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Summary

Micro-spectroscopy yields chemical information about the microscopic structures in bio-
logical tissues in its native form. The great challenge of it is to understand the dynamics
of scattered and absorbed light, which makes the extinguished light. The extinguished
light is the light apparently absorbed from raw data. Hence the understanding of scatter-
ing and absorbance can make out what part of this raw spectrum was pure absorbance.
Tools such as Extended Multiplicative Signal Correction (EMSC) and Mie Extinction
EMSC (ME-EMSC) does the job of recovering pure absorbance spectra from raw spec-
tra. This thesis uses Mie Theory to examine the scattering and absorbance from three
microscopic particles: A sphere and two cylinders with different refractive indexes and
radii. The dominant scattering effects from µm-sized particles are ripples and wiggles.
Ripples are sharp peaks (thin needles) in the extinction efficiency factor, while wiggles
are the greater variance in the extinction efficiency factor (wide oscillations). Absorp-
tion bands are modeled by the Lorentz model, and moved into places where ripples are
found originally on the particles. This thesis predicts by Mie Theory that the absorbance
bands creates inverted peaks in the extinction efficiency factor when placed in place with
ripples on the top of a wiggle, and a peak when the ripple is placed on the bottom of
a wiggle. The inverted peaks are found in apparent absorbance spectra from µ Fourier
Transform Infrared (FTIR) imaging, which earlier have been discarded as artefacts, but
are in fact signatures of absorption bands. When the absorption band is moved into a
ripple which is placed mid-way on the wiggle, the ripple disappear, leaving almost no
trace of neither absorbance band or ripple. The role of the numerical aperture (NA) is
studied as well, and it is found that ripples are not affected by the NA.
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Samandrag

Mikro-spektroskopi gjev kjemisk informasjon om dei mikroskopiske strukturane i biolo-
giske vev, i deira originale form. Den store utfordringa er å forstå dynamikken mellom
spreidt og absorbert lys, som til saman utgjer lyset som er kverva. Det kverva lyset
er det lyset som ser ut til å ha blitt absorbert basert på det målte absorpsjonsspek-
trumet. Dermed kan kjennskapen om spreiing og absorpsjon avgjere kva del av det
målte spektrumet var rein absorpsjon. Verktøy som "Extended Multiplicative Signal
Correction" (EMSC) og "Mie Extinction EMSC" (ME-EMSC) hentar ut reine absorp-
sjonsspektrum utifrå målte absorpsjonsspektrum. Denne masteroppgåva nyttar Mie
teori til å utforske spreiinga og absorpsjonen frå tre mikroskopiske partiklar: Ei kule og
to sylindrar med ulike brytningsindeks og radiusar. Mesteparten av spreiing ifrå partik-
lar i µm-ordenen kjem ifrå fenomena "ripples" og "wiggles". "Ripples" er tynne nålar som
stikk opp av effektivitetsfaktoren for kverving, medan "wiggles" er ein større variasjon i
effektivitetsfaktoren for kverving (vide svingningar). Absorpsjonband er modellert ved
hjelp av Lorentzmodellen, og flytta inn der "ripples" originalt vart funnen. Denne mas-
teroppgåva føreser ved hjelp av Mie teori at absorpsjonsband skapar omvendte toppar
i effektivitetsfaktoren for kverving når dei er plassert på toppen av ein "wiggle", og ein
vanleg topp når dei er på botnen av ein "wiggle". Omvendte toppar er funnen i målte
absorpsjonsspektrum ifrå µ Fourier Transform Infraraud (FTIR) bilete, som tidlegare
har blitt forkasta som artefaktar, men som visar seg å vere signaturar for absorpsjons-
band. Når eit absorpsjonsband blir flytta inni ein "ripple" som er plassert på midten
av ein "wiggle", forsvinnar "ripple"-en og etterlatar seg knapt noko spor etter seg, ei
heller absorpsjonsbandet. Rolla til numerisk apertur (NA) er også blitt studert, og det
er funnen at NA ikkje påverkar "ripple"-ar.
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1. Introduction

Infrared (IR) spectroscopy has proven to be a great tool for determining chemical prop-
erties in biological samples in medical and life science studies. The great advantage of
spectroscopy versus a strictly chemical analysis, is that the biological sample can be
analysed in its native form. When analysing cells with IR spectroscopy, scattering phe-
nomena occur. Since cells are of the same size-order as the wavelengths of the infrared
light, the scattering effects are especially strong. When the cell has a quasi-spherical
shape, this scattering phenomenon is called Mie scattering (Mohlenhoff et al., 2005).
The dynamics of this light scattering was explained in detail by Gustav Mie already in
1908 (van de Hulst, 1981). In IR spectroscopy of cells, the challenge is to understand
which contribution of the measured extinction efficiency or absorbance derives from
scattering and which one from pure chemical absorption by the sample.

The understanding of the interplay between scattering and absorption that causes ex-
tinction is important in order to understand measured absorbance spectra. Since mea-
sured absorbance spectra always contain contributions from scattering, the raw spectra
are therefore often called apparent absorbance spectra. While scatter-free spectra, i.e.
spectra where the scatter contributions have been separated and removed are called pure
absorbance spectra. Extended Multiplicative Signal Correction (EMSC) is a methof fre-
quently used in infrared spectroscopy of cells and tissues to model absorbance spectra
and to separate the pure absorbance and the scattering part from apparent absorbance
spectra. EMSC was introduced to mid-infrared spectroscopy already in 2005 and suc-
cessfully used to determine the chemical differences of raw and cooked beef loins from im-
ages from Fourier Transform Infrared Microscopy (FTIR) (Kohler et al., 2005). EMSC
has been used as a platform for modelling Mie-type scattering in the following years
(Kohler et al., 2008), (Bassan et al., 2009), (Bassan et al., 2010), (van Dijk et al., 2013),
(Lukacs et al., 2015), (Konevskikh et al., 2016), (Solheim et al., 2019). When modelling
Mie scattering, the challenge is that parameters relating to morphology of the sample
such as shape and effective thickness of the sample need to be estimated in the modelling
process. Another iterative approach for recovery of the imaginary part of the complex
refractive index was introduced in 2013 to recover the pure absorbance spectra from
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2 CHAPTER 1. INTRODUCTION

PMMA (Polymethyl methacrylate) spheres (van Dijk et al., 2013). This method was
subsequently tested for recovery of pure absorbance spectra of pollen grains (Lukacs
et al., 2015). The disadvantage of the method is that it requires an a priori knowledge
of model parameters. Finally, an EMSC algorithm was developed to correct Mie scatter-
ing in single cell infrared spectroscopy in 2016 by using the van de Hulst approximation
formulae for calculating the extinction efficiency, Qext with a complex refractive index,
m (Konevskikh et al., 2016).

The Mie theory describes the scattering and absorption of electromagnetic radiation and
spherically shaped particles exactly and is the theory that is mostly used in IR spec-
troscopy of cells and tissues to describe and model scattering phenomena (van de Hulst,
1981), (Kohler et al., 2008), (Bassan et al., 2010), (van Dijk et al., 2013), (Konevskikh
et al., 2016), (Blümel et al., 2018), (Solheim et al., 2019). The Mie scattering signatures
shows so-called wiggles and ripples. A ripple refers to a sharp peak in the efficiency
factor for scattering and for absorption, Qsca and Qabs, and hence also extinction, Qext

(van de Hulst, 1981). These ripples in the efficiency factors are caused by standing
waves along the circumference of a spherical or circular scatterer, called Whispering
Gallery Modes (WGMs) (Brandsrud, 2016). This is a phenomenon which often appears
in infrared spectroscopy, as it is caused by small particles with low imaginary part of
the complex refractive index. The higher the real refractive index, nr, the sharper are
the ripples, as the WGMs becomes more dominant (Brandsrud, 2016). Wiggles are a
result of the interference between the incident IR light, and the scattered light in the
forward direction. This scattering results in larger oscillations creating a background in
the extinction efficiency for ripples and absorption bands to manifest on (van de Hulst,
1981).

Since the extinction efficiency of infrared spectra contains sharp chemical absorption
bands as well, it is interesting to study what happens when sharp absorption bands,
sharp ripples and wiggles appear in the same wavelength range. Since wiggles are
causing an underlying baseline carrying ripples and absorption bands, it is interesting
to investigate how the ripples and absorption bands are affected by the wiggles. It is
further interesting to understand how the absolute peak height of absorption bands is
affected by the ripples and wiggles, since infrared spectroscopy is used as a technique
to estimate concentration of chemical analytes in a sample and the basic assumption in
the ideal case is that the absorbance is proportional to the analyte concentration.

The plan of action for the theoretical exploration in this thesis is to examine two different
cylindrical particles and one spherical, in the order of a = 5 − 10µm, where a is the
radius of the particle. Obviously, cells are neither perfectly spherical nor cylindrical.
Therefore, a core assumption of this thesis is that the infrared spectrum of cells with
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quasi-cylindrical and -spherical morphology is comparable to that of perfectly cylindrical
or spherical particles. The first cylinder, named cylinder1, has a real refractive index of
nr = 1.3, which resembles that of water, and thus also that of most biological samples,
(Skaar, 2019). The second cylinder, called cylinder2, has a a real refractive index of nr =
1.8, a parameter setting that produces sharp ripples (Brandsrud, 2016). A refractive
index of 1.8 gives us possibility to investigate the sharpest ripples, which do not appear
in the situations where the difference between the refractive index of the scatterer and
the refractive index of the surroundings are lower. The sphere will be mimicking that
of a PMMA sphere which has a real refractive index of around nr = 1.5 in the infrared
region (Lukacs et al., 2015). Using different analytical models, the particles will be
subject to IR light in the range ν̃ = 1000− 4000 cm−1. This is the region typically used
for FTIR spectroscopy (Blümel et al., 2018). The efficiency factors will be compared to
each other for three different assumptions for the pure absorbance, A = 0, A = 0.3 and
A = 0.5.





2. Theory

2.1 Maxwell’s Equations in vacuum

The fundament for studying electromagnetic waves, are Maxwell’s equations. The Mie
Theory which describes the scattering of infrared (IR) light from small particles is de-
rived from answering Maxwell’s equations for a plane wave colliding with a dielectric
sphere (van de Hulst, 1981). The set of Maxwell’s equations consists of four differen-
tial equations describing the mutual dependency of electric fields and magnetic fields
(Hollesbekk and Skaar, 2018). The first is Gauss’ Law:

ε0∇ ·E = ρ, (2.1)

where the vector E is the electric field, ε0 is the dielectric constant and ρ the charge
density in vacuum, respectively.

The second is the no magnetic monopole law, also called Gauss Law for magnetism. It
states

∇ ·B = 0, (2.2)

where the vector B is the magnetic field.

Faraday’s Law is the third equation. It describes how a varying magnetic field induces
a circulating electric field

∇×E = −∂B
∂t
, (2.3)

where t is time.

Lastly, The Ampére-Maxwell Law describes how a current or varying electric field in-
duces a circulating magnetic field

∇×B = µ0J + ε0µ0
∂E
∂t
, (2.4)

where µ0 is the permeability in vacuum and J is the current density. From (Hollesbekk
and Skaar, 2018).

5



6 CHAPTER 2. THEORY

2.2 The Wave Function

2.2.1 The Electric Field

The electric field in vacuum with no electric charge propagating in the X-direction
satisfies the wave equation

∂2ε

∂X2 −
1
c2
∂2ε

∂t2
= 0, (2.5)

by Maxwells Equations. The solution to Eq. (2.5) is a simple harmonic wave in the real
plane.

ε = ε0 cos (kX − ωt), (2.6)

where k is the angular wavenumber, and ω is the angular frequency (Townsend, 2010).

2.2.2 The Electromagnetic Field

The wave function, Ψ(X, t), describes either the magnetic or the electric field of the
light. For a plane wave of constant intensity and amplitude M , the equation is

Ψ(X, t) = Meiωt−ikX , (2.7)

where i is the imaginary unit, (van de Hulst, 1981). The more common symbol for
amplitude, A, has been reserved for absorbance in this thesis.

2.3 Absorbance

2.3.1 Definition

Different chemical groups are absorbing specific levels of energy, energy quanta, from
EM-waves. The energy quanta are determined through the photon energy

E = hv, (2.8)

where v is the frequency in units of s−1 and h is Planck’s constant. This relation
was famously explained by Einstein in 1905 (Townsend, 2010). In spectroscopy, the
wavenumber is usually given in cm−1 and has the symbol ν̃. The relation between the
wavenumber (in cm−1) and the frequency of the EM-wave is then

ν̃ = 2πv
100c, (2.9)
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where c is the speed of light in vacuum (Tanner, 2019). Combining (2.8) and (2.9) gives
the energy absorbed by a chemical group from an EM-wave with wavenumber ν̃

E = h
100cν̃

2π (2.10)

i.e. the light absorbed is dependent on the wavenumber, which is the basis for the theory
of spectroscopy.

The absorbance, A(ν̃) of a sample being radiated by monochromatic light, is given by

A(ν̃) = − log I(ν̃)
I0(ν̃) , (2.11)

where I(ν̃) is the intensity transmitted through the sample and I0(ν̃) is the intensity
of the incident light, (Kohler et al., 2005). From Beer’s Law, the absorbance is related
to the imaginary part of the refractive index, ni(ν̃), and the effective thickness of the
sample, d by

A(ν̃) = 4πν̃ni(ν̃)d
ln (10) . (2.12)

(van Dijk et al., 2013). Some simple algebra from (2.12) yields a function for the
imaginary part of the refractive index, ni:

ni(ν̃) = A ln 10
4πdν̃ . (2.13)

The d is based on the effective thickness of a cylinder, and approximated as the same
for a sphere. It is given by Eq. (2.14).

d = πa

2 (2.14)

The complex refractive index, m, is written as:

m = nr − ini, (2.15)

where nr is the real part of the refractive index. This thesis uses the notation of van de
Hulst (1981), meaning the sign of the imaginary part is negative. The complex refractive
index, m is defined

m ≡
√
ε, (2.16)

where ε is the complex dielectric function (Tanner, 2019).
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2.3.2 The Lorentz model

In spectroscopy, the Lorentz model is often used to model absorption. According to the
Lorentz model, the complex dielectric function ε is calculated as

ε = ε̃+
∑ Λ

ν̃2
0 − ν̃2 − iν̃Γ , (2.17)

where ε̃ is the real part of the complex dielectric function, Γ is the width of the Lorentz
function and is adjusted to the known Full Width Half Mid (FWHM) value of the ab-
sorption band, Λ is proportional to the pure absorbance A. By assuming an absorbance
A, the parameter Λ can be obtained from fitting the Lorentz maxima to the correspond-
ing ni from equation (2.13). ν̃0 is the wavenumber of the center of the Lorentz function
and ν̃ is the frequency in wavenumber (Lukacs et al., 2015).

Chemical bands are forces that stretches the elements or molecules bonded, causing them
to oscillate. This oscillation is called molecular vibration and absorbs specific amounts
of energy from (IR) light. The bands that are being used in vibrational spectroscopy are
called stretching bands. At ν̃ = 1750cm−1 the typical FWHM value of C=O stretching
IR band related to lipids is approximately 15 cm−1. For O-H stretching IR band around
ν̃ = 3250 cm−1 related to water and carbohydrates is several hundred cm−1(Kohler et
al., 2020).

2.4 Light Extinction

This section, 2.4, and 2.5 is based on the extensive work of (van de Hulst, 1981).

2.4.1 Definitions

Materials are not only absorbing, but also scattering light. Then it is common to refer
to light that is extinguished by some sample. Let the energy scattered in all directions
be equal to the energy of the incident wave on to the cross section area Csca. Then
let the cross section Cabs be such that it covers the amount of light being absorbed,
and hence the energy absorbed. Finally, the energy extinguished from the light has a
corresponding cross section area Cext covering the light. We get

Cext = Csca + Cabs. (2.18)

The figure 2.1 shows an illustration of these cross sections. The actual geometrical cross
section of the sample being radiated is G. The relation between the energy-related cross
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sections and the geometrical cross section gives the efficiency factors

Qsca = Csca
G

, (2.19)

Qabs = Cabs
G

, (2.20)

and
Qext = Cext

G
, (2.21)

where Qsca is the scattering efficiency factor, Qabs is the absorbance efficiency factor and
Qext is the extinction efficiency factor. The efficiency factors are related by

Qext = Qsca +Qabs. (2.22)

Figure 2.1: The cross sections illustrating the fraction of an incident beam that is
absorbed and scattered. The incoming beam is indicated by the yellow arrows to the left.
The yellow arrows to the right correspond to the amount of light that travelled through
the sample undisturbed. The cross section of the scattered radiation is in blue, and the
cross section of the absorbed radiation is in red. The actual area has a depth in to the
paper, and a length equal to the vertical axis. The horizontal axis has only a thickness for
graphical visibility. The purple summation arrow shows how the extinction cross section
is the sum of the other two cross sections

2.5 Light scattering

When incident light with intensity I0 is colliding with some particle in space, the light
scattered has an intensity I at a large distance r away from the particle with an angle
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θ with the line of propagation and azimuth angle ϕ. The light has a wavelength λ and
corresponding angular wavenumber in m−1, k, in the surrounding medium. Then

I = I0F (θ, ϕ)
k2r2 . (2.23)

The dimensionless function F (θ, ϕ) of the direction and depends on the orientation of
the particle with respect to the incident wave, and on the polarization of the wave. Then
the general expression for Csca can be made

Csca = 1
k2

∫
F (θ, ϕ)dω. (2.24)

The integral in 2.24 is taken over all directions and

dω = sin (θ)dθdϕ, (2.25)

is the element of solid angle. In order to find the amplitude and phase of the scattered
waves, the scattering functions S1(θ, ϕ) and S2(θ, ϕ) are used. These functions will vary
from particle to particle, and hence will be specified for the relevant particle in later
sections, 2.6 and 2.7.

2.6 Cylinder

The Mie Theory describing the scattering from a cylindrical particle is derived by an-
swering Maxwell’s equations (sec. 2.1) for a plane wave scattered from a dielectric
cylinder (van de Hulst, 1981).

2.6.1 Efficiency Factors by exact Mie Theory, Case I

This section regards a cylinder particle with an incident plane wave with the E-field
parallel to the cylinder axis, as shown in Fig. 2.2 and is referred to as Case I. From
trigonometry, the angle θ and distance r away from the center of the cylinder are given
by the Cartesian XY-plane, X and Y are given by

X = r cos θ, (2.26)

and
Y = r sin θ. (2.27)

Regarding a distance r >> a, where a is the radius of the cylinder, the expressions for
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Figure 2.2: A cylinder-shaped particle with an incident EM-wave with E-field parallel
to the cylinder axis. The B-field is perpendicular to the cylinder axis. The yellow vector
indicates the propagation direction of the EM-wave which is perpedicular to the cylinder
axis. The red and green vectors indicate the absolute maxima of the sinusoidal fields. The
arrows on the left are the cartesian coordinates X, Y and Z.

