IBM SPSS Web Report - 42 binary variables 224 cases varimax rotated 10 factors.spv   


Contents
Previous
Next
Help
Controls disabled by the system
 

 
Log
Log - Log - February 10, 2020

FACTOR
  /VARIABLES K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3d L3e L3f L6 L7 L8a L8b L8c L8d
    L8g L8h L8i L8k M1trust M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /MISSING LISTWISE
  /ANALYSIS K1a K1b K1c K1d K1e K2a K2b K2c K2d K2e L2 L3a L3b L3d L3e L3f L6 L7 L8a L8b L8c L8d
    L8g L8h L8i L8k M1trust M2dTradBIN M2eGVHBIN M2fVHBIN M2jPoliceBIN M2lTeachBIN M2mSchABIN
    M2nRelLeBIN M3aFamilBIN M3bRelatBIN M3cOwnVBIN M3dOutsVBIN M3eSaEthBIN M3fOutsEtBIN M3gSaChMBIN
    M3hNSaChMBIN
  /PRINT UNIVARIATE INITIAL EXTRACTION ROTATION
  /PLOT EIGEN ROTATION
  /CRITERIA FACTORS(10) ITERATE(25)
  /EXTRACTION PC
  /CRITERIA ITERATE(25)
  /ROTATION VARIMAX
  /METHOD=COVARIANCE.

Factor Analysis
Factor Analysis - Descriptive Statistics - February 10, 2020
Descriptive StatisticsDescriptive Statistics, table, 1 levels of column headers and 1 levels of row headers, table with 4 columns and 44 rows
  Mean Std. Deviation Analysis N
K1a Lending money to family members .44 .497 224
K1b Lending money to relatives .48 .501 224
K1c Lending money to people in your own village .38 .487 224
K1d Lending money to people outside the village .15 .355 224
K1e Lending money to people from the same mosque/ church .15 .360 224
K2a Lending tools like axes, hoes etc. to family members .71 .453 224
K2b Lending tools like axes, hoes etc. to relatives outside the household .77 .423 224
K2c Lending tools like axes, hoes etc. to people in your own village .65 .477 224
K2d Lending tools like axes, hoes etc. to people outside the village .24 .429 224
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .27 .446 224
L2 Participated in cooperative agricultural work .39 .489 224
L3.a. Participated last 12 months in cooperative work of preparing a garden .21 .405 224
L3.b. Participated last12 months in cooperative work of planting .07 .251 224
L3.d. Participated last 12 months in cooperative work of weeding .17 .372 224
L3.e. Participated last 12 months in cooperative work of harvesting .20 .398 224
L3.f. Participated last 12 months in cooperative work of other agriculture work .15 .355 224
L6 Participation in other exchange work than agriculture .52 .501 224
L7 Participated in public works without payment during the last year .79 .408 224
L8.a. Participated in school project over the last 12 months .49 .501 224
L8.b. Participated in road project over the last 12 months .53 .500 224
L8.c. Participated in bridge project over the last 12 months .27 .446 224
L8.d. Participated in church project over the last 12 months .27 .444 224
L8.g. Participated in health centre project over the last 12 months .14 .351 224
L8.h. Participated in irrigation project over the last 12 months .12 .326 224
L8.i. Participated in borehole project over the last 12 months .28 .451 224
L8.k. Participated in graveyard clearing project over the last 12 months .42 .494 224
M1 Most people can be trusted (1) or you cannot be too careful (0) .44 .498 224
M2.d. Trust in Traditional Authorities .59 .492 224
M2.e. Trust in group village headmen .55 .499 224
M2.f. Trust in village headmen .58 .495 224
M2.j. Trust in police .55 .498 224
M2.l. Trust in teachers .59 .493 224
M2.m.Trust in school administrators .58 .495 224
M2.n. Trust in religious leaders .66 .476 224
M3.a. Trust in family members .81 .391 224
M3.b. Trust in relatives .60 .490 224
M3.c. Trust in people in own village .40 .490 224
M3.d. Trust in people outside the village .22 .414 224
M3.e. Trust in people of same ethnic group .33 .471 224
M3.f. Trust in people outside ethnic group .21 .411 224
M3.g. Trust in people from same church/ mosque .50 .501 224
M3.h. Trust in people not from same church/ mosque .28 .451 224
Factor Analysis
Factor Analysis - Communalities - February 10, 2020
CommunalitiesCommunalities, table, 2 levels of column headers and 1 levels of row headers, table with 5 columns and 46 rows
  Raw Rescaled
Initial Extraction Initial Extraction
K1a Lending money to family members .247 .190 1.000 .770
K1b Lending money to relatives .251 .190 1.000 .756
K1c Lending money to people in your own village .238 .168 1.000 .709
K1d Lending money to people outside the village .126 .064 1.000 .509
K1e Lending money to people from the same mosque/ church .129 .066 1.000 .509
K2a Lending tools like axes, hoes etc. to family members .205 .142 1.000 .692
K2b Lending tools like axes, hoes etc. to relatives outside the household .179 .113 1.000 .632
K2c Lending tools like axes, hoes etc. to people in your own village .228 .138 1.000 .606
K2d Lending tools like axes, hoes etc. to people outside the village .184 .125 1.000 .680
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church .199 .146 1.000 .733
L2 Participated in cooperative agricultural work .240 .197 1.000 .824
L3.a. Participated last 12 months in cooperative work of preparing a garden .164 .088 1.000 .536
L3.b. Participated last12 months in cooperative work of planting .063 .018 1.000 .282
L3.d. Participated last 12 months in cooperative work of weeding .139 .075 1.000 .542
L3.e. Participated last 12 months in cooperative work of harvesting .159 .088 1.000 .555
L3.f. Participated last 12 months in cooperative work of other agriculture work .126 .069 1.000 .547
L6 Participation in other exchange work than agriculture .251 .152 1.000 .607
