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ABSTRACT

Growing world population, unabated use of fossil fuels, and economies aiming at

continuous growth exhaust the planet’s natural resources and add to an augmented

greenhouse effect. Besides limiting population growth in less developed regions, re-

ducing per capita energy consumption in more developed regions, substituting fossil

and nuclear fuels by renewable energy carriers is considered a major step towards a

sustainable development. The integration of renewable energy sources into the energy

system can reduce pollutants and greenhouse gas emissions connected to energy con-

version processes and ensure energy supply also in a long-term perspective. However,

the varying supply of renewable energy supply implies challenges to existing energy

systems, where traditionally supply used to follow demand. In order to plan, design,

and manage modern energy systems sound estimates on regional energy demand with

high temporal and spacial resolutions are needed. Due to the area-wide installation of

smart energy meters time series of individual hourly or sub-hourly energy consump-

tion data become available. In combination with cross-sectional information, such as

household characteristics or building physics, valuable data sets can be formed, allow-

ing the development of detailed consumption models.

In this thesis the key factors for energy consumption in Norwegian buildings are an-

alyzed, and a simple approach for modeling hourly energy consumption in different

consumer groups within household and service sector is presented. The models are

based on panel data sets consisting of hourly meter data combined with cross-sectional

data, weather data, and calendric information. The individual impacts of different heat-

ing systems on hourly electricity consumption in households are assessed, yielding

for example insights about average reductions in hourly consumption in case air-to-

air heat pumps or wood stoves are used. Moreover, the impacts of further household-

or dwelling-specific variables, such as number of residents or dwelling type, are dis-

cussed, and a simple method for disaggregating modeled hourly electricity consump-

tion into a temperature-independent and a temperature-dependent component is ap-

plied. Comparing goodness of fit of two regression models based on hourly and daily
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mean values of local outdoor temperature yields that daily mean values are sufficient

for modeling hourly electricity consumption, which facilitates the input data require-

ments. The modeling approach is further applied to both hourly electricity and hourly

district heat consumption in office buildings and schools. A comparison of modeled to-

tal energy consumption in buildings with electric and district heating, correspondingly,

indicates that in office buildings with district heating heat consumption in the morn-

ing starts earlier than in buildings with electric heating, and that schools with district

heating on average apply less indoor temperature reduction during night-time, week-

ends, and school holidays than schools with electric space heating. Finally the method

is used to model historic aggregate electricity consumption in households and service

sector in each Norwegian county, and to generate rough forecasts on hourly electricity

consumption in Oslo in 2040. Temperature forecasts for 2040 imply increased temper-

atures during the entire year, and three different scenarios on population development

assume low, medium, and high population growth. The forecasts indicate increased

electricity consumption from 2013 to 2040 for all three population scenarios, which

is mainly due to an increase in modeled consumption for electric appliances and tap

water heating. Modeled electricity consumption for space heating purposes decreases

in the low population scenario, slightly increases in the medium scenario, and only

exhibits a considerable increase under the assumption of high population growth. The

overall results of this study indicate that modeling aggregate energy consumption in

households and service sector based on a bottom-up regression model approach is

useful, but that the availability of building stock related input data is a prerequisite for

achieving meaningful results, both for modeling historic consumption and forecasting.

Moreover, important factors like thermal building standard or building age were not

considered in most of the models, so that the effects of a building stock renewal could

not be assessed. Larger samples of meter data and cross-sectional information, cover-

ing all Norwegian regions and sectors would enable developing further, more reliable

models which could be used to perform forecasts on hourly energy consumption in all

counties.
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1 INTRODUCTION

1.1 Background

A high share of global energy demand is covered by fossil fuels implying carbon diox-

ide (CO2)-emissions during combustion. The OECD1-member countries, representing

only 18 % of world population, accounted for more than one third of global emissions

of CO2 in 2011, and covered more than 80 % of their energy demand by fossil fuels

[1]. With conventional economies aiming at economic growth, implying ever increas-

ing production and consumption, global per capita energy demand is unlikely to de-

crease significantly. The increased frequency of smog emergencies, extreme weather

events like floods, droughts, heat waves, during recent years have given a glimpse of

what might be the consequences of taking no actions to limit pollution, deforestation,

and greenhouse gases emissions. In order to reach sustainable consumption levels on

a global level especially the most developed countries need to reduce per capita en-

ergy consumption and at the same time reduce CO2-emissions by substituting fossil

fuels with renewable energy carriers, that can be transformed to heat, electrical en-

ergy, or motion without combustion processes. According to the International Energy

Agency worldwide energy consumption will increase by one third by 2040 compared

to consumption in 2013, however, mainly due to increased consumption in non-OECD

countries, while energy consumption in the European Union (EU) is expected to de-

crease [2].

In order to reduce emissions the EU aims to reach an overall share of renewable energy

in total energy consumption of at least 20 % by 2020, and a share of 27 % by 2030 [3].

In 2014, the renewable share in the EU was 16 % [4]. Since electricity generation in

Norway relies almost exclusively on hydro power, and electricity covers a large part

of total energy consumption, the ”renewable-share” in Norway is considerably higher

than the EU-average. Norway’s goal for 2020 is a share of 67.5 % renewables [5],

which was met for the first time in 2014 [4]. Moreover, both Norway and the EU aim

1Organisation for Economic Co-operation and Development
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1 INTRODUCTION

at a renewable share of 10 % within the transport sector within 2020. The correspond-

ing shares in 2014 were 5 % (Norway) and 6 % (EU) [4].

1.2 Energy consumption in Norway

Due to the availability of hydro power and comparably low electricity prices electrical

energy has been the most important energy carrier in Norway during the last decades.

Energy consumption2 in Norway from 1976 to 2014, divided according to different

energy carriers, is shown in Figure 1. In the late 1970s oil and gas still accounted for

Fig. 1: Energy consumption in Norway, 1976 – 2014 [6]

about one third of consumption, but as a consequence of the oil crisis this share was

reduced dramatically during the early 1980s. The use of solid fuels has increased con-

tinuously from about 5 % in 1976 to about 13 % in 2014. The share of total energy

demand covered by district heat has been comparably small, however, it exhibited a

considerable increase from 1.0 % in 2000 to over 3.3 % in 2014. Total energy con-

sumption has been increasing until around 2000 when it started to flatten despite of

continuing population growth. Milder winters, higher prices, smaller dwellings, in-

creased use of heat pumps, increased energy efficiency in the industries, stricter build-

ing codes with respect to energy consumption, and shutting down factories within the

energy-intensive industries are possible reasons for an almost stagnating consumption

2Energy consumption in transport sector and energy sector as well as energy carriers consumed as
raw materials is not considered in this section.
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1.2 Energy consumption in Norway

during the past 15 years, and are discussed e.g. in [7, 8]. The kink in energy con-

sumption in 2009 can be explained by reduced production within the energy-intensive

industries, such as aluminium and ferro-alloys production and wood processing, due to

the international financial crisis [7]. The consumption peak in 2010 can be explained

by an extraordinary cold winter, while low consumption in 2014 can analogously be

explained by an unusually warm winter. Thus, both macroeconomic factors, such as

price shocks or financial crises, outdoor temperature, and different building stock re-

lated factors have had impacts on aggregate energy consumption.

In contrast to most EU countries, where electricity is still mainly generated in thermal

power plants and electricity prices are comparably high, electrical energy in Norway

is broadly used for space and domestic water heating, which explains typically high

electricity shares in total consumption especially in households and service sector. In

recent years the use of heat pumps for space heating purposes has increased signifi-

cantly. While in 2004 heat pumps were installed in only 4 % of dwellings, the share

was 27 % – and even 44 % in single family houses – in 2012 [9]. In residential build-

ings without hot water heating systems air-to-air heat pumps are common, typically

using outside air as heat source. Air-to-water or liquid-to-water heat pumps, e.g. using

geothermal heat as heat source, require a hot water heating system and are less com-

mon. About 10 % of Norway’s energy consumption for heating and cooling in 2014

was estimated to be generated by heat pumps [4]. Throughout all dwelling types the

use of wood stoves for space heating is common, however, less frequent in apartment

buildings. Especially in farm houses heating energy demand is often mainly covered

by wood burning, while electric heaters or heat pumps might only be installed in single

rooms. Energy consumption in households, services, and industries in 2013 is shown

in Figure 2. In household and service sector about 80 % of total energy consumption

was electrical energy, compared to only 62 % in the industries. While in the service

sector the remainder was mainly district heat and liquid fuels, e.g. heating oil, it was

mainly firewood as well as some liquid fuels and district heat in households. Coal

and gases covered about 25 % of total industrial consumption, but negligible shares

in households and services, indicating that these fuels are mainly used in industrial

processes.
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1 INTRODUCTION

Fig. 2: Energy consumption in services, households, industries, 2013 [10]

1.3 The need for energy consumption models

In order to ensure security of supply also in a long-term perspective, and at the same

time avoid CO2-emissions, energy systems need to integrate variable renewable en-

ergy (VRE) sources like wind and solar power, that provide large amounts of energy

each year. However, an efficient use of this energy provided, e.g. transforming it to

heat or electrical energy, implies certain challenges, since the potential and actual oc-

currence of VRE varies both locally and temporally. This variability in energy supply

is in stark contrast to conventional energy systems where production traditionally used

to follow demand. Power production in thermal power plants driven by fossil fuels can

be controlled so that power demand is met at all times. Integrating VRE into the en-

ergy system implies that the energy supply is no longer entirely predictable, and a high

supply with heat or power from VRE might not coincide with high heat or electricity

demand.

In Norway hydro power accounted for 96 % of total electricity production in 2014,

while thermal and wind power plants produced 2.5 % and 1.6 %, respectively [11].

Due to increasing power generation in run-of-river plants that are usually not control-

lable, higher shares of wind and solar power, as well as a stronger integration into the

European power system Norway’s energy system needs to implement flexibility mea-

sures.

Differences between supply and demand need to be levelled out by flexibility mea-

sures, such as storing or converting excess energy, trading energy with other coun-
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1.3 The need for energy consumption models

tries, or by influencing the system’s demand side. Lund et al. [12] describe and assess

various energy system flexibility options. Possible consumers of excess energy could

be district heating systems supplied by various heat sources, such as electric boilers

or heat pumps [13–16], or individual heating equipment in private households [17].

Demand side management includes various measures that support the synchroniza-

tion of energy supply and demand on different time perspectives. A simple option is

energy conservation, meaning avoiding or reducing energy consumption in general.

Another option to reduce the consumption of a specific energy carrier is fuel substitu-

tion, meaning another energy carrier is used to cover demand. Petrol can be substituted

by electricity in transport, firewood or district heat can substitute electricity for heating

purposes. The purpose of load management is changing diurnal load patterns by e.g.

reducing load during peak periods, increasing load during off-peak periods, or shifting

load from peak to off-peak periods [18]. Since heat and power networks are designed

according to an expected maximum load, the reduction of peak loads, that might only

occur for short time periods, can avoid grid extensions or even the construction of new

power or heating plants. Load management can be implemented by indirect programs,

where consumers are motivated by vouchers or lower electricity tariffs to schedule

energy consumption according to the patterns preferred by the system operators, or by

direct programs, implying that the operators can disconnect and reconnect single con-

sumer appliances according to their preferences. Albadi and El-Sadaany [19] present

an overview of demand response options in electricity systems. In order to commu-

nicate with individual consumers, e.g. sending price information or control signals,

and receiving meter data, most load management options require advanced metering

and communication technology. By 2020 more than 70 % of consumers in the EU

are expected to be equipped with smart electricity meters [20], which in contrast to

conventional meters log meter values in intervals between 15 and 60 minutes, and en-

able two-way-communication between consumers and system operators. In Norway,

all electricity consumers are planned to be equipped with smart meters by 2019 [21].

Consumption data transmitted by smart meters yields an enormous potential for devel-

oping new tariffs and pricing methods, analysing demand side management options,

and for energy-related research.

Forecasts on energy consumption represent valuable information for energy system

planning. The required temporal, spacial, and sectoral resolutions depend on the scope

of application. For designing power or heating plants, power grids or district heating

networks estimates on future maximum loads, e.g. in a city, are needed, while for

7



1 INTRODUCTION

rough estimates on how much firewood will be needed during a future year, forecasts

on annual heating energy consumption are sufficient. Historically there has been a

strong correlation between energy consumption, population, and economic indicators,

such as gross domestic product (GDP). Rough energy consumption forecasts on an-

nual energy consumption can e.g. make assumptions on quotients like GDP per capita,

and energy consumption per GDP, also known as energy intensity, and can thus esti-

mate energy consumption based on assumed future population. Rosenberg et al. [22]

develop long term projections of energy demand in different Norwegian sectors by

identifying important drivers for energy consumption within each sector, calculating

energy consumption per driver (intensities) for a base year, and calculate projected

energy demand based on assumed changes in intensities and drivers. More detailed

forecasting methods rely on models that can take into account changes in multiple

factors. In a comparably cold country like Norway, energy consumption is negatively

correlated with outdoor temperature during large parts of the year. Climate change is

expected to lead to higher outdoor temperatures all year, implying milder winters, but

also warmer summers. Seljom et al. [23] identify the effects of climate change both

on wind and hydro power production, as well as on annual energy demand for heating

and cooling in Norway in 2050. Several studies discuss the effects of reduced heat de-

mand and lower temperature levels, due to higher outdoor temperatures and increased

thermal building standards, on district heating systems [24–29]. For more detailed en-

ergy system planning and evaluating load management options forecasts with higher

temporal resolutions are useful. Andersen et al. [30, 31] identify hourly profiles of

electricity consumption within different consumer categories in Denmark. Weights

indicating the corresponding impacts of each category on aggregate hourly electricity

consumption in different Danish regions are calculated, and based on national pro-

jections on electricity consumption in each category forecasts on hourly electricity

consumption on a regional level are made.

1.4 Objectives and thesis outline

In order to reduce greenhouse gas emissions renewable energy carriers need to be

integrated into the energy system and substitute fossil fuels. Although Norway’s en-

ergy system heavily relies on hydro power and covers about two thirds of total energy

demand by renewable energy, increasing shares of variable power supply by wind,

solar, and run-of-river hydro power plants require more system flexibility. Converting

8



1.4 Objectives and thesis outline

excess power to heat in electric boilers or heat pumps, serving as heat sources to dis-

trict heating systems, or implementing demand side management measures can help

synchronizing supply and demand, and ensuring security of supply. Reliable energy

consumption models with high temporal, spacial, and sectoral resolutions are vital

for designing, planning, and operating modern energy systems. For example, in order

to design power lines forecasts on maximum electric loads are needed, while fore-

casts on maximum thermal loads are required for planning district heating networks.

Different factors affect energy consumption, and their isolated impacts might have dif-

ferent signs and values. Regarded in isolation, i.e. all other factors constant, increasing

outdoor temperatures due to climate change imply reduced energy demand for space

heating purposes, but an increased energy demand for space cooling. On the one hand

population growth might imply increasing energy demand due to more electric ap-

pliances and an increase in heated dwelling floor space. On the other hand increased

energy efficiency and stricter building codes in theory imply reduced consumption.

Thus, energy consumption models need to take into account individual impacts of dif-

ferent factors so that useful forecasts can be produced.

The main objectives of this thesis are to analyse important factors for hourly energy

consumption in Norwegian buildings, as well as to assess how regional hourly en-

ergy consumption in different consumer groups can be modeled, taking into account

changes in the key factors. Moreover, the sub-objectives are as follows:

• Developing a method to model hourly electricity consumption in Norwegian

households based on smart meter data and survey response data

• Assessing how different heating systems affect hourly electricity consumption

in Norwegian households

• Describing a disaggregation method to estimate how much electricity is con-

sumed for electric space heating and for other purposes correspondingly

• Developing models for hourly consumption of electricity and district heat in

non-residential buildings and assessing similarities and differences in consump-

tion patterns

• Developing a method for modeling hourly energy consumption in buildings on

a regional level that can be used for forecasting

The remainder of the thesis is organized as follows. Chapter 2 provides theoretic back-

ground regarding energy consumption in buildings. In Chapter 3 common approaches

9



1 INTRODUCTION

for modeling aggregate energy consumption in a building stock are briefly described

and discussed. Moreover, a method for modeling hourly energy consumption in build-

ings based on panel data is described in detail. Chapter 4 reports and discusses the

main findings of Papers I–IV, and Chapter 5 concludes the thesis.

10



2 ENERGY CONSUMPTION IN BUILDINGS

2.1 Energy carriers and energy efficiency

The expressions energy demand and energy consumption are often used synonymously,

although meanings actually differ. Demand can be interpreted as the need or request

for some good, while consumption describes how much of the good is actually con-

sumed. Consumption can be metered, while demand often remains unknown. Energy

consumption might be considerably lower than the actual energy demand, e.g. due

to the unavailability of energy carriers or equipment, but also more energy can be

consumed than actually needed, e.g. by wasting energy due to lacking awareness. As-

suming that demand is covered at all times, and consumption does not exceed demand,

the terms can be used interchangeably.

Primary energy carriers, e.g. wind energy or crude oil, are usually not used in their

original form, but transformed into secondary energy carriers in conversion processes

(Figure 3). Every energy conversion process implies energy losses. Wind energy is

usually first transformed into mechanical energy and then into electrical energy using

a wind turbine and a generator. Crude oil needs to be cleaned and processed in refiner-

ies, where different petrol products are extracted. Petrol, kerosine, diesel, or heating

oil are examples for secondary energy carriers derived from crude oil. Secondary en-

ergy carriers are usually transported to the end-users, e.g. the consumers of electricity

or heating oil, who receive end-use energy Eend , i.e. secondary energy minus trans-

portation losses, and transform it to useful energy Euse f ul , e.g. light or useful heat, in

different end-use applications. Typically end-use energy is the amount of delivered

energy the consumer is charged for, e.g. in electricity bills. How much of this end-use

energy is actually converted into useful energy, e.g. net heating energy, depends on the

efficiency of the corresponding end-use appliances, e.g. the heating system.

End-use energy efficiency can be defined as the ratio between useful energy output and

end-use energy input (Equation 1).

11



2 ENERGY CONSUMPTION IN BUILDINGS

Fig. 3: Schematic conversion from primary energy to useful energy consumed in buildings
(simplified and incomplete)

ηend =
Euse f ul

Eend
=

Eend −Eloss

Eend
(1)

In this thesis we focus on end-use energy consumption in buildings within household

and service sector. However, with the increasing use of electric vehicles that are often

charged at home or at work, i.e. at outlets connected to residential or non-residential

buildings, it might become more difficult to identify how much energy is used for

transportation and building-related purposes, correspondingly.

2.2 Electricity-bound energy consumption

Energy consumption by white goods (e.g. washing machines, freezers), brown goods

(e.g. computers, TVs), electric tools, lamps, and building equipment, e.g. pumps, el-

evators, fans, motors, is called electricity-bound energy consumption in this thesis,

assuming that only electrical energy can be used for these purposes. Different types of

electric devices for the same purpose might exhibit very different end-use efficiencies.

In the EU average energy efficiency of large electric devices like freezers, washing ma-

chines, dish washers, baking ovens, increased by about 12–14 % from 2000 to 2012

[32], mainly due to the replacement of older appliances by new, more efficient ones.

Average efficiency of lighting equipment increased by about 17 % [32] in the same

period, which can be explained by the replacement of incandescent light bulbs by flu-

12



2.3 Energy consumption for heating and cooling

orescent lamps. Roughly speaking, electricity-bound energy consumption depends on

the number of electric devices used, corresponding electric loads and efficiencies, and

the frequency and duration of grid-connected use or charging. The number of electric

appliances in a building often depends on the number of people living or working in

it. The number of people is usually positively correlated with building size, or floor

space, i. e. the more people, the larger the building. The general building type, e.g. res-

idential building, office building, school, often implies the use of specific appliances.

In residential buildings, white goods and kitchen tools often are predominating with

respect to electric load and use frequency, while in office buildings, computers, mon-

itors, servers, lamps, and building-related equipment like elevators or ventilation sys-

tems might be more important. Additional factors like number and age of residents in

a household, employment status, time spent at home, personal interests, routines, indi-

vidual choices and attitudes largely affect the variety, number, and diurnal use patterns

of appliances in residential buildings. The decision to use or not to use an appliance

with comparably high electric load, e.g. a baking oven for making dinner, can have a

considerable impact on hourly electricity consumption in the corresponding household

on the corresponding day, but it is hard to predict. In larger non-residential buildings

some large appliances like illumination, ventilation system, or servers, are often either

running continuously, or are controlled by a central control system, so that diurnal

profiles of total electricity-bound consumption exhibit less variations. However, both

in residential and non-residential buildings diurnal consumption patterns depend on

day-types, such as working and non-working day, and vary from month to month.

2.3 Energy consumption for heating and cooling

Across all sectors heating energy is needed for covering the demand for space and wa-

ter heating in the building stock. Heating energy demand can be covered by a variety

of energy carriers that can be transformed to heat at the desired temperature level. In

Central Europe, heating systems are commonly based on fossil fuels, while in Norway

a combination of electric and biomass heating, in single-family houses often supported

by air-to-air heat pumps, is usual. Domestic hot water, i.e. hot tap water, can be pre-

pared in instantaneous heaters or in hot water tanks, and both heater types are available

electrically driven or combined with a central heating system. Since heating energy for

domestic water heating needs to be provided at high temperatures to ensure a certain

water temperature for hygienic reasons, the electric or thermal load of domestic wa-

13



2 ENERGY CONSUMPTION IN BUILDINGS

ter heaters during operation is comparably high. Domestic water heaters are typically

designed according to the number of residents, or the number of hot tap water instal-

lations, e.g. sinks, showers, in a dwelling or building. In Norway, electrically heated

200-litres tanks are common in single-family houses. As hot water is tapped from the

top of the tank, the tank is refilled with cold water at the bottom. As soon as water

temperature falls below a lower temperature threshold, re-heating starts until water

temperature reaches an upper temperature threshold.

Cooling energy is a common expression for the amount of heat removed from a sys-

tem, i.e. a room or a refrigerator. Cooling energy demand, e.g. for space cooling or

refrigeration, can be covered by compression chillers driven by electrical energy, or by

sorption chillers enabling the use of heat for cooling purposes. In Central and North-

ern Europe space cooling in non-residential buildings like office buildings, shopping

centres, hospitals, or hotels is common, but it is usually not provided in residential

buildings.

Space heating and cooling load in a building largely depend on the temperature dif-

ference between inside and outside environment, the size of the building, and building

envelope characteristics. Heat transport from or to the outside environment occurs due

to heat transmission through building elements like roofs, walls, floors, through small

openings in the building shell, e.g. between windows and wall elements, and through

manual or mechanical ventilation. Heat is also transported within a building, e.g. from

areas with higher temperatures to areas with lower temperatures. Heat transported out

of the building or room can be called heat loss, while heat transported into the building

or room represents a heat gain. Moreover, heat gains occur e.g. through body heat of

people living or working in the building, waste heat from electric appliances, or solar

irradiation.

Heat transmission often accounts for the largest amounts of heat transport between

inside and outside environment, so that building codes used to focus on limiting the

thermal transmittances, or U-values, of certain building elements. The U-value of an

element Ue mainly consists of the reciprocal of the aggregate heat transmission resis-

tance of the element’s different layers1. Heat transmission resistance is defined as the

quotient of the layer’s thickness and thermal conductivity so that the lower each layer’s

thermal conductivity and the thicker each layer, the lower the element’s U-value.

Heat transmission rate Q̇T,e through an element, e.g. an outside wall, can be described

as the product of the element’s U-value Ue and surface Ae, and the temperature differ-

1neglecting the effects of convection and radiation on the wall’s in- and outside
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2.3 Energy consumption for heating and cooling

ence between inside and outside. In case inside air temperature tin is above outside air

temperature tout heat is transported out of the building, i.e. heat losses occur, typically

in winter. In case tout > tin heat is transported into the building, representing another

type of heat gains that typically occur in summer.

Q̇T,e =Ue ·Ae · (tin − tout) (2)

Neglecting the thermal storage capacity of the building heating and cooling loads can

be defined as difference between heat losses and heat gains. When heat losses exceed

heat gains, indoor temperature drops, so that in order to maintain a desired indoor tem-

perature the building needs to be supplied with an adequate amount of heating energy

that equalizes all heat losses that can not be outweighed by heat gains. Analogously,

heat needs to be removed from the building in case heat gains exceed heat losses and

indoor temperature is intended to remain constant. Heating and cooling loads can be

modeled and simulated in detail using dedicated software, e.g. IDA ICE [33].

The sum of heat losses Q̇loss can be described as the product of a building specific

heat loss coefficient Hloss and the driving temperature difference tin − tout while in-

ternal heat gains Q̇gain are assumed to be temperature-independent (Equation 3). Due

to heat gains space heating is first required when outdoor temperature drops below a

threshold, called base temperature tb, so that the impact of heat gains can be approxi-

mated by Equation 4. Due to lower heat loss coefficients base temperatures in newer

buildings are typically lower than in older buildings.

Q̇H = Q̇loss − Q̇gain = Hloss · (tin − tout)− Q̇gain (3)

Q̇H ≈ Hloss · (tb − tout) (4)

Integrating heating load Q̇H over time yields heating energy QH . Neglecting hourly

variations in outdoor temperature daily heating energy consumption can be estimated

as the product of heat loss rate and the difference between base temperature tb and

daily mean outdoor t̄out,d , which describes a common degree day practice.

QH,d ≈ Hloss · (tb − t̄out,d) = Hloss ·HDDd (5)
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2 ENERGY CONSUMPTION IN BUILDINGS

A heating degree day HDDd
2 is defined as the positive difference between a chosen

base temperature tb and daily mean outdoor temperature t̄out,d , and it is zero when

t̄out,d ≥ tb.

Average daily district heat consumption in a sample of office buildings as a function

of daily mean outdoor temperature is shown in Figure 4a. Since consumption exhibits

a kink around t̄out,d=14◦C a base temperature of 14◦C is used for calculating HDD

in this example. Average consumption as a function of heating degree day is shown

in Figure 4b. While district heat consumption is negatively correlated with outdoor

temperature it is positively correlated with HDD and the slope in Figure 4b can be

interpreted as the sample’s average heat loss coefficient. Obviously, using a common

tb for all consumers and the choice of tb based on visual judgement implies a certain

error. Methods for approximating tb are e.g. described in [34, 35]

(a) Consumption over temperature (b) Consumption over HDD

Fig. 4: Daily mean district heat consumption in office buildings (workdays) over daily mean
outdoor temperature and heating degree days

In order to compare annual energy consumption in different periods, e.g. years, the

sums of daily HDD during the corresponding periods are calculated. For calculating

HDD in Norway usually tb=17◦C is chosen. In theory, heat consumption at outdoor

temperatures larger than or equal to base temperature represents heat consumption

2Index d is dropped in the following.
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for tap water heating, which is often negligible in office buildings but substantial in

residential buildings. Moreover, space heating consumption only exhibits a clear tem-

perature dependency if the heating system is feed back controlled, i.e. heating energy

is only consumed until e.g. a desired indoor temperature is reached. In case heaters

are turned off and on manually, or run continuously almost all year, e.g. electric floor

heating in bathrooms, heat consumption and outdoor temperature or HDD are less

correlated.

Cooling load and cooling energy demand for space cooling can calculated analo-

gously, using cooling degree days CDD. A cooling degree day is defined as the positive

difference between t̄out,d and tb, i.e. CDD = 0 as long as t̄out,d ≤ tb. When heat gains

exceed heat losses, and indoor temperature rises above an upper threshold, heat needs

to be removed from the building. Especially office buildings, with often high shares

of window area and high heat gains from electric appliances like computers, copy ma-

chines, elevators, artificial lighting, as well as from body heat of people working in

the building, require space cooling during summer. Space cooling is usually imple-

mented through chillers connected to the central air conditioning unit or by individual

chillers placed in the rooms that need to be cooled. Compression chillers and heat

pumps utilize the same thermodynamic process, the only difference lies in the ap-

plication. Using a heat pump the desired energy output is high-temperature heat at

the condenser, while the desired effect of a compression chiller is the intake of low

temperature heat at the evaporator. A big disadvantage of compression chillers is the

comparably large amount of heat of condensation, which is typically discharged as

waste heat to the environment by re-coolers placed on the buildings’ roofs.

Different heating systems imply different shares of energy losses and thus different

end-use efficiencies. Direct electric heating, e.g. using electric ovens directly heating

the air, is often assigned an efficiency of ηend ≈1.0, while a hot water heating sys-

tem, i.e. central heating, implies some energy losses and thus lower efficiencies. A

building connected to a district heating network is usually equipped with a hot water

heating system, where a heat exchanger supplied by district heat serves as heat source.

Heat losses occur at the heat exchanger and in the central heating system. Similarly

heating and cooling via a central air conditioning system implies different kinds of

energy losses, however, the systems often implement energy recovery, e.g. using heat

exchangers. Heating systems implying a combustion process, e.g. by burning heating

oil or fire wood, can be realised by a central furnace and a hot water heating system,

or by heating units placed directly in the rooms to be heated. Since during combustion
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2 ENERGY CONSUMPTION IN BUILDINGS

energy is usually lost via the exhaust gas, end-use efficiencies of conventional furnaces

are lower than in case of electric or district heating. However, modern systems, e.g.

incorporating exhaust gas energy recovery, yield considerably reduced energy losses

and thus higher efficiencies. Heat pumps utilize a low temperature heat source that is

usually freely available, e.g. outside air, exhaust air, geothermal heat. Since electrical

energy is normally the only end-use energy metered and billed, end-use energy effi-

ciencies larger than 1.0 are achieved.