Qext and Qsca are
Qext = 2

x

∞∑
n=−∞

<(bn), (2.28)

and
Qsca = 2

x

∞∑
n=−∞

|bn|2, (2.29)

where n is some integer, b is a coefficient (described below) and x is the scaling factor

x = 2πa
λ
. (2.30)

a is the radius of the cylinder and λ is the wavelength (van de Hulst, 1981). The
wavelength λ is calculated by

λ = 1
100ν̃ . (2.31)

From these expressions and Eq. 2.22 the expression of Qabs is found to be

Qabs = 2
x

n=∞∑
n=−∞

<(bn)− 2
x

n=∞∑
n=−∞

<(|bn|2). (2.32)

The coefficients bn are determined by

bn = tan βn
tan βn − i

(2.33)
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where βn is the phase angle given by

tan βn = mJ ′n(y)Jn(x)− Jn(y)J ′n(x)
mJ ′n(y)Nn(x)− Jn(y)N ′n(x) (2.34)

where y is another scaling factor
y = mx. (2.35)

The functions Jn and Nn are Bessel functions of the first and second kind, respectively,
in the nth order (van de Hulst, 1981).

2.6.2 Efficiency Factors by exact Mie theory, Case II

In Case II, it is the B-field which is parallel to the cylinder axis, and the E-field which
is perpendicular to it as shown in figure 2.3.

Figure 2.3: A cylinder-shaped particle with an incident EM-wave with B-field parallel
to the cylinder axis. The E-field is perpendicular to the cylinder axis. The yellow vector
indicates the propagation direction of the EM-wave, and the red and green vectors indicate
the absolute maxima of the sinusoidal fields. The arrows on the left are the Cartesian
coordinates X, Y and Z.

Qext and Qsca in this scenario are given in equations 2.36 and 2.37.

Qext = 2
x

n=∞∑
n=−∞

<(an), (2.36)

and
Qsca = 2

x

n=∞∑
n=−∞

|an|2, (2.37)
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where x and y are scaling factors given by Eqs (2.30) and (2.35), and the coefficient an
is given as

an = tanαn
tanαn − i

. (2.38)

The phase angle tanαn is calculated by equation 2.39.

tanαn = J ′n(y)Jn(x)−mJn(y)J ′n(x)
J ′n(y)Nn(x)−mJn(y)N ′n(x) . (2.39)

2.6.3 Efficiency Factor for scattering by integral

The Qsca is given by the integral over the angle θ, see Fig. 2.4, in all directions

Qsca = 1
πx

∫ 2π

0
|T (θ)|2dθ, (2.40)

where T (θ) is a type of amplitude function. For Case I, it is given by

T (θ) =
∞∑

n=−∞
bne

inθ. (2.41)

Here, the coefficients bn are given in terms of the Hankel function of second kind, H(2)
n ,

H(2)
n (Z) = Jn(Z)− iNn(Z) (2.42)

bn = mJ ′n(y)Jn(x)− Jn(y)J ′n(x)
mJ ′n(y)H(2)

n (x)− Jn(y)H(2)
n
′(x)

. (2.43)

Since it is impossible to calculate for infinitely many n’s, the restriction for n is given
as

nmax = max (x+ 4(x) 1
3 + 2) (2.44)

This formula gives n ≥ 10 + x for the a’s and ν̃’s examined in this thesis (for which
makes out the scaling factor x). At those high orders, the Bessel function becomes
negligible for each order.

The formula for Qsca in 2.29 and 2.40 both take into account for the waves scattered in
all directions, based on Csca from 2.24. However, in an experiment, the result is based
on the waves reaching the detector. The detector’s surface for detection is described by
its NA (numerical aperture), defined as

NA = sin θ (2.45)

(Tipler and Mosca, 2008). In order to mimic experimental results, the integral in 2.40
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may be restricted by the area from −θ to θ

Qsca = 1
πx

∫ θ

−θ
|T (θ)|2dθ. (2.46)

This integration area is illustrated by figure 2.4. The restriction for the angle θ will
be given by the NA. The values of NA used in this paper are 0.2, 0.35, 0.5 and 0.65,
inspired by common minimum and maximum values of NA (van Dijk et al., 2013).

Figure 2.4: Illustration of the integration area. The perspective is along the Z-axis (red
cross representing the "feathers" of the Z-arrow), from the side of the cylinder, making
it look like a disk (light blue). The orange lines are light scattered at the angle −θ and
θ a distance r away from the center of the cylinder. The black line is perpendicular to
the cylinder axis, and the purple one is perpendicular to both the cylinder axis and the
black line, representing the line of which the detector area lies. The blue brace shows the
detector area. The three yellow arrows represent the direction of the incoming light with
intensity I0.

2.6.4 The near E-field of a disk-shaped scatterer

The time-independent form of the wave equation (Eq. (2.5)) is known as the Helmholtz
equation.

(∇2 + k2)E(r) = 0, (2.47)

where ∇2 is the Laplacian operator, E(r) is the plane vector wave and r being the
position vector in the Cartesian plane. The Helmholtz equation can be simplified by
replacing the plane vector wave E(r) by the single component scalar wave function
Ψ(r) (scalar version of Eq. (2.7)). The simplified Helmholtz equation (Eq. (2.47)) then
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becomes
(∇2 + k2)Ψ(r) = 0, (2.48)

(Torgersen, 2016).

In order to study more in-depth the scattering from a cylindrical particle, the close
E-field around a cylinder is studied. A simplification can only be done for Case I with
E-field of the incoming plane wave parallel to the cylinder axis, and thus is the only case
studied in-depth in this thesis. The simplification is that the cylinder can be regarded
as a disk, since the cylinder is a disk from the E-fields perspective in that scenario. The
disk considered is one with a potential V = V0 inside, a so called "soft" disk, i.e. the
light can penetrate through the sample. The refractive index inside the disk is m > 1,
while it is m = 1 outside the disk (vacuum). The analytical solution to this problem has
been derived by Prof. Reinhold Blümel and presented in his lecture notes from June 26,
2012 (Torgersen, 2016).

Figure 2.5: Illustration of a "soft" disk. The perspective is along the Z-axis, from the
side of the cylinder, making it look like a disk (light blue). The yellow vectors indicates
the propagation direction of the incoming light, along the X-axis. The arrows under the
disk are the Cartesian coordinates, with the Z-axis into the paper (red cross indicating
the "feathers" of the arrow). The E-field is along the Z-axis.

For r > a, i.e. outside the disk, the wave function is given by

Ψout(r, θ) =
∞∑

n=−∞
inJn(kr)einθ +

n∞∑
n=−∞

AnH
(+)
n (kr)einθ, (2.49)

where H(+)
n is the Hankel functions of first kind of nth order, and An are coefficients
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derived from the quantum mechanical boundary conditions given by

An = in(J ′n(x)J(mx)−mJ ′n(mx)Jn(x))
mJ ′n(mx)H(+)

n (x)−H(+)
n
′(x)Jn(mx)

, (2.50)

where x is the scaling factor in Eq (2.30), i.e. x = ka. The first part of equation 2.49 rep-
resents the incoming plane wave and the second part represents the outgoing, scattered
wave.

For r < a, i.e. inside the disk, the wave function is given by

Ψin(r, θ) =
∞∑

n=−∞
BnJn(mx)einθ, (2.51)

where Bn are coefficients determined by the quantum mechanical boundary conditions
as

Bn = in(H(+)
n
′(x)Jn(x)− J ′n(x)H(+)

n (x))
H

(+)
n
′(x)Jn(mx)−mJ ′n(mx)H(+)

n (x)
, (2.52)

(Torgersen, 2016). The same restriction for nmax as for calculating the an’s and bn’s for
the cylinder is set here, with calculations stopping after n ≥ x+ 10.

2.7 Sphere - Mie Theory

The Mie Theory is derived by answering Maxwell’s equations (sec: 2.1) for scattered
plane wave from a dielectric sphere (van de Hulst, 1981).

2.7.1 Efficiency Factors by series

The scattering of waves from an arbitrary sphere is explained through Mie Theory (van
de Hulst, 1981). The extinction efficiency factor Qext and scattering efficiency factor,
Qsca are in this instance given by the series

Qext = 2
x2

n=∞∑
n=1

(2n+ 1)<(an + bn) (2.53)

and
Qsca = 2

x2

n=∞∑
n=1

(2n+ 1)<(|an|2 + |bn|2). (2.54)

Here, another set of coefficients are needed, an, in addition to the bn’s. In this instance
they are given by

an = ψ′n(y)ψn(x)−mψn(y)ψ′n(x)
ψ′n(y)ζn(x)−mψn(y)ζ ′n(x) , (2.55)
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and
bn = mψ′n(y)ψn(x)− ψn(y)ψ′n(x)

mψ′n(y)ζn(x)− ψn(y)ζ ′n(x) . (2.56)

where ψn and ζn are the first and third Riccati-Bessel function, which along the Z-axis
is given by

ψn(Z) = (πZ2 ) 1
2Jn+ 1

2
(Z), (2.57)

ζn(Z) = (πZ2 ) 1
2H

(2)
n+ 1

2
(Z). (2.58)

The second Riccati-Bessel function is

χn(Z) = −(πZ2 ) 1
2Nn+ 1

2
(Z). (2.59)

From 2.42, 2.58 and 2.59, ζn can be expressed as

ζn(Z) = ψn(Z) + iχn(Z). (2.60)

Thus, Qext and Qsca can be computed (van de Hulst, 1981). Since the sum can not be
calculated numerically for infinitely many n’s, the calculations stops after n ≥ x+ 10.





3. Results

3.1 Cylinder

3.1.1 Ripple and bn pairs

The extinction efficiency factor, Qext, consists of broad oscillations, called wiggles, and
sharp oscillations called ripples. The black line in Fig. 3.1 shows Qext as a function of
wavenumber ν̃ for a cylinder with a radius 10 µm and a refractive index equal to 1.3,
this will be referred to as "cylinder1". The evaluation is done for "Case I" as described
in the Sec 2.6.1.

Qext is found by Eq. 2.28 and is made up of a sum of the coefficient bn (described by
Eq. 2.33). As e.g. <(b12) (cyan dotted line) in Fig. 3.1 shows, do the peak in <(b18)
(magenta dotted line) correspond with a ripple in Qext and make up a ripple and bn pair.
The rightmost peak of the coefficient b12 coincides with the ripple at ν̃ = 1807 cm−1for
this cylinder. The rightmost peak of b18 coincides with the ripple at ν̃ = 2600 cm−1.
This ripple is at the top of a wiggle, while the ripple at 1808 cm−1is at the bottom of a
wiggle. An additional bn-ripple pair for this scenario is b22 (magenta dotted line) and a
ripple at ν̃ = 3128 cm−1, midway between the bottom and peak of a wiggle, as shown in
Fig. 3.2. The figures in this subsection is calculated by the MatLab script in appendix
B.

19
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Figure 3.1: bn-ripple pair for cylinder1. The left y-axis shows Qext (black line) as a
function of wavenumber and right y-axis shows <(bn) as a function of wavenumber for
n = 12 (cyan dotted line) and n = 18 (pink dotted line). The data tips shows the position
of the peak in bn which corresponds to a ripple in Qext.

Figure 3.2: bn-ripple pair for cylinder1. The left y-axis shows Qext (black line) as a
function of wavenumber and right y-axis shows <(bn) as a function of wavenumber for
n = 12 (cyan dotted line) and n = 22 (pink dotted line). The data tips shows the position
of the peak in bn which corresponds to a ripple in Qext, and the position of the ripple.
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Another system investigated is an infinite cylinder with a refractive index nr = 1.8 and
radius a = 5µm. This will be referred to as "cylinder2". The coefficient b12 (cyan dotted
line) now pairs with the sharp ripple at ν̃ = 2696 cm−1and is at the bottom of a wiggle.
A sharp ripple at the top of a wiggle, at ν̃ = 3287 cm−1coincides with the peak of b18

(magenta dotted line) as shown in Fig. 3.3.

Figure 3.3: bn-ripple pair for cylinder2. The left y-axis shows Qext (black line) as a
function of wavenumber and right y-axis shows <(bn) as a function of wavenumber for
n = 12 (cyan dotted line) and n = 15 (pink dotted line). The data tips shows the position
of the peak in bn which corresponds to a ripple in Qext.

3.1.2 The imaginary part of the refractive index for a constant
absorbance and absorbance bands

For a constant absorbance equal to A = 0.3, the imaginary part of the refractive index,
ni, can be calculated by Eq. 2.13. For cylinder1 the wavenumbers corresponding to a
ripple are ν̃0 = 1807 cm−1 and ν̃0 = 3128 cm−1. The d used to calculate ni is given by
Eq. (2.14). The Fig. 3.4 shows how the imaginary part of the refractive index, found
by Eq. (2.13), of cylinder1 varies with wavenumbers when the absorbance is assumed to
be constant for all wavenumbers (green dashed line). This increases exponentially with
lesser wavenumbers ν̃, as they are inverse proportional. In Fig. 3.4 this line is plotted
together with appropriate Lorentz functions at the relevant wavenumbers for the ripples
(blue solid line). The ni that varies with the two Lorentz functions were calculated by
adding together the Eq. (2.17) with the two different central wavenumbers, ν̃0 = 1807
cm−1 and ν̃0 = 3128 cm−1, and then found by Eq. (2.16). Γ = 15 cm−1 was used, which
is related to lipids at around ν̃ = 1750 cm−1 (Kohler et al., 2020). Adjusted to a pure
absorbance A = 0.3, this resulted in a Λ = 1400 cm−2. This absorption band was then
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copied and put at the other ripple at ν̃0 = 3128 cm−1, as indicated by the data tips.
Notice the peaks of the Lorentz functions reaches the same A = 0.3. The MatLab script
in appendix A was used to calculate the figures in this subsection.

X 1807

Y 0.01986

X 3128

Y 0.01148

Figure 3.4: Lorentz function for cylinder1 with Γ = 15 cm−1, Λ = 1400 cm−2 and
ν̃0 = 1807 cm−1 and 3128 cm−1 plotted in blue solid line. ni with constant A = 0.3
plotted in green dashed line. The data tips shows the peaks of the Lorentz functions,
where the ni-value corresponds to A = 0.3.

The pure absorbance is increased to A = 0.5 for cylinder1. Thus, the parameter Λ
increases proportional to A by a factor of 5

3 to 2300 cm−2 in order to reach a peak
corresponding to A = 0.5, as seen by the blue solid lines reaching the green dotted line,
and highlighted by the data tips. This absorption band is put at the ripple at ν̃0 = 2600
cm−1, together with ν̃ = 1807 cm−1in Fig. 3.5.

The pure absorbance, A, for cylinder2 is put to 0.5. The same Γ = 15 cm−1 was used,
corresponding to the FWHM and thus giving a similar sharp absorption band. The Λ
for this scenario becomes 6300 cm−2. The absorption bands are centered on the ripples
at ν̃0 = 2696 cm−1 and ν̃0 = 3287 cm−1, giving the Lorentzian ni in the blue solid line
in Fig. 3.6. The resulting imaginary part of the refractive index, ni, for constant A
of cylinder2 is shown in green dotted line. Once more, the peak of the Lorentzian ni

reaches the same value for which they have been adjusted for as indicated by the data
tips.
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X 2696

Y 0.02187
X 3287

Y 0.01794

Figure 3.5: Lorentz function for cylinder1 with Γ = 15 cm−1, Λ = 2300 cm−2 and
ν̃0 = 1807 cm−1 and 2600 cm−1 plotted in blue solid line. ni with constant A = 0.5
plotted in green dashed line. The data tips shows the peaks of the Lorentz functions,
where the ni-value corresponds to A = 0.5.

X 2696

Y 0.04327
X 3286

Y 0.0355

Figure 3.6: Lorentz function for cylinder2 with Γ = 15 cm−1, Λ = 6300 cm−2 and
ν̃0 = 2696 cm−1 and 3287 cm−1 plotted in blue solid line. ni with constant A = 0.5
plotted in green dashed line. The data tips shows the peaks of the Lorentz functions,
where the ni-value corresponds to A = 0.5.
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3.1.3 Efficiency factors found by Mie theory

Qext was evaluated for both cylinder1 and cylinder2 with Eq. (2.28) for two cases: (i)
with constant A and (ii) with Lorentzian absorption bands with peaks corresponding to
the same A, the position of peaks are identical to the ones shown in the figures in Sec.
3.1.2.

The extinction efficiency factor Qext for cylinder1 was plotted in the Fig. 3.7 against the
left y-axis. Figure 3.7 shows Qext with constant A = 0.3 plotted with green dotted line,
and the Qext with a Lorentzian absorbance band at ν̃0 = 1807 cm−1 and ν̃0 = 3128 cm−1

with Γ = 15 cm−1 and Λ = 1400 cm−2 plotted in a solid blue line. The <(bn)’s from
Fig. 3.1 are plotted against the right y-axis. <(b12) for constant A = 0.3 is plotted in
dotted magenta line, and for the Lorentzian ni <(b12) is plotted in a solid cyan line. For
A = 0.3, <(b22) is plotted in a dotted yellow line, and with the Lorentzian ni it is plotted
in a solid black line. The Qext with a Lorentz-shaped absorption band at ν̃0 = 1807
cm−1 has a peak reaching up towards the level of the Qext with constant A. The <(b12)
is lessened at this wavenumber, meaning the peak must come from an increase in most
of the other <(bn)’s at this point. This makes sense as the curve is quite smooth for the
green dotted line of Qext with constant A, indicating it is a sum of several <(bn)’s with
some positive value. The leftmost peak of <(b12) is influenced by the absorption band
at ν̃0 = 3128 cm−1, but the <(b22) is not affected by the absorption band at ν̃0 = 1807
cm−1. Since both <(b12) and <(b22) is lessened at by the Lorentz-shaped absorption
band centered at ν̃0 = 3128 cm−1, the ripple in Qext disappear. They are not however,
lessened so much as to leave a dent in Qext. Rather, Qext has a smooth curve at this
wavenumber.

