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A B S T R A C T

Prediction performance does not always reflect the estimation behaviour of a method. High error in estimation
may necessarily not result in high prediction error, but can lead to an unreliable prediction if test data lie in a
slightly different subspace than the training data. In addition, high estimation error often leads to unstable es-
timates, and consequently, the estimated effect of predictors on the response can not have a valid interpretation.
Many research fields show more interest in the effect of predictor variables than actual prediction performance.
This study compares some newly-developed (envelope) and well-established (PCR, PLS) estimation methods using
simulated data with specifically designed properties such as Multicollinearity in the predictor variables, the
correlation between multiple responses and the position of principal components corresponding to predictors that
are relevant for the response. This study aims to give some insights into these methods and help the researchers to
understand and use them for further study. Here we have, not surprisingly, found that no single method is su-
perior to others, but each has its strength for some specific nature of data. In addition, the newly developed
envelope method has shown impressive results in finding relevant information from data using significantly fewer
components than the other methods.
1. Introduction

Estimation of parameters in linear regression models is an integral
part of many research studies. Research fields such as social science,
econometrics, chemometrics, psychology and medicine show more in-
terest in measuring the impact of certain indicators or variable than
performing prediction. Such studies have a large influence on people’s
perception and also help in policy-making and decisions. A transparent,
valid and robust research is critical to improving the trust in the findings
of modern data science research [13]. This makes the assessment of
measurement error, inference and prediction even more essential.

Technology has facilitated researchers to collect large amounts of
data, however, often such data either contains irrelevant information or
are highly redundant. Researchers are devising new estimators to extract
information and identify their inter-relationship. Some estimators are
robust towards fixing the multicollinearity (redundancy) problem, while
others are targeted to model only the relevant information contained in
the response variable.

This study extends [22] with a similar multi-response, linear regres-
sion model setting and compares some well-established estimators such
as Principal Components Regression (PCR), Partial Least Squares (PLSR)
Regression, together with two new methods based on envelope
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estimation: Envelope estimation in predictor space (Xenv) [6] and
simultaneous estimation of the envelope (Senv) [7]. The estimation
processes of these methods are discussed in the Estimation Methods
section. The comparison is aimed at the estimation performance of these
methods using multi-response simulated data from a linear model with
controlled properties. The properties include the number of predictors,
level of multicollinearity, the correlation between different response
variables and the position of relevant predictor components. These
properties are explained in the Experimental Design section together
with the strategy behind the simulation and data model.

2. Simulation model

As a follow-up, this study will continue using the same simulation
model as used by Rimal et al. [22]. The data are simulated from a
multivariate normal distribution where we assume that the variation in a
response vector-variable y is partly explained by the predictor
vector-variable x. However, in many situations, only a subspace of the
predictor space is relevant for the variation in the response y. This space
can be referred to as the relevant space of x and the rest as irrelevant
space. In a similar way, for a certain model, we can assume that a sub-
space in the response space exists and contains the information that the
møy), solve.sabo@nmbu.no (S. Sæbø).

020

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:raju.rimal@nmbu.no
mailto:trygve.almoy@nmbu.no
mailto:solve.sabo@nmbu.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2020.104093&domain=pdf
www.sciencedirect.com/science/journal/01697439
http://www.elsevier.com/locate/chemometrics
https://doi.org/10.1016/j.chemolab.2020.104093
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.chemolab.2020.104093


R. Rimal et al. Chemometrics and Intelligent Laboratory Systems 205 (2020) 104093
relevant space in predictor can explain (Fig. 1).
Following the concept of relevant space, a subset of predictor com-

ponents can be imagined to span the predictor space. These components
can be regarded as relevant predictor components. Næs andMartens [19]
introduced the concept of relevant components, which was explored
further by Helland [9]; Næs and Helland [18]; Helland and Almøy [11]
and Helland [10]. The corresponding eigenvectors were referred to as
relevant eigenvectors. A similar logic is introduced by Cook et al. [6] and
later by Cook et al. [4] as an envelope, as space spanned by the relevant
eigenvectors [3]; p.101). See Rimal et al. [21]; Sæbø et al. [23] and Rimal
et al. [22] for in-depth background on the model.

