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Abstract

A common method of measuring neural activity is to insert recording electrodes
into brain tissue, as active neurons cause changes in the extracellular potential.
Such experiments have been instrumental to neuroscience, having furthered our
understanding of the underlying mechanisms of the brain. In some studies, far
fewer neurons have been detected to fire in electrode recordings than expected,
leading to a ”dark matter problem” in the brain being proposed.

Computer simulations can be used to get insight into the connection between firing
neurons and extracellular signals. Theory developed in Pettersen and Einevoll
(2008) [1] for idealised neuron models suggests a connection between the maximum
extracellular spike amplitude from a firing neuron and its basic structure. We apply
the theory to a large database of more complicated models to investigate whether it
can be further generalised, and explore a possible explanation of the dark matter
problem; that a relevant number of neurons are undetectable with extracellular
recording electrodes.

Using the neuroinformatics tool LFPy, we simulate extracellular action potentials
(EAP) from individual cell models. Previously developed digitally reconstructed
neuron models from rat neocortex were used. We find that the theory generalises
well to more complicated neuron models. We encountered and investigated sys-
tematic differences in EAP amplitude between excitatory and inhibitory neurons
with similar structural properties. The investigation was done using simpler ideal-
ised models, and we found the EAP amplitude to be dependent on the number of
dendrites connected to the soma. As nearly all reconstructed models were found to
be detectable, we conclude that the dark matter problem is unlikely to be caused
by large numbers of cells being unmeasurable with extracellular electrodes.
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Sammendrag

En ofte brukt metode for å måle nevral aktivitet er ved m̊aleelektroder plassert i
hjernevev, ettersom aktive nevroner p̊avirker det ektracellulære potensialet. Slike
eksperimenter har vært instrumentale i nevrovitenskapen, og har utviklet v̊ar
forst̊aelse av de underligende mekanismene i hjernen. I noen studier er langt
færre nevroner blitt målt enn forventet, noe som har ført til at et mulig ”mørk
materie”-problem i hjernen er blitt foresl̊att.

Datasimuleringer kan brukes til å f̊a innsikt i sammenhengen mellom aktive nev-
roner og ekstracellulære signaler. Teori utviklet i Pettersen og Einevoll (2008)
[1] for idealiserte nevronmodeller antyder en sammenheng mellom ekstracellulær
maksimalamplitude fra et fyrende nevron og dens grunnleggende struktur. Vi an-
vender teorien p̊a en stor database med mer komplekse modeller for å undersøke om
den kan generaliseres videre, og utforsker en mulig forklaring p̊a ”mørk materie”-
problemet; at en relevant mengde nevroner er udetekterbare med ekstrecellulære
målelektroder.

Vi simulerer ekstracellulære aksjonspotensialer (EAP) ved hjelp av nevroinform-
atikkverktøyet LFPy. Tidligere utviklede digitalt rekonstruerte nevronmodeller
fra rotters neocortex ble brukt. Vi erfarer at teorien generaliserer bra til de mer
kompliserte modellene. Vi støtte p̊a, og utforsket systematiske forskjeller i EAP
amplitude mellom eksitatoriske og inhibitoriske nevroner med like strukturelle
egenskaper. Utforskningen ble gjort ved bruk av enklere idealiserte modeller, og vi
fant at EAP-amplituden avhenger av antallet dendritter tilkoblet soma. Ettersom
vi fant at nesten alle de rekonstruerte modellene er detekterbare, konkluderer vi
med at det er usannsynlig at ”mørk materie”-problemet skyldes at et stort antall
nevroner ikke kan måles av ekstracellulære måleelektroder.
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Chapter 1

Introduction

We have understood for a long time that the brain serves an essential function
to our experience. Archaeological findings suggest that even prehistoric humans
had notions that the brain is central to our beings, as 7000 year old skulls carried
marks of attempted surgeries [2]. Today we know that the brain is where thoughts
arise, that it is where memories are stored, and that it functions as the control
center of the body. It sends and receives signals, and in short makes our bodies
do what they do [3]. Understanding how consciousness and complex thoughts are
formed on a fundamental level however, is a milestone that neuroscience has not
yet reached [4].

