IBM SPSS Web Report - 36var PC varimax 8 factors.spv   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - January 28, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM
M3hNotSameChM
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3c L3d L3e L3f L6 L7 M1trust M2dTradAut M2eGVH M2fVH M2jPolice M2kTraders M2lTeacher M2mSchAdm M2nRelLead M3aFamil M3bRelatives M3cOwnVil M3dOutsideV M3eSameEthnic M3fOutsEthn M3gSameChM
M3hNotSameChM
  /PRINT UNIVARIATE INITIAL ROTATION
  /PLOT EIGEN
  /CRITERIA MINEIGEN(1) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Active Dataset - January 28, 2020


[DataSet1] I:\Berge2009 Trust games\MLTSC HHQwithTrustData 20101201 L-M vars.sav

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Descriptive Statistics - January 28, 2020
Descriptive Statistics
  Mean Std. Deviation Analysis N
K1a Lending money to family members .44 .497 234
K1b Lending money to relatives .49 .501 234
K1c Lending money to people in your own village .38 .488 234
K1d Lending money to people outside the village .15 .362 234
K1e Lending money to people from the same mosque/ church .16 .366 234
K2a Lending tools like axes, hoes etc. to family members .71 .453 234
K2b Lending tools like axes, hoes etc. to relatives outside the household .76 .428 234
K2c Lending tools like axes, hoes etc. to people in your own village .65 .478 234
K2d Lending tools like axes, hoes etc. to people outside the village .24 .425 234
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .28 .449 234
L2 Participated in cooperative agricultural work .41 .492 234
L3.a. Participated last 12 months in cooperative work of preparing a garden .21 .411 234
L3.b. Participated last12 months in cooperative work of planting .06 .245 234
L3.c. Participated last 12 months in cooperative work of irrigating .02 .145 234
L3.d. Participated last 12 months in cooperative work of weeding .17 .377 234
L3.e. Participated last 12 months in cooperative work of harvesting .20 .398 234
L3.f. Participated last 12 months in cooperative work of other agriculture work .14 .349 234
L6 Participation in other exchange work than agriculture .52 .501 234
L7 Participated in unpaid public work during the last 12 months .80 .398 234
M1 Most people can be trusted (1) or you cannot be too careful (0) .46 .499 234
M2.d. Trust in Traditional Authorities 3.78 1.168 234
M2.e. Trust in group village headmen 3.68 1.198 234
M2.f. Trust in village headmen 3.70 1.207 234
M2.j. Trust in police 3.66 1.282 234
M2.k. Trust in traders 2.50 1.327 234
M2.l. Trust in teachers 3.85 1.097 234
M2.m.Trust in school administrators 3.71 1.175 234
M2.n. Trust in religious leaders 3.92 1.109 234
M3.a. Trust in family members 4.41 .938 234
M3.b. Trust in relatives 3.88 1.157 234
M3.c. Trust in people in own village 3.35 1.102 234
M3.d. Trust in people outside the village 2.72 1.121 234
M3.e. Trust in people of same ethnic group 3.14 1.095 234
M3.f. Trust in people outside ethnic group 2.79 1.121 234
M3.g. Trust in people from same church/ mosque 3.62 1.070 234
M3.h. Trust in people not from same church/ mosque 3.01 1.215 234

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Communalities - January 28, 2020
Communalities
  Raw Rescaled
Initial Initial
K1a Lending money to family members .247 1.000
K1b Lending money to relatives .251 1.000
K1c Lending money to people in your own village .238 1.000
K1d Lending money to people outside the village .131 1.000
K1e Lending money to people from the same mosque/ church .134 1.000
K2a Lending tools like axes, hoes etc. to family members .205 1.000
K2b Lending tools like axes, hoes etc. to relatives outside the household .183 1.000
K2c Lending tools like axes, hoes etc. to people in your own village .229 1.000
K2d Lending tools like axes, hoes etc. to people outside the village .181 1.000
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .201 1.000
L2 Participated in cooperative agricultural work .242 1.000