3. Estimation methods

Consider a joint distribution of y and x with corresponding mean
vectors μy and μx as,�
y
x

�eN��
μy
μx

�
;

�
Σyy Σyx

Σxy Σxx

��
(1)

Here, Σxx and Σyy are variance-covariance of x and y respectively and
Σxy ¼ Σt

yx is the covariance matrix of x and y. Let Sxx, Syy and Sxy ¼ St
yx be

the respective estimates of these matrices. A linear regression model
based on (1) is

y¼ μy þ βtðx� μxÞ þ ε (2)

where β ¼ Σ�1
xx Σxy is the regression coefficients that define the relation-

ship between x and y. With n samples, the least-squares estimate of β can

be written as bβ ¼ S�1
xx Sxy . Here, as in many situations, the estimator Sxx

for Σxx can either be non-invertible or have small eigenvalues. In addi-
tion, Sxy , the estimator of Σxy, is often influenced by a high level of noise
in the data. In order to solve these problems, various methods have
adopted the concept of relevant space to identify the relevant compo-
nents through the reduction of the dimension in either x or or both. Some
of the methods we have used for comparison are discussed below.

Principal Components Regression (PCR) uses k eigenvectors of Sxx as the
number of components to span the reduced relevant space. Since PCR is
Fig. 1. Relevant space in
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based on capturing the maximum variation in predictors for every
component it has added to the model, this method does not consider the
response structure in the model reduction [14]. In addition, if the rele-
vant components are not corresponding to the largest eigenvalues, the
method requires a larger number of components to make precise pre-
diction [1].

Partial Least Squares (PLS) regression aims to maximize the covariance
between the predictor and response components (scores) [15]. Broadly
speaking, PLS can be divided into PLS1 and PLS2 where the former tries
to model the response variables individually, whereas the latter uses all
the response variable together while modelling. Among the three widely
used algorithms NIPALS [24], SIMPLS [15] and KernelPLS [16], we will
be using KernelPLS for this study, which gives equivalent results to the
classical NIPALS algorithm and is default in R-package pls [17].

Envelopeswas first introduced by Ref. [5] as the smallest subspace that
includes the span of true regression coefficients. The Predictor Envelope
(Xenv) identifies the envelope as a smallest subspace in the predictor
space, by separating the predictor covariance Σxx into relevant (material)
and irrelevant y (immaterial) parts, such that the response is uncorrelated
with the irrelevant part given the relevant one. In addition, relevant and
irrelevant parts are also uncorrelated. Such separation of the covariance
matrix is made using the data through the optimization of an objective
function. Further, the regression coefficients are estimated using only the
relevant part. Cook et al. [6]; Cook et al. [4] and Cook [3] have exten-
sively discussed the foundation and various mathematical constructs
together with properties related to the Predictor Envelope.

Simultaneous Predictor-Response Envelope (Senv) implements the en-
velope in both the response and the predictor space. It separates the
material and immaterial part in the response space and the predictor
space such that the material part of the response does not correlate with
the immaterial part of the predictor and the immaterial part of the
response does not correlate with the material part of the predictor. The
regression coefficients are computed using only the material part of the
response and predictor spaces. The number of components specified in
both of these methods during the fit influences the separation of these
spaces. If the number of response components equals the number of re-
sponses, simultaneous envelope reduces to the predictor envelope, and if
the number of predictor components equals the number of predictors, the
a regression model.



Fig. 2. Experimental Design of simulation parameters. Each point represents a unique data property.
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result will be equivalent to ordinary least squares. Cook and Zhang [7]
and Cook [3] have discussed the method in detail. Further, Helland et al.
[12] have discussed when and under which condition the population
models of PCR, PLS and Xenv are equivalent.