The cerebral cortex is the outermost part of the mammalian brain, and is the
largest part of the human brain. Quantitatively speaking, most of our knowledge
of the brain stems from studies in cortex [5]. The neocortex is the largest portion
of the cortex, and is involved in many higher-order functions such as sensory
perception, cognition, and sophisticated motor control [3]. It is divided into six
layers that are distinguished by neuron types and neuronal connections, labeled
I-VI, from outermost to innermost. Connections go between neurons in the same
layer, between neurons in different layers, and to entirely different regions of the
brain. The neocortex is believed to be divided into minicolumnns, vertical chains
of neurons that serve as functional units [6].

Recording electrodes allow neurophysiologists to measure activity in the brain,
as neurons communicate by sending electrical pulses [2]. Methods come with a
varying degree of invasiveness, from electrodes being placed on top of the scalp or
electroencephalography (EEG), on top of cortex or electrocorticography (ECoG),
or inside the neuronal tissue [5]. While EEG naturally records from a very large
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2 CHAPTER 1. INTRODUCTION

number of neurons, inserted electrodes can pick up signals from only a handful of
neurons at a time. The recordings from tissue can be split into two parts; the low
frequency (< 500 Hz) part is generated by many neurons in the neighbourhood
of the electrode and is called local field potential (LFP), while the high-frequency
(> 750Hz) part is referred to as multi-unit activity (MUA) and picks up activity
from a few closer neurons [7].

Extracellular electrode recordings of neuronal signals have played crucial parts to
the development of neuroscience and our understanding of the fundamental mech-
anisms of the brain. Experiments with electrodes in cat striat cortex by Wiesel
and Hubel (1959) revealed information about how visual stimuli are processed [8].
In a more recent example, electrode recording in rat cortex shed light on spatial
representation in the brain [9]. As the firing of electrical pulses is key to neuronal
communication, it is natural to presume that nearly every living neuron will be
observed to fire given a long time of observation. However, reports from several
experiments with electrode recordings show a low rate of neurons being active,
leading to a proposed ”dark matter problem” in the brain [10]. That is, why are
so many neurons seemingly silent? In one instance, in experiments from rat hip-
pocampus 10-100-fold fewer neurons were recorded from than expected from the
neuronal density [10]. One potential explanation could be that some neurons do
not produce measurable extracellular potentials.

Here we use computer simulations of individual neuron models to determine their
detectability, and analyse effects of neuron structure on the amplitude of extra-
cellular signals. In particular, the dependence on a morphology factor, sugges-
ted in Pettersen and Einevoll (2008) was analysed [1]. Digitally reconstructed
neuron models from the EPFL Blue Brain Project [11, 12], and simplified, ideal-
ised models were used. By determining a spatial range of detectability for each
cell model, estimates of how many neurons one can expect to find with electrodes
inside neocortex were produced. The results suggest a strong relationship between
the maximum signal amplitude and the morphology factor, but also displayed
an unexpected difference between excitatory and inhibitory neurons. Simulations
done on idealised models suggest that the number of dendrites attached to the
soma could be an explanatory factor, as the excitatory neurons on average had
more dendrites connected to the soma. As nearly every cell model in the Blue
Brain set produced significant extracellular spike amplitudes, we find it unlikely
that the dark matter problem in the brain is caused by a large number of cells
being undetectable.



Chapter 2

Theory

2.1 The neuron

Neurons, often referred to as brain cells, transmit signals in the brain and around
the body. These signals are caused by ions, electrically charged particles, that flow
in and out of neurons. Glial cells are the other main type of cells in the brain,
and their functions include providing nutrients and protection for the neurons [2,
3]. The human brain contains about 86 billion neurons, about 16 billion of them
located in the cerebral cortex [13].

A neuron consists of a main body, the soma, and several elongated bodies, axons
and dendrites, as illustrated in Figure 2.1. The cell is confined by a lipid bilayer
that keeps ions from travelling freely across the cell membrane. The layer thus
acts much like an electrical capacitor [2]. Ion pumps and ion channels on the cell
surface make it so that the inside of the cell rests at about −65 µV [14]. Axons
and dendrites connect neurons together by allowing electrical signals to be carried
from one neuron to another. Connections typically go from axon to dendrite, so
that the axons transmit signals and the dendrites receive them [3].

