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Bead-based multiplex immunoassays are promising tools for determination of the

specific humoral immune response. In this study, we developed a multiplexed

bead-based immunoassay for the detection of Atlantic salmon (Salmo salar) antibodies

against Piscine orthoreovirus (PRV). Three different genotypes of PRV (PRV-1, PRV-2,

and PRV-3) cause disease in farmed salmonids. The PRV outer capsid spike protein

σ1 is predicted to be a host receptor binding protein and a target for neutralizing

and protective antibodies. While recombinant σ1 performed poorly as an antigen to

detect specific antibodies, N-terminal lipid modification of recombinant PRV-1 σ1 enabled

sensitive detection of specific IgM in the bead-based assay. The specificity of anti-

PRV-1 σ1 antibodies was confirmed by western blotting and pre-adsorption of plasma.

Binding of non-specific IgM to beads coated with control antigens also increased after

PRV infection, indicating a release of polyreactive antibodies. This non-specific binding

was reduced by heat treatment of plasma. The same immunoassay also detected

anti-PRV-3 σ1 antibodies from infected rainbow trout. In summary, a refined bead based

immunoassay created by N-terminal lipid-modification of the PRV-1 σ1 antigen allowed

sensitive detection of anti-PRV-1 and anti-PRV-3 antibodies from salmonids.

Keywords: Atlantic salmon (Salmo salar L.), antibody, IgM, bead-based immunoassay,Piscine orthoreovirus (PRV),

heart and skeletal muscle inflammation, heat inactivated plasma

INTRODUCTION

Atlantic salmon (Salmo salar L.) aquaculture has become an intensive and large-scale industry,
and control of infectious diseases is an increasingly important task. Infectious diseases may be
counteracted by vaccination, however, vaccine development against viral diseases in Atlantic
salmon has not been straightforward, and few commercially available, efficient virus vaccines, are
in use (1). An associated challenge has been to identify good correlates of protection, i.e., assays that
can predict protective immunity (2). Important here are assays for detection of specific antibodies.
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Bead-based multiplex immunoassays, such as the Luminex
xMAP technology, have been successfully used to detect
mammalian antibodies for more than a decade (3–5).
This method has the potential to detect specific antibodies
against several antigens simultaneously, and can be used
to identify antibodies directed against a wide range of
antigens in one sample using small amounts of antigens
and sample material. According to producers, the cost of
the xMAP assay is about half the cost of the same analysis
using an Enzyme-Linked Immunosorbent Assays (ELISA)
(www.bio-rad.com/webroot/web/pdf/lsr/literature/6313.pdf).
The possibility to measure multiple analytes in the same sample
further decrease the cost of each analysis. In addition to this,
the xMAP assay is time-saving, can be used with much smaller
sample volumes, uses around 1/50 the amount of capture antigen
and offers broader dynamic range and higher sensitivity (3, 6, 7).
The first bead-based multiplex immunoassays made to detect
virus-specific antibodies in farmed Atlantic salmon were created
and published in 2017 (8).

In mammals, the dominating circulating antibody isotype is
IgG, while IgM is generally of lower affinity and comparatively
more polyreactive (9); hence most assays to detect mammalian
specific antibody responses target IgG. In contrast, the
dominating isotype in teleost fish serum is IgM (10), requiring
antibody responses to be measured within this compartment.
The limited specificity of IgM is expected to give rise to detection
of unspecific targets in fish, experienced as false positives in
an antibody assay. Serology, i.e., detecting previous exposure
to specific pathogen antigen by antibody repertoires, has not
been widely used in aquaculture, but is commonly used for
humans and in terrestrial animal husbandry for diagnosis and
surveillance purposes. ELISAs with whole viral particles or
recombinant viral proteins as capture antigen and neutralization
bioassays have been used for diagnostics in aquaculture (11–15),
but these methods require relatively large volumes of sample
material and are time-consuming and costly when analyzing for
antibodies against multiple target antigens.

Piscine orthoreovirus (PRV) belongs to the genus
Orthoreovirus in the family Reoviridae, which have a segmented
double-stranded RNA genome enclosed in a double-layered
icosahedral capsid. Different PRV genotypes cause diseases in
farmed salmonids; including PRV-1 mediated heart and skeletal
muscle inflammation (HSMI) in Atlantic salmon (16, 17), PRV-2
mediated erythrocytic inclusion body syndrome (EIBS) in coho
salmon (Onchorhynchus kisutchi) in Japan (18), and PRV-3
mediated anemia and HSMI-like heart pathology in rainbow
trout (Onchorhynchus mykiss) in Europe (19–22).

HSMI is one of the most prevalent diseases in farmed
Atlantic salmon in Norway (16, 23, 24), and is reported from
farmed salmon in several other countries as well (25–27).
During the course of HSMI in Atlantic salmon, the virus peak
occurs after replication in the red blood cells (24). This is
followed by infection of myocytes (28), which is associated
with inflammation in the heart- and skeletal red muscles (16,
17, 29). Typical histopathological signs include epi-, endo- and
myocarditis, myositis, and necrosis of myocardium and red
skeletal muscle (30). Mortality from HSMI varies from 0 to 20%

in a net-pen, but near 100% of the fish show histopathological
changes (31). Experiments have associated HSMI with reduced
tolerance to hypoxic stress, which may increase mortality
(32). PRV-1 is ubiquitous in farmed Atlantic salmon a few
months after sea entry, presumably due to a combination of
virus, host and management factors such as infectivity, host
susceptibility, amounts of shedding, farms size, density of farms,
and persistence of infection (33). Persistence of PRV-1 has also
been associated with melanized foci in white skeletal muscle (34).

