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ABSTRACT
Accurate streamflowprediction is essential in reservoirmanagement, flood control, and operation of
irrigation networks. In this study, the deterministic and stochastic components of modeling are con-
sidered simultaneously. Two nonlinear time series models are developed based on autoregressive
conditional heteroscedasticity and self-exciting threshold autoregressive methods integrated with
the gene expression programming. The data of four stations from four different rivers from 1971 to
2010 are investigated. For examining the reliability and accuracy of the proposed hybrid models,
three evaluation criteria, namely the R2, RMSE, and MAE, and several visual plots were used. Perfor-
mance comparison of the hybrid models revealed that the accuracy of the SETAR-type models in
terms of R2 performed better than the ARCH-type models for Daryan (0.99), Germezigol (0.99), Lig-
van (0.97), and Saeedabad (0.98) at the validation stage. Overall, prediction results showed that a
combination of the SETAR with the GEP model performs better than ARCH-based GEP models for
the prediction of the monthly streamflow.

Abbreviations: ADF = Augmented Dickey-Fuller; AIC = Akaike Information Criterion; ANFIS =
Adaptive Neuro-Fuzzy Inference System; ANNs = Artificial Neural Networks; AR = Autoregressive
Models; ARIMA = Autoregressive Integrated Moving Average; ARCH = Autoregressive Condi-
tional Heteroscedasticity; ATAR = Aggregation Operator Based TAR; BL = Bilinear Models; BNN =
Bayesian Neural Network; CEEMD = Complete Ensemble Empirical Mode Decomposition; DDM =
Data-Driven Model; GA = Genetic Algorithm; GARCH = Generalized Autoregressive Conditional
Heteroscedasticity; GEP = Gene Expression Programming; KNN = K-Nearest Neighbors; KPSS =
Kwiatkowski–Phillips–Schmidt–Shin; LMR = Linear and Multilinear Regressions; LR = Likelihood
Ratio; LSTAR = Logistic STAR; MAE = Mean Absolute Error; PACF = Partial Autocorrelation Func-
tion; PARCH = Partial Autoregressive Conditional Heteroscedasticity; R2 = Coefficient of Determi-
nation; RMSE = Root Mean Square Error; RNNs = Recurrent Neural Networks; SETARMA = Self-
Exciting Threshold Autoregressive Moving Average; SETAR = Self-Exciting Threshold Autore-
gressive; STAR = Smooth Transition AR; SVR = Support Vector Regression; TAR = Threshold
Autoregressive; TARMA = Threshold Autoregressive Moving Average; ULB = Urmia Lake Basin;
VMD = Variational Mode Decomposition; WT = Wavelet Transforms
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1. Introduction

Streamflow, as a nonlinear hydrological variable, has
a primary role in decisions and management of water
engineering sector managers and experts (Attar et al.,
2020; Ravansalar et al., 2017). Managing streamflow
is an essential task because it has a direct impact
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on water resources engineering applications such as
agricultural irrigation demand, drinking water demand
supplying, reservoir management, water quality parame-
ters, hydroelectric systems, extreme hydrological events,
and other factors (Prasad et al., 2017; Szolgayová et al.,
2017). Streamflow data have complexity, nonlinear,
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non-deterministic, non-stationary, and stochastic behav-
ior (Yaseen et al., 2019). Therefore, streamflow model-
ing is a difficult and challenging issue. Moreover, there
are other factors that directly affect streamflow, such
as heterogeneity, noise, hydrological variability, seasonal
and periodic patterns, precipitation, temperature, and
characteristics of the watershed (Tikhamarine, Souag-
gamane, et al., 2019). Accurate modeling and forecasting
streamflow can be resulted in well designing of structures
such as dams, waterway canals, irrigation systems, etc.
(Yaseen, Allawi, et al., 2018). They also help decision-
makers to save money and time (Diop et al., 2018).
Thus generating a reliable and accurate model is still an
essential task for model developers in the water sector
(Tikhamarine, Souag-gamane, et al., 2019). In order to
attain an accurate model for predicting, there are some
sophisticated tools and ways to modeling hydrological
processes in different time scales, such as long term and
short term stages, which are in two general categories,
namely physical (hydrological) based models and data-
driven models (DDMs) (Yaseen, Awadh, et al., 2018).
Physically-based models attempt to develop streamflow
equations using the hydrological processes of a water-
shed like the geomorphology of the basin. While DDMs
are black-box methods which they extract the stream-
flow patterns of previous and historical data formodeling
and forecasting the future. Recently, DDMs are the most
widely used methods and recognized as being modern
methods in modeling hydrological parameters by schol-
ars (Kisi et al., 2019). Due to their excellent accuracy,
these methods are commonly used by experts in model-
ing hydrological processes such as linear and multilinear
regression (LMR) (Abdulelah Al-Sudani et al., 2019; A.
Ahani, Shourian, & Rahimi Rad, 2018), autoregressive
models (AR) (Banihabib et al., 2019), genetic algorithm
(GA) combination models (Yaghoubi et al., 2019), gene
expression programming (GEP) (Das et al., 2019), arti-
ficial neural networks (ANNs) (Ghose & Samantaray,
2019; Xu et al., 2009), wavelet transform (WT) (Freire
et al., 2019; Honorato et al., 2019; Ravansalar et al., 2017),
adaptive neuro-fuzzy inference system (ANFIS) (Chang
et al., 2019; Yaseen et al., 2017), bayesian neural net-
work (BNN) (Ren et al., 2018), recurrent neural networks
(RNNs) (Tian et al., 2018), support vector regression
(SVR) (Tikhamarine, Souag-Gamane, et al., 2019; Yu
et al., 2020) support vector machine (Ghorbani et al.,
2018). Sabzi et al. conducted monthly streamflow mod-
eling utilizing ANFIS, the standalone models of ANN
and autoregressive integrated moving average (ARIMA),
and an integrated ANN-ARIMA model by using snow
telemetry data in Elephant Butte reservoir at Mexico city
(Zamani Sabzi et al., 2017). Hydrological parameters, in
most cases, have nonlinear behavior between each other,