L7 Participated in public works without payment during the last year .167 .124 1.000 .742
L8.a. Participated in school project over the last 12 months .251 .169 1.000 .673
L8.b. Participated in road project over the last 12 months .250 .180 1.000 .721
L8.c. Participated in bridge project over the last 12 months .199 .088 1.000 .444
L8.d. Participated in church project over the last 12 months .197 .110 1.000 .559
L8.g. Participated in health centre project over the last 12 months .123 .044 1.000 .357
L8.h. Participated in irrigation project over the last 12 months .106 .031 1.000 .295
L8.i. Participated in borehole project over the last 12 months .203 .129 1.000 .637
L8.k. Participated in graveyard clearing project over the last 12 months .244 .185 1.000 .760
M1 Most people can be trusted (1) or you cannot be too careful (0) .248 .170 1.000 .688
M2.d. Trust in Traditional Authorities .242 .177 1.000 .730
M2.e. Trust in group village headmen .249 .205 1.000 .823
M2.f. Trust in village headmen .245 .181 1.000 .738
M2.j. Trust in police .248 .165 1.000 .663
M2.l. Trust in teachers .243 .159 1.000 .653
M2.m.Trust in school administrators .245 .185 1.000 .757
M2.n. Trust in religious leaders .227 .127 1.000 .561
M3.a. Trust in family members .153 .075 1.000 .487
M3.b. Trust in relatives .241 .159 1.000 .661
M3.c. Trust in people in own village .241 .157 1.000 .652
M3.d. Trust in people outside the village .172 .104 1.000 .605
M3.e. Trust in people of same ethnic group .222 .158 1.000 .712
M3.f. Trust in people outside ethnic group .169 .115 1.000 .677
M3.g. Trust in people from same church/ mosque .251 .174 1.000 .694
M3.h. Trust in people not from same church/ mosque .203 .144 1.000 .711
Extraction Method: Principal Component Analysis.
Factor Analysis
Factor Analysis - Total Variance Explained - February 10, 2020
Total Variance ExplainedTotal Variance Explained, table, 2 levels of column headers and 2 levels of row headers, table with 11 columns and 89 rows
  Component Initial Eigenvaluesa Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
  Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Raw 1 1.539 18.184 18.184 1.539 18.184 18.184 .913 10.787 10.787
2 1.047 12.372 30.557 1.047 12.372 30.557 .633 7.476 18.264
3 .689 8.136 38.693 .689 8.136 38.693 .637 7.527 25.791
4 .478 5.643 44.335 .478 5.643 44.335 .654 7.725 33.515
5 .408 4.826 49.161 .408 4.826 49.161 .636 7.515 41.030
6 .362 4.274 53.435 .362 4.274 53.435 .423 5.001 46.031
7 .294 3.478 56.913 .294 3.478 56.913 .507 5.993 52.024
8 .255 3.019 59.932 .255 3.019 59.932 .419 4.951 56.975
9 .244 2.882 62.814 .244 2.882 62.814 .356 4.211 61.186
10 .229 2.707 65.521 .229 2.707 65.521 .367 4.335 65.521
11 .206 2.439 67.960            
12 .198 2.339 70.299            
13 .171 2.018 72.316            
14 .163 1.929 74.245            
15 .152 1.796 76.041            
16 .135 1.594 77.636            
17 .132 1.558 79.194            
18 .127 1.506 80.700            
19 .125 1.478 82.178            
20 .110 1.299 83.478            
21 .105 1.243 84.721            
22 .103 1.219 85.940            
23 .101 1.190 87.130            
24 .095 1.124 88.254            
25 .089 1.052 89.305            
26 .087 1.033 90.338            
27 .079 .930 91.268            
28 .076 .897 92.165            
29 .067 .790 92.955            
30 .065 .771 93.726            
31 .060 .712 94.438            
32 .057 .678 95.116            
33 .056 .667 95.783            
34 .055 .647 96.430            
35 .050 .585 97.015            
36 .046 .543 97.559            
37 .044 .524 98.083            
38 .041 .485 98.568            
39 .034 .399 98.966            
40 .033 .387 99.353            
41 .030 .352 99.705            
42 .025 .295 100.000            
Rescaled 1 1.539 18.184 18.184 6.953 16.555 16.555 4.284 10.201 10.201
2 1.047 12.372 30.557 5.056 12.039 28.594 3.494 8.319 18.520
3 .689 8.136 38.693 3.454 8.225 36.819 3.184 7.580 26.101
4 .478 5.643 44.335 2.411 5.742 42.560 3.027 7.207 33.308
5 .408 4.826 49.161 1.948 4.638 47.198 2.672 6.361 39.670
6 .362 4.274 53.435 1.733 4.126 51.325 2.253 5.365 45.035
7 .294 3.478 56.913 1.352 3.219 54.544 2.214 5.272 50.306
8 .255 3.019 59.932 1.160 2.761 57.305 2.050 4.882 55.188
9 .244 2.882 62.814 1.202 2.861 60.166 1.749 4.165 59.353
10 .229 2.707 65.521 1.221 2.907 63.074 1.563 3.720 63.074
11 .206 2.439 67.960            
12 .198 2.339 70.299            
13 .171 2.018 72.316            
14 .163 1.929 74.245            
15 .152 1.796 76.041            
16 .135 1.594 77.636            
17 .132 1.558 79.194            
18 .127 1.506 80.700            
19 .125 1.478 82.178            
20 .110 1.299 83.478            
21 .105 1.243 84.721            
22 .103 1.219 85.940            
23 .101 1.190 87.130            
24 .095 1.124 88.254            
25 .089 1.052 89.305            
26 .087 1.033 90.338            
27 .079 .930 91.268            
28 .076 .897 92.165            
29 .067 .790 92.955            
30 .065 .771 93.726            
31 .060 .712 94.438            
32 .057 .678 95.116            
33 .056 .667 95.783            
34 .055 .647 96.430            
35 .050 .585 97.015            
36 .046 .543 97.559            
37 .044 .524 98.083            
38 .041 .485 98.568            
39 .034 .399 98.966            
40 .033 .387 99.353            
41 .030 .352 99.705            
42 .025 .295 100.000            
Extraction Method: Principal Component Analysis.
