IBM SPSS Web Report - M2+M3 variables (binary) 244 cases varimax rotated 4 factor.spv   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - February 13, 2020

FACTOR
  /VARIABLES M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2kTradeBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /MISSING LISTWISE
  /ANALYSIS M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2kTradeBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN ROTATION
  /CRITERIA MINEIGEN(1) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 13, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 18 rows
  Mean Std. Deviation Analysis N
M2.d. Trust in Traditional Authorities .59 .492 244
M2.e. Trust in group village headmen .56 .498 244
M2.f. Trust in village headmen .58 .495 244
M2.j. Trust in police .54 .499 244
M2.k. Trust in traders .18 .385 244
M2.l. Trust in teachers .61 .489 244
M2.m.Trust in school administrators .58 .494 244
M2.n. Trust in religious leaders .67 .470 244
M3.a. Trust in family members .82 .389 244
M3.b. Trust in relatives .61 .489 244
M3.c. Trust in people in own village .40 .491 244
M3.d. Trust in people outside the village .22 .413 244
M3.e. Trust in people of same ethnic group .32 .466 244
M3.f. Trust in people outside ethnic group .20 .404 244
M3.g. Trust in people from same church/ mosque .52 .500 244
M3.h. Trust in people not from same church/ mosque .29 .455 244
Factor Analysis
Factor Analysis - Communalities - February 13, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 20 rows
  Raw Rescaled
Initial Extraction Initial Extraction
M2.d. Trust in Traditional Authorities .242 .175 1.000 .724
M2.e. Trust in group village headmen .248 .213 1.000 .858
M2.f. Trust in village headmen .245 .187 1.000 .765
M2.j. Trust in police .249 .140 1.000 .562
M2.k. Trust in traders .148 .048 1.000 .320
M2.l. Trust in teachers .239 .175 1.000 .735
M2.m.Trust in school administrators .244 .169 1.000 .692
M2.n. Trust in religious leaders .221 .108 1.000 .488
M3.a. Trust in family members .151 .081 1.000 .536
M3.b. Trust in relatives .239 .186 1.000 .778
M3.c. Trust in people in own village .241 .153 1.000 .636
M3.d. Trust in people outside the village .171 .089 1.000 .524
M3.e. Trust in people of same ethnic group .217 .155 1.000 .716
M3.f. Trust in people outside ethnic group .164 .112 1.000 .684
M3.g. Trust in people from same church/ mosque .250 .136 1.000 .542
M3.h. Trust in people not from same church/ mosque .207 .141 1.000 .682
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 13, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 37 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 1.395 40.128 40.128 1.395 40.128 40.128 .706 20.302 20.302
2 .369 10.618 50.746 .369 10.618 50.746 .607 17.472 37.774
3 .262 7.522 58.268 .262 7.522 58.268 .550 15.830 53.604
4 .243 7.000 65.269 .243 7.000 65.269 .406 11.664 65.269
5 .171 4.906 70.175            
6 .152 4.358 74.532            
7 .144 4.129 78.661            
8 .120 3.457 82.118            
9 .108 3.117 85.235            
10 .100 2.869 88.104            
11 .086 2.462 90.566            
12 .082 2.368 92.934            
13 .078 2.256 95.190            
14 .065 1.864 97.053            
15 .055 1.571 98.624            
16 .048 1.376 100.000            
Rescaled 1 1.395 40.128 40.128 6.263 39.142 39.142 3.453 21.584 21.584
2 .369 10.618 50.746 1.675 10.466 49.609 2.519 15.745 37.329
3 .262 7.522 58.268 1.208 7.547 57.156 2.373 14.834 52.163
4 .243 7.000 65.269 1.097 6.858 64.014 1.896 11.851 64.014
5 .171 4.906 70.175            
6 .152 4.358 74.532            
7 .144 4.129 78.661            