Based on to this theoretical background heat loss rate, base temperature, type of heat-

ing or cooling equipment, as well as outdoor temperatures, represented by heating and

cooling degree days, are assumed to be important factors for modeling end-use energy

consumption for space heating and cooling in buildings.
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3.1 Approaches for modeling aggregate energy consumption in the
building stock

As outlined in Chapter 2 energy consumption in a building consists of different com-

ponents representing different end-use appliances. Aggregate energy consumption in

a multitude of buildings, e.g. a regional buildings stock, represents the sum of energy

consumptions by the individual buildings. Mathematical energy consumption models

can be roughly divided into bottom-up and top-down models.

Assuming the goal is modeling aggregate energy consumption in a building stock top-

down models usually rely on historic values of aggregate consumption and macroe-

conomic variables like gross domestic product, prices, population, and weather vari-

ables such as HDD. Trotter et al. [36] describe a top-down approach for modeling

daily electricity consumption in Brazil and use the model for forecasting electricity

demand considering different forecasts on weather related input data with respect to

climate change. The multiple linear regression model includes HDD, CDD, and daily

sun hours, gross domestic product (GDP), population, as well as calendric informa-

tion. Dependent variable, GDP, and population are included as log-transformed vari-

ables. Bentzen and Engsted [37] use autoregressive distributed lag (ARDL) models

that includes a lagged dependent variable, i.e. energy consumption in a preceding pe-

riod. Top-down models are often used to evaluate economic factors, e.g. income or

price elasticities [38], or for long-term projections. Typically top-down models only

need few and easily available input variables, however, changes in disaggregate con-

sumption, e.g. regarding the use of different electric appliances or heating equipment,

cannot be implemented.

Bottom-up models for aggregate energy consumption typically model energy con-

sumption of individual buildings or end-use appliances, or corresponding archetypes,

first and then aggregate consumption over the entire building stock. Typical input vari-

ables for bottom-up models are consumer-specific variables, such as building type,
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dwelling or building size, building age, information on different appliances and heat-

ing equipment, as well as weather variables, e.g. outdoor temperatures or sun hours.

Bottom-up models can further be divided into statistical models and engineering mod-

els [39]. Bottom-up engineering models are developed based on consumption char-

acteristics of single end-use appliances combined with detailed information on e.g.

building physics, occupancy patters, and number of different appliances [40–43]. In

theory, no historical consumption data is necessary to develop engineering models,

and the effects of new technologies can be implemented and assessed. Disadvantages

of engineering models are that consumer behaviour is often based on assumptions,

and that developing and applying the models often requires high expertise [39].

Statistical bottom-up models for residential consumption are developed based on his-

toric consumption data of a sample of representative buildings and additional vari-

ables describing the individual buildings. Common statistical bottom-up modeling

techniques are regression and artificial neural networks (ANN). The latter represent

a more sophisticated, data-driven form of mathematical models used for modeling

and forecasting energy demand and has become increasingly common during the past

15 years [44–49]. Strongly simplified an ANN consists of input and output nodes that

are interconnected by a network of hidden nodes performing calculations and passing

on the corresponding results. By comparing output values with desired output values,

e.g. meter data, and feeding this error back to the network the ANN can be trained and

improved in order to minimize the error. In contrast to regression models ANN do not

produce coefficients with a practical interpretation and the method usually requires

high developer skills and powerful computer resources.

Conditional demand analysis (CDA) requires a dataset containing meter data from a

sample of consumers and detailed information on the appliances used by the individual

consumers. Multiple linear regression is applied to model total energy consumption as

a function of the numbers of appliances used, and the resulting coefficients represent

estimates on energy consumption of each appliance. Parti and Parti [50] applied the

method to disaggregate monthly electricity consumption according to different end-

use appliances. Larsen and Nesbakken [51] compared modeled annual disaggregate

electricity consumption from a CDA model with the results from an engineering model

(ERÅD). The CDA model is based on annual electricity consumption and survey data

from Norwegian households and yields R2 ≈ 0.5. However, insignificant CDA results

for appliances that are used within most households result in a high share of miscella-

neous consumption, and the shares of modelled end-use energy consumption for space
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heating and domestic water heating resulting from the engineering model exceed the

CDA-results largely. The high level of detail in required input data is reported to be a

major drawback of the engineering model.

Many bottom-up regression models for energy demand modeling rely on the Prince-

ton Scorekeeping Method (PRISM) [34], whose original purpose was to determine the

weather-normalized energy savings achieved through retro-fit measures. The model

describes the fundamental correlation between outdoor temperature and heating en-

ergy consumption, and calculates individual values for base temperature tb, temperature-

independent consumption β0, and heat loss coefficient β1 for each consumer, mainly

based on monthly billing data of gas heated houses. An iterative procedure is used for

finding the base temperature that implies a maximum coefficient of determination R2

for the straight-line fit of energy consumption Em,i versus average heating degree day

HDDm,i(tb,i), which is a function of individual base temperature.

Em,i = β0,i +β1,i ·HDDm,i(tb,i) (6)

With the three main parameters tb,i, β0,i, β1,i weather-normalized energy consumption

before and after the retro-fit actions can be obtained using the number of heating de-

gree days in a normal year as input variable, thus allowing the calculation of weather-

normalized annual energy savings.

Hirst et al. [52] extend the PRISM method in order to categorize households accord-

ing to their use of other heating fuels, based on electricity meter data. A sample of

households is divided into different categories indicating whether only electricity is

used for space heating, other fuels are used supplementary, or no electricity is used for

space heating, and weather-normalized annual consumption in two subsequent billing

periods is calculated. The effects of switching from only electric heating to supple-

mentary or completely heating with other energy carriers from one period to the other,

and other household characteristics collected by a telephone survey, are discussed.

Moreover, the paper addresses typical issues regarding meter failures and outlier de-

tection.

Pedersen et al. [35] describe prediction models for hourly heat and electricity demand

in different residential and non-residential building types with district heating in Nor-

way. For each building base temperature is determined, and temperature-dependent

heat demand is modeled using linear regression models for each hour of the day and

each day-type, using daily mean outdoor temperature as independent variable. Aver-
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age daily design load is calculated as the mean value of the 24 hourly heat loads at

design outdoor temperature, and relative design load profiles are generated by dividing

each hourly load with average daily design load. Thus, generalized hourly consump-

tion profiles for different building archetypes and daytypes are generated.

Kavousian et al. [53] use a large sample of smart meter data with a 10-minutes me-

tering interval combined with survey response data to evaluate the impacts of differ-

ent factors on daily minimum and maximum load, respectively. Due to comparably

many cross-sectional variables factor analysis to deal with collinearity, i.e. high cor-

relation between explanatory variables, and a stepwise selection method for selecting

the included variables are applied. According to [53] weather variables and building

physics are the most important factors for residential electricity consumption. Djuric

and Novakovic [54] use multivariate analysis to identify the key variables affecting

energy consumption in low-energy office buildings based on detailed building en-

ergy management data and energy consumption data. Energy consumption is modeled

based on Principal Component Analysis and Partial Least Squares. The results indi-

cate that heating energy consumption is more affected by operational parameters than

by outdoor temperature, and that occupancy levels, indoor temperature, and single

air-conditioning signals are the most important factors for modeling total electricity

consumption.

In the following section a bottom-up approach for modeling aggregate hourly energy

consumption in a regional building stock is described.

3.2 Multiple linear regression using panel data

Due the implementation of hourly metering, time series of electricity and district heat

consumption are stored by the system operators. Cross-sectional data can be collected

by performing surveys among different consumer groups, e.g. households and service

sector customers. Combining time series and cross sectional data by a consumer iden-

tification code (ID), results in panel data.

A simplified example of a panel data set based on hourly meter data is shown in Table

1. Since hourly energy consumption in each hour of the day, E1 through E24, is in-

cluded in form of separate columns the time-series interval is 1 day, indicated by date

in the first column. The second column includes the individual ID of each consumer.

Calendric variables, such as month and daytype, and weather data HDD vary from day

to day, but are constant for all hours of the day. Cross-sectional variables, such as floor
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space, adults, children, are constant within each individual time-series.

Tab. 1: Illustration of the panel data structure
date ID floor space adults children daytype month HDD E1 ... E24

03-11-2013 M0001 170 2 2 Sun/holiday 11 15.3 3.21 ... 3.30
04-11-2013 M0001 170 2 2 workday 11 14.8 3.08 ... 3.25

... ... ... ... ... ... ... ... ... ... ...
03-11-2013 M0500 100 1 0 Sun/holiday 11 15.3 2.81 ... 2.91
04-11-2013 M0500 100 1 0 workday 11 14.8 2.80 ... 2.88

For model development throughout this thesis the method of Ordinary Least Squares

(OLS) is applied to panel data. Since observations are pooled across time the method

is called pooled OLS [55].

Explained in terms of energy consumption data, for each consumer i and each date

24 meter data entries are available. The model set for hourly energy consumption is

based on multiple linear regression, as illustrated by Equation 7, where Eh,i represents

energy consumption in hour h and observation i, β0,h is the intercept parameter, βk,h

the slope parameters, and εi the unobserved error term. Explanatory variables xk,i rep-

resent cross-sectional, weather, and calendric data, and a common model set up is used

to estimate separate coefficients for all 24 hours.

Eh,i = β0,h +
k

∑
k=1

βk,h · xk,i + εi (7)

The modeled values of hourly consumption Êh,i are calculated based on the corre-

sponding parameter estimates β̂0,h and β̂k,h (Equation 8). The residuals ε̂i represent

the difference between modeled and metered consumption values.

Êh,i = β̂0,h +
k

∑
k=1

β̂k,h · xk,i = Eh,i − ε̂i (8)

Advantages of an hourly energy consumption model based on pooled OLS are its sim-

plicity and the straightforward interpretation of regression coefficients β0 and β̂k,h. An

analysis of variance (ANOVA) yields the contribution of each explanatory variable to

total explained variance for each hour of the day, facilitating an assessment of dif-

ferent factors. Since modeled consumption consists of several individual components,

i.e. β̂0 and β̂k · xk, it can be broken down accordingly to analyse how much different

factors actually contribute to modeled consumption. An example illustrating modeled

electricity consumption in all 24 hours, divided into different components, is shown

in Figure 5.
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Fig. 5: Illustration of different components forming modeled consumption

In this case the intercept β̂0 represents modeled average consumption of a one-person

household on a workday in January. The two dark and medium grey components il-

lustrate how much more electricity is consumed on average if a second adult and two

children reside in the dwelling as well. The yellow and orange areas represent the con-

tributions of HDD and HDD in interaction with floor space, respectively, for defined

input values (in this example HDD=20, floor space=100). Moreover, components in-

cluding HDD can be interpreted as modeled energy consumption for space heating,

assuming that only space heating energy demand is HDD-dependent. Components in-

cluding CDD could be interpreted as modeled energy consumption for space cooling,

accordingly.

Due to the simple model structure without any transformed variables modeling time-

aggregate, e.g. individual daily consumption, and sample-aggregate consumption, i.e.

hourly consumption of several consumers, or a combination of both is easily per-

formed. In order to model aggregate hourly energy consumption in a regional residen-

tial building stock the total number of dwellings, aggregate floor space, as well as the

relative frequencies of all cross-sectional explanatory variables are required.

The method also implies some drawbacks. As parameter estimates only represent av-

erage effects of different variables, samples need to be representative in order to ap-

ply the models to an entire building stock. Depending on the number of explanatory

variables comparably large samples are required. Roughly speaking, with longer me-

ter data time series available the impacts of weather and calendric variables, such as
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HDD, month, daytype, can be modeled more accurately, while meter data from more

individual consumers, i.e. an extended cross-sectional component, yields more reli-

able estimates on variables such as floor space, or number of adults or children. The

method is sensitive to outliers, which can easily be caused by erroneous meter or sur-

vey response data. Detecting and evaluating outliers in large panel data sets can be

difficult and time consuming.
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In papers I–IV the methodology described in Section 3.2 is applied and the key factors

for hourly energy consumption are analyzed accordingly. The sub-objectives of this

thesis are fulfilled by the results of the individual papers.

4.1 Hourly electricity consumption in households

Hourly electricity consumption in Norwegian households is analyzed in Paper I and

Paper II. By combining hourly electricity meter data and survey response data from

two samples of households located in Norwegian counties Buskerud and Telemark two

panel data sets were available. The datasets were completed with outdoor temperature

data metered at corresponding weather stations as well as with calendric information.

4.1.1 Assessing the impacts of different heating systems

In Paper I hourly electricity consumption in detached houses included in one of the

samples (Buskerud) during the main heating period is modeled using pooled OLS.

Two model sets, one for households with direct electric space heating, and one for

households with central heating systems are developed, and modeled hourly electricity

consumption in an average households using different heating equipment is compared.

An interesting result lies in the survey data itself, revealing that households using air-

to-air heat pumps as a supplement to direct electric space heating on average use less

wood burning than households with direct electric space heating. Wood burning is

widely used in Norwegian households, however, with varying intensities. Compared

to direct electric heaters air-to-air heat pumps consume less electrical energy when

providing the same amount of useful heat. When households partly substitute wood

burning by air-to-air heat pumps energy savings by using the heat-pumps may thus

not necessarily result in reduced electricity consumption, but rather in reduced wood

consumption.
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In order to isolate the impacts of using different heating systems and equipment, the

developed regression models include corresponding dummy variables, mainly in in-

teraction with HDD. Achieved goodness of fit for both model sets is in the same range

(R2 ≈ 0.35−0.4), while the importance of different variables differs. For households

with direct electric space heating heating degree day – as stand-alone variable and in

interaction with floor space is the most important explanatory variable, and explains

about half of total explained variance. For households with central heating HDD in in-

teraction with type of heat source, i.e. electric boiler, oil boiler, or liquid-to-water heat

pump, HDD alone, a dummy variable indicating whether domestic hot water tanks

were electrically heated, and floor space were the most important variables. More-

over, in both model sets resident variables, mainly the number of adults and children,

were important variables. The results of Paper I indicate that both using air-to-air heat

pumps and wood burning, divided into two intensity levels, imply reduced electricity

consumption during all hours of the day, however, non-electric central heating implies

the largest reductions. A rough scenario analysis on the sample’s aggregate hourly

electricity consumption on a cold January day compares possible reductions in hourly

consumption in case of area-wide changes in heating methods. Assuming all house-

holds with direct electric heating would use air-to-air heat pumps, and leave firewood

consumption unchanged, the results indicate comparably small reductions of 2–5 %

over the course of the day. Assuming the households would in addition use intensive

wood burning, reductions in modeled aggregate consumption are 10–12 %. Assuming

that all households would switch to non-electric central heating, including domestic

water heating, modeled reductions are between 45 % during afternoon and evening,

and 60 % during morning.

4.1.2 Modeling and disaggregating hourly electricity consumption and
evaluating the use of hourly temperature data

Paper II analyzes electricity consumption in households with direct electric space heat-

ing, situated in Buskerud, and includes also attached dwellings, such as terraced and

semi-detached houses or apartments. However, the majority of households represent

detached houses. Analyzed metering period spans about ten months, missing June and

July. In order to evaluate whether including hourly meter values of local outdoor tem-

perature in the corresponding hourly models yields more accurate models two hourly

model sets are developed: One model includes heating degree day, that is constant for
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all 24 hours of the day, while the second model includes heating degree hour, HDH,

that varies from hour to hour. Each model set includes a 1st differences variable, rep-

resenting the difference in HDD from one day to the next, and the difference in HDH

from one hour to the next, respectively. Comparing goodness of fit achieved by both

models indicates that – with the described model set up – models based on HDH do

not perform better than models based on HDD, which leads to the conclusion that us-

ing the described modeling approach daily mean temperature values are sufficient for

modeling hourly heating energy consumption. Based on the HDD-based model set a

simple method for disaggregating modeled total hourly electricity consumption into a

component for electric space heating and a component for all remaining purposes, i.e.

electric appliances and domestic water heating (DWH), is described, dividing mod-

eled consumption into temperature-dependent and temperature-independent elements.

In order to properly validate the disaggregation method data from sub-metering elec-

tric heating equipment is necessary, which was not available in this study. In order to

at least roughly check the results modeled electricity consumption for electric appli-

ances and DWH are compared with modeled electricity consumption in households

with non-electric central heating, based on the models presented in Paper I, which

indicated useful – albeit uncertain – results. Disaggregate modeled consumption in-

dicates that the characteristic shape of hourly electricity consumption in households,

e.g. morning peak and evening top, is mainly influenced by temperature-independent

components, such as DWH, white goods, lighting, while the level of consumption is

mainly influenced by temperature-dependent components, i.e. modeled heating en-

ergy consumption. In order to test the applicability of the model based on data from

Buskerud to other Norwegian regions hourly electricity consumption in the second

sample (Telemark) is modeled. In both samples the majority of households using di-

rect electric heating resided in detached houses and average dwelling sizes were in the

same range. Both on individual household level as well as on sample-aggregate level

achieved goodness of fit were similar to the values achieved for the original data set,

indicating that the method is well applicable to other Norwegian regions with a similar

structure.
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4.2 Hourly consumption of electricity and district heat in
non-residential buildings

The analyses performed in Paper III are based on hourly meter data of electricity and

district heat in samples of schools and office buildings located in Oslo. Meter data is

combined with cross-sectional data from the Norwegian energy label database, tem-

perature data, and calendric information. As opposed to the data used in Papers I and

II the resulting panel data sets contain only few observations and few cross-sectional

variables, however, the meter data time series spans approximately three years. For

both building types three regression models are developed each: one model for hourly

consumption of district heat, and one for hourly electricity consumption in case of

electric heating and non-electric heating, correspondingly. Due to the limited availabil-

ity of cross-sectional variables and the low number of observations only floor space is

included as cross-sectional variable in the electricity consumption models, while the

models for district heat in addition include a dummy variable indicating old buildings.

Although the number of explanatory variables is low the resulting models on average

achieve higher shares of explained variance than the electricity consumption models

for households, described in Papers I and II. This can be explained by more regular di-

urnal consumption patterns in non-residential buildings, that are mainly influenced by

calendric variables, such as dummy variables indicating workdays or non-workdays,

and by the longer meter data time series available. Comparing modeled total hourly

energy consumption in buildings with electric heating (only electrical energy) with

corresponding values for buildings with district heating (the sum of electrical energy

and district heat) indicates that the shape of total consumption is similar, but that there

are larger differences between night- and daytime consumption in buildings with elec-

tric heating. In office buildings with district heating total consumption in the morning

is on average higher than in office buildings with electric heating, while it is lower

during the main office hours. This can be explained by the hot water based central

heating systems on average requiring more time to deliver heat to the corresponding

rooms, compared to e.g. direct electric heaters, and thus starting earlier. Moreover, the

comparison indicates that in schools with district heating less indoor temperature re-

duction during night-time, weekends, and school holidays is used compared to schools

with electric space heating. A possible explanation for this result might be that school

buildings and sports halls might be used for other purposes beyond the school days.

Comparing the annual shares of modeled disaggregate consumption, i.e. modeled con-
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sumption for space heating and other purposes, respectively, indicates that buildings

using district heat on average consume higher shares of heating energy compared to

buildings with electric heating. Since modeled district heat consumption is assumed

to include also energy consumption for tap water heating, which is not included in

modeled space heating energy consumption in case of electric heating, higher shares

of heat in case of district heating are feasible. However, low sample sizes for buildings

with electric heating, simplifications connected to the disaggregation method, as well

as differences in building age that are not sufficiently accounted for in the models,

might lead to differences in modeled shares of disaggregate consumption. Comparing

modeled annual heat shares for schools and office buildings indicates that a higher

share of total annual energy consumption in schools is used for heating purposes,

which can be explained by higher indoor temperatures and less periods with temper-

ature reduction, less internal heat gains, higher consumption of hot tap water, and

on average older buildings. Correspondingly a higher share of modeled temperature-

independent energy consumption in offices can be explained by more electric appli-

ances used and the use of space cooling during summer.

Although the general model results are feasible the samples, especially for buildings

with electric heating, are too small to obtain reliable models.

4.3 Modeling and forecasting regional hourly electricity
consumption in buildings

In Paper IV regression models for hourly electricity consumption in different con-

sumer groups within household and service sector are developed based on the data

and findings described in Papers I–III. In order to test the applicability of the models

historic electricity consumption in the two sectors for each Norwegian county is mod-

eled as aggregate consumption in the building stock connected to the corresponding

sectors and compared with metered annual and hourly consumption data. The required

input data is based on official building stock statistics as far as available, on household

survey results from Buskerud, on the Norwegian energy label database, as well as on

a number of assumptions. Average floor space values for each building category are

only available for Oslo county. However, being the capital, Oslo on average exhibits

more employees per building than other counties, so that average floor space for all

other counties is estimated based on a adjustment factor. A comparison of modeled and

metered annual electricity consumption in 2012 per sector and county yields relative
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errors of less than ±8 % for most counties. However, the household model overesti-

mates metered consumption in three counties by more than 10 % and underestimates

it in the most Northern county by 20 %, which can be explained by weak assumptions

regarding main space heating system and wood burning intensity, by not choosing

representative weather stations or base temperatures for calculating HDD, or simply

by regional differences in consumption that cannot be reproduced by a model based

on data from only one county. For example, less daylight and thus higher energy con-

sumption for lighting and less solar gains during winter in northern counties cannot be

accounted for in the existing models, that are exclusively based on data from a south-

ern county. Since metered hourly electricity consumption is not available on county

level, but only aggregated according to Nord Pool[56] regions, assessing the quality

of modeled hourly consumption is more difficult. However, the results show that the

shape, i.e. the hourly profile, of modeled aggregate hourly consumption in households

and service sector is very similar to the shape of total consumption, both on national

level as well as in the largest Nord Pool region, so that the corresponding difference,

in theory representing consumption in industries, transport, and agriculture, as well as

the modeling error, exhibits relatively small hourly variations.

Based on official forecasts on population development and future outdoor tempera-

tures forecasts on hourly electricity consumption in Oslo in 2040 are performed con-

sidering three scenarios of low, medium, or high population growth, respectively. Fore-

casts on outdoor temperatures imply a reduction in HDD, and an increase in cooling

degree days. Since the service sector models do not include variables indicating build-

ing age or thermal building standard modeled electricity consumption for space heat-

ing purposes is reduced by an arbitrary reduction factor. Assuming low or medium

population growth modeled electricity consumption for space heating purposes in

2040 remains approximately on 2013-level, while modeled electricity consumption

for electric appliances increases approximately according to population growth in all

three scenarios. Only a high population growth scenario implies a noticeable increase

in electricity consumption for space heating purposes, indicating that the increase in

heated floor space outweighs the effect of reduced HDD, i.e. higher temperatures,

and building stock renewal. Building-stock related input data for these simple fore-

casts were calculated very roughly, not considering changes in factors like average

floor space, average number of people per household, average number of employees

per building, or shares of employed people in each services category. Thus, the esti-

mated number of future dwellings and buildings is approximately increasing propor-
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tionally to population growth assumed in the different scenarios. Since, moreover, the

developed models do not take into account future changes regarding number, loads,

or energy-efficiency of electric appliances, temperature-independent consumption is

approximately increasing proportionally to the number of buildings and dwellings.

The results of Paper IV indicate that the presented method enables modeling and

forecasting regional hourly electricity consumption in households and service sector,

however, that the availability of building stock related input data is a prerequisite for

achieving meaningful results.

4.4 Discussion and further work

Top-down approaches for modeling and forecasting aggregate energy consumption

in regional building stocks often mainly rely on macroeconomic variables, so that

changes in building-stock related factors usually are not taken into account suffi-

ciently. In contrast, detailed bottom-up engineering models often consider a variety

of building specific variables and can take into account factors like energy efficiency

improvements. However, engineering models usually require detailed input data, pow-

erful computers, and both developers and users need high expertise.

In this thesis a bottom-up approach based on panel data, consisting of hourly me-

ter data, cross-sectional data, weather data and calendric information is presented.

The method enables straightforward assessment of the impacts of different factors

on hourly energy consumption as well as the decomposition into different compo-

nents, e.g. for estimating how much energy is consumed for electric appliances or

space heating equipment, correspondingly. All models yield meaningful parameter

estimates and acceptable values for goodness of fit. Sample-aggregate consumption

can be modeled with considerably higher accuracy, since individual modeling errors

are leveled out. Based on the data available the type of heating system, outdoor tem-

perature transformed to heating degree day, floor space, and number of residents are

the most important factors for modeling hourly electricity consumption in Norwegian

dwellings. For modeling hourly electricity consumption in non-residential buildings

building category, heating system, floor space, and daytype, e.g. indicating workdays

or non-workdays, are identified as useful variables, however, more cross-sectional data

available might reveal other important factors. The identification of the key factors im-

plies that in order to apply the developed models for modeling or forecasting energy

consumption in any Norwegian region these factors represent the input data required
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to generate useful input data.

Hourly or sub-hourly metering of electricity and district heat consumption yields enor-

mous amounts of individual meter data, and the time series available becomes contin-

uously longer. Standardized and continuously improved customer surveys performed

by the system operators can gather cross sectional data that can be unambiguously

connected to the corresponding consumption data. Panel data sets with a reliable cross

sectional component and a long time series component with little missing or erroneous

data enable detailed energy consumption analysis and the development of improved

consumption models, that e.g. are able to take into account increased energy efficiency

or stricter building codes with respect to heat losses. Panel data from all Norwegian

counties, containing the same variables, would allow analyses on regional differences

in hourly energy consumption. Moreover, nation-wide surveys on building stock char-

acteristics that are not covered by official statistics, such as heating systems or average

floor space, would yield necessary input data to the models, so that useful scenarios

for consumption forecasts can be developed.

As the building stock is renewed base temperatures are expected to decrease for both

residential and non-residential buildings so that the calculation of HDD and CDD

needs to be adapted. Base temperatures vary across consumers and are not only de-

pendent on building physics and standards, but also highly dependent on behaviour

and individual preferences, e.g. regarding indoor temperatures. Moreover, the impacts

of different cross sectional or other weather related factors, such as sun hours and so-

lar gains, that are often implemented in low-energy buildings, could be examined in

order to obtain estimates on today’s and future base temperatures useful for different

consumer groups.
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Hourly energy meter data combined with cross-sectional information, weather data,

and calendric information can be used to develop models for hourly energy consump-

tion in buildings. The method of pooled OLS enables a straightforward assessment

of the importance of each variable for energy consumption in each hour of the day

and facilitates the disaggregation of modeled consumption into different components.

However, size and quality of the underlying panel data are essential for developing

useful and representative models. With more data available the existing models can

be refined by including further important variables so that the approach keeps the

simplicity of a statistical model but at the same time accounts for important building

related variables, such as base temperature or thermal building standard.

Main heating method, i.e. electric or non-electric heating, type of heating system,

i.e. direct or central, as well as supplementary heating equipment, e.g. wood stoves

or air-to-air heat pumps, largely affect hourly energy consumption in buildings. More-

over, evident key factors are outdoor temperature and building or dwelling floor space.

The number and age of residents as well as dummy variables indicating the use of

electricity-intensive appliances are further important factors for electricity consump-

tion in households, while calendric variables are important factors for hourly con-

sumption of both electrical energy and district heat in non-residential buildings.

The method described in this thesis yields important information for energy system

planning and management. Forecasts on hourly consumption of both electrical energy

and district heat on different levels of spacial aggregation are important for designing

power grids and district heating networks. Estimates on how much electrical energy

is used for space heating and could thus be replaced by e.g. district heat, as well as

the involved changes in hourly and seasonal heat consumption patterns, yield valuable

data for fuel substitution and load management evaluations. With refined models and

improved building-stock- and weather-related input data, forecasts on electricity con-

sumption in all Norwegian counties, e.g. in 2040, can be performed and serve as input

data to energy system models. For example, different scenarios regarding area-wide
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changes in heating methods, such as introducing central heating systems supplied by

modern district heating systems, could be analyzed with respect to economic and tech-

nological consequences.
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a b s t r a c t

This paper analyzes how different heating systems affect hourly electricity consumption in detached
houses in Norway. Hourly electricity meter data, weather data, and response data from a household
survey are merged into a large panel data set, and multiple regression models are applied to isolate the
impacts of different heating systems for each hour of the day during the heating period. The results show
that compared to direct electric heating, the additional use of air-to-air heat pumps, wood burning
stoves, and oil stoves leads to relatively constant reductions in hourly electricity consumption over the
course of the day while largest reductions e especially during hours of morning peak consumption e are
achieved by using non-electric central heating systems. The presented method can be applied to other
energy carriers, metering intervals and consumer groups and e depending on the data available e be
used to model individual and aggregate regional energy demand with a high temporal resolution as well
as to analyze how area-wide changes in climatic factors and important consumer characteristics will
affect consumption of different energy carriers in smart energy systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

While in conventional energy systems production used to follow
demand, increasing power generation from variable renewable
energy sources like wind and photovoltaics, as well as growing
interconnections to other countries require more flexibility and
storage capacity in today's and future energy systems. Accurate
consumption models with a high temporal resolution are crucial in
evaluating and implementing flexibility measures and help
ensuring system stability and efficient operation. Due to the
introduction of smart metering, hourly consumption data is avail-
able on micro level, and may be utilized to improve our under-
standing of electricity and heat consumption, including important
dynamic features, differences between consumer categories, and
differences associated with other important variables, e.g. heating
systems.