Here, each methods uses different strategy for estimating the
regression coefficients due to which the optimal number of components
they determine will be different. For example, PCR method captures the
maximum variation in predictor matrix y in every subsequent compo-
nents while PLS methods focus more on the variation in predictors that
are relevant for the responses. The envelope methods construct the en-
velope as a linear combination of relevant eigenvectors. This allows them
to reduce the dimension even further and consequently these methods
need fewer components.
Fig. 3. Covariance between predictor components and each response variable in the
The bars in the background represent the variance of the corresponding component
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4. Experimental Design

An R [20] package simrel [21,23] is used to simulate the data for
comparison. In the simulation, number of response variables and number
of observations n ¼ 100 are fixed, and the following four simulation
parameters are varied to obtain data with a wide range of properties.

Number of predictors: (p) In order to cover both tall ðn> pÞ and
wide ðp> nÞ cases, p ¼ 20 and p ¼ 250 number of predictors are
simulated.

Multicollinearity in predictor variables: (gamma) A parameter
gamma ðγÞ controls the exponential decline of eigenvalues in
Σxxðλi; i¼ 1;…pÞ as,

λi ¼ e�γði�1Þ; γ> 0 and i¼ 1; 2;…p (3)
population (top), and in the simulated data (bottom) for four different designs.
s (eigenvalues).
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Two levels, 0.2 and 0.9, of gamma are used for simulation so that level
0.2 simulates data with low multicollinearity and 0.9 simulates the data
with high multicollinearity in x respectively.

Position of relevant components: (relpos) Initial principal compo-
nents of a non-singular covariance matrix have higher variance than the
later ones. If the principal components corresponding to predictors with
larger variation are not relevant for a response, this will just increase the
noise level in the data. Here wm ¼ 4e will use two different levels of a
position index of true predictor components (relpos): a) 1, 2, 3, 4 and b)
5, 6, 7, 8. Predictor components irrelevant for a responsemake prediction
difficult [11]. When combined with multicollinearity, this factor can
create both easy and difficult cases for both estimation and prediction.

Correlation in response variables: (eta) Some estimators also use
the dependence structure of response for estimation. Here the correlation
between the responses is varied through a simulation parameter eta ðηÞ.
The parameter controls the exponential decline of eigenvalues κj; j ¼ 1;
…mð number of responsesÞ of Σyy as,

κj ¼ e�ηðj�1Þ; η> 0 and j¼ 1; 2;…m (4)

Four levels 0, 0.4, 0.8 and 1.2 of eta ðηÞ are used in the simulations.
Level η ¼ 0 gives data with uncorrelated response variables, while η ¼
1:2 gives highly correlated response variables.

Using these simulation parameters, a latent covariance matrix is
constructed as in 5.�
w
z

�eN��
μw
μz

�
;

�
Σww Σwz

Σzw Σzz

��
(5)

For example, η ¼ 1:2 gives Σww as a diagonal matrix with 1, 0.3, 0.09,
Fig. 4. Scores density corresponding to first principal component of error da
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0.03 in its diagonal. However for η ¼ 0, Σww will be an identity matrix. A
similar approach is used for covariance matrix Σzz. In addition, when the
true relevant components are at position 1, 2, 3, 4, the first row of
covariance matrix Σwz with dimension m� p will have σ11; σ12; σ13 and
σ14 in its first four columns and the rest are filled with zeros. These σ
values are the links that defines the relationship between the latent
components of predictors and the first response component. Two random
orthogonal rotation matrices R and Q are used to rotate the latent
covariance matrices in order to obtain the covariance matrices in 1.
Rimal et al. [21] have discussed the underlying mechanism in details.