The transmission of signals between neurons happens through channels known as
synapses. They are located on both the sending and receiving cell, referred to as
the presynaptic and postsynaptic cell respectively. There are two types of syn-
apses, distinguished by whether they transfer the signal electrically or chemically.
When chemical synapses are activated, they release neurotransmitters, signalling
chemicals, that diffuse across the gap between cells, causing ion channels to open

3



4 CHAPTER 2. THEORY

Figure 2.1: Illustration of a neuron, with the soma (Cell body), dendrites and axons
specified. The soma contains the nucleus and other organelles. The synapses are located
at the contact points, from which the cell sends and receives signals to and from other
cells. Adapted from Blausen.com staff (2014). ”Medical gallery of Blausen Medical
2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436

on the postsynaptic cell. The electrical synapse connects the neurons physically
by gap junctions that allow ions to flow directly from the presynaptic to the post-
synaptic side [2].

If the potential across the cell membrane reaches a certain threshold, the neuron
will fire an action potential. The action potential is a quick depolarisation and
repolarisation of the membrane potential, that moves down the axon, activating
synapses as it travels. This is commonly referred to as a spike, and a neuron firing
an action potential is said to be spiking [2]. It is caused by ion channels that are
voltage-gated, meaning they are activated as the membrane potential reaches a
threshold [15].
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Neurons are labeled as either excitatory or inhibitory based on the change in
membrane potential they cause on postsynaptic cells. Excitatory neurons cause
an increase of potential on the postsynaptic side and inhibitory neurons decrease
it [16]. While it is possible for a neuron to act both excitatory and inhibitory,
it is rare, as in general all axonal branches release the same neurotransmitters
[17]. Although the ratio varies between regions of the brain, excitatory neurons
are usually more abundant than inhibitory ones, the brain average being about
80 % excitatory cells [3].

2.2 Modelling extracellular potentials

Figure 2.2: A section of a neuron modelled as connected cylindrical compartments
(top) and electrical RC-circuits (bottom). Compartment n has membrane potential Vn,
capacitance Cn, resting potential En, and membrane resistance Rn. gn,n+1 and gn−1,n

represents the axial conductance between compartment n and compartments n+ 1 and
n− 1 respectively.

When a neuron fires an action potential, the spike can generally be detected by
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recording electrodes outside of the cell. The signals are referred to as extracellu-
lar action potentials (EAP). The change in potential in the extracellular region is
caused by charges flowing across the neuronal membrane. Simulating the change
in extracellular potential caused by a neuron is therefore doable by first com-
puting its transmembrane currents, which can be done by multicompartmental
modelling [14]. The neuron is modelled as many sub-units (compartments) that
are sufficiently small so that the membrane potential of any one compartment is
approximately uniform. The soma is taken as a spherical compartment, and axons
and dendrites are represented by strings of cylinders. Every compartment is mod-
elled as a resistor–capacitor circuit as illustrated in Figure 2.2. For compartment n
with membrane potential Vn, capacitance Cn, resting potential En and membrane
resistance Rn the equation

(Vn+1 − Vn)− gn−1,n(Vn − Vn−1) = Cn
dVn
dt

+
∑
j

Ijn, (2.1)

can be derived [14]. gn,n+1 and gn−1,n represent the axial conductances between
compartment n and compartments n + 1 and n − 1 respectively.

∑
j I

j
n is the

net contribution of the ionic channels on the membrane. Eq. (2.1) follows from
Kirchoff’s law of currents, stating that the charge leaving a node is equal to the
charge entering it. As the left hand side is the difference between the intracellular
charge entering and leaving the compartment, the right hand side equals the total
transmembrane current In [18].

The potential change in a medium caused by charge entering or leaving a point
source can be determined by volume conductor theory [19]. Assuming an elec-
trically isotropic uniform medium of infinite size, charge will flow equally in all
directions into or from the point source. By further assuming that the medium is
ohmic and that quasistatic approximations of Maxwell’s equations are valid, the
contribution to extracellular potential at position r from a point source of strength
In(t) at position rn and time t is

φ(r, t) =
1

4πσ

In(t)

|r − rn|
, (2.2)

where σ is the conductance of the tissue [20]. By the assumption of the medium
being ohmic, contribution from multiple sources add linearly [19]. Thus, when
measuring signals from n point sources, the net contribution to potential becomes
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φ(r, t) =
1

4πσ

N∑
n=1

In(t)

|r − rn|
. (2.3)

When modelling the extracellular potential, the somatic contribution can be ap-
proximated by taking the current to be entering and leaving a single point in space.
This is called a point-source approximation. For an axonal or dendritic compart-
ment, the contribution can be computed by assuming the transmembrane currents
to be equally distributed, and integrating Eq. 2.3 along its length. This method
is referred to as line-source approximation [21, 22].