a. When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.
Factor Analysis
Factor Analysis - Scree Plot - February 10, 2020
Scree Plot Component Number: 42
Eigenvalue: 0.0250 Component Number: 41
Eigenvalue: 0.0298 Component Number: 40
Eigenvalue: 0.0327 Component Number: 39
Eigenvalue: 0.0337 Component Number: 38
Eigenvalue: 0.0410 Component Number: 37
Eigenvalue: 0.0444 Component Number: 36
Eigenvalue: 0.0460 Component Number: 35
Eigenvalue: 0.0495 Component Number: 34
Eigenvalue: 0.0548 Component Number: 33
Eigenvalue: 0.0565 Component Number: 32
Eigenvalue: 0.0574 Component Number: 31
Eigenvalue: 0.0602 Component Number: 30
Eigenvalue: 0.0653 Component Number: 29
Eigenvalue: 0.0668 Component Number: 28
Eigenvalue: 0.0759 Component Number: 27
Eigenvalue: 0.0787 Component Number: 26
Eigenvalue: 0.0874 Component Number: 25
Eigenvalue: 0.0890 Component Number: 24
Eigenvalue: 0.0951 Component Number: 23
Eigenvalue: 0.1007 Component Number: 22
Eigenvalue: 0.1032 Component Number: 21
Eigenvalue: 0.1052 Component Number: 20
Eigenvalue: 0.1100 Component Number: 19
Eigenvalue: 0.1251 Component Number: 18
Eigenvalue: 0.1275 Component Number: 17
Eigenvalue: 0.1319 Component Number: 16
Eigenvalue: 0.1349 Component Number: 15
Eigenvalue: 0.1520 Component Number: 14
Eigenvalue: 0.1633 Component Number: 13
Eigenvalue: 0.1708 Component Number: 12
Eigenvalue: 0.1979 Component Number: 11
Eigenvalue: 0.2064 Component Number: 10
Eigenvalue: 0.2291 Component Number: 9
Eigenvalue: 0.2439 Component Number: 8
Eigenvalue: 0.2555 Component Number: 7
Eigenvalue: 0.2943 Component Number: 6
Eigenvalue: 0.3617 Component Number: 5
Eigenvalue: 0.4084 Component Number: 4
Eigenvalue: 0.4776 Component Number: 3
Eigenvalue: 0.6886 Component Number: 2
Eigenvalue: 1.0471 Component Number: 1
Eigenvalue: 1.5390 Component Number: 41
Eigenvalue: 0.0298 Component Number: 40
Eigenvalue: 0.0327 Component Number: 39
Eigenvalue: 0.0337 Component Number: 38
Eigenvalue: 0.0410 Component Number: 37
Eigenvalue: 0.0444 Component Number: 36
Eigenvalue: 0.0460 Component Number: 35
Eigenvalue: 0.0495 Component Number: 34
Eigenvalue: 0.0548 Component Number: 33
Eigenvalue: 0.0565 Component Number: 32
Eigenvalue: 0.0574 Component Number: 31
Eigenvalue: 0.0602 Component Number: 30
Eigenvalue: 0.0653 Component Number: 29
Eigenvalue: 0.0668 Component Number: 28
Eigenvalue: 0.0759 Component Number: 27
Eigenvalue: 0.0787 Component Number: 26
Eigenvalue: 0.0874 Component Number: 25
Eigenvalue: 0.0890 Component Number: 24
Eigenvalue: 0.0951 Component Number: 23
Eigenvalue: 0.1007 Component Number: 22
Eigenvalue: 0.1032 Component Number: 21
Eigenvalue: 0.1052 Component Number: 20
Eigenvalue: 0.1100 Component Number: 19
Eigenvalue: 0.1251 Component Number: 18
Eigenvalue: 0.1275 Component Number: 17
Eigenvalue: 0.1319 Component Number: 16
Eigenvalue: 0.1349 Component Number: 15
Eigenvalue: 0.1520 Component Number: 14
Eigenvalue: 0.1633 Component Number: 13
Eigenvalue: 0.1708 Component Number: 12
Eigenvalue: 0.1979 Component Number: 11
Eigenvalue: 0.2064 Component Number: 10
Eigenvalue: 0.2291 Component Number: 9
Eigenvalue: 0.2439 Component Number: 8
Eigenvalue: 0.2555 Component Number: 7
Eigenvalue: 0.2943 Component Number: 6
Eigenvalue: 0.3617 Component Number: 5
Eigenvalue: 0.4084 Component Number: 4
Eigenvalue: 0.4776 Component Number: 3
Eigenvalue: 0.6886 Component Number: 2
Eigenvalue: 1.0471 Component Number: 1
Eigenvalue: 1.5390 0.0 0.5 1.0 1.5 2.0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