L3.a. Participated last 12 months in cooperative work of preparing a garden .169 1.000
L3.b. Participated last12 months in cooperative work of planting .060 1.000
L3.c. Participated last 12 months in cooperative work of irrigating .021 1.000
L3.d. Participated last 12 months in cooperative work of weeding .142 1.000
L3.e. Participated last 12 months in cooperative work of harvesting .159 1.000
L3.f. Participated last 12 months in cooperative work of other agriculture work .122 1.000
L6 Participation in other exchange work than agriculture .251 1.000
L7 Participated in unpaid public work during the last 12 months .159 1.000
M1 Most people can be trusted (1) or you cannot be too careful (0) .249 1.000
M2.d. Trust in Traditional Authorities 1.364 1.000
M2.e. Trust in group village headmen 1.436 1.000
M2.f. Trust in village headmen 1.457 1.000
M2.j. Trust in police 1.642 1.000
M2.k. Trust in traders 1.762 1.000
M2.l. Trust in teachers 1.204 1.000
M2.m.Trust in school administrators 1.381 1.000
M2.n. Trust in religious leaders 1.230 1.000
M3.a. Trust in family members .879 1.000
M3.b. Trust in relatives 1.339 1.000
M3.c. Trust in people in own village 1.214 1.000
M3.d. Trust in people outside the village 1.257 1.000
M3.e. Trust in people of same ethnic group 1.200 1.000
M3.f. Trust in people outside ethnic group 1.256 1.000
M3.g. Trust in people from same church/ mosque 1.146 1.000
M3.h. Trust in people not from same church/ mosque 1.476 1.000
Extraction Method: Principal Component Analysis.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Total Variance Explained - January 28, 2020
Total Variance Explained
  Component Initial Eigenvaluesa Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 9.617 38.753 38.753 1.274 5.135 5.135
2 2.254 9.085 47.838 4.579 18.451 23.586
3 1.586 6.390 54.229 3.988 16.069 39.655
4 1.462 5.890 60.118 2.341 9.434 49.088
5 1.072 4.319 64.438 2.405 9.692 58.781
6 .956 3.854 68.292 1.047 4.219 63.000
7 .913 3.680 71.972 1.651 6.652 69.652
8 .797 3.211 75.183 1.373 5.531 75.183
9 .677 2.730 77.912      
10 .548 2.206 80.119      
11 .545 2.196 82.315      
12 .496 1.998 84.313      
13 .441 1.776 86.089      
14 .412 1.660 87.749      
15 .373 1.504 89.253      
16 .327 1.319 90.572      
17 .295 1.191 91.762      
18 .279 1.123 92.886      
19 .240 .966 93.852      
20 .207 .835 94.687      
21 .193 .779 95.466      
22 .148 .597 96.063      
23 .132 .532 96.595      
24 .118 .475 97.070      
25 .112 .450 97.520      
26 .089 .357 97.877      
27 .085 .343 98.220      
28 .077 .310 98.530      
29 .067 .271 98.801      
30 .066 .267 99.067      
31 .056 .228 99.295      
32 .050 .201 99.496      
33 .044 .176 99.672      
34 .038 .152 99.824      
35 .027 .108 99.932      
36 .017 .068 100.000      
Rescaled 1 9.617 38.753 38.753 4.534 12.595 12.595
2 2.254 9.085 47.838 3.812 10.588 23.183
3 1.586 6.390 54.229 2.946 8.183 31.366
4 1.462 5.890 60.118 2.051 5.696 37.062
5 1.072 4.319 64.438 1.942 5.395 42.457
6 .956 3.854 68.292 1.259 3.497 45.954
7 .913 3.680 71.972 1.140 3.168 49.122
8 .797 3.211 75.183 1.030 2.862 51.983
9 .677 2.730 77.912      
10 .548 2.206 80.119      
11 .545 2.196 82.315      
12 .496 1.998 84.313      
13 .441 1.776 86.089      
14 .412 1.660 87.749      
15 .373 1.504 89.253      
16 .327 1.319 90.572      
17 .295 1.191 91.762      
18 .279 1.123 92.886      
19 .240 .966 93.852      
20 .207 .835 94.687      
21 .193 .779 95.466      
22 .148 .597 96.063      
23 .132 .532 96.595      
24 .118 .475 97.070      
25 .112 .450 97.520      
26 .089 .357 97.877      
27 .085 .343 98.220      
28 .077 .310 98.530      
29 .067 .271 98.801      
30 .066 .267 99.067      
31 .056 .228 99.295      
32 .050 .201 99.496      
33 .044 .176 99.672      
34 .038 .152 99.824      
35 .027 .108 99.932      
36 .017 .068 100.000      
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.