PRV-3 can infect both rainbow trout and Atlantic salmon,
but with a slower replication rate and less heart pathology in
salmon (20). The virus has been detected in farmed salmonids
in several European countries and Chile (22, 25, 35, 36), and
in wild seatrout (Salmo trutta) and Atlantic salmon in Norway
(37). PRV-3 has an 80–90% nucleotide and amino acid sequence
identity to PRV-1, and rabbit antisera raised against PRV-
1 proteins cross-reacts with PRV-3 proteins (35). Secondary
structure predictions also support a high conservation of protein
structure between homologous PRV-1 and PRV-3 proteins (35).

The information on protein structure and function in PRV is
limited. Mammalian orthoreovirus (MRV) has been extensively
studied, and based on strong conservation of secondary structure,
is used as a model for predicting PRV structure and infection
cycle. Based on sequence homology toMRV and other reoviruses,
a PRV particle is predicted to consist of nine proteins forming
the inner and outer capsids, and there are three additional non-
structural proteins involved in the replication process in the
infected cell (38). InMRV, trimers of the σ1 protein form spikes in
the outer capsid and is the cell attachment protein and serotype
determinant (39–41). Genetic analysis of PRV indicate that σ1
is the cell attachment protein for PRV as well (38). Monoclonal
antibodies directed against MRV σ1 have been shown to be
neutralizing (42).

Bead-based multiplex immunoassays using recombinant
outer capsid µ1c and virus-factory µNS proteins were
recently used to demonstrate PRV-specific IgM in plasma
from experimentally PRV-1-infected Atlantic salmon (8) and
PRV-3-infected rainbow trout (21). Recombinant PRV σ1
was also tested (8), but failed to bind antibodies from plasma
efficiently. The PRV σ1 spike protein is particularly interesting,
as it is likely to be the receptor binding protein, and antibodies
directed against epitopes on σ1 could be virus neutralizing
and protective.

Common bacterial expression systems can synthetize
misfolded proteins or proteins without the correct post-
translational modifications. This is a likely explanation of
why the previously tested PRV σ1 failed at binding antibodies
in the immunoassay. Lipid modification is a natural part
of post-translational modifications of proteins targeting the
outer or inner membrane in gram negative bacteria (43). The
lipid-modification and membrane localization can contribute
to a more correct conformation of the recombinant protein
compared to cytosolic production. Bacterial lipid modification is
controlled via an N-terminal signal peptide in the prolipoprotein.
Through the secretory and twin-arginine translocation (Sec and
Tat) pathways (44), three consecutive enzymatic steps lead to
modification of a cysteine residue in the signal peptide, turning
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it into N-acyl S-diacylglyceryl cysteine (45). In addition to
affecting the protein conformation, lipid modification can also
help proteins attach to hydrophobic surfaces, like the polystyrene
plastic in ELISA plates, in the right conformation via their
hydrophobic lipid part. This is a potential way of improving a
diagnostic immunoassay (46, 47). In this manner, an ELISA using
the ICP11 protein of shrimp white spot syndrome virus (WSSV)
was recently optimized using bacterial lipid modification (46).

We targeted recombinant PRV σ1 for the bacterial lipid
modification system by fusing it to an N-terminal peptide
containing the Tat prolipoprotein signaling sequence in the
pG-TL vector, thereby targeting it for modification with an
N-acyl-S-diacylglyceryl moiety (48). By coupling this modified
antigen (LM-PRVσ1) to beads in the multiplex immunoassay,
we were able to detect specific antibodies against PRV σ1. Here,
we demonstrate the Atlantic salmon antibody response against
PRV-1 σ1, and the cross-reactivity with rainbow trout antibodies
against PRV-3 σ1.

MATERIALS AND METHODS

Experimental PRV-1 Infection Trial and
Blood Sampling in Atlantic Salmon
Plasma for antibody detection was collected from infected
and uninfected groups of Atlantic salmon (SalmoBreed strain)
from a PRV-1 challenge trial described in detail in Lund et
al. (32). The trial was approved by the Norwegian Animal
Research Authority and performed in accordance with the
recommendations of the current animal welfare regulations:
FOR-1996-01-15-23 (Norway).

In brief, seawater-adapted Atlantic salmon from the
SalmoBreed strain (Bergen, Norway), confirmed negative for
PRV and other pathogenic viruses, were kept in filtered and
UV-irradiated brackish water (25‰ salinity), 12◦C (±1◦C)
with continuous light. At Day 0, shedder fish (N = 235) were
anesthetized (benzocaine chloride, 50 mg/L, Apotekproduksjon
AS, Oslo, Norway), i.p. injected with 0.1ml of an inoculum
made from pelleted blood cells collected from a previous PRV
trial (49). The virus in this material (PRV NOR2012-V3621)
originates from a Norwegian field outbreak in 2012, and have
been purified, characterized and used to prove causality between
PRV and HSMI (17). A high level of PRV RNA was previously
indicated in this material (PRV RTqPCR Ct 17.3 using a 100 ng
RNA input), and the material was previously aliquoted in several
batches and frozen for use in future trials (32, 49). Injected
fish were placed in an experimental fish tank (1,000 L), and
an equal number of naïve cohabitants was added. An identical
control tank contained the same total number of uninfected
fish. The infection trial lasted for 15 weeks. Ten cohabitant
fish and ten control fish were sampled at 0, 4, 7, 10, 12, and 15
weeks, respectively, during which PRV infection was verified by
RTqPCR, and HSMI by histological examination (32).