so this is one of the advantages of DDMs to model them
in both linear and nonlinear conditions (Abdollahi et al.,
2017; Li et al., 2018; Liang et al., 2018; Shiri et al., 2012).
GEP model has received much attention in the last few
years as a great DDM (Kisi et al., 2014), and it can find
full empirical deterministic equations. Ferreira intro-
duces GEP with the cutting edge paper in 2001 (Ferreira,
2001). The principle of gene expression programming
dates back to the using of genetic algorithms that deal
with encoding linear chromosomes of fixed length (Kia-
far et al., 2017). Shiri et al. examined artificial intelligence
approaches, including GEP, ANFIS, and ANN, for fore-
casting streamflow on a daily scale. Their experiments
conducted that the GEP model has better estimation in
comparison with the other models (Shiri et al., 2012). Al-
Juboori et al. calculated streamflow on a monthly scale
using the GEP model in three rivers, Hurman in Turkey,
Diyalah, and Lesser Zab in Iraq, and their results were
comparedwithmarkovianmodel andARIMAmodels. In
their analysis, the GEPmodel performed better than two
other methods (Mahmood Al-Juboori & Guven, 2016).
However, these DDMs have a limitation regarding deal-
ing with stochastic parts of equations. These models give
us the mathematical equations of streamflow without
considering the influence of random parts and stochastic
terms of this phenomenon. Considering this issue, time
series framework can influence these models in positive
ways. Traditional time series models such as AR, ARMA,
ARIMA techniquesweremainly used as linear time series
modeling and they focused on considering the mean
behavior of streamflowmodeling. By investigating the lit-
erature, it was found that the streamflow behavior is not
only fitted by linear models but also nonlinear models. In
this regard, comparing linear and nonlinearmodels is not
correct and there should be somemodels which consider
both mean and variance of data. Recently developments
in nonlinear time series modeling by researchers could
be divided into considering the structural asymmetry
of models in conditional mean and kurtosis. Nonlinear
time series has received much attention in recent years
(Fathian et al., 2019).

Autoregressive conditional heteroscedasticity (ARCH)
is generally used in economics, finance, and recently in
hydrology to consider and to deal with time series and
representing the changes of variance during the time.
This model was first introduced by Engle and Bollerslev
(Bollerslev et al., 1994; Engle, 1982). Variance volatility
with time is essential to develop accurate models though
considering both deterministic and stochastic behavior
of data.

ARCH considered heteroskedasticity of conditional
variance of noisy data and related it with a linear com-
bination of observed data. It is evident that there are
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complexities in streamflow data such as inconsistency,
noise, variance, parsimonies, nonlinearity, and stochastic
behavior (Rahmani-rezaeieh et al., 2019). Using ARCH
and ARCH family models will help the water policymak-
ers to get attention to uncertainties and parsimonies in
streamflow data. Bearing this in mind, the ARCHmodel
could consider variance volatility in time series data.

Threshold autoregressive (TAR) model is one of the
important nonlinear models which is called regime
switching model utilizing a threshold value. Self-exciting
threshold autoregressive (SETAR) categorized a stochas-
tic process by changing between two regimes of stream
flow data. This application is one of the threshold family
models which describes the asymmetries in the observed
data. There have been some studies about the applica-
tion of TAR and TAR family models in hydrological
science as follows:Komornik et al. have been tried to fore-
cast the mean monthly flow of rivers in the Tatry alpine
mountain region in Slovakia as a nonlinear model. They
used threshold autoregressive (TAR), smooth transition
autoregressive (STAR), self-exciting threshold autore-
gressive (SETAR), logistic smooth transition autoregres-
sive (LSTAR), and aggregation operator based threshold
autoregressive (ATAR). The performance of all nonlin-
ear models for rivers is compared, and the ATAR model
outperformed all the models (Komorník et al., 2006).
Tongal proposed the predicting performances of SETAR
and k-nearest neighbors (KNN) models for the Nolin
river located at the Green River basin in Kentucky, the
USA, in a daily scale and as a result, he found that the
SETAR model outperforms the KNN model in predict-
ing streamflow (Tongal, 2013). Tongal and Berndtsson
proposed two nonlinear models, including phase-space
reconstruction and SETAR for lake water level fore-
casting in three lakes in Sweden; Vanern, Vattern, and
Malaren. As a result of utilizing the Akaike informa-
tion criterion (AIC), the best SETAR models were cho-
sen (Tongal & Berndtsson, 2014). Considering previous
studies and their linear and non-linear models, common
of this literature suggest SETAR models because of it’s
ability in streamflow forecasting. This model also draws
heavily to other linearmodels. Thus, considering particu-
lar streamflow regime, this study presents the applicabil-
ity of SETAR models in terms of forecasting stream flow.

Asmany research studies on the use of ARCHmodels,
Chen et al. have been developed an analysis of streamflow
forecasting of the Wu-Shi river in Taiwan with the aim
of a combination of ARCH, bilinear models (BL), TAR,
and threshold autoregressive moving average (TARMA)
models. They tried to compare linear models (ARMA)
with nonlinear models (TAR, TARMA, BL, and ARCH),
and they find out that nonlinear models are better than
the linearmodels in considering the variations of data. As

the overall result of this work, they recommend the use of
TAR and TARMA models, and for peak streamflow val-
ues, the BL model resulted effectively (Chenet al., 2008).
Szolgayová et al. developed a hybrid model for forecast-
ing daily river discharges of the Hron and Morava rivers
in Slovakia by using the generalized autoregressive con-
ditional heteroscedasticity (GARCH) model (Szolgayová
et al., 2017). Based on the literature, threshold time series
along with conditional heteroscedasticity models in the
case of streamflow modeling are still novel nonlinear
techniques which they help the precious and rigorous
streamflow predicting models (Fathian et al., 2019).

In the light of the reviewed high impacted research
papers on streamflow prediction, there is still a shortage
of research on the nonlinear behavior of streamflow data
and their prediction. The primary goal of this study is
to analyze errors by two different nonlinear approaches,
namely ARCH and SETAR models, and then combin-
ing them with the GEP models in four stations in Iran.
Thus, in the present study, in order to make dynamic
models with threshold variables, two regime SETAR
models were used. Also, ARCH models were consid-
ered the variance behavior of streamflow time series data.
Finally, these two ARCH-type and SETAR-type compo-
nents were combined with the GEP model in order to
develop new streamflow data lag-based accurate equa-
tions. As discussed above, the main reason for selecting
the GEP model is to determine the deterministic com-
ponent (as an equation) of monthly streamflow time
series. In the author’s point of view, there is rarely spe-
cific work and similar studies in combination between
DDMs and nonlinear error analyzing methods with con-
sidering the comparison between two nonlinear models,
namely ARCH and SETAR, in the estimation of monthly
streamflow.