Factor Analysis
Factor Analysis - Scree Plot - January 28, 2020
Scree Plot Component Number: 36
Eigenvalue: 0.0169 Component Number: 35
Eigenvalue: 0.0267 Component Number: 34
Eigenvalue: 0.0377 Component Number: 33
Eigenvalue: 0.0436 Component Number: 32
Eigenvalue: 0.0499 Component Number: 31
Eigenvalue: 0.0565 Component Number: 30
Eigenvalue: 0.0661 Component Number: 29
Eigenvalue: 0.0671 Component Number: 28
Eigenvalue: 0.0770 Component Number: 27
Eigenvalue: 0.0851 Component Number: 26
Eigenvalue: 0.0887 Component Number: 25
Eigenvalue: 0.1117 Component Number: 24
Eigenvalue: 0.1180 Component Number: 23
Eigenvalue: 0.1319 Component Number: 22
Eigenvalue: 0.1482 Component Number: 21
Eigenvalue: 0.1933 Component Number: 20
Eigenvalue: 0.2071 Component Number: 19
Eigenvalue: 0.2398 Component Number: 18
Eigenvalue: 0.2788 Component Number: 17
Eigenvalue: 0.2954 Component Number: 16
Eigenvalue: 0.3272 Component Number: 15
Eigenvalue: 0.3732 Component Number: 14
Eigenvalue: 0.4120 Component Number: 13
Eigenvalue: 0.4407 Component Number: 12
Eigenvalue: 0.4959 Component Number: 11
Eigenvalue: 0.5450 Component Number: 10
Eigenvalue: 0.5475 Component Number: 9
Eigenvalue: 0.6774 Component Number: 8
Eigenvalue: 0.7968 Component Number: 7
Eigenvalue: 0.9133 Component Number: 6
Eigenvalue: 0.9564 Component Number: 5
Eigenvalue: 1.0719 Component Number: 4
Eigenvalue: 1.4616 Component Number: 3
Eigenvalue: 1.5858 Component Number: 2
Eigenvalue: 2.2544 Component Number: 1
Eigenvalue: 9.6170 Component Number: 35
Eigenvalue: 0.0267 Component Number: 34
Eigenvalue: 0.0377 Component Number: 33
Eigenvalue: 0.0436 Component Number: 32
Eigenvalue: 0.0499 Component Number: 31
Eigenvalue: 0.0565 Component Number: 30
Eigenvalue: 0.0661 Component Number: 29
Eigenvalue: 0.0671 Component Number: 28
Eigenvalue: 0.0770 Component Number: 27
Eigenvalue: 0.0851 Component Number: 26
Eigenvalue: 0.0887 Component Number: 25
Eigenvalue: 0.1117 Component Number: 24
Eigenvalue: 0.1180 Component Number: 23
Eigenvalue: 0.1319 Component Number: 22
Eigenvalue: 0.1482 Component Number: 21
Eigenvalue: 0.1933 Component Number: 20
Eigenvalue: 0.2071 Component Number: 19
Eigenvalue: 0.2398 Component Number: 18
Eigenvalue: 0.2788 Component Number: 17
Eigenvalue: 0.2954 Component Number: 16
Eigenvalue: 0.3272 Component Number: 15
Eigenvalue: 0.3732 Component Number: 14
Eigenvalue: 0.4120 Component Number: 13
Eigenvalue: 0.4407 Component Number: 12
Eigenvalue: 0.4959 Component Number: 11
Eigenvalue: 0.5450 Component Number: 10
Eigenvalue: 0.5475 Component Number: 9
Eigenvalue: 0.6774 Component Number: 8
Eigenvalue: 0.7968 Component Number: 7
Eigenvalue: 0.9133 Component Number: 6
Eigenvalue: 0.9564 Component Number: 5
Eigenvalue: 1.0719 Component Number: 4
Eigenvalue: 1.4616 Component Number: 3
Eigenvalue: 1.5858 Component Number: 2
Eigenvalue: 2.2544 Component Number: 1