8 .120 3.457 82.118            
9 .108 3.117 85.235            
10 .100 2.869 88.104            
11 .086 2.462 90.566            
12 .082 2.368 92.934            
13 .078 2.256 95.190            
14 .065 1.864 97.053            
15 .055 1.571 98.624            
16 .048 1.376 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 13, 2020
Scree Plot Component Number: 16
Eigenvalue: 0.0478 Component Number: 15
Eigenvalue: 0.0546 Component Number: 14
Eigenvalue: 0.0648 Component Number: 13
Eigenvalue: 0.0784 Component Number: 12
Eigenvalue: 0.0823 Component Number: 11
Eigenvalue: 0.0856 Component Number: 10
Eigenvalue: 0.0998 Component Number: 9
Eigenvalue: 0.1084 Component Number: 8
Eigenvalue: 0.1202 Component Number: 7
Eigenvalue: 0.1435 Component Number: 6
Eigenvalue: 0.1515 Component Number: 5
Eigenvalue: 0.1706 Component Number: 4
Eigenvalue: 0.2434 Component Number: 3
Eigenvalue: 0.2615 Component Number: 2
Eigenvalue: 0.3692 Component Number: 1
Eigenvalue: 1.3951 Component Number: 15
Eigenvalue: 0.0546 Component Number: 14
Eigenvalue: 0.0648 Component Number: 13
Eigenvalue: 0.0784 Component Number: 12
Eigenvalue: 0.0823 Component Number: 11
Eigenvalue: 0.0856 Component Number: 10
Eigenvalue: 0.0998 Component Number: 9
Eigenvalue: 0.1084 Component Number: 8
Eigenvalue: 0.1202 Component Number: 7
Eigenvalue: 0.1435 Component Number: 6
Eigenvalue: 0.1515 Component Number: 5
Eigenvalue: 0.1706 Component Number: 4
Eigenvalue: 0.2434 Component Number: 3
Eigenvalue: 0.2615 Component Number: 2
Eigenvalue: 0.3692 Component Number: 1
Eigenvalue: 1.3951 0.00 0.25 0.50 0.75 1.00 1.25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.04783929332452851,"max":1.395115191334461,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,1.395115191334461],[1,0.3691656157882536],[2,0.2615306833169357],[3,0.2433854200967332],[4,0.1705599121469358],[5,0.1515029023475588],[6,0.143542926367462],[7,0.1201860098790715],[8,0.1083800045673563],[9,0.09975101161834903],[10,0.0855853645361483],[11,0.08231852919247774],[12,0.07843865356178335],[13,0.06478824693262922],[14,0.05460186286491178],[15,0.04783929332452851]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 13, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 9 columns and 22 rows
  Raw Rescaled
Component Component
1 2 3 4 1 2 3 4
M2.d. Trust in Traditional Authorities .323 -.217 -.125 .088 .657 -.442 -.255 .178
M2.e. Trust in group village headmen .351 -.235 -.144 .116 .705 -.473 -.289 .234
M2.f. Trust in village headmen .354 -.212 -.064 .113 .716 -.429 -.129 .228
M2.j. Trust in police .322 -.071 -.095 -.149 .645 -.142 -.190 -.299
M2.k. Trust in traders .196 .017 -.009 -.094 .508 .044 -.022 -.245
M2.l. Trust in teachers .300 -.132 .154 -.210 .614 -.270 .316 -.430
M2.m.Trust in school administrators .319 -.092 .168 -.175 .645 -.186 .339 -.355
M2.n. Trust in religious leaders .286 -.047 .150 -.037 .609 -.099 .318 -.080
M3.a. Trust in family members .170 .035 .162 .157 .437 .090 .417 .403
M3.b. Trust in relatives .267 .074 .233 .233 .547 .152 .476 .478
M3.c. Trust in people in own village .340 .156 .050 .103 .693 .319 .101 .210
M3.d. Trust in people outside the village .246 .160 -.057 -.003 .596 .387 -.139 -.006
M3.e. Trust in people of same ethnic group .313 .175 -.163 .012 .672 .375 -.351 .026
M3.f. Trust in people outside ethnic group .250 .185 -.122 .013 .619 .457 -.302 .031
M3.g. Trust in people from same church/ mosque .325 .160 .052 -.046 .649 .319 .103 -.092
M3.h. Trust in people not from same church/ mosque .289 .203 -.084 -.099 .635 .445 -.185 -.216
Extraction Method: Principal Component Analysis.