2.3 Amplitude of extracellular action potentials

The structure of a neuron will necessarily affect the shape and size of the EAP. For
instance, for a neuron consisting only of a point soma, firing will cause no change
in extracellular potential. This follows from the linear summation of potentials
in Eq. (2.3) and Kirchhoff’s current law, as the net current in and out of the
membrane would be of the same size and located at the same spot.

In the case of an idealised ball-and-stick neuron, a simplified model consisting of
a spherical soma and one cylindrical dendrite, it was shown that the maximum
extracellular potential is dependent on the soma radius rs and the dendrite dia-
meter d [1]. Specifically, for a neuron with dendritic axial resistance Ri, membrane
resistance Rm and membrane capacitance Cm in a medium of conductivity σ, it
was found that

|Tnear| =
1

4σr

d3/2|s|
2
√
RiRm

∝ d3/2
√
ωτ

σr
√
RiRm

∝ d3/2

σr

√
fCm

Ri

, (2.4)

where Tnear is a complex transfer function of the extracellular potential near the
soma, r is the distance from soma center and s =

√
1 + jωτ is a complex number

relating to the phase of the potential. Here, ω is the angular frequency of the signal
and τ = RmCm is the membrane time constant. To derive the proportionalities,
the facts that |s| = ((ωτ)2 + 1)1/4 and ω = 2πf , with f being the signal frequency,
were used [1]. From this it follows that the largest amplitude will be recorded
immediately outside of soma, where r = rs. Assuming small variability in the
parameters of the cell materials, Cm and Ri, within a set of cells, it follows that
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|Tmax| ∝∼
d3/2

rs
, (2.5)

within the set. As the arguments leading up to 2.4 do not depend on there being
a single dendrite [1], 2.5 can be modified to

|Tmax| ∝∼

∑n
i=1 d

3/2
i

rs
, (2.6)

in the case of there being n dendrites connected to the soma.



Chapter 3

Methods

3.1 NEURON and LFPy

NEURON is a software developed for computationally efficient simulations of in-
dividual neurons and networks of neurons. It includes tools for constructing com-
partmental neuron models, done by specifying the locations and connection points
of the compartments [18]. LFPy is a python-package reliant on NEURON, and
can be used for computation of extracellular potentials by multicompartmental
modelling [21, 23], as reviewed in section 2.2. It was used in all simulations of this
project.

3.2 Cell models

3.2.1 Reconstructed models

Simulations were carried out on digitally reconstructed neurons from juvenile
Wistar (Han) rat somatosensory cortex, developed by the EPFL Blue Brain Pro-
ject [11, 12]. The models were downloaded from the Neocortical Microcircuit Col-
laboration Portal [24]. The portal also provides data of neuron densities and num-
bers of neuronal types in the microcircuit, which were used to make the estimates
in sec. 4.1. Every neuron is labelled according to its layer, morphological type, and
electrical type by conventions established by the Blue Brain research team. There
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10 CHAPTER 3. METHODS

are 207 distinct morpho-electrical subtypes in the microcircuit, with 5 example
models for each subtype available [24]. An example of model L5 TTPC1 cADpyr
is plotted in Fig 3.1A. The process of loading the models was helped by the example
script ’example EPFL neurons.py’ available from LFPy [23].

100 m

A

100 m

B

Figure 3.1: A: Model L5 TTPC1 cADpyr from the Blue Brain Projects digital recon-
struction of a microcircuit from Wistar rat cortex. B: Example of an idealised models.
This example, consisting only of one dendrite on the soma, is referred to as a ball-and-
stick model.