Here we have assumed that there is only one informative response
component. Hence the relevant space of the response matrix has
dimension one. For the predictors, there are 4 true relevant components,
so the relevant space for predictor matrix has 4 dimension. In the dis-
cussion onwards, number of components refers to the number of predictor
components unless otherwise stated. In addition, the coefficient of
determination is fixed at 0.8 for all datasets.

A complete factorial design is adopted using the different levels of
factors discussed above to create 32 designs (Fig. 2), each of which gives
datasets with unique properties. From each of these design and each
estimation method, 50 different datasets are simulated so that each of
them has the same true population structure. In total, 5� 32� 50 i.e.,
8000 datasets are simulated.

The simulation properties are directly reflected in the simulated data.
For example, in Fig. 3, design pairs 1 and 14 as well as 6 and 9 differ in
their properties only in terms of position of relevant predictor compo-
nents, while the design pairs 1 and 6 as well as 9 and 14 differ only in-
terms of the level of multicollinearity. The population properties are
also reflected in the simulated samples (bottom row Fig. 3). The
taset (u) subdivided by methods, gamma and eta and grouped by relpos.
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combination of these factor levels creates datasets that are easy or
difficult with regard to estimation and prediction. We observe from Fig. 3
that it may be difficult to infer the structure of the latent relevant space of
x from the estimated principal components and their estimated co-
variances with the observed responses.

5. Basis of comparison

The focus of this study is to extend the exploration of Rimal et al. [22]
to compare the estimation performance of PCR, PLS1, PLS2, Xenv and
Senv methods. The performance is measured on the basis of,

(a) average estimation error computed as in (7)
(b) the average number of components used by the methods to give

minimum estimation error

Let us define the expected estimation error as

MSEðbβÞijkl ¼E

"
1
σ2yj

�
βij � bβijkl

�t�
βij � bβijkl

�#
(6)

for response j ¼ 1;…4 in a given design i ¼ 1;2;…32 and method k ¼
1ðPCRÞ;…5ðSenvÞ using l ¼ 0;…10 number of components. Here σ2yj is

the variance of response j. Since both the expectation and the variance ofbβ are unknown, the estimation error is estimated using data from 50
replications as follows,

dMSEðbβÞijkl ¼ 1
50

X50
r¼1

� dMSE∘ðbβÞijklr 	 (7)
Fig. 5. Score density corresponding to the first principal component of componen

5

where, dMSEðbβÞijkl is the estimated prediction error averaged over r ¼ 50
replicates and,

dMSE∘ðbβÞijklr ¼ 1
σ2
yj

��
βij � bβijklr

�t�
βij � bβijklr

�	
Our further discussion revolves around what we will refer to as the

Error Dataset and the Component Dataset, as in the prediction comparison
paper Rimal et al. [22]. For a given estimation method, design, and
response, the component that gives the minimum estimation error
averaged over all replicates is selected as,

l∘ ¼ argmin
l

"
1
50

X50
r¼1

dMSE∘ðbβÞr
#

(8)

Here we have skipped further indices on bβ for brevity. The estimation

error dMSE∘ðbβÞ for every method, design and response corresponding to
component l∘, computed as (8), is then regarded as the error dataset in the
subsequent analysis. Let u8000�4 ¼ ðujÞ, where uj is the jth column of u
denoting the estimation error corresponding to response j ¼ 1;…4 in the
context of this dataset. Further, let the number of components that result
in minimum estimation error in each replication and computed as (9),
comprise the component dataset. Let v8000�4 ¼ ðvjÞ where vj is the jth col-
umn of v denoting the outcome variable measuring the number of
components used to obtain minimum estimation error corresponding to
response j ¼ 1;…4.

l∘ ¼ argmin
l

½ dMSE∘ðbβÞ� (9)
t dataset (v) subdivided by methods, gamma and eta and grouped by relpos.