The scattering efficiency factor Qsca was calculated by Eq. (2.29) for the same param-
eters and plotted in Fig. 3.8. In these figures, the green dotted line is the Qsca with
constant A = 0.3. The solid blue line is the Lorentzian Qsca with ν̃0 = 1807 cm−1 and
ν̃ = 3128 cm−1 in Fig. 3.8. The absorbance efficiency factor Qabs was calculated by sub-
tracting Qsca from Qext, rearranging Eq. (2.32), and plotted in the Fig. 3.9. The green
dotted line is the Qabs with constant A = 0.3. The solid blue line is the Qabs with the
same Lorentz parameters. It is apparent from Fig. 3.8 that with increasing absorbance,
the amount of scattered light is lessened. The absorption bands creates inverted peaks
in the Lorentzian Qsca and moves it towards the Qsca value for constant A, since they
must be equal at the meeting points indicated by the data tips. The absorption bands
are clearly visible in the Qabs in Fig. 3.9. The Lorentzian Qabs reaches towards the
same values of Qabs, since the peak corresponds to the same amount of absorbance, as
indicated by the data tips.
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X 3129

Y 2.152
X 1806

Y 1.569

X 1822

Y 0.7199

Figure 3.7: Two Qext for cylinder1 is plotted against the left y-axis. The dotted green
line is Qext with A = 0.3 for all wavenumbers ν̃, and the solid blue line is Qext with
Lorentzian ni. The <(bn)’s are plotted against the right y-axis for n = 12 and n = 22 for
cylinder1. <(b12) with constant A = 0.3 is in dotted magenta line, and in solid cyan for
Lorentzian ni. <(b22) with constant A = 0.3 is plotted in a dotted yellow line, and in a
solid black line for the Lorentzian ni. The Lorentzian ni was calculated by two Lorentz
functions summed together, one with ν̃0 = 1807 cm−1 and the other with ν̃0 = 3128 cm−1.
Both had Γ = 15 cm−1 and Λ = 1400 cm−2.

X 1809

Y 0.9477

X 3128

Y 1.541

Figure 3.8: Two Qsca is plotted for cylinder1. The dotted green line is Qsca with A = 0.3
for all wavenumbers ν̃, and the solid blue line is Qsca with Lorentzian ni. The Lorentzian
ni was calculated by two Lorentz functions summed together, one with ν̃0 = 1807 cm−1

and the other with ν̃0 = 3128 cm−1. Both had Γ = 15 cm−1 and Λ = 1400 cm−2.
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X 3128

Y 0.6101

X 1807

Y 0.6188

Figure 3.9: Two Qabs is plotted for cylinder1. The dotted green line is Qabs with A = 0.3
for all wavenumbers ν̃, and the solid blue line is Qabs with Lorentzian ni. The Lorentzian
ni was calculated by two Lorentz functions summed together, one with ν̃0 = 1807 cm−1

and the other with ν̃0 = 3128 cm−1. Both had Γ = 15 cm−1 and Λ = 1400 cm−2.
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Increasing the pure absorbance, A, from 0.3 to 0.5, the Qext for cylinder1 is calculated
by Eq. (2.28) and plotted versus the left y-axis in the Fig. 3.10. As before, Qext

with constant A (green dashed line) is compared with Qext calculated with Lorentzian
ni (blue solid line). The two Lorentz functions summed together in Fig. 3.10 has
ν̃0 = 1807 cm−1and ν̃0 = 2600 cm−1. Both have Γ = 15 cm−1. Λ is increased by a factor
of 5

3 to 2300 cm−2. The <(bn)’s are calculated by Eq. (2.33), and plotted versus the right
y-axis for the n’s corresponding to ripples. Figure 3.10 has for n = 12 with constant
A = 0.5 (magenta dotted line), n = 12 with Lorentzian ni (cyan dotted line), n = 18
with constant A = 0.5 (yellow dotted line) and n = 18 with Lorentzian ni (black dotted
line). The same peak at ν̃0 = 1807 cm−1 is shown here as in Fig. 3.7, only greater due
to the greater absorbance. At ν̃0 = 2600 cm−1, an inverted peak is created in the Qext.
The wiggles in Qext is damped when an absorbance is present. When the Lorentzian
Qext reaches for the same value for A = 0.5, it goes downwards, creating the inverted
peak. Both the Lorentzian <(b12) and <(b18) reacts to the absorption band at ν̃ = 2600
cm−1. The <(b18), which had a peak corresponding to the ripple at this wavenumber, is
greatly decreased, and <(b12) is somewhat increased. The net difference in the <(bn)’s
is seen as the decrease in the Lorentzian Qext at this point.

X 1806

Y 1.728

X 2598

Y 0.4513

Figure 3.10: Two Qext for cylinder1 is plotted against the left y-axis. The dotted green
line is Qext with A = 0.5 for all wavenumbers ν̃, and the solid blue line is Qext with
Lorentzian ni. The <(bn)’s are plotted against the right y-axis for n = 12 and n = 18 for
cylinder1. <(b12) with constant A = 0.5 is in dotted magenta line, and in solid cyan for
Lorentzian ni. <(b18) with constant A = 0.5 is plotted in a dotted yellow line, and in a
solid black line for the Lorentzian ni. The Lorentzian ni was calculated by two Lorentz
functions summed together, one with ν̃0 = 1807 cm−1 and the other with ν̃0 = 2600 cm−1.
Both had Γ = 15 cm−1 and Λ = 2300 cm−2.

The Qsca with constant A (green dotted line) and with Lorentzian ni (blue solid line) are
calculated by Eq. (2.29) with the same parameters and plotted in the Fig. 3.11. With
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both the Qext and the Qsca known, the Qabs with constant A (green dashed line) and
Lorentzian ni (blue solid line) are calculated as before by Eq. (2.32) and is plotted in
Fig. 3.12. From these figures, it is apparent that the decrease in the Qsca at ν̃0 = 2600
cm−1is much greater than the increase in the Qabs, making out the inverted peak in Qext

in Fig. 3.10. At ν̃ = 1807 cm−1, the increase in Qabs is greater than the decrease in
Qsca, making the peak seen at this wavenumber in Qext in Fig. 3.10.

X 2600

Y 1.781

X 1808

Y 0.9059

Figure 3.11: TwoQsca is plotted for cylinder1. The dotted green line isQsca with A = 0.5
for all wavenumbers ν̃, and the solid blue line is Qsca with Lorentzian ni. The Lorentzian
ni was calculated by two Lorentz functions summed together, one with ν̃0 = 1807 cm−1

and the other with ν̃0 = 2600 cm−1. Both had Γ = 15 cm−1 and Λ = 2300 cm−2.
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Figure 3.12: TwoQabs is plotted for cylinder1. The dotted green line isQabs with A = 0.5
for all wavenumbers ν̃, and the solid blue line is Qabs with Lorentzian ni. The Lorentzian
ni was calculated by two Lorentz functions summed together, one with ν̃0 = 1807 cm−1

and the other with ν̃0 = 2600 cm−1. Both had Γ = 15 cm−1 and Λ = 2300 cm−2.
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The Qext for cylinder2 with constant A = 0.5 (green dotted line) and Lorentzian ni

(blue solid line) are plotted versus the left y-axis in Fig. 3.13, calculated by Eq. (2.28).
Λ becomes 6300 cm−2 with A = 0.3. The center for the Lorentz functions are the
ripples at ν̃ = 2696 cm−1 and ν̃ = 3287 cm−1. Against the right y-axis, the <(b12) with
constant A (magenta dotted line), <(b12) with Lorentzian ni (cyan solid line), <(b15)
with constant A (yellow dotted line) and <(b15) with Lorentzian ni (black solid line)
are plotted. They were calculated by Eq. (2.33). With absorbance, the wiggles of Qext

are damped. Both sharp ripples have disappeared at the wavenumbers ν̃0 = 2696 cm−1

and ν̃0 = 3287 cm−1. This is seen also by the collapse of the <(bn)’s corresponding to
these ripples. At ν̃0 = 2696 cm−1 there is a peak in the Lorentzian Qext, but not as
sharp as the original ripple there. This peak has been created by the absorption band
there, from the bottom of a wiggle. At ν̃0 = 3287 cm−1, there is an inverted peak from
the top of a wiggle in the Lorentzian Qext. Both inverted and regular peak reaches the
same value as that of the Qext with constant A = 0.5, shown by the data tips.

X 3285

Y 2.565
X 2697

Y 1.863

X 2697

Y 0.03133

Figure 3.13: Two Qext for cylinder2 is plotted against the left y-axis. The dotted green
line is Qext with A = 0.5 for all wavenumbers ν̃, and the solid blue line is Qext with
Lorentzian ni. The <(bn)’s are plotted against the right y-axis for n = 12 and n = 15 for
cylinder2. <(b12) with constant A = 0.5 is in dotted magenta line, and in solid cyan for
Lorentzian ni. <(b15) with constant A = 0.5 is plotted in a dotted yellow line, and in a
solid black line for the Lorentzian ni. The Lorentzian ni was calculated by two Lorentz
functions summed together, one with ν̃0 = 2696 cm−1 and the other with ν̃0 = 3287 cm−1.
Both had Γ = 15 cm−1 and Λ = 6300 cm−2.

TheQsca for cylinder2 with A = 0.5 constantly (green dotted line), together with Lorentz
functions reaching peaks corresponding to A = 0.5 (blue solid line) are calculated by
Eq. (2.29) and plotted in Fig. 3.14. Finally, using Eq. (2.32), the Qabs of cylinder2
with constant A = 0.5 (green dotted line) and with Lorentzian ni are calculated, and
plotted in Fig. 3.15. The increase in the Lorentzian Qabs in Fig. 3.15 is quite similar
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for both ν̃0 = 2696 cm−1 and ν̃0 = 3287 cm−1, but the decrease in the Lorentzian Qsca

in Fig. 3.14 at ν̃0 = 3287 cm−1is much greater than the decrease at ν̃0 = 2696 cm−1.
Thus there is created a peak at ν̃0 = 2696 cm−1 in the Lorentzian Qext in Fig. 3.13, and
an inverted one at ν̃0 = 3287 cm−1.

X 2694

Y 1.059

X 3287

Y 1.828

Figure 3.14: TwoQsca is plotted for cylinder2. The dotted green line isQsca with A = 0.5
for all wavenumbers ν̃, and the solid blue line is Qsca with Lorentzian ni. The Lorentzian
ni was calculated by two Lorentz functions summed together, one with ν̃0 = 2696 cm−1

and the other with ν̃0 = 3287 cm−1. Both had Γ = 15 cm−1 and Λ = 6300 cm−2.
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Y 0.7366

X 2694

Y 0.7788

Figure 3.15: TwoQabs is plotted for cylinder2. The dotted green line isQabs with A = 0.5
for all wavenumbers ν̃, and the solid blue line is Qabs with Lorentzian ni. The Lorentzian
ni was calculated by two Lorentz functions summed together, one with ν̃0 = 2696 cm−1

and the other with ν̃0 = 3287 cm−1. Both had Γ = 15 cm−1 and Λ = 6300 cm−2.
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3.1.4 Infinite cylinder case II

In this case, the incident light is perpendicular onto a cylinder, with the B-field parallel
with the cylinder axis and the E-field perpendicular to the cylinder axis, as shown in
2.3. Only cylinder1 will be used as example system in this section. Figure 3.16 shows
Qext (black line) as a function of wavenumber versus the left y-axis together with an

calculated by Eq. (2.38) for n = 18 (dotted cyan line) and n = 24 (dotted magenta line)
as a function of wavenumber versus the right y-axis. n is selected so that the peak in an
corresponds to the ripples at ν̃ = 2650 cm−1 and ν̃ = 3445 cm−1in Qext as indicated by
the data tips in Fig. 3.16, making two an-ripple pairs. The cylinder is non-absorptive,
i.e. ni = 0.

X 3445

Y 1.492

X 2650

Y 0.9999

X 2650

Y 3.075

X 3445

Y 0.9999

Figure 3.16: an-ripple pair for cylinder1 in case II with ni = 0, as indicated by the data
tips. Qext is the solid black line, and plotted versus the left y-axis. The <(an) with n = 18
and n = 24 are plotted versus the right y-axis.

How the imaginary part of the refractive index, ni, vary as a function of wavenumber
for (i) a constant A = 0.3 (Eq. (2.13)) and (ii) in the case of two absorption bands
centered at ν̃ = 3445 cm−1and at ν̃ = 2650 cm−1(Eq. (2.17)) are plotted in Fig. 3.17.
For calculating the two Lorentz functions of the absorption bands, Γ = 15 cm−1 and
Λ = 1400 cm−2 are used with ν̃0 = 3445 cm−1 and ν̃0 = 2650 cm−1, respectively. Then,
they are added together for all ν̃ and the ni is calculated by Eq. 2.16. The ni with
constant absorbance A = 0.3 (green dashed line) is increasing exponentially with lesser
ν̃, due to the inverse proportionality from Eq (2.13). the Lorentzian ni (blue solid line) is
generally zero, with peaks corresponding to the center of the absorption bands, reaching
the same values as for constant A = 0.3, as highlighted by the data tips.

This gives two different Qext, which both are plotted versus the left y-axis together with
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X 3445

Y 0.01042

X 2650

Y 0.01355

Figure 3.17: Imaginary part of the refractive index, ni, for cylinder1 in case II with
constant A = 0.3 (green dashed line) and Lorentz functions centered on ν̃ = 2650 cm−1

and ν̃ = 3445 cm−1 (blue solid line). Γ = 15 cm−1 and Λ = 1400 cm−2 are used.

the chosen coefficients <(a18) and <(a24) versus the right y-axis in Fig. 3.18. For (i) the
Qext is a dashed green line, <(a18) is a dotted magenta line and <(a24) is a yellow dotted
line. For (ii) the Qext is a solid blue line, <(a18) is a dotted cyan line and <(a24) is a
dotted black line. The Qsca and Qabs for the same scenario are plotted in Figs. 3.19 and
3.20 in green dotted line for (i) and blue solid line for (ii). Figure 3.18 shows that for
(ii), an inverted peak is created in Qext at ν̃ = 2650 cm−1, which was a ripple situated
at the top of a wiggle. A great decrease in Qsca for this scenario is seen in Fig. 3.19,
explaining the inverted peak in Qext. At ν̃ = 3445 cm−1however, a peak is created in
(ii) Qext. This is at the bottom of a wiggle, and the decrease in (ii) Qsca is lesser than
the increase of Qabs for this scenario.
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X 3444

Y 1.681

X 2649

Y 2.717

Figure 3.18: Qext and <(an)’s for cylinder1 in case II with constant A = 0.3 and Lorentz
functions centered on ν̃0 = 2650 cm−1 and ν̃0 = 3445 cm−1. Γ = 15 cm−1 and Λ = 1400
cm−2 are used.

X 2650

Y 2.105

X 3445

Y 1.076

Figure 3.19: Qsca and <(an)’s for cylinder1 in case II with constant A = 0.3 and Lorentz
functions centered on ν̃0 = 2650 cm−1 and ν̃0 = 3445 cm−1. Γ = 15 and Λ = 1400 cm−2

are used.
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X 2650

Y 0.6148

X 3445

Y 0.6139

Figure 3.20: Qabs and <(an)’s for cylinder1 in case II with constant A = 0.3 and Lorentz
functions centered on ν̃0 = 2650 cm−1 and ν̃0 = 3445 cm−1. Γ = 15 cm−1 and Λ = 1400
cm−2 was used.
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3.1.5 The effect of the size of the numerical aperture on Qext

and Qsca

In order for the study of the different sizes of NA is legit, Eqs. 2.40 and 2.29 have to
produce the same result. The Figs. 3.21 and 3.22 show a comparison of the two results
for different values of m. Figure 3.21 shows Qext, since Qext = Qsca for non-absorbing
particles, for cylinder1 from section 3.1.3. For Fig. 3.22, the ni is increased from 0 to
0.02, showing Qsca. The Qsca from the exact expression Eq. (2.29) is calculated by the
MatLab script B (blue dashed line in both Figs.), and the MatLab script C calculates
Qsca by numerical integration (red dashed line in both Figs.), Eq. (2.46).

Figure 3.21: Comparison of the calculation of the scattering efficiency factor, Qext. The
integral over θ from 2.40 is in red and the summation approximation from 2.29 is in blue.
The radius of the cylinder, a, is 10 µm and the complex refractive index, m, is 1.3-0i.
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Figure 3.22: Comparison of the calculation of the scattering efficiency factor, Qsca. The
integral over θ from 2.40 is in red and the summation approximation from 2.29 is in blue.
The radius of the cylinder, a, is 10 µm and the complex refractive index, m, is 1.3-0.02i.

3.1.6 Qext calculated by integral with regard to different sizes
of NA

The Qext calculated by integration, by help of Eqs. (2.46) and (2.22) for the case of a
non-absorptive scatterer (i.e. Qabs = 0). The selected NA-values are 0, 0.2, 0.35, 0.5
and 0.65. The real part of the refractive index, nr, is constant. Qext for cylinder1 is
plotted in Fig. 3.23, where the dark blue line corresponds to NA = 0, which is identical
with the exact formula for Qext Eq. (2.28). The Qext with the same NAs for cylinder2 is
shown in Fig. 3.24. The dark blue line corresponds to NA = 0, i.e. Qext exact from Eq.
(2.28). In both Figs. 3.23 and 3.24 the cyan line corresponds to NA = 0.2, the green
line to NA = 0.35, the yellow line to NA = 0.5 and the orange line to NA = 0.65. The
Qext is generally decreased with increasing NA, as expected since the integration area
is lessened. However, the structures, i.e. ripples and wiggles, are intact. The ripples
representing the Whispering Gallery Modes (WGMs) are just as sharp for each size of
NA.
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Figure 3.23: The extinction efficiency factorQext for cylinder1 by integration with regard
to different NA values with no absorbance. The dark blue line corresponds to NA = 0,
the cyan line to NA = 0.2, the green line to NA = 0.35, the yellow line to NA = 0.5 and
the orange line to NA = 0.65.
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Figure 3.24: The extinction efficiency factorQext for cylinder2 by integration with regard
to different NA values with no absorbance. The dark blue line corresponds to NA = 0,
the cyan line to NA = 0.2, the green line to NA = 0.35, the yellow line to NA = 0.5 and
the orange line to NA = 0.65.
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3.1.7 Qsca calculated by integral with regard to different NA
values with Lorentz

In this section we evaluate how the scattering efficiency is affected when we include
both an absorption band and the increase of the size of the numerical aperture. The
calculation the scattering efficiency factor Qsca in this section is done by the MatLab
script D from Eq. (2.46) with an imaginary refractive index calculated from Eqs. (2.17)
and (2.16). In all the Figs. in this section are the dark blue line corresponding to NA
= 0, the cyan line to NA = 0.2, the green line to NA = 0.35, the yellow line to NA =
0.5 and the orange line to NA = 0.65.