3.2.2 Idealised models

To investigate findings from simulations on the complex reconstructed models,
simpler idealised models were used. The idealised models were constrained to
only having dendrites connected to the soma. Ten models were created with 1-10
dendrites. Every dendrite was given the same length of 140 µm, and were sym-
metrically distributed on the soma. The simplest model, with only one dendrite
(ball-and-stick model) is illustrated in 3.1B.
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3.3 Simulation

After being loaded, the reconstructed models were rotated such that that the
apical dendrite of a pyramidal neuron lied along the z-axis, with the soma center
at origin. To measure extracellular potentials, virtual recording electrodes were
placed at various distances from the soma on the xy-plane. The potential recorded
from an electrode is computed as the average potential of several points on a disk
facing the soma center. Disks of radius 5µm with 50 points were used. For a given
distance from the soma center, the recordings from four electrodes placed along
the x- and y-axis were averaged to smoothen the output, reducing the impact of
abnormalities such as recording very close to a dendrite. In analysis of results, a
detection threshold of 30 µV was used, similar to in Buccino et al. (2018) [25].
EAPs lower than this were taken to be undetectable by an electrode recording in
vivo.

The following two subsections explain the methods used to simulate spikes in neur-
ons. Simulations lasted 15 ms in both cases, with neurons set to fire once during
this time. Scripts used for simulation and visualisation of results are available from
github at: github.com/jorgenhoel299.

3.3.1 Synaptic input

Feeding charge into a cell model is a straightforward way of making it spike, as
neurons fire action potentials automatically when the potential across the mem-
brane reaches a certain threshold in the soma region. This was done in LFPy by
placing a synapse at the soma and setting the input strength sufficiently high so
that the neuron spikes after a short time. We refer to this method as synaptic
input.

3.3.2 Voltage clamping

Another way of simulating a spiking neuron is to force a predetermined spike in the
model, similar to in Pettersen and Einevoll (2008) [1]. This is analogous to the use
of a voltage clamp on real neurons, by which the membrane potential of the cell
is controlled [15]. For the reconstructed models, this was done by recording the
somatic voltage from a spiking layer V pyramidal neuron, L5 TTPC1 cADpyr,
activated by synaptic input. The recorded spike was then used on this model
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and all other reconstructed models, thus giving each cell approximately the same
somatic voltage during the simulations. Voltage dependent ion channels, that
would under normal circumstances be instrumental to the generation of an action
potential, were turned off so as not to change the spike. For the idealised neurons,
somatic voltage from a ball-and-stick model was used. The reconstructed and
idealised model used to record and store somatic voltage are plotted in Figure
3.1A and B respectively. Although imposing a membrane potential on the neuron
is quite different from the real firing process, it makes comparing the EAP from
cells of different types easier, since they have the same intracellular spike [1].



Chapter 4

Results

Extracellular action potentials (EAP) from every neuron model used in the re-
constructed microcircuit [11] were recorded by both synaptic input and voltage
clamping. The setup is illustrated in Fig 4.1. Results showed only quantitative
differences between the two methods, see Figures 4.5 and 4.6 for comparisons.
Average EAP amplitudes for excitatory and inhibitory neurons in each layer is
plotted against distance from soma in Figure 4.2, showing an exponential decrease
in amplitude with distance. Noticeably, excitatory neurons produce consistently
higher amplitudes than inhibitory neurons. At 30 µm outside the center of soma,
most cells would be invisible assuming a detection threshold of 30 µV . Excitatory
neurons in Layer V are the exception, having much larger amplitudes then the
other groups at close range.