For sampling, the fish were euthanized by bath immersion
with benzocaine chloride (200 mg/L water) (Apotekproduksjon
AS, Oslo, Norway). Blood was collected from the caudal vein
using lithium heparin-coated vacutainers (BD Vacutainer) with

20G Venoject needles and centrifuged (3,000 rpm, 10min,
4◦C) for collection of plasma. The plasma samples were stored
at−20◦C.

Field Samples From Rainbow Trout
In January 2018, a recirculating aquaculture system farm in
Jutland, Denmark, rearing rainbow trout experienced clinical
disease associated with PRV-3. The Danish isolate of PRV-3
described in Dhamotharan et al. (35) was detected in heart and
spleen samples from clinically affected fish by qPCR described in
Finstad et al. (24), Blood samples were collected from the caudal
vein of survivor fish (N = 16) in a raceway where clinical disease
had occurred 2 months earlier.

Experimental PRV-3 Infection Trial and Blood

Sampling in Rainbow Trout
The blood/plasma samples from rainbow trout was from a
previously published challenge trial (20). In short, Specific
Pathogen free (SPF) rainbow trout of 32 g in average were either
i.p. injected with 0.1ml of challenge inoculum or challenged
by 1:1 cohabitation with the injected fish (cohabitants). The
challenge inoculum was pooled rainbow trout blood (diluted
1:4 v/v in L-15 medium) from a pilot challenge study, which
represented the first passage in experimental fish (20). The
original material was collected from three individual fish from
a rainbow trout hatchery outbreak in Norway in 2014 (19),
and the PRV-3 isolate (NOR060214) has been purified, fully
sequenced (35), and used in two previous experimental trials
(20, 21). Blood samples were collected from eight fish sampled
at 8 and 10 weeks after infection, and from eight uninfected
control fish.

Construction of Plasmids for Recombinant
Unmodified and Lipid-Modified PRV
Protein Production
The unmodified recombinant PRV-1 σ1 and µ1c proteins
were produced in E. coli from pcDNA3 as described by
Finstad et al. (28). For lipid modified protein production,
the complete open reading frame of PRV-1 σ1 gene target
was obtained through PCR amplification from pcDNA3/PRV
σ1 [NOR050607 (38)] using PfuUltra II Fusion HS DNA
Polymerase (Agilent, Santa Clara, CA, USA). The gene specific
forward and reverse primers used for amplification contained
BamHI and EcoRI restriction sites at the N- and C-terminus,
respectively. The PCR amplicon was resolved in 1% (w/v) agarose
gel electrophoresis alongside 1 kbp DNA ladder (Fermentas
Life Sciences, Germany) (Figure S1A) and purified according
to instructions for the NucleoSpin R© Gel and PCR Clean-
up kit (MACHEREY-NAGEL, Düren, Germany). The DNA
eluates were quantified using a Nanodrop Spectrophotometer
(Thermo Fisher, Wilmington, DE, USA) and cloned into the
digested pG-T-LM vector containing the Tat signaling peptide
(Figure S1B), as described earlier (48), using the In-Fusion
HD cloning system (Clontech, Mountain View, CA, USA).
All the recombinant constructs were screened by colony PCR
using gene and vector specific primers, and further confirmed
by DNA sequencing (ATCG, Toronto, Canada). The resulting
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recombinant construct was named pGT-LM/PRVσ1. The lipid
modification process is previously described in detail for the
WSSV-ICP11 protein (48).

To be used as control antigen in this study, the unmodified
and lipid modified ISAV-FP protein were produced in the
same manner as the previously published WSSV-ICP11
protein (41), which was also used as a control antigen
here. In brief, the complete open reading frame of the
ISAV-FP gene was PCR amplified (777 bp) using gene
specific primers with Nde1/EcoR1 and BamH1/ EcoR1
restriction sites at the N- and C-terminus, respectively.
The targeted ISAV-FP PCR amplicons were digested using
respective endonucleases. The amplicons were cloned into
pET28a and pGT-LM vectors for targeted unmodified
and lipid-modified protein expression, respectively. The
unmodified and lipid-modified clones were verified by
restriction digestion and sequencing. The expression
vectors were named pET28a- ISAV-FP (unmodified) and
pGT-LM-ISAV-FP (lipid- modified).

Expression of Proteins in E. coli
Both unmodified and lipid-modified recombinant constructs
were transformed into the E. coli strain, GJ1158 (Genei,
Bangalore, India) for protein expression. Transformants
confirmed to contain the correct plasmid sequence were
inoculated into 10ml LB medium containing 100µg/ml
ampicillin, and incubated (200 rpm, 37◦C) until absorbance
reached 0.6 at 600 nm. Protein production was induced
by adding 1mM Isopropyl β-D-1-thiogalactopyranoside
(IPTG), and the bacterial culture was given a 4 h post-
induction time (200 rpm, 37◦C). The induced bacteria were
harvested by centrifugation (3,000 × g, 5min), washed
twice with 0.9% saline and re-suspended in 1X phosphate
buffered saline. Lysed recombinant bacteria (25 µl) were
analyzed by gel electrophoresis and western blotting for
recombinant lipid modified protein expression using anti-his
antibodies (Figure S2).