Fig. 6. Regression Coefficients (coef) estimated by PLS2 and Simultaneous Envelope methods on the data based on Design 9 and 29.
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6. Exploration

In this section we explore the variation in the error dataset and the
component dataset by means of Principal Component Analysis (PCA). Let
Fig. 7. Minimum prediction and estimation error for PLS2 and Simultaneous

7

tu and tv be matrices holding the column vectors of the principal
component scores corresponding to the u and v matrices, respectively.
The density of the scores in Fig. 4 and Fig. 5 correspond to the first
principal component of u and v, i.e. the first column of tu and tv respec-
tively. Here higher scores correspond to larger estimation error and vice
Envelope methods. The point and lines are averaged over 50 replications.



Table 1
Minimum prediction and estimation error for design 9.

Design Response PCR PLS1 PLS2 Senv Xenv

Design 9
Estimation Error
9 1 8.56

(8)
13.23
(6)

8.17 (8) 6.65 (1) 5.73 (1)

9 2 7.94
(8)

14.42
(6)

10.65
(8)

5.06 (1) 5.35 (1)

9 3 7.02
(8)

15.9 (6) 8.22 (7) 8.55 (1) 5 (1)

9 4 9.26
(8)

13.14
(7)

8.29 (7) 8.19 (1) 4.78 (1)

Prediction Error
9 1 1.08

(8)
1.1 (7) 1.09 (8) 1.03 (1) 1.03 (1)

9 2 1.09
(8)

1.11 (7) 1.1 (8) 1.03 (1) 1.03 (1)

9 3 1.08
(8)

1.1 (7) 1.1 (7) 1.04 (1) 1.03 (1)

9 4 1.09
(8)

1.1 (7) 1.09 (7) 1.04 (1) 1.03 (1)

Design 29
Estimation Error
29 1 6.16

(8)
13.64
(7)

8.67 (7) 13.45
(1)

13.05
(1)

29 2 6.29
(8)

12.3 (7) 8.49 (8) 13.62
(1)

10.98
(1)

29 3 6.73
(8)

13.03
(7)

6.54 (8) 14.72
(1)

16.24
(1)

29 4 6.28
(8)

12.51
(7)

8.66 (8) 10.76
(1)

10.27
(1)

Prediction Error
29 1 1.09

(8)
1.1 (8) 1.1 (8) 1.07 (4) 1.1 (5)

29 2 1.1 (8) 1.11 (8) 1.09 (8) 1.1 (5) 1.11 (1)
29 3 1.1 (8) 1.1 (8) 1.1 (8) 1.09 (4) 1.13 (5)
29 4 1.09

(8)
1.11 (8) 1.09 (8) 1.09 (5) 1.11 (1)
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versa.
Fig. 4 shows a clear difference in the effect of low and high multi-

collinearity on estimation error. In the case of low multicollinearity
(gamma: 0.2), the estimation errors are in general smaller and have lesser
variation compared to high multicollinearity (gamma: 0.9). In particular
we observe that the envelopemethods have small estimation errors in the
low multicollinearity cases compared to the other methods.

Furthermore, position of the relevant predictor components has a
noticeable effect on estimation error for all methods. When relevant
predictors are at position 5, 6, 7, 8, the components at positions 1, 2, 3, 4,
which carry most of the variation, become irrelevant. These irrelevant
components with large variation add noise to the model and conse-
quently increases the estimation error. The effect intensifies with highly
collinear predictors (gamma ¼ 0.9). Designs with high multicollinearity
and relevant predictors at position 5, 6, 7, 8 are relatively difficult to
model for all the methods. Although these difficult designs have a large
effect on estimation error, their effect on prediction error is less influ-
ential [22].

In the case of the component dataset (Fig. 5), PCR, PLS1 and PLS2
methods have in general used a larger number of components in the case
of high multicollinearity compared to low. Surprisingly, the envelope
methods (Senv and Xenv) have mostly used a distinctly smaller number
of components in both cases of multicollinearity compared to other
methods.