In combination with competitive storage technologies for heat
and electricity, demand side management measures like increased
energy efficiency, fuel substitution and load management can help
synchronizing energy demand and production in modern energy

systems. Hedegaard and Balyk [1] report that a flexible operation of
individual fluid-to-water heat pumps combined with in-house heat
storages benefits the integration of wind power and is able to
reduce peak loads. Modern district heating systems supplied by
several different heat sources represent an important infrastructure
for balancing energy systems with high shares of variable renew-
able supply, as illustrated by Lund et al. [2]. Lund et al. [3] present
and discuss different flexibility measures forwarding energy sys-
tems with high levels of renewable electricity. According to their
review, treating thermal and electrical system as one can be an
important measure forwarding the integration of renewable power
production [3]. The importance of combining thermal and elec-
tricity grids and increasing flexibility in 100% renewable energy
systems are further illustrated by Lund [4], Lund et al. [2,5], and by
Mathiesen et al. [6].

Aggregate and individual hourly electricity consumption data
combined with cross-sectional data is analyzed by a number of
studies. Average hourly profiles of different consumer groups or
economic sectors in Norway and Denmark have been analyzed by
Ericson and Halvorsen [7] and Andersen et al. [8] respectively.
While workdays and non-workdays as well as different seasons are
distinguished, the studies do not reveal differences in individual
hourly consumption connected to different household character-
istics, as e.g. heating systems. Kavousian et al. [9] present regression* Corresponding author. Tel.: þ47 64 96 58 03; fax: þ47 64 96 50 01.
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models for daily average, minimum, maximum and range of hourly
electricity consumption based on meter data (10-min resolution)
for a period from February to October 2010. Dwelling size (floor
space) and cooling degree days are reported to be the most
important factors explaining the different response variables.
Yohanis et al. [10] examine average consumption profiles of
different dwelling types in Northern Ireland on annual, monthly
and hourly levels. Average profiles e absolute or specific (i.e.
divided by dwelling floor space) e are generated according to
different household characteristics, as e.g. number of residents,
dwelling type and income. McLoughlin et al. [11] examine the in-
fluence of dwelling and occupant socio-economic variables on total
electricity consumption over a six-months period and estimate
maximum demand, load factor, and time of use of maximum
electricity demand based on smart meter data from about 4200
Irish dwellings. Sandelds et al. [12] model hourly load profiles for
Swedish detached houses with direct electric heating based on
meter data from a substation in Stockholm, i.e. aggregate hourly
consumption data. Paatero and Lund [13] use hourly electricity
meter data from Finnish apartment buildings to generate hourly
load profiles of individual households, not including larger electric
heating loads. Pedersen et al. [14] describe prediction models for
heat and electricity load in different building types in Norway.
Hourly heat demand profiles are estimated using load factors,
representing relative load referring to average daily design load.
Hourly electricity demand e containing no heat demand e is based
on probability distributions. In a recent study, Rhodes et al. [15] use
smart electricity meter data combinedwith survey response data of
28 households in Texas in order to test the effect of different retrofit
measures on daily electricity consumption using fixed effects panel
regression. Further, a multiple regression model on total annual
energy consumption of 41 homes is presented, reporting year of
construction, dwelling size, number of adults as well as knowledge
on energy and water use to be important explanatory variables. In
another recent study, Fan et al. [16] identify the driving factors of
residential energy demand in Australia. Though based on hourly
electricity meter data, only daily electricity consumption is
modeled both on individual and aggregate level.

To our knowledge, no study estimating the effects of different
variables on individual hourly electricity consumption in house-
holds is available.

The goal of this paper is to quantify the impacts of different
electric and non-electric heating systems on hourly electricity
consumption in Norwegian detached houses, enabling systematic
analyses on possible changes in individual and aggregate regional
electricity consumption in case of area-wide changes in heating
systems. To do so, hourly meter data of about 600 households is
combined with weather data and data from a household survey
into a large panel data set. The study documents a simple method
for modeling hourly energy consumption that can easily be applied
to other regions, dwelling types, energy carriers (e.g. district heat),
and consumer groups (e.g. non-residential customers) in order to
establish a complete picture of hourly regional energy demand.

2. Climate goals, regulations and heating systems in Norway

Due to climate and topography, Norway is able to cover about
96% [17] of its domestic power production by hydro power, and
electricity covers about 50% [18] of domestic energy consumption.
35% of Norway's total electricity consumption in 2012 was
consumed by households [19].

Although not a member of the EU (European Union), Norway is
an important part of the European energy system e exporting oil,
gas, power to EU countries e as well as an important part of the
Nordic power system. Norway aims at being carbon-neutral by

2050 [20], covering 67.5% of its energy consumption in 2020 by
renewable energy sources [20], and reducing greenhouse gas
emissions according to the EU goals1 [22]. The use of heating oil and
paraffin for heating purposes is planned to be phased out by 2020
[23].

Today's building code defines that about 50%2 of heating energy
demand of new buildings need to be covered by alternative energy
carriers, i.e. others than fossil fuels or pure electricity. Dwellings
with a calculated heat demand of less than 15 MWh per year do not
need to fulfill these minimum shares but can alternatively be
equipped with a chimney and a fireplace for biofuels (e.g. fire-
wood). Passive houses and dwellings not larger than 50 m2 are
excluded from all heating equipment requirements. In new build-
ings, central oil boilers as main heating source are no longer
allowed and hot water heating systems need to be installed when
located in concession areas of district heating networks [24].

The most common type of space heating in existing single-
family houses in Norway is direct electric space heating in combi-
nation with wood burning. Electrically heated storage tanks are
mainly used for DWH (domestic water heating). Hot water based
central heating systems are relatively rare and mainly based on
central electric boilers, central oil boilers, or central fluid-to-water
(or air-to-water) heat pumps. In some Norwegian cities, district
heating networks are established and cover the heating energy
demand of connected consumers which today are mainly multi-
family houses and non-residential buildings. Dwellings with cen-
tral hot water heating systems do not necessarily use domestic hot
water tanks supplied by the central heating system. Using electri-
cally heated hot water tanks instead allows the central boiler (e.g.
oil boiler) to be turned off outside the heating period.

During the last decade there has been a significant increase in
the use of air-to-air heat pumps in Norway. In 2012, air-to-air heat
pumps were installed in 27% of Norwegian households, and in even
44% of Norwegian detached houses [25]. An increased use of heat
pumps3 was expected to reduce average household electricity
consumption. However, Halvorsen and Larsen [26] find that, on
average, households using heat pumps do not consume less elec-
trical energy per year compared to other households. Moreover,
households using heat pumps might exhibit an even higher annual
electricity consumption, indicating a certain rebound effect. Higher
indoor temperatures, less consumption of alternative fuels and less
commitment in energy-saving behavior are named as possible
reasons [26].

3. Data

A web based survey on household specific data was carried out
among electricity customers of system operator Ringerikskraft Nett
AS in Hønefoss (Ringerike municipality) in southern Norway in
October 2013. Only customers that had hourly metering systems
installed in their homes were invited to participate. Invitations
were sent to 9379 available customers, of which 1550 (response
rate 16.5%) answered the questionnaire containing about 30
different items, mainly on technical information (e.g. floor space,
dwelling age, number of household members, heating systems).4

1 The European Union's latest targets regarding climate change and energy
sustainability for all member states are a reduction of greenhouse gas emissions by
at least 40% (with reference to 1990 level), a share of 27% of energy consumption
from renewable energy sources and an increase in energy efficiency by 27% by the
year 2030 [21].

2 40% for buildings �500 m2 and 60% for buildings >500 m2.
3 If not otherwise indicated, heat pump refers to air-to-air heat pumps in this

paper.
4 Not all questions are answered by all 1550 respondents.
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Outdoor temperature data metered at Hønefoss Høyby weather
station is provided by the Norwegian Meteorological Insititute [27].

3.1. Survey response data

Altogether 608 useful responses represent permanently occu-
pied, detached houses with usable electricity meter data during the
defined heating period from 2 October 2013 to 30 April 2014. 508
observations use direct electric space heating, partly supplemented
by air-to-air heat pumps, wood stoves, or oil stoves,5 while 100
households use central heating systems.6 All directly electrically
heated dwellings use electric DWH, while some dwellings with
central heating use hot water tanks supplied by the central heating
unit. Thus, in the sample data, direct electric space heating is the
clearly dominating heating method, being used in about 84% of
households while only 16% of households use central heating sys-
tems, which is in good accordance with the results from Statistics
Norway, reporting a share of about 13% hot water heating systems
in Ringerike municipality in 2001 [28]. In our sample of centrally
heated homes, oil boilers (45%) and electric boilers (35%) were the
most frequent central heating units while central heat pumps were
used by about 20% of households with central heating.

According to Statistics Norway [28], most households used a
combination of heating appliances, i.e. at least one heating unit in
addition to direct electric or central heating in Ringerike in 2001. In
our sample data, wood stoves are used in 96% of electrically heated
homes and in 90% of dwellings with central heating systems.
Moreover, wood stoves are approximately equally used in old and
new dwellings. In electrically heated homes, the share of house-
holds using air-to-air heat pumps is about 50% while the share in
dwellings with central heating is only 16%. Oil or gas stoves on
average are used in 9% of households with direct electric heating
and in 13% of households with central heating. About 50% of
households with central heating systems claim to use some electric
heaters in addition to the central heating systems.

Average floor space of dwellings with direct electric heating
without air-to-air heat pumps is 154 m2, while it is 162 m2 for
dwellings with heat pumps. Average floor space of dwellings with
central heating and electric DWH is around 203 m2, while it is
182 m2 for purely centrally heated homes. Thus, dwellings with hot
water heating systems on average are larger than dwellings with
direct electric heating, and directly electrically heated dwellings
with air-to-air heat pumps are on average larger than thosewithout
heat pumps.

The survey participants were asked to rate their wood burning
customs choosing one out of four intensity levels: 1) no, 2) only for
cozyness, 3) supplementary, and 4) mainly. In addition, the partici-
pants were asked to estimate their annual firewood consumption.7

Frequency shares of different wood burning customs over different
heating systems are shown in Fig. A.1. About 60% of households not
using heat pumps report to use firewood as the main heating
source, 30% use it supplementary, less than 10% use wood burning
for cozyness and less than 5% claim to use no firewood at all. Only
30% of households using air-to-air heat pumps report to use fire-
wood as main heating source, while 56% use it supplementary.

Households using heat pumps on average consuming firewood less
frequently is in accordance with Halvorsen and Larsen [26].
Compared to directly electrically heated homes, a large share of
households with central heating systems reports to use wood
burning only for cozyness (nearly 30%) or not at all (nearly 10%). The
share of households using firewood as main heating source is only
25%.

Median annual firewood consumption of households using
wood burning only for cozyness, supplementary, and mainly is
1.0 m3/a, 2.4 m3/a, 5.0 m3/a respectively and approximately equal
across heating system groups. Thus, self-reported wood con-
sumption is consistent with wood burning intensity, i.e. con-
sumption is increasing with intensity. However, actual
consumption of firewood during a given time period is hard to
measure and conversion into a common unit (cubic meters) does
not take into account differences in delivery form, stacking, wood
billet size, wood type, water content, as well as types and effi-
ciencies of thewood stoves used. Thus, the amount of useful energy
per cubic meter firewood might vary largely from household to
household so that annual firewood consumption can at best serve
as a rough indicator.

3.2. Electricity meter data

Meter data is provided as a data set of hourly meter readings.8

Hourly consumption of hour h is calculated as difference between
meter reading of hour h and meter reading of hour h-1.

All included households are located in the city of Hønefoss or its
suburbs. The installation of smart meters followed a predefined
schedule, starting automatic meter readings in different areas at
different points in time. Usable meter data of all 608 included
households is available for the period of 2 October 2013 to 30 April
2014, in the following calledmetering period or heating period. The
term usable means that realistic meter data is available, but does
not imply that there are no missing or erroneous values at all.
During some shorter periods general meter failures occurred
resulting in missing meter data for a large part of the sample. In
addition, metered hourly consumption of zero as well as constant
consumption over several hours is excluded from further analysis.9

Average hourly electricity consumption of households with
direct electric heating, with and without heat pumps, and non-
electric central heating, on workdays and weekends, during the
period 22 January e 11 February 2014, is shown in Fig. A.2.

Onworkdays, directly electrically heated dwellings without heat
pumps exhibit a peak in average hourly consumption during
morning hour 8, i.e. between 7 and 8 a.m., and a consumption top
around evening hours 18 and 19. Onweekends, the morning peak is
shaped more flatly and occurs first around hour 11. Day-time con-
sumption is considerably higher, evening peaks only slightly higher
than on workdays. Average consumption after 7 p.m. is similar on
workdays and weekends, however, on workdays, there is a rela-
tively steep decline in consumption between hour 24 and hour 1
which is missing on weekends. Though similarly shaped, average
hourly consumption of households using heat pumps is lower than
consumption of households not using heat pumps. On workdays,
the difference in average consumption is highest (�0.5 kWh/h)
during morning hour 8.

5 includes stoves fueled by heating oil, gas, or paraffin.
6 In this paper, central heating system is used as a synonym for hot water heating

system, meaning a central heating unit supplies heaters (e.g. radiators or floor
heating) in different parts of the dwelling by distributing heated water through a
piping network. The central heating unit may e.g. be an oil-fired or electrically
heated boiler, a fluid-to-water or air-to-water heat pump, or a heat exchanger
supplied by a district heating network.

7 Respondents could fill in consumption in liters, 60-L-bags, fathoms or cubic
meters. 1 Norwegian fathom z 2.4 m3.

8 Only meter data of customers that have answered the questionnaire is provided
by the system operator.

9 it is assumed that in all households at least one electric appliance is running
constantly during the day. Meter data was logged hourly with two digits so that
consumptions as low as 0.01 kWh could be logged. Meter values of zero can of
course be caused by switching off all devices, by blackouts or removed fuses, but are
treated as meter failures in the analysis.
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Households with non-electric central heating systems on
average exhibit considerably lower hourly electricity consumption
than electrically heated dwellings, with two consumption tops in
the morning and evening, but without the characteristic morning
peak. During the arbitrarily chosen winter period, average hourly
consumption during hour 8 is about 1.5 kWh/h lower than average
consumption of electrically heated homes without heat pumps.

Morning peak consumption of electrically heated homes is
probably caused by electric appliances, electric hot water tanks and
electric space heating units, operating at the same time (or at least
during the same hour). As electric heaters often operate in night-
setback mode from late evening to early morning, a relatively
large heating load occurs when the dwelling needs to be reheated
(reaching comfort indoor temperature) during morning hours. A
more efficient use of electrical energy for space heating can explain
the reduced morning peak consumption of households with heat
pumps, compared to only electrically heated homes. Moreover,
heat pumpsmight be runningmore continuously, i.e. maintaining a
constant indoor temperature throughout the day, without any
night-setback. Thus, possibly less reheating energy is needed in the
morning, which reduces peak consumption.

Since households with non-electric central heating systems
consume less or no electrical energy for space heating or DWH,
average hourly electricity consumption differs from consumption of
electrically heated homes. Largest difference in average consump-
tion during morning hours can be explained by less electric
reheating energy in centrally heated homes.

However, differences in average hourly consumption can also
occur due to differences in variables like e. g. dwelling size and age,
number and age of residents, as well as due to behavioral differ-
ences between the consumer groups. In order to isolate the impacts
of different heating systems, differences in other important vari-
ables need to be corrected for.

4. Methods

4.1. Panel data regression

Combining time series (meter data) and cross sectional data
(survey response) results in a large panel data set. Multiple linear
regression is applied to model electricity consumption on house-
hold level for each hour of the day. For each hourly model, a
maximum time period of T ¼ 211 days and N observations are
available (N ¼ 508 for direct electric heating, N ¼ 100 for central
heating).10 Due to the relatively large number of time periods and
variables, applying the method of OLS (ordinary least squares) to
panel data11 is preferred to other panel data methods such as FE
(Fixed Effects) or RE (Random Effects) estimators in this study.

Outdoor temperature is transformed into variable heating degree
day HDD12 defined as the difference between 17+ C and diurnal
mean outdoor temperature (mean value of 24 hourly meterings)
to;d. HDD is zero in case to;d � 17+ C (Equation (1)).

HDDd ¼
�
17� to;d; for to;d <17

0; else
(1)

The difference in heating degree days between any day d and
the day before (d�1) is called first differences in heating degree days
HDD1st (Equation (2)). Thus, a positive value of HDD1st implies that

mean outdoor temperature during day d is lower compared to the
day before.

HDD1std ¼ HDDd � HDDd�1 (2)

For both directly electrically heated dwellings and dwellings
with central heating systems a separate set of 24 hourly models is
estimated. The included explanatory variables xk,i for both model
sets are briefly described in Tables A.7 and A.8. Within both
dwelling groups, each of the 24 linear models contain the same
explanatory variables, of which some are included in interaction
with heating degree day HDD. However, not all variables that were
significant in the hourly model sets for directly electrically heated
dwellings (Table A.7) were significant and meaningful in the model
sets for dwellings with central heating systems (Tables A.8), which
can be explained by a considerably lower number of observations
for centrally heated homes, as well as by substantial differences
between the two groups.

The hourly model sets are determined by the formula for ordi-
nary least squares regression (Equation (3)) where Ei,h represents
hourly electricity consumption of hour h and observation i.

Eh¼1;…;24;i ¼ b0;h þ
Xk
k¼1

bk;h$xk;i þ εh;i (3)

4.2. Explanatory variables for dwellings with direct electric heating

Explanatory variables included in the hourly models for directly
electrically heated homes are listed in Table A.7. After merging the
two least frequent wood burning groups, wood burning customs
are now divided into three intensity levels: 1) no wood burning or
only for cozyness, 2) supplementary wood burning, and 3) mainly
wood burning. Since the corresponding impacts of dwelling size and
different heating systems are assumed to vary with outdoor tem-
perature, floor space and variables describing wood burning cus-
toms and the use of oil stoves are included as interaction terms
with HDD. However, the dummy variable describing the use of air-
to-air heat pumps is only included as stand-alone variable. Inter-
action term HDD,heat pump is significant but only explains a
negligible share of total variance. This indicates that reductions in
hourly electricity consumption achieved by using heat pumps are
approximately independent from outdoor temperature during the
examined heating period. A possible explanation can be found in
Section 5.1.2.

Since number of residents and dwelling floor space are posi-
tively correlated, floor space is not included as stand-alone variable
but only in interaction with HDD, in order to avoid issues with
collinearity.

The different starting dates of hourly metering e named after
the month hourly metering started e are used as proxies for
different residential areas within the municipality (area 1,…,10).
Areas 1 to 4 are merged into one area representing the reference
group. Assuming differences in outdoor temperature between the
different areas within the municipality to be negligible, variable
HDD,area is included to correct for possible differences in unob-
served variables (as for example employment rate and local tem-
peratures) between the different areas.

4.3. Explanatory variables for dwellings with central heating

As indicated above, a smaller number of explanatory variables is
significant and thus included in the hourly regression models for
centrally heated dwellings (Table A.8). Heating system variables,
describing which type of central heating system and whether an

10 Since not all observations contain meter data for all hours of the 211 days, the
panel data set is unbalanced.
11 also called pooled OLS, see for example Wooldridge [29], chapter 13.
12 For simplicity, index d is dropped in the text and HDD is used without physical
unit.
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air-to-air heat pump is used, are included in interaction with HDD.
While redundant in the models for directly electrically heated
dwellings, HDD,heat pump is preferred to stand-alone variable heat
pump in the models for centrally heated homes.

4.4. Modeling aggregate consumption across time and observations

Due to the simple structure of the hourly models, individual
daily electricity consumption can easily be modeled by using the
summarized hourly coefficients for each variable (Equation (4)) and
applying Equation (3).

bk;d ¼
X24
h¼1

bk;h (4)

Aggregate hourly electricity consumption of each consumer
group (direct electric and central heating) can be modeled directly
by using the sample's overall characteristics, i.e. total number of
households, summarized floor space, etc., as cross-sectional input
data. The time series component is the same as for the individual
models and consists of HDD and HDD1st for each day d as well as
variables describing the type of day, i.e. variables x11 through x14 in
Table A.7.

5. Results

5.1. Individual hourly electricity consumption

Parameter estimates, p-values and percent shares of explained
variance of all explanatory variables are listed in Appendix A. The F-
statistics of all 24 models yield extremely low p-values, indicating
overall significance of the included variables. Residuals seem in-
dependent from the most important explanatory variables and are
approximately normally distributed. Though square-root trans-
forming the response variable yields more normally distributed
residuals, the non-transformed response is preferred in order to
obtain a simple model with estimates easy to interpret. Slightly
positive skew and kurtosis are assumed not to cause larger issues.
DurbineWatson test indicates no autocorrelated residuals.
BreuschePagan test indicates slightly heteroskedastic residuals. In
order to correct for heteroskedasticity, robust standard errors are
used.

5.1.1. Explained variance
For electrically heated homes, total explained variance e rep-

resented by adjusted coefficient of determination R2 e varies from
0.34 during night-time to 0.39 during morning and late afternoon.
For detached houses with central heating R2 lies between 0.34
during mid-day and night-time and 0.42 during morning. Percent
shares of total variance explained by the explanatory variables in
bothmodel sets are listed in Tables A.5 and A.6 in Appendix A, and a
graphical presentation is shown in Fig. A.3.

While some important variables are plotted separately, the
remaining variables are grouped into appliances, day-type variables
and resident variables. Day-type variables represent the three
dummy variables describing whether day d either is a Saturday, a
Sunday or a holiday, or within school holidays. Appliances include
variables describing the use of electricity-intensive appliances such
as cold storages, clothes dryers, solariums or saunas, and other
appliances. Resident variables include number of adults and chil-
dren as well as dummy variables indicating the presence of senior
citizens, residents that are at home nearly all day, and residents that
are only present on weekends or holidays.

Model results for directly electrically heated dwellings identify
HDD as the most important explanatory variable throughout all

24 h, explaining about 10e13% of the variance in hourly electricity
consumption (Fig. A.3a). The interaction term of heating degree day
and floor space HDD,floor space contributes with nearly 10% during
all hours of the day. Variables HDD,wood burning and HDD,area
explain about 1e2% each, while the contribution of heat pump is
about 0.5e1% during day-time and less than 0.5% during night-
time. HDD,oil stove explains less than 0.5% during all hours of the
day. The contribution of first differences in heating degree days,
HDD1st, is largest during the first hours of the day and decreasing
over the rest of the day.

In dwellings with central heating systems, the variance in
hourly electricity consumption is mainly explained by the type of
heating system in interaction with HDD, by HDD as stand-alone
variable, as well as by DWH technology (electric DWH) and resi-
dent variables (Fig. A.3b). The relatively large share of variance
explained byHDD indicates that even households with non-electric
central heating (i.e. in this sample mainly central oil boilers) to a
certain extent use electric heaters, e.g. placed in garages or work-
shops or in the form of electric floor heating in bathrooms. Inter-
action term HDD,heat pump indicating the use of air-to-air heat
pumps in addition to a central heating system explains about 3%
and is thus more important than for electrically heated homes
(where it is included as stand-alone variable).

5.1.2. Parameter estimates
Parameter estimates are listed in Tables A.3 and A.4.Within both

model sets, variablesHDD and floor space exhibit positive estimates,
resulting in increased modeled electricity consumption with
increasing heating degree day (i.e. decreasing outdoor tempera-
ture) and dwellings size. Moreover, modeled electricity consump-
tion increases with the number of residents and in case electric
appliances are used, which is feasible. Estimates for 1st differences
inHDD, i.e. the difference between heating degree days of day d and
d�1, yield largest (negative) estimates during the first hours of the
day which are continuously decreasing in absolute value over the
course of the day. Thus a positive jump in HDD from one day to the
next, i.e. a drop in daily mean outdoor temperature, is absorbed by
negative estimates for HDD1st. For directly electrically heated
dwellings, heating system variables HDD,supplementary wood
burning, HDD,mainly wood burning, HDD,oil stoves, and heat pump
exhibit negative estimates, implying reduced electricity consump-
tion during all hours of the day, compared to only direct electric
heating.Whilemodeled reductions achieved by the use of oil stoves
or wood burning increase with HDD, i.e. with decreasing mean
outdoor temperature, modeled reductions by using air-to-air heat
pumps are temperature-independent during the examined period.
With decreasing outdoor temperatures space heating demand in-
creases while heat pump efficiency decreases,13 leading to a higher
electricity consumption by the heat pump itself. These two effects
leveling out each other could be an explanation for temperature-
independent reductions achieved by using air-to-air heat pumps
in directly electrically heated dwellings during the examined
period.

Within the model set for centrally heated dwellings, the refer-
ence group is represented by dwellings with central oil boilers (i.e.
non-electric central heating) that also supply the domestic hot
water tanks. Estimates for variables electric DWH, HDD,central
electric boiler, HDD,central heat pump, and HDD,heat pump are
positive for all hours of the day, indicating a higher hourly elec-
tricity consumption in case the corresponding heating equipment

13 Usually, coefficient of performance decreases with increasing temperature
difference between heat source (outdoor temperature) and heat sink (indoor
temperature).
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is used. Representing a form of electric heating, the use of air-to-air
heat pumps included as interaction term HDD,heat pump implies
increased electricity consumption when referring to a non-electric
central heating system and moreover an increasing elevation in
consumption as outdoor temperature decreases.

5.1.3. Individual consumption profiles with respect to different
heating systems

In the following example, eleven different heating systems are
considered in an average household consisting of two adult resi-
dents and one child living in a detached house with 150 m2 of floor
space. Hourly electricity consumption on aworkday in January with
a daily mean outdoor temperature of �2.5+ C is modeled and dis-
played in Fig. A.4a. Differences in modeled hourly consumptions e
referring to the reference case of direct electric heating with no or
only little wood burning e represent the modeled impacts of each
different heating system compared to the reference case and are
shown in Fig. A.4b.

Highest hourly consumptions are modeled for the case the
household uses a central electric boiler, which can be explained by
energy losses in the hot water heating system. There is a con-
sumption peak in hour 8 and a consumption top during evening
(hours 17e22). Compared to direct electric space heating without
noticeable wood burning (reference case), modeled consumption
is considerably increased, especially during morning hours 3e8.
In case of direct electric heating plus supplementary wood
burning, modeled hourly consumption over the course of the day
is approximately 0.3 kWh/h lower than in the reference case, but
with similarly shaped peaks in the morning, afternoon, and eve-
ning. Except for night hours 23-5, the use of air-to-air heat pumps
without wood burning yields slightly lower modeled hourly
consumption than supplementary wood burning. Using direct
electric heating supplemented by an oil or gas stove yields a
modeled consumption similar to that modeled for using an air-to-
air heat pump, however, with slightly higher consumption, mainly
during night-time and morning peak. Using both air-to-air heat
pump and supplementary wood burning generates a diurnal
profile similar to using direct electric heating plus mainly fire-
wood. In case the household uses an air-to-air heat pump plus
mainly wood burning, modeled hourly consumption is more than
1 kWh/h lower compared to the reference case. During hours 9 to
24, modeled consumption is approximately equal to modeled
consumption for the case of central heating with a central heat
pump, while during night-time and morning hours, modeled
consumption for the centrally heated home is considerably higher.
While modeled reductions achieved by using an air-to-air heat
pump are independent from outdoor temperature, modeled dif-
ferences by using wood burning, an oil stove, or a central heating
system increase with HDD, i.e. will be larger when outdoor tem-
perature is below 2.5+ C and vice versa. Lowest modeled con-
sumption profiles are achieved by using a non-electric central
heating system. Compared to the reference case, maximum re-
ductions of almost 2.5 kWh/h are modeled for morning hours 8
and 9. In case electric hot water tanks are used in combination
with a non-electric central heating system, modeled hourly con-
sumption is about 0.4 kWh/h higher compared to purely non-
electric central heating.

5.2. Aggregate hourly electricity consumption

5.2.1. Goodness of fit
Referring to the whole metering period, aggregate hourly

electricity consumption can be modeled with R2 ¼ 0.95 for
households with direct electric heating and R2 ¼ 0.92 for house-
holds with central heating systems. A comparison of metered and

modeled aggregate hourly electricity consumption of households
with direct electric heating and central heating during the winter
period 22 January e 11 February 2014 is shown in Fig. A.5. While
the models in general seem to reproduce metered consumption
quite well, consumption peaks and troughs as well as day-time
consumption on weekends are often underestimated by the
models.

5.2.2. Scenarios for aggregate hourly electricity consumption on a
cold day

In this section, the impacts of area-wide changes in heating
methods on aggregate hourly electricity consumption are briefly
evaluated considering four different scenarios, as described in
Table A.9. The sample's heating characteristics as recorded by the
survey in 2013 represent the base case, where 84% of households
uses direct electric heating, partly supplemented by wood
burning, oil stoves, and air-to-air heat pumps, and only 16% use
hot water heating systems. Scenarios 1 and 2 only imply changes
in heating methods of directly electrically heated homes while
the subsample of households with central heating remains as in
the base case. Scenarios 3 and 4 imply that all households switch
to non-electric central heating, so that there are no households
using direct or central electric space heating.