Purification of Recombinant Lipid-Modified
Proteins
The pelleted bacteria were re-suspended in 50mM Sodium
phosphate pH 8.0/300mM NaCl and lysed with lysozyme
(Thermo Fisher Scientific) at a final concentration 100µg/mL
for 1 h at 4◦C, followed by sonication. The membrane fraction
was harvested by centrifugation at 150,000 × g for 1 h at
4◦C. The membrane pellet was re-suspended in lysis buffer
and solubilized with 1% Sodium lauroyl sarcosinate (also
known as sarkosyl) buffer (Sigma Aldrich, St. Louis, MO,
USA), followed by centrifugation (1 h, 100,000 × g, 4◦C). The
proteins contained a 6x Histidine tag, which was utilized for
purification using immobilized metal affinity chromatography
(IMAC). The supernatants containing solubilized membrane
proteins were loaded on a Tris-carboxymethyl ethylene diamine
(TED) column pre-charged with Ni2+ ion and pre-equilibrated
with equilibration buffer (MACHEREY-NAGEL). The column
was then washed with wash buffer containing 5mM imidazole.
The column bound-proteins were eluted with purification buffer

(50mM NaH2PO4, 300mM NaCl, pH 8.0) supplemented with
25–50mM imidazole. The protein eluates were analyzed using
Criterion precast gels (4–12%) (Bio-Rad) (Figure 1A).

Bead-Based Assay
MagPlex R©-C Microspheres (Luminex Corp., Austin, TX,
USA) #12, #21, #27, #29, #34, #36, #44, #62, and #64 were
coated with antigens using the Bio-Plex Amine Coupling Kit
(Bio-Rad, Hercules, CA, USA) according to the manufacturer’s
instructions. The N-Hydroxysulfosuccinimide sodium salt
and N-(3-Dimethylaminopropyl)-N’-ethylcarbod used for the
coupling reaction were both Sigma-Aldrich. For each coupling
reaction, 6-24 µg of recombinant protein was used. Proteins
used were PRV σ1, lipid modified PRV σ1 (LM-PRVσ1),
lipid modified WSSV ICP11 (LM-WSSV-ICP11) unmodified
infectious salmon anemia virus fusion protein (ISAV-FP), lipid
modified ISAV-FP (LM-ISAV-FP) and the hapten-carrier DNP-
keyhole limpet hemocyanin (DNP-KLH) (Calbiochem, Merck,
Darmstadt, Germany), which represents a model antigen to
estimate non-specific antibodies (50). The bead concentrations
were determined using Countess automated cell counter
(Invitrogen, Carlsbad, CA, USA). Coupled beads were stored in
black Eppendorf tubes at 4◦C for up to 10 weeks. All incubations
were performed at room temperature, protected from light on a
HulaMixer rotator (Thermo Fisher Scientific) at 15 rpm.

The immunoassay was performed as described earlier
(8). Briefly, Bio-Plex ProTM Flat Bottom Plates (Bio-Rad)
were used. Beads were diluted in PBS containing 0.5%
BSA (Rinderalbumin; Bio-Rad Diagnostics GmbH, Dreieich,
Germany) and 0.05% azide (Merck, Darmstadt, Germany)
(PBS+) and 2,500 beads of each bead number were added
to each well. AntiSalmonid-IgH monoclonal antibody (clone
IPA5F12) (Cedarlane, Burlington, Ontario, Canada) diluted
1:400 in PBS+ was used as an unconjugated anti-IgM heavy
chain monoclonal antibody. Biotinylated goat AntiMouse IgG2a
antibody (Southern Biotechnology Association, Birmingham,
AL, USA) diluted 1:1,000 in PBS+ was used as a secondary
antibody and Streptavidin-PE (Invitrogen) diluted 1:50 in PBS+
as the reporter flourochrome. Plates were read using a Bio-
Plex 200 (Bio-Rad). The DD-gate was set to 5,000–25,000, and
between 20 and 100 beads from each population were read from
each well. The reading was carried out using a low PMT target
value. Results were analyzed using the Bio-Plex Manager 5.0 and
6.1 (Bio-Rad).

SDS-PAGE and Western Blotting
Western blotting was used to confirm antibody binding to
the specific proteins. Protein samples with the recombinant
unmodified PRV-1 proteins µ1c and σ1 used previously
(8), LM-PRVσ1, LM-WSSV-ICP11, ISAV-FP, and LM-ISAV-FP
were analyzed. Protein concentrations were determined using
a NanoDrop ND-1000 spectrophotometer (Thermo Fischer
Scientific). From the proteins above, 0.6 µg protein was diluted
to 35 µl with dH2O. 2.5 µl Reducing Agent (Bio-Rad) and
12.5 µl Sample Buffer (Bio-Rad) was added, and the mix was
heated to 95◦C for 5min before separation by gel electrophoresis
(SDS-PAGE) in a 4–12% Bis-Tris CriterionTM XT PreCast
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FIGURE 1 | Production of lipid modified PRV proteins. (A) SDS-PAGE profile showing the purified lipid-modified PRVσ1 (M-Marker, FT-Flow through, and W-Wash).