The maximum recordable EAP of a cell was taken as the potential measured 1µm
outside the soma surface. Results from every cell model using voltage clamping is
shown by layer in Figure 4.3. Again the smallest amplitudes belong to inhibitory
neurons, and the largest amplitudes to excitatory neurons (with the exception of
layer I, as it has only inhibitory cells). Using the detection threshold of 30 µV ,
only six cell models in the microcircuit would be undetectable, their maximum
amplitudes being about 20 µV . These six are all in layer IV of BP morphology.
They constitute a microscopic fraction of the total neurons, as there are only 8
L4 BP neurons vs a total of 4,656 neurons in layer IV. Thus, nearly every neuron
in the microcircuit would be detectable by inserted electrodes if placed at 1 µm
distance. Nevertheless, this suggests that it is possible for some neurons to be
undetectable with extracellular electrode recordings.
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Figure 4.1: A: Two reconstructed cell models from the Blue Brain dataset. The colored
circles represent locations of recording electrodes. In simulations, outputs from four
electrodes placed symmetrically at the same distance from soma center were averaged.
B: Voltage in soma during simulation. C: Extracellular potential during simulation. The
colors of the plots correspond to the colored electrodes in A. Spike amplitudes are taken
as half the difference between the highest and lowest voltage of the recorded signals.
The first and third plot in B and C are from simulations with synaptic input, and the
second and fourth plots are from simulations with voltage clamping.
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Figure 4.2: Average amplitude of inhibitory and excitatory neurons in every layer
by distance from soma center. Results from voltage clamped cells are shown, but the
recordings from synaptic input gave similar results. Note that layer I does not have
excitatory neurons, and that every line starts at the same distance, 8 µm. This is
slightly larger than the largest soma radius of all models in the Blue Brain set.
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Figure 4.3: Maximum extracellular amplitude for every neuron model in the Blue
Brain microcircuit as simulated by voltage clamping. The blue and red bars represent
inhibitory and excitatory neurons respectively. The black bars are the means of all
neurons of the type in the layer, and the dotted bars represent one standard deviation.
The dotted grey line at 30 µV represents a detection threshold. Results from synaptic
input were similar and are not included.
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4.1 Detectable range of reconstructed models

100 m
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Figure 4.4: Two neurons from every layer in the microcircuit with spatial range of
detectability plotted around soma. The two neurons with the largest detectable ranges
was chosen from each layer. The range is visualised in red for excitatory neurons and in
blue for inhibitory neurons. The ranges were calculated from simulations with voltage
clamped cells, taking 30 µV as a threshold of detection.

Estimates of how many neurons one would expect to record from are presen-
ted for each layer. To make the estimates, the numbers of instances of each
neuron in the microcircuit were scaled with neuron densities in the layers to es-
timate the density of every neuron. To illustrate with an example: the model
L5 TTPC1 cADpyr makes up about 40 % of cells in layer V. Layer V has a neur-
onal density of 83, 900neurons/mm3 [24], meaning that L5 TTPC1 cADpyr has a
density of ≈ 33, 500neurons/mm3 in layer V. By placing electrodes at increasingly
larger distances during simulations, a detectable spatial range for every neuron was
determined, equal to the largest distance from the soma center at which the EAP
is still larger then the detection threshold of 30µV . A detectable volume is approx-
imated by a sphere centered in soma center, with radius equal to the detectable
range of the cell. Some cells and their detectable volumes are shown in Fig 4.4.
Assuming every neuron fires at least once during an in vivo recording, the expected
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number of neurons to pick up with electrodes in a layer with k neurons is

E[N ] =
k∑

i=1

σi ∗ Vi, (4.1)

where σi and Vi are the density and detectable volume of neuron i respectively.

The analysis shows that the expected number of neurons to be recorded is heavily
dependent on the electrode position in neocortex. In layer V, we expect to detect
about 22 and 28 cells with voltage clamping and synaptic input respectively. This
is almost equal to all the other layers combined. Excitatory neurons are far more
likely to be detected than inhibitory neurons in all layers (except in layer I),
the main factor being that they are far more numerous in the microcircuit. A
visualisation of electrode depth in neocortex and expected number of recorded
neurons is presented in Figure 4.5. The analysis assumes that instances of every
neuron is homogeneously distributed in its layer, and an arbitrary placement of
recording electrode. Note that a common practice in experiments on live cells is
to initially manoeuvre the electrode until a strong signal is detected. The results
suggest that the ratio of measured excitatory to inhibitory cells will be higher than
their real representation in the circuit for all layers, see Table 4.1.

Table 4.1: Ratio of excitatory to inhibitory cells present in each layer, and as predicted
to be seen with recording electrodes from both types of simulations.

L I L II/III L IV L V L VI

In microcircuit 0 .78 .89 .82 .91

Expected from Synaptic Input 0 .88 .96 .98 .92

Expected from Voltage Clamping 0 .84 .95 .97 .92
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Figure 4.5: Expected number of measured neurons in each layer by synaptic input in
A, and by voltage clamping in B. The expected numbers of excitatory and inhibitory
neurons are in red and blue respectively. The vertical lengths of the bars are proportional
to the thicknesses of the layers. The step functions are only approximately correct close
to the edges, as the true curve will be a linear slope of less then 90 degrees at the border
of a layer. This is due to there being fewer recordable neurons in the current layer at the
borders, as well as signals from adjacent layers reaching into the current layer. These
transition regions of the graph would be relatively small due to the thickness of the
layers being much bigger than the recordable ranges of the spikes.