Eigenvalue: 9.6170 0 2 4 6 8 10 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"a":0.0,"r":0,"b":0,"g":0}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"tickDelta":2.0}]},"axis":[{"tickStyle":{"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"11pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"tickDelta":1.0}]},"axis":[{"tickStyle":{"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"11pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.01692178886058404,"max":9.616961740418725,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,9.616961740418725],[1,2.254428077668323],[2,1.585834777684287],[3,1.461566989197255],[4,1.071892567006869],[5,0.9564051609615938],[6,0.9133027295108551],[7,0.7967648388563208],[8,0.6773558244727134],[9,0.5475183435748052],[10,0.5450246342708661],[11,0.4959110859447667],[12,0.440714448435431],[13,0.411957656679109],[14,0.3731896281328456],[15,0.3272420744318215],[16,0.2954375879148733],[17,0.27879590793425],[18,0.2397634260638703],[19,0.2071484964195936],[20,0.1933356431629547],[21,0.1481676995954051],[22,0.1319436606559906],[23,0.1179507112736852],[24,0.1116938081240206],[25,0.08866416805834629],[26,0.08505455748803846],[27,0.07702113765991501],[28,0.06713267650232396],[29,0.06614886290808947],[30,0.05649047652247752],[31,0.049931991700269],[32,0.04363638033290319],[33,0.0377219187142402],[34,0.02673096737938332],[35,0.01692178886058404]]}],"size":{"width":625.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Component Matrix - January 28, 2020
Component Matrixa
 
a. 8 components extracted.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Rotated Component Matrix - January 28, 2020
Rotated Component Matrixa
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
K1a Lending money to family members .321 -.044 .040 .037 -.076 -.018 -.091 -.025 .645 -.089 .080 .075 -.153 -.036 -.182 -.051
K1b Lending money to relatives .332 -.027 .042 .041 -.079 -.015 -.036 -.025 .662 -.053 .084 .082 -.158 -.030 -.073 -.050
K1c Lending money to people in your own village .330 -.013 .036 .037 .000 .037 -.055 -.006 .676 -.027 .075 .076 .000 .077 -.113 -.012
K1d Lending money to people outside the village .163 .012 -.026 .023 .008 .041 .002 .013 .452 .032 -.072 .062 .023 .115 .005 .037
K1e Lending money to people from the same mosque/ church .158 -.037 .002 .046 -.002 .029 -.039 -.036 .432 -.102 .005 .127 -.006 .080 -.108 -.098
K2a Lending tools like axes, hoes etc. to family members .212 -.050 -.041 -.007 -.041 .005 -.067 -.034 .469 -.110 -.091 -.014 -.092 .011 -.147 -.076
K2b Lending tools like axes, hoes etc. to relatives outside the household .196 .009 -.056 -.073 .001 .027 -.005 -.036 .458 .022 -.132 -.172 .001 .062 -.012 -.084
K2c Lending tools like axes, hoes etc. to people in your own village .189 -.024 -.053 -.036 .013 .082 .014 -.055 .396 -.051 -.111 -.075 .028 .172 .030 -.114
K2d Lending tools like axes, hoes etc. to people outside the village .072 -.013 -.003 -.025 .026 .129 .006 -.028 .169 -.032 -.008 -.059 .062 .304 .014 -.066
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .076 -.027 -.002 .000 .010 .156 -.035 -.108 .169 -.059 -.004 .001 .022 .347 -.078 -.241
L2 Participated in cooperative agricultural work .287 .009 -.005 -.008 .023 .074 .044 .048 .584 .018 -.010 -.017 .046 .150 .089 .098
L3.a. Participated last 12 months in cooperative work of preparing a garden .137 .027 .019 .016 .027 .044 .051 .029 .334 .065 .046 .038 .065 .107 .125 .070
L3.b. Participated last12 months in cooperative work of planting .066 .021 -.028 .011 .001 .038 .030 -.011 .269 .085 -.113 .047 .002 .153 .121 -.046
L3.c. Participated last 12 months in cooperative work of irrigating .010 .003 .000 .002 .002 .033 .004 .011 .072 .018 .002 .014 .014 .226 .031 .077
L3.d. Participated last 12 months in cooperative work of weeding .176 -.012 -.003 .001 .022 .094 .015 .052 .467 -.032 -.008 .003 .058 .249 .040 .139