The paper is organized as follows: firstly, the study
area, and used streamflow data with their statistical anal-
ysis were provided in section 2.1. Secondly, each model,
including GEP, ARCH, and SETAR model, is discussed
in sections 2.1–2.4. In the next step, proposed standalone
and integrated models were developed and discussed
in section 2.5. The information about evaluation met-
rics was presented in section 3. Subsections 4.1–4.4 have
summarized the results, combined model assessments.
Discussion about the study were presented in Section 5,
and finally, all the remarks and conclusions and suggested
future works were demonstrated in section 6.

2. Material andmethods

2.1. Study area, data, and statistical analysis

Iran is a country located in Asia in the southwest of the
middle east and has been divided into six large basins,
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Figure 1. Map of the study area with selected hydrometric stations.

namely the Caspian Sea, Persian Gulf, Urmia, Central,
Hamoon, and Sarakhs basins (H. Ahani &Kherad, 2013).
As shown in Figure 1 is a map of the study area that
is placed in the Urmia Lake basin (ULB) in East Azer-
baijan that is located between 36°,45′ to 39°,26′ North
and 45°,5′ to 48°, 22′ East. Four stream flows were used
in this study, with 40 years’ monthly data from 1971 to

2010. From each river, one station was selected, includ-
ing Daryan on Daryan river, Germezigol on Ganbarchai,
Saeedabad on Saeedabad chai, and Ligvan on Ligvanchai.
It is worth mentioning that chai in Persian means river.
Table 1 illustrates the spatial characteristics of stations,
including the longitude and latitude of each station with
their elevation. As seen in the table, Ligvan station with
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Table 1. Spatial characteristics of stations.

Rivers Stations Longitude Latitude Elevation (m)

Ligvanchai Ligvan 46–26 37–50 2200
Saeedabadchai Saeedabad 46–35 37–59 1800
Ganbarchai Germezigol 46–06 37–44 1800
Daryan Daryan 45–37 38–14 1600

2200m and Daryan station with 1600m have the highest
and lowest elevation, respectively. In this study, the data
of streamflow were divided into two sections, including
calibration and validation stages. For this purpose, 75%
of data (480months× 0.75 = 360months) were consid-
ered as train series, and 25% (480–360 = 120months)
of remain data were considered as test series. Figure 2
demonstrates the average annual values of the monthly
streamflow of all stations.

Statistical characteristics of monthly streamflow time
series of the case study stations in both calibration and
validation stages are shown in Table 2. The statistical
characteristics consist ofmean, standard deviation, skew-
ness and kurtosis coefficients, and the lag-one autocorre-
lation coefficient. The highest amount for correlation is
stated in Saeedabad station (0.773 and 0.699) in calibra-
tion and validation stages, respectively.

2.2. GEPmodel

As stated above, GEP, first announced by (Ferreira, 2001),
is one of the popular DDMs that are in the group of
artificial intelligence models based on theories in Dar-
winian evolution algorithms that they deal with neurons
of the human brain. These algorithms tried to search
for the best solution, which has the best fit among the
other solutions. Each solution is stated as an individual.

Table 2. Statistical characteristics of studied stations in both cal-
ibration and validation stages.

Stages

Station/
Statistical

characteristics Daryan Germezigol Ligvan Saeedabad

Calibration
Stage

Mean(m3/s) 0.457 0.933 0.796 0.351

Standard
deviation
(m3/s)

0.577 1.038 0.736 0.296

Skewness
coefficient

2.268 1.906 2.170 0.903

Kurtosis
coefficient

5.403 3.393 5.077 0.838

Lag-one auto-
correlation
coefficient

0.682 0.683 0.726 0.773

Validation
Stage

Mean(m3/s) 0.314 0.810 0.748 0.132

Standard
deviation
(m3/s)

0.284 0.951 0.726 0.174

Skewness
coefficient

1.506 2.053 2.491 2.117

Kurtosis
coefficient

2.115 4.512 7.474 4.496

Lag-one auto-
correlation
coefficient

0.620 0.668 0.676 0.699

Weak quality solutions are eliminated by using fitness
functions (Ashrafian et al., 2020). In the GEP model,
chromosomes are performed as an expression tree, and
they can be coded by linking functions. The results of the
GEPmodel could be reported bymathematical equations
and decision tree structures, while they are a correlation
of the input variables of the user. GEP is an applica-
tion that directly represents genes. GEP selected each
gene’s terminals in randombehavior. These terminals are
extracted from the head and tail of each gene. Terminals
are essential because they help the model modification

Figure 2. The average annual values of monthly streamflow of all stations.



1356 Z. WANG ET AL.

for developing next-generation and evolution process.
GEP establishes an original problem set with the first
individual names ‘parent node’ this individual multiply
to ‘offspring node’ with new top-performance operators.
The genetic information of each parent transfers to a
new generation with new modified environmental adap-
tion, and it resulted in better fitness. GEP tries to find
the best offspring node with a low error. In this way, the
evolutionary process grows in a better way.

The main advantages of the GEP model can be dis-
cussed as follows (a) chromosomes are small, easy to
recombine, mutate, duplicate; (b) The generated decision
trees are units of their chromosomes and based on fit-
ness, they selected to reproduce modified chromosomes
(Conditioning et al., 2019). The main steps in modeling
by GEP are summarized in six steps. (1) selecting the fit-
ness function like RMSE, (2) selecting input variables in
order to engender chromosomes, (3) choosing operators,
(4) scheming the design of chromosomes, (5) choosing
the linking functions, and in the last step, (6) choosing the
genetic operators (Rahmani-rezaeieh et al., 2019). More
information can be found in (Ferreira, 2001).

2.3. ARCHmodel

Streamflow time series is defined as the volume of water,
which varies in time, which is volatile and has fluctua-
tions in time. Modeling streamflow time series has the
principal purpose that we can have insights on data and
can forecast or predict that variable. Meanwhile, mod-
eling, the main focus is on the average of used data.
However, for modeling hydrological data, significantly
streamflow variance of data should be considered. So
models that can use the variances of data become high-
lighter than the others. ARCH was first introduced by
(Engle, 1982). ARCH model is one of the abovemen-
tioned models that deal with a variance of data. This
model can consider the parsimonious effects of observed
data and provides a framework that is considered non-
linear volatility in data (Hamilton, 1994). Equations (1)
and (2) illustrate the ARCH model (Bollerslev et al.,
1994).