4.2 Morphology and maximum EAP amplitude

In this section, results from our investigation of effects of neuronal structure is
presented. Specifically, the theory given in Pettersen and Einevoll (2008) [1],
showing that maximum extracellular amplitude for a ball-and-stick neuron de-
pends linearly on a morphology factor d3/2

rs
, was tested on the Blue Brain models.

Results from both synaptic input and voltage clamping are shown in Figure 4.6.
A moderate to strong relationship was found with both methods, in particular
when splitting the neurons into excitatory and inhibitory groups. When splitting,
correlations of about 0.7 and 0.8 were found between amplitude and morphology
factor. This suggests that the theory fits well also for active cells, as the correla-
tion from synaptic input was marginally smaller than the correlation from voltage
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clamping.
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Figure 4.6: Maximum amplitude plotted against the morphology-factor d3/2

rs
. Excitat-

ory neurons are represented by red dots and inhibitory neurons by blue crosses. A and
B show results from simulations using synaptic input and voltage clamping respectively.
The upper plots show both groups of neuron together, and bottom plots separated. The
dotted lines are linear regressions fitted to the plotted data, with r-values of the fits
(correlations) in the upper left corners.

The results show a systematic difference between the maximum amplitudes of
excitatory and inhibitory cell models of similar morphology factors. Simulations
with idealised models were used in an attempt to uncover underlying reasons. In
particular, a potential dependence on the number of dendrites attached to the
soma was investigated. This was prompted by the difference in this figure between
the sets of excitatory and inhibitory Blue Brain models. See Table 4.2 for an
overview of some selected statistics of the cells in the microcircuit.

Ten idealised neuron models, with 1-10 equally long dendrites attached to soma
were created, with the same morphology factor of 3.0. For simplicity, all cells
had the same somatic radius of 4.0 µm, and all dendrites in a cell had the same
diameter. A somatic spike was induced by voltage clamping, using a stored spike
from a ball-and-stick model. Four electrodes were placed symmetrically at 1 µm
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Table 4.2: Selected relevant means and standard errors of the Blue Brain excitatory
(Exc.) and inhibitory (Inh.) cells.

Soma radius [µm] Dendrite diameter [µm] No. of dendrites attached to soma Morphology-factor

Exc. cells 5.29± 1.25 1.44± 0.816 8.09± 1.85 2.86± 0.825

Inh. cells 4.51± 1.05 1.52± 0.922 5.59± 1.99 2.55± 0.992

outside the soma, taking the average measured amplitude as the maximum EAP
of the cell. The results are shown in Fig 4.7. They suggest that the maximum
EAP of a cell depends on the number of dendrites on the soma, as the amplitude
increased with more dendrites. In particular, from 1 to 2 dendrites the increase
was more then two-fold. This is coherent with the results from the Blue Brain
models, as excitatory neurons have larger EAP amplitudes and more dendrites on
soma. An attempt to replicate the results from the simulation of the reconstructed
models was carried out by using two sets of idealised cells with 8 and 5 dendrites,
representing extracellular and inhibitory neurons respectively. Their somatic and
dendritic radii were sampled from a normal distribution, with means and variances
chosen such that the expected morphology factor was reasonably close to the aver-
age morphology factor in the Blue Brain set. When simulating the maximum EAP,
a small gap was found between the groups with the ”excitatory” cells generally
having higher amplitudes relative to their morphology factor, see Figure 4.8.

