverage2_.push_back(p2); 
274            setOfLines_++; 
275             } 
276         } 
277     } 
278     else 
279     { 
280         // Averaging the lines to make it less volatile and more robust 
281    for (int i=0; i < AveragingSet_; i ++) 
282    { 
283        point1.x += pointsToAverage1_[i].x; 
284        point1.y += pointsToAverage1_[i].y; 
285        point1.z += pointsToAverage1_[i].z; 
286        point2.x += pointsToAverage2_[i].x; 
287        point2.y += pointsToAverage2_[i].y; 
288        point2.z += pointsToAverage2_[i].z; 
289    } 
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290             sepLineMarker_.points.clear(); 
291        point1.x = point1.x / (float)pointsToAverage1_.size(); 
292        point1.y = point1.y / (float)pointsToAverage1_.size(); 
293             point1.z = point1.z / (float)pointsToAverage1_.size(); 
294 
295             point2.x = point2.x / (float)pointsToAverage2_.size(); 
296        point2.y = point2.y / (float)pointsToAverage2_.size(); 
297        point2.z = point2.z / (float)pointsToAverage2_.size(); 
298 
299        pointsToAverage1_.clear(); 
300        pointsToAverage2_.clear(); 
301        setOfLines_ = 0; 
302        sepLineMarker_.lifetime = ros::Duration(); 
303        // Pushing back the two points and publishing marker of line 
304        sepLineMarker_.points.push_back(point1); 
305             sepLineMarker_.points.push_back(point2); 
306             marker_pub_.publish(sepLineMarker_); 
307 
308             geometry_msgs::PoseArray p_array; 
309        // Timestamp: when the message was created 
310        p_array.header.stamp=sensorPCloud->header.stamp; 
311        // Frame ID related to the points 
312        p_array.header.frame_id = "base_link"; 
313        geometry_msgs::Pose firstPointLine; 
314        geometry_msgs::Pose secondPointLine; 
315             firstPointLine.position = point1; 
316        secondPointLine.position = point2; 
317        // The two points are pushed in array and published 
318        p_array.poses.push_back(firstPointLine); 
319        p_array.poses.push_back(secondPointLine); 
320        pose_pub_.publish(p_array); 
321         } 
322     } 
323 }; 
324#endif 

A.3 Parameter Server 

This source code is located in the file grass_cutter_params.yaml: 

1   lin_vel_P_gain_float: 0.5 
2   ang_vel_P_gain_float: 0.032 
3   ang_vel_D_gain_float: 0.001 
4   tip_of_cutter_width: 0.9 
5   tip_of_cutter_length: 0.3 
6   grass_right_side_bool: true 
7   height_grass_float: 0.25 
8   field_slope_float: 0.02 
9   length_of_line: 2 
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10  use_sim_time: true 
11  loop_freq_double: 10.0 
12  avaraging_no_int: 2 
 

A.4 Launch File 

This source code is located in the file autonomous_cutter.launch: 

1   <?xml version="1.0" ?> 
2   <!-- This file launches the two nodes find_line and move_thorvald,  
     as well as load parameter server --> 
3    
4   <launch> 
5   <!-- Loading parameters from the YAML-file --> 
6   <rosparam file="$(find package_find_line)/config/grass_cutter_params.yaml"  
     /> 
7    
8   <!-- Starting the two nodes --> 
9   <node name="line_node" pkg="package_find_line"  
     type="package_find_line_node"/> 
10 <node name="move_thorvald" pkg="package_find_line" type="move_thorvald"/> 
11 </launch> 

 

 

 

 

 

 

 

 

 

 



  