The plot also shows that there is no clear effect of the correlation
between response variables (eta) on the number of components used to
obtain minimum estimation error.

A clear interaction between the position of relevant predictors and the
multicollinearity, which is visible in the plot, suggests that the methods
use a larger number of components when the relevant components are at
position 5, 6, 7, 8. Additionally, the use of components escalate and the
difference between the two levels of relpos becomes wider in the case of
high multicollinearity in the predictor variables. Such performance is
also seen the case of prediction error (See Rimal et al. [22], however, the
number of components used for optimization of prediction is smaller
than in the case of estimation. Even when the relevant components are at
position 5, 6, 7, 8, the envelope methods, in contrast to other methods,
have used an almost similar number of components as in the case of
relevant components at position 1, 2, 3, 4. This shows that the envelope
methods identify the predictor space relevant to the response differently,
from the other methods and with very few numbers of latent compo-
nents. This is particularly the case when multicollinearity in x is high.

The following sub-section explores in particular the prediction and
estimation errors and the estimated regression coefficient of Simulta-
neous Envelope and Partial Least Squares for a design having high mul-
ticollinearity, and with predictor components at positions 5, 6, 7, 8. Here
we will use the design with n > p and two levels of correlation between
the responses. These correspond to Design-9 and Design-29 in our
simulations.

Fig. 7 shows a clear distinction between the modelling approach of
PLS2 and Senv methods for the same model based on Design 9 (top) and
Design 29 (bottom). In both of the designs, PLS2 has both minimum
prediction error and minimum estimation error obtained using seven to
eight components and the estimated regression coefficients approximate
the true coefficients. In contrast, the Senv method has approached the
minimum prediction and minimum estimation error using only one to
two components and the corresponding estimated regression coefficients
approximate the true coefficients (Fig. 6). Despite having contrasted
modelling results for a dataset with similar properties, the minimum
errors produced by them are comparable in the case of Design 9 (See
Table 1). However, in the case of Design 29, estimation error corre-
sponding to PLS1 and envelope methods are much higher than PCR and
PLS2. It is interesting to see that despite having large estimation error, in
design 29, the prediction error corresponding to the envelope methods
are much smaller. In both of these designs and in prediction and esti-
mation error, Xenv has equally and better in some responses than Senv.
8

This difference needs further exploration in the case where there are
more than one true response dimension.

In this study, the response dimension for the simultaneous envelope
has been fixed at two components, which might have affected its per-
formance, however, both envelope methods had performed much better
with the same restriction in the case of prediction.

Fig. 7 also shows in both designs that Senv has large estimation errors
when the number of components is not optimal. This is also true for the
PLS2 model, however, the extent of this variation is noticeably large for
the Senv method. A similar observation as Senv is also found in Xenv
method while PCR and PLS1 are closer to the PLS2 in terms of their use of
components in order to produce the minimum error (See Table 1). Here,
the variation in the estimation error can increase drastically also for PCR
and PLSmethods, when number of components more than 10 (not seen in
the figure) is included. This is hinted in the estimation error plot (Fig. 7)
for PLS2 for 8–10 number of components are included in the model.

In addition to the prediction and estimation error, Fig. 6 gives a closer
view of how the average coefficients corresponding to these methods
approximate to the true values. In the figure, PLS2 has used seven to eight
components to reach the closest approximation to the true coefficients,
but with increasing errors after including more components than eight.
This departure from true coefficients is usual for PLS when the relevant
components are at 1, 2, 3, 4 whereas PCR has shownmore stable result in
such situations. Further, the envelope methods have presented their
ability to converge estimates to the true value in just one or two com-
ponents. However, one should be cautious about determining the optimal
number of components using method like cross-validation while working
with real data.