Eluates 1–2 with 25mM imidazole and 3–5 with 50mM imidazole elution. (B) Specificity of plasma IgM to PRV antigens. Proteins used in the multiplex immunoassay

were analyzed by western blotting. Left panel incubated with plasma from PRV-infected Atlantic salmon (pooled sample from 10 to 15 wpc) and right panel incubated

with plasma from control fish (pooled samples from the same challenge trial) as primary antibody.

Gel (Bio-Rad). Precision Plus Protein Standard (Bio-Rad) was
used to confirm protein size. After the gel electrophoresis, the
protein was transferred to membrane using a Trans-Blot midi
transfer pack (Bio-Rad). The membrane was blocked in PBS with
0.001% Tween 20 (EMD Millipore) and 5% skim milk powder
(Merck) for 1 h before incubation with pooled plasma from
PRV negative salmon or PRV infected salmon (0 wpc and 10–
15 wpc from the PRV-1 challenge trial) diluted 1:100 overnight
at 4◦C on a roller. The membrane was washed 4 × 15min,
and then incubated with Anti-Salmonid IgH antibody (clone
IPA5F12) (1:500) for 1 h in room temperature. The washing
was repeated and the membrane was incubated with Anti-
Mouse IgG-HRP ECL peroxidase-labeled Anti-Mouse antibody,
NA931VS (GEHealthcare, Buckinghamshire, UK) (1:50,000) and
Precision Protein StrepTactinHRP (Bio-Rad) (0.7 µl in 10ml)
for 1 h at room temperature. All antibodies were diluted in
PBS with 0.001% Tween 20 and 1% skim milk powder, and
all washing were done with in PBS with 0.001% Tween 20.
The signal was developed using ECL Prime Western Blotting
Detection Reagent (GE Healthcare) and detected on Bio-Rad
Chemidoc XRS.

Heat Treatment and Adsorption of Plasma
Aiming to eliminate background binding of plasma to non-PRV
proteins, the plasma was heated to temperatures from 30 to 56◦C
for 5–60min. This is in line with previously used protocols for
salmon plasma complement inactivation (51, 52).

To demonstrate PRV σ1 specificity, PRV-1 positive plasma
(from 12 to 15 wpc in the PRV-1 challenge trial) was adsorbed
against beads coated with lipid-modified and non-lipid-modified
proteins. In addition to antigens described earlier, beads coated
with PRV µNS expressed in insect cells (8, 53) and E. coli
protein (background) coated beads described earlier (8) were
included in the experiment. Pooled heat-treated plasma (48◦C
for 20min) was diluted 1:200, and 50 µl of each plasma sample
was added to a 96 well-plate and incubated with beads. The

FIGURE 2 | Increased detection of anti-σ1 using lipid modified antigen.

Comparison between beads coated with σ1 and beads coated with LM-σ1

when used in the immunoassay to analyze plasma from PRV-infected Atlantic

salmon (12–15 wpc) and controls. Significant difference between infected and

control fish, and between different antigens when used to analyse infected fish

samples are indicated by asterisks (Mann-Whitney test).

beads used were coated with PRVσ1 PRVµ1c, PRVµNS, LM-
WSSV-ICP11, LM-PRVσ1, ISAV-FP, or LM-ISAV-FP. Coated
beads of each bead type (100,000 in 50 µl) or 50 µl PBS
without beads were added per well. Incubation was done on
a shaker at 500 rpm in room temperature and protected from
light for 3 h. After incubation, the beads were removed using
a magnetic separator, and bead-free plasma was transferred
to a new plate and stored overnight at 4◦C. The plasma was
analyzed the next day using Bio-Plex 200 and Bioplex manager
6.1 with DNP-KLH, LM-WSSV-ICP11, LM-PRVσ1, ISAV-FP,
and LM-ISAV-FP coated beads.

Statistical Analysis
A non-parametric Mann-Whitney unpaired rank test was
performed between groups in Figure 2, between control groups
and infected groups at all time points in Figure 3 and between
LM-PRVσ1 and the other proteins in Figure 5A. All statistical
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FIGURE 3 | Antibody detection in untreated and heat-treated plasma. (A) LM-PRVσ1 on untreated plasma. (B) LM-WSSV-ICP11 on untreated plasma. (C)

LM-ISAV-FP on untreated plasma. (D) ISAV-FP on untreated plasma. (E) LM-PRVσ1 on heat-treated plasma. (F) LM-WSSV-ICP11 on heat-treated plasma. (G)

LM-ISAV-FP on heat-treated plasma. (H) ISAV-FP on heat-treated plasma. Significant difference between groups are indicated by asterisks (Mann-Whitney test).

analyses were performed with the help of GraphPad Prism 7.03
(GraphPad Software Inc., USA).

RESULTS

Production and Purification of Lipid Modified PRV σ1
The lipid modified LM-PRVσ1 was cloned and produced
in E. coli, and found to be located in the outer
membrane of the bacteria, as confirmed through sub-
cellular fractionation and western-immunoblotting
(Figure S2). The LM-PRVσ1 was purified in a detergent-
free form in a single step using immobilized metal
affinity chromatography (IMAC), as previously described

(48). The protein was successfully purified and a
band was detected at the expected size of 38 kDa
(Figure 1A, Figure S3A).

