IBM SPSS Web Report - 30var PC varimax 5 factors.spv   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - January 28, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b L2 L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b L2 L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM M3hNotSameChM
  /PRINT UNIVARIATE INITIAL ROTATION
  /PLOT EIGEN
  /CRITERIA FACTORS(5) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Active Dataset - January 28, 2020


[DataSet1] I:\Berge2009 Trust games\MLTSC HHQwithTrustData 20101201 L-M vars.sav

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Descriptive Statistics - January 28, 2020
Descriptive Statistics
  Mean Std. Deviation Analysis N
K1a Lending money to family members .43 .497 235
K1b Lending money to relatives .49 .501 235
K1c Lending money to people in your own village .39 .488 235
K1d Lending money to people outside the village .16 .365 235
K1e Lending money to people from the same mosque/ church .16 .365 235
K2a Lending tools like axes, hoes etc. to family members .71 .454 235
K2b Lending tools like axes, hoes etc. to relatives outside the household .76 .427 235
L2 Participated in cooperative agricultural work .41 .493 235
L3.d. Participated last 12 months in cooperative work of weeding .17 .377 235
L3.e. Participated last 12 months in cooperative work of harvesting .20 .401 235
L3.f. Participated last 12 months in cooperative work of other agriculture work .14 .348 235
L6 Participation in other exchange work than agriculture .52 .501 235
L7 Participated in unpaid public work during the last 12 months .80 .398 235
M1 Most people can be trusted (1) or you cannot be too careful (0) .46 .499 235
M2.d. Trust in Traditional Authorities 3.79 1.168 235
M2.e. Trust in group village headmen 3.69 1.196 235
M2.f. Trust in village headmen 3.70 1.207 235
M2.j. Trust in police 3.66 1.279 235
M2.k. Trust in traders 2.50 1.325 235
M2.l. Trust in teachers 3.85 1.095 235
M2.m.Trust in school administrators 3.71 1.173 235
M2.n. Trust in religious leaders 3.93 1.109 235
M3.a. Trust in family members 4.41 .936 235
M3.b. Trust in relatives 3.89 1.157 235
M3.c. Trust in people in own village 3.34 1.100 235
M3.d. Trust in people outside the village 2.72 1.120 235
M3.e. Trust in people of same ethnic group 3.13 1.096 235
M3.f. Trust in people outside ethnic group 2.79 1.120 235
M3.g. Trust in people from same church/ mosque 3.63 1.068 235
M3.h. Trust in people not from same church/ mosque 3.01 1.214 235

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Communalities - January 28, 2020
Communalities
  Raw Rescaled
Initial Initial
K1a Lending money to family members .247 1.000
K1b Lending money to relatives .251 1.000
K1c Lending money to people in your own village .238 1.000
K1d Lending money to people outside the village .133 1.000
K1e Lending money to people from the same mosque/ church .133 1.000
K2a Lending tools like axes, hoes etc. to family members .207 1.000
K2b Lending tools like axes, hoes etc. to relatives outside the household .182 1.000
L2 Participated in cooperative agricultural work .243 1.000
L3.d. Participated last 12 months in cooperative work of weeding .142 1.000
