IBM SPSS Web Report - Output10   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - February 13, 2020

FACTOR
  /VARIABLES M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /MISSING LISTWISE
  /ANALYSIS M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN ROTATION
  /CRITERIA MINEIGEN(1) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 13, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 10 rows
  Mean Std. Deviation Analysis N
M3.a. Trust in family members .81 .391 266
M3.b. Trust in relatives .61 .488 266
M3.c. Trust in people in own village .38 .485 266
M3.d. Trust in people outside the village .21 .408 266
M3.e. Trust in people of same ethnic group .30 .459 266
M3.f. Trust in people outside ethnic group .19 .391 266
M3.g. Trust in people from same church/ mosque .51 .501 266
M3.h. Trust in people not from same church/ mosque .27 .447 266
Factor Analysis
Factor Analysis - Communalities - February 13, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 12 rows
  Raw Rescaled
Initial Extraction Initial Extraction
M3.a. Trust in family members .153 .084 1.000 .550
M3.b. Trust in relatives .238 .205 1.000 .859
M3.c. Trust in people in own village .235 .146 1.000 .621
M3.d. Trust in people outside the village .167 .086 1.000 .513
M3.e. Trust in people of same ethnic group .211 .145 1.000 .688
M3.f. Trust in people outside ethnic group .153 .097 1.000 .632
M3.g. Trust in people from same church/ mosque .251 .138 1.000 .549
M3.h. Trust in people not from same church/ mosque .200 .128 1.000 .639
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 13, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 21 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 .792 49.220 49.220 .792 49.220 49.220 .657 40.856 40.856
2 .236 14.695 63.916 .236 14.695 63.916 .371 23.060 63.916
3 .163 10.112 74.028            
4 .109 6.799 80.827            
5 .094 5.868 86.695            
6 .086 5.339 92.033            
7 .072 4.499 96.532            
8 .056 3.468 100.000            
Rescaled 1 .792 49.220 49.220 3.871 48.388 48.388 3.291 41.132 41.132
2 .236 14.695 63.916 1.180 14.752 63.141 1.761 22.009 63.141
3 .163 10.112 74.028            
4 .109 6.799 80.827            
5 .094 5.868 86.695            
6 .086 5.339 92.033            
7 .072 4.499 96.532            
8 .056 3.468 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 13, 2020
Scree Plot Component Number: 8
Eigenvalue: 0.0558 Component Number: 7
Eigenvalue: 0.0724 Component Number: 6
Eigenvalue: 0.0859 Component Number: 5
Eigenvalue: 0.0944 Component Number: 4
Eigenvalue: 0.1094 Component Number: 3
Eigenvalue: 0.1627 Component Number: 2
Eigenvalue: 0.2364 Component Number: 1
Eigenvalue: 0.7918 Component Number: 7
Eigenvalue: 0.0724 Component Number: 6
Eigenvalue: 0.0859 Component Number: 5
Eigenvalue: 0.0944 Component Number: 4
Eigenvalue: 0.1094 Component Number: 3
Eigenvalue: 0.1627 Component Number: 2
Eigenvalue: 0.2364 Component Number: 1
Eigenvalue: 0.7918 0.0 0.2 0.4 0.6 0.8 1 2 3 4 5 6 7 8

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.05579664554010488,"max":0.7918467211427833,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,0.7918467211427833],[1,0.2364157758008598],[2,0.1626781487239811],[3,0.1093833477476467],[4,0.0944031468568272],[5,0.08588594049848966],[6,0.07237166112014749],[7,0.05579664554010488]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 13, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 5 columns and 14 rows
  Raw Rescaled
Component Component
1 2 1 2
M3.a. Trust in family members .182 .226 .465 .577
M3.b. Trust in relatives .286 .351 .586 .718
M3.c. Trust in people in own village .378 .057 .779 .116
M3.d. Trust in people outside the village .280 -.085 .685 -.209
M3.e. Trust in people of same ethnic group .355 -.138 .773 -.301
M3.f. Trust in people outside ethnic group .290 -.114 .740 -.291
M3.g. Trust in people from same church/ mosque .370 -.031 .738 -.061
M3.h. Trust in people not from same church/ mosque .330 -.138 .738 -.308
Extraction Method: Principal Component Analysis.
a. 2 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 13, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 5 columns and 14 rows
  Raw Rescaled
Component Component
1 2 1 2
M3.a. Trust in family members .047 .286 .121 .732
M3.b. Trust in relatives .076 .446 .156 .914
M3.c. Trust in people in own village .301 .235 .621 .485
M3.d. Trust in people outside the village .285 .063 .699 .155
M3.e. Trust in people of same ethnic group .377 .055 .821 .119
M3.f. Trust in people outside ethnic group .308 .044 .787 .111
M3.g. Trust in people from same church/ mosque .337 .155 .673 .310
M3.h. Trust in people not from same church/ mosque .355 .042 .794 .095
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 3 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 13, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 3 columns and 5 rows
Component 1 2
1 .870 .492
2 -.492 .870
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Factor Analysis
Factor Analysis - Component Plot of Factors 1, 2 - February 13, 2020
Component Plot of Factors 1, 2 Component 1: 0.7938
Component 2: 0.0951 Component 1: 0.6728
Component 2: 0.3099 Component 1: 0.7874
Component 2: 0.1113 Component 1: 0.8212
Component 2: 0.1188 Component 1: 0.6989
Component 2: 0.1549 Component 1: 0.6211
Component 2: 0.4850 Component 1: 0.1561
Component 2: 0.9136 Component 1: 0.1211
Component 2: 0.7316 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable2"}},{"field":{"$ref":"fVariable1"}}],"label":[{"backgroundStyle":{"outline":{"r":0,"b":157,"g":100},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":1.0,"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"content":[{"$ref":"fVariable"}]}],"type":"point"},{"data":{"$ref":"dSource"},"style":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable2"}},{"value":"0"}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"value":"0"},{"field":{"$ref":"fVariable1"}}],"type":"line"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"outRange":{"min":0.0,"max":1.0},"min":-1.0,"max":1.0}]},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component 2"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"},"spans":[{"outRange":{"min":0.0,"max":1.0},"min":-1.0,"max":1.0}]},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component 1"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Variable name","categories":[]},{"min":0.1210765596059913,"max":0.8211949533861521,"id":"fVariable1","label":"Component 1"},{"min":0.09506173105929452,"max":0.9136137190997754,"id":"fVariable2","label":"Component 2"}],"rows":[[0,0.1210765596059913,0.7315681183023277],[1,0.1561468055466,0.9136137190997754],[2,0.6211483772704414,0.4850245056638666],[3,0.6989315807262405,0.1549414479208713],[4,0.8211949533861521,0.1187975599199028],[5,0.7874075001136572,0.1113201471635575],[6,0.6728274817385079,0.3098981694498198],[7,0.7938018615123064,0.09506173105929452]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Component Plot in Rotated Space"]}],"version":"6.0"}