In order to illustrate possible changes in aggregate consumption
during periods of typically high demand for electrical heating en-
ergy, aggregate hourly electricity consumption is modeled for the
coldest day during the metering period, which was a workday
during January with a mean outdoor temperature of about �13+ C,
i.e. HDD ¼ 30. Modeled aggregate consumption in the base case as
well as the four scenarios is shown in Fig. A.6.

In the base case, modeled hourly consumption is highest,
varying from 2350 kWh/h during night-time and 2900 kWh/h
during evening. Morning peak consumption is about 2800 kWh/h.

In case all directly electrically heated homes used air-to-air heat
pumps (scenario 1), modeled aggregate consumption is reduced by
about 2e5% over the course of the day, but with a similarly shaped
diurnal profile. Since air-to-air heat pumps represent a more effi-
cient kind of electric heating, scenario 1 implies no increased
consumption of substituting fuels.

In case all electrically heated homes used air-to-air heat pumps
and mainly wood burning (scenario 2), modeled aggregate con-
sumption is relatively evenly reduced by 10e12% during all 24 h of
the coldest day, while the overall shape of diurnal consumption is
retained. In this scenario, the modeled reduction in electricity
consumption needs to be partly substituted by an increased fire-
wood consumption.

In case all households switched to non-electric central heating
plus electric DWH and would not use any air-to-air heat pumps
(scenario 3), modeled aggregate consumption is reduced by about
40% during early evening and 50% during morning. In the case of all
households using exclusively non-electric central heating (scenario
4), modeled reductions are between 45% during afternoon and
evening and about 60% during morning. Considering that modeled
electricity consumption in scenarios 3 and 4 still contains some
electric space heating energy (compare Sections 3.1 and 5.1.1),
aggregate consumption could presumably be reduced even more, if
no electric heaters were used at all. In these two scenarios, modeled
reductions in electricity consumption need to be covered by other
energy carriers supplying the central heating systems (e.g. district
heat, biomass, solar heat). Although wood burning customs are not
considered in the model for centrally heated homes, aggregate
firewood consumption in scenarios 3 and 4 is assumed to decrease
compared to the base case, since centrally heated homes on average
use wood burning less frequently than households with direct
electrical heating (see Fig. A.1 in Chapter 3.1).
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Assuming electricity consumption for non-heating purposes to
be independent from heating systems, modeled reductions in
aggregate hourly electricity consumption in the different scenarios
represent the modeled amount of electric heating energy that is
saved by different heating techniques, as e.g. air-to-air heat pumps,
wood burning and non-electric central heating. However, since
different heating systems might also imply differences in hourly
heat consumption e on which no meter data is available in this
study e hourly demand for substituting energy carriers (e.g. fire-
wood or district heat) cannot be derived from the presented
models.

6. Discussion

6.1. Regression model results

Though electricity consumption is modeled independently for
each hour of the day, relatively smooth hourly profiles are gener-
ated. Parameter estimates are consistent and exhibit meaningful
values. On individual household level, coefficients of determination
are comparatively low which might be due to omitted variables, as
e.g. detailed information on the residents’ diurnal routines
regarding indoor temperatures, thermostat settings, and firewood
consumption.

The use of HDD as explanatory variable implies a simplification,
as reference temperature 17+ C is not the true space heating limit
temperature for all households. Moreover, some households might
use electric space heating all year (e.g. electric floor heating in
bathrooms) while others might turn electric heaters on and off
manually and not exactly as soon as outdoor temperature has
reached a certain reference temperature. The general assumption of
linear relationship between electricity consumption and HDD is a
possible error source in the models, as consumption is flattening
once certain (individual) lower and upper temperature limits are
passed.

Due to the relatively small number of observations with central
heating systems, combinations of heating equipment, as e.g. central
electric boiler or central heat pump plus air-to-air heat pump, are
not considered in the models, although the effect of using air-to-air
heat pumps is assumed to be different for the different central
heating systems. Moreover, due to some correlation between DWH
technology and heating equipment no variable indicating the use of
electric heaters is included. If a larger sample would be provided,
separate models for electric and non-electric central heating sys-
tems, including more explanatory variables, could possibly yield
more reliable models.

Though highly significant, including wind speed as explana-
tory variable does not lead to a considerably increased goodness
of fit. Further weather data such as sun hours and cloud cover,
probably affecting electricity demand for space heating and arti-
ficial lighting, are not available for Hønefoss weather station and
are therefore not included.

The metering period altogether includes ten public holidays
and five weeks of school breaks when electricity consumption of
some households is considerably higher compared to workdays,
probably because residents spend more time at home using
electrical appliances and space heating. Other households, how-
ever, consume considerably less electrical energy during these
periods, since the residents are not at home at all. The same ap-
plies to weekends where people might choose to stay at home or
travel. Households without school children might choose to take a
holiday outside the school breaks. Thus, modeling electricity
consumption without detailed information on presence or
absence of the residents, implies further uncertainties and
possible error sources.

Considering the simplicity of the models, achieved goodness of
fit seems sufficient. Aggregate hourly electricity consumption can
be easily modeled by using overall sample characteristics as input
and yields a relatively high accuracy. However, extreme con-
sumption values (peaks and troughs) as well as day-time con-
sumption duringweekends are often underestimated by themodel,
which indicates that e.g. the impacts of day-type and other dummy
variables are not constant throughout the metering period. Exam-
ining these effects more thoroughly, e.g. based on a dataset with a
longer metering period, could help improving the models
significantly.

6.2. Possible issues regarding self-selection and measurement
errors

As in most surveys with voluntary participation, self-selection
might be present. On the one hand, consumers especially inter-
ested in energy saving might be over-represented in the response
data. On the other hand, since the survey invitationwas sent out via
e-mail and the questionnaire was answered electronically, some
consumers groups, as e.g. senior citizens, might be under-
represented in the sample. Regarding some observed factors, e.g.
heating systems, our sample seems representative (see Chapter
3.1). However, differences in unobserved factors e possibly
affecting electricity consumption (e.g. attitudes towards surveys,
smart metering, or energy saving)e between participants and non-
participants can make our results less applicable to the population,
e.g. all detached houses in the municipality. If also meter data of
non-participants would be provided, consumption characteristics
of participants and non-participants could be compared and
possible differences identified.

Using heating degree day based on the daily mean value of
outdoor temperature instead of heating degree hours based on
hourly temperature values implies some measurement error. As
confirmed by plausible regression results, including 1st differences
in heating degree days, HDD1st, as explanatory variable seems to
sufficiently correct for this simplification. The share of explained
variance by HDD1st as well as its absolute parameter estimate is
continuously decreasing over the course of the day, representing a
declining impact of yesterday's mean temperature on today's
electricity consumption. Including heating degree hours HDH
instead of HDD as explanatory variables for estimating hourly
consumption does not lead to a higher goodness of fit.14 This sup-
ports the assumption that the variance in hourly electricity con-
sumption within a single day is mainly caused by observation-
specific patterns, e.g. the residents' daily routines. Thus, including
HDD and HDD1st as explanatory variables for estimating hourly
electricity consumption seems sufficient and at the same time
simplifies the model.15

6.2.1. Estimated savings in electricity consumption compared to
self-reported firewood consumption

Reductions in electrical energy consumption during any time
period of at least one day, achieved by e.g. using firewood supple-
mentary or mainly in directly electrically heated dwellings, can be

14 Model results can be obtained by contacting the corresponding author.
15 Variations in hourly outdoor temperature most probably do affect hourly
electricity consumption, but with some attenuation due to the thermal storage
capacity of the dwelling's mass. Further, outdoor temperature is often lowest
during night-time when night-setback of electric heaters is active so that the
dwelling is first re-heated during the morning hours. Since detailed information on
dwelling characteristics, indoor temperature and thermostat settings would be
required, the temperature-effect on hourly electricity consumption is not evaluated
in detail in this paper.
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estimated by multiplying the corresponding daily parameter esti-
mate by the number of heating degree days during the examined
time period. For example, assuming wood burning is used as main
heating source and HDD ¼ 30, i.e. a mean outdoor temperature
of �13+ C, modeled reduction in electricity consumption on that
day would be

P24
h¼1

bb31,HDD ¼ �26.8 kWh. The number of heating
degree days over the whole metering period is

P
HDD ¼ 3092, so

that households using firewood mainly (or supplementary) on
average consume 2762 kWh (1250 kWh) less electrical energy
compared to households using only direct electric heating. Me-
dian16 self-reported firewood consumption of households using
firewood mainly and supplementary is 5.0 m3 and 2.4 m3 respec-
tively, yielding approximately 5410 kWh and 2600 kWh of useful
heating energy.17 Thus approximately consumed firewood energy is
about twice as high as modeled reductions in electricity con-
sumption over the entire heating period. Although these figures are
only very rough estimations they indicate that the amount of useful
firewood energy consumed is larger than the amount of electrical
energy saved over the course of the heating period. Apart from the
large uncertainties regarding energy content, wood burning effi-
ciencies, self-reported consumption, and modeling accuracy, there
are several possible explanations for this result: First of all, average
annual firewood consumption is reported by the survey partici-
pants, so that wood burning might also take place outside the
defined heating period from 2 October to 30 April. Depending on
weather conditions e households may start wood burning already
in September and stop during May or June. Secondly, the examined
metering period does not represent a normal but a relatively mild
winter, resulting in a lower number of heating degree days, while
reported firewood consumption rather refers to an average year.
For comparison, the sum of heating degree days in Hønefoss from
October to April in a normal18 year is

P
HDD ¼ 4041 [27] and thus

about 30% higher than during the examined period in 2013/2014.
Thirdly, since wood burning stoves are mainly running continu-
ously for several hours and can only be roughly regulated, house-
holds using wood burning are assumed to maintain relatively high
indoor temperatures while the wood stoves are in use, so that more
useful heating energy may be consumed than in only directly
electrically heated homes, that are probably maintaining lower
indoor temperatures.

Thus, modeled reductions in electrical energy consumption by
using firewood or other energy carriers as a supplement to direct
electric heating do not necessarily represent the amount of heat
provided by the supplementary energy carriers.

6.3. Scenario analysis and policy implications

A simple scenario analysis based on a sample of existing de-
tached houses reveals modeled reductions in aggregate hourly
electricity consumption, assuming area-wide changes in heating
systems. In case all directly electrically heated homes used air-to-
air heat pumps, no substituting energy carriers are needed, but
modeled reductions are comparatively small. Assuming a sustain-
able production and supply of firewood, a combination of air-to-air
heat pumps and wood burning stoves that are intensively used,
represents a relatively simple solution for reducing aggregate
electricity consumption during all hours of the day, during the

heating period. Since nearly all electrically heated dwellings are
already equipped with wood stoves, and air-to-air heat pumps are
relatively easily installed, this scenario does not imply extensive
installation efforts.

In case of all households using non-electric central heating
systems largest reductions in aggregate hourly electricity con-
sumption are modeled. Hot water based heating systems enable
heat supply by various different energy carriers and can be
supplied by either individual equipment or district heating net-
works. Assuming central heating systems to be connected to
district heating networks that can be supplied by different
heating sources, an area-wide use of hot water heating systems
could forward higher shares and a more efficient use of renew-
able energy sources and at the same time reduce unwanted
consumption peaks in the power system caused by individual
electric heating.

However, retro-fitting hot water heating systems to existing
dwellings is relatively costly and with comparatively low elec-
tricity prices it is often not economically feasible in Norway today.
The installation of hot water heating systems in passive houses
will probably be relatively expensive, referring to the annual
amount of heating energy consumed, and compared to other
heating systems, as e.g. wood stoves or ventilation systems.
However, domestic hot water tanks are expected to cause
considerable heating loads in both new and existing dwellings.
Results from an updated model, based on an extended dataset,
could be used as input data to energy system models, that take
into account numerous economic and technological aspects, and
thus help identifying the most feasible heating solutions for
different time horizons.

7. Conclusion

The paper presents a simple method for analyzing hourly
electricity consumption data from smart meters in combination
with survey response data. The results show which variables are
most important for consumption during each hour of the day and
the presented regression models can be used for modeling and
forecasting individual and aggregate hourly electricity consump-
tion. A rough scenario analysis shows that air-to-air heat pumps
and wood burning stoves that are intensively used, represent
relatively simple solutions for reducing aggregate hourly elec-
tricity consumption during the heating period, however, yielding
comparably small reductions of about 2e12% on a cold day. In case
all households used non-electric central heating, the morning
peak of the sample's modeled aggregate electricity consumption
on a cold day is reduced by about 60%. An increased share of
dwellings equipped with hot water heating systemse for example
supplied by flexible district heating networks e can forward an
efficient integration of heat and electricity provided by renewable
energy sources, while at the same time unwanted peak loads in
electricity supply caused by individual electric space heating
could be reduced.

The presented method can be used to model regional energy
demand with a high temporal resolution, taking into account
changes in outdoor temperature, heating systems, and other
dwelling and population characteristics.
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Appendix A. Regression results

16 Due to a skewed distribution and several outliers the median value is preferred
to the arithmetic mean here.
17 Theoretical useful energy content is estimated by multiplying wood con-
sumption by an average heating value of 1804 kWh/m3 [31,30] and an average
wood burning efficiency of 60% [32], assuming mainly birch and pine in 30 cm-
billets with 17% moisture content are burned.
18 referring to the period 1961e1990.
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Fig. A.1. Wood burning customs of households using different heating systems.

Fig. A.2. Average hourly electricity consumption of households with different heating systems, workdays (WD) and weekends (WE), January/February 2014.

Table A.7
Explanatory variables, direct electric heating.

Variable Description Type Reference group

x1 heating degree day HDD continuous e

x2 1st differences in HDD continuous e

x3,…,5 number of adults ¼ 2, 3, >3 dummy 1
x6,…,8 number of childrena ¼ 1, 2, >2 dummy 0
x9 resident older than 65 years dummy no
x10 resident more than 20 h at home, but no residents older than 65 dummy no
x11 d is workday & there is a weekend resident dummy no
x12 d is a Saturday but no holiday dummy no
x13 d is a Sunday or holiday dummy no
x14 d is within school holidays but no weekend or holiday dummy no
x15 cold storage used dummy no
x16 clothes dryer used dummy no
x17 solarium/sauna used dummy no
x18 other electricity-intensive appliances used dummy no
x19 air-to-air heat pump used continuous e

x20,…,25 month ¼ 2, 3, 4, 10, 11, 12 dummy 1
x26 HDD, floor space continuous e

x27 HDD, oil/gas/paraffine oven used cont./dummy no
x28 HDD, dwelling age ¼ 1980e89 cont./dummy <1980
x29 HDD, dwelling age ¼ 1990e99 cont./dummy <1980
x30 HDD, dwelling age ¼ >1999 cont./dummy <1980
x31 HDD, wood burning mainly cont./dummy no or for cozyness
x32 HDD, wood burning supplementary cont./dummy no or for cozyness
x33,…,36 HDD, area ¼ 6, 8, 9, 10 cont./dummy 1,2,3,4

a younger than 16 years.

A. Kipping, E. Trømborg / Energy 93 (2015) 655e671668



Table A.8
Explanatory variables, central heating.

Variable Description Type Reference group

x1 heating degree day HDD continuous e

x2 1st differences in HDD continuous e

x3 floor space continuous e

x4 number of adults ¼ 2 dummy 1
x5 number of adults ¼ >2 dummy 1
x6 number of children ¼ >1 dummy 0
x7 resident older than 65 years dummy no
x8 resident more than 20 h at home, but no residents older than 65 dummy no
x9 d is a Saturday but no holiday dummy no
x10 d is a Sunday or holiday dummy no
x11 d is within school holidays but no weekend or holiday dummy no
x12 cold storage used dummy no
x13 electric DWH dummy non-electric DWH
x14,…,18 month ¼ 2, 3, 4, 10, 11 dummy 12 or 1
x19 HDD, central heat pump used cont./dummy oil boiler used
x20 HDD, central electric boiler used cont./dummy oil boiler used
x21 HDD, air-to-air heat pump used cont./dummy no

Fig. A.3. Shares of explained variance in hourly electricity consumption.

Fig. A.4. Modeled hourly electricity consumption of an average household using different heating methods.
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a  b  s  t  r  a  c  t

By  area-wide  implementation  of  smart  metering,  large  amounts  of individual  electricity  consumption
data  with  a  high  temporal  resolution  become  available.  We  use  multiple  regression  models  for  hourly
electricity  consumption  in Norwegian  dwellings,  based  on  panel  data  consisting  of hourly  smart  meter
data,  weather  data,  and  response  data  from  a household  survey.  Two models  based  on  daily  and  hourly
mean  values  of outdoor  temperature,  respectively,  are  compared  and  discussed.  Our  results  indicate
that  daily  mean  outdoor  temperature  – represented  by  heating  degree  day  – can  serve as  weather-
related  input  variable  for modeling  aggregate  hourly  electricity  consumption.  The  regression  models  are
further  used  to  break  down  hourly  electricity  consumption  into  two  components,  representing  modeled
consumption  for  space  heating  and other  electric  appliances,  respectively.  Thus,  without  submetering
electric  heating  equipment  an estimate  for heating  energy  consumption  is  available,  and  can  be  used  for
evaluating  different  demand  side management  options,  e.g. fuel  substitution  or  load  control.  Moreover,
the  models  can  be used  for  forecasting  aggregate  regional  electricity  consumption  in  the  Norwegian
household  sector  with  a high  temporal  resolution,  as  e.g.  changes  in  regional  climatic  conditions,  dwelling
structure,  and  demographic  factors  can  be taken  into  account.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Climate goals and smart metering in Norway

According to the European Union’s climate goals [1], by 2030,
greenhouse gas emissions should be reduced by at least 40%, and
energy efficiency should be improved by at least 27%, referring to
1990 levels. Moreover, at least 27% of energy demand should be
covered by renewable energy sources in 2030. In order to approach
these goals the integration of variable renewable energy sources
(VRE) is forwarded, implying challenges to existing European
energy systems. While power generation by thermal power plants
based on conventional fuels can be controlled by the system opera-
tors, power supply by VRE needs to be utilized at occurrence, even
when it is not coinciding with demand. Besides competitive storage
technologies, demand side management (DSM) includes various
measures to help synchronizing energy supply and demand. Energy
conservation, fuel substitution, load building, and load manage-
ment are examples for DSM options [2]. Load management options

∗ Corresponding author.
E-mail address: anna.kipping@nmbu.no (A. Kipping).

are intended to change the load patterns generated by the con-
sumers, by e.g. reducing load during peak periods, increasing load
during off-peak periods, or shifting load from peak to off-peak
periods. In order to communicate with individual consumers, e.g.
sending price information or control signals, and receiving meter
data, advanced metering and communication technology (smart
metering) is required. Both Norway and the EU forward the roll-
out of smart electricity meters, and by January 2019, all consumers
in Norway should be equipped with the new metering technology
[3,4]. The local grid companies are responsible for installation, and
metering intervals should be between 15 and 60 min  [5].

Load management can broadly be categorized into direct and
indirect load control. In indirect load control programs customers
are usually offered vouchers or lower electricity tariffs as incentives
for participating and scheduling own consumption according to
the patterns preferred by the grid companies. Indirect load control
programs are already implemented by several electricity compa-
nies, e.g. in North America and France, and achieve considerable
load reductions during peak periods [6]. Direct load control implies
that the grid companies are able to directly control certain appli-
ances of participating customers. Ericson [7] describes a study
about direct load control of residential water heaters in Norway
and points out that by disconnecting water heaters during a period
with high demand, the original consumption top can be reduced,

http://dx.doi.org/10.1016/j.enbuild.2016.02.042
0378-7788/© 2016 Elsevier B.V. All rights reserved.
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but a new top may  occur when re-connecting all water heaters
simultaneously (pay-back effect).

The introduction of area-wide smart metering yields enormous
amounts of highly resolved micro-level electricity consumption
data which – in combination with weather data and cross sec-
tional data (e.g. collected by customer surveys) – can be utilized to
develop more precise prediction models and detailed analyses on
the drivers of electricity consumption. While whole-house smart
meter data for some regions is already available today, data from
submetering campaigns, i.e. metering different electric appliances
separately, is relatively rare, so that we have little knowledge on
how different electric devices contribute to household electric-
ity consumption over the course of the day. Efficient methods to
model electricity consumption by the most important appliances
with a high temporal resolution can forward the development and
implementation of load management programs that can help syn-
chronizing demand and supply in energy systems with high shares
of VRE.

1.2. Previous work

Aggregate and individual hourly electricity consumption data
combined with cross-sectional data, as well as disaggregating
whole-house consumption is subject to a number of studies. Sev-
eral models for aggregate hourly electricity consumption take into
account climatic conditions – as e.g. outdoor temperature repre-
sented by heating or cooling degree day – but without including
dwelling stock and household variables (e.g. Psiloglou et al. [8], Bec-
cali et al. [9]). Sandelds et al. [10] model hourly load profiles for a
population of Swedish detached houses with electric heating. Their
model is based on aggregate hourly electricity consumption data
of a substation in Stockholm and breaks down total consumption
into domestic water heating, electric appliances, and space heating
consumption. Paatero and Lund [11] use hourly electricity meter
data from Finnish apartment buildings without electric heating to
generate hourly load profiles of individual households. Pedersen
et al. [12] describe prediction models for heat and electricity load
in different building types. Hourly heat demand profiles are esti-
mated using load factors, i.e. relative loads referring to average daily
design loads. Modeled hourly electricity demand for electric appli-
ances, excluding electric heating equipment, is based on probability
distributions. In a previous paper [13] we use smart meter data
combined with survey response and weather data to investigate
the impacts of different space heating systems on hourly electric-
ity consumption in detached houses in Norway. Separate regression
models for hourly electricity consumption of households with con-
ventional direct electric heating and central heating systems during
the heating period are presented.

Birt et al. [14] propose a method for disaggregating hourly
electricity consumption of Canadian dwellings into base load and
activity load. The model is based on samples with hourly and
minutely metered whole-house electricity consumption and a sam-
ple with minutely submetering of heating and cooling equipment
consumption. Temperature dependence is considered during both
heating and cooling period. Perez et al. [15] present a disaggrega-
tion method for residential air-conditioning load based on smart
meter data with a 1-min metering interval from 88 households
in Texas. Submeter data from A/C loads in 19 households is used
to train the A/C load model. Iyer et al. [16] describe a method
for disaggregating hourly energy consumption in supermarkets
into a weather-dependent and a weather-independent compo-
nent, based on hourly meter data from 94 stores. Besides weather
data, design loads for each store are used as input data to the
model. Sæle et al. [17] summarize the findings of the first part
of the ElDeK project [18], during which electricity consumption
of 32 participating Norwegian households was metered in detail.

Whole-house consumption was metered every hour for at least
one year, while individual consumption of several electric appli-
ances was  metered every minute for a period of approximately four
weeks. All participating customers reside in single-family houses
and provide further household information via a questionnaire.
During the examined four-weeks metering period the typical con-
sumption profile exhibits two  peaks during morning and evening
which are mainly caused by lighting in the living room. Maximum
consumption of electric water heating coincides with the morning
peak, and space heating equipment is reported to be the largest con-
sumer during all hours of the day [17]. Unfortunately, no detailed
results of the project have been published to date.

To the best of our knowledge, previous studies have not com-
pared the impacts of hourly and daily mean outdoor temperature
values on hourly electricity consumption, or described a simple
disaggregation method based on whole-house meter data.

1.3. Goals of the study

In this study, hourly electricity meter data of 470 household
customers in south-eastern Norway is combined with cross sec-
tional data which was collected by a web-based survey among
the customers. The resulting panel data set is further merged with
weather data and calendric information referring to the metering
period.

The overall objective of this paper is to examine the impacts
of outdoor temperature and different household characteristics
on hourly electricity consumption in Norwegian dwellings. We
evaluate whether daily mean values of outdoor temperature are
sufficient to model hourly electricity consumption by compar-
ing the results from two  models, one based on daily and one
based on hourly mean temperatures. Moreover, we  develop a sim-
ple method for disaggregating modeled whole-house electricity
consumption into two  components, representing modeled con-
sumption for electric space heating and other electric appliances,
respectively. Estimates on how much electrical energy is consumed
for space heating and other purposes facilitates the evaluation of
different load management options.

2. Data

2.1. Typical dwelling characteristics in Norway

About 50% of Norwegian dwellings are detached houses, apart-
ments account for about 25%, and about 20% are represented by
semi-detached houses and terraced houses [19]. However, in larger
cities (e.g. Oslo) apartments reach considerably higher shares. The
most common space heating method in Norway is direct elec-
tric space heating, which is often used in combination with wood
burning stoves and air-to-air heat pumps. In most households elec-
trically heated storage tanks are used for domestic water heating.
In most Norwegian regions hot water based central heating sys-
tems are relatively rare, and often supplied by electric boilers or
oil boilers. However, district heating networks are established e.g.
in Oslo, Trondheim, and Bergen, and the use of oil boilers will be
abandoned by 2020.

2.2. Sample data

A web based survey on household-specific data was  carried
out among electricity customers of system operators Ringerikskraft
Nett AS1 and Skagerak Nett AS2 in October 2013. Meter data from

1 Supplying Ringerike municipality, Buskerud county.
2 Supplying several municipalities in Telemark and Vestfold county.
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Table 1
Number of observations and average floor space for each dwelling type and group,
training data.

Dwelling type/group Observations Average floor
space

Ordinary detached houses 353 157 m2

Detached houses with secondary suites 33 212 m2

Detached dwellings 386 161 m2

Semi-detached houses 30 105 m2

Terraced houses 24 106 m2

Apartments 30 85 m2

Attached dwellings 84 98 m2

Skagerak Nett is available for the period June 2009–May 2010, so
that about four years lie between metering period and survey. Thus,
the data is only used as test data for cross validation in Section 4.5.
Meter data and survey response data from Ringerikskraft Nett con-
stitutes the training data set in this study and is described in detail
in the following.

Invitations were sent to 9379 available customers with hourly
metering systems installed in their homes, and 1550 customers
answered the questionnaire (response rate 16.5%). The question-
naire contained about 30 different items, mainly on technical data
(e.g. floor space, dwelling age, number of household members,
heating systems).3 All items are listed in Tables A.4–A.6 in the
Appendix. Since hourly metering in different areas started at dif-
ferent points in time between December 2012 and February 2014,
the length of available meter data time series varies across cus-
tomers. While the starting date of hourly metering varies, the time
series ended in May  2014 for all observations. If a period of one
year was to be examined only relatively few observations would
be available. In case the examined period was reduced to e.g. the
winter months only, considerably more observations, but a shorter
time series would be available. In order to find a trade-off between
length of metering period and number of available observations a
period from August to May  is chosen.

2.2.1. Survey response data
Due to a low number of participating households with cen-

tral heating systems, only households using direct electric space
heating, supplemented by air-to-air heat pumps, wood stoves, or
paraffin stoves, and using electrically heated hot water tanks are
included in the sample. Furthermore, only the five most frequent
dwelling types are included, namely ordinary detached houses,
detached houses with secondary suites,4 vertically separated semi-
detached houses, terraced houses, and apartments. After these
limitations, a sample of 470 households remains.

In the questionnaire (see item 6 in Table A.4), respondents were
free to type in three of the different values that are typically used
to describe a dwelling’s floor space in Norway: gross floor space,
primary floor space,5 and heated floor space. Since some unfeasible,
reported data indicates misunderstandings regarding the different
floor space definitions, the variable dwelling floor space used in this
study is the mean value of largest and smallest floor space value
reported by each respondent. Frequencies of dwelling types and
average floor space per dwelling type are shown in Table 1.

In the sample, the large majority of included households reside
in ordinary detached houses (75%) while the other dwelling types
account for only 5–7% each. Therefore, we group the five dwelling
types into only two dwelling groups,  which are detached and
attached dwellings. Thus, attached dwellings represent all dwellings

3 Not all questions are answered by all respondents.
4 Representing two households when the secondary suite is inhabited.
5 Excluding garages, storages, technical rooms, etc.

that share at least one common wall with a neighboring dwelling,
while detached dwellings are isolated. Mean floor space is 161 m2

for detached dwellings, and 98 m2 for attached dwellings (Table 1).
Relative frequencies of different household sizes, construction

periods, and wood burning habits, in both dwelling groups, are
shown in Fig. 1. In detached dwellings, two-person households
are most common (50%), while households with only one per-
son are comparatively rare (13%) (Fig. 1a). In attached dwellings
one-person households are most common (43%), followed by two-
person households (30%). The corresponding shares of households
with three or four persons are slightly higher in detached dwellings,
while households with more than four persons are least frequent
(6%) within both dwelling groups.

58% of detached dwellings were built before 1980, about 27%
were built during the 1980s, and 8% during the 1990s (Fig. 1b).
Buildings built after 1999 represent the smallest share (6%). In con-
trast, 30% of attached dwellings were built before 1980 and during
the 1980s, respectively, and 25% represent dwellings built after
1999. Thus, in our sample, attached dwellings on average are newer
than detached dwellings.