Despite having a large variation in prediction and estimation error,
the envelope based methods have produced a better result even for the
difficult data cases as shown for Design 9.
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7. Analysis

A statistical analysis using a Multivariate Analysis of variance
(MANOVA) model is performed on both the error dataset and the
component dataset in order to better understand the association between
data properties and the estimation methods. Let the corresponding
MANOVA models be termed as the error model (10) and the component
model (11) in the following. Here the equations represent a heuristic
representation of the MANOVA model and is closer to R-representation
than a proper mathematical formulation. In the model, we will consider
up-to the third order interaction of simulation parameters (p, gamma,
eta, and relpos) and Method as is represented by cube notation. The
models are fitted using correspondingly the error dataset (u) and the
component dataset (v).

Error Model:

u¼ �
uj
�¼ μj þðpþ gammaþ etaþ relposþMethodsÞ3 þ ε (10)

Component Model:

v¼ �
vj
�¼ μj þðpþ gammaþ etaþ relposþMethodsÞ3 þ ε (11)

where, u corresponds to the estimation errors in error dataset and v cor-
responds to the number of components used by a method to obtain
minimum estimation error in the component dataset.

To make the analysis equivalent to Rimal et al. [22]; we have also
Fig. 8. Pillai Statistic and F-value for the MANOVA model. The bar represents th

9

used Pillai’s trace statistic for accessing the result of MANOVA. Fig. 8
plots the Pillai’s trace statistics as bars with corresponding F-values as
text labels. The leftmost plot corresponds to the error model and the
rightmost plot corresponds to the component model. Here we use the
custom R-notation indicating interactions up to order three for the pa-
rameters within the brackets.

Error Model: Unlike for the prediction error in Rimal et al. [22];
Method has a smaller effect, while the amount of multicollinearity,
controlled by the gamma parameter, has a larger effect in the case of
estimation error (Fig. 8). In addition, the position of relevant components
and its interaction with the gamma parameters also have substantial ef-
fects on the estimation error. This also supports the results seen in the
LABEL:Section:exploration. Exploration section where relevant pre-
dictors at position 5, 6, 7, 8 combined with high multicollinearity creates
a large uninformative variance in the components 1, 2, 3, 4 making the
design difficult with regards to estimation. The effect of this on the
estimation error is much larger than on the prediction error. Further-
more, the eta factor controlling the correlation between the responses,
and its second-order interaction with other factors except for the number
of predictors is significant. The effect is also comparable with the main
effect of Method and eta.

Component Model: Although Method does not have a large impact
on the estimation error, the component model in Fig. 8 (right) shows that
the methods are significantly different and has a huge effect on the
number of components they use to obtain the minimum estimation error.
The result also corresponds to the case of prediction error in Rimal et al.
e Pillai Statistic and the text labels are F-value for the corresponding factor.
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[22]. However, the F-value corresponding the relpos and gamma shows
that the importance of these factors is much stronger compared to the
case of prediction error.

The following section will further explore the effects of individual
levels of different factors.

7.1. Effect analysis of the error model

In Fig. 9 (left), the effect of correlation between the responses
controlled by the eta parameter has a clear influence on the estimation
error for the envelope methods. In the case of designs with uncorrelated
responses, envelope methods have on average smallest estimation errors.
While PCR and PLS2, being somewhat invariant to the effect of this
correlation structure, have performed better than the envelope methods
in the designs with highly correlated responses.

For all methods, the error in the case of relevant predictors at posi-
tions 5, 6, 7, 8 is huge as compared to the case where relevant predictors
are at positions 1, 2, 3, 4.

Fig. 9 (right) shows a large difference in the effect of the two levels of
the position of relevant components, especially in the designs with high
multicollinearity. In the case of high multicollinearity, all methods have
noticeable poorer performance compared to the case of low
multicollinearity.

Finally, we note that the average estimation error corresponding to
envelop methods in the designs with lowmulticollinearity is smaller than
for the other methods.