εt = σt .zt (1)

σ 2
t = α0 +

q∑
i=1

αiε
2
t−i (2)

Where σ 2
t is conditional variance, εt is a discrete-time

stochastic process, and α0 are the ARCHmodel’s param-
eters, q is the model’s order, and zt is the regular and
standard series.

2.4. SETARmodel

TAR models are dealt with nonlinear systems in a dis-
crete time scale, also considers anomalies’, fluctuations,
and seasonality of proposed data. This method was first
developed by (Tong, 1983a). This model is also called the
regime-switchingmodel, which has a value of the thresh-
old for switching between the upper regime and the lower
regime of streamflow. Thesemodels haveKth parts of AR
(p) models in which each part is different from the other
parts, and p shows the order of AR models. TAR models
can be depicting by TAR (k, p). The whole modeling pro-
cess is consisting of four main steps; (a) model develop-
ing, (b) statical identification, (c) parameters estimation
(d) predicting (Pan et al., 2017).

SETAR is a nonlinear time series in the family of
TAR models (Tong, 2015). These models are supposed
to use in modeling and forecasting streamflow because
of their nonlinearity characteristics. SETAR models have
some advantages which make them popular such as
considering time irreversibility, jump and chaos phe-
nomena, the harmonic bias in data. Therefore, SETAR
models are an excellent tool for modeling a parsimo-
nious non-linear time series (Gonzalo & Wolf, 2005).
This model also can have two or more regimes depend-
ing on the levels of lagged variables in its structure.
Using SETAR models by considering two high and low
regimes was defined by (Tong, 1983b). In the current
study, the SETAR model was used in predicting monthly
streamflow, divided streamflow time series data into sub-
regimes (two regimes). This method is another way of
developing nonlinear dynamicalmethods (Tongal, 2013).
Streamflow time series data set with (Q1 . . . ,Qn), in
which n is the number of time series, considering two
regime SETAR model can be defined by Equations (3)
and (4) as follows:

Qt = ∅1,0 + ∅1,1Qt−1 + . . .

+ ∅1,p1Qt−p1 + σ1et Qt−d ≤ r (3)

Qt = ∅2,0 + ∅2,1Qt−1 + . . .

+ ∅2,p1Qt−p2 + σ1et Qt−d > r (4)

Where ∅ are the coefficients of the AR model, p1 and p2
are the orders of ARmodels for lower and upper regimes
in a two-regime SETARmodel, d is a lag or delay time, et
is the residual value at time t.

If the threshold variable is chosen as the lagged value
of Qt , then it can be written as SETAR (d,p1,p2, . . . ,pj).
The threshold values can be selected from (−∞, ∞) and
the threshold (r) and the delay (d) parameters are an
experimental procedure that they can be used to select
the most proper model for a time series by minimiz-
ing the AIC (Tongal & Berndtsson, 2017). Based on
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Figure 3. The proposed Flow chart in this study.

Tongal (Tongal, 2013), because of simplicity, efficiency,
and lower computational process, the two regime SETAR
were selected in this study.

2.5. Development and integration procedure of
models

In general, pre-processing is a fundamental step in ana-
lyzing historical time series data in various phases, such
as designing, application, and methodologies of new

models. Data pre-processing techniques could be divided
into five groups, including stationary tests, independence
tests, normality tests, periodic estimation, consistency,
and homogeneity tests. More information about these
tests was discussed in (hydrology & 1993, n.d.). Figure 3
demonstrates the whole study steps flowchart. In order to
start modeling, the very first step is to collecting stream-
flow data from hydrometric stations. The next step, split-
ting the historical data into two segments of calibration
and validation phases, is another critical step in every
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modeling. To reach the best relationship between input
and output data, the calibration step is one of the essential
parts in modeling (Tongal, 2013). As mentioned before,
in this study, the streamflow data for each station were
split into 75% calibration and 25% validation. The next
step is the data-normalization step in which Delleur and
Karamouz equations were used for the normalization
step in this study. More information can be found (Attar
et al., 2020). The next step is checking if the data have
any trend or seasonality effects or not. When the sta-
tistical characteristics (mean, variance, autocorrelation)
of historical time series data are all constant over some
time, and there is no trend in data series, data series
are called stationary. In the current study, the station-
ary of data was evaluated by two critical tests, includ-
ing unit-root test augmented dickey-fuller (ADF) and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. A unit
root test of data series was done by ADF null hypothesis
that shows the process has a unit root, and the alterna-
tive hypothesis has no unit root, and that means the data
series are stationary, and the result of the test is always a
negative number. The degree of negativity of this number
shows the degree of stationary data. A stationary around
means that is tested by the KPSS model, and in contrast
with the ADF test, the null hypothesis in KPSS is that the
data is stationary, and the alternative hypothesis is that
the data is not stationary and the process has a unit root.

Moreover, in order to start modeling with nonlinear
methods, the LR was used in this study. LR test can dis-
cover nonlinearity by using AR(p) and TAR(P) model.
The model with AR(p) is the null hypothesis of the LR
model, and the alternative hypothesis is modeling with
TAR(p).

A vigorous model was achieved when the optimum
lags were considered in each modeling scenario. The
proper number of lags for each scenario is entirely depen-
dent on input streamflow data. It can be defined based on
autocorrelation analysis (partial autocorrelation) meth-
ods. There are some steps to defining the optimal number
of lags (a) normalization of data, (b) data stationaries, (c)
autocorrelation analysis (which lags can be defined based
on pacf diagrams in the confidence level of 95%).

In the present study, in order to develop GEP models,
each model needs a series of sorted and complete data
with defined lags as input data. The input data were con-
sidered with five lags (months) for modeling standalone
GEP as follows:

GEP1 : Qt = f (Qt−1)

GEP2 : Qt = f (Qt−1,Qt−2)

GEP3 : Qt = f (Qt−1,Qt−2,Qt−3)

GEP4 : Qt = f (Qt−1,Qt−2,Qt−3,Qt−4)

GEP5 : Qt = f (Qt−1,Qt−2,Qt−3,Qt−4,Qt−5)

The foremost motive for choosing the GEP model is
because to create a deterministic equation with dif-
ferent input values while utilizing user-defined linking
functions.