Survey participants were asked to rate their wood burning
habits according to the following scale (item 19, Table A.6): (1)
no wood burning, (2) only for coziness, (3) supplementary, and (4)
mainly. Supplementary wood burning means, that wood burning is
used when electric heating is not sufficient to maintain the desired
indoor temperature, while mainly wood burning means that wood
burning is a major heating method and practically used during the
entire heating period. In detached dwellings about 90% of house-
holds use wood burning either supplementary or as a major heating
source, while only 8% report to use wood burning only for cozi-
ness and 3% use no wood burning at all (Fig. 1c). In contrast, more
than one third of households residing in attached dwellings use
no wood burning at all, while about 50% use it supplementary or
mainly, and 13% only for coziness. The survey participants were fur-
ther asked to estimate their average annual firewood consumption
(item 20, Table A.6). Respondents reported consumption in litres,
60-litres-bags, fathoms,6 or cubic meters. Average annual firewood
consumption of households using wood burning only for coziness,
supplementary, and mainly is approximately 1 m3/a, 3 m3/a, 6 m3/a,
respectively, and is thus consistent with wood burning intensity, i.e.
average consumption is increasing with intensity. However, since
the amount of useful energy per cubic meter firewood might vary
largely, self-reported annual firewood consumption is not used as
explanatory variable in our analyses.

2.2.2. Meter data
Hourly outdoor temperature data – metered at Hønefoss Høyby

weather station – is provided by the Norwegian Meteorological
Institute [21]. Electricity meter data is given as a data set of hourly
meter readings.7 Hours 1–24 are defined as followed: Hour 1 refers
to the time period between midnight and 1:00 a.m., hour 2 refers
to the period between 1:00 a.m. and 2:00 a.m., etc., and hour 24
represents the period between 11:00 p.m. and midnight. Thus, elec-
tricity consumption during one hour is calculated as the difference
between the meter readings enclosing the corresponding hour. All
included households are located in the city of Hønefoss or its sub-
urbs. Usable meter data of all 470 included households is available
for the period of 3 August 2013 to 21 May  2014 – called meter-
ing period in the following. The term usable means that realistic
meter data is available, but that some missing or erroneous val-
ues might be included. During some shorter periods general meter

6 1 Norwegian fathom ≈ 2.4 m3.
7 Only meter data of customers that have answered the questionnaire is provided

by the system operator.
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Fig. 1. Number of residents (a), year of construction (b), wood burning habits (c) in detached and attached dwellings.

Fig. 2. Average hourly electricity consumption over average outdoor temperature
(detached dwellings, working days).

failures occurred resulting in missing meter data or constant val-
ues for a large part of the sample. Though a calculation routine
was established to remove most erroneous data (especially inter-
polated values), it is assumed that some spurious values remained
in the data set.

Due to electric space heating there is a strong negative corre-
lation between electricity consumption and outdoor temperature.
Average hourly electricity consumption in detached dwellings as
a function of both hourly and daily mean outdoor temperature
is shown in Fig. 2. Hourly mean temperature t̄o,h represents the
mean value of the two hourly measurements in the beginning and
end of hour h,8 while daily mean temperature t̄o,d represents the
mean value of 24 hourly measurements during day d. The corre-
lation coefficient between hourly consumption and hourly mean
temperature is R = 0.81, while hourly consumption and daily mean
temperature yield R = 0.88. Also when focusing on the main heat-
ing period (October to April) there is a stronger linear correlation
between hourly consumption and daily mean temperature than
between hourly consumption and hourly temperature.

Average hourly outdoor temperature during each month within
the metering period is shown in Fig. 3. On average, hourly temper-
ature values are lowest during early morning and highest during
afternoon. Length of night- and day-time, temperature level, and
range between the lowest and the highest temperatures during the
day correspond to seasonal differences. Average hourly electricity

8 See Section 3.2.1.

Fig. 3. Average hourly outdoor temperature per month, August 2013–May 2014.

consumption in detached dwellings in September 2013 and January
2014 is shown in Fig. 4. At first glance, average hourly consumption
seems relatively independent from average hourly temperature
values during the corresponding month (Fig. 3). Average hourly
consumption in January is higher than in September, and there
are noticeable differences between working days and non-working
days, especially during day-time. However, apart from some dif-
ferences during afternoon and evening, average profiles in January
and September are shaped similarly. On working days, a morning
peak occurs during hour 8, and an evening top around hours 18
and 19 in January and around hours 21 and 22 in September. On
non-working days, a morning top occurs around hours 11 or 12,

Fig. 4. Average hourly electricity consumption in detached dwellings per month
(September, January)
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Table 2
Illustration of the panel data structure.

date ID group floor space adults children heat pump daytype month HDD HDD1st E1 . . . E24

03-11-2013 M0001 detached 170 2 2 yes Sun/holiday 11 15.3 −0.2 3.21 . . . 3.30
04-11-2013 M0001 detached 170 2 2 yes workday 11 14.8 −0.5 3.08 . . . 3.25
.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03-11-2013 M0500 attached 100 1 0 no Sun/holiday 11 15.3 −0.2 2.81 . . . 2.91
04-11-2013 M0500 attached 100 1 0 no workday 11 14.8 −0.5 2.80 . . . 2.88

and day-time consumption is considerably higher than on working
days.

3. Methods

Combining time series (meter data) and cross sectional data
(survey response) results in a large panel data set. An example
illustrating the structure of the data set – containing only some vari-
ables – is shown in Table 2. For each observation (ID) and each day
(date) a set of 24 hourly electricity meter values (E1, E2,. . .,  E24), as
well as cross sectional data (dwelling group, floor space,. . .)  is avail-
able. Temperature data (HDD, HDD1st) and calendric data (daytype,
month) represent time series components that may  change from
day to day but are constant across observations, since all dwellings
are located in the same region.

3.1. Panel data regression

All statistical analysis in this study is performed using R [22].
We model electricity consumption on household level for each
hour of the day using the plm-package [23], which enables dif-
ferent panel data regression methods. We  apply the method of
pooled OLS (ordinary least squares)9 to a panel data set contain-
ing hourly consumption data from N = 470 households over a time
period of T = 292 days. For each hour of the day a separate model
is estimated based on about N · T observations10, resulting in a set
of 24 hourly models. The hourly model set is based on multiple
linear regression, as illustrated by Eq. (1), where Eh,i represents
hourly electricity consumption of hour h and observation i, ˇ0,h
is the intercept parameter, ˇk,h are the slope parameters, and �i is
the unobserved error term. The included explanatory variables xk
are described in the next subsection.

Eh,i = ˇ0,h +
k∑

k = 1

ˇk,h · xk,i + �i (1)

The modeled value of hourly consumption Êh,i is calculated based

on the corresponding parameter estimates ˆ̌
0,h and ˆ̌

k,h (Eq. (2)).
The residuals �̂i represent the differences between modeled and
metered consumption values.

Êh,i = ˆ̌
0,h +

k∑

k = 1

ˆ̌
k,h · xk,i = Eh,i − �̂i (2)

3.2. Explanatory variables

3.2.1. Heating degree day and heating degree hour
Daily mean outdoor temperature t̄o,d of day d is repre-

sented by the arithmetic mean value of 24 hourly temperature
values, metered during day d. Based on the assumption, that
temperature-dependent electricity consumption only takes place

9 see e.g. Wooldridge [24], chapter 13
10 Not all households exhibit meter data for all hours during the metering period.

at temperatures below 17 ◦C (heating limit temperature), outdoor
temperature is transformed into heating degree day HDD,11 defined
as the difference between 17 ◦C and daily mean outdoor tempera-
ture t̄o,d. HDD is zero in case t̄o,d ≥ 17 ◦C (Eq. (3)).

HDDd =
{

17 − t̄o,d, for t̄o,d < 17

0, else
(3)

The difference in heating degree days between any day d and
the day before (d − 1) is called first differences in heating degree days
HDD1st (Eq. (4)). Thus, a positive value of HDD1st implies that mean
outdoor temperature during day d is lower compared to the day
before.

HDD1std = HDDd − HDDd−1 (4)

In order to establish a model set based on hourly outdoor tem-
perature meter data, a variable called heating degree hour HDH
is defined analogously to HDD (Equation (5)). While HDD repre-
sents daily mean outdoor temperature, HDH represent the mean
value t̄o,h of the two hourly measurements enclosing hour h, e.g.
t̄o,h = 3 = 0.5 · (to,3:00 a.m. + to,2:00 a.m.).

HDHh =
{

17 − t̄o,h, for t̄o,h < 17

0, else
(5)

The difference in heating degree hours between hour h and
hour h − 1 is called first differences in heating degree hours HDH1st
(Eq. (6)). Correspondingly, a positive value of HDH1st indicates a
temperature drop from h − 1 to hour h.

HDH1st = HDHh − HDHh−1 (6)

3.2.2. Description of the explanatory variables
In order to compare the influence of heating degree day and

heating degree hour on hourly electricity consumption, two  model
sets – consisting of 24 models each – are estimated and correspond-
ingly called HDD-models and HDH-models. Within both model
sets, each of the 24 linear models contain the same explanatory
variables, of which some are included in interaction with heat-
ing degree day HDD or heating degree hour HDH. All explanatory
variables for the HDD-model set are listed in Table 3. Variables
are chosen according to statistical significance and share of total
variance explained. Since not all respondents answered all survey
items, some possibly important variables are not included. For each
categorical variable the corresponding reference group is reported.
The HDH-model set contains the same explanatory variables, with
the only difference, that HDD is replaced by HDH, and HDD1st is
replaced by HDH1st. Wood burning customs are divided into three
intensity levels, namely no wood burning or only for coziness, sup-
plementary wood burning, and mainly wood burning. Dwelling age is
divided into only two levels representing the period of construc-
tion, which are <1980 and 1980≤. Since temperature-dependent

11 For simplicity, index d is dropped in the text and HDD is used without physical
unit.
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Table  3
Explanatory variables, HDD-model set.

Variable Description Type Reference group

x1 Dwelling group = attached Dummy  Dwelling group = detached
x2, . . .,  4 Number of adults (incl. children ≥16 years) = 2, 3, >3 Dummy  Adults = 1
x5, . . .,  7 Number of children (<16 years) = 1, 2, >2 Dummy  Children = 0
x8 Senior resident (>65 years) = yes · daytype = workday Dummy  Senior residents = no
x9 Resident more than 20 h at home (no senior

residents) = yes · daytype = workday
Dummy  Residents home >20 h = no

x10 Weekend resident = yes · daytype = workday Dummy  Weekend residents = no
x11, . . .,  13 Daytype = Saturday but no holiday, Sunday or holiday,

workday within school breaks
Dummy  Daytype = workday

x14 Cold storage = yes Dummy  Cold storage = no
x15 Other electricity-intensive appliances = yes Dummy  Appliances = no
x16, . . .,  24 Month = 2, 3, 4, 5, 8, 9, 10, 11, 12 Dummy  Month = 1 (January)
x25 HDD Continuous –
x26 HDD1st Continuous –
x27 HDD · floor space Continuous –
x28 HDD · dwelling group = attached Cont./dummy Dwelling group = detached
x29 Heat pump = yes · dwelling group = detached · HDD > 0 Dummy  Heat pump = no
x30 Heat pump = yes · dwelling group = attached · HDD > 0 Dummy  Heat pump = no
x31 HDD · age = 1980≤ · dwelling group = detached Cont./dummy Age = <1980
x32 HDD · age = 1980≤ · dwelling group = attached Cont./dummy Age = <1980
x33 HDD · wood burning = supplementary · dwelling

group = detached
Cont./dummy Wood burning = no or only for coziness

x34 HDD · wood burning = supplementary · dwelling
group = attached

Cont./dummy Wood burning = no or only for coziness

x35 HDD · wood burning = mainly · dwelling
group = detached

Cont./dummy Wood burning = no or only for cosiness

x36 HDD · wood burning = mainly · dwelling
group = attached

Cont./dummy Wood burning = no or only for cosiness

electricity consumption is assumed to differ between detached and
attached dwellings we include variables dwelling age, and wood
burning in interaction with both HDD and dwelling group. Variable
heat pump, indicating the use of air-to-air heat pumps, is only con-
sidered if HDD > 0 and is included in interaction with dwelling group.
Thus, we assume that reductions achieved by using an air-to-air
heat pump are temperature-independent, but only occur during
days with space heating demand.

3.3. Disaggregation into basic and space heating consumption

By including temperature variables HDD and HDD1st (or HDH
and HDH1st) modeled consumption can be broken down into
a temperature-independent and a temperature-dependent com-
ponent. The temperature-independent part can be interpreted
as consumption for electric appliances including electrically
heated hot water tanks (basic consumption, Eq. (7)), while the
temperature-dependent part can be interpreted as space heat-
ing consumption (Eq. (8)). Since categorical variable month takes
into account seasonal differences in temperature-independent
consumption (e.g. higher electricity consumption for illumina-
tion during winter) the assumption of a temperature-dependent
component mainly representing space heating energy seems rea-
sonable. However, estimated space heating consumption does not
necessarily include all space heating appliances, but only those
with temperature-dependent behavior, i.e. increasing consump-
tion with decreasing outdoor temperature.

Êbasic,h,i = ˆ̌
0,h +

24∑

k = 1

ˆ̌
k,h · xk,i (7)

Êspheat,h,i =
36∑

k = 25

ˆ̌
k,h · xk,i (8)

3.4. Modeling aggregate consumption

3.4.1. Time-aggregate consumption
Due to the simple structure of the hourly models, individual

daily electricity consumption can be modeled by using the summed
hourly coefficients for each variable (Eq. (9) and (10)) and applying
Eq. (11).

ˆ̌
0,d =

24∑

h = 1

ˆ̌
0,h (9)

ˆ̌
k,d =

24∑

h = 1

ˆ̌
k,h (10)

Êd,i = ˆ̌
0,d +

k∑

k = 1

ˆ̌
k,d · xk,i (11)

For modeling daily consumption temperature data and calen-
dric information for each day d during the examined period are
identical to the corresponding data used in the individual hourly
consumption model set. For modeling consumption per week,
month, or any other time period, temperature and calendric vari-
ables that are not constant during the examined period need to be
considered in summarized form in the corresponding model com-
ponents (e.g.

∑
HDD instead of HDD, total number of days within

each daytype or month category), and the intercept estimate needs
to be multiplied by the total number of days.

3.4.2. Sample-aggregate consumption
Aggregate hourly electricity consumption, i.e. summed con-

sumption of all observations in the sample, can be modeled directly
by using the sample’s overall characteristics, i.e. total number of
households, summed floor space, etc., as cross-sectional input data.
Temperature data and calendric information for each day d during
the examined period are identical to the corresponding data for
modeling individual hourly consumption.
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Fig. 5. Shares of explained variance in hourly electricity consumption.

4. Results

4.1. Regression results

A Breusch-Godfrey test indicates autocorrelated residuals (p <
0.0001), i.e. correlation between residuals and lagged residu-
als, and a Breusch-Pagan test indicates heteroskedastic residuals
(p < 0.0001), i.e. non-constant residual variance. In order to
yield reliable p-values for all variables, heteroskedasticity- and
autocorrelation-consistent (HAC) standard errors are used. p-
values for all explanatory variables of both model sets (HDD and
HDH model) are listed in Tables B.7 and B.10 in Appendix B. F-
statistics for all 48 models yield p-values below 0.0001, indicating
overall significance of the included variables. The residuals seem
independent from explanatory variables and are approximately
normally distributed. Though square-root transforming response
variable Eh yields more normally distributed residuals, the non-
transformed response is preferred in order to retain simple models
with easily interpretable estimates which, moreover, allow effi-
cient modeling of aggregate hourly consumption using summed
input data (see Section 3.4).

4.1.1. Explained variance and goodness of fit
Percent shares of total variance explained by the explana-

tory variables are listed in Tables B.9 and B.12 in Appendix B.
Graphical presentations of explained variance are given in Fig. 5.
Total explained variance in hourly consumption – represented by
adjusted coefficient of determination R2 – varies from 0.43 to 0.49
for the hourly models based on HDD. Total explained variance for
the HDH-model set is very similarly shaped and exhibits slightly
lower values, except during afternoon. The results identify heat-
ing degree day (heating degree hour in the HDH-model) as the
most important explanatory variable throughout all 24 h, explain-
ing about 20% of the variance in hourly consumption. While HDD
contributes most during early morning, the contribution of HDH is
highest during late afternoon. Contribution of first differences in
heating degree days, HDD1st, is largest during the first hours of the
day and continuously decreases over the course of the day, which
seems feasible, as HDD1st represents the impact of the tempera-
ture difference between the examined day and the day before. First
differences in heating degree hours, HDH1st, represent the temper-
ature difference between the examined hour and the hour before.
Its contribution to R2 is also highest during early morning hours,
when both total consumption and outdoor temperature on aver-
age are lowest. A possible explanation is, that during night-time and
early morning a high proportion of total electricity consumption is
used for space heating, and that changes in outdoor temperature
from one hour to the next are attenuated by the thermal storage
capacity of the dwelling’s mass.

Apart from HDD (HDH correspondingly), variables HDD·floor
space (HDH·floor space), dwelling group, and resident variables are
the most important explanatory variables, explaining about 5-10%
of total variance in both model sets. Resident variables include
explanatory variables x2, . . .,  10 (Table 3), i.e. number of adults and
children, and dummy  variables indicating whether there are senior
or weekend residents, or residents that spend most of the day at
home. Compared to most other variables, the contribution of resi-
dent variables varies more clearly over the course of the day, with
a minimum during night-time and early morning and a maximum
during evening. Assuming that the residents use electric appliances,
as e.g. white goods, mostly during afternoon and evening and are
asleep during night-time, these results seem feasible. While dur-
ing early morning HDD and HDD1st explain slightly more variance
than HDH and HDH1st, the latter two explain a slightly higher share
during afternoon. Categorical variable month seems to outweigh
these differences, by contributing slightly more during afternoon in
the HDD-models and during morning in the HDH-models. Daytype
contributes most during morning and mid-day, while the interac-
tion terms HDD·dwelling group·dwelling age and HDD·dwelling group
only explain negligible shares.

4.1.2. Hourly parameter estimates
Parameter estimates for both model sets are listed in

Tables B.8 and B.11 in Appendix B. Only estimates resulting from
the HDD-model set are briefly described in the following.

Intercept estimates depict consumption troughs during night-
time and mid-day, a distinct peak during hour 8, and maximum
consumption during an evening top, approximately lasting from
hour 18 to hour 22. Parameter estimates for HDD are positive all
day, with lowest values during evening. Estimates for HDD1st are
negative all day, so that a jump in HDD, i.e. a temperature drop
between yesterday and today, is attenuated. The estimate’s abso-
lute value is largest in hour 1 and continuously decreases over
the course of the day, which is feasible, since the impact of yes-
terday’s temperature is likely to decrease over the course of the
day. In general, additional adults or children imply higher con-
sumption, i.e. positive estimates. Especially morning and evening
consumption are increased compared to a household with only
one adult person and no children. However, estimates for number
of children = 1 are slightly negative during night-time and around
zero during the rest of the day. This can be explained by other
variables already taking into account differences between house-
holds with no children and those with one child, e.g. the presence
of more than one adult or larger floor space. Another possible
explanation might be that households with one child consume
less electrical energy during night-time (e.g. residents go to bed
earlier) while the child does not cause increased electricity con-
sumption during these hours. Dwelling group = attached exhibits



A. Kipping, E. Trømborg / Energy and Buildings 118 (2016) 350–369 357

Fig. 6. Modeled components for different months and outdoor temperatures (work-
days).

negative estimates for all 24 h, with maximum absolute values
during morning and late evening. Daytype categories (Saturday,
Sunday/holiday, school break) exhibit distinct negative estimates
during morning peak hour 8 and positive estimates during day-
time, which can be explained by residents getting up later and then
spending more time at home. Month exhibits almost exclusively
negative estimates, implying a reduced consumption compared
to the reference month January. Estimates for March through
October indicate distinct reductions during afternoon and evening,
which can be explained by e.g. reduced electricity consumption for
lighting – and temperature-independent heating – during these
months. Variables cold storage, indicating the use of cold storage
rooms or very large fridges, and other appliances exhibit posi-
tive estimates all day, while heat pump·dwelling group exhibits
only negative estimates. Estimates for detached dwellings using
air-to-air heat pumps are larger in absolute values (compared to
attached dwellings) with a distinct maximum in hour 8. Floor
space in interaction with HDD yields positive estimates with high-
est values during morning peak and evening top. HDD·dwelling
group = attached exhibits negative estimates during all hours,
indicating lower temperature-dependent electricity consumption,
which can be explained by lower heat losses to the outside envi-
ronment due to less outside wall area. Dwelling age in interaction
with HDD and dwelling group yields similar negative estimates for
both dwelling groups, however, with largely differing values dur-
ing morning hours, when absolute values for attached dwellings
are considerably smaller. High p-values (see Table B.7) indicate that
dwelling age = 1980≤ is not significant for attached dwellings during
these hours. Also HDD·wood burning·dwelling group exhibits nega-
tive estimates and thus implies reduced temperature-dependent
consumption compared to households using no wood burning.12

Absolute estimates for detached dwellings are larger than absolute
estimates for attached dwellings, and estimates for mainly wood
burning are larger than estimates for supplementary wood burning
within both dwelling groups.

4.2. Disaggregation of individual hourly electricity consumption

The results reported in this section as well as in the following
are based on the HDD-model set. Modeled basic and space heating
consumptions in an arbitrarily defined household13 for three differ-
ent months and outdoor temperatures are shown in Fig. 6. On a
working day in February (HDD = 20), modeled space heating con-
sumption is larger than modeled basic consumption during most
hours of the day and exhibits a maximum in hour 9. Highest space
heating consumption during morning can be explained by energy
demand for reheating after night-setback or by electric heaters that

12 The detailed impacts of different space heating equipment are discussed in [13]
13 detached dwelling, 150 m2, two adults, one child

are switched-on manually in the morning. Modeled basic consump-
tion exhibits a distinct peak in hour 8, a consumption top during
evening hours 18–22, and troughs during mid-day and night-time
and is thus shaped similarly to the intercept estimate. In October
(HDD = 11), both modeled basic and space heating consumption are
shaped similarly to the February case but on lower levels. Assum-
ing a mean outdoor temperature of 15 ◦C (HDD = 2), modeled space
heating consumption in August is very low and approximately
constant over the course of the day, while modeled basic con-
sumption is only 0.2–0.4 kWh/h lower compared to the October
case. For all three cases, modeled basic consumption exhibits a
characteristic shape with morning peak and evening top, while
modeled space heating consumption only exhibits a slight morning
top which becomes more distinct as HDD increases. Modeled disag-
gregation of total hourly electricity consumption on a cold January
day (−13 ◦C) is shown in Fig. 7. Stacking the modeled components
illustrates that space heating consumption is clearly larger than
basic consumption throughout the day, yet only contributes lit-
tle to the hourly variations in modeled whole-house consumption
(Fig. 7).

While total modeled consumption can easily be compared with
total metered consumption (R2 = 0.47), the estimated basic and
space heating components cannot be validated by meter data. In
order to at least roughly validate estimated basic consumption, we
compare it with modeled total electricity consumption of a com-
parable household using non-electric central heating, by applying
the model proposed by Kipping and Trømborg [13]. In theory, total
electricity consumption of households that exclusively use non-
electric central heating, but still use electric hot water tanks, should
match modeled basic electricity consumption. Unfortunately, non-
electric central heating systems, as e.g. central oil boilers, are rarely
used without being supplemented with electric heating, at least to
some extent, so that corresponding electricity meter data mostly
includes a certain share of electric space heating energy. Thus,
hourly electricity consumption of households using non-electric
central heating modeled according to [13] is correlated with HDD,
while modeled basic consumption is temperature-independent.
Despite these relatively large uncertainties, we  compare modeled
basic consumption of an arbitrarily defined household at average
outdoor temperatures in February, March, and April with modeled
whole-house electricity consumption of a corresponding house-
hold using non-electric central heating and electric (domestic)
water heating (Fig. 8). For March and April modeled hourly con-
sumption profiles in both cases are similar in shape and level,
however, with relatively large deviations during night-time and
early morning. For February conditions, modeled consumption in
case of non-electric central heating is higher than modeled basic
consumption also during day-time and evening top. The deviations
between modeled basic consumption in case of electric space heat-
ing and modeled whole-house consumption in case of non-electric

Fig. 7. Stacked modeled components for a cold day in January (workday).
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Fig. 8. Modeled basic consumption in case of electric heating (continuous lines) and
modeled whole-house consumption in case of non-electric heating (dashed lines).

central heating can be explained by electrical energy consumed for
space heating in households using non-electric central heating.

4.3. Sample-aggregate hourly electricity consumption

The sample’s aggregate hourly electricity consumption can be
modeled with R2 = 0.98. Aggregate metered and modeled hourly
consumption during three short periods in September, January, and
May, are shown in Fig. 9. On several days during the chosen period
in September, modeled consumption overestimates metered con-
sumption, especially during mid-day and afternoon, which might
indicate that not all included households have started the heating
season yet (Fig. 9a). A feasible explanation for these deviations is,
that households do not necessarily start heating exactly as soon as
daily mean outdoor temperature falls below heating limit tempera-
ture (17 ◦C), but with some attenuation, and that in general heating
limit temperatures vary across households. In the beginning and
end of the heating period, the assumption of linear relationship
between electricity consumption and outdoor temperature (heat-
ing degree day) might not hold and might lead to some deviations.
In January, aggregate consumption on weekends is slightly under-
estimated by the model, which indicates, that the impact of daytype
is not constant throughout the year, but also exhibits a certain
seasonality or temperature-dependence (Fig. 9b). During morn-
ing hours of May  17, the Norwegian national holiday, the model
underestimates metered consumption largely, indicating that the
impacts of different holidays might vary and, also differ from nor-
mal  Sundays (Fig. 9c). Consumption on May  16 is also considerably
higher than modeled consumption, which might be related to
preparations for the upcoming holiday. Moreover, outdoor tem-
perature was considerably increasing from May  15 to May  16 and
remained on this higher level, so that underestimated metered con-
sumption on both May  16 and May  17, can also be explained by an
attenuated fading of space heating during spring, which might not
be sufficiently considered by the model.

4.4. Aggregating electricity consumption over time

As illustrated in Section 3.4, daily electricity consumption can
be modeled using the summarized hourly parameter estimates as
parameters in a corresponding daily consumption model. On indi-
vidual household level, daily electricity consumption during the
entire metering period can be modeled with a goodness of fit of
R2 = 0.61, while the sample’s aggregate daily electricity consump-
tion can be modeled with R2 = 0.99.

4.5. Cross validation

In order to validate the hourly whole-house consumption model
set, the models are applied to 173 observations from Skagerak Nett.

Also in the test data set, the large majority of surveyed households
(almost 80%) reside in detached dwellings, and average floor space
of detached and attached dwellings are similar to the corresponding
mean values in the training data.

On individual household level, cross validation yields a good-
ness of fit of R2 = 0.47 which is as high as for the training data. Also
on aggregate level, achieved goodness of fit is comparatively high
(R2 = 0.92). Modeled consumption mostly underestimates metered
consumption slightly, which can be explained by some uncertain-
ties connected to the test data set. For example, it is unlikely,
that all households reporting to use air-to-air heat pumps in the
end of 2013 were already using heat pumps during the metering
period in 2009/2010. Setting dummy  variable heat pump to zero,
i.e. assuming that no heat pumps were used during the meter-
ing period, yields an increased model accuracy of R2 = 0.49 for
individual hourly consumption and R2 = 0.95 for aggregate hourly
consumption.

5. Discussion

5.1. Regression results

On individual household level, coefficients of determination are
comparatively low which might be due to omitted variables (e.g.
detailed information on the residents’ diurnal routines regarding
indoor temperatures, thermostat settings, and firewood consump-
tion). The use of HDD or HDH as explanatory variables implies
a simplification, as reference temperature 17 ◦C is not the true
space heating limit temperature for all households. Moreover, some
households might use electric space heating all year (e.g. electric
floor heating in bathrooms) while others might turn electric heaters
on and off manually and not exactly as soon as outdoor temperature
has reached a certain reference temperature. Especially the defini-
tion of HDH made in this paper might be too simple since it e.g.
yields positive values during periods with an hourly outdoor tem-
perature varying between values above and below heating limit
temperature, which typically occur during the summer months.

Aggregate hourly electricity consumption of the training data
set can be modeled with a relatively high accuracy using the HDD-
model. However, as deviations between modeled and metered
aggregate consumption indicate, the impacts of weekends and holi-
days could be examined in more detail. Moreover, during transition
periods in the beginning and end of the heating period the linear
relationship between modeled electricity consumption and HDD
seems to cause some deviations which could possibly be fixed by
e.g. including month variables in interaction with HDD or by evalu-
ating alternative definitions of HDD, e.g. choosing different heating
limit temperatures.

Cross-validation indicates that the HDD-model is applicable
to other regions in south-eastern Norway. Both on individual
household level and on sample-aggregate level hourly electric-
ity consumption can be modeled with a relatively high accuracy,
although validity of the test data set is limited due to a large time-
lag between metering period and survey period. On average, the
model slightly underestimates metered consumption, which can
be explained by two  factors. As explained in Section 4.5, not all
households reporting to use air-to-air heat pumps in 2013 were
necessarily already using them in 2009/2010. Moreover, firewood
consumption for space heating purposes seems to differ between
training and test data set. In the training data, average self-reported
annual consumption of firewood is 1.1 m3, 2.9 m3, and 5.5 m3 for
households using wood burning only for coziness, supplementary,  or
mainly, respectively. In the test data, however, average firewood
consumption is considerably lower (0.7 m3, 1.4 m3, and 1.7 m3,
respectively), so that on average less heating energy is provided
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Fig. 9. Aggregate hourly consumption and disaggregation.

by wood burning compared to the training data, especially in
households using wood burning supplementary or mainly.  If more
detailed information about wood burning habits was available, the
model could be further improved and thus correct for regional
differences.