The largest outliers in Figure 4.6 are excitatory neurons with morphology factors
in the interval [3, 5]. These are mostly Layer V pyramidal cells, that generally
have more dendrites on the soma than the average excitatory cell; for excitatory
neurons in Layer V, the average was 9.35 (±1.25) dendrites, while the average
across all layers was 8.09 (±1.85).
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Figure 4.7: Maximum amplitudes of ten idealised cell models with equal morphology
factors plotted against the number of dendrites on the soma. Morphology factor of 3.0
and soma radius of 4.0 µm were held constant for all models.
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Figure 4.8: Maximum amplitude of two groups of neurons with 5 and 8 dendrites
attached to soma plotted against morphology factor. The diameters of the dendrites
and radii of the somas are sampled from a normal distribution. The top plot shows both
groups of neurons together, and the bottom plots show them separated. The dotted
lines are linear regressions fitted to the plotted points, with r-values (correlations) in the
bottom right corners. The sets of cells with 8 and 5 dendrites are analogous to the Blue
Brain excitatory and inhibitory models respectively.
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Chapter 5

Discussion

Findings

EAPs from reconstructed neuron models were simulated in order to analyse a de-
pendence on the basic cell structure, and make estimates of what one can expect
to find with electrodes in vivo. We found nearly every neuron in the Blue Brain
microcircuit to be detectable when recording immediately outside the soma, indic-
ating that the proposed ”dark matter problem” in the brain [10] is not caused by
large numbers of neurons that are invisible to extracellular recordings.

By studying the spatial reach of signal for every cell in the microcircuit, estimates
of how many neurons one can expect to record from in the somatosensory region
of Wistar rat neocortex were made. The estimates are presented individually for
each neocortical layer, and show that one would expect to record from about 20-
30 neurons in Layer V, significantly more than in any other layer. The results
suggest that the ratio of recorded excitatory to inhibitory neurons will be larger
than the actual ratio present in tissue. Researchers we have spoken with have not
noted such a wide discrepancy between the actual ratios and recorded ratios. [26,
27]. It is possible that excitatory neurons are less likely to be responding to the
chosen stimuli, or that they simply have lower firing rates. These findings, and the
insights into the detectable ranges of cells, can be useful to researchers working on
recordings of extracellular potentials from living cells.

The proposed relationship between a morphology factor and maximum spike amp-
litude was studied by simulations of potentials immediately outside the soma sur-
face of firing cell models. For the digitally reconstructed models, a strong rela-

25
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tionship was found when analysing excitatory and inhibitory neurons individually.
The results indicate that the findings in Pettersen and Einevoll (2008) [1] can be
generalised to sets of more complex cells. The theory was derived for idealised
models using voltage clamping, and here we did find that the theory fits slightly
better to passive voltage clamped cells. But the results suggest that the theory
generalises well to active cells receiving synaptic input. However, the picture re-
mains incomplete, as for a given morphology factor excitatory neurons generally
had higher EAP amplitudes than inhibitory neurons, in extreme cases by a factor
of three (see Figure 4.6). The unexpected difference was studied by simulations
on simple idealised models. The investigation hints at a connection to the number
of dendrites attached to the soma, as it was shown that the maximum amplitudes
increase with more dendrites for models of the same morphology factor. In the
most extreme case, the amplitude increased by more than a factor of two, from
one to two dendrites. A similar gap to the one between the reconstructed models
were found using two idealised groups of cells with different numbers of dendrites.
Even so, this is not a fully satisfactory explanation of the relatively large differ-
ence between the maximum amplitudes of the excitatory and inhibitory Blue Brain
models.

Outlook

In future investigations, a process in which the reconstructed neurons are gradually
simplified can be tried. Similarly, the idealised models can be gradually expanded
upon to further resemble the reconstructed models. Then the simplest morpho-
logies that accurately reproduce the results seen in Figure 4.6 can be analysed
in order to determine the reasons behind the systematic difference in maximum
amplitude.

A likely explanation is that there are systematic differences in the passive para-
meters between the excitatory and inhibitory neurons in the set of reconstructed
models. These involve the axial resistances in the cell, the membrane capacitances
and membrane resistances. As seen in Eq. 2.4, this will influence maximum extra-
cellular spike amplitudes. We recently realized that the pyramidal cells were by
design given a two-fold increase in their membrane capacitance to compensate for
the effect of spines (not found on inhibitory cells) [28, 29]. Due to time constraints,
we did not investigate this further. We suggest running similar simulations, with
the passive parameters set equal for all cells, to determine the effect this may have
on the amplitudes.
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In summary, our results have shed new light on the connection between neuron
morphologies and the corresponding amplitudes of the extracellular spikes, and
suggested new directions for future research.
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