Confirmation of Anti PRV Antibody
Specificity Through Immunoblotting
To show the formation of anti-PRV σ1 antibodies in PRV-
infected fish, recombinant PRV σ1 protein with or without lipid
modification along with PRV-1 µ1c were immunoblotted using
plasma from PRV-1 infected and uninfected Atlantic salmon
as a source of primary antibody. IgM binding to proteins
corresponding in size to PRV σ1 and LM-PRVσ1, as well as
PRVµ1c was confirmed in plasma from PRV infected fish. No
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FIGURE 4 | Pre-adsorption of heat-treated pooled plasma from PRV-infected fish against antigens indicate specificity of anti-PRVσ1 antibodies. Measured on beads

coupled with (A) LM-PRVσ1 and (B) non-PRV control proteins.

binding to the control antigens LM-WSSV-ICP11, LM-ISAV-
FP, or ISAV-FP were observed (Figure 1B, Figure S3B). This
confirms the presence of antibodies binding to σ1 in plasma from
PRV-infected fish.

Lipid-Modified PRV σ1 Coated on Luminex
xMAP Beads Can Be Used to Detect
Anti-PRV Antibodies
Compared to unmodified PRV-1 σ1, the lipid modified PRV σ1
protein coated on xMAP beads bound the antibodies produced
after PRV infection more effectively, as indicated by significantly
higher levels of mean fluorescence intensity (MFI) in the luminex
assay (Figure 2).

Anti-PRV-1 σ1 antibodies were then measured in plasma
originating from a PRV-1 infection trial. In this trial, anti-PRV
σ1 antibody levels increased from week 7 after PRV infection and
reached a plateau at 10–15 wpc (Figure 3A).

Test of Binding Specificity Using
Lipid-Modified Control Proteins
Other lipid-modified and unmodified proteins were tested to
confirm that the antibodies binding to LM-PRVσ1 were specific
for the virus protein and not targeting the N-terminal lipid
modification. The control proteins used were lipid modified
ICP11 from WSSV, and unmodified and lipid modified ISAV-
FP. When testing the control antigens on plasma from the PRV-1
challenge trial, we observed an increase in antibodies binding to
both unmodified and lipid modified proteins from week 10 after
PRV challenge (Figures 3B–D).

Effects of Heat Treatment and
Pre-adsorption of Plasma on Binding
Specificity
After heat treatment of plasma to eliminate background binding
to non-PRV proteins, 48◦C for 20min was found as optimal
(Figures S4A,B). Using these treatment conditions, antibody

binding to LM-PRVσ1 beads decreased using plasma from
control fish, but not when using plasma from infected fish,
indicating antigen specificity after infection (Figure 3E). For
the non-PRV proteins, antibody binding decreased after heat
treatment when using plasma from both infected and uninfected
fish (Figures 3F–H). When heat-treated and untreated plasma
from controls from the same individuals, sampled 12 and 15 wpc,
were run on the same plate (to avoid plate-to-plate variation),
the binding to LM-PRVσ1-coated beads decreased for all control
fish after heat treatment. For infected fish, the antibody binding
to LM-PRVσ1 decreased in some individuals and increased in
others after heat treatment (Figure S4C).

To further evaluate the antigen specificity of the antibodies,
pooled plasma was pre-adsorbed with beads coated with the
specific antigens, as well as mixes of antigen-coated beads. The
binding to LM-PRVσ1-coated beads decreased only after pre-
adsorption of plasma with LM-PRVσ1 beads, but increased after
adsorption with any of the other beads coated with LM-modified
or unmodified proteins, including the hapten-carrier conjugate
DNP-KLH (Figure 4A). Less changes were seen when analyzing
binding to LM-WSSV-ICP11, LM-ISAV-FP, or ISAV-FP after
adsorption, but decreases in binding were seen especially after
adsorption with DNP-KLH and bead mixes (Figure 4B).

Anti-PRV-3 σ1 Antibodies Bind to PRV-1 σ1
LM-Coated Beads
Heat-treated plasma samples from a field outbreak of PRV-3 were
analyzed using beads coated with LM-PRVσ1 as well as PRV
µ1c, PRV µNS and E. coli protein (background) coated beads.
Results show that antibody binding (MFI) to LM-PRVσ1 was
significantly higher than binding to PRV µNS coated beads, PRV
µ1c-coated beads as well as E. coli protein (background) coated
beads (Figure 5A). LM-PRVσ1 and LM-WSSV-ICP11 beads
were tested on heat-treated plasma and blood from naïve and
PRV-3 infected rainbow trout. The IgM binding to LM-PRVσ1-
coated beads was low in naïve fish, whereas MFI levels above
20,000 was obtained from week 10 after infection (Figure 5B)
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FIGURE 5 | Detection of cross-binding antibodies induced by PRV3 infection in rainbow trout. (A) Field samples from a PRV-3 outbreak in rainbow trout analyzed with

LM-PRVσ1, µNS, and µ1c (PRV-1) coupled beads in the immunoassay. Significant difference between MFI of LM-PRVσ1 beads and the other beads are indicated by

asterisks (Mann-Whitney test). (B) MFI from blood and plasma samples from individuals experimentally infected with PRV and uninfected controls using LM-PRVσ1

and LM-WSSV-ICP11 coupled beads. All samples were heat-treated.