{"copyright":"(C) Copyright IBM Corp. 2011","grammar":[{"elements":[{"data":{"$ref":"dSource"},"style":{"outline":{"r":0,"b":0,"g":0},"fill":{"r":0,"b":157,"g":100},"stroke":{"width":3.3333333}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"line"},{"data":{"$ref":"dSource"},"style":{"symbol":"circle","outline":{"r":0,"b":157,"g":100},"size":6.6666665,"fill":{"r":119,"b":119,"g":118}},"position":[{"field":{"$ref":"fVariable1"}},{"field":{"$ref":"fVariable"}}],"type":"point"}],"coordinates":{"style":{"outline":{"r":0,"b":157,"g":100},"fill":{"r":255,"b":255,"g":255}},"dimensions":[{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"8pt","weight":"normal","family":"sans-serif"}},"gridStyle":{"fill":{"r":0,"b":157,"g":100}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Eigenvalue"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]},{"scale":{"padding":{"left":"5%","right":"5%"}},"axis":[{"tickStyle":{"padding":5.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"normal","family":"sans-serif"}},"lineStyle":{"fill":{"r":0,"b":157,"g":100},"stroke":{"width":0.6666667}},"titleStyle":{"padding":6.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"title":["Component Number"],"markStyle":{"fill":{"a":0,"r":0,"b":157,"g":100},"stroke":{"width":1.3333334}}}]}]}}],"data":[{"id":"dSource","fields":[{"id":"fVariable","label":"Component Number","categories":[]},{"min":0.02499012576840333,"max":1.539017957000841,"id":"fVariable1","label":"Eigenvalue"}],"rows":[[0,1.539017957000841],[1,1.047104324501706],[2,0.6885988615981087],[3,0.4775531222801953],[4,0.4084283623138255],[5,0.361729483472461],[6,0.2943327092597081],[7,0.2554761420774903],[8,0.2438999444937555],[9,0.229127622820076],[10,0.206436869192769],[11,0.1979168156612566],[12,0.1707531279391406],[13,0.1632559002978724],[14,0.1520375241774671],[15,0.1349229425805507],[16,0.1318910360174257],[17,0.1274597981908159],[18,0.1250932042771459],[19,0.1099814109994469],[20,0.1052170018633076],[21,0.103189758321534],[22,0.1006986214763294],[23,0.09510210538828014],[24,0.08899786320326394],[25,0.08742670243304994],[26,0.07873105776851139],[27,0.07591192277762841],[28,0.06682675439913222],[29,0.06527991268194606],[30,0.06022124494977967],[31,0.05737758060335785],[32,0.05646552211351276],[33,0.05477586683586803],[34,0.04952618183482261],[35,0.04598066125283487],[36,0.04437271858723837],[37,0.04101154171135198],[38,0.03373011485638329],[39,0.03274645725516138],[40,0.02976795500327079],[41,0.02499012576840333]]}],"size":{"width":850.0,"height":500.0},"style":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"r":255,"b":255,"g":255}},"titles":[{"backgroundStyle":{"outline":{"a":0.0,"r":0,"b":0,"g":0},"fill":{"a":0.0,"r":0,"b":0,"g":0}},"style":{"padding":3.0,"fill":{"r":0,"b":157,"g":100},"font":{"size":"12pt","weight":"bold","family":"sans-serif"}},"type":"title","content":["Scree Plot"]}],"version":"6.0"}

Factor Analysis
Factor Analysis - Component Matrix - February 10, 2020
Component MatrixaComponent Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 21 columns and 48 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
K1a Lending money to family members .067 .342 .032 -.118 -.066 .177 -.038 -.010 -.053 -.118 .134 .688 .064 -.237 -.133 .356 -.077 -.021 -.107 -.236
K1b Lending money to relatives .098 .358 .015 -.092 -.047 .185 -.054 -.004 -.060 -.025 .196 .714 .031 -.184 -.093 .369 -.108 -.009 -.119 -.050
K1c Lending money to people in your own village .135 .329 .059 -.061 .019 .141 .009 -.016 -.118 .016 .276 .675 .121 -.124 .038 .290 .019 -.032 -.242 .033
K1d Lending money to people outside the village .058 .157 .103 -.003 .000 .014 .016 -.014 -.123 .100 .163 .441 .290 -.007 -.001 .039 .046 -.040 -.347 .281
K1e Lending money to people from the same mosque/ church .042 .152 .092 -.068 .008 .038 -.008 .042 -.033 .153 .117 .422 .256 -.188 .022 .106 -.022 .118 -.091 .427
K2a Lending tools like axes, hoes etc. to family members -.015 .255 .084 -.049 -.115 -.110 .001 -.045 .011 -.199 -.032 .563 .186 -.109 -.254 -.243 .002 -.099 .024 -.439
K2b Lending tools like axes, hoes etc. to relatives outside the household -.010 .198 .104 -.043 -.115 -.155 -.026 -.054 .078 -.118 -.023 .468 .247 -.101 -.272 -.367 -.062 -.128 .185 -.280
K2c Lending tools like axes, hoes etc. to people in your own village -.045 .212 .200 -.092 -.048 -.163 -.099 -.041 .039 -.031 -.095 .444 .418 -.193 -.101 -.341 -.207 -.086 .081 -.064
K2d Lending tools like axes, hoes etc. to people outside the village .008 .082 .200 -.140 -.001 -.186 -.097 .035 -.014 .114 .018 .192 .467 -.327 -.002 -.435 -.225 .082 -.033 .266
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.034 .073 .239 -.132 -.019 -.158 -.150 .027 .048 .119 -.076 .163 .536 -.296 -.043 -.353 -.336 .060 .107 .267