5.2. Heating degree day versus heating degree hour

Using heating degree day HDD based on the daily mean value of
outdoor temperature implies a certain measurement error. Espe-
cially consumption during the first hours of the day seems unlikely
to be influenced by a mean value, that is based on 24 hourly
meter values during the day that has just started. However, as con-
firmed by plausible regression results, including first differences
in heating degree days, HDD1st, as explanatory variable seems to

sufficiently correct for the simplification connected to HDD. The
share of explained variance by HDD1st as well as its absolute param-
eter estimate is continuously decreasing over the course of the day,
representing a declining impact of yesterday’s mean temperature
on today’s electricity consumption.

Including heating degree hour HDH and HDH1st instead of HDD
and HDD1st as explanatory variables for estimating hourly con-
sumption does not lead to a higher goodness of fit, as illustrated
in Fig. 5. This supports the assumption that the variance in hourly
electricity consumption within a single day is mainly caused by
household-specific patterns, e.g. the residents’ daily routines (see
Figs. 3 and 4). Moreover, hourly variations in outdoor tempera-
ture, and thus the difference between HDD and HDH, are smallest
during the coldest periods of the year, when electricity consump-
tion is highest (compare Fig. 3). Thus, including HDD and HDD1st
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as explanatory variables for estimating hourly electricity consump-
tion seems sufficient, and – compared to the HDH-model set – input
data requirement is considerably reduced (daily instead of hourly
mean temperature values), which makes the HDD-models more
useful for long-term forecasts.

In reality, variations in hourly outdoor temperature might have
an impact on hourly electricity consumption, however, this impact
is probably attenuated due to the thermal storage capacity of
the dwelling and depending on building envelope characteristics
(e.g. thermal transmittance (U-values) and airtightness). Moreover,
outdoor temperature is mostly lowest during night-time when
night-setback of electric heaters is active so that the dwelling is first
reheated during the morning hours. Thus, electricity consumption
of hour h might not necessarily be influenced the most by mean
outdoor temperature during hour h, but might be more affected by
temperature values of previous hours (t̄o,h−1, t̄o,h−2, etc.). Determin-
ing which lag to use for estimating hourly electricity consumption
more precisely could be an interesting subject to a future study,
however, since detailed information on building envelope, indoor
temperatures, and thermostat settings is not available, the detailed
impact of hourly outdoor temperature values on hourly electricity
consumption is not analyzed in this paper.

5.3. Disaggregation method

According to our results, modeled basic consumption mainly
influences the overall shape of hourly electricity consumption over
the course of the day which seems feasible. Sæle et al. [17] report
that during their metering campaign the morning peak was  mainly
generated by lighting and hot water tanks, and that the evening
peak was mainly caused by lighting. However, without correspond-
ing data from submetering space heating equipment and other
electric appliances, modeled hourly components, i.e. the disag-
gregation method, cannot be validated. Comparing modeled basic
consumption with modeled total consumption of households using
non-electric central heating shows that shape and level of modeled
hourly electricity consumption over the course of the day are
similar, but also exhibit larger differences, especially during night-
time and during the winter months. Apart from general model
shortcomings, a possible explanation for these differences is, that
households using non-electric central heating systems often use
electric heating as a constant or occasional supplement. The sea-
sonal use of electric and central heating equipment or hot water
tanks are not covered sufficiently in the survey and would yield
important data in a revised version of the questionnaire. Modeled
basic consumption might also include some space heating con-
sumption, e.g. caused by electric floor heating in bathrooms, which
is often used without thermostats and even during summer, i.e.
when HDD = 0. Including specific survey items about floor heat-
ing or other constantly running heaters could yield more reliable
estimates for basic and space heating components.

In its current version the model yields some negative values
for space heating consumption of individual households during
periods with low positive values of HDD and for smaller dwellings,
in combination with variables that on average imply a reduced
consumption (e.g. heat pump = yes,  dwelling age = 1980≤, wood
burning = mainly). Separate models for different dwelling types,
considering different heating limit temperatures, or defining a
heating period with attenuated start-up and fading could help
reducing the occurrence of negative values.

5.4. Further work

Additional meter and survey response data could help to fur-
ther validate, improve, and adjust the presented models in order to
make them more applicable to other Norwegian regions. If a larger

sample would be provided, separate models for different dwelling
types and heating systems could possibly yield better models. Sev-
eral samples from different geographical regions would enable the
identification of regional differences in household variables and
electricity consumption. A longer time series, i.e. metering periods
covering at least one year, would allow models that also include the
summer month June and July, which are missing in the training-
data set for this study. The survey could be significantly improved,
e.g. regarding items on heating equipment and its seasonal usage, as
well as on thermostat settings, indoor temperatures, detailed wood
burning habits, and diurnal routines. Regarding detached houses
with secondary suites it needs to be clearly inquired whether the
secondary suite is connected to the main electricity meter or is
metered separately.

A submetering campaign, e.g. metering hourly consumption
by electric heating equipment in addition to whole-house con-
sumption in a subsample of participating households would yield
valuable data for validating the presented disaggregation method.

As in most surveys with voluntary participation, self-selection
might be present. If also meter data of a sample of non-participants
would be provided, possible differences in household and con-
sumption characteristics of participants and non-participants could
be identified.

6. Conclusion

According to our results, outdoor temperature, dwelling group,
floor space, and number of residents are the most important vari-
ables required for modeling hourly electricity consumption in
Norwegian dwellings with electric heating. In order to evaluate
whether daily mean temperature can be used to model hourly elec-
tricity consumption, we  compared two  multiple regression model
sets using heating degree day (HDD) and heating degree hour
(HDH), respectively. In general, the models based on HDD achieve
a slightly higher goodness of fit compared to the models based on
HDH. On sample-aggregate level, hourly electricity consumption
can be modeled with relatively high accuracy. Thus, only the daily
mean value of outdoor temperature is needed as weather-related
input data for modeling aggregate hourly electricity consumption
in a certain region, which makes the model useful for long-term
forecasts and scenario analyses. Cross-validation also indicates that
the presented models are applicable for modeling regional hourly
electricity consumption in the Norwegian household sector.

Our results from a simple disaggregation method based on the
HDD-models indicate that the shape of hourly electricity consump-
tion over the course of the day is mainly influenced by electricity
consumption for electric appliances and domestic water heating,
while electricity consumption for space heating purposes is shaped
relatively evenly throughout the day. Thus, substituting electric
space heating by other energy carriers is assumed to reduce the
level of hourly electricity consumption, while load control of other
electric appliances, e.g. domestic water heaters, white goods, and
lighting, is assumed to affect the shape, i.e. peaks and troughs, of
hourly consumption patterns. Though modeled values of basic and
space heating consumption seem feasible, they should be validated
by results from submetering campaigns.

By providing models for aggregate hourly electricity consump-
tion, which simultaneously estimate how much electricity is used
for space heating purposes, the presented methods can yield valu-
able data for energy system management and policies. Implications
for future aggregate hourly electricity consumption can be sim-
ulated considering e.g. a phase-out of individual electric space
heating and an increased use of district heating, as well as changes
in important factors, as e.g. dwelling structure, resident variables,
wood burning habits, and outdoor temperature, on regional level.



A. Kipping, E. Trømborg / Energy and Buildings 118 (2016) 350–369 361

Forecasts on hourly consumption under different scenarios can be
useful for grid design and for evaluating impacts of short-term
demand side management options, as e.g. substituting electric
heating during periods of peak consumption.
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Appendix A. Questionnaire items

Table A.4
Questionnaire items 1–8.

Question Answers

1. Number of residents per age
group

5 years or younger
6–15 years
16–25 years
26–45 years
46–65 years
66 years or older

2. Number of residents per
time spent at home

Only on weekends
Less than 12 hours per day
12–20 hours per day
More than 20 hours per day

3.  Are the residents owners or
tenants

Owners
Shareholders
Tenants
Others, please specify: free text

4.  Dwelling type

Detached house
Detached house + secondary suite
Semi-detached h., horiz. separated
Semi-detached h., vertic. separated
Four-family house
House in rows
Terraced house
Cabin
Other house

5. Year of construction

Before 1900
1900–1924
1925–1949
1950–1959
1960–1969
1970–1979
1980–1989
1990–1999
2000–2009
2010 or later

6.  Dwelling floor space
Gross floor space:
Primary floor space:
Heated floor space:

7. Has the dwelling been extended? Yes/no

7a. If yes, when has the dwelling been
extended?

free text

8.  Which materials does the
dwelling mainly consist of?

Wood
Concrete, LECA
Bricks
Glass
Other, specify: free text

Table A.5
Questionnaire items 9–14.

Question Answers

9. Has the dwelling been
rehabilitated?

Yes/no

9a. If yes, which measures have
been undertaken?

Insulation (large parts of walls,
floor, roof)
New heating equipment
New hot water tank
New windows/outside doors
Other, specify: free text

9b.  If yes, when have the
measures been undertaken?

Before 1900
1900–1924
1925–1949
1950–1959
1960–1969
1970–1979
1980–1989
1990–1999
2000–2009
2010 or later

10.  Is the dwelling inhabited all
year?

All year
Partly during summer and winter
Partly, mainly during summer
(May–Oct)
Partly, mainly during winter
(Nov–Apr)

11. Has the dwelling been
empty during the last years?

Yes/no

12. Does the dwelling have a
central heating system?

No
Yes, district heat
Yes, oil or gas boiler
Yes, electric boiler
Yes, pellets/biomass boiler
Yes, ventilation system
Yes, other, specify: free text

12a.  If yes, does the heating
system supply several
dwellings or housing units?

Yes/no

13. Which space heating
equipment is used in the
dwelling?

Radiators, convectors, floor heat
(hot water supplied)
Oil, gas, paraffine stoves
Wood stoves
Air-to-air heat pumps
Other heat pump
Other, specify: free text

14.  What kind of domestic
water heater is installed in the
dwelling?

Own tank, electrically heated
Own tank, centrally heated
Shared tank, electrically heated
Shared tank, centrally heated
Other, specify: free text
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Table A.6
Questionnaire items 15–28.

Question Answers

15. What is the average indoor temperature in the
dwelling during the heating period?

<18 ◦C
18–19 ◦C
20–21 ◦C
22–23 ◦C
24–25 ◦C
>25 ◦C
Don’t know

16.  Are there thermostats connected to heating equipment
(radiators, electric heaters,ldots)?

No
Yes, in some rooms
Yes, in all or almost all rooms

17.  Is night-setback or time-control implemented with the
heating equipment?

No
Yes, in some rooms
Yes, in all or almost all rooms

18.  Is there a central control system for heating and lighting installed in the dwelling? Yes/no

19.  Is wood burning used in the dwelling

No (no wood burning)
Yes, for coziness (wood burning only for coziness)
Yes, when it is not warm enough (supplementary wood burning)
Yes, during the entire heating period (mainly wood burning)

20.  How much firewood is on average consumed during
the wood burning period?

litres
60-litres bags
cubic meters
fathoms

21.  What white goods are used in the dwelling

Washing machine
Clothes dryer
Dishwasher
Fridge
Freezer
Oven
Micro-wave oven
Other, specify: free text

22.  Are there other electricity-intensive appliances
connected to the electricity meter?

Heated pool
Solarium, sauna
Greenhouse with heating or lighting
Cold storage room, freezer room
Heat pump used for cooling
Outdoor floor heating
Water bed
Other electricity-intensive appliances, specify: free text

23.  Are there electric vehicles charged at the dwellings
connection?

No
Yes, one electric vehicle
Yes, more than one electric vehicle

24.  Compared to other households you know, how do you
rate your own household?

We use less energy
Average
We  use more energy

25.  What could motivate you to make your home more
energy-efficient?

Higher electricity/energy prices
Financial support
Practical support or counseling
Better technical solutions
If it was easier to find craftsmen
Other

26.  Compared to other households you know, how warm is
it  in your house during winter?

Colder
Average
Warmer

27. What is your main motivation for saving energy?

Environment, climate, sustainable energy consumption
Saving money
I am not very motivated
Other

28.  Comments free text
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Modeling hourly consumption of electricity and district heat in non-residential
buildings
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Abstract

Models for hourly consumption of heat and electricity in different consumer groups on a regional level can yield

important data for energy system planning and management. In this study we use hourly meter data combined with

cross-sectional data from the Norwegian energy label database to model hourly consumption of both district heat and

electrical energy in office buildings and schools using either electric or district heating. We compare modeled total

energy consumption as well as modeled energy consumption for space heating and other purposes in buildings with

electric heating with corresponding model results for buildings with district heating. Our results show that modeled

hourly total consumption in comparable buildings with electric heating and district heating is generally similar in

shape, but that office buildings using district heating consume more energy in the morning and less during mid-day,

compared to corresponding buildings with electric heating. The results indicate further, that schools using district heat

tend to use less indoor temperature reduction during nighttime, weekends, and school holidays, compared to schools

with electric heating. Although based on small samples our regression results indicate that the presented method could

be used for forecasting regional hourly energy consumption, but also that larger samples and additional cross-sectional

information could yield improved models and more reliable results.

Keywords: energy systems, smart meter data, hourly electricity consumption, district heat, panel data

1. Introduction

1.1. Background

In the light of ambitious goals for reducing climate gas emissions and energy consumption the integration of variable

renewable energy carriers (VRE) into the energy system has become a major focus in energy research. Norway is

not a member of the European Union (EU), but plays an important role in the European energy system and joins the

EU-goals regarding greenhouse gas emissions [1]. While the EU wants to cover 20 % of total energy consumption by

∗Corresponding author. Tel.: +47 64 96 58 03; fax.: +47 64 96 50 01; Email address: anna.kipping@nmbu.no
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renewable energy sources in 2020 [2] Norway aims at a share of 67.5 % [3], which was met for the first time in 2014

[4]. The use of heating oil and paraffin for heating purposes in Norway is planned to be phased out by 2020 [5].

The service sector accounted for 21 % of Norway’s total energy consumption and 24 % of the country’s electricity

consumption in 2013 [6] (Fig. 1)1. Total energy consumption in Norway’s service sector has been increasing from

25.5 TWh/a in 1990 to 34 TWh/a in 2013, and constantly about 80 % have been covered by electrical energy [7]

(Figure 2). Comparably low energy consumption in 2014 can be explained by a mild winter, while relatively high

consumption in 2010 can be explained by an unusually cold winter, i.e. a higher energy consumption for space

heating. The contribution of district heat to total energy consumption in the service sector was negligible until the late

1990s, when it started to increase slowly but steadily. From 1997 to 2014 the share of district heat increased from 3 %

to 10 %, while the common share of heating oil, paraffin, and other fossil fuels decreased from 19 % to 12 % during

the same period [7].

Fig. 1: Energy consumption per
sector, Norway, 2013 [6]

Fig. 2: Energy consumption in the service sector, per energy carrier,
Norway, 1990–2014 [7]

With the phase-out of oil boilers, district heat and electrical energy will probably be the two most important energy

carriers in the Norwegian service sector in the next decades. District heating networks are to date mainly established

in larger cities, e.g. in Oslo, Trondheim, and Bergen. In 2014, total district heat production in Norway was about

5 TWh, of which about 1.5 TWh were produced in Oslo. 56 % of district heat production in Oslo came from garbage

combustion plants and 27 % from flexibly operating electric boilers [8].

1.2. Energy system flexibility

While in conventional energy systems production usually follows demand, increasing production shares from VRE

require more flexibility and storage capacity in modern energy systems. According to Lund et al. [9] combining heat

and power systems is a major step to forward the integration of VRE. Lund et al. [10] describe modern district heating

systems supplied by different independent heat sources, including large scale heat pumps and electric boilers that can

1In this section total energy and electricity consumption excludes consumption in transport sector and energy industries
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transform excess energy supplied by VRE into thermal energy. During summer periods with a high supply with solar

thermal energy large scale sorption chillers could contribute to cover the space cooling energy demand.

Demand side flexibility is another important component of modern, smart energy systems. In many European coun-

tries, including Norway, the roll-out of smart meters has started. While in Norway smart meters to date are merely

used to deliver meter data to the system operators, the devices are intended to be utilized for implementing demand

side management options such as direct or indirect load control in the future. In combination with competitive storage

technologies for heat and electricity demand side management measures, e.g. fuel substitution and load management,

can help synchronizing energy supply and demand in modern energy systems.

1.3. Building stock within the Norwegian service sector

The total number of buildings within the service sector in Norway has been steadily increasing from about 123,000

in 2001 to about 140,000 in 2016 [11]. Buildings within education and culture (including schools, universities,

museums, churches, etc.) represented the largest group that also exhibited the strongest growth during the past 15

years. The next largest group are office and commercial (e.g. stores or shopping centers) buildings, which did not

exhibit a considerable growth. The corresponding shares of different building categories in Norway and Oslo in 2016

are shown in Figure 3. In Oslo, there were about 6,700 buildings within the service sector in the beginning of 2016,

which is about 5 % of the national figures [11]. Compared to whole Norway, the share of buildings within education

in Oslo is about twice as high, and the share of office buildings is even three times as high. Correspondingly, the

shares of cultural, commercial, as well as hotel and restaurant buildings is lower. Since office buildings and buildings

connected to education (i.e. schools, kindergartens, universities) represent more than 50 % of buildings within the

service sector in Oslo, we assume that a significant share of energy consumption within the service sector in Oslo

is consumed in these building categories2, and that corresponding energy consumption models would be useful for

energy system analysis, planning, and management.

1.4. Previous work

Milder winters, stricter energy standards in building codes, and retro-fitting of existing buildings are assumed to lead

to reduced heat demand in buildings in the future. Several studies discuss the effects of reduced heat demand and

lower temperature levels in district heating systems [12–17]. A number of studies have used hourly meter data to es-

tablish models or profiles for heat or electricity consumption in buildings [18–24]. Iyer et al. [25] describe a method

for disaggregating hourly energy consumption in supermarkets into a weather-dependent and a weather-independent

component, based on hourly meter data of 94 stores from a supermarket chain. Besides weather data, design loads for

each store are used as input data to the model. Birt et al. [26] disaggregate hourly electricity consumption of Cana-

dian dwellings into base load and activity load, based on samples with hourly and minutely whole-house electricity

2Offical figures on energy consumption per building category and region are unfortunately not available.
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Fig. 3: Share of building categories in Norway and Oslo, 2016 [11]

consumption data and a sample with minutely sub-meter data of heating and cooling equipment. In our previous work

[27, 28] we use smart meter data combined with survey response and weather data to investigate the impacts of differ-

ent variables on hourly electricity consumption in Norwegian households by applying multiple regression. Moreover,

we disaggregate total modeled hourly consumption into two components, representing temperature-independent and

temperature-dependent consumption. The Norwegian Water Resources and Energy Directorate (NVE) recently pub-

lished a report [29] about annual energy consumption in Norwegian non-residential buildings where representative

distributions of energy consumption for different purposes, such as lighting, space heating, domestic water heating,

space cooling, electric appliances, are calculated. For each building category electricity sub-meters were installed in

five buildings, and based on the corresponding meter data average shares of total energy consumption for each purpose

were calculated.

1.5. Objectives

While smart metering yields huge amounts of highly resolved consumption meter data the obligatory energy labeling

of buildings yields large databases of cross-sectional consumer specific information. Both data sources imply a large

potential for data mining and data analysis, and may be utilized to develop energy consumption models. Consump-

tion models with high temporal resolution are crucial in evaluating and implementing flexibility measures and help

ensuring system stability and efficient operation. Models that can be used for forecasting hourly heat and electricity

consumption with respect to different time horizons and scenarios, taking into account changes in important factors,

such as outdoor temperature and building stock characteristics, can provide estimates for electric or thermal loads

which are crucial for designing power lines or district heating networks.

The overall objective of this study is to model hourly consumption of district heat and electrical energy in Norwegian

buildings within the service sector. We combine information provided by the Norwegian energy label database with
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hourly meter data of a sample of about 50 schools and office buildings located in Oslo. By modeling hourly consump-

tion of both heat and electrical energy in buildings with and without electric heating we can determine differences in

total hourly energy consumption, and our results can help evaluating the effects of substituting electric space heating

by district heating. The method presented in this paper describes how an existing cross-sectional dataset, containing

building stock information, combined with a sample of highly resolved meter data can be used to model consumption

of heat and electricity on a regional level. The models can be used for scenario-based forecasts that take into account

changes in building stock, heating methods, and outdoor temperature and thus help to design future energy systems.

2. Data

2.1. The Norwegian energy label database

Since July 1st 2010 an EU directive has regulated energy labeling also in Norway [30]. Energy labels rate specific

annual energy demand, while heating labels indicate to what extent heating energy demand can be covered by other

energy sources than fossil fuels or electrical energy. Energy and heating labels are mandatory for all residential and

non-residential buildings3 that are either newly built or to be sold or rented, as well as for all non-residential buildings

larger than 1.000 m2. In order to assign energy label characters delivered energy – a theoretical value calculated

according to the Norwegian code NS 30314 – is used to calculate specific energy consumption, requiring a number of

building-specific variables, as e.g. floor space, building category and type, year of construction, construction material,

and location. However, not all variables are available and reported for all buildings in the database. By January 2016

the energy label dataset contained about 3,100 non-residential consumers that were located on about 1,700 different

plots in Oslo. One plot may include several buildings, and one building may include several consumers, as many

non-residential buildings are used by different consumer groups, e.g. a shop on the first floor and offices on the above

floors. Thus, different parts of a building can be included separately in the database. Office buildings account for

40% of included consumers, while commercial buildings and buildings within education represent 18 % and 17 %

respectively. The most common heating methods among the non-residential buildings located in Oslo and included in

the data base were direct electric heating (used in 63 % of buildings), district heating (39 %), and oil boilers (13 %),

which are often used in various combinations. Heat pumps are used in 8 % of included buildings, and are most

common in kindergartens and schools.

2.2. Panel data

In this study we combine cross-sectional data from the Norwegian energy label data base with hourly meter data (time

series). Meter data is provided by Hafslund Nett AS (electricity) and Hafslund Varme AS (district heat) and spans

3larger than 50 m2

4NS 3031:2007 Beregninger av bygningers energiytelse, Metode og data
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a period from 1 January 2013 to 29 February 2016. Especially schools often consist of several buildings located on

a common plot, e.g. a sports hall and a main building. In the following, the expressions office building and school

building (or simply school) refer to plots with only office or only school buildings, but not necessarily to only one

single building. In other words, we treat all consumers located on a common plot as one consumer.

Meter data and cross-sectional data are merged by the plot ID. As mentioned above, one plot might include several

buildings, which in turn can include several consumers as defined in the energy label data base. Moreover, several

electricity meters might be located on one plot, while there is only one meter for district heat consumption per plot.

In order to link the data sets correctly, we aggregate both meter data and cross-sectional data that is assigned to each

plot. Aggregate electricity meter data is the sum of hourly meter data recorded by all electricity meters installed on

one plot, while aggregate cross-sectional data represents summarized floor space and average age of all buildings on

the plot. In case different consumer types are located on one plot (e.g. offices, shops, and storages), mixed building

types occur. For example, an office and a storage building located on one plot yield a mixed building type, and we

cannot assign data from the individual electricity meters to neither the office nor the storage building. Since we focus

on more or less pure office buildings and schools the number of useful observations in each subset is relatively low.

Although the time series spans a period of approximately three years, not all consumers include useful meter data

throughout the whole metering period (e.g. due to metering failures, late installation of the meter, or due to periods

during which the building has not been in use), which further reduces the number of useful observations.

Electricity and district heat meter data are combined with the aggregate cross-sectional data using the plot ID, and

further combined with outdoor temperature data recorded at Oslo Blindern weather station [31] and some calendric

information (e.g. weekday, month, school holidays), resulting in separate panel data sets containing electricity (EL)

and district heat (DH) meter data. We further divide the EL-set into two sets, according to whether electric heating

is used or not. The dataset describing buildings using electric heating is called EL-EL, while observations with non-

electric heating form dataset EL-NEL. Thus we get three panel data sets (DH, EL-EL, EL-NEL) which are further

divided according to building category. In this study, we only focus on office and school buildings, so that we end up

with six subsets.

Number of observations and mean floor space in each subset is shown in Table 1. Buildings consuming district

heat also consume electrical energy and can in theory be included both in dataset DH as well as in dataset EL-NEL.

Dataset EL-NEL includes buildings with non-electric heating in general, i.e. also buildings with e.g. central oil

or pellets boilers. In this study we treat both datasets as independent from each other. The DH set includes most

observations, and average floor space of office buildings and schools is in the same range (around 6,500 m2). Datasets

EL-EL and EL-NEL consist of comparably few observations and mean floor space in offices is about 2,000 m2 higher

than in schools. On average, both office buildings and schools with electric heating (EL-EL) exhibit larger floor space

than corresponding buildings with non-electric heating.
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Tab. 1: Number of observations and average floor space for each building category and energy carrier

district heat electricity, non-el. heating electricity, el. heating
DH EL-NEL EL-EL

offices schools offices schools offices schools
observations 33 15 23 10 10 7

mean floor space [m2] 6,390 6,750 7,260 5,435 9,310 7,100

Frequencies of different years (decades) of construction in the different samples are shown in Figure 4. Most office

and school buildings with district heating (DH) have been built before 1941. Most offices with electric heating

(EL-EL) have been built after 1960, and office observations within non-electric heating (EL-NEL) are relatively

evenly distributed over the different age groups. In our subsequent analyses concerning district heat consumption,

we distinguish between ”old” and ”new” buildings, indicated by the dashed lines in Fig. 4. Old office buildings are

arbitrarily defined as being from before 1961, whereas old schools are defined as being from before 1941.

(a) Year of construction, offices (b) Year of construction, schools

Fig. 4: Frequency of different years of construction

2.3. Correlation between daily energy consumption and outdoor temperature

Average daily consumption of district heat and electricity as a function of daily mean outdoor temperature is shown in

Figure 5. Since district heat is mainly used for space heating there is a strong negative correlation between the daily

mean values of district heat consumption (DH) and mean outdoor temperatures below approximately 14◦C (threshold

or base temperature) in office buildings (Fig. 5a) and schools (Fig. 5b). Average daily electricity consumption in offices

and schools with electric heating (EL-EL) is also negatively correlated with daily mean outdoor temperature, however,

the average base temperature for schools is around 17◦C. Moreover, electricity consumption (EL-EL and EL-NEL) on

workdays in office buildings exhibit a slight positive slope at mean temperatures above approximately 14◦C, indicating

space cooling. At outdoor temperatures below about 5◦C average daily electricity consumption in NEL-schools is on

an approximately constant level, but slightly decreasing at higher mean temperatures. This might be explained by

direct electric heating that is used to partly cover the heating demand at moderate outdoor temperatures. Since both in

schools with and without electric heating there is no positive correlation between average electricity consumption and
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outdoor temperature, the average school in our sample does not use space cooling. Average electricity consumption

on non-workdays (non-schooldays) is lower than on workdays (schooldays) and temperature-dependent consumption

(DH, EL-EL) is less increasing with falling outdoor temperatures.

(a) Office buildings (b) School buildings

Fig. 5: Average daily consumption of district heat and electricity as a function of mean outdoor temperature

2.4. Average hourly consumption of electricity and district heat

Average hourly consumption of electricity and district heat on workdays (offices) and schooldays (schools) are shown

in Figure 6. Since there are no school days in July, this month is missing in the corresponding figures. District heat

consumption exhibits strong seasonal variations, resulting in highest average consumption in January, when outdoor

temperatures are lowest, and lowest average consumption during summer, when outdoor temperatures are highest,

and district heat is mainly consumed for water heating purposes. During the winter months average DH consumption

exhibits a small peak in hour 8 and decreases over the course of the day. In offices (Fig. 6a) the decrease becomes

stronger after hour 16, while consumption in schools (Fig. 6b) first decreases more sharply after hour 20. From March

to October average DH consumption in schools exhibits a slight trough during afternoon, and a slight increase during

evening, which indicates that the buildings are used for other purposes after the actual school day. We have to date

no explanation for the kink at hour 22. Since the kink occurs in several buildings, and both in office buildings and

schools, it might be caused by some automatised routines, e.g. revision processes in the HVAC system that imply an

interruption in district heat consumption for several minutes.

Average hourly electricity consumption in buildings with electric space heating (EL-EL) also varies strongly from

month to month, however, while in school buildings (Fig. 6d) average consumption during summer is clearly lowest,

there are smaller differences between spring, summer, and fall in office buildings (Fig. 6c). Increased average con-
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sumption during afternoon hours in the summer months June through September indicates electricity consumption

for space cooling in offices. In schools with electric heating, average electricity consumption in the evening does not

decrease as continuously as in office buildings, but exhibits a bump, indicating that the buildings might be used for

other purposes after the actual school day.

Average hourly consumption of electrical energy in office buildings with non-electric heating (EL-NEL) (Fig. 6e)

varies only little from month to month. Average hourly consumption is highest in June and August, and increasing

consumption in the afternoon again indicates space cooling. Since July is in the middle of the Norwegian summer

holidays, average consumption in this month is lower than in August or June. In schools with non-electric heating

(Fig. 6f), there are much higher differences in average hourly consumption from month to month, which indicates that

some electrical energy is used for space heating.