The Qsca for cylinder1 with a Lorentz-shaped absorption band, with a peak for A =
0.3, i.e. Λ = 1400 cm−2 for a FWHM determined by Γ = 15 cm−1 at wavenumber
ν̃0 = 3128cm−1 is given in Fig. 3.25. The Qsca is generally lessened at each wavenumber
ν̃ with increasing NA. However, the structures, i.e. wiggles and ripples, stays intact
for this scenario as well. The same observation holds true for the Qsca with absorption
bands centered at ν̃0 = 2600 cm−1for cylinder1, and ν̃0 = 2696 cm−1and ν̃0 = 3287
cm−1for cylinder2 in Figs. 3.27, 3.26 and 3.28.
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Figure 3.25: The Qsca for cylinder1 by integration with regard different sizes of NA with
a Lorentz-shaped absorption band at ν̃0 = 3128 cm−1 with Γ = 15 cm−1 and Λ = 1400
cm−2. The peak of the Lorentz function reaches an imaginary refractive index ni which
corresponds to A = 0.3. The dark blue line corresponds to NA = 0, the cyan line to NA
= 0.2, the green line to NA = 0.35, the yellow line to NA = 0.5 and the orange line to
NA = 0.65.

For cylinder2, the Lorentz function has Γ = 15 cm−1 and Λ = 3800 cm−2 in order to
have a peak value corresponding to A = 0.3. The scattering efficiency factor Qsca with
the Lorentz function at the wavenumber ν̃0 = 2696 cm−1 is in Fig. 3.26.
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Figure 3.26: The Qsca for cylinder2 by integration with regard different sizes of NA with
a Lorentz-shaped absorption band at ν̃0 = 2696 cm−1 with Γ = 15 cm−1 and Λ = 3800
cm−2. The peak of the Lorentz function reaches an imaginary refractive index ni which
corresponds to A = 0.3. The dark blue line corresponds to NA = 0, the cyan line to NA
= 0.2, the green line to NA = 0.35, the yellow line to NA = 0.5 and the orange line to
NA = 0.65.

Increasing the peak pure absorbance from A = 0.3 to 0.5, the Λ must be increased to
2300 cm−2for absorbance band with Γ = 15 cm−1 for cylinder1. The scattering efficiency
factor Qsca for cylinder1 with ν̃0 = 2600 cm−1 is plotted in Fig. 3.27.
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Figure 3.27: The Qsca for cylinder1 by integration with regard different sizes of NA with
a Lorentz-shaped absorption band at ν̃0 = 2600 cm−1 with Γ = 15 cm−1 and Λ = 2300
cm−2. The peak of the Lorentz function reaches an imaginary refractive index ni which
corresponds to A = 0.5. The dark blue line corresponds to NA = 0, the cyan line to NA
= 0.2, the green line to NA = 0.35, the yellow line to NA = 0.5 and the orange line to
NA = 0.65.
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For cylinder2 with the peak value of the Lorentz-function at ν̃0 = 3287 cm−1corresponding
pure absorbance A = 0.5, the Γ is increased to 6300 cm−2, and the scattering efficiency
factor Qsca becomes that of Fig. 3.28.
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Figure 3.28: The Qsca for cylinder2 by integration with regard different sizes of NA with
a Lorentz-shaped absorption band at ν̃0 = 3287 cm−1 with Γ = 15 cm−1 and Λ = 6300
cm−2. The peak of the Lorentz function reaches an imaginary refractive index ni which
corresponds to A = 0.5. The dark blue line corresponds to NA = 0, the cyan line to NA
= 0.2, the green line to NA = 0.35, the yellow line to NA = 0.5 and the orange line to
NA = 0.65.
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3.2 Disk

3.2.1 Wave function for cylinder1 as a disk

The wave function from Eqs. (2.49) and (2.51) are calculated by the MatLab script E
together with the MatLab functions F and G, all made by PhD candidate Maren Anna
Brandsrud. This gives the exact result for the plane wave scattered from a disk, which is
cylinder2 as "seen" by the E-field in Case I, with the E-field parallel to the cylinder-axis.
The incoming plane wave is traveling from left to right in the disk images. The result
of the wave function for the scattered plane wave from this disk at the wavenumber
corresponding to the ripple for cylinder1 at ν̃ = 1807 cm−1 is given in the Fig. 3.29 for
ni = 0, i.e. non-absorptive disk. The ripples corresponds to a resonance, a Whispering
Gallery Modes (WGMs), which is due to a standing wave inside the boundary of the
disk.

Figure 3.29: The absolute square of the wave function for the scattered plane wave for a
disk with nr = 1.3, radius a = 10µm and ni = 0i at the wavenumber ν̃ = 1807 cm−1. The
scale is rising from a dark blue to a bright yellow for the highest values. The incoming
plane wave is traveling from left to right in the image. The sides of the frame are three
times longer than the radius of the disk.

Assuming a pure absorbance A = 0.3, yields an imaginary refractive index, ni = 0.02
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from equation (2.13) at ν̃ = 1807 cm−1. This in turn changes the the scattered wave
in Fig. 3.29 to that of Fig. 3.30. The wave function is lessened, and so is the scale.
We do still observe remains of the WGM. Increasing the pure absorbance A to 0.5, the
imaginary refractive index ni becomes 0.032 from Eq. (2.13) ν̃ = 1807 cm−1, and the
wave function of the scattered wave becomes that of Fig. 3.31. Now, the area where
the WGMs originally where are as strong as the field around the disk, indicating that
they have disappeared.

Figure 3.30: The absolute square of the wave function for the scattered plane wave for
a disk with nr = 1.3, radius a = 10µm and ni = 0.02i at the wave number ν̃ = 1807
cm−1. The scale is rising from a dark blue to a bright yellow for the highest values. The
incoming plane wave is traveling from left to right in the image. The sides of the frame
are three times longer than the radius of the disk.
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Figure 3.31: The absolute square of the wave function for the scattered plane wave for
a disk with nr = 1.3, radius a = 10µm and ni = 0.032i at the wave number ν̃ = 1807
cm−1. The scale is rising from a dark blue to a bright yellow for the highest values. The
incoming plane wave is traveling from left to right in the image. The sides of the frame
are three times longer than the radius of the disk.

The scale in Figs. 3.30 and 3.31 are adjusted to give a nice and clear image, but can be
a bit misleading in terms of the different intensities. Hence, Figs. 3.32 and 3.33 provides
the same images, but with the same scale as in Fig. 3.29, the non-absorptive disk. From
these images, it is apparent that the WGMs already disappear with A = 0.3.
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Figure 3.32: The absolute square of the wave function for the scattered plane wave for
a disk with nr = 1.3, radius a = 10µm and ni = 0.02i at the wave number ν̃ = 1807
cm−1. The scale is rising from a dark blue to a bright yellow for the highest values. The
incoming plane wave is traveling from left to right in the image. The sides of the frame
are three times longer than the radius of the disk.
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Figure 3.33: The absolute square of the wave function for the scattered plane wave for
a disk with nr = 1.3, radius a = 10µm and ni = 0.032i at the wave number ν̃ = 1807
cm−1. The scale is rising from a dark blue to a bright yellow for the highest values. The
incoming plane wave is traveling from left to right in the image. The sides of the frame
are three times longer than the radius of the disk.
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3.2.2 Wave function for cylinder2 as a disk

For a disk with the same properties as cylinder2, as in nr = 1.8 and radius a = 5µm,
the absolute square of the wave function for the scattered plane wave is calculated by
Eqs. (2.49) and (2.51), and given in Fig. 3.34 for imaginary refractive index ni = 0, i.e.
non-absorptive disk, at the ripple in ν̃ = 3287 cm−1. Here, the WGMs are clear around
the disk, as expected with this high real refractive index.

Figure 3.34: The absolute square of the wave function for the scattered plane wave for a
disk with nr = 1.8, radius a = 5µm and ni = 0i at the wave number ν̃ = 3287 cm−1. The
scale is rising from a dark blue to a bright yellow for the highest values. The incoming
plane wave is traveling from left to right in the image. The sides of the frame are three
times longer than the radius of the disk.

Increasing the pure absorbance to A = 0.3 at the same ν̃ = 3287 cm−1, corresponding
to imaginary refractive index ni = 0.02 from Eq. (2.12), the absolute square of the wave
function for the scattered wave becomes as shown in Fig. 3.35. The scale is drastically
lessened, from maximum ≈ 200 in Fig. 3.34, to ≈ 4 in Fig. 3.35. The WGMs have
clearly disappeared. Since the scale is lowered, the field around becomes more clear.
With pure absorbance A = 0.5, Eq. 2.12 gives a imaginary refractive index ni = 0.036.
This leads to the near-field around the disk looking as in Fig. 3.36. The scale is lessened
a bit more, giving a more clear image of the pattern of the field.
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Figure 3.35: The absolute square of the wave function for the scattered plane wave for
a disk with nr = 1.8, radius a = 5µm and ni = 0.02i at the wave number ν̃ = 3287 cm−1,
corresponding to A = 0.3. The scale is rising from a dark blue to a bright yellow for the
highest values. The incoming plane wave is traveling from left to right in the image. The
sides of the frame are three times longer than the radius of the disk.
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Figure 3.36: The absolute square of the wave function for the scattered plane wave for a
disk with nr = 1.8, radius a = 5µm and ni = 0.036i at the wave number ν̃ = 3287 cm−1,
corresponding to A = 0.5. The scale is rising from a dark blue to a bright yellow for the
highest values. The incoming plane wave is traveling from left to right in the image. The
sides of the frame are three times longer than the radius of the disk.
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The adjustment of the scale can be a bit misleading. To show the drastic changes from
the non-absorptive disk in Fig. 3.34 to A = 0.3 at ν̃ = 3287 cm−1, Fig. 3.37 shows the
same scenario as Fig. 3.35, but with the same scale as Fig. 3.34 (maxima ≈ 210). This
shows very well the disappearance of the WGMs.

Figure 3.37: The absolute square of the wave function for the scattered plane wave for
a disk with nr = 1.8, radius a = 5µm and ni = 0.021i at the wave number ν̃ = 3287
cm−1. The scale is rising from a dark blue to a bright yellow for the highest values. The
incoming plane wave is traveling from left to right in the image. The sides of the frame
are three times longer than the radius of the disk.
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3.3 Sphere

3.3.1 Qext for a sphere with wavenumber independent ni
The sphere investigated in this thesis is a sphere with radius a = 5µm and real refractive
index nr = 1.5, which corresponds to approximately the refractive index of a PMMA-
sphere in the infrared region. Figure 3.38 shows how Qext changes when the imaginary
part of the refractive index ni is increased. The solid black line is Qext for a non-
absorptive sphere, the green dotted line is Qext with ni = 0.002, the dashed magenta
line is Qext with ni = 0.005, the dotted red line is Qext with ni = 0.01 and the dashed
cyan line is Qext with ni = 0.02. The ripples chosen for investigation at ν̃ = 1610 cm−1

and ν̃ = 3530 cm−1 are indicated with data tips. This figure shows how the wiggles in
Qext are damped as ni increases.

X 3530

Y 3.16

X 1610

Y 3.951

X 1850

Y 3.176

Figure 3.38: The Qext for a sphere with nr = 1.5 and a = 5µm and wavelength indepen-
dent ni. The data tips indicate the chosen ripples at ν̃ = 1610 cm−1and ν̃ = 3530 cm−1.
The Qext with ni = 0 is the solid black line, Qext with ni = 0.002 is the green dotted line,
Qext with ni = 0.005 is the dashed magenta line, Qext with ni = 0.01 is the dotted red
line and Qext with ni = 0.02 is the dashed cyan line.

3.3.2 Efficiency factors for a sphere with Lorentz-shaped ab-
sorption band in ripples

A sphere with a Lorentz-shaped absorption band with a constant absorbance A, i.e.
variable ni, is evaluated in this section. Γ = 15 cm−1 was used with a peak value of
ni at ν̃0 = 1610 cm−1 corresponding to A = 0.3 according to Eq. (2.12). The effective
thickness used for calculations were approximated to the same as the cylinder, Eq.
(2.14). To make the Lorentz function reach this peak value, Λ was set to 3100 cm−2,
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from Eq. (2.17). The imaginary part of the complex refractive index ni found by Eq.
(2.16) from the Lorentz function is plotted as the blue dotted line in Fig.3.39 versus the
right y-axis together with the Qext (black line) versus the left y-axis, calculated by Eq.
(2.53). An inverted peak is created in the Qext at this wavenumber.

X 1610

Y 0.04277

Figure 3.39: The Qext plotted in a solid black line versus the left y-axis for a sphere
with nr = 1.5, a = 5µm and Lorentzian ni. The ni is given by a Lorentz function with
Γ = 15 cm−1 and Λ = 3100 cm−2 plotted in a dotted blue line versus the right y-axis with
a peak at ν̃ = 1610 cm−1 with A = 0.3 as indicated by the data tip.

The Qsca for the same scenario is calculated by the Eq. (2.54) given in Fig. 3.40. As for
the cylinder, knowing Qsca and the Qext for the sphere gives the Qabs from Eq. (2.22).
The result of Qabs is plotted in Fig. 3.41. A great decrease from the top of the wiggle
in Qsca is shown, explaining the inverted peak in Qext as well.
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X 1609

Y 2.683

Figure 3.40: The Qsca for a sphere with nr = 1.5, a = 5µm and Lorentzian ni with
Γ = 15 cm−1, Λ = 3100 cm−2, ν̃0 = 1610 cm−1 and peak corresponding to A = 0.3.

X 1610

Y 0.8072

Figure 3.41: The Qabs for a sphere with nr = 1.5, a = 5µm and Lorentzian ni with
Γ = 15 cm−1, Λ = 3100 cm−2, ν̃0 = 1610 cm−1 and peak corresponding to A = 0.3.
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Moving this absorption band to ν̃0 = 3530 cm−1and increasing the peak of pure ab-
sorbance from A = 0.3 to A = 0.5, the Λ becomes 5200 cm−2from Eqs. (2.13), (2.16)
and (2.17). This Lorentzian imaginary refractive index ni (dotted blue line) is plotted
versus the right y-axis together with the extinction efficiency factor Qext (solid black
line) versus the left axis in Fig. 3.42. The ripple at ν̃ = 3530 cm−1was situated on the
top of a wiggle, and an inverted peak is created in the Qext, in perfect harmony with
the absorption band.

X 3530

Y 0.03273

Figure 3.42: The Qext plotted in a solid black line versus the left y-axis for a sphere
with nr = 1.5, a = 5µm and Lorentzian ni. The ni is given by a Lorentz function with
Γ = 15 cm−1 and Λ = 5200 cm−2 plotted in a dotted blue line versus the right y-axis with
a peak at ν̃ = 3530 cm−1 with A = 0.5 as indicated by the data tip.

In this scenario the Qsca from Eq. (2.54) and Qabs from Eq. (2.22) are as in Figs. 3.43
and 3.44. A decrease in Qsca far greater than the increase of Qabs is seen also in this
scenario.
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X 3530

Y 1.725

Figure 3.43: The Qsca for a sphere with nr = 1.5, a = 5µm and Lorentzian ni with
Γ = 15 cm−1, Λ = 5200 cm−2, ν̃0 = 3530 cm−1 and peak corresponding to A = 0.5.

X 3530

Y 0.9257

Figure 3.44: The Qabs for a sphere with nr = 1.5, a = 5µm and Lorentzian ni with
Γ = 15 cm−1, Λ = 5200 cm−2, ν̃0 = 3530 cm−1 and peak corresponding to A = 0.5.
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3.3.3 Extinction efficiency for a sphere with Lorentz-shaped
absorption band outside ripples

As a comparison to how the absorption bands affect the extinction efficiency factor when
placed in ripples, two absorbance bands are put outside ripples. The two tested are set at
exactly ν̃0 = 1750 cm−1 and ν̃0 = 3250 cm−1. The one at ν̃0 = 1750 cm−1 represents that
of the absorption from stretches between C=O bands (vibrational spectroscopy). This
band is related to lipids, and have a FWHM of 15 cm−1, which means Γ is put at 15 cm−1.
With an absorbance peak of A = 0.3, the Λ becomes 3100 cm−2. The band at ν̃0 = 3250
cm−1 represents absorption from stretches in a O-H band (vibrational spectroscopy).
The FWHM of "several hundreds" is interpreted as Γ = 300 cm−1. In order to reach a
peak absorbance of A = 0.3, Λ becomes 63 000cm−2. This absorption band is related
to water and carbohydrates (Kohler et al., 2020). The extinction efficiency factor Qext

and the imaginary refractive index ni becomes as in Figs. 3.46 and 3.45.

Figure 3.45: The Qext for a sphere with nr = 1.5 and a = 5µm. Lorentz peak at
ν̃0 = 3530 cm−1with A = 0.3, Lorentz FWHM Γ = 300 cm−1 and Λ = 63000cm−2.
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X 1750

Y 0.03935

Figure 3.46: The Qext for a sphere with nr = 1.5 and a = 5µm. Lorentz peak at
ν̃0 = 1750cm−1with A = 0.3, Lorentz FWHM Γ = 15 cm−1 and Λ = 3100 cm−2.
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3.3.4 Inverted peaks found in experimental data

The inverted peaks created by absorption bands over ripples at high levels of scat-
tering (top of wiggle) as predicted by the results in this thesis (sections 3.1 and 3.3)
have been found in experimental data by µFTIR (Fourier-Transform Infrared) imaging.
Polyethylene was cooled by liquid nitrogen and milled into micrometer-sized particles
with random morphology. The spectroscope used was a Bruker Hyperion 3000 with a
15x objective system, which has a numerical aperture (NA) of 0.4. 64 scans was done
with a resolution of 8 cm−1. The microscope slide was a 1 mm ZnSe, and the background
was an empty slide.

As a reference spectrum, the pure absorbance (i. e. scatter-free) spectrum of a 25 µm
thick polyethylene foil is presented in Fig. 3.47. The only absorbance bands present are
those created by C-H stretching vibrations around ν̃ = 2900 cm−1, and those of C-C
stretching vibrations around ν̃ = 1470 cm−1 (both from CH2 and CH3 groups).

Figure 3.47: Pure absorbance (i.e. scatter-free) spectrum of a 25 µm thick polyethylene
foil.