As stated before, the procedure of modeling stream-
flow data with the GEP model considers the mathemati-
cal equation ofmodel based on historical time-series data
through defined lags by a user. Thus, the main focus on
streamflow as a stochastic random phenomenon is hid-
denwhile using a standaloneGEPmodel. For this reason,
in this study, two models were introduced for modeling
random parts of the equation, namely ARCH and SETAR
models. In this direction, ARCH and SETAR models
consider the variance of the observed data besides con-
sidering the statistical mean of streamflow data. Herein,
after defining both the deterministic and randomparts of
the streamflow data using GEP, ARCH, and SETARmod-
els, new series were generated by combining these parts.
The combined GEP-ARCH hybrid based model can be
defined as:

Qt = Dt + εt (5)

Where, Dt is the modeled deterministic part of the
streamflow time-series byGEP and εt is themodeled ran-
dom part of the streamflow series by ARCH. As shown
in Equation (5), the equation obtained from GEP mod-
els and the results of ARCH modeling is considered as
Dt and εt respectively. The combinedGEP-SETARhybrid
based model can be defined as:

Qt = Dt + et (6)

Where, Dt is the modeled deterministic part of the
streamflow time-series byGEP and et is themodeled ran-
dom part of the streamflow series by SETAR. As shown
in Equation (6), the equation obtained fromGEPmodels
and the results of SETAR modeling is considered as Dt
and et respectively.

3. Assessment of models

In practice, for rigorous accuracy, selecting the most
effective and reliable model is an essential task. The accu-
racy ofmodels can be examined by evaluation criteria. To
find the best model, it is necessary to examine these cri-
teria. The evaluation criteria used in this study were the
coefficient of determination (R2), root mean square error
(RMSE), and mean absolute error (MAE), which can be
formulated as follows:

R2 =
⎛
⎝

∑N
i=1(Oi − Ō)(Pi − P̄)√∑N

i=1 (Oi − Ō)
2 ∑N

i=1 (Pi − P̄)
2

⎞
⎠

2

(7)
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RMSE = 1
N

√√√√ N∑
i=1

(Oi − Pi)2 (8)

MAE = 1
N

N∑
i=1

|Oi − Pi| (9)

WhereN is the number of observations,Oi are the actual
observations of streamflow, Ō is themean of the observed
data, and Pi is the estimated value of streamflow.

4. Results and discussions

In the present study, the benchmark and proposed pre-
diction hybrid models were established using two novel
variance-based stochastic nonlinear methods, namely
ARCH and SETAR combining with selected best fit-
ted standalone GEP model for four selected hydromet-
ric stations in the Urmia Lake basin. This result part
is divided into subsections, including the results of pre-
modeling tests, assessment of standalone SETARmodels,
the results of combined GEP-ARCH and GEP-SETAR
models, and in last, the conclusion and future works were
recommended.

4.1. Pre-modeling tests

In order to test if the data are stationary and have the
potential to nonlinearity modeling, three tests, includ-
ing ADF, KPSS, and LR tests, examined with a specific
hypothesis for each test.

The results of these tests, demonstrated in Table 3,
were showed that by examining their p-value amounts,
all data are stationary, and the series has a nonlinearity
indefinite significance level. For instance, in Daryan sta-
tion, the alternative hypothesis is accepted under a 95%
confidence level, which means that the series is station-
ary. The KPSS test is on the other side of the ADF test,
which means that based on Table 3, the null hypothesis
is accepted, whichmeans that the data series is stationary
under a 95% confidence level. In the case of the likelihood
ratio (LR) test, the alternative hypothesis is accepted,
which means that the streamflow data series is nonlinear,
and SETAR models can fit them.

4.2. Assessment of applied standalone nonlinear
SETARmodels

Before starting SETARmodeling, the threshold and delay
parameters with the orders of ARmodels should be firstly
estimated. In order to test data independence and orders,
ACF andPACFfigswere calculated. The degree of SETAR

Table 3. Stationarity (ADF and KPSS) and threshold nonlinearity
tests (LR) for proposed stations.

Station
names

Statistics
of ADF
test

The
p-value
of the
ADF
test

Statistics
of KPSS
test

The
p-value
of the
KPSS
test

Statistics
of LR
test

The
p-value
of the
LR test

Daryan −3.21195 < 0.01 0.093248 < 0.05 17.255 < 0.089
Germezigol −5.11848 < 0.01 0.060692 < 0.05 21.004 < 0.028
Ligvan −4.04016 < 0.01 0.050681 < 0.05 30.075 < 0.001
Saeedabad −4.04016 < 0.01 0.114374 < 0.05 27.081 < 0.003

models was estimated by PACF. Also, the satisfactori-
ness of SETAR models is established when all the ACF
coefficients were located between confidence intervals.

As shown in Figure 4, the orders for monthly stream-
flow for all the stations can be defined (four lags for
Daryan, Germezigol, Ligvan stations, and two lags for
Saeedabad station). They directed that the SETAR mod-
els are useful for monthly streamflow modeling. Next,
delay (d), order values (P1, P2), and the threshold value
(regime-switching threshold value) was estimated based
on the minimum AIC criterion. These values for each
station are shown in Figure 5. For instance, inDaryan sta-
tion the SETAR model values (d = 10, P1 = 3, P2 = 2),
for Germezigol station (d = 5, P1 = 2, P2 = 2), for Lig-
van stations (d = 3, P1 = 2, P2 = 1) and for Saeedabad
station (d = 1, P1 = 10, P2 = 4) were calculated.

Based on the obtained delay parameters and order val-
ues from Figure 5, the threshold value for SETARmodels
based on Equations (5) and (6) are calculated for each
station. Equations (10–13) illustrate the results of two
regime SETAR models for all stations including Daryan,
Germezigol, Ligvan, Saeedabad with SETAR (2,3,2),
SETAR (2,1,2), SETAR (2,2,1) and SETAR (2,2,2) respec-
tively. The complementary information like the order, the
delay parameter, and threshold values for each station
can be obtained from these equations. In the equation
number 10, the equation (Qt = 0.0118 + 0.7726Qt−1-
0.2374Qt−2+0.206Qt−3) with the threshold of (Qt−10 ≤
1.132) shows the lower regime of the SETAR model.
While the (Qt = 0.0027 + 0.8911Qt−1 − 0.3372Qt−2)

with the threshold of (Qt−10 > 1.132) shows the upper
regime. The behavior of the basin can be determined
based on these threshold values of streamflow data. As
if, streamflow water level surpassed the threshold value,
it increases the runoff probability in the basin. In oppo-
site, if the stream flow water level is below (when there
is little precipitation) the threshold value, then drought
would happen.