L2 Participated in cooperative agricultural work .138 .258 .070 .202 .220 -.071 .068 .042 .075 .022 .281 .527 .143 .413 .450 -.144 .140 .085 .152 .045
L3.a. Participated last 12 months in cooperative work of preparing a garden .117 .152 .046 .111 .141 -.039 .066 .055 -.028 .085 .289 .374 .113 .274 .348 -.096 .163 .137 -.068 .210
L3.b. Participated last12 months in cooperative work of planting .025 .045 .063 .084 .044 .005 -.005 -.020 .001 .040 .101 .178 .252 .335 .176 .019 -.021 -.081 .006 .161
L3.d. Participated last 12 months in cooperative work of weeding .084 .147 .098 .051 .140 -.063 .082 .003 -.039 .048 .225 .395 .264 .137 .376 -.171 .221 .008 -.105 .128
L3.e. Participated last 12 months in cooperative work of harvesting .086 .154 .036 .185 .129 -.034 .039 -.033 .031 .001 .216 .386 .090 .465 .325 -.086 .097 -.082 .077 .002
L3.f. Participated last 12 months in cooperative work of other agriculture work .125 .156 -.038 .124 -.003 -.009 .013 -.009 .107 -.012 .353 .441 -.106 .350 -.008 -.027 .037 -.024 .302 -.033
L6 Participation in other exchange work than agriculture .055 .277 .094 .060 -.035 .062 .083 .140 .167 -.023 .110 .553 .187 .119 -.071 .124 .166 .280 .333 -.046
L7 Participated in public works without payment during the last year -.165 -.209 .179 -.113 .044 .051 .051 .021 -.028 .007 -.403 -.512 .437 -.276 .108 .124 .125 .051 -.069 .018
L8.a. Participated in school project over the last 12 months -.089 -.097 .272 -.045 .188 .151 -.003 .009 -.050 -.122 -.177 -.194 .544 -.089 .375 .301 -.006 .019 -.099 -.243
L8.b. Participated in road project over the last 12 months -.142 -.128 .331 -.009 -.136 .056 .109 .013 -.009 .009 -.284 -.256 .663 -.018 -.273 .111 .218 .025 -.019 .017
L8.c. Participated in bridge project over the last 12 months -.083 -.064 .212 .039 .081 -.023 .114 -.021 -.028 -.098 -.186 -.143 .476 .087 .181 -.052 .256 -.047 -.063 -.219
L8.d. Participated in church project over the last 12 months -.059 -.108 .233 .077 .105 .080 -.100 -.061 .055 .015 -.133 -.244 .526 .174 .237 .180 -.226 -.138 .124 .035
L8.g. Participated in health centre project over the last 12 months -.090 -.033 .147 .056 .010 .004 -.021 .079 .056 -.011 -.257 -.094 .418 .159 .028 .010 -.060 .224 .160 -.032
L8.h. Participated in irrigation project over the last 12 months -.032 -.005 .110 .043 .060 .099 -.005 -.016 -.045 -.029 -.099 -.014 .336 .131 .184 .302 -.014 -.049 -.139 -.088
L8.i. Participated in borehole project over the last 12 months -.064 -.155 .185 .101 .048 .120 -.093 -.067 .164 -.012 -.143 -.343 .410 .224 .107 .266 -.207 -.150 .363 -.027
L8.k. Participated in graveyard clearing project over the last 12 months -.159 -.114 .192 -.028 -.229 .084 .180 .100 .070 .054 -.321 -.230 .389 -.057 -.463 .170 .364 .202 .143 .109
M1 Most people can be trusted (1) or you cannot be too careful (0) .235 .048 .053 .163 -.200 -.010 .141 .133 -.038 .064 .473 .097 .107 .327 -.402 -.020 .284 .268 -.077 .128
M2.d. Trust in Traditional Authorities .297 -.096 .004 -.193 .114 .023 -.029 .120 .113 -.022 .604 -.195 .008 -.392 .231 .047 -.059 .245 .230 -.044
M2.e. Trust in group village headmen .338 -.088 -.034 -.200 .119 .031 -.035 .146 .064 -.003 .677 -.176 -.068 -.402 .238 .063 -.070 .292 .128 -.005
M2.f. Trust in village headmen .349 -.055 -.058 -.182 .047 .057 -.008 .082 .083 .010 .706 -.112 -.117 -.368 .095 .115 -.015 .166 .167 .019
M2.j. Trust in police .303 -.077 .047 -.025 .074 -.070 .123 .077 -.057 -.173 .608 -.154 .094 -.051 .148 -.140 .246 .154 -.115 -.347
M2.l. Trust in teachers .271 -.106 .059 -.147 .054 -.041 .142 -.156 -.014 -.005 .549 -.215 .120 -.297 .109 -.083 .288 -.316 -.028 -.010
M2.m.Trust in school administrators .300 -.076 .056 -.069 .046 -.104 .136 -.222 .028 .010 .606 -.154 .112 -.140 .094 -.211 .274 -.450 .056 .020
M2.n. Trust in religious leaders .277 -.052 .008 -.107 -.101 -.063 .141 -.020 -.011 .040 .581 -.108 .017 -.226 -.213 -.133 .297 -.042 -.024 .085
M3.a. Trust in family members .174 .007 .011 -.003 -.065 .105 .003 -.132 .080 .072 .444 .017 .027 -.007 -.166 .269 .008 -.336 .204 .184