9



(a) District heat, offices (b) District heat, schools

(c) Electricity, electric heating, offices (d) Electricity, electric heating, schools

(e) Electricity, non-electric heating, offices (f) Electricity, non-electric heating, schools

Fig. 6: Average hourly consumption of district heat and electricity grouped after month, only workdays/schooldays
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3. Methods

3.1. Heating degree days and cooling degree days

Base temperature tb indicates at which value of daily mean outdoor temperature a building consumes energy for space

heating purposes. Base temperatures might vary across consumers and consumer groups, and can change from year

to year, largely depending on how the heating system is controlled. Heating degree days HDD are defined as the

sum of positive differences between tb and daily mean outdoor temperature t̄o,d during a certain period, e.g. one

year. Usually a base temperature of tb = 17◦C is chosen to define HDD in Norway, which is most appropriate for the

existing residential building stock. Due to higher internal heat gains, e.g. caused by electric appliances and lighting,

and lower indoor temperatures, tb in office buildings might be lower, as indicated by Fig. 5a. For EL-EL consumption

in office buildings and DH consumption in both office buildings and schools tb = 14◦C could roughly serve as an

average base temperature for our samples. Based on visual judgement tb = 17◦C seems be most appropriate for

describing temperature-dependent EL-EL consumption in schools in our sample (Fig. 5b). However, for simplicity,

we use common base temperatures for office buildings and schools, and thus treat EL-EL consumption at outdoor

temperatures between 14◦C and ”true” base temperature as temperature-independent.

In order to model the linear relationship of cooling energy consumption and outdoor temperature cooling degree day

CDD is defined as the difference between daily mean outdoor temperature t̄o,d and 14◦C. The calculation of heating

and cooling degree days as well as the first differences variable HDD1st is explained in Appendix A.

3.2. Modeling hourly consumption of district heat and electrical energy

The method we apply is documented in detail in our previous work [28] and we only explain the most important

differences in this subsection.

Combining time series (meter data) and cross sectional data (survey response) results in a large panel data set. For

each observation (ID) a time series of hourly electricity meter values (DH1, DH2, ..., DH24 for district heat, EL1,

EL2, ..., EL24 for electricity) as well as building floor space and building age as cross sectional data are available.

Temperature data (HDD, CDD, ...) as well as day-type information (weekday, holiday, month, ...) for each day are

constant across observations, since all buildings are located in the same region (Oslo). For each hour of the day a

separate model (pooled OLS) is estimated, resulting in a set of 24 hourly models.5 The hourly model set is determined

by the formula for ordinary least squares regression (Equation 1) where Ei,h represents hourly electricity consumption

of hour h and observation i.

Eh=1,...,24,i = β0,h +
k

∑
k=1

βk,h · xk,i + εh,i (1)

5We use the plm-package [32] in R.
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We estimate models for hourly district heat and hourly electricity consumption based on the six datasets described in

the data section. All six models are set up according to Equation 1 but the explanatory variables xk,i differ.

Floor space is the only cross sectional variable included in all six models. Due to the comparably low number of ob-

servations building age is only considered in the district heat models for office and school buildings. A corresponding

dummy variable indicates whether a building was built before 1961 (office buildings) or before 1941 (schools). Heat-

ing degree days (HDD, HDD1st) are included in all models except for the NEL-model in office buildings. Cooling

degree days CDD are only included in the EL- and NEL-models for offices. The remaining explanatory variables

represent calendric information: free indicates a non-working day, school holidays indicates whether a workday lies

within school holidays, and month represents the current month.

Modeled DH and EL-EL consumption is broken down into a HDD-independent and a HDD-dependent component6.

The HDD-dependent component is the the sum of all elements containing HDD or HDD1st and can be interpreted as

space heating consumption. The HDD-independent part is the sum of all remaining elements and can be interpreted as

consumption for electric appliances including electrically heated hot water tanks and space cooling equipment (basic

consumption).

Tab. 2: Explanatory variables, offices

description type reference group DH NEL EL

floor space continuous - yes yes yes
free=TRUE dummy free=FALSE yes yes yes
heating degree day HDD continuous - yes no yes
1st differences HDD1st continuous - yes no yes
month = 2, ..., 12 dummy month=1 (January) yes yes no
floor space · month = 2, ..., 12 dummy month=1 (January) no no yes
floor space · free=TRUE dummy free=FALSE no yes yes
floor space · school holidays=TRUE & free=FALSE dummy school holiday=FALSE no yes yes
HDD · floor space continuous - yes no yes
HDD · floor space · age="’≤1960"’ continuous age="’>1960"’ yes no no
HDD · floor space · free=TRUE continuous free=FALSE yes no yes
CDD · floor space continuous - no yes yes
CDD · floor space · free=TRUE continuous free=FALSE no yes yes

Tab. 3: Explanatory variables, schools

description type reference group DH NEL EL

floor space continuous - yes yes yes
free=TRUE dummy free=FALSE yes yes yes
heating degree day HDD continuous - yes no yes
1st differences HDD1st continuous - yes no yes
month = 2, ..., 12 dummy month=1 (January) yes yes no
floor space · month = 2, ..., 12 dummy month=1 (January) no no yes
floor space · free=TRUE dummy free=FALSE no yes no
floor space · school holidays=TRUE & free=FALSE dummy school holiday=FALSE no yes yes
HDD · floor space continuous - yes no yes
HDD · floor space · age="’≤1940"’ continuous age="’>1940"’ yes no no
HDD · floor space · free=TRUE continuous free=FALSE yes no yes
HDD · floor space · school holidays=TRUE & free=FALSE continuous school holidays=FALSE yes no yes

6See [28] for a detailed description of the decomposition method.
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4. Results and discussion

4.1. General regression results

Adjusted coefficients of determination R2 for the hourly regression models are in the range of 0.70–0.86 for EL and

0.58–0.74 for DH. The NEL-model for office buildings achieves R2=0.77–0.84, while the NEL-model for schools

exhibits values ranging between 0.37 during late evening and 0.79 in hour 11. Comparably high coefficients of de-

termination for EL-EL-models can be explained by the strong correlation between hourly energy consumption and

HDD. Floor space and heating degree day explain the majority of explained variance in both EL-EL- and DH-models.

Lower R2 for DH-models can partly be explained by larger samples with more diverse hourly and seasonal consump-

tion patterns. Electricity consumption in NEL-buildings is modeled as HDD-independent, so only floor space and

calendric variables are included, which explains the lower R2 in NEL-schools. Moreover, average NEL-consumption

in schools (see Figure 5b) indicates that some electric heating equipment is used at moderate temperatures during the

heating period, but including HDD as defined in Appendix A might not be sufficient. In order to achieve a more accu-

rate model, a HDD variable could be defined that is constant below a lower outdoor temperature limit and zero above

an upper limit. However, due to the small sample size it is uncertain whether this behaviour is typical for schools with

non-electric heating, and therefore keep the model in its simple version.

Although the sample size in our six different datasets is comparably low and there is some uncertainty connected to

the cross-sectional information in the panel data, our regression results seem feasible. However, a number of other

variables that were not included in our dataset are likely to have an impact on energy consumption (e.g. number and

electric and thermal loads of electric appliances, U-values of building components facing the outside environment,

indoor temperatures, space cooling and air conditioning equipment), and might represent omitted variables. Year of

construction is often used as a proxy for the building’s insulation and tightness standard, however, due to the small

number of observations we include building age only in our DH-models, and only in a very simplified way, by distin-

guishing between old and new buildings.

In order to illustrate some general differences in modeled energy consumption in buildings with electric (EL) and

district heating (NEL+DH), correspondingly, we compare modeled energy consumption per day as a function of floor

space considering three different cases: a) A September day with 14◦C outdoor temperature, so that both HDD=0 and

CDD=0, b) a January day with HDD=10, and c) a January day with HDD=25. The corresponding regression lines are

shown in Fig. 7. In all three cases the intercept in EL-buildings is smaller than in NEL+DH-buildings, while the slope

is larger. Thus the corresponding regression lines exhibit an intersection at positive floor space values. This implies

that for all floor spaces smaller than the intersection modeled consumption in a building with district heating would

be larger, while for all floor spaces larger than the intersection, modeled consumption would be smaller than in a

building with electric heating. Moreover, the intersection-floor space increases with HDD. Considering HDD ranges

between 0 and 25, for smaller buildings (< 5000 m2 for offices, < 4000 m2 for schools) modeled total consumption in
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case of EL+DH will always be higher than in case of EL, while for larger buildings (> 12000 m2 for offices, > 600 m2

for schools) modeled EL-consumption will always be larger than modeled NEL+DH consumption.

(a) Office building (DH: > 1960) (b) School building (DH: > 1940)

Fig. 7: Modeled energy consumption per day as a function of floor space, EL and NEL+DH

Our regression models are based on only few observations per subset, and only some single observations represent

very small or very large buildings, so that parameter estimates are relatively uncertain. Moreover, the relationship

between energy consumption and floor space might not be perfectly linear so that the regression model might not

exhibit an appropriate functional form. However, higher energy consumption per square meter floor space in case

of district heating in smaller buildings, and lower specific consumption in larger buildings – compared to buildings

with electric heating – could be explained by larger heat losses in the central heating system referring to building size,

which might decrease with increasing building size. Larger samples with a better distribution of different building

sizes could yield more reliable estimates and allow a more detailed discussion of this behaviour.

Although we briefly compare modeled total consumption in buildings with electric and district heating in the follow-

ing, we focus on describing differences in the shape of diurnal profiles and seasonal variations.

4.2. Comparison of hourly energy consumption in buildings with electric heating and district heating

In order to compare the shape of total hourly energy consumption in buildings with electric and district heating,

modeled hourly consumption of district heat and electrical energy in case of district heating is stacked (NEL+DH)

and compared with modeled hourly consumption of electrical energy in case of electric heating (EL).

Modeled hourly energy consumption in a building with 6,000 m2 floor space for six different months and outdoor

conditions is shown in Figures 8 (office building) and 9 (school). Modeled total energy consumption in buildings

using district heat is the upper limit of the stacked blue and orange areas, depicting modeled consumption of electrical

energy and district heat, respectively. The solid black line shows modeled electricity consumption in buildings with

electric heating (EL-EL TOTAL), which equals total energy consumption assuming that no other energy carriers are

used. The dashed black line represents modeled basic consumption (EL-EL BASIC).
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4.2.1. Office building

In all six cases, during the main office hours 8–17, EL-EL-TOTAL exceeds modeled total energy consumption in a

corresponding NEL+DH building, and the difference becomes smaller with increasing HDD (Fig. 8). Especially cases

January, March, and November indicate that space heating in a NEL+DH office building starts some hours earlier than

in a comparable EL-building, which can be explained by a hot water based central heating system supplied by district

heat usually requiring more time to distribute heat within the building, compared to e.g. electric heaters placed directly

in the corresponding rooms. Modeled basic electricity consumption EL-EL-BASIC in an EL-office building is higher

than modeled NEL-consumption in a corresponding NEL+DH-building, where electricity is assumed not to be used

for space heating. This difference is highest in January and lowest during summer, which can be partly explained by

electricity consumption for domestic water heating which is covered by electricity in EL-buildings and by district heat

in NEL+DH-buildings. Since month is correlated with daily mean outdoor temperature, and the corresponding model

component is assiged to basic consumption, modeled EL-EL-BASIC consumption is might contain some electricity

consumption for space heating purposes.

(a) January, t̄o,d=-4◦C, HDD=18 (b) March, t̄o,d=+1◦C, HDD=13 (c) May, t̄o,d=+11◦C, HDD=3

(d) July, t̄o,d=+19◦C, CDD=5 (e) September, t̄o,d=+12◦C, HDD=2 (f) November, t̄o,d=+3◦C, HDD=11

Fig. 8: Modeled hourly consumption of district heat and electricity, office building, 6,000 m2, (DH: > 1960), workday

4.2.2. School building

During the main school hours modeled total energy consumption in an EL-school is higher than in a comparable

NEL+DH-school, however, the difference vanishes during summer and increases with HDD (Fig. 9). From about
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hour 17 to hour 7 during the heating period modeled total consumption in a NEL+DH-school exceeds modeled total

consumption in an equally large EL-school. A possible explanation for this result might be that schools using district

heat implement less night-setback, i.e. do not lower the indoor temperature set-point during night-time (i.e. outside

the school hours) as much as schools with electric heating do. Thus, more heat is consumed during night-time and

less re-heating energy is needed during the day. Schools with electric heating might let the indoor temperature drop

to a lower set-point, and thus need less energy during night-time and more re-heating energy during day-time. As in

a comparable office building modeled basic electricity consumption in a school with electric heating is higher than

modeled NEL-consumption in a NEL+DH-school. The difference is approximately zero in the July case and increases

with HDD. Again, this might be explained by electricity consumption for tap water heating as well as by temperature-

independent electricity consumption for space heating purposes being included in modeled basic consumption.

(a) January, t̄o,d=-4◦C, HDD=18 (b) March, t̄o,d=+1◦C, HDD=13 (c) May, t̄o,d=+11◦C, HDD=3

(d) July, t̄o,d=+19◦C, CDD=5 (e) September, t̄o,d=+12◦C, HDD=2 (f) November, t̄o,d=+3◦C, HDD=11

Fig. 9: Modeled hourly consumption of district heat and electricity, school, 6,000 m2, (DH: > 1940), school day

4.3. Daily energy consumption

To a certain extent differences in hourly energy consumption, e.g. caused by different set-point temperatures, night-

setback, and reheating periods, are leveled out by aggregating hourly consumption over time. In the following, we

compare modeled daily energy consumption of heat and electricity in an office building and a school with electric and

district heating, correspondingly, over the course of one year (2012, Fig. 10). With a chosen floor space of 6,000 m2

modeled daily energy consumption on workdays in an office building with electric heating is higher than modeled

consumption in case of district heating during summer, but slightly lower during the coldest days (Fig. 10a). Modeled
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consumption on non-workdays, indicated e.g. by the troughs in the end of each week, is approximately equal most of

the year.

Modeled consumption in a school with electric heating is slightly lower than in a school with district heating, both on

school days as well as during holiday periods (see Easter and Christmas holidays in April and December, respectively)

and weekends during the heating period (Fig. 10b). This indicates that on average not only night-setback but also a

temperature set-back on non-school days is less common in schools using district heat, or that schools with district

heating are more often used for other purposes during weekends and holidays (e.g. the sports hall).

Outside the heating period, consumption in case of electric and district heating is approximately equal, however with

a slightly higher consumption in NEL+DH-schools during summer holidays.

Irrespective from heating systems, during summer modeled total consumption in an office building is higher than in an

equally large school, which can be explained by the summer holidays, and by the fact that usually space cooling takes

place in office buildings, but not in schools. During the rest of the year, however, modeled total energy consumption in

a school is higher than in an office building, which can be mainly explained by a higher heating energy consumption.

In our samples schools are on average older than office buildings, which is not sufficiently accounted for in the models.

Moreover, in schools indoor temperatures might be higher and there might be less internal heat gains caused by electric

appliances, compared to office buildings.

4.4. Energy consumption shares in a normal year

Relative energy consumption for heating and other purposes in both building categories over the course of a normal

year7 is shown in Fig. 11. Since energy consumption for heating purposes in buildings with electric heating is not

metered, but only estimated by disaggregating consumption into a HDD-dependent and -independent component,

energy consumption shares in buildings with electric heating and district heating cannot be directly compared. In

case of electric heating domestic water heating is mainly included in modeled basic consumption (dark-grey bars),

since it is assumed not to be correlated with outdoor temperature. In case of district heating energy consumption for

domestic water heating is assumed to be included in district heat consumption. According to our results about 39 %

of total energy consumption in an office building (Fig. 11a) with district heating are spent for space and water heating,

which is approximately in accordance with the report from NVE [30], reporting 36 % – 31 % for space heating and

5 % for water heating – in a representative office building. The share of modeled space heating consumption in a

corresponding building with electric heating is 27 % which is slightly lower than figures reported by NVE (31 %).

For a school building (Fig. 11b) our model results yield 62 % district heat consumption, which meets NVE’s results

(59 % space heating + 3 % water heating) very well. However, modeled space heating consumption in schools with

electric heating is only 42 % and thus considerably lower than the representative share of 59 % [30]. Since the sample

7We calculate HDD and CDD based on the normal daily mean temperatures in Oslo for the normal period 1961-1990. Normal temperatures are
provided by [31]
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(a) Office building (DH: > 1960)

(b) School (DH: > 1940)

Fig. 10: Modeled daily energy consumption in office building and school, 6,000 m2, 2012
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size for schools with electric heating is very small (only 7 observations) model results are quite uncertain. Moreover, a

higher temperature-independent consumption in schools with electric heating, which might also include some electric

heaters that e.g. are not switched off during summer, is a possible explanation for the comparably low share of

modeled space heating energy. As indicated by modeled daily consumption for 2012 (Fig. 10b), modeled consumption

in schools with electric heating during weekends and holidays is lower than in schools with district heating, which

might also contribute to the comparably low share of modeled heating energy.

Higher indoor temperatures, less indoor temperature reduction beyond school days, on average older buildings, and

less internal heat gains caused by electric appliances might explain higher modeled heat shares in schools compared

to offices. Correspondingly, higher shares of basic consumption in office buildings can be explained by more electric

appliances and the use of space cooling.

(a) Office building (DH: > 1960) (b) School (DH: > 1940)

Fig. 11: Relative energy consumption in office building and school, 6,000 m2, normal year

5. Model shortcomings and further work

The use of heating and cooling degree days, based on average base temperatures, simplifies the models but also implies

some modeling error. In reality base temperatures vary across consumers, and a linear relationship between energy

consumption and HDD or CDD is only valid within a certain range. Moreover, using the same base temperature to

define HDD and CDD implies that office buildings directly switch from heating to cooling at a daily mean outdoor

temperature of 14◦C, while most buildings probably exhibit some temperature range when neither heating nor cooling

takes place. Moreover, average daily temperatures might not be able to explain temperature-dependent variations in

energy consumption from one hour to the next. In our hourly models we include first differences in heating degree

days (HDD1st) in order to correct for abrupt drops in daily mean temperature from one day to another. Since during

winter hourly variations in outdoor temperature values are relatively small, hourly models for heating energy con-

sumption based on daily mean temperatures seem to yield sufficient results, as indicated by a previous study [28].
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For modeling space cooling demand, however, the use of CDD might imply a larger error. During summer, there are

relatively large temperature differences between day-time and night-time and high maximum temperatures – mostly

occurring during afternoon – are likely to affect space cooling demand during the corresponding and adjacent hours.

Since apparently not all buildings in our sample used space cooling, and due to relatively cool Norwegian summers,

the number of operating hours of space cooling equipment was probably comparatively low during the examined me-

tering period. Although the use of CDD for estimating hourly electricity consumption implies a great simplification,

regression results seem feasible. In the light of expected temperature increases due to climate change, Norway might

face considerably hotter summers in the future so that models for hourly space cooling demand should be improved

accordingly.

Unfeasible data (both meter data and cross-sectional data) and an insufficient method for linking meter data and cross-

sectional data based on plot ID resulted in very small, not necessarily representative samples. If each electricity and

district heat consumer had an individual ID that would be stored both in the customer data as well as in the energy

label database, a much larger sample would be available, allowing much more detailed and reliable analyses. As an

alternative to the energy label database, a brief survey among the included non-residential customers, containing few

questions on floor space, building type, business line, and e.g. heating and cooling equipment, as well as year of con-

struction and rehabilitation measures, would yield valuable information that could be used to improve the presented

models.

A similar sample from another Norwegian region, e.g. Trondheim or Bergen, could be used to test the applicability

of the presented Oslo-based models to other regions. Moreover, while in this study only two building types were ex-

amined, similar studies on other residential and non-residential building types, such as apartment buildings, shopping

centres, stores, hotels, industrial buildings, would enable useful models for Norway’s stationary energy demand.

Our samples include mainly buildings where either direct electric heating or district heating is used, while in reality

electric heating is often used in combination with a non-electric central heating system (district heat, oil boiler). Con-

sumers might e.g. use electric heating to cover the base heating load, and only use the non-electric heating system

to cover the top load during winter. Alternatively, electric heaters might be used to supplement the central heating

system locally. These variations are not considered in our work but would be an interesting subject for further studies.

6. Conclusion

Comparing modeled total hourly energy consumption in buildings with electric heating with modeled consumption

in buildings with district heating indicates that office buildings using district heat start space heating some hours

earlier than buildings with electric heating which can be explained by direct electric heaters distributing heat faster

than hot water based central heating systems. Moreover, the comparison indicates that schools using district heat

use less night-setback and less temperature setback during weekends and school holidays, which can be explained by

school buildings being used for other purposes during these periods, or by less advanced control systems. Although
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the applied method for disaggregating electricity consumption in buildings with electric heating yields only rough

estimates on energy consumption for the two components representing electric appliances and water heating, and

electric space heating, respectively, a comparison of disaggregate energy consumption indicates that similar shares of

annual energy consumption are used for heating purposes in buildings with electric heating and buildings with district

heating. Annual heat shares of modeled total energy consumption in schools are higher than in offices which can be

explained by on average older buildings, higher indoor temperatures, and less internal heat gains caused by electric

appliances. Moreover, as opposed to schools, office buildings included in our samples apparently consumed electrical

energy for space cooling, which contributes to higher shares of modeled energy consumption for electric appliances.

Regression results indicate that the applied method can be used for developing models for hourly consumption of

district heat and electrical energy, but that the samples available in this study might be too small to achieve reliable

results. For smaller buildings modeled consumption in case of district heating exceeds modeled consumption in case

of electric heating, while the opposite is the case for larger buildings. An analysis based on a larger covering a wider

range of building sizes, and possibly including further cross-sectional variables, could show whether this behaviour

is feasible or rather caused by the low number of observations in our data or by the functional form of the regression

model.
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Appendix A. Heating and cooling degree days

Daily mean outdoor temperature t̄o,d of day d is represented by the arithmetic mean value of 24 hourly temperature

values, metered during day d. A heating degree day HDD8 is defined as the positive difference between HDD-base

8For simplicity, index d is dropped in the text and HDD is used without physical unit.
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temperature tb,HDD and daily mean outdoor temperature t̄o,d (Equ. A.1).

HDDd =





tb,HDD − t̄o,d , for t̄o,d < tb,HDD

0, else
(A.1)

The difference in heating degree days between any day d and the day before (d−1) is called first differences in heating

degree days HDD1stin this study (Equ. A.2).

HDD1std = HDDd −HDDd−1 (A.2)

Cooling degree day CDD is calculated as the positive difference between t̄o,d and CDD-base temperature tb,CDD

(Equ. A.3).

CDDd =





t̄o,d − tb,CDD, for t̄o,d > tb,CDD

0, else
(A.3)
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Modeling and forecasting regional hourly electricity consumption in buildings
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Abstract

Sound estimates on future heat and electricity demand with a high temporal and spacial resolution are needed for

energy system planning and management, grid design, and evaluating demand side management options. In this

study we develop regression models for hourly electricity consumption in different consumer categories within the

household and service sector, and disaggregate modeled consumption into an electricity-bound and a space heating

component. In order to validate the developed models we use official building stock statistics as input data and

compare the resulting model output with historical regional aggregate consumption data in both sectors. In the next

step we use existing forecasts on population growth and outdoor temperature to model hourly electricity consumption

in Oslo county in 2040. According to our results and assuming medium population growth net heat consumption will

be approximately on today’s level, meaning a milder winter and building stock renewal outweigh an increase in heated

floor space due to population growth. In contrast, electricity-bound energy consumption increases approximately

according to population growth, which can be explained by strongly simplified assumptions regarding future number

of buildings, dwellings, and average floor space, and by not taking into account changes in use and energy efficiency

of electric appliances. Our results indicate that the presented method can be useful for modeling and forecasting

energy consumption on a regional level, but also that the quality of the model output highly depends on the quality

and availability of both the panel data for developing the models as well as the building stock data used as input data.

Keywords: energy systems, smart meter data, hourly electricity consumption, forecasting, panel data, climate change

1. Introduction

1.1. Background

Energy consumption in Norway has been steadily increasing over the last quarter of the 20th century, and due to the

availability of hydro power electricity has been the most important energy carrier (Fig. 1).1 However, especially elec-

tricity consumption has flattened since the year 2000. Shutting down factories within the energy-intensive industries,

∗Corresponding author. Tel.: +47 64 96 58 03; fax.: +47 64 96 50 01; Email address: anna.kipping@nmbu.no
1Energy and electricity consumption described in this section excludes consumption in transport sector and energy industries.
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higher energy prices, stricter building codes with respect to energy demand, reduced heat demand due to a milder

climate, more energy-efficient electric appliances, and the increased use of heat pumps are possible reasons for this

development. The industrial sector, including energy-intensive branches like aluminium and ferro-alloys production

and wood processing, represents the largest electricity consumer, but its consumption exhibited a significant reduc-

tion in 2009 (Fig. 2), which can be explained by a reduced demand for products like steel and aluminium due to the

international financial crisis [1]. From 1990 to 2008 consumption in household and service sector accounted for about

52–54 % of total electricity consumption, while the share has been 57–59 % since 2009 [2]. Due to comparably low

electricity prices electrical energy is largely used for space and domestic water heating, so that electricity consump-

tion is strongly correlated with outdoor temperature. Thus, the consumption peak in 2010 and the consumption low

in 2014 can be explained by 2010 and 2014 exhibiting unusually cold and warm heating periods.

Fig. 1: Total energy consumption, excl. transport and energy indus-
tries, per energy carrier, Norway, 1976–2014 [3]

Fig. 2: Electricity consumption, excl. transport and
energy industries, per sector, Norway, 1990–2014 [2]

Milder winters, stricter energy standards in building codes, and retro-fitting of existing buildings might contribute to

reduced heat demand in buildings in the future, whereas higher temperatures during summer may lead to increased

cooling energy demand. Moreover, population growth implies a growing residential and non-residential building stock

and thus increased energy consumption for electric appliances as well as space heating and cooling, while increased

energy-efficiency of electric appliances contributes to reduced electricity-bound consumption. Ideally, models that

are used for energy demand forecasting should be able to take into account these factors. Consumption models

with comparably high temporal and spacial resolutions are useful tools in evaluating and implementing demand side

management measures that can forward the integration of renewable energy carriers into the energy system. Moreover,

forecasts on regional hourly energy consumption can provide estimates for electric or thermal loads which are crucial

for designing power lines, district heating networks, or decentralized generators of heat and power.

1.2. Modeling approaches

Typical modeling approaches for energy consumption are top-down and bottom-up models. Top-down models usually

model a country’s aggregate energy consumption directly, mainly based on macroeconomic indicators like popula-
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tion, gross domestic product, or employment rate, and climate variables like outdoor temperature. Bottom-up models

first describe consumption of comparably small consumers or consumer groups, e.g. single households or appliance

groups, and then aggregate consumption. Swan and Ugursal [4] further divide bottom-up models into statistical and

engineering models. Engineering models primarily rely on building physics and technical characteristics of different

end-use appliances, so that in theory energy consumption can be modeled without any historical consumption data.

Engineering models for residential electricity consumption are e.g. described in [5–8]. An advantage of engineering

models is the implementation of changes in consumer behaviour or energy efficiency. However, the models often

require detailed input data. Statistical bottom-up models for energy consumption are developed based on historic con-

sumption data of a sample of representative consumers and additional variables describing the individual consumers.

Common statistical bottom-up modeling techniques are regression and artificial neural networks (ANN). The use of

ANN for modeling and forecasting energy consumption has become increasingly common after the year 2000, see

e.g. [9–14]. An ANN can be trained, i.e. it learns from errors and is thus continuously improved. Artificial neural

networks usually require high developer proficiency as well as comparably powerful computers, and – as opposed to

e.g. regression coefficients – the model coefficients are not easily interpretable with respect to practical implications.

Based on the strong correlation of outdoor temperature and energy consumption for space heating and cooling re-

gression models describing this correlation have been developed, e.g. the Princeton Scorekeeping Method (PRISM).

Fels [15] gives a detailed introduction to PRISM, including comprehensive explanations of the underlying physical

principles and interpretations of temperature-dependent and temperature-independent energy consumption. Seljom et

al. [16] model the changes in annual heating and cooling energy demand in Norway from 2005 to 2050 under differ-

ent outdoor temperature scenarios, using a degree-day approach as well as a more sophisticated bottom-up building

physics model for one of the scenarios. Energy demand for heating is estimated to decrease by 9–17 % depending on

the corresponding scenarios, while cooling energy demand is estimated to slightly increase [16]. Pedersen et al. [17]

describe how generalized profiles for hourly heat and electricity demand in different residential and non-residential

building archetypes can be used for energy system planning. Temperature-dependent heat demand of each building is

modeled using linear regression models for each hour of the day and each day-type, with daily mean outdoor temper-

ature as independent variable. Daily design load is calculated as the mean value of the 24 hourly heat loads at design

outdoor temperature, and relative load profiles for each archetype are generated. Andersen et al. [18, 19] identify

hourly electricity consumption profiles for different consumer categories in Denmark and estimate weights indicating

the impact of each category on aggregate hourly electricity consumption in different Danish regions. The method is

used for forecasting hourly electricity consumption on a regional level based on national projections on electricity

consumption in each category. In our previous work [20, 21] we use smart meter data combined with survey response

data, weather data, and calendric information to investigate the impacts of different variables on hourly electric-

ity consumption in Norwegian households. We develop panel data regression models that enable disaggregating total

modeled hourly consumption into two components, representing temperature-independent and temperature-dependent

consumption.
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In this study we apply the method described in [20, 21] to develop models for regional hourly electricity consumption

in different consumer groups within household and service sector in Norway. We model aggregate electricity con-

sumption, broken down into an electricity-bound and an electric space heating component, in each consumer group

and each Norwegian county, and compare the results with historic annual and hourly consumption data. Moreover,

we illustrate how historic statistics combined with population and temperature forecasts can be used to obtain in-

put data for energy consumption forecasts, and perform simplified forecasts on electricity-bound and heating energy

consumption in Oslo in 2040.