Qt = 0.0118 + 0.7726Qt−1

− 0.2374Qt−2 + 0.206Qt−3 Qt−10 ≤ 1.132
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Figure 4. Autocorrelation and partial autocorrelation of standardized monthly streamflow time series for Daryan, Germezigol, Ligvan,
Saeedabad stations, respectively.
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Figure 5. Delay (d) (y-axis), order (P1, P2), AIC values for Daryan, Germezigol, Ligvan, and Saeedabad stations.

Qt = 0.0027 + 0.8911Qt−1

− 0.3372Qt−2 Qt−10 > 1.132 (10)

Results of fitted SETAR two-regime models to the
monthly streamflow Datasets of Germezigol station with
SETAR (2,1,2)

Qt = 0.0748 + 0.512Qt−1 Qt−5 ≤ −1.147

Qt = −0.0053 + 0.8372Qt−1

− 0.2749 Qt−2Qt−5 ≥ −1.147 (11)

Results of fitted SETAR two-regime models to the
monthly streamflow Datasets of Ligvan station with
SETAR (2,2,1)

Qt = 0.0286 + 0.8513Qt−1

− 0.1051Qt−2 Qt−3 ≤ 0.4308

Qt = −0.013 + 0.5991Qt−1 Qt−3 ≥ 0.4308 (12)

Results of fitted SETAR two-regime models to the
monthly streamflow Datasets of Saeedabad station with
SETAR (2,2,2)

Qt = 0.0714 + 1.0062 ∗ Qt−1

− 0.1783 ∗ Qt−2 Qt−1 ≤ 0.9081

Qt = 0.5098 + 0.6823Qt−1

− 0.6671Qt−2 Qt−1 ≥ 0.9081 (13)

WhereQt−1 andQt−2 are the streamflowwith the lags
of 1 and two months, respectively.

4.3. Assessment of applied combinedmodels

The following values were considered in this study for the
input variables of the GEPmodel. Number of Genes = 3,
number of chromosomes = 30, head size = 8, muta-
tion rate = 0.04, inversion rate = 0.1, gene recombi-
nation rate = 0.1, one-point recombination rate = 0.3,
two-point recombination rate = 0.3, Gene transposition
rate = 0.1, insertion sequence transposition rate = 0.1,
root insertion sequence transposition rate = 0.1. Then,
as formerly explained, in this study GEP model, com-
bined by nonlinear time series models, including SETAR
and ARCH models. In this part, the results of the study
were divided into two sections, namely GEP-ARCH and
GEP-SETAR combinations.

4.3.1. GEP-ARCH combination
Figures 6–9 demonstrate the time series plots for each
station in a combination of GEP lags with ARCH mod-
els. As shown in Figure 6, the observed streamflow (black
lined) were compared with all models; it could be con-
cluded that GEP5-ARCH is closer to observed values.

Tables 4–7 represent the obtained performance cri-
teria of each combination of different lags of the GEP
model with nonlinear ARCH models. As shown in
the following tables, evaluation indices have convinc-
ing results for each combination in both calibration
and validation stages. In Daryan hydrometric station, in
the calibration stage GEP5-ARCH model with the cor-
relation coefficient values of (R2 = 0.737) error values
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Figure 6. Time series for Daryan station.

Figure 7. Time series for Germezigol station.



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 1363

Figure 8. Time series for Ligvan station.

Figure 9. Time series for Saeedabad station.
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Table 4. The results of hybrid models in Daryan station.

Station Daryan

Evaluation Criteria/Models R2 RMSE (m3/s) MAE (m3/s)

Calibration Stage GEP1-ARCH 0.704 0.039 0.446
GEP2-ARCH 0.715 0.039 0.450
GEP3-ARCH 0.724 0.039 0.452
GEP4-ARCH 0.711 0.039 0.446
GEP5-ARCH 0.737 0.042 0.475

Validation Stage GEP1-ARCH 0.455 0.079 0.456
GEP2-ARCH 0.466 0.078 0.457
GEP3-ARCH 0.475 0.078 0.455
GEP4-ARCH 0.467 0.078 0.453
GEP5-ARCH 0.477 0.079 0.464

Table 5. The results of hybrid models in Germezigol station.

Station Germezigol

Evaluation Criteria/Models R2 RMSE (m3/s) MAE (m3/s)

Calibration Stage GEP1-ARCH 0.803 0.082 0.942
GEP2-ARCH 0.791 0.081 0.925
GEP3-ARCH 0.804 0.083 0.945
GEP4-ARCH 0.803 0.082 0.941
GEP5-ARCH 0.801 0.082 0.938

Validation Stage GEP1-ARCH 0.834 0.113 0.791
GEP2-ARCH 0.826 0.107 0.768
GEP3-ARCH 0.845 0.109 0.778
GEP4-ARCH 0.836 0.109 0.779
GEP5-ARCH 0.834 0.112 0.784

of (RMSE = 0.042m3/s and MAE = 0.475m3/s) have
selected as the top model. Same GEP5-ARCH model in
validation stage (R2 = 0.477, RMSE = 0.079m3/s and
MAE = 0.464m3/s) were selected. In Germezigol sta-
tion GEP3-ARCH model is selected as the best model

Table 6. The results of hybrid models in Ligvan station.

Station Ligvan

Evaluation Criteria/Models R2 RMSE (m3/s) MAE (m3/s)

Calibration Stage GEP1-ARCH 0.977 0.068 0.881
GEP2-ARCH 0.976 0.069 0.885
GEP3-ARCH 0.976 0.069 0.885
GEP4-ARCH 0.975 0.070 0.888
GEP5-ARCH 0.977 0.069 0.885

Validation Stage GEP1-ARCH 0.929 0.147 0.925
GEP2-ARCH 0.904 0.146 0.890
GEP3-ARCH 0.927 0.149 0.931
GEP4-ARCH 0.914 0.156 0.934
GEP5-ARCH 0.913 0.152 0.917

Table 7. The results of hybrid models in Saeedabad station.

Station Saeedabad

Evaluation Criteria/Models R2 RMSE (m3/s) MAE (m3/s)

Calibration Stage GEP1-ARCH 0.889 0.019 0.281
GEP2-ARCH 0.907 0.018 0.267
GEP3-ARCH 0.906 0.018 0.278
GEP4-ARCH 0.904 0.019 0.277
GEP5-ARCH 0.907 0.020 0.292

Validation Stage GEP1-ARCH 0.870 0.019 0.151
GEP2-ARCH 0.897 0.022 0.170
GEP3-ARCH 0.892 0.022 0.174
GEP4-ARCH 0.879 0.020 0.167
GEP5-ARCH 0.877 0.020 0.162

in both calibration and validation stages with the values
of R2 = 0.804, RMSE = 0.083m3/s, MAE = 0.945m3/s
for calibration and R2 = 0.845, RMSE = 0.109m3/s,
MAE = 0.778m3/s for testing phases. In Ligvan station,
GEP model with one lag (GEP1) was combined with

Figure 10. Combined best performed GEP-ARCHmodel for all Stations.
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Figure 11. Time series for GEP-SETAR for Daryan station.