L3.e. Participated last 12 months in cooperative work of harvesting .189 .020 -.027 -.023 .014 .057 .034 .042 .475 .049 -.069 -.058 .035 .142 .086 .106
L3.f. Participated last 12 months in cooperative work of other agriculture work .183 .078 -.025 .004 .025 -.045 .003 -.023 .524 .224 -.071 .013 .070 -.129 .010 -.065
L6 Participation in other exchange work than agriculture .283 .001 -.038 .006 -.060 -.001 -.050 .016 .565 .002 -.077 .011 -.120 -.002 -.099 .032
L7 Participated in unpaid public work during the last 12 months -.196 -.089 .004 -.029 .022 .079 -.038 .019 -.491 -.223 .009 -.072 .055 .197 -.095 .048
M1 Most people can be trusted (1) or you cannot be too careful (0) .114 .199 -.015 .078 .064 -.022 -.006 .074 .229 .398 -.029 .155 .129 -.045 -.011 .149
M2.d. Trust in Traditional Authorities -.168 .198 1.004 .127 .172 .072 .027 .050 -.144 .170 .860 .109 .148 .061 .023 .043
M2.e. Trust in group village headmen -.100 .277 1.056 .142 .155 .003 .041 .132 -.084 .232 .882 .118 .129 .003 .034 .110
M2.f. Trust in village headmen -.043 .250 .929 .267 .363 -.116 .125 .112 -.036 .207 .770 .221 .300 -.096 .103 .093
M2.j. Trust in police .073 .356 .454 .054 .315 .057 .250 1.044 .057 .278 .354 .042 .245 .045 .195 .815
M2.k. Trust in traders -.319 .294 .227 .237 .252 .082 1.117 .269 -.241 .222 .171 .179 .190 .061 .842 .203
M2.l. Trust in teachers -.156 .185 .377 .192 .785 .249 .111 .111 -.142 .169 .343 .175 .716 .227 .101 .101
M2.m.Trust in school administrators -.023 .240 .400 .160 .863 .260 .321 .036 -.020 .204 .340 .136 .735 .221 .273 .031
M2.n. Trust in religious leaders -.164 .265 .224 .470 .665 -.227 -.171 .216 -.148 .239 .202 .423 .599 -.205 -.154 .195
M3.a. Trust in family members .201 .222 .199 .548 .192 .036 .054 -.040 .215 .237 .213 .584 .205 .039 .058 -.043
M3.b. Trust in relatives .361 .342 .142 .812 .210 -.234 .275 -.052 .312 .295 .123 .702 .181 -.202 .238 -.045
M3.c. Trust in people in own village -.025 .634 .243 .489 .216 -.251 .137 .147 -.023 .576 .221 .444 .196 -.227 .124 .134
M3.d. Trust in people outside the village .129 .920 .164 -.140 .295 -.182 .186 -.097 .115 .820 .147 -.125 .263 -.162 .166 -.086
M3.e. Trust in people of same ethnic group -.058 .853 .285 .295 -.024 .168 .000 .080 -.053 .778 .260 .270 -.022 .153 .000 .073
M3.f. Trust in people outside ethnic group -.105 .944 .185 .191 .070 -.046 .078 .094 -.094 .842 .165 .170 .062 -.041 .070 .084
M3.g. Trust in people from same church/ mosque -.165 .355 .260 .695 .077 .466 -.039 .136 -.155 .332 .243 .649 .072 .436 -.036 .127
M3.h. Trust in people not from same church/ mosque -.069 .895 .212 .211 .047 .595 .086 .113 -.057 .737 .175 .173 .038 .490 .071 .093
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 12 iterations.

Factor Analysis

Legacy tables cannot be edited: Factor Analysis - Component Transformation Matrix - January 28, 2020
Component Transformation Matrix
Component 1 2 3 4 5 6 7 8
1 -.070 .583 .537 .360 .376 .078 .217 .207
2 .257 .690 -.537 .191 -.315 .031 -.066 -.168
3 .429 -.113 .382 .351 -.058 -.166 -.644 -.298
4 .320 -.317 -.394 .520 .469 -.202 .333 -.008
5 .618 .078 .159 -.378 -.144 -.433 .209 .438
6 .308 -.195 -.008 .201 -.207 .749 -.047 .470
7 .189 .162 -.213 -.448 .687 .223 -.411 .038
8 .360 -.016 .228 -.237 .014 .356 .458 -.653
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.