L3.e. Participated last 12 months in cooperative work of harvesting .161 1.000
L3.f. Participated last 12 months in cooperative work of other agriculture work .121 1.000
L6 Participation in other exchange work than agriculture .251 1.000
L7 Participated in unpaid public work during the last 12 months .158 1.000
M1 Most people can be trusted (1) or you cannot be too careful (0) .249 1.000
M2.d. Trust in Traditional Authorities 1.365 1.000
M2.e. Trust in group village headmen 1.430 1.000
M2.f. Trust in village headmen 1.458 1.000
M2.j. Trust in police 1.637 1.000
M2.k. Trust in traders 1.755 1.000
M2.l. Trust in teachers 1.199 1.000
M2.m.Trust in school administrators 1.376 1.000
M2.n. Trust in religious leaders 1.230 1.000
M3.a. Trust in family members .876 1.000
M3.b. Trust in relatives 1.338 1.000
M3.c. Trust in people in own village 1.210 1.000
M3.d. Trust in people outside the village 1.254 1.000
M3.e. Trust in people of same ethnic group 1.200 1.000
M3.f. Trust in people outside ethnic group 1.254 1.000
M3.g. Trust in people from same church/ mosque 1.141 1.000
M3.h. Trust in people not from same church/ mosque 1.474 1.000
Extraction Method: Principal Component Analysis.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Total Variance Explained - January 28, 2020
Total Variance Explained
  Component Initial Eigenvaluesa Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.571 40.025 40.025 4.704 19.672 19.672
2 2.245 9.390 49.415 1.370 5.730 25.401
3 1.577 6.596 56.010 3.581 14.975 40.376
4 1.451 6.066 62.077 4.020 16.813 57.189
5 1.053 4.406 66.482 2.222 9.293 66.482
6 .938 3.921 70.403      
7 .901 3.766 74.170      
8 .766 3.201 77.371      
9 .632 2.643 80.014      
10 .540 2.258 82.272      
11 .510 2.133 84.405      
12 .470 1.967 86.372      
13 .434 1.817 88.188      
14 .388 1.624 89.812      
15 .356 1.488 91.301      
16 .295 1.235 92.536      
17 .282 1.179 93.715      
18 .260 1.088 94.803      
19 .206 .860 95.663      
20 .182 .762 96.425      
21 .159 .663 97.088      
22 .142 .592 97.681      
23 .111 .464 98.145      
24 .086 .358 98.503      
25 .085 .355 98.858      
26 .076 .320 99.177      
27 .061 .255 99.432      
28 .051 .214 99.646      
29 .045 .186 99.833      
30 .040 .167 100.000      
Rescaled 1 9.571 40.025 40.025 3.833 12.778 12.778
2 2.245 9.390 49.415 3.245 10.817 23.595
3 1.577 6.596 56.010 2.952 9.838 33.434
4 1.451 6.066 62.077 2.918 9.727 43.161
5 1.053 4.406 66.482 1.586 5.285 48.446
6 .938 3.921 70.403      
7 .901 3.766 74.170      
8 .766 3.201 77.371      
9 .632 2.643 80.014      
10 .540 2.258 82.272      
11 .510 2.133 84.405      
12 .470 1.967 86.372      
13 .434 1.817 88.188      
14 .388 1.624 89.812      
15 .356 1.488 91.301      
16 .295 1.235 92.536      
17 .282 1.179 93.715      
18 .260 1.088 94.803      
19 .206 .860 95.663      
20 .182 .762 96.425      
21 .159 .663 97.088      
22 .142 .592 97.681      
23 .111 .464 98.145      
24 .086 .358 98.503      
25 .085 .355 98.858      
26 .076 .320 99.177      
27 .061 .255 99.432      
28 .051 .214 99.646      
29 .045 .186 99.833      
30 .040 .167 100.000      
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.