Figure 12. Time series for GEP-SETAR for Germezigol station.
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Figure 13. Time series for GEP-SETAR for Ligvan station.

Figure 14. Time series for GEP-SETAR for Saeedabad station.

ARCHmodel resulted R2 = 0.977, RMSE = 0.068m3/s,
MAE = 0.881m3/s in calibration stage and R2 = 0.929,
RMSE = 0.147m3/s, MAE = 0.925m3/s in validation
stage. In Saeedabad station, the values of R2 = 0.907,
RMSE = 0.018m3/s, MAE = 0.267m3/s in calibration
stage and R2 = 897, RMSE = 0.022m3/s, MAE =

0.170m3/s made GEP2-ARCH model the most fitted
model with observed monthly streamflow values.

In this section, the observed and modeled data of
each GEP-ARCH combination based on their coefficient
of efficiency values were shown by Figure 10. Scatter
plots of the observed monthly streamflow values against
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Table 8. The results of hybrid models in Daryan station.

Station Daryan

Evaluation Criteria/Models R2 RMSE (m3/s) MAE (m3/s)

Calibration Stage GEP1-SETAR 0.988 0.003 0.032
GEP2-SETAR 0.989 0.003 0.033
GEP3-SETAR 0.995 0.003 0.002
GEP4-SETAR 0.995 0.002 0.017
GEP5-SETAR 0.977 0.007 0.046

Validation Stage GEP1-SETAR 0.951 0.006 0.033
GEP2-SETAR 0.967 0.005 0.029
GEP3-SETAR 0.991 0.022 0.016
GEP4-SETAR 0.991 0.003 0.011
GEP5-SETAR 0.975 0.004 0.025

Table 9. The results of hybrid models in Germezigol station.

Station Germezigol

Evaluation Criteria/Models R2 RMSE (m3/s) MAE (m3/s)

Calibration Stage GEP1-SETAR 0.984 0.007 0.064
GEP2-SETAR 0.992 0.006 0.053
GEP3-SETAR 0.995 0.004 0.009
GEP4-SETAR 0.997 0.003 0.026
GEP5-SETAR 0.989 0.006 0.055

Validation Stage GEP1-SETAR 0.988 0.01 0.059
GEP2-SETAR 0.988 0.009 0.057
GEP3-SETAR 0.989 0.028 0.041
GEP4-SETAR 0.993 0.007 0.033
GEP5-SETAR 0.989 0.009 0.052

Table 10. The results of hybrid models in Ligvan station.

Station Ligvan

Evaluation Criteria/Models R2 RMSE (m3/s) MAE (m3/s)

Calibration Stage GEP1-SETAR 0.995 0.003 0.029
GEP2-SETAR 0.996 0.002 0.021
GEP3-SETAR 0.994 0.003 0.029
GEP4-SETAR 0.995 0.003 0.024
GEP5-SETAR 0.996 0.002 0.023

Validation Stage GEP1-SETAR 0.976 0.011 0.040
GEP2-SETAR 0.819 0.028 0.060
GEP3-SETAR 0.979 0.009 0.040
GEP4-SETAR 0.977 0.011 0.037
GEP5-SETAR 0.937 0.017 0.044

estimated with hybrid GEP-ARCH models resulted in
satisfactory and acceptable values for each station.

4.3.2. GEP-SETAR combination
Figures 11–14 show the time series plots for each station
of Daryan, Germezigol, Ligvan, and Saeedabad.

Tables 8–11 represent the obtained performance crite-
ria of each combination of different lags of theGEPmodel
with nonlinear two regime SETAR models. As shown in
these tables, evaluation indices have convincing results
for each combination in both calibration and validation
stages.

In Daryan station, GEP4-SETAR model was selected
as best performed model among others because of
evaluation indices, R2 = 0.995, RMSE = 0.002m3/s,
MAE = 0.017m3/s for calibration station and R2 = 991,

Table 11. The results of hybrid models in Saeedabad station.

Station Saeedabad

Evaluation Criteria/Models R2 RMSE (m3/s) MAE (m3/s)

Calibration Stage GEP1-SETAR 0.966 0.003 0.031
GEP2-SETAR 0.977 0.002 0.029
GEP3-SETAR 0.979 0.002 0.027
GEP4-SETAR 0.971 0.003 0.028
GEP5-SETAR 0.970 0.003 0.030

Validation Stage GEP1-SETAR 0.927 0.005 0.025
GEP2-SETAR 0.962 0.003 0.019
GEP3-SETAR 0.981 0.002 0.014
GEP4-SETAR 0.937 0.004 0.026
GEP5-SETAR 0.963 0.000 0.020

RMSE = 0.003m3/s, MAE = 0.025m3/s for validation
stages. In Table 9, GEP4-SETAR model was selected
as the top model with the values of R2 = 0.997,
RMSE = 0.003m3/s, MAE = 0.026m3/s for calibration
stages and R2 = 0.993, RMSE = 0.007m3/s, MAE =
0.033m3/s in testing stages. Based on values of R2 =
0.996, RMSE = 0.002m3/s, MAE = 0.021m3/s for cali-
bration stages in Ligvan station the GEP2-SETAR model
were selected while GEP3-SETAR model in valida-
tion stage was selected based on values of R2 = 0.979,
RMSE = 0.009m3/s, MAE = 0.040m3/s. GEP3-SETAR
model was selected for Saeedabad station with these
values of R2 = 0.979, RMSE = 0.002m3/s, MAE =
0.027m3/s for calibration and R2 = 0.981, RMSE =
0.002m3/s, MAE = 0.014m3/s for validation stages.

In this section, the observed and modeled data of
each GEP-SETAR combination based on their coeffi-
cient of efficiency values were shown in Figure 15. The
results showed satisfactory and acceptable values for
each station by considering the calibration and valida-
tion stages. In comparison to GEP-ARCH type hybrid
models, these combined GEP-SETAR models have very
high values of correlation between observed and esti-
mated values. Therefore, SETAR type models perform
better than hybrid ARCHmethods.