M3.b. Trust in relatives .290 .051 .031 .031 -.070 .160 -.024 -.148 .109 .073 .592 .104 .063 .063 -.144 .326 -.048 -.302 .223 .150
M3.c. Trust in people in own village .344 -.071 .048 .075 -.109 .045 -.061 -.055 .069 -.010 .702 -.145 .098 .152 -.222 .092 -.125 -.112 .141 -.021
M3.d. Trust in people outside the village .255 -.073 -.002 .131 -.083 -.039 -.071 -.006 .026 -.046 .616 -.177 -.005 .316 -.201 -.094 -.171 -.015 .064 -.110
M3.e. Trust in people of same ethnic group .304 -.139 .071 .108 -.051 -.024 -.128 .075 -.048 -.050 .645 -.296 .150 .229 -.108 -.050 -.271 .158 -.102 -.106
M3.f. Trust in people outside ethnic group .241 -.120 .029 .128 -.097 -.017 -.086 .059 -.023 -.060 .586 -.292 .070 .312 -.236 -.042 -.209 .144 -.056 -.145
M3.g. Trust in people from same church/ mosque .322 -.089 .121 .057 -.016 .030 -.080 -.023 -.186 .048 .642 -.177 .242 .113 -.031 .059 -.160 -.047 -.371 .095
M3.h. Trust in people not from same church/ mosque .255 -.146 .132 .111 -.049 -.044 -.093 .022 -.118 -.030 .565 -.324 .293 .246 -.110 -.097 -.206 .050 -.263 -.066
Extraction Method: Principal Component Analysis.
a. 10 components extracted.
Factor Analysis
Factor Analysis - Rotated Component Matrix - February 10, 2020
Rotated Component MatrixaRotated Component Matrix, table, 3 levels of column headers and 1 levels of row headers, table with 21 columns and 48 rows
  Raw Rescaled
Component Component
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
K1a Lending money to family members -.043 .018 -.017 .384 .042 -.025 -.042 .183 .048 -.024 -.086 .037 -.035 .772 .085 -.049 -.084 .367 .097 -.049
K1b Lending money to relatives -.033 .065 -.052 .397 .039 .009 -.052 .109 .081 -.029 -.065 .130 -.104 .794 .077 .017 -.103 .218 .162 -.059
K1c Lending money to people in your own village -.008 .138 -.024 .377 .024 .027 .032 .051 .033 -.021 -.016 .283 -.049 .774 .049 .056 .065 .105 .068 -.042
K1d Lending money to people outside the village .025 .103 -.001 .184 -.059 .108 .051 -.027 -.013 .028 .070 .289 -.002 .517 -.167 .303 .144 -.076 -.036 .078
K1e Lending money to people from the same mosque/ church -.034 .080 -.015 .166 .026 .153 -.004 -.051 .032 .054 -.095 .222 -.041 .462 .072 .424 -.012 -.141 .088 .151
K2a Lending tools like axes, hoes etc. to family members -.020 .028 -.035 .125 -.055 .046 .014 .341 -.046 .004 -.044 .062 -.076 .277 -.121 .101 .031 .753 -.101 .010
K2b Lending tools like axes, hoes etc. to relatives outside the household -.014 .032 -.040 .038 -.045 .118 .012 .304 .011 .016 -.033 .075 -.095 .090 -.107 .278 .029 .719 .026 .039
K2c Lending tools like axes, hoes etc. to people in your own village -.038 .043 .031 .074 -.044 .258 -.006 .244 -.009 -.016 -.079 .091 .065 .154 -.093 .540 -.013 .511 -.019 -.033
K2d Lending tools like axes, hoes etc. to people outside the village .005 .022 .015 .025 .028 .340 .032 .061 -.051 .011 .011 .051 .036 .058 .065 .793 .074 .143 -.119 .026
K2e Lending tools like axes, hoes etc. to people from the same mosque/ church -.008 -.002 .062 .004 .019 .366 -.027 .080 .007 .016 -.018 -.005 .139 .008 .043 .821 -.060 .178 .016 .037
L2 Participated in cooperative agricultural work .007 .434 .003 .043 .040 .008 -.014 .065 .006 -.035 .014 .886 .006 .088 .082 .017 -.028 .132 .012 -.071
L3.a. Participated last 12 months in cooperative work of preparing a garden .027 .277 -.022 .068 .026 .035 .023 -.043 -.031 .003 .067 .685 -.053 .167 .065 .086 .057 -.106 -.076 .009
L3.b. Participated last12 months in cooperative work of planting .028 .107 .043 .014 -.038 .025 -.005 -.014 .033 -.004 .110 .427 .172 .057 -.152 .101 -.021 -.058 .131 -.014
L3.d. Participated last 12 months in cooperative work of weeding -.007 .237 .027 .070 .011 .065 .082 .008 -.048 -.003 -.019 .636 .071 .189 .029 .175 .219 .021 -.130 -.009
L3.e. Participated last 12 months in cooperative work of harvesting .030 .282 .012 .019 -.036 -.032 .005 .042 .031 -.047 .074 .708 .030 .047 -.091 -.081 .012 .104 .077 -.118
L3.f. Participated last 12 months in cooperative work of other agriculture work .045 .184 -.091 .029 .019 -.050 -.032 .093 .108 -.001 .127 .517 -.256 .083 .054 -.141 -.089 .262 .303 -.003