Factor Analysis
Factor Analysis - Scree Plot - January 28, 2020
Scree Plot Component Number: 30
Eigenvalue: 0.0400 Component Number: 29
Eigenvalue: 0.0446 Component Number: 28
Eigenvalue: 0.0512 Component Number: 27
Eigenvalue: 0.0609 Component Number: 26
Eigenvalue: 0.0765 Component Number: 25
Eigenvalue: 0.0848 Component Number: 24
Eigenvalue: 0.0856 Component Number: 23
Eigenvalue: 0.1110 Component Number: 22
Eigenvalue: 0.1416 Component Number: 21
Eigenvalue: 0.1586 Component Number: 20
Eigenvalue: 0.1822 Component Number: 19
Eigenvalue: 0.2058 Component Number: 18
Eigenvalue: 0.2601 Component Number: 17
Eigenvalue: 0.2819 Component Number: 16
Eigenvalue: 0.2954 Component Number: 15
Eigenvalue: 0.3559 Component Number: 14
Eigenvalue: 0.3883 Component Number: 13
Eigenvalue: 0.4344 Component Number: 12
Eigenvalue: 0.4704 Component Number: 11
Eigenvalue: 0.5099 Component Number: 10
Eigenvalue: 0.5400 Component Number: 9
Eigenvalue: 0.6319 Component Number: 8
Eigenvalue: 0.7655 Component Number: 7
Eigenvalue: 0.9006 Component Number: 6
Eigenvalue: 0.9377 Component Number: 5
Eigenvalue: 1.0535 Component Number: 4
Eigenvalue: 1.4506 Component Number: 3
Eigenvalue: 1.5772 Component Number: 2
Eigenvalue: 2.2454 Component Number: 1
Eigenvalue: 9.5708 Component Number: 29
Eigenvalue: 0.0446 Component Number: 28
Eigenvalue: 0.0512 Component Number: 27
Eigenvalue: 0.0609 Component Number: 26
Eigenvalue: 0.0765 Component Number: 25
Eigenvalue: 0.0848 Component Number: 24
Eigenvalue: 0.0856 Component Number: 23
Eigenvalue: 0.1110 Component Number: 22
Eigenvalue: 0.1416 Component Number: 21
Eigenvalue: 0.1586 Component Number: 20
Eigenvalue: 0.1822 Component Number: 19
Eigenvalue: 0.2058 Component Number: 18
Eigenvalue: 0.2601 Component Number: 17
Eigenvalue: 0.2819 Component Number: 16
Eigenvalue: 0.2954 Component Number: 15
Eigenvalue: 0.3559 Component Number: 14
Eigenvalue: 0.3883 Component Number: 13
Eigenvalue: 0.4344 Component Number: 12
Eigenvalue: 0.4704 Component Number: 11
Eigenvalue: 0.5099 Component Number: 10
Eigenvalue: 0.5400 Component Number: 9
Eigenvalue: 0.6319 Component Number: 8
Eigenvalue: 0.7655 Component Number: 7
Eigenvalue: 0.9006 Component Number: 6
Eigenvalue: 0.9377 Component Number: 5
Eigenvalue: 1.0535 Component Number: 4
Eigenvalue: 1.4506 Component Number: 3
Eigenvalue: 1.5772 Component Number: 2
Eigenvalue: 2.2454 Component Number: 1
Eigenvalue: 9.5708 0 2 4 6 8 10 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"a":0.0,"r":0,"b":0,"g":0}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"tickDelta":2.0}]},"axis":[{"tickStyle":{"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"11pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"tickDelta":1.0}]},"axis":[{"tickStyle":{"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"11pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.0399737509867418,"max":9.570802493011337,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.570802493011337],[1,2.245355387972993],[2,1.577208259889751],[3,1.450582263681228],[4,1.053457346316275],[5,0.9376855481423738],[6,0.9005888669360477],[7,0.7655093631698155],[8,0.6319165148907427],[9,0.5400454140793906],[10,0.5099362323002997],[11,0.4703792635617534],[12,0.4343847214755817],[13,0.3883098194590849],[14,0.3559191840224681],[15,0.2954129027304116],[16,0.2819333653284069],[17,0.260137900840038],[18,0.2057525059131211],[19,0.1822244930535127],[20,0.1585582772998797],[21,0.1415818427699834],[22,0.1110270131220417],[23,0.08556529630587462],[24,0.08484453130115506],[25,0.07648372543201241],[26,0.06092258476950935],[27,0.05122500664134232],[28,0.04458745392942624],[29,0.0399737509867418]]}],"size":{"width":625.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Component Matrix - January 28, 2020