Only low levels (MFI up to 426) of antibodies binding to LM-
WSSV-ICP11 beads were detected (Figure 5B). An alignment
between the σ1 amino acid sequences of PRV-1 NOR050607
coated on the beads and PRV-3 NOR060214 used in the PRV-
3 infection trial revealed 81% identity (Figure S5A). The N-
terminal was the least variable part of the protein, whereas several
areas of variation were found in the central and C-terminal
part. The last two AA in the C-terminal are hydrophobic in
PRV-1, but hydrophilic in PRV-3. The PRV-3 sequence was 1
amino acid longer due to an inserted glycine at position 39. An
antigenicity plot indicated minor differences in the antigenicity
pattern between the two PRV genotypes (Figure S5B).

DISCUSSION

Since the σ1 protein from MRV is known for its role in
receptor binding and cell entry (39, 41), and is a primary
target for neutralizing antibodies (40, 54), σ1 was predicted
as a promising target for neutralizing antibodies against PRV.
Virus neutralization assays have been successfully used for
other salmonid viruses, including the salmonid alphavirus
(SAV) (55). However, no such assays have been developed
for PRV, as the virus has resisted cultivation in cell lines.
So far, primary erythrocytes are the only cells where PRV
is reported to replicate for more than one passage ex vivo
(56), and even in erythrocytes the consistency of replication is
too low to allow the establishment of a neutralization assay.
Because of this, other assays for detection of anti-PRV antibodies
are attractive.

In our former development of bead based multiplex
immunoassays for detection of PRV-specific antibodies we were
able to detect specific IgM targeting PRV-1µ1c andµNS proteins
in Atlantic salmon plasma, but not IgM directed against the
PRV-1 spike protein σ1 (8). The PRV-3 genotype has been

found associated with disease in several European countries
after its initial discovery in Norwegian farmed rainbow trout.
In a recently published challenge trial (21), antibodies against
PRV-3 µ1c were detected at low levels using a bead-based assay
coated with PRV-1 µ1c. This study demonstrates that sensitive
detection of anti-PRV σ1 antibodies in Atlantic salmon and anti-
PRV-3 σ1 antibodies in rainbow trout was obtained through N-
terminal lipid modification of the recombinant PRV σ1 antigen
(LM-PRVσ1) prior to use in the bead-based immunoassay.

Lipid modification using a bacterial prolipoprotein signaling
sequence have previously been put forward as a desired
strategy for inducing a potential adjuvant effect to a vaccine
antigen (48). In this case, we tested if the lipid-modification
of recombinant PRV σ1 coated on beads could promote
detection of PRV σ1-specific antibodies, and found that the
lipid modification indeed led to increased antibody detection.
A similar improvement of antigen-antibody interaction has
been associated with increased hydrophobic anchorage of N-
terminal lipid-modified antigens in other studies (47, 48). A
possible reason for the improved IgM detection obtained by
PRV σ1 lipid-modification is a stabilization of σ1 mimicking
the conformation and/or orientation in the intact virus with the
N-terminal bound to the surface and the C-terminal exposed
(57). This orientation is likely to improve the exposure of
the correct epitopes for detection by antibodies, including
neutralizing antibodies.

For control of antigen specificity, the lipid modified

ICP11 protein from the shrimp virus WSSV (58), and
the fusion protein (FP) of ISAV (59), with and without

lipid modification, was tested. The experimental fish had
not been previously exposed to these viral proteins, as the
trial fish were tested negative for ISAV (32), and WSSV
is a crustacean virus (60). Nevertheless, we detected IgM
binding to these proteins in salmonid plasma in uninfected
fish, and this binding increased significantly during the
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course of PRV infection. We also detected binding to LM-
PRVσ1 in control fish not previously exposed to PRV.
This background binding could be explained by polyreactive
antibodies present in control fish, with increasing levels induced
by the PRV infection. An induction of polyreactive antibodies
after infection has been described in fish (50, 61, 62) and
mammals (9).

Heat treatment of plasma at more than 43◦C for as little
as 5min removed most of the background binding in control
fish without reducing the specific interaction with lipid-modified
PRV σ1 in infected fish, clearly indicating that PRV σ1-specific
antibodies were detected. Binding to the non-PRV proteins was
reduced by heat treatment, but not completely removed, and was
still significantly higher in infected fish than in control fish. In
contrast to the rigid structure of the classic antibody model, it
has been hypothesized that polyreactive antibodies have more
flexible antigen binding sites and are able to change conformation
to accommodate different antigens (9). It is conceivable that
heat treatment might negatively affect this flexibility or that
the polyreactive antibodies is more heat-labile than the specific
antibodies for other unknown reasons. Whether background
binding was caused by polyreactive antibodies alone or secondary
via other plasma factors, requires further study. As the lipid-
modified signaling peptide fused to the PRV σ1 N-terminal is a
natural part of gram negative bacterial membrane proteins (43),
previous exposure to and acquired immunity against it cannot be
completely ruled out. However, results from adsorption against
other lipid-modified proteins indicate that antibodies detected
on the LM-PRVσ1-coated beads do not bind to the acylated N-
terminal peptide, but specifically to PRV σ1. Together the effects
of heat treatment and pre-adsorption of plasma strongly suggest
an increase in the formation of polyreactive antibodies during
a PRV infection, whereas antibodies binding to the LM-PRVσ1
coated beads are PRV σ1 specific.