Two apparent absorbance spectra are presented in Figs. 3.48 and 3.49. Since they
have randomly created different morphology, they have different scattering signatures
(wiggles). Notice that the inverted peaks are only present when the absorption band is
in the area of high scattering, i.e. on the top of a wiggle.
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Figure 3.48: Apparent spectrum of a µm-sized polyethylene particle. An inverted peak
is present around the high levels of scattering in the area of the ν̃ = 1470 cm−1 absorption
band.

Figure 3.49: Apparent spectrum of a µm-sized polyethylene particle. An inverted peak
is present around the high levels of scattering in the area of the ν̃ = 2900 cm−1 absorption
band.

The experimental data in this section have been provided by researcher Boris Zimmer-
mann.





4. Discussion

For both the cylinder cases, as well as for the spherical particle, a dampening of the
wiggles in the extinction efficiency factor Qext appeared when applying a constant
absorbance across the spectrum used (ν̃ = 1000 cm−1- 4000 cm−1). Thus, when a
Lorentzian absorption band was moved into a ripple, Qext was shoved from its cur-
rent position towards the damped position. This meant the ripple disappeared if it was
placed on the middle-value of a wiggle, making a smooth curve. At the extremity points,
the Qext was clearly pushed towards the damped position, making either a peak from
the bottom of a wiggle, or inverted peak from the top of a wiggle. With increasing pure
absorbance A, both inverted and normal peaks, grew in size. Thus, they made a more
and more clear dent in the usual curve of the wiggles.

It is apparent from the disk figures (Sec. 3.2) that the wave function for the scattered
plane wave greatly decreases as soon as absorbance is present. The WGMs representing
the ripples disappear, and this is seen also in the Qext figures as well. With absorbance,
the ripples disappear and the wiggles are pressed to smaller amplitudes in Qext (Secs.3.1
and 3.3).

Upon examining the efficiency factors for scattering and absorbance, Qsca and Qabs,
the inverted peaks in Qext are explained by the fact that Qsca is so greatly decreased
from the top of a wiggle when an absorbance band is put there, that although there
is absorbance and therefore increase in Qext from Qabs, the decrease in Qsca is much
greater. Another way of looking at it is that since Qsca is exponentially dependent on
the coefficient bn, which is dependent on the complex refractive index, m, and Qext is
only linearly dependent on <(bn) (within the summation). Therefore, Qsca will indeed
respond more to changes in the bn’s than Qext. Remember, Qabs is calculated by the
difference between these (Eq. (2.32)).

The Qext lessened in value across the spectrum when taking into account the numerical
aperture, NA, as one would expect when integrating over a smaller area. All though
Qext was generally decreased, the ripples where still intact. Therefore, it seems that
the WGMs are still radiating as greatly as before since they are mostly wavenumber
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dependent, as long as there is no absorbance. With absorbance, the NA will become
relevant however, since the absorbance spectra will depend on NA (van Dijk et al.,
2013).

It has been shown that for both increasing scaling factor x and imaginary part of the
refractive index ni, the wiggles of Qext are dampened (Sharma and Somerford, 2006).
So, in a way, there really shouldn’t be any surprise that when increasing ni in a smaller
area at the top, or bottom of a wiggle, it creates an inverted peak or a normal peak
respectively. Inverted peaks have been found in absorbance spectra from µFTIR imag-
ing, Figs. 3.48 and 3.49.The inverted peaks have earlier been discarded as artefacts in
absorbance spectra, but they have been predicted by Mie theory in this thesis.

The classical telltale sign for an absorbance band, the derivative shape, is visible when
one created by the Lorentz function is placed outside ripples, both in this thesis, Fig.
3.46 and other publications (Lukacs et al., 2015). However, when situated over one,
there is either a peak, an inverted peak, or a smooth curve, depending on the placement
on the wiggle. The disappearance of a ripple is a a sign of absorbance, even though there
might not be a derivative shape present in that area. The increase in light absorbed is
close to the same amount that is not being scattered anymore, making little apparent
change in Qext.

In studying raw absorbance spectra, it would be wise to look for regular peaks or inverted
peaks as well as the derivative shape in order to determine where there is absorbance.
This means algorithms correcting the raw absorbance spectra for Mie extinction, such
as the ME-EMSC, should consider to correct for absorbance where there are inverted
peaks or regular peaks instead of a derivative shape in the extinction. All though the
Qext is generally decreased somewhat as a consequence of regarding the NA, the ripples
stays intact, and studies examining the behavior of ripples, or WGMs could simplify
calculations by not regarding the NA.



5. Conclusions

When an absorbance band is put over a ripple at the top of a wiggle, an inverted peak
in the extinction efficiency factor Qext is created due to the great loss in scattering. A
regular peak is created in Qext when an absorbance band is put over a ripple on the
bottom of a wiggle. The most difficult case is when the ripple is placed mid-way on
the wiggle. In this case, the ripple do disappear, leaving a smooth curve, since the loss
in scattering is the same as that gained by absorbance. This observation was true for
both cylinders and spheres. An essential assumption done in this thesis is then that
cells can be interpreted as either a quasi-spherical or quasi-cylindrical particle, giving
the same results as the perfect geometric shapes. In addition, two different cases of
incident radiation was studied for the cylinder and the same outcome was yielded in
both scenarios. Different sizes of the radius a, refractive index m and absorbance A was
tested, all scenarios giving the same result. Inverted peaks have been found in apparent
absorbance spectra from µFTIR imaging in the area of expected absorption bands at
high levels of scattering (top of wiggle). These have earlier been discarded as artefacts,
but are now predicted by Mie theory and therefore a signature for an absorption band.
The Qext is dependent on the NA, but the ripple represented by the WGM are not.
Neither is the pattern of Qext, it is simply the size of it that decreases as NA increases.
Therefore, it is legit to do studies of ripples and WGM without calculating for the NA.
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Appendix A. MatLab script: Mie cylinder
with constant A and with Lorentz

% Exact e xp re s s i on f o r Qext og Qabs f o r an i n f i n i t e l y long c y l i n d e r .
% P lo t s Qext and the c o e f f i c i e n t s bn from Mie wi th ni=constant , and
% v a r i a b l e ni . The v a r i a b l e ni i s modeled wi th the Lorentz−f unc t i on .
%
% The i n c i d e n t l i g h t t r a v e l s pe rpend i cu l a ry to the c y l i n d e r a x i s . Case I
% and I I from van de Huls t wi th E− f i e l d p a r a l l e l l to the c y l i n d e r .
%
% Simen R n n e k l e i v Eriksen , 10 .03 .2020 , based on M. A. Brandsruds
% excac t Qext and Qabs a l gor i thm from 16.09.2019 and A. Kohlers
% a lgor i thm fo r the d i e l e c t i c f unc t i on .
% Theory from van de Huls t chap 15 and Lukacs e t a l . paper 2015

%%

clear a l l
close a l l

%I = case I = E− f i e l d p a r a l l e l l to c y l i n d e r a x i s
%I I = case I I = E− f i e l d pe rpend i cu l a r to c y l i n d e r a x i s

set ( groot , ’ d e f a u l t t e x t i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tLeg end In t e rp r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tAxe sT i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;

%Input :
nu_array = 1000 : 1 : 4 000 ;
Wavenumbers=num2str( nu_array ) ;
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lambda_array = 1./(100∗ nu_array ) ; %(2 :0 . 01 : 10 )∗1 e−6;

R = 5e−6; % Radius
%% Mie f o r c y l i n d e r

%% For the f i r s t Lorentz
nu1=2696; % Wavenumber f o r bn peak corresponding to r i p p l e
gamma=15; % gamma = 15 or 300
omega1=3800; % propo r t i ona l to absorbance , i n c r ea s e s Lorentz peak .

s1 = ca l_d i e l e c t r i cSu s c_ func (Wavenumbers , nu1 ,gamma, omega1 ) ;
%s u s c e p t i b i l i t y

e1 = 3.24 − s1 . d ; % e=1.69−s . d , 2.25− s . d , or 3.24− s . d
%d i e l e c t i c f unc t i on
m1. d = sqrt ( e1 ) ; %complex r e f r a c t i v e index
% nr_array=r e a l (m. d ) ;
% ni_array=−imag (m. d ) ; %the format o f t h i s code i s m = n_r−i ∗n_i ,
% wh i l e the susc−func has m = n_r + i ∗n_i

%% For the second Lorentz
nu2=3287; % Wavenumber f o r bn peak corresponding to r i p p l e
gamma=15; % gamma = 15 fo r nu0 ~= 1750 , or 120 f o r nu0~=3250
omega2=3800; % propo r t i ona l to absorbance , i n c r ea s e s Lorentz peak .

s2 = ca l_d i e l e c t r i cSu s c_ func (Wavenumbers , nu2 ,gamma, omega2 ) ;
%s u s c e p t i b i l i t y

e2 = 3.24 − s2 . d ; % e=1.69−s . d , 2.25− s . d , or 3.24− s . d
%d i e l e c t i c f unc t i on
m2. d = sqrt ( e2 ) ; %complex r e f r a c t i v e index

%% Sum v a r i a b l e s f o r Lorentz in complex r e f r a c t i v e index

mv = real (m1. d)+1 i . ∗ ( imag(m1. d)+imag(m2. d ) ) ;

x= 2∗pi∗R./ lambda_array ;
n_maks = max( ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ) ;
%=39, 24 , and 16 f o r R=10, 5 , and 2.5



71

b = zeros ( length ( nu_array ) , n_maks .∗2+1) ;
a = zeros ( length ( nu_array ) , n_maks .∗2+1) ;

for j j = 1 : length ( lambda_array )
x = 2∗pi∗R./ lambda_array ( j j ) ;
y = mv( j j )∗x ;

n_min = −ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ;

n = n_min : 1 : n_maks ;

QextI ( j j ) = 0 ;
QscaI ( j j ) = 0 ;
QextII ( j j ) = 0 ;
QscaII ( j j ) = 0 ;

k = 2∗pi/ lambda_array ( j j ) ;
rho = 2 .∗ k .∗R. ∗ (mv( j j )−1);

for kk = 1 : length (n)
Jx = b e s s e l j (n ( kk ) , x ) ;
dJx = 0 .5∗ ( b e s s e l j (n ( kk)−1 , x ) − b e s s e l j (n ( kk)+1 , x ) ) ;

Jy = b e s s e l j (n ( kk ) , y ) ;
dJy = 0 .5∗ ( b e s s e l j (n ( kk)−1 , y ) − b e s s e l j (n ( kk)+1 , y ) ) ;

Nx = bessely (n( kk ) , x ) ;
dNx = 0 .5∗ ( bessely (n( kk)−1 , x ) − bessely (n( kk)+1 , x ) ) ;

tan_beta = (mv( j j ) . ∗ dJy .∗ Jx − Jy .∗ dJx ) . / . . .
(mv( j j ) . ∗ dJy .∗Nx − Jy .∗dNx ) ;

tan_al fa = (dJy .∗ Jx − mv( j j ) . ∗ Jy .∗ dJx ) . / . . .
( dJy .∗Nx − mv( j j ) . ∗ Jy .∗dNx ) ;

b( j j , n ( kk)+n_maks+1) = tan_beta . / ( tan_beta − 1 i ) ;

a ( j j , n ( kk)+n_maks+1) = tan_al fa . / ( tan_al fa − 1 i ) ;

c ( j j , n ( kk)+n_maks+1) = b( j j , n ( kk)+n_maks+1)− . . .
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a ( j j , n ( kk)+n_maks+1);

QextI ( j j ) = QextI ( j j ) + (2/x ) . ∗ real (b( j j , . . .
n ( kk)+n_maks+1)) ;

% QextI0 ( i ) = QextI0 ( i ) + (2/ x ) .∗ r e a l ( b0 ( i , . . .
% n(p)+n_maks+1));

QscaI ( j j ) = QscaI ( j j ) + (2/x ) . ∗ abs (b( j j , . . .
n ( kk)+n_maks+1)) .^2 ;%b .∗ conj ( b ) ;

QextII ( j j ) = QextII ( j j ) + (2/x ) . ∗ real ( a ( j j , . . .
n ( kk)+n_maks+1)) ;

QscaII ( j j ) = QscaII ( j j ) + (2/x ) . ∗ abs ( a ( j j , . . .
n ( kk)+n_maks+1)) .^2 ;%a .∗ conj ( a ) ;

end

QabsI ( j j ) = QextI ( j j ) − QscaI ( j j ) ;
QabsII ( j j ) = QextII ( j j ) − QscaII ( j j ) ;

end
ReB = real (b ) ;
ImB = imag(b ) ;

ReA = real ( a ) ;
ImA = imag( a ) ;
%% Constant A

d_eff = (pi∗R) . / 2 ;
A = 0 . 3 ; %e i t h e r 0 .3 or 0 .5
n_i = (A.∗ log ( 1 0 ) ) . / ( 4 . ∗ pi .∗ d_eff .∗ nu_array . ∗ 1 0 0 ) ;
%Formula f o r imaginary par t o f m

mc = 1.8−1 i ∗n_i ; % m0=1.3−ni , 1.5−ni or 1.8−ni
% complex r e f r a c t i v e index

b0 = zeros ( length ( nu_array ) , n_maks .∗2+1) ;
a0 = zeros ( length ( nu_array ) , n_maks .∗2+1) ;
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for i i = 1 : length ( lambda_array )
x0 = 2∗pi∗R./ lambda_array ( i i ) ;
y0 = mc( i i )∗x0 ;

QextI0 ( i i ) = 0 ;
QscaI0 ( i i ) = 0 ;
QextII0 ( i i ) = 0 ;
QscaII0 ( i i ) = 0 ;

k0 = 2∗pi/ lambda_array ( i i ) ;
rho0 = 2 .∗ k0 .∗R. ∗ (mc( i i )−1);

for pp = 1 : length (n)
Jx0 = b e s s e l j (n (pp ) , x0 ) ;
dJx0 = 0 .5∗ ( b e s s e l j (n (pp)−1 , x0 ) − b e s s e l j (n (pp)+1 , x0 ) ) ;

Jy0 = b e s s e l j (n (pp ) , y0 ) ;
dJy0 = 0 .5∗ ( b e s s e l j (n (pp)−1 , y0 ) − b e s s e l j (n (pp)+1 , y0 ) ) ;

Nx0 = bessely (n(pp ) , x0 ) ;
dNx0 = 0 .5∗ ( bessely (n(pp)−1 , x0 ) − bessely (n(pp)+1 , x0 ) ) ;

tan_beta0 = (mc( i i ) . ∗ dJy0 .∗ Jx0 − Jy0 .∗ dJx0 ) . / . . .
(mc( i i ) . ∗ dJy0 .∗Nx0 − Jy0 .∗dNx0 ) ;

tan_al fa0 = ( dJy0 .∗ Jx0 − mc( i i ) . ∗ Jy0 .∗ dJx0 ) . / . . .
( dJy0 .∗Nx0 − mc( i i ) . ∗ Jy0 .∗dNx0 ) ;

b0 ( i i , n (pp)+n_maks+1) = tan_beta0 . / ( tan_beta0 − 1 i ) ;

a0 ( i i , n (pp)+n_maks+1) = tan_al fa0 . / ( tan_al fa0 − 1 i ) ;

c ( i i , n (pp)+n_maks+1) = b( i i , n (pp)+n_maks+1)−a ( i i , . . .
n (pp)+n_maks+1);

QextI0 ( i i ) = QextI0 ( i i ) + (2/ x0 ) . ∗ real ( b0 ( i i , . . .
n (pp)+n_maks+1)) ;

QscaI0 ( i i ) = QscaI0 ( i i ) + (2/ x0 ) . ∗ abs ( b0 ( i i , . . .
n (pp)+n_maks+1)) .^2 ;%b .∗ conj ( b ) ;

QextII0 ( i i ) = QextII0 ( i i ) + (2/ x0 ) . ∗ real ( a0 ( i i , . . .
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n(pp)+n_maks+1)) ;
QscaII0 ( i i ) = QscaII0 ( i i ) + (2/ x0 ) . ∗ abs ( a0 ( i i , . . .

n (pp)+n_maks+1)) .^2 ;%a .∗ conj ( a ) ;

end

QabsI0 ( i i ) = QextI0 ( i i ) − QscaI0 ( i i ) ;
QabsII0 ( i i ) = QextII0 ( i i ) − QscaII0 ( i i ) ;

end
ReB0 = real ( b0 ) ;
ImB0 = imag( b0 ) ;

ReA0 = real ( a0 ) ;
ImA0 = imag( a0 ) ;

%% FIGURES fo r Case I

bcn1 = 37 ; % the s p e s i f i c bn you want to p l o t ,
% g iven as the column numnber : n_maks+1+n

bcn2 = 40 ; % the s p e s i f i c bn you want to p l o t ,
% g iven as the column numnber : n_maks+1+n

f 2 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ; %Q_ext
yyax i s r i g h t
% p l o t ( nu_array , ni_array , ’m’ )
plot ( nu_array , ReB( : , bcn1 ) , ’ : c ’ , ’ Linewidth ’ , 6)
hold on
plot ( nu_array , ReB0 ( : , bcn1 ) , ’ :m’ , ’ Linewidth ’ , 6)
plot ( nu_array , ReB( : , bcn2 ) , ’ : k ’ , ’ Linewidth ’ , 6)
plot ( nu_array , ReB0 ( : , bcn2 ) , ’ : y ’ , ’ Linewidth ’ , 6)
ylabel ( ’ $\Re(b_{n}) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
yyax i s l e f t
plot ( nu_array , QextI ( : ) , ’−b ’ , ’ Linewidth ’ , 8)
plot ( nu_array , QextI0 ( : ) , ’−−g ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , . . .

’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
ylabel ( ’$Q_{ext }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
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set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
l egendIn fo2 = [ ’$b_{12}$␣with␣Lorentz ’ ] ;
l e gendIn fo22 = [ ’$b_{12}$␣ f o r ␣$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
l egendIn fob1 = [ ’$b_{15}$␣with␣Lorentz ’ ] ;
l egendInfobb1 = [ ’$b_{15}$␣ f o r ␣$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
l egendIn fob2 = [ ’$Q_{ext }$␣Mie␣with␣Lorentz ’ ] ;
l egendInfobb2 = [ ’$Q_{ext }$␣Mie␣ f o r ␣$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
%vary the bn
legend ( l egendInfob2 , legendInfobb2 , l egendIn fo2 , l egendIn fo22 , . . .

l egendInfob1 , legendInfobb1 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , . . .
’ no r thout s ide ’ , ’ FontSize ’ , 28)

%Zoomed f i g u r e
%z_values = (501 :1501) ; % fo r nu0 ~= 1750
%z_values = (1501 :3001) ; % fo r nu0 ~=3250

%high res (0 .05 s t e p s ) zoomed f i g u r e
% z_values = (10001 :30001) ;
%
% f z = f i g u r e ( ’ co lor ’ , [ 1 1 1 ] ) ;
% yyax i s l e f t
% p l o t ( nu_array ( z_values ) , QextI ( z_values ) , ’−b ’ , ’ Linewidth ’ , 8)
% ho ld on
% p l o t ( nu_array ( z_values ) , QextI0 ( z_values ) , ’ : g ’ , ’ Linewidth ’ , 8)
% x l a b e l ( ’ $\ t i l d e {\nu}$ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .
% ’ FontSize ’ , 24 ) ;
% y l a b e l ( ’$Q_{ ex t }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24 ) ;
% ax i s ( [ min( nu_array ( z_values ) ) max( nu_array ( z_values ) ) . . .
% 0.9∗min(min( QextI0 ( z_values ) ) ) 1.1∗max(max( QextI0 ( z_values ) ) ) ] )
% s e t ( gca , ’XDir ’ , ’ reverse ’ , ’ FontSize ’ , 24)
% yyax i s r i g h t
% % p l o t ( nu_array , ni_array , ’m’ )
% p l o t ( nu_array ( z_values ) , ReB( z_values , bcn ) , ’−c ’ , ’ Linewidth ’ , 6)
% p l o t ( nu_array ( z_values ) , ReB0( z_values , bcn ) , ’ :m’ , ’ Linewidth ’ , 6)
% y l a b e l ( ’ $\Re(b_{n})$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24 ) ;
% l e g1 = legend ( ’$Q_{ ex t }$ Mie wi th Lorentz ’ , . . .
% ’$Q_{ ex t }$ Mie $n_{ i } = 0$ ’ , ’ $b_{16}$ wi th Lorentz ’ , . . .
% ’$b_{16}$ wi th $n_{ i }=0$ ’ , ’ Location ’ , ’ nor thou t s ide ’ )
% %vary the bn



76APPENDIX A. MATLAB SCRIPT: MIE CYLINDER WITH CONSTANTAAND WITH LORENTZ

% s e t ( leg1 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts ize ’ , 24)

f 3 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ; %Q_sca
plot ( nu_array , QscaI ( : ) , ’−b ’ , ’ Linewidth ’ , 8)
hold on
plot ( nu_array , QscaI0 ( : ) , ’ : g ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .

’ FontSize ’ , 2 4 ) ;
ylabel ( ’$Q_{ sca }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
l egendIn fo3 = [ ’$Q_{ sca }$␣Mie␣with␣Lorentz ’ ] ;
l e gendIn fo33 = [ ’$Q_{ sca }$␣Mie␣ f o r ␣$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
legend ( l egendIn fo3 , l egendIn fo33 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , . . .

’ no r thout s ide ’ , ’ FontSize ’ , 28)

f 4 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ; %Q_abs
plot ( nu_array , QabsI ( : ) , ’−b ’ , ’ Linewidth ’ , 8)
hold on
plot ( nu_array , QabsI0 ( : ) , ’ : g ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .

’ FontSize ’ , 2 4 ) ;
ylabel ( ’$Q_{abs}$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
l egendIn fo4 = [ ’$Q_{abs}$␣Mie␣with␣Lorentz ’ ] ;
l e gendIn fo44 = [ ’$Q_{abs}$␣Mie␣ f o r ␣$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
legend ( l egendIn fo4 , l egendInfo44 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , . . .

’ no r thout s ide ’ , ’ FontSize ’ , 28)
%

Lz = −imag(mv) ; %Lorentz
mci = −imag(mc ) ; %ni wi th cons tant A

f 5 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ; %Lorentz ver sus ni wi th cons tant A
plot ( nu_array , Lz , ’−b ’ , ’ Linewidth ’ , 8)
hold on
plot ( nu_array , mci , ’−−g ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .

’ FontSize ’ , 2 4 ) ;
ylabel ( ’$n_{ i }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
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set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
l egendIn fo5 = [ ’$n_{ i }$␣with␣Lorentz ’ ] ;
l e gendIn fo55 = [ ’$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
legend ( l egendIn fo5 , l egendInfo55 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , . . .

’ no r thout s ide ’ , ’ FontSize ’ , 28)

%% FIGURES fo r Case I I

acn1 = 37 ; % the s p e s i f i c an you want to p l o t ,
% g iven as the column numnber : n_maks+1+n

acn2 = 40 ; % the s p e s i f i c an you want to p l o t ,
% g iven as the column numnber : n_maks+1+n

f 2 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ; %Q_ext
yyax i s r i g h t
plot ( nu_array , ReA( : , acn1 ) , ’ : c ’ , ’ Linewidth ’ , 6)
hold on
plot ( nu_array , ReA0 ( : , acn1 ) , ’ :m’ , ’ Linewidth ’ , 6)
plot ( nu_array , ReA( : , acn2 ) , ’ : k ’ , ’ Linewidth ’ , 6)
plot ( nu_array , ReA0 ( : , acn2 ) , ’ : y ’ , ’ Linewidth ’ , 6)
ylabel ( ’ $\Re(a_{n}) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
yyax i s l e f t
plot ( nu_array , QextII ( : ) , ’−b ’ , ’ Linewidth ’ , 8)
plot ( nu_array , QextII0 ( : ) , ’−−g ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .

’ FontSize ’ , 2 4 ) ;
ylabel ( ’$Q_{ext }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
l egendIn fo2 = [ ’$a_{12}$␣with␣Lorentz ’ ] ;
l e gendIn fo22 = [ ’$a_{12}$␣ f o r ␣$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
l egendIn fob1 = [ ’$a_{15}$␣with␣Lorentz ’ ] ;
l egendInfobb1 = [ ’$a_{15}$␣ f o r ␣$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
l egendIn fob2 = [ ’$Q_{ext }$␣Mie␣with␣Lorentz ␣ f o r ␣Case␣ I I ’ ] ;
l egendInfobb2 = [ ’$Q_{ext }$␣Mie␣ f o r ␣Case␣ I I ␣with ’ . . .

’$n_{ i }$␣and␣$A$␣=␣ ’ num2str(A) ] ;
%vary the an
legend ( l egendInfob2 , legendInfobb2 , l egendIn fo2 , l egendIn fo22 , . . .

l egendInfob1 , legendInfobb1 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , . . .
’ no r thout s ide ’ , ’ FontSize ’ , 28)
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f 3 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ; %Q_sca
plot ( nu_array , QscaII ( : ) , ’−b ’ , ’ Linewidth ’ , 8)
hold on
plot ( nu_array , QscaII0 ( : ) , ’ : g ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .

’ FontSize ’ , 2 4 ) ;
ylabel ( ’$Q_{ sca }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
l egendIn fo3 = [ ’$Q_{ sca }$␣Mie␣with␣Lorentz ␣ f o r ␣Case␣ I I ’ ] ;
l e gendIn fo33 = [ ’$Q_{ sca }$␣Mie␣␣ f o r ␣Case␣ I I ␣with␣$n_{ i }$␣and␣$A$␣=␣ ’ . . .

num2str(A) ] ;
legend ( l egendIn fo3 , l egendInfo33 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , . . .

’ no r thout s ide ’ , ’ FontSize ’ , 28)

f 4 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ; %Q_abs
plot ( nu_array , QabsII ( : ) , ’−b ’ , ’ Linewidth ’ , 8)
hold on
plot ( nu_array , QabsII0 ( : ) , ’ : g ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .

’ FontSize ’ , 2 4 ) ;
ylabel ( ’$Q_{abs}$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
l egendIn fo4 = [ ’$Q_{abs}$␣Mie␣with␣Lorentz ␣ f o r ␣Case␣ I I ’ ] ;
l e gendIn fo44 = [ ’$Q_{abs}$␣Mie␣␣ f o r ␣Case␣ I I ␣with␣$n_{ i }$␣and␣$A$␣=␣ ’ . . .

num2str(A) ] ;
legend ( l egendIn fo4 , l egendInfo44 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , . . .

’ no r thout s ide ’ , ’ FontSize ’ , 28)

Lz = −imag(mv) ; %Lorentz
mci = −imag(mc ) ; %ni wi th cons tant A

f 5 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ; %Lorentz ver sus ni wi th cons tant A
plot ( nu_array , Lz , ’−b ’ , ’ Linewidth ’ , 8)
hold on
plot ( nu_array , mci , ’−−g ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .

’ FontSize ’ , 2 4 ) ;
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ylabel ( ’$n_{ i }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
l egendIn fo5 = [ ’$n_{ i }$␣with␣Lorentz ’ ] ;
l e gendIn fo55 = [ ’$n_{ i }$␣with␣$A$␣=␣ ’ num2str(A) ] ;
legend ( l egendIn fo5 , l egendInfo55 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , . . .

’ no r thout s ide ’ , ’ FontSize ’ , 28)





Appendix B. MatLab script: bn-ripple-pairs

% Exact e xp re s s i on f o r Qext og Qabs f o r an i n f i n i t e l y long c y l i n d e r .
% P lo t s Qext and s e l e c t i v e c o e f f i c i e n t s bn from Mie wi th ni =0.
%
% The i n c i d e n t l i g h t t r a v e l s pe rpend i cu l a ry to the c y l i n d e r a x i s .
% Case I from van de Huls t wi th E− f i e l d p a r a l l e l l to the c y l i n d e r .
%
% Simen R n n e k l e i v Eriksen , date 24 .03 .2020 , based on M. A. Brandsruds
% excac t Qext and Qabs a l gor i thm from 16.09.2019
%
% Theory from van de Huls t chap 15.

%%

clear a l l
close a l l

%I = case I = E− f i e l d p a r a l l e l l to c y l i n d e r a x i s
%I I = case I I = E− f i e l d pe rpend i cu l a r to c y l i n d e r a x i s

set ( groot , ’ d e f a u l t t e x t i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tLeg end In t e rp r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tAxe sT i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;

%Input :
nu_array = 1000 : 1 : 4 000 ;

lambda_array = 1./(100∗ nu_array ) ;

R = 10e−6;
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nr = 1 . 3 ;
n i = 0 . 0 ; %Assume no imaginary r e f r a c t i o n

%% Mie f o r c y l i n d e r

m = nr − ni ∗1 i ;

x= 2∗pi∗R./ lambda_array ;
n_maks = max( ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ) ;

b = zeros ( length ( nu_array ) , n_maks .∗2+1) ;
a = zeros ( length ( nu_array ) , n_maks .∗2+1) ;

for j = 1 : length ( lambda_array )
x= 2∗pi∗R./ lambda_array ( j ) ;
y = m∗x ;

nu_min = −ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ;
nu_max = ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ;

n = nu_min : 1 : nu_max ;

QextI ( j ) = 0 ; %Mie r i p p l e s
QscaI ( j ) = 0 ;
QextII ( j ) = 0 ;
QscaII ( j ) = 0 ;

k = 2∗pi/ lambda_array ( j ) ;
rho = 2∗k∗R∗(m−1);

for kk = 1 : length (n)
Jx = b e s s e l j (n ( kk ) , x ) ;
dJx = 0 .5∗ ( b e s s e l j (n ( kk)−1 , x ) − b e s s e l j (n ( kk)+1 , x ) ) ;

Jy = b e s s e l j (n ( kk ) , y ) ;
dJy = 0 .5∗ ( b e s s e l j (n ( kk)−1 , y ) − b e s s e l j (n ( kk)+1 , y ) ) ;

Nx = bessely (n( kk ) , x ) ;
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dNx = 0 .5∗ ( bessely (n( kk)−1 , x ) − bessely (n( kk)+1 , x ) ) ;

tan_beta = (m.∗ dJy .∗ Jx − Jy .∗ dJx ) . / (m.∗ dJy .∗Nx − Jy .∗dNx ) ;
tan_al fa = (dJy .∗ Jx − m.∗ Jy .∗ dJx ) . / ( dJy .∗Nx − m.∗ Jy .∗dNx ) ;

b( j , n ( kk)+n_maks+1) = tan_beta . / ( tan_beta − 1 i ) ;
a ( j , n ( kk)+n_maks+1) = tan_al fa . / ( tan_al fa − 1 i ) ;

c ( j , n ( kk)+n_maks+1) = b( j , n ( kk)+n_maks+1)−a ( j , . . .
n ( kk)+n_maks+1);

QextI ( j ) = QextI ( j ) + (2/x ) . ∗ real (b( j , n ( kk)+n_maks+1)) ;
%Mie r i p p l e s
QscaI ( j ) = QscaI ( j ) + (2/x ) . ∗ abs (b( j , n ( kk)+n_maks+1)) .^2 ;
%b .∗ conj ( b ) ;
QextII ( j ) = QextII ( j ) + (2/x ) . ∗ real ( a ( j , n ( kk)+n_maks+1)) ;
QscaII ( j ) = QscaII ( j ) + (2/x ) . ∗ abs ( a ( j , n ( kk)+n_maks+1)) .^2 ;
%a .∗ conj ( a ) ;

end

QabsI ( j ) = QextI ( j ) − QscaI ( j ) ;
QabsII ( j ) = QextII ( j ) − QscaII ( j ) ;

end
ReB = real (b ) ;
ImB = imag(b ) ;

ReA = real ( a ) ;
ImA = imag( a ) ;

%% FIGURE fo r case I
%
% f2 = f i g u r e ( ’ co lor ’ , [ 1 1 1 ] ) ;
% yyax i s r i g h t
% % p l o t ( nu_array , ReB( : , : ) ) %p l o t s a l l bns
% p l o t ( nu_array , ReB( : , 1 2 ) , ’ : c ’ , ’ Linewidth ’ , 8)
% % Put a column number to r ep re s en t a bn
% ho ld on
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% p l o t ( nu_array , ReB( : , 1 4 ) , ’ :m’ , ’ Linewidth ’ , 8)
% % Put a column number to r ep re s en t a bn
% y l a b e l ( ’ $\Re(b_{n})$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
% ax i s ( [ min( nu_array ) max( nu_array ) 0 1 ] )
% yyax i s l e f t
% p l o t ( nu_array , QextI ( : ) , ’−k ’ , ’ Linewidth ’ , 8)
% x l a b e l ( ’ $\ t i l d e {\nu}$ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , . . .
% ’ Latex ’ , ’ FontSize ’ , 24)
% s e t ( gca , ’XDir ’ , ’ reverse ’ , ’ FontSize ’ , 24)
% y l a b e l ( ’$Q_{ ex t }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
% ax i s ( [ min( nu_array ) max( nu_array ) 0.9∗min(min( QextI ) ) . . .
% 1.1∗max(max( QextI ) ) ] )
% l e g1 = legend ( ’$Q_{ ex t }$ ’ , ’ $b_{?}$ ’ , ’ $b_{?}$ ’ , ’ Location ’ , . . .
% ’ ea s t ou t s i d e ’ ) ; %Ca l l the co r r e c t bn from n− l i s t
% s e t ( l eg1 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts ize ’ , 24)

%% FIGURE fo r case I I

f 3 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ;
yyax i s r i g h t
% p l o t ( nu_array , ReB( : , : ) ) %p l o t s a l l bns
plot ( nu_array , ReA( : , 5 8 ) , ’ : c ’ , ’ Linewidth ’ , 8)
%Put a column number to r ep r e s en t a bn
hold on
plot ( nu_array , ReA( : , 6 4 ) , ’ :m’ , ’ Linewidth ’ , 8)
%Put a column number to r ep r e s en t a bn
ylabel ( ’ $\Re(b_{n}) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
axis ( [ min( nu_array ) max( nu_array ) 0 1 ] )
yyax i s l e f t
plot ( nu_array , QextII ( : ) , ’−k ’ , ’ Linewidth ’ , 8)
xlabel ( ’ $\ t i l d e {\nu}$␣ ( $\ f r a c {1}{cm}$ ) ’ , ’ I n t e r p r e t e r ’ , . . .

’ Latex ’ , ’ FontSize ’ , 24)
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
ylabel ( ’$Q_{ext }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
axis ( [ min( nu_array ) max( nu_array ) 0 .9∗min(min( QextII ) ) . . .

1 .1∗max(max( QextII ) ) ] )
l e g1 = legend ( ’$Q_{ext }$␣Case␣ I I ’ , ’ $a_{18}$ ’ , ’$a_{24}$ ’ , . . .