Component Matrixa
 
a. 5 components extracted.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Rotated Component Matrix - January 28, 2020
Rotated Component Matrixa
  Raw Rescaled
Component Component
1 2 3 4 5 1 2 3 4 5
K1a Lending money to family members -.037 .289 -.020 .032 -.118 -.074 .581 -.039 .065 -.238
K1b Lending money to relatives -.021 .292 -.008 .027 -.081 -.041 .582 -.016 .054 -.162
K1c Lending money to people in your own village -.013 .258 .033 .037 -.068 -.026 .529 .067 .077 -.139
K1d Lending money to people outside the village .012 .119 .024 -.023 .000 .032 .327 .067 -.063 .001
K1e Lending money to people from the same mosque/ church -.031 .120 .037 -.006 -.064 -.086 .329 .101 -.017 -.174
K2a Lending tools like axes, hoes etc. to family members -.049 .178 -.037 -.041 -.079 -.107 .391 -.082 -.091 -.175
K2b Lending tools like axes, hoes etc. to relatives outside the household -.005 .143 -.057 -.051 -.005 -.012 .336 -.133 -.120 -.011
L2 Participated in cooperative agricultural work .009 .193 .011 -.001 .047 .018 .392 .022 -.001 .096
L3.d. Participated last 12 months in cooperative work of weeding -.002 .098 .010 .003 .029 -.004 .260 .027 .008 .076
L3.e. Participated last 12 months in cooperative work of harvesting .017 .126 -.006 -.020 .044 .041 .314 -.016 -.049 .110
L3.f. Participated last 12 months in cooperative work of other agriculture work .058 .178 .018 -.022 .005 .166 .510 .052 -.064 .015
L6 Participation in other exchange work than agriculture .000 .250 -.037 -.032 -.050 -.001 .499 -.075 -.064 -.100
L7 Participated in unpaid public work during the last 12 months -.075 -.208 -.013 .015 -.016 -.189 -.524 -.034 .037 -.040
M1 Most people can be trusted (1) or you cannot be too careful (0) .187 .134 .082 .006 .051 .374 .268 .164 .011 .103
M2.d. Trust in Traditional Authorities .234 -.209 .253 .963 .011 .201 -.179 .216 .824 .009
M2.e. Trust in group village headmen .312 -.103 .240 1.026 .063 .261 -.086 .200 .858 .052
M2.f. Trust in village headmen .238 .000 .460 .916 .176 .197 .000 .381 .759 .146
M2.j. Trust in police .373 .110 .104 .649 .794 .292 .086 .081 .507 .620
M2.k. Trust in traders .338 -.353 .413 .103 1.010 .255 -.266 .311 .078 .762
M2.l. Trust in teachers .140 -.293 .624 .438 .305 .128 -.267 .570 .400 .279
M2.m.Trust in school administrators .177 -.219 .675 .426 .457 .151 -.186 .576 .363 .389
M2.n. Trust in religious leaders .178 .012 .705 .352 .122 .161 .010 .636 .318 .110
M3.a. Trust in family members .258 .206 .567 .138 -.038 .276 .221 .605 .148 -.041
M3.b. Trust in relatives .349 .500 .796 .048 .122 .302 .433 .688 .041 .105
M3.c. Trust in people in own village .613 .191 .492 .241 .206 .558 .174 .447 .219 .188
M3.d. Trust in people outside the village .796 .194 .083 .176 .275 .711 .173 .074 .157 .246
M3.e. Trust in people of same ethnic group .906 -.026 .220 .241 -.010 .827 -.024 .201 .220 -.009
M3.f. Trust in people outside ethnic group .929 .018 .183 .177 .142 .830 .016 .163 .158 .126
M3.g. Trust in people from same church/ mosque .505 -.263 .609 .189 -.131 .473 -.247 .570 .177 -.122
M3.h. Trust in people not from same church/ mosque .986 -.273 .228 .161 .058 .812 -.225 .188 .132 .048
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 8 iterations.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Component Transformation Matrix - January 28, 2020
Component Transformation Matrix
Component 1 2 3 4 5
1 .592 -.061 .520 .532 .304
2 .713 .307 -.051 -.597 -.197
3 -.100 .487 .246 .358 -.752
4 -.362 .350 .695 -.412 .306
5 -.010 .737 -.428 .252 .458
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.