L6 Participation in other exchange work than agriculture -.047 .215 -.019 .136 .088 -.002 -.121 .166 .072 .172 -.095 .429 -.038 .271 .176 -.003 -.242 .332 .144 .344
L7 Participated in public works without payment during the last year -.081 -.152 .243 -.079 .008 .062 .042 -.087 -.081 .093 -.199 -.373 .596 -.195 .019 .152 .103 -.212 -.198 .228
L8.a. Participated in school project over the last 12 months -.029 -.015 .395 .043 .055 .000 .011 -.017 -.079 -.012 -.059 -.030 .789 .086 .111 -.001 .023 -.034 -.158 -.025
L8.b. Participated in road project over the last 12 months .010 -.105 .267 -.024 -.106 .094 .039 .024 -.014 .274 .019 -.209 .535 -.049 -.212 .188 .077 .047 -.027 .547
L8.c. Participated in bridge project over the last 12 months -.019 .049 .234 -.057 -.049 -.003 .082 .056 -.100 .073 -.043 .111 .525 -.128 -.109 -.006 .184 .126 -.224 .163
L8.d. Participated in church project over the last 12 months .035 .027 .292 -.066 -.035 .077 -.043 -.041 .085 -.027 .080 .060 .657 -.150 -.078 .173 -.098 -.093 .193 -.061
L8.g. Participated in health centre project over the last 12 months .001 .024 .139 -.059 -.013 .055 -.097 .025 -.022 .081 .002 .070 .397 -.168 -.037 .158 -.277 .072 -.063 .232
L8.h. Participated in irrigation project over the last 12 months .009 .027 .158 .057 -.033 -.023 -.014 -.025 -.005 -.002 .027 .083 .484 .174 -.100 -.069 -.042 -.076 -.014 -.005
L8.i. Participated in borehole project over the last 12 months .029 -.014 .273 -.131 -.013 .005 -.082 -.014 .170 .009 .063 -.032 .607 -.291 -.029 .012 -.183 -.031 .378 .020
L8.k. Participated in graveyard clearing project over the last 12 months -.055 -.139 .117 -.041 -.060 .026 -.022 .002 .016 .378 -.111 -.281 .237 -.082 -.122 .053 -.045 .004 .032 .765
M1 Most people can be trusted (1) or you cannot be too careful (0) .246 .133 -.131 .068 -.005 -.035 .034 -.002 .021 .260 .494 .267 -.262 .137 -.010 -.070 .069 -.004 .042 .523
M2.d. Trust in Traditional Authorities .103 -.006 -.003 -.005 .392 .034 .084 -.032 .044 -.031 .210 -.013 -.006 -.010 .797 .069 .171 -.065 .089 -.062
M2.e. Trust in group village headmen .131 -.004 -.045 .033 .410 .027 .089 -.072 .020 -.046 .263 -.007 -.090 .066 .822 .053 .178 -.145 .040 -.091
M2.f. Trust in village headmen .127 -.013 -.087 .058 .360 -.003 .114 -.048 .092 -.019 .257 -.026 -.175 .118 .727 -.007 .230 -.097 .186 -.039
M2.j. Trust in police .211 .081 .018 -.004 .217 -.093 .198 .064 -.119 .017 .423 .163 .036 -.009 .436 -.186 .396 .129 -.239 .034
M2.l. Trust in teachers .083 -.001 .019 -.002 .147 .006 .354 -.012 .064 -.012 .169 -.003 .038 -.005 .299 .012 .718 -.024 .131 -.024
M2.m.Trust in school administrators .109 .070 -.016 -.051 .092 .018 .374 .028 .121 -.037 .221 .141 -.033 -.104 .187 .036 .756 .057 .244 -.075
M2.n. Trust in religious leaders .137 -.013 -.123 .025 .132 .022 .245 .001 .044 .113 .287 -.027 -.258 .051 .278 .045 .515 .003 .093 .237
M3.a. Trust in family members .070 .009 -.022 .061 .034 -.017 .095 -.020 .233 .014 .179 .022 -.055 .156 .087 -.043 .243 -.052 .595 .037
M3.b. Trust in relatives .145 .064 -.021 .119 .075 -.031 .099 -.007 .320 .006 .295 .131 -.043 .244 .153 -.064 .202 -.014 .653 .011
M3.c. Trust in people in own village .302 .026 -.028 .009 .106 -.026 .087 .024 .209 .017 .617 .054 -.056 .019 .215 -.054 .178 .049 .425 .035
M3.d. Trust in people outside the village .284 .043 -.058 -.054 .047 -.041 .029 .035 .094 -.014 .686 .105 -.140 -.131 .114 -.099 .069 .085 .226 -.033
M3.e. Trust in people of same ethnic group .379 .018 .014 -.031 .108 .006 .014 -.021 .025 -.019 .804 .038 .029 -.065 .229 .012 .030 -.044 .054 -.040
M3.f. Trust in people outside ethnic group .325 .003 -.019 -.045 .057 -.039 -.004 .005 .036 .016 .791 .007 -.047 -.109 .138 -.095 -.011 .013 .089 .040
M3.g. Trust in people from same church/ mosque .348 .035 .045 .107 .040 .055 .137 -.114 .027 -.036 .695 .069 .090 .214 .079 .109 .274 -.227 .054 -.073
M3.h. Trust in people not from same church/ mosque .362 .014 .062 -.019 .024 .039 .071 -.035 -.011 -.006 .804 .032 .138 -.041 .054 .087 .159 -.078 -.024 -.014
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 9 iterations.