’ Locat ion ’ , ’ e a s t ou t s i d e ’ ) ; %Cal l the co r r e c t bn from n− l i s t
set ( leg1 , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts i z e ’ , 24)



Appendix C. MatLab script: Qsca integral for
cylinder case 1

%% Qsca i n t e g r a l over numerical aper ture f o r c y l i n d e r
clear a l l
c lc

%% Define parameters
v = 1000 : 1 : 4 000 ; % L i s t o f wavenumbers in cm^−1
lambda = 1 . / ( v ∗100) ; % Wavelength in m
a = 10e−6; % Radius o f the c y l i n d e r in m
x = 2∗pi∗a . / lambda ; % Sca l ing f a c t o r array
n_max = max( ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ) ; % Maximum n
n_min = −max( ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ) ; % Minimum n
n = n_min : 1 : n_max ; % L i s t o f n ’ s
ni = 0 ;
m = 1.5 − 1 i ∗ ni ; % Complex r e f r a c t i v e index
y = m.∗ x ; % Second s c a l i n g f a c t o r
NA = [0 0 .2 0 .35 0 .5 0 . 6 5 ] ; % L i s t o f d i f f e r e n t numerical ape r tu re s

%% The I n t e g r a l wi th regard to numerical aper ture

for kk = 1 : length (NA)
t_min = asin (NA(kk ) ) ; % Sta r t o f i n t e g r a t i o n area
t_max = 2∗pi − t_min ; % End of i n t e g r a t i o n area
theta = t_min : 0 . 0 1 : t_max ;
% The ang l e s the i n t e g r a l i s c a l c u l a t e d over
bn = zeros ( length ( v ) , length (n ) ) ;

for i i = 1 : length ( v )
Qsca ( i i , kk ) = 0 ;
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x = 2∗pi∗a . / lambda ( i i ) ; % Sca l ing f a c t o r
y = m.∗ x ; % Second s c a l i n g f a c t o r

for j j = 1 : length (n)

% Functions dependent on x
Jx = b e s s e l j (n ( j j ) , x ) ; % Besse l Function o f f i r s t k ind
dJx = 0 . 5 . ∗ ( b e s s e l j (n ( j j )−1 , x ) − b e s s e l j (n ( j j )+1 ,x ) ) ;
% Der i va t i v e o f Bes se l f unc t i on o f f i r s t k ind
Hx = be s s e l h (n( j j ) , 2 , x ) ; % Second Hankel Function
dHx = 0 . 5 . ∗ ( b e s s e l h (n( j j )−1 , 2 , x ) − be s s e l h (n( j j )+1 , 2 , x ) ) ;
% Der i va t i v e o f Second Hankel Function

%Functions dependent o f y
Jy = b e s s e l j (n ( j j ) , y ) ; % Besse l Function o f f i r s t k ind
dJy = 0 . 5 . ∗ ( b e s s e l j (n ( j j )−1 , y ) − b e s s e l j (n ( j j )+1 ,y ) ) ;
% Der i va t i v e o f Bes se l f unc t i on o f f i r s t k ind

% Hy = b e s s e l h (n , 2 , y ) ; % Second Hankel Function
% dHy = 0 . 5 .∗ ( b e s s e l h (n−1, 2 , y ) − b e s s e l h (n+1, 2 , y ) ) ;
% Der i va t i v e o f Second Hankel Function

bn( i i , j j ) =(m.∗ dJy .∗ Jx−Jy .∗ dJx ) . / (m.∗ dJy .∗Hx−Jy .∗dHx ) ;
% The c o e f f i c i e n t bn

Qsca ( i i , kk ) = Qsca ( i i , kk ) + 1/(pi .∗ x ) . ∗ trapz ( theta , . . .
(abs (bn ( i i , j j ) . ∗ exp(1 i .∗n( j j ) . ∗ theta ) ) ) . ^ 2 ) ;

% S c a t t e r i n g e f f i c i e n c y c a l c u l a t e d wi th t r ap e z o i d method

end

end
end

%% Plot f i g u r e

cmap = colormap ( jet ( length (NA) ) ) ;

f 1 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ;
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for kk = 1 : length (NA)
i f ni == 0

Qext = Qsca ;
plot (v , Qext ( : , kk ) , ’ c o l o r ’ , cmap(kk , : ) , ’ Linewidth ’ , 6 ) ;
hold on
Leg{kk} = [ ’$Q_{ext }$␣with␣$m$␣=␣ ’ num2str(m) ’ ␣and␣$a$␣=␣ ’ . . .

num2str( a ) ’ ␣by␣ i n t e g r a l ␣with␣ regard ␣ to ␣NA␣=␣ ’ . . .
num2str(NA(kk ) ) ] ;

else
plot (v , Qsca ( : , kk ) , ’ c o l o r ’ , cmap(kk , : ) , ’ Linewidth ’ , 6 ) ;
hold on
Leg{kk} = [ ’$Q_{ sca }$␣with␣$m$␣=␣ ’ num2str(m) ’ ␣and␣$a$␣=␣ ’ . . .

num2str( a ) ’ ␣by␣ i n t e g r a l ␣with␣ regard ␣ to ␣NA␣=␣ ’ num2str(NA(kk ) ) ] ;
end

end
legend ( Leg , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , ’ no r thout s ide ’ , . . .

’ FontSize ’ , 28)
xlabel ( ’Wavenumber␣ [ cm$^{−1}$ ] ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 2 4 ) ;
i f ni == 0

ylabel ( ’$Q_{ext }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
else
ylabel ( ’$Q_{ sca }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
end





Appendix D. MatLab script: Qsca integral with
Lorentz

%% Qsca i n t e g r a l over numerical aper ture f o r c y l i n d e r
clear a l l
close a l l
c lc

%% Define parameters f o r Qsca
v = 1000 : 1 : 4 000 ; % L i s t o f wavenumbers in cm^−1
lambda = 1 . / ( v ∗100) ; % Wavelength in m
a = 10e−6; % Radius o f the c y l i n d e r in m
x = 2∗pi∗a . / lambda ; % Sca l ing f a c t o r array
n_max = max( ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ) ; % Maximum n
n_min = −max( ce i l ( x + 4∗x .^ (1/3 ) + 2 ) ) ; % Minimum n
n = n_min : 1 : n_max ; % L i s t o f n ’ s
NA = [0 0 .2 0 .35 0 .5 0 . 6 5 ] ; % L i s t o f d i f f e r e n t numerical ape r tu re s

%% Define parameters f o r Lorentz
v0 = 3128 ; % Wavenumber f o r bn peak corresponding to r i p p l e
Wavenumbers = num2str( v ) ;
Gamma = 15 ; % gamma = 15 or 300
Lambda = 2300 ; % propo r t i ona l to absorbance , i n c r ea s e s Lorentz peak .
s = ca l_d i e l e c t r i cSu s c_ func (Wavenumbers , v0 , Gamma, Lambda ) ;
%s u s c e p t i b i l i t y
e = 1.69 − s . d ; % e=1.69−s . d , 2.25− s . d , or 3.24− s . d
%d i e l e c t i c f unc t i on
m. d = sqrt ( e ) ; %complex r e f r a c t i v e index

%% The I n t e g r a l wi th regard to numerical aper ture
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for kk = 1 : length (NA)
t_min = asin (NA(kk ) ) ; % Sta r t o f i n t e g r a t i o n area
t_max = 2∗pi − t_min ; % End of i n t e g r a t i o n area
theta = t_min : 0 . 0 1 : t_max ;
% The ang l e s the i n t e g r a l i s c a l c u l a t e d over
bn = zeros ( length ( v ) , length (n ) ) ;

for i i = 1 : length ( v )
Qsca ( i i , kk ) = 0 ;
x = 2∗pi∗a . / lambda ( i i ) ; % Sca l ing f a c t o r
y = m. d( i i ) . ∗ x ; % Second s c a l i n g f a c t o r

for j j = 1 : length (n)

% Functions dependent on x
Jx = b e s s e l j (n ( j j ) , x ) ; % Besse l Function o f f i r s t k ind
dJx = 0 . 5 . ∗ ( b e s s e l j (n ( j j )−1 , x ) − b e s s e l j (n ( j j )+1 ,x ) ) ;
% Der i va t i v e o f Bes se l f unc t i on o f f i r s t k ind
Hx = be s s e l h (n( j j ) , 2 , x ) ; % Second Hankel Function
dHx = 0 . 5 . ∗ ( b e s s e l h (n( j j )−1 , 2 , x ) − be s s e l h (n( j j )+1 , 2 , x ) ) ;
% Der i va t i v e o f Second Hankel Function

%Functions dependent o f y
Jy = b e s s e l j (n ( j j ) , y ) ; % Besse l Function o f f i r s t k ind
dJy = 0 . 5 . ∗ ( b e s s e l j (n ( j j )−1 , y ) − b e s s e l j (n ( j j )+1 ,y ) ) ;
% Der i va t i v e o f Bes se l f unc t i on o f f i r s t k ind

% Hy = b e s s e l h (n , 2 , y ) ; % Second Hankel Function
% dHy = 0 . 5 .∗ ( b e s s e l h (n−1, 2 , y ) − b e s s e l h (n+1, 2 , y ) ) ;

% Der i va t i v e o f Second Hankel Function

bn( i i , j j ) =(m. d( i i ) . ∗ dJy .∗ Jx−Jy .∗ dJx ) . / (m. d( i i ) . ∗ dJy .∗Hx− . . .
Jy .∗dHx ) ; % The c o e f f i c i e n t bn

Qsca ( i i , kk ) = Qsca ( i i , kk ) + 1/(pi .∗ x ) . ∗ trapz ( theta , . . .
(abs (bn ( i i , j j ) . ∗ exp(1 i .∗n( j j ) . ∗ theta ) ) ) . ^ 2 ) ;

% S c a t t e r i n g e f f i c i e n c y c a l c u l a t e d wi th t r ap e z o i d method

end
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end
end

%% Plot f i g u r e

cmap = colormap ( jet ( length (NA) ) ) ;
f 1 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ;
for kk = 1 : length (NA)

plot (v , Qsca ( : , kk ) , ’ c o l o r ’ , cmap(kk , : ) , ’ Linewidth ’ , 6 ) ;
hold on
Leg{kk} = [ ’$Q_{ sca }$␣with␣Lorentz ␣and␣$a$␣=␣ ’ num2str( a ) . . .

’ ␣by␣ i n t e g r a l ␣ over ␣NA␣=␣ ’ num2str(NA(kk ) ) ] ;
end
legend (Leg , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , ’ no r thout s ide ’ , . . .

’ FontSize ’ , 28)
xlabel ( ’Wavenumber␣ [ cm$^{−1}$ ] ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
ylabel ( ’$Q_{ sca }$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 2 4 ) ;
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 2 4 ) ;





Appendix E. MatLab script: Disk exact

% Disk_Scatter ing15122016 .m

% Ca l cu l a t e s the wave func t i on f o r a two−diment iona l system
% Inc lude s co r r e c t s o l u t i o n f o r the d iagona l e lements o f G
% Sta r t in upper l e f t corner f o r a l l arrays e t c −−> agree wi th reshape ()
% Have make f unc t i on s to do the d i f f e r e n t pa r t s to make a n i ce r program
%
% ONLY FOR DISKS ! !
% Exact s o l u t i o n o f G at d iagona l ! NB! dx=dy ! !

%%

clear a l l
close a l l

set ( groot , ’ d e f a u l t t e x t i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tLeg end In t e rp r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tAxe sT i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;

addpath ( ’C:\ Users \Documents\MATLAB’ )

%% INPUT:
% nu_array = [1807 2600 3128 ] ; %For d i s k1
% nu_array = [2696 3287 ] ; %For d i s k2
nu_array = [ 3 2 8 7 ] ;
% ni =0 .00 :0 . 002 :0 . 032 ;
% ni = [ 0 . 0 0.011 0.014 0.02 0.023 0 . 0 3 2 ] ; %For d i s k1
ni = [ 0 . 0 0 .021 0 .026 0 .036 0 . 0 4 4 ] ; %For d i s k2
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for j j j = 1 : length ( nu_array )
wl = 1 ./(100∗ nu_array ( j j j ) ) ; % Wavelength

f o l d e r = [ ’C:\ Users \Simen\Documents\MATLAB’ , num2str( nu_array ( j j j ) ) ] ;
i f ~exist ( f o l d e r , ’ d i r ’ )

mkdir ( f o l d e r )
end

for i i = 1 : length ( n i )
kk = 0 ;

Nx=1080; % Reso lu t ion in x−d i r e c t i o n
Ny=1080; % Reso lu t ion in y−d i r e c t i o n
N=Nx∗Ny; % No of e lements in matrix .
NCx=1; % No of d i s k s in x−d i r e c t i o n
NCy=1; % No of d i s k s in y−d i r e c t i o n
R = 5e−6; % Radius R
F = 2 ; % Size o f frame as f r a c t i o n o f R
n_index=1.8+1 i ∗ ni ( i i ) ; % Re f ra c t i v index o f the d i s k ( s )
n_index_ec = 1 ; %Index o f energy conver t ing mate r ia l
l t =0; %l a y e r t h i c k n e s s as a f r a c t i o n o f R

%Incoming wave
planewave = 1 ;

% For c a l c u l a t i o n s o f ps i_exact and s−matrix
nu = ( −40 :1 : 40 ) ;

p o t e n t i a l = 1 ;

%% D i s c r e t i z a t i o n
%Make the g r i d . S t a r t in upper l e f t corner and make po in t s downwards .
%Center o f the d i s k i s a t o r i go .
a=2∗NCx∗R∗(1+F) ; % Width
b=2∗NCy∗R∗(1+F+l t ) ; % Hight
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dx=a/Nx ; % spac ing in x−d i r e c t i o n
dy=b/Ny ; % spac ing in y−d i r e c t i o n

x=zeros (1 ,N) ;
y=zeros (1 ,N) ;
x_axis=zeros (1 ,Nx ) ;
y_axis=zeros (1 ,Ny ) ;
%Make the g r i d . S t a r t in upper l e f t corner and make po in t s downwards .
%Center o f the d i s k i s a t o r i go .

j =0;
for i =1:Nx

for l =1:Ny
j = j +1;
x ( j )=−R∗(1+F)+( i −0.5)∗dx ;
y ( j )= R∗(1+F+l t )−( l −0.5)∗dy ;
y_axis ( l )=y ( j ) ;

end
x_axis ( i )=x ( j ) ;

end

clear i j l
%% P o t e n t i a l
[ v , v_test , v_test_outside , v_test_ec ] = c r e a t e p o t e n t i a l (N, NCx , . . .

NCy, R, F , x , y , n_index , n_index_ec , po t en t i a l , l t ) ;

% %Plot p o t e n t i a l
% vMat=reshape ( r e a l ( v ) , Ny , Nx ) ;
% f i g u r e ( ’ Color ’ , [ 1 1 1 ] )
% h1 = pco lo r ( vMat ) ;
% s e t ( h1 , ’ EdgeColor ’ , ’ none ’ ) ; % Uten l i n j e r
% t i t l e ( { [ ’ The p o t e n t i a l ’ ] , [ ’ n_d_i_s_k = ’ num2str ( n_index ) ] } )
% ax i s i j
% co l o r ba r

%% Cac lu l a t e incoming wave
for m = 1 : length ( wl )

lambda = wl (m) ;
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phi = 0 ;%3∗ p i /2;
k = 2∗pi/lambda ;
kx=k∗cos ( phi ) ;
ky=k∗ sin ( phi ) ;

%% Ca l cu l a t e the exac t wave func t i on
i f ( planewave )

ps i_exact = psi_exact_planewave (k , x , y , R, nu , . . .
n_index , v_test , v_test_outs ide ) ;

end

psi_exact_reshaped=(reshape ( psi_exact ,Ny,Nx ) ) ;
Xplot2=abs ( psi_exact_reshaped ) . ∗ abs ( psi_exact_reshaped ) ;

i f i i == 1
cmax = max(max( Xplot2 ) ) ;

end

Eint ( i i ,m) = sum(sum( ps i_exact .∗ conj ( ps i_exact ) ) . ∗ v_test∗dy∗dx ) ;

f 2 = f igure ( ’ Color ’ , [ 1 1 1 ] ) ;
h2 = pcolor ( Xplot2 ) ;
set ( h2 , ’ EdgeColor ’ , ’ none ’ ) ; % Uten l i n j e r
t i t l e ( [ ’ $\ t i l d e {\nu}$␣=␣ ’ num2str( nu_array ( j j j ) ) . . .

’ ␣$\ f r a c {1}{cm}$ , ␣m␣=␣ ’ num2str( real ( n_index ) ) . . .
’ ␣−␣ ’ num2str( n i ( i i ) ) ’ i ’ ] , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

% This t h e s i s w r i t e s m = nr − ni ∗ l i
axis i j
colorbar
caxis ( [ 0 cmax ] ) %cons tant s c a l e
pbaspect ( [NCx NCy 1 ] )
shading i n t e rp ;

%s a v e f i g ( f2 , [ f o l d e r , ’/ f2_n_i_ ’ , num2str ( ni ( i i ) ) , ’ . f i g ’ ] )
saveas ( f2 , [ f o l d e r , ’ /a5um_nr ’ num2str( real ( n_index ) ) ’_Disk_v ’ . . .
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num2str( nu_array ( j j j ) ) ’_ni_ ’ ,num2str( n i ( i i ) ) , ’ . png ’ ] , ’ png ’ )

close ( f 2 )

end

end

i f (0 )
f 1 = f igure ( ’ c o l o r ’ , [ 1 1 1 ] ) ;
cmap=colormap ( jet ( length ( n i ) ) ) ;
for i i = 1 : length ( n i )

plot ( wl∗1e6 , Eint ( i i , : ) , ’ Color ’ , cmap( i i , : ) )
hold on
l eg end In f o { i i } = [ ’$m␣$␣=␣ ’ num2str( real ( n_index ) ) ’ ␣−␣ ’ . . .

num2str( n i ( i i ) ) , ’ i ’ ] ;
end
plot ( [ 8 . 7 1 3 5 8 . 7 1 35 ] , [min(min( Eint ) )∗0 . 9 max(max( Eint ) ) ∗ 1 . 1 ] , ’−−k ’ )
legend ( l egendIn fo , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 28)
xlabel ( ’ $\lambda$␣ ( $\mu$m) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 32)
ylabel ( ’ $\ i n t ␣ |E_{ d i sk }|^2 ␣dA$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 28)
end

%% MOVIE
%
% fi l ename = [ f o l d e r , ’/ video_ ’ , num2str ( nu_array ( j j j ) ) ] ;
%
% wri t e rOb j = VideoWriter ( f i l ename ) ;
%
% wri t e rOb j . FrameRate = 1;
% open ( wr i t e rOb j ) ;
% fo r K = 1: l e n g t h ( ni )
% f i l ename4 = [ f o l d e r , ’\ f2_n_i_0 .0000 ’ , num2str ( ni (K)) , ’ . png ’ ] ;
% f i l ename3 = [ f o l d e r , ’\ f2_n_i_0 .000 ’ , num2str ( ni (K) ) , ’ . png ’ ] ;
% f i l ename2 = [ f o l d e r , ’\ f2_n_i_0 .00 ’ , num2str ( ni (K)) , ’ . png ’ ] ;
% f i l ename1 = [ f o l d e r , ’\ f2_n_i_0 .0 ’ , num2str ( ni (K) ) , ’ . png ’ ] ;
% f i l ename0 = [ f o l d e r , ’\ f2_n_i_ ’ , num2str ( ni (K)) , ’ . png ’ ] ;
%
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%
% i f i s f i l e ( f i l ename4 )
% th i s image = imread ( f i l ename4 ) ;
% wri teVideo ( wri terObj , t h i s image ) ;
% e l s e i f i s f i l e ( f i l ename3 )
% th i s image = imread ( f i l ename3 ) ;
% wri teVideo ( wri terObj , t h i s image ) ;
% e l s e i f i s f i l e ( f i l ename2 )
% th i s image = imread ( f i l ename2 ) ;
% wri teVideo ( wri terObj , t h i s image ) ;
% e l s e i f i s f i l e ( f i l ename1 )
% th i s image = imread ( f i l ename1 ) ;
% wri teVideo ( wri terObj , t h i s image ) ;
% e l s e i f i s f i l e ( f i l ename0 )
% th i s image = imread ( f i l ename0 ) ;
% wri teVideo ( wri terObj , t h i s image ) ;
% end
% end
% c l o s e ( wr i t e rOb j ) ;

end



Appendix F. MatLab function: Create Po-
tential

function [ v , v_test , v_test_outside , v_test_ec ] = c r e a t e p o t e n t i a l (N , . . .
NCx, NCy, R, F , x , y , n_index , n_index_ec , po t en t i a l , l t )

v=zeros (1 ,N) ;
v_test=zeros (1 ,N) ;
v_test_outs ide = ones (1 ,N) ;
v_test_ec = zeros (1 ,N) ;

n_mirror = 1+50∗1 i ;

for m=1:N
for nx=1:NCx

for ny=1:NCy
switch po t e n t i a l

case 1 %di s k in a i r
x c i r c l e =(2∗(nx−1))∗R∗(1+F) ;
y c i r c l e =−(2∗(ny−1))∗R∗ ( 1 ) ;
rn=sqrt ( ( x (m)− x c i r c l e )∗ ( x (m)− x c i r c l e )+ . . .