In the PRV-1 trial in Atlantic salmon analyzed here, PRV
RNA peaked in cohabitant fish at 7 weeks post-introduction
of virus shedders and histopathological changes consistent with
HSMI were most prominent after 10 weeks (32). Anti-PRV
σ1 IgM was produced 7 weeks after the initial exposure of
experimental fish to PRV shedders, which corresponds to 3
weeks after the first detection of PRV in blood from these
fish (32). This timing resembles our previous observations on
production of IgM targeting the PRV µ1 and µNS proteins
(8). In both the trial analyzed here, and the trial analyzed
with bead based immunoassay previously (8), a reduction in
HSMI lesions was observed in the time after the specific IgM
production reached a maximum level, and could indicate a
protective effect. Antibody-mediated protection against viruses
represent the humoral arm of the adaptive immune system,
but cellular protection mediated by T-lymphocytes may be
equally important. Results from earlier PRV infection trials have
indicated a role of cytotoxic (CD8+) T-cell mediated protection
(29, 63). In particular, recruitment of immune cells to the PRV-
infected heart has been associated with a reduction in PRV-
infected cardiomyocytes (24, 28). This suggests a possible role
for both humoral and cellular immune mechanisms in clearing
of the PRV infection in the heart, and we should be careful

with drawing conclusions based on correlation between specific
antibody production and protection from HSMI. PRV is a
virus that persists in blood cells after infection (33, 64). Viral
RNA persisted in blood throughout this trial as well, showing
the insufficiency of the humoral immune response to eradicate
virus from blood. The IgM level stayed elevated through the
duration of this study (15 weeks). Since PRV-1 causes a persistent
infection in Atlantic salmon, the virus-specific IgM response can
be expected to be of longer duration than shown here. Longer
trials should be performed to clarify the long-term antibody
production level.

We have demonstrated that LM-PRVσ1 provide a more
sensitive assay for PRV-3 antibody detection than µ1c, and is
more suitable for identifying populations previously exposed
to PRV-3 and effects of potential vaccines. The LM-PRVσ1
assay worked in both PRV-1 infected Atlantic salmon and
PRV-3 infected rainbow trout and the PRVµ1c assay worked
in PRV-1 infected Atlantic salmon only (except in one fish).
Multiplexing these assays can potentially be used to distinguish
between infections with PRV-1 and PRV-3 in a population. PRV-
1 and PRV-3 have 80.1% nucleotide and a 90.5% amino acid
identity [(35); Figure S5A]. The similarity is somewhat higher
in the N-terminal compared to the protein body and C-terminal
head. Several of the amino acid differences represent significant
alterations in the side chain charges or polarity, which may
affect 3D structure or protein-protein interaction. The two very
last C-terminal amino acids differs, containing hydrophobic side
chains (isoleucines, I) in PRV-1 and polar/charged side chains
[Threonine (T), arginine (R)] in PRV-3, which is likely to lead
to structure and antibody epitope differences. The amino acid
differences within the core of PRV σ1 differ, but clearly not
enough to hamper the antibody cross-binding capacity. The
functional importance of these differences are difficult to predict,
as the amino acid identity between the PRV-1/-3 σ1 sequences
and theMRV σ1 sequence are only approximately 21% (38).MRV
σ1 is considerably larger (459 AA compared to 314 AA for PRV-
1 σ1), and the extended sequence of MRV is located both in
the N-and C-terminal. Based on structural analyses on MRV σ1
(54, 57, 65), it is the N-terminal tail which inserts into the virion,
the body which contains the motif for sialic acids/glucans, and
the C-terminal head domain which binds the target cell receptor,
junctional adhesion-molecule-A (JAM-A). Neutralizing antibody
binding has been localized to the C-terminal head domain (54).
This part of σ1 is truncated in all PRV genotypes compared
to MRV, and functional and interaction prediction in silico is
not straightforward. The only conserved motif predicted in PRV
(both genotype 1 and 3) is the glucan/sialic acid biding motif
(38, 66).

In contrast to PRV-1, which establish a persistent
infection that can be detected in the host up to a year
after infection (64), PRV-3 is cleared from infected
rainbow trout (20, 21), and an immunoassay to identify
immunized populations could be particularly useful. A
still open question is the duration of the specific humoral
response to infection, and the possibility to identify
vaccinated or previously exposed populations after more
than 15 weeks.
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Recently, two PRV vaccine trials using whole virus
vaccines and DNA vaccines, respectively, showed partial
protection of Atlantic salmon from HSMI (67, 68). In
order to optimize such trials, assays that can reveal true
correlates of protective immune responses against PRV
are useful. Sensitive immunoassays that require small
volumes of minimal-invasive samples are attractive for
aquaculture. Using this bead-based detection assay, 1 µl
plasma in 100-fold dilution is sufficient for providing sensitive
antibody detection, and through multiplexing, a larger
repertoire of pathogen-specific antibodies can be analyzed
simultaneously. The potential of bead–based analyses is that
not only antibody detection, but also pathogen detection
and detection of other molecular markers can be obtained in
concert in the same sample. As also put forward by others
(69), this analytic method has a great future potential in
aquacultural diagnostics.
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