7.2. Effect analysis of the component model

In the case of the fitted component model, envelope methods are the
clear winner in almost all designs. In the case of lowmulticollinearity and
position of relevant predictors at 1, 2, 3, 4, PLS1 has obtained the min-
imum estimation error similar to the envelope methods, however, in the
case of high multicollinearity PLS1 has also used a fairly large number of
components to obtain the minimum estimation error. Although the
Fig. 9. Effect plot of some interactions of the M
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envelope methods have comparable minimum estimation error in some
of the designs, in almost all the designs these methods have used 1–2
components on average. The effect of the correlation in the response has
minimal effect on the number of components used by the methods. The
design 9, which we have considered in the previous section, has mini-
mum estimation error for both envelope methods using only one pre-
dictor component. In design 29, where the envelope methods have
poorer performance than the other methods due to highly correlated
responses, the number of components used by them is still one. This
corresponds to the results seen in Fig. 10. As seen previously, PCR uses, in
general, a larger number of components than the other methods.

8. Discussion and conclusion

The overall performance of all methods highly depends on the nature
of the data. The MANOVA plots show that most of the simulation pa-
rameters, except p, has significant interaction with the methods. In
addition, the high interaction of gamma with the relpos parameter sug-
gests to carefully consider the number of relevant predictor components
in the case of highly multicollinear data since this choice may have a
large effect on the results. Although the interaction does not have this
extent of influence in prediction, one should be careful about interpreting
the estimates. In such cases, careful validation of model complexity,
preferably using cross-validation or test data is advisable also for esti-
mation purposes.

Designs with low multicollinearity and independent responses are in
favour of envelope methods. The methods have produced the smallest
prediction and estimation error with significantly few numbers of com-
ponents in these designs. However, as the correlation in the responses
increases, the estimation error in envelope methods in most cases also
increases noticeably. This indicates that the reduction of the response
space becomes unstable with high collinearity between the responses for
the envelope methods. Since the log likelihood objective function of
envelope methods are non convex, the highly correlated responses might
produce objective function with multiple maxima [8]. Despite the
ANOVA corresponding to fitted error model.



Fig. 10. Effect plots of some interactions of the multivariate linear model corresponding to the component model.
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interaction of the eta parameter with the method is significant, the extent
of its effect is rather small compared to both main and interaction effect
of gamma and relpos. Since the envelope methods are likelihood based
and are asymptotically efficient, with sufficiently large number of sam-
ples, the methods can produce smaller prediction and estimation errors
than others usual MLE methods.

The effect of the number of variables is negligible in all cases for all
designs. Here the use of principal components for reducing the dimension
of n < p designs, as in Rimal et al. [22]; has been useful so that we were
able to model the data using envelope methods without losing too-much
variation in the data.

Both prediction and estimation corresponding to PCR methods are
found to be stable even when the non-optimal number of components are
used. The PLS1 method, which models the responses separately, is in
general performing poorer than other methods. Unlike in prediction
comparison, the performance of the envelope methods is comparable to
the others except for the use of the number of components to obtain the
minimum estimation error. The envelope methods have used 1–2 com-
ponents in almost all designs, which is quite impressive. Although non-
optimal number of components can lead to large estimation error and
so one should be careful in this respect however this can easily be
controlled through a method like cross-validation. Both PLS1 and PLS2
use a smaller number of components when the relevant components are
at positions 1, 2, 3, 4. However, both methods used 7–8 components for
the designs with relevant components at positions 5, 6, 7, 8.

We expect the results from this study may help researchers, working
on theory, application and modelling, to understand these methods and
their performance on data with varying properties.

The first part of this study [22] on prediction comparison should be
considered to obtain a comprehensive view of this comparison. A shiny
[2] web application at http://therimalaya.shinyapps.io/Comparison al-
lows readers to explore all the visualizations for both prediction and
estimation comparisons. In addition, a GitHub repository at https://gith
ub.com/therimalaya/04-estimation-comparison can be used to repro-
duce this study.
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