( y (m)− y c i r c l e )∗ ( y (m)− y c i r c l e ) ) ;
i f ( rn<=R)

v (m)=1.0−n_index∗n_index ;
v_test (m) = 1 ;
v_test_outs ide (m) = 0 ;

end

case 2 %f u l l y embedded d i s k
x c i r c l e =(2∗(nx−1))∗R∗(1+F) ;
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y c i r c l e =−(2∗(ny−1))∗R∗ ( 1 ) ;
rn=sqrt ( ( x (m)− x c i r c l e )∗ ( x (m)− x c i r c l e )+(y (m) − . . .

y c i r c l e )∗ ( y (m)− y c i r c l e ) ) ;
i f ( rn<=R)

v (m)=1.0−n_index∗n_index ;
v_test (m) = 1 ;
v_test_outs ide (m) = 0 ;

e l s e i f ( v_test (m)== 0)
v (m) = 1.0−n_index_ec∗n_index_ec ;

end

case 3 %h a l f l y embedded d i s k
x c i r c l e =(2∗(nx−1))∗R∗(1+F) ;
y c i r c l e =−(2∗(ny−1))∗R∗ ( 1 ) ;
rn (m)=sqrt ( ( x (m)− x c i r c l e )∗ ( x (m)− x c i r c l e )+(y (m) − . . .

y c i r c l e )∗ ( y (m)− y c i r c l e ) ) ;

i f ( rn (m)<=R)
v (m)=1.0−n_index∗n_index ;
v_test (m) = 1 ;
v_test_outs ide (m) = 0 ;

e l s e i f ( y (m)<0) && ( v_test (m)== 0)
v (m) = 1.0−n_index_ec∗n_index_ec ;

end

case 4
x c i r c l e =(2∗(nx−1))∗R∗(1+F+l t ) ;
y c i r c l e =−(2∗(ny−1))∗R∗(1+ l t ) ;
rn (m)=sqrt ( ( x (m)− x c i r c l e )∗ ( x (m)− x c i r c l e )+(y (m) − . . .

y c i r c l e )∗ ( y (m)− y c i r c l e ) ) ;

i f ( rn (m)<=R)
v (m)=1.0−n_index∗n_index ;
v_test (m) = 1 ;
v_test_outs ide (m) = 0 ;

e l s e i f ( y (m)<−R) && ( v_test (m)== 0) && (y (m) . . .
> −(R+l t ∗R))

v (m) = 1.0−n_index_ec∗n_index_ec ;
v_test_ec (m) = 1 ;
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end

case 5
x c i r c l e =(2∗(nx−1))∗R∗(1+F+l t ) ;
y c i r c l e =−(2∗(ny−1))∗R∗(1+ l t ) ;
rn (m)=sqrt ( ( x (m)− x c i r c l e )∗ ( x (m)− x c i r c l e )+(y (m) − . . .

y c i r c l e )∗ ( y (m)− y c i r c l e ) ) ;

i f ( rn (m)<=R)
v (m)=1.0−n_index∗n_index ;
v_test (m) = 1 ;
v_test_outs ide (m) = 0 ;

e l s e i f ( y (m)<−R) && ( v_test (m)== 0) && (y (m) . . .
> −(R+0.5∗ l t ∗R))

v (m) = 1.0−n_index_ec∗n_index_ec ;
v_test_ec (m) = 1 ;

e l s e i f ( y (m)<−(R+0.8∗ l t ∗R)) && ( v_test (m)== 0) &&.. .
( y (m) > −(R+0.9∗ l t ∗R))

v (m) = 1.0−n_mirror∗n_mirror ;
end

end
end

end
end

end





Appendix G. MatLab function: Ψ exact plane
wave

function psi_exact = psi_exact_planewave (k , x , y , R, nu , . . .
n_index , v_test , v_test_outs ide )

phi_prime = angle ( x+1 i ∗y ) ;
ps i_exact = 0 ;
K = k∗n_index ;

for t = 1 : length (nu )
Jnu_inside = b e s s e l j (nu ( t ) , K∗sqrt ( x .^2 + y . ^ 2 ) ) ;
Jnu_outside = b e s s e l j (nu ( t ) , k∗sqrt ( x .^2 + y . ^ 2 ) ) ;
Hnu_outside = be s s e l h (nu( t ) , 1 , k∗sqrt ( x .^2 + y . ^ 2 ) ) ;

Jk = b e s s e l j (nu ( t ) , k∗R) ;
JK = b e s s e l j (nu ( t ) ,K∗R) ;

i f nu( t ) == 0
dJk = −b e s s e l j (1 , k∗R) ; %dJ_0 = −J_1
dJK = −b e s s e l j (1 ,K∗R) ;

else
dJk = 0 .5∗ ( b e s s e l j (nu ( t )−1 ,k∗R)− b e s s e l j (nu ( t )+1 ,k∗R) ) ;
dJK = 0.5∗ n_index ∗( b e s s e l j (nu ( t )−1 ,K∗R)− b e s s e l j (nu ( t )+1 ,K∗R) ) ;

end

H1 = be s s e l h (nu( t ) , 1 , k∗R) ;
dH1 = 0 .5∗ ( b e s s e l h (nu( t )−1 ,1 ,k∗R)−be s s e l h (nu( t )+1 ,1 ,k∗R) ) ;

NominatorB_l ( t ) = (1 i ^nu( t ) )∗ ( dH1∗Jk − dJk∗H1 ) ;
DenominatorB_l ( t ) = (dH1∗JK − dJK∗H1 ) ;
Bl ( t ) = NominatorB_l ( t )/DenominatorB_l ( t ) ;
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NominatorAana ( t ) = (1 i ^nu( t ) )∗ ( dJk∗JK−Jk∗dJK ) ;
DenominatorAna ( t ) = H1∗dJK−dH1∗JK;
A_l( t ) = NominatorAana ( t ) . / DenominatorAna ( t ) ;

ps i_exact= psi_exact + (Bl ( t )∗ Jnu_inside .∗exp(1 i ∗nu( t ) . . .
.∗ phi_prime ) ) . ∗ v_test + . . .
(1 i ^nu( t ) . ∗ Jnu_outside + A_l( t ) . ∗ Hnu_outside ) . . .
.∗exp(1 i ∗nu( t ) . ∗ phi_prime ) . ∗ v_test_outs ide ;

end



Appendix H. MatLab script: Mie sphere

%c l o s e a l l
clear a l l

set ( groot , ’ d e f a u l t t e x t i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tLeg end In t e rp r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tAxe sT i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;

addpath ( ’C:\ Users \simen\Documents\MATLAB\metzler_qext_sphere \ func t i on s ’ )

a =5∗1e−6; %rad ius o f sphere in m
wn = (1000 : 10 : 5000 )∗100 ; %wave number in 1/m
x = 2∗pi∗wn.∗ a ;

nr = 1.5∗ones (1 , length (wn ) ) ;
%wavenumber dependent r e a l par t o f r e f . i n f
ni0 = 0.0∗ones (1 , length (wn ) ) ;
%wave number dependen imag par t o f r e f . ind
ni002 = 0.002∗ones (1 , length (wn ) ) ;
n i005 = 0.005∗ones (1 , length (wn ) ) ;
n i01 = 0.01∗ones (1 , length (wn ) ) ;
n i02 = 0.02∗ones (1 , length (wn ) ) ;
%% Plot r e f r a c t i v e i n d i c e s :
% f i g u r e ( ’ co lor ’ , [ 1 1 1 ] )
% p l o t (wn/100 , nr , wn/100 , ni )
% s e t ( gca , ’XDir ’ , ’ reverse ’ )
% l e g end In f o {1} = [ ’ $\Re(n)$ ’ ] ;
% l e g end In f o {2} = [ ’ $\Im(n)$ ’ ] ;
% t i t l e ( ’ Re f r a c t i v e index o f PMMA’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )
% legend ( l egendIn fo , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ l o ca t i on ’ , . . .
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% ’ southwest ’ , ’ FontSize ’ , 12)
% x l a b e l ( ’ $\ t i l d e {\nu}$ [ cm$^{−1}]$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .
% ’ FontSize ’ , 18)

%% Ca l cu l a t e exac t Mie f o r a complex r e f r a c t i v e index

%MieQabs_complex = [ ] ;
%MieQsca_complex = [ ] ;
MieQext_complex0 = [ ] ;
MieQext_complex002 = [ ] ;
MieQext_complex005 = [ ] ;
MieQext_complex01 = [ ] ;
MieQext_complex02 = [ ] ;

for j j =1: length ( x )
m0 = nr ( j j ) + 1 i ∗ni0 ( j j ) ; %complex r e f r a c t i v e index
MieExt0 = mie (m0, x ( j j ) ) ; %Mie Ext from Metz l er
MieQext_complex0 = [ MieQext_complex0 , MieExt0 ( 4 ) ] ;
%Qext f o r a sphere

%MieQabs_complex = [ MieQabs_complex , MieExt ( 6 ) ] ;
%MieQsca_complex = [ MieQsca_complex , MieExt ( 5 ) ] ;

end
for kk=1: length ( x )

m002 = nr ( kk ) + 1 i ∗ni002 ( kk ) ; %complex r e f r a c t i v e index
MieExt002 = mie (m002 , x ( kk ) ) ; %Mie Ext from Metz l er
MieQext_complex002 = [ MieQext_complex002 , MieExt002 ( 4 ) ] ;
%Qext f o r a sphere

%MieQabs_complex = [ MieQabs_complex , MieExt ( 6 ) ] ;
%MieQsca_complex = [ MieQsca_complex , MieExt ( 5 ) ] ;

end
for l l =1: length ( x )

m005 = nr ( l l ) + 1 i ∗ni005 ( l l ) ; %complex r e f r a c t i v e index
MieExt005 = mie (m005 , x ( l l ) ) ; %Mie Ext from Metz l er
MieQext_complex005 = [ MieQext_complex005 , MieExt005 ( 4 ) ] ;
%Qext f o r a sphere

%MieQabs_complex = [ MieQabs_complex , MieExt ( 6 ) ] ;
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%MieQsca_complex = [ MieQsca_complex , MieExt ( 5 ) ] ;
end
for aa=1: length ( x )

m01 = nr ( aa ) + 1 i ∗ni01 ( aa ) ; %complex r e f r a c t i v e index
MieExt01 = mie (m01 , x ( aa ) ) ; %Mie Ext from Metz l er
MieQext_complex01 = [ MieQext_complex01 , MieExt01 ( 4 ) ] ;
%Qext f o r a sphere

%MieQabs_complex = [ MieQabs_complex , MieExt ( 6 ) ] ;
%MieQsca_complex = [ MieQsca_complex , MieExt ( 5 ) ] ;

end
for dd=1: length ( x )

m02 = nr (dd) + 1 i ∗ni02 (dd ) ; %complex r e f r a c t i v e index
MieExt02 = mie (m02 , x (dd ) ) ; %Mie Ext from Metz l er
MieQext_complex02 = [ MieQext_complex02 , MieExt02 ( 4 ) ] ;
%Qext f o r a sphere

%MieQabs_complex = [ MieQabs_complex , MieExt ( 6 ) ] ;
%MieQsca_complex = [ MieQsca_complex , MieExt ( 5 ) ] ;

end

%%

f igure ( ’ c o l o r ’ , [ 1 1 1 ] )
plot (wn/100 , MieQext_complex0 , ’−k ’ , ’ Linewidth ’ , 6)
hold on
plot (wn/100 , MieQext_complex002 , ’ : gX ’ , ’ Linewidth ’ , 6)
plot (wn/100 , MieQext_complex005 , ’−−m’ , ’ Linewidth ’ , 6)
plot (wn/100 , MieQext_complex01 , ’ : r ’ , ’ Linewidth ’ , 6)
plot (wn/100 , MieQext_complex02 , ’−−c ’ , ’ Linewidth ’ , 6)
set (gca , ’XDir ’ , ’ r e v e r s e ’ )
l e g end In f o {1} = [ ’$Q_{ext }$␣with␣$n_{ i }=0$ ’ ] ;
l e g end In f o {2} = [ ’$Q_{ext }$␣with␣$n_{ i }=0.002$ ’ ] ;
l e g end In f o {3} = [ ’$Q_{ext }$␣with␣$n_{ i }=0.005$ ’ ] ;
l e g end In f o {4} = [ ’$Q_{ext }$␣with␣$n_{ i }=0.01$ ’ ] ;
l e g end In f o {5} = [ ’$Q_{ext }$␣with␣$n_{ i }=0.02$ ’ ] ;
%t i t l e ( ’$Q_{ ex t }$ PMMA’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )
legend ( l egendIn fo , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ l o c a t i o n ’ , ’ northwest ’ , . . .

’ FontSize ’ , 24)



108 APPENDIX H. MATLAB SCRIPT: MIE SPHERE

xlabel ( ’ $\ t i l d e {\nu}$␣ [ cm$^{−1}]$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .
’ FontSize ’ , 24)



Appendix I. MatLab script: Mie sphere with
Lorentz

close a l l
clear a l l

set ( groot , ’ d e f a u l t t e x t i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tLeg end In t e rp r e t e r ’ , ’ l a t e x ’ ) ;
set ( groot , ’ d e f au l tAxe sT i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;

addpath ( ’C:\ Users \simen\Documents\MATLAB\metzler_qext_sphere \ func t i on s ’ )

a =5∗1e−6; %rad ius o f sphere in m
nu_array = 1000 : 1 : 4 000 ;
wn = nu_array ∗100 ; %wave number in 1/m
x = 2∗pi∗wn.∗ a ;

nr = 1.5∗ones (1 , length (wn ) ) ;
%wavenumber dependent r e a l par t o f r e f . i n f
% ni = 0.0∗ ones (1 , l e n g t h (wn ) ) ;
%wave number dependen imag par t o f r e f . ind
nu0=3530;
gamma=15;
omega=5200;
Wavenumbers=num2str( nu_array ) ; %Wavenumbers in 1/cm
s = ca l_d i e l e c t r i cSu s c_ func (Wavenumbers , nu0 ,gamma, omega ) ;
e = nr .^2 + s . d ;
m. d = sqrt ( e ) ;
%% Plot r e f r a c t i v e i n d i c e s :
% f i g u r e ( ’ co lor ’ , [ 1 1 1 ] )
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% p l o t ( str2num (Wavenumbers ) , nr , str2num (Wavenumbers ) , imag (m. d ))
% s e t ( gca , ’XDir ’ , ’ reverse ’ )
% l e g end In f o {1} = [ ’ $\Re(n)$ ’ ] ;
% l e g end In f o {2} = [ ’ $\Im(n)$ ’ ] ;
% t i t l e ( ’ Re f r a c t i v e index o f PMMA’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )
% legend ( l egendIn fo , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ l o ca t i on ’ , ’ southwest ’ , . . .
% ’ FontSize ’ , 12)
% x l a b e l ( ’ $\ t i l d e {\nu}$ [ cm$^{−1}]$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , . . .
% ’ FontSize ’ , 18)

%% Ca l cu l a t e exac t Mie f o r a complex r e f r a c t i v e index

MieQabs_complex = [ ] ;
MieQsca_complex = [ ] ;
MieQext_complex = [ ] ;

for j j =1: length ( x )
%m. d( j j ) = nr ( j j ) + 1 i ∗m. d( j j ) ; %complex r e f r a c t i v e index
MieExt = mie (m. d( j j ) , x ( j j ) ) ; %Mie Ext from Metz l er
MieQext_complex = [ MieQext_complex , MieExt ( 4 ) ] ; %Qext f o r a sphere

MieQabs_complex = [ MieQabs_complex , MieExt ( 6 ) ] ;
MieQsca_complex = [ MieQsca_complex , MieExt ( 5 ) ] ;

end

%%
f igure ( ’ c o l o r ’ , [ 1 1 1 ] )
plot (str2num(Wavenumbers ) , MieQabs_complex , ’−k ’ , ’ Linewidth ’ , 6)
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
t i t l e ( ’$Q_{abs}$␣PMMA’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
%legend ( l egendIn fo , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ l o ca t i on ’ , ’ southwest ’ , ’ FontSize ’ , 12)
xlabel ( ’ $\ t i l d e {\nu}$␣ [ cm$^{−1}]$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
ylabel ( ’$Q_{abs}$ ’ )

f igure ( ’ c o l o r ’ , [ 1 1 1 ] )
plot (str2num(Wavenumbers ) , MieQsca_complex , ’−k ’ , ’ Linewidth ’ , 6)
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
t i t l e ( ’$Q_{ sca }$␣PMMA’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
%legend ( l egendIn fo , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ l o ca t i on ’ , ’ southwest ’ , ’ FontSize ’ , 12)
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xlabel ( ’ $\ t i l d e {\nu}$␣ [ cm$^{−1}]$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
ylabel ( ’$Q_{ sca }$ ’ )

f igure ( ’ c o l o r ’ , [ 1 1 1 ] )
yyax i s l e f t
plot (str2num(Wavenumbers ) , MieQext_complex , ’−k ’ , ’ Linewidth ’ , 6)
set (gca , ’XDir ’ , ’ r e v e r s e ’ , ’ FontSize ’ , 24)
ylabel ( ’$Q_{ext }$ ’ )
yyax i s r i g h t
plot (str2num(Wavenumbers ) , imag(m. d ) , ’ : b ’ , ’ Linewidth ’ , 6)
l e g end In f o {2} = [ ’ $\Im(m) $␣ f o r ␣PMMA␣ sphere ␣with␣a␣=␣ ’ num2str( a ) ’ $\mu$m␣with␣Lorentz ’ ] ;
l e g end In f o {1} = [ ’$Q_{ext }$␣ f o r ␣PMMA␣ sphere ␣with␣a␣=␣ ’ num2str( a ) ’ $\mu$m␣with␣Lorentz ’ ] ;
%t i t l e ( ’$Q_{ ex t }$ PMMA’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )
legend ( l egendIn fo , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ l o c a t i o n ’ , ’ no r thout s ide ’ , ’ FontSize ’ , 24)
xlabel ( ’ $\ t i l d e {\nu}$␣ [ cm$^{−1}]$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ FontSize ’ , 24)
ylabel ( ’ $n_i$ ’ )
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