4.4. Comparison between selected ARCH-type and
SETAR typemodels

As shown in previous sections, two deterministic
and stochastic parts of both GEP and time-series
models combined by Equations (5) and (6). As an
example of Daryan station, the results of combined
GEP-ARCH models in both calibration and valida-
tion stages show (R2 = 0.737, RMSE = 0.042m3/s,
and MAE = 0.475m3/s) and (R2 = 0.477, RMSE =
0.079m3/s, and MAE = 0.464m3/s) respectively. While
the results of combined GEP-SETAR models in both
calibration and validation stages in Table 8 shows
(R2 = 0.995, RMSE = 0.002m3/s, and MAE =
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Figure 15. Combined best performed GEP-SETAR model for all Stations.

Figure 16. Relative error-index values for Daryan station (blue), Germezigol (green), Ligvan station (yellow) and Saeedabad station
(pink).
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0.017m3/s) and (R2 = 0.991, RMSE = 0.003m3/s and
MAE = 0.011m3/s) respectively.

5. Discussion

In this study, the concept of nonlinearity, parsimonious,
and complexity of monthly streamflow data was consid-
ered for defining the superior model. At the first step, 40
years of streamflow data with the 30 days (monthly) scale
were selected from four rivers located in ULB. Stream-
flow data were modeled with GEP methods (including
five different scenarios and inputs), and the equations
and the estimated data were defined, and they com-
pared with the historical data in two calibration and
validation stages. It is clear that the GEP model has
the capacity to model the linear and nonlinear rela-
tions between the input variables. Also, the GEP only
exported the deterministic components of the streamflow
equations. Considering both deterministic and stochas-
tic concepts of every hydrological model. Here, in this
study, ARCH models were combined with the best per-
formed GEPmodel, and the results were reported. In the
next step, in order to find the mean behavior of stream-
flow data and the changes between upper and lower
regime types (switching regimes) and considering the
threshold between them, SETAR models were utilized.
Finally, the results of SETARmodels were combined with
superior GEP models, and the results showed a satisfy-
ing and acceptable increase in the models’ performances
in comparison to hybrid GEP-ARCH models based on
evaluation criteria. In other words, to address these find-
ings, the relative error index was calculated and depicted
in Figure 16 for all the proposed stations. For Daryan
station, as it shown in blue box plots, the error plots
were demonstrated that the GEP-SETAR has the lowest
value following the standalone GEP and the hybrid GEP-
ARCH models. In Germezigol station (green error box
plots), it can be seen that both hybrid models, including
ARCH type and SETAR type models, performed better
than the sole GEP model. Yellow color error box plots
reveal the relative error-index between 0 and 3, and the
GEP-SETAR model draws heavily in comparison to the
two other models. Finally, the same results can be seen at
the pink color error box plot for Saeedabad station, which
presented the lowest error model.

The overall performance comparison of two regime
SETAR models along with ARCH type models for
two primary calibration and validation stages were
demonstrated in Table 12. Utilizing the error type
(RMSE, MAE) and accuracy type (R2) evaluation met-
rics, Table 12 demonstrates the ratio of SETAR-typemod-
els to ARCH-typemodels’ performance in percent. Over-
all, as a significant result, all SETAR-type hybrid models

Table 12. The preference of hybrid GEP-SETAR models to hybrid
GEP-ARCHmodels.

Stations Evaluation metrics Stages

The ratio of the
SETAR-type models

to ARCH-type
models

performance in
percent

Daryan Error RMSE Calibration 45

Validation 45

MAE Calibration 4

Validation 8

Accuracy R2 Calibration 26

Validation 51

Germezigol Error RMSE Calibration 100

Validation 74

MAE Calibration 8

Validation 10

Accuracy R2 Calibration 19

Validation 15

Ligvan Error RMSE Calibration 86

Validation 88

MAE Calibration 7

Validation 14

Accuracy R2 Calibration 2

Validation 5

Saeedabad Error RMSE Calibration 24

Validation 16

MAE Calibration 2

Validation 2

Accuracy R2 Calibration 7

Validation 8

in this study have better performance than ARCH-type
models.

6. Conclusion and future works

Nowadays, providing a method for enhancing hydro-
logical forecasting accuracy is a challenging issue for
engineers and scholars in water resources planning and
management. Relatively, with the literature review, there
is little attention in utilizing both deterministic DDMs
and stochastic time series for forecasting hydrological
parameters, especially streamflow. In this study, the pre-
dictability of newly hybrid applied DDMs from monthly
streamflow of four stations, Daryan, Germezigol, Ligvan,
and Saeedabad, at Urmia basin was assessed using per-
formance metrics called R2, RMSE, and MAE and visual
plots. One commonly used DDM called GEP was used
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in this study as a primary deterministic model, while
two-time series models called ARCH and SETARmodels
as nonlinear models as a stochastic determination parts
were used. By comparing the latest results of best per-
formed GEP and ARCH and SETAR models, it is found
out that in all calibration and validation stages within all
stations, SETARmodels have the best performance, com-
paring to ARCHmodels. In terms of accuracy, prediction
results for Daryan, Germezigol, Ligvan, and Saeedabad,
respectively, improved by about 51%, 15%, 1%, and 2%
when the GEP model integrated with SETAR compared
to ARCH. In addition, the RMSE value for the ratio of
the SETAR-typemodels toARCH-typemodels decreased
to 45% (Daryan), 74 (Germezigol), 88% (Ligvan), and
16% (Saeedabad) at the validation stage. Overall, it can be
stated that hybrid GEP-SETARmodels are demonstrated
improving classical models, and they can be used for ana-
lyzing, modeling, and predicting stream flows for future
water management.

For future studies, it can be useful to consider other
statistics like mean and kurtosis using newmethods such
as SETARMA, BL, BL-ARCH, or other autoregressive
conditional heteroscedasticity models such as GARCH,
partial autoregressive conditional heteroscedasticity
(PARCH), Non-linear GARCH. In contrast, this study
applied the variance statistics of observed streamflow
data. Another suggestion is for data decomposition as
nonlinearity, non-stationary, complexity, and random
distribution can be seen on hydrological processes (i.e.
streamflow, rainfall, water stage, groundwater, etc.). To
overcome those difficulties, several data pre-processing
tools such as complete ensemble empirical mode decom-
position (CEEMD), improved CEEMD, and variational
mode decomposition (VMD), can be addressed.
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