Factor Analysis
Factor Analysis - Component Transformation Matrix - February 10, 2020
Component Transformation MatrixComponent Transformation Matrix, table, 1 levels of column headers and 1 levels of row headers, table with 11 columns and 13 rows
Component 1 2 3 4 5 6 7 8 9 10
1 .642 .253 -.218 .182 .482 -.039 .380 -.014 .249 -.055
2 -.278 .475 -.272 .624 -.110 .141 -.166 .412 .039 -.056
3 .193 .140 .725 .104 -.057 .486 .116 .201 .015 .336
4 .389 .543 .060 -.259 -.503 -.341 -.310 -.076 .091 .056
5 -.302 .498 .363 -.111 .325 -.037 .083 -.286 -.221 -.521
6 -.081 -.173 .369 .523 .116 -.465 -.231 -.327 .390 .111
7 -.322 .247 -.052 -.041 -.005 -.382 .542 -.029 -.181 .598
8 .131 .091 -.106 .019 .466 .048 -.560 -.129 -.495 .411
9 -.285 .137 .001 -.461 .380 .004 -.226 .322 .600 .166
10 -.147 .172 -.258 .009 -.136 .510 .012 -.689 .300 .199
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Factor Analysis
Factor Analysis - Component Plot of Factors 1, 2, 3 - February 10, 2020
Component Plot of Factors 1, 2, 3 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Component 1: -0.0585
Component 2: -0.0299
Component 3: 0.7887 Component 1: 0.0798
Component 2: 0.0600
Component 3: 0.6574 Component 1: 0.8041
Component 2: 0.0315
Component 3: 0.1383 Component 1: 0.0634
Component 2: -0.0318
Component 3: 0.6067 Component 1: 0.8038
Component 2: 0.0381
Component 3: 0.0289 Component 1: 0.6946
Component 2: 0.0691
Component 3: 0.0896 Component 1: 0.0269
Component 2: 0.0832
Component 3: 0.4838 Component 1: -0.0430
Component 2: 0.1109
Component 3: 0.5246 Component 1: 0.7907
Component 2: 0.0069
Component 3: -0.0471 Component 1: 0.0192
Component 2: -0.2095
Component 3: 0.5348 Component 1: 0.0021
Component 2: 0.0698
Component 3: 0.3967 Component 1: 0.6166
Component 2: 0.0536
Component 3: -0.0563 Component 1: -0.1988
Component 2: -0.3725
Component 3: 0.5964 Component 1: 0.4229
Component 2: 0.1632
Component 3: 0.0365 Component 1: 0.6861
Component 2: 0.1047
Component 3: -0.1396 Component 1: 0.1104
Component 2: 0.4270
Component 3: 0.1719 Component 1: 0.0745
Component 2: 0.7075
Component 3: 0.0303 Component 1: 0.0145
Component 2: 0.8864
Component 3: 0.0062 Component 1: -0.0191
Component 2: 0.6356
Component 3: 0.0713 Component 1: 0.2949
Component 2: 0.1312
Component 3: -0.0434 Component 1: 0.1693
Component 2: -0.0026
Component 3: 0.0379 Component 1: 0.2213
Component 2: 0.1407
Component 3: -0.0327 Component 1: 0.4940
Component 2: 0.2671
Component 3: -0.2623 Component 1: 0.0669
Component 2: 0.6851
Component 3: -0.0533 Component 1: 0.2102
Component 2: -0.0131
Component 3: -0.0063 Component 1: -0.0177
Component 2: -0.0051
Component 3: 0.1395 Component 1: 0.0698
Component 2: 0.2888
Component 3: -0.0023 Component 1: -0.1106
Component 2: -0.2809
Component 3: 0.2372 Component 1: 0.2626
Component 2: -0.0072
Component 3: -0.0897 Component 1: 0.1792
Component 2: 0.0222
Component 3: -0.0554 Component 1: 0.0113
Component 2: 0.0513
Component 3: 0.0359 Component 1: -0.0786
Component 2: 0.0907
Component 3: 0.0655 Component 1: -0.0165
Component 2: 0.2828
Component 3: -0.0493 Component 1: 0.2567
Component 2: -0.0261
Component 3: -0.1750 Component 1: -0.0947
Component 2: 0.4291
Component 3: -0.0381 Component 1: 0.1275
Component 2: 0.5170
Component 3: -0.2558 Component 1: -0.0950
Component 2: 0.2223
Component 3: -0.0407 Component 1: 0.2869
Component 2: -0.0271
Component 3: -0.2575 Component 1: -0.0864
Component 2: 0.0369
Component 3: -0.0346 Component 1: -0.0435
Component 2: 0.0617
Component 3: -0.0763 Component 1: -0.0330
Component 2: 0.0750
Component 3: -0.0948 Component 1: -0.0655
Component 2: 0.1303
Component 3: -0.1043