a. 4 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 13, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 9 columns and 22 rows
  Raw Rescaled
Component Component
1 2 3 4 1 2 3 4
M2.d. Trust in Traditional Authorities .083 .394 .103 .053 .168 .800 .210 .108
M2.e. Trust in group village headmen .091 .437 .094 .066 .183 .878 .188 .133
M2.f. Trust in village headmen .077 .387 .129 .122 .155 .783 .260 .246
M2.j. Trust in police .195 .204 .240 -.054 .391 .409 .480 -.108
M2.k. Trust in traders .140 .062 .155 .008 .364 .161 .402 .020
M2.l. Trust in teachers .044 .102 .400 .051 .091 .208 .820 .105
M2.m.Trust in school administrators .074 .092 .382 .096 .150 .185 .773 .195
M2.n. Trust in religious leaders .079 .100 .251 .169 .169 .212 .534 .359
M3.a. Trust in family members .042 .046 .044 .274 .107 .119 .114 .705
M3.b. Trust in relatives .089 .066 .064 .411 .183 .134 .130 .842
M3.c. Trust in people in own village .277 .086 .083 .249 .564 .176 .170 .507
M3.d. Trust in people outside the village .279 .047 .058 .078 .675 .114 .140 .189
M3.e. Trust in people of same ethnic group .370 .124 .029 .045 .795 .267 .062 .096
M3.f. Trust in people outside ethnic group .324 .067 .013 .051 .800 .165 .033 .126
M3.g. Trust in people from same church/ mosque .285 .025 .177 .150 .570 .050 .355 .299
M3.h. Trust in people not from same church/ mosque .355 .021 .121 .022 .779 .046 .266 .047
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 6 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 13, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 5 columns and 7 rows
Component 1 2 3 4
1 .589 .516 .506 .362
2 .689 -.652 -.263 .175
3 -.408 -.442 .460 .653
4 -.104 .337 -.681 .642
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Factor Analysis
Factor Analysis - Component Plot of Factors 1, 2, 3 - February 13, 2020
Component Plot of Factors 1, 2, 3 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Component 1: 0.0909
Component 2: 0.2084
Component 3: 0.8196 Component 1: 0.1502
Component 2: 0.1852
Component 3: 0.7728 Component 1: 0.3912
Component 2: 0.4090
Component 3: 0.4799 Component 1: 0.7791
Component 2: 0.0463
Component 3: 0.2661 Component 1: 0.5697
Component 2: 0.0504
Component 3: 0.3545 Component 1: 0.1687
Component 2: 0.2120
Component 3: 0.5343 Component 1: 0.3640
Component 2: 0.1607
Component 3: 0.4017 Component 1: 0.7952
Component 2: 0.2665
Component 3: 0.0620 Component 1: 0.6751
Component 2: 0.1145
Component 3: 0.1400 Component 1: 0.8000
Component 2: 0.1654
Component 3: 0.0327 Component 1: 0.5643
Component 2: 0.1759
Component 3: 0.1699 Component 1: 0.1548
Component 2: 0.7829
Component 3: 0.2603 Component 1: 0.1829
Component 2: 0.8784
Component 3: 0.1884 Component 1: 0.1680
Component 2: 0.7998
Component 3: 0.2099 Component 1: 0.1831
Component 2: 0.1341
Component 3: 0.1301 Component 1: 0.1071
Component 2: 0.1191
Component 3: 0.1143