2. Drivers of electricity consumption in Norwegian buildings

2.1. Number and size of buildings and dwellings

The models used in this study (see Sec. 3) calculate electricity consumption per dwelling (residential sector) or build-

ing (service sector). In order to estimate aggregate regional consumption we need sound estimates on the number of

dwellings and non-residential buildings per region. Continental Norway is divided into 19 counties that differ in pop-

ulation, economic structure, and climate. A list of all counties with county number and name is included in Tab. A.5.

The number of dwellings is strongly correlated with the number of people living in each county, while the number of

non-residential buildings is mainly determined by the number of people working in the corresponding counties. Be-

sides the number of buildings and dwellings, their actual sizes are important factors affecting energy consumption. In

general the number of electric appliances and installations (e.g. light sources) is increasing with building and dwelling

size. Moreover, heat losses to the environment are correlated to the total area of outside walls, roofs, floors, so that

in general absolute heating energy consumption in a larger building is higher than in a smaller building, assuming

comparable building standards. Total floor space is often used as a proxy for building size and heating energy demand

is often given in kWh per m2 floor space and year. Relatively detailed statistics and historical data are available for

mean floor space of different dwellings types in each county, so that we can use these as input data to our household

consumption model. For non-residential buildings, i.e. the service sector, no official statistics on floor space are avail-

able, so that we make assumptions based on the Norwegian energy label database. The database includes technical

information on all buildings that have been assigned an official energy label [22], which is mandatory for almost all

non-residential buildings. Since the database mainly includes buildings located in Oslo, we estimate building floor

space for the remaining 18 counties using an adjustment factor (see Sec. 4.2).

2.2. Outdoor temperature

Outdoor temperature is a main driver of heating and cooling energy consumption in buildings, since heat transfer

through walls is proportional to the temperature difference between inside and outside environment. Heat is transferred

out of the building in case indoor temperature is above outdoor temperature, and into the building in case outdoor
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temperature is above indoor temperature. In order to maintain a desired indoor temperature, this heat transfer has

to be equalized by supplying the building with heating or cooling energy.2 Due to its Northern situation Norway

exhibits relatively cold winters, and moderate summers. Space cooling is not common in households, yet in some

non-residential buildings such as office buildings, shopping centres, or hospitals. Space cooling energy demand is

mostly covered by electrical energy, e.g. using compression chillers, while space heating demand may be covered by

electrical energy or other energy carriers, e.g. firewood, heating oil, or district heat.

2.3. Building standard

A building’s energy standard, partly represented by the thermal transmittances (U-values) of different elements (win-

dows, walls, roofs, etc.), has a large impact on heating and cooling energy consumption. Lower U-values and higher

air-tightness lead to reduced heat transport out of (or into) the building and thus less heating (cooling) energy con-

sumption compared to a similar building with a lower energy standard. Year of construction is often used as a proxy

for energy standard, since building codes have become gradually stricter over the course of the last decades. However,

buildings are often renovated and rehabilitated after some decades, e.g. windows might be replaced by new ones

with lower U-values and better seals, roofs and walls might be retro-fitted with insulation, which makes year of con-

struction a less suitable proxy. Building standard is only roughly considered in our regression models for residential

electricity consumption, and not included in our models for electricity consumption in the service sector. However, we

will consider an improved building standard and thus lower heat losses in our 2040-scenarios by assuming a reduction

in modeled heating energy consumption (Sec. 4, Appendix A.4).

2.4. Heating systems

Heating equipment and heating energy carriers are important factors for modeling electricity consumption in Norway.

In case of non-electric heating, e.g. oil boilers or district heating, in theory no electrical energy is used for space

heating purposes. However, electric heaters – at least in some rooms – are widely used, also in buildings with a

non-electric central heating system. In Norwegian households non-electric heating using a central heating system is

mainly used in regions with district heating as well as in apartment buildings. In single-family houses direct electric

heating, often combined with air-to-air heat pumps or wood burning, is most common. On average, the supplementary

use of air-to-air heat pumps and wood stoves implies reductions in electric heating energy consumption, compared to

only direct electric heating [20].

Few official statistics regarding energy carriers and heating systems used in both residential and non-residential build-

ings are available, so that we have to make a number of assumptions. In our consumption models for the service sector

we only distinguish between electric and non-electric heating and assume different shares of non-electric heating for

2Adding cooling energy actually means transporting heat out of the building.
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each county and consumer category, ranging between 0.6 and 0.8. For the household sector we combine official

statistics on heating equipment from 2001 with own assumptions as well as survey results from a previous study [20].

3. Regression models

Our regression models are based on panel data, consisting of hourly electricity meter data, calendric and weather

data, as well as cross sectional data, providing information on the individual electricity consumers. The household

model is based on meter data from household customers in Buskerud county, and the corresponding cross-sectional

data was gathered by a survey. The models for electricity consumption in the service sector are based on meter data

from consumers located in Oslo, combined with cross-sectional data from the Norwegian energy label database3. The

principle structure of the regression models is explained in detail in [21], and we give a brief overview of the method in

Appendix A. All models, both for households and different service sector categories, are set up according to Equ. A.1

while the explanatory variables xk,i differ from model to model. Heating degree day HDD and cooling degree day

CDD are the only weather-related variables in our models and are defined in Appendix A.2. In our study, we use dif-

ferent base temperatures for HDD in household model (tb,res,HDD=17◦C) and service sector models (tb,ser,HDD=14◦C).

CDD is only included in the service sector models for office buildings and shops, and we choose a base temperature

of tb,ser,CDD=14◦C. We choose tb,ser,HDD and tb,ser,CDD based on visual judgement of average temperature dependence

of the corresponding samples, and 14◦C seems to be appropriate for both HDD and CDD. However, equal base tem-

peratures imply that only if t̄d,out=tb,ser neither space heating nor space cooling takes place, while in reality there may

a temperature band, i.e. tb,ser,HDD < tb,ser,CDD.

Due to the low number of observations floor space is the only cross sectional variable in our service sector models,

while the household model includes several household-specific variables, e.g. number of adults and children, and

dummy variables indicating the use of electric appliances and different space heating equipment. The remaining ex-

planatory variables represent calendric information, e.g. dummy free indicates a non-working day. All explanatory

variables are listed in Tab. A.2 and A.4. A more detailed table showing which variables are included in the different

models for each service sector category can be found in Tab. A.3.

We use separate models for different building categories, namely dwellings, office buildings, schools and universities,

kindergartens, shops and stores, nursing homes, and a category representing hotels, restaurants, and cultural build-

ings. Each building category represents a consumer category, i.e. dwellings represent households, office buildings

represent all services that are office-based, schools, universities, kindergartens represent education, shopping centres

and grocery stores represent trade, and nursing homes represent health-related services. Hotels and museums repre-

sent services within hotel, catering, and partly culture. For office buildings as well as school and university buildings

3We describe the non-residential dataset in detail in a paper currently under review. The manuscript can be obtained from the corresponding
author.
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we use separate models for buildings with and without electric heating, while for the remaining categories, due to

limited meter data, only one model is available, respectively. Electricity consumption in buildings or dwellings with

non-electric heating is calculated by setting HDD-dependent component, i.e. modeled consumption for electric space

heating, to zero. An overview of the different models for building and consumer categories is given in Tab. 1.

Tab. 1: Model overview

sector consumer category building category separate models for
(meter data) electric/non-electric heating

households households dwellings no
services offices office buildings yes
services education schools, universities yes
services education kindergartens no
services trade shops, stores no
services health nursing homes no
services others hotels, museums no

Each model calculates hourly electricity consumption for an individual consumer, e.g. a household, a school, or an

office building. In order to calculate aggregate hourly electricity consumption in a whole building category, e.g. all

residential buildings, schools, office buildings in a specific county and time period, we perform the following steps as

illustrated in Fig. 3 and Fig. 4. We assume that all buildings and dwellings in each region are ”in use”, i.e. not empty

or abandoned. For the household sector (Fig. 3) we directly model aggregate hourly electricity consumption by using

aggregate input data, e.g. total number and aggregate floor space of all dwellings in a specific region, calculated based

on official Norwegian statistics [23]. Different dummy variables, e.g. indicating the number of residents or the use of

electric appliances and heating equipment, are given as percent shares, and are mainly based on survey response data

from Buskerud county.4

Fig. 3: Modeling aggregate hourly electricity consumption in the household sector

For the service sector (Fig. 4) we model hourly electricity consumption in an average building within each category

and multiply the result with the total number of buildings. Average floor space of different non-residential buildings

is calculated based on the mean values obtained from the Norwegian energy label database (Equ. 6).

4Survey items are included in [21]. Chosen input data for each county can be obtained from the corresponding author.
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Fig. 4: Modeling aggregate hourly electricity consumption in different service sector categories

Acronyms and Symbols

Ā average floor space
t̄o,d daily mean outdoor temperature
βk regression coefficient for the k-th explanatory variable
ε error term
β̂k estimated coefficient for the k-th explanatory variable
ϕ relative share
build buildings
cat building category
CDD cooling degree day
cty county number
Eh electricity consumption in hour h
eb electricity-bound
emp employees
epb employees per building
epp employees per population
f epb-adjustment factor
HDD heating degree day
HDD1st first differences in heating degree days
hs heating system
i count variable for individual observations
n count, absolute number
pop population
r reduction factor
res residential/household sector
ser services sector
sh space heating
tb base temperature
xk the k-th explanatory variable
ANN artificial neural network
RCP Representative Concentration Pathway

4. Input data for model validation and forecasts

4.1. Number of dwellings

The number of people living in each county, grouped according to dwelling type, is shown in Fig. 5. Oslo (county 3)

and Akershus (county 2, Oslo surroundings) exhibit the highest population number, followed by counties Rogaland

8



(11, Stavanger region) and Hordaland (12, Bergen region). While in most counties detached houses are the most

common dwelling type, apartments are prevailing in Oslo.

Fig. 5: Population per dwelling type and county (number), 2013 [24, 25]

The number of households is approximately proportional to the number of people living in each county (Fig. 6). The

average number of people per household (pph) varies between 2.2 and 2.4 for most counties, while it is only 1.9 for

Oslo, which can be explained by the large share of apartments, that are typically smaller than other dwellings. In

this study, we assume the number of households to be equal to the number of dwellings, meaning one household

per dwelling. Historical values for average number of residents per dwelling pph combined with forecasts on total

population npop yield simple estimates for the future number of dwellings ndw per county, which is an important input

variable to our models.

Fig. 6: Population over number of dwellings in each county, 2013 [24, 26]
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pphcty =
npop,cty

ndw,cty
(1)

Statistics Norway has published population forecasts for each county until 2040 and distinguishes three main scenar-

ios: high (high levels of fertility, life expectancy, immigration, respectively), medium (medium levels), and low (low

levels). Historical development and forecasts of the population in Oslo are shown in Fig. 7. Compared to population

in 2013 the three scenarios high, medium, low imply a population growth of 52 %, 37 %, 26 %, respectively, towards

2040.

Fig. 7: Population, Oslo county, historical (1950-2016) and forecasts [24, 27]

The number of dwellings, i.e. households, for each county in 2040 is estimated by multiplying the official population

forecasts with the a chosen pph-value (Fig. 8). The number of dwellings within each dwelling type (detached, semi-

detached, terraced houses, apartments, others), divided according to space heating system (electric or non-electric) is

calculated using the corresponding shares ϕtyp and ϕtyp,hs for each county. In our forecasts for Oslo county in this

paper we simply use the latest available values for pph, ϕtyp, ϕtyp,hs, and average floor space, i.e. we assume no

changes in these factors.

ϕtyp,cty =
ndw,typ,cty

ndw,cty
(2)

ϕtyp,hs,cty =
ndw,typ,hs,cty

ndw,typ,cty
(3)
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Fig. 8: Estimation of future number of residential buildings per county

4.2. Number of non-residential buildings

The number of employees per county, i.e. people working but not necessarily living in the corresponding county,

grouped according to business line is shown in Fig. 9. Oslo exhibits the highest number of employees, and a large per-

centage is working in office-related fields (commercial services, finance & insurance, technical & real estate services,

information & communication). In many other regions, the share of people working in health, education, or trade is

larger, while the share of office-related branches is smaller.

Fig. 9: Employed people per category (service sector), 2013 [28]

As described in Sec. 3 we use separate regression models for six different building categories, and number of buildings

and average floor space are needed as cross-sectional input variables in each model. The number of non-residential

buildings nbuild is positively correlated with the number of employees nemp (Fig. 10), however, while Oslo clearly

exhibits the highest number of employees the absolute number of non-residential buildings in Oslo is comparably low.

This leads to the assumption that non-residential buildings in Oslo on average are larger compared to buildings in

other counties, since there are on average more employees per building.

Since our regression models are based on meter data from Oslo buildings, and we only have average floor space

values for non-residential buildings in Oslo, we define employees per building (epb) (Equ. 4) and an adjustment factor

f , relating the epb for each county to epb in Oslo (Equ. 5).
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Fig. 10: Number of employees over number of buildings per county (numbers), 2013 [28, 29]

epbcat,cty =
nemp,cat,cty

nbuild,cat,cty
(4)

fcat,cty =
epbcat,cty

epbcty=3,cat
(5)

The resulting values for f in each county and category are shown in Fig. 11, and according to the definitions made

f = 1 for Oslo. Adjustment factors are smallest for trade, hotel & catering, and other services, while highest for

education. In the Trondheim area (county 16) the number of employees per building within education is almost as

high as in Oslo (3), which can be explained by Norway’s second largest university being located in this county.

Fig. 11: Adjustment factors f for each county and category, 2013
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Average building floor space in each building category Ācat,cty in the remaining 18 counties is estimated by multiplying

the average floor space in Oslo Ācty=3,cat by factor f (Equ. 6).

Ācat,cty = fcat,cty · Ācty=3,cat (6)

In order to estimate the number of buildings within each category and county, e.g. in 2040, the official population

forecasts (Fig. 7) are multiplied with chosen values of employees per population ϕepp (Equ. 7), yielding first an esti-

mate for the number of employees, which is further multiplied with shares of the different service sector categories

ϕcat (Equ. 8), and epb-values (Fig. 12). Multiplied with the corresponding shares ϕhs,cat (Equ. 9) we obtain estimates

for the future number of buildings using electric and non-electric heating for each county and building category. For

our forecasts for electricity consumption in Oslo in 2040 we simply use historic mean values, i.e. over the last five

years, for ϕepp, ϕcat , ϕhs,cat , i.e. we assume no changes in employment rate, employees per building, and distribution

of different service sector branches and heating systems. Moreover, we assume average floor space per building type

to be unchanged.

ϕepp,cty =
nemp,cty

npop,cty
(7)

ϕcat,cty =
nemp,cat,cty

nemp,cty
(8)

ϕhs,cat,cty =
nhs,build,cat,cty

nbuild,cat,cty
(9)

Fig. 12: Estimation of future number of non-residential buildings per county

4.3. Outdoor temperature, heating and cooling degree days

The Intergovernmental Panel on Climate Change (IPCC) defined several Representative Concentration Pathways

(RCP), considering different levels of reduction in future climate gas emissions . The Norwegian Climate Service

Center published modeled temperature increases in case of two different RCPs [30]. RCP4.5 assumes stable or slightly

increasing emissions until 2040 and reduced emissions after 2040. RCP8.5 assumes continuously increasing emissions
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(“business as usual”). Daily mean outdoor temperature during normal period 1971–2000 as well as temperature

forecasts for 2040 and 2100 for RCP4.5 and RCP8.5 in Oslo are shown in Fig. 13. Temperature forecasts are based on

modeled temperature differences referring to the 1971–2000-normal temperature, and are only available per season,

i.e. 3-months-period. Thus temperature forecasts exhibit kinks at the transitions between February and March, May

and June, etc.. Since RCP4.5 implies no emissions reductions until 2040 modeled temperatures for both RCPs in

2040 are similar. However, temperature forecasts for 2100 imply a large difference between RCP8.5 and RCP4.5, and

RCP8.5 implies a considerable increase compared to the 2040-figures.

Fig. 13: Daily mean outdoor temperature, Oslo county, historical mean values and forecasts for 2040 [30, 31]

Historical and forecast heating and cooling degree days (base temperature tb=14◦C for both) are shown in Fig. 14 and

Fig. 15. Historical number of heating degree days HDD per year has been decreasing since about 1970, and both RCPs

imply a further decrease in HDD, i.e. higher temperatures during the heating period. Under RCP8.5 the decrease in

HDD is stronger compared to RCP4.5, but the difference between both RCPs first becomes apparent after about 2045.

Historical number of cooling degree days CDD per year has been increasing since the 1950s, and both RCPs imply a

further increase in CDD, i.e. more daily mean temperatures above base temperature. From about 2030 the increase in

CDD under RCP8.5 is considerably stronger compared to RCP4.5.
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Fig. 14: Number of heating degree days per year, Oslo county, historical (1950-2015) and forecasts [30, 31]

Fig. 15: Number of cooling degree days per year, Oslo county, historical (1950-2015) and forecasts [30, 31]
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4.4. Assumptions regarding future energy efficiency and building stock renewal

Due to limited cross-sectional data available the impacts of different building standards with respect to heating energy

consumption are not considered in our service sector models. The household model includes dummy variable new in

interaction with HDD allowing estimates on reductions in HDD-dependent consumption due to a renewed building

stock, i.e. an increased share of new buildings. Percent shares of dwellings built after 2000 in Oslo, from 2010 to 2014,

are shown in Fig. 16. By assuming a linear increase of about 0.7 %-points/a that continues until 2040 we estimate the

share of new dwellings in 2040 ϕnew,2040 to be approximately 30 %. With ϕnew,2040 ≈0.3 compared to ϕnew,2014 ≈0.12

and all other factors constant the reduction in aggregate modeled space heating electricity consumption due to a

renewed building stock in Oslo from 2014 to 2040 would be about 10 %.

Fig. 16: Historic percent shares of new dwellings (built after 2000) in Oslo, 2010–2014 [32]

Usually a building stock is renewed by continuously removing mainly old buildings, constructing new, and rehabil-

itating and retro-fitting some existing buildings, so that both old and new buildings (built before and after 2000) on

average become ”newer”. Building codes in Norway have become continuously stricter, and today’s requirements

are near low-energy standard. Assuming that future building codes demand and achieve today’s energy standard re-

quirements for new buildings, additional reductions in space heating energy demand can be expected, but are not

implemented in the current household model.

Since building age or standard is not included in the service sector models, and no data on years of construction of

the non-residential building stock is available, we assume an arbitrary reduction in modeled space heating energy

consumption by 15 % (rsh=0.15, see Appendix A.4) in non-residential buildings in 2040 compared to the metering

period (2013–2016) of the original data set that was used to develop the models. We assume a higher reduction com-

pared to what was estimated for residential buildings (10 %) can partly take into account stricter future requirements

in building standards for new and existing buildings.
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5. Results

5.1. Model validation with historical data

5.1.1. Electricity consumption per county, sector, and year

In order to validate our models we first compare annual electricity consumption in households and services in each

county in 2012 (Fig. 17). For most counties electricity consumption in both sectors is modeled with a relative error less

than 8 %. Consumption within the household sector is overestimated by more than 10 % in counties 1, 4, and 17, which

can be explained by different space heating habits, e.g. more intensive wood burning. In county 20, an especially cold

region, household consumption is largely underestimated, which might also be due to wrong assumptions regarding

space heating systems, or by an insufficient estimation of heating degree days, e.g. by not choosing representative

weather stations. Deviations between modeled and metered consumption in the service sector can be explained by the

large uncertainty regarding category others, that includes hotel and catering, culture, and all other service branches, for

which we do not have appropriate consumption models. Moreover, assumptions made on the share of non-residential

buildings with non-electric heating might be insufficient.

Fig. 17: Modeled and metered [33, 34] electricity consumption in household and service sector per county, 2012

5.1.2. Hourly electricity consumption per sector and Nord Pool-region

In a second step we compare modeled hourly consumption with hourly consumption data from Nord Pool, the Nordic

power market [35] (Fig. 18). Nord Pool divides Norway (NO) into five regions, called NO1 through NO5. Region

NO1 approximately spans counties 1–6 and exhibits the highest consumption among the five regions. During a January

week in 2013 aggregate modeled consumption both for region NO1 (Fig. 18a) and for the whole country NO (Fig. 18b)

fits the shape of metered consumption relatively well. The difference between metered and modeled consumption is

called Delta in the following, and represents in theory consumption in agriculture, industries, construction, transport,
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as well as the modeling error. During the depicted period Delta exhibits relatively little hourly variations, except a

slightly higher consumption during evening and night-time and a slightly lower consumption during mid-day as well

as on Sunday, which can be explained by reduced production in the industrial sector.

Due to our simple disaggregation method electricity-bound consumption includes energy consumption for domestic

water heating, while component electric heating only refers to space heating.

(a) South-East Norway (region NO1)

(b) Whole country (region NO)

Fig. 18: Modeled electricity consumption in household and service sector, metered total consumption, and Delta, January 2013

5.1.3. Average hourly profiles per month

Average hourly consumption in Norway on workdays in different months in 2013 is shown in Fig. 19. Both during

the winter months January, February, March, and during the warmer months May, June, July average modeled and

metered hourly consumptions are similar in shape, and the resulting average Deltas are relatively constant during all

24 hours. While during winter Delta is approximately 9 GWh/h, it is only about 7 GWh/h during summer. Thus in

theory, assuming that no consumers included in residual consumption Delta (e.g. factories) shut down or use space

cooling during summer, about 20 % of Delta were on average used for space heating purposes in January 2013.
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(a) January, February, March (b) May, June, July

Fig. 19: Average hourly consumption in different months, 2013, metered (Nord Pool, NO), modeled, and Delta

5.2. Forecasts on energy consumption in Oslo in 2040

5.2.1. Consumption of heat and electrical energy per year

Historic and forecast modeled annual electricity consumption in Oslo, divided into electricity-bound and space heating

consumption, as well as modeled non-electric net space heating energy consumption are shown in Fig. 20. Since we

assume that large share of consumers in Oslo county uses non-electric space heating, the share of modeled electric

space heating energy is comparably low. Non-electric net space heating energy, e.g. covered by district heating

or heating oil, is modeled by calculating HDD-dependent electricity consumption in buildings and dwellings with

non-electric heating and only represents a very rough estimate.

Fig. 20: Modeled net energy consumption per sector and purpose, Oslo, 2010-2014 and 2040

The three bars on the right-hand side in Fig. 20 represent modeled energy consumption under the three different sce-

narios on population growth, where L, M, H indicate low, medium, high population growth, respectively. Since there
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are only slight differences in heating degree days under RCP4.5 and RCP8.5 for 2040, we only display consumption

forecasts for RCP8.5. Assuming scenarios L–M–H, implying 26–37–52 % population growth from 2013 to 2040,

the increase in total modeled electricity consumption is 23–33–48 %. In households electricity-bound consumption

increases by 32–43–59 %, electric space heating consumption increases by 1–10–22 %, and non-electric net heating

energy consumption increases by 4–13–25 %. In the service sector electricity-bound consumption increases by 19–

30–44 %, while both electric and non-electric space heating consumption decrease by 16 and 8 % in scenarios L and

M, and increase by 2 % in scenario H.

The relative changes of modeled annual energy consumption, population, HDD, and CDD between 2013 and 2040

are shown in Fig. 21. In all three scenarios the increase in modeled electricity consumption is slightly lower than

population growth. The number of cooling degree days increases by about 8 % while the number of heating degree

days decreases by about 15 %. In scenario L electricity consumption for space heating purposes is reduced by about

5 %, and in scenario M it increases by about 3 %. A considerable increase of 12 % is only estimated for scenario

H, implying that the impact of an increase in number of buildings and heated floor space outweighs the impact of a

decrease in heating degree days and estimated building stock renewal.

Fig. 21: Relative change in modeled energy consumption, population, HDD, and CDD, from 2013 to 2040, Oslo

5.2.2. Hourly electricity consumption on a cold day and on a hot day

Although mean outdoor temperatures during winter, and thus the average number of heating degree days are assumed

to decrease towards 2040, very cold (or hot) days might still occur. In order to estimate extreme values of hourly

consumption, we model electricity consumption on a cold and a hot day in 2040, assuming the high population

scenario. Aggregate modeled hourly consumption in Oslo on a cold January day (t̄o,d=-16◦C) in 2040 is shown in

Fig. 22. Households account for nearly 50 % of modeled consumption during day time and for about two thirds during

night time (Fig. 22a). Maximum aggregate modeled consumption og about 2.4 GWh/h occurs in hour 17. Modeled

space heating electricity consumption represents about one fourth of total modeled consumption during early morning,
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and about one fifth during the rest of the day (Fig. 22b). Aggregate modeled hourly consumption in Oslo on a hot

day (t̄o,d=28◦C) in July 2040 is shown in Fig. 23. Maximum consumption of about 1.5 GWh/h occurs in hour 16. The

consumption share of households is considerably lower than on a cold day, and the distinct morning peak in household

consumption in hour 8 is missing. A higher share of electricity consumption in the service sector on a hot day can be

explained by cooling energy consumption that is not considered to take place in households. Moreover, the summer

holidays during July contribute to a lower consumption in households, while consumption in the service sector is less

affected by school holidays.

(a) Electricity consumption per consumer category (b) Electricity-bound and electric space heating consumption

Fig. 22: Forecast electricity consumption on a workday in January 2040, Oslo, t̄o,d=-16◦C

(a) Electricity consumption per consumer category (b) Electricity-bound and electric space heating consumption

Fig. 23: Forecast electricity consumption on a workday in July 2040, Oslo, t̄o,d=28◦C
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A comparison of modeled hourly electricity consumption on a cold day and on a hot day in 2014 and 2040 (scenario

H, 52 % population growth) are shown in Fig. 24. According to our results, maximum hourly consumption on a cold

winter day (hour 17) increases by about 44 % while maximum hourly consumption on a hot summer day (hour 16)

increase by about 45 % from 2014 to 2040.

Fig. 24: Modeled aggregate electricity consumption on a cold and hot day in Oslo in 2014 and 2040

6. Discussion

6.1. Uncertainties regarding regression models and input data

6.1.1. Household sector electricity consumption model

A number of statistics on different household and dwelling characteristics, often on county level, are provided by

official statistics so that relatively detailed input data is available for modeling historic consumption in the household

sector. However, the shares of households using electric and non-electric heating, heat pumps, or wood stoves, per

county need to be assumed, which leads to an increased uncertainty. Moreover, the applied household model is based

on a sample of consumers located in county 6 (Buskerud) that mainly consisted of detached houses, while other

dwelling types were poorly represented. For counties like Oslo, where apartments are the predominating dwelling

type, our household model results might be less accurate than for a region with mainly detached houses. Energy and

insulation standard is only considered very roughly in our household model by including the dummy variable new,

being true if the dwelling was built in 2000 or later, in interaction with HDD. Since the reductions in modeled hourly

electricity consumption in a new dwelling compared to an old one also depend on other variables like dwelling size

or heating system, our simplified models are not able to sufficiently estimate the impact of different energy standards

or dwelling ages. Electricity consumption in dwellings with non-electric heating is modeled by setting the HDD-

dependent consumption to zero. Since modeled electricity-bound (HDD-independent) consumption usually includes

some heat consumption, e.g. for electric water heating or space heating equipment that is used also during summer,

modeled consumption in households with non-electric heating might be slightly overestimated. However, since most
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Norwegian households use some kind of electric heating equipment, and electric water heaters are common even in

households with non-electric space heating, we assume the method to be acceptable. Model validation on annual

electricity consumption per county indicates that the model produces useful results. However, separate regression

models for different dwelling types, divided into electric and non-electric heating, would yield more reliable results.

6.1.2. Service sector electricity consumption models

Official statistics on non-residential buildings in Norway are rare. We have information on the absolute number of

buildings per category and county, but no information on important factors such as floor spaces, heating systems,

years of construction, is available. The calculation of average floor space per category in Oslo based on the energy

label data base, and using a self-defined adjustment factor, that accounts for – on average – larger buildings and more

employees per building in the capital city, can only yield rough estimates that are not necessarily representative. Our

regression models for different building categories within the service sector are based on a relatively small sample of

buildings, all located in Oslo, over a period of approximately three years, and floor space is the only cross-sectional

variable. For many counties average floor space values estimated using the adjustment factor are considerably lower

than those estimated for Oslo, and would in some cases lead to meaningless model outputs. Thus, to be able to use

the Oslo-based models for all counties we need to assign lower floor space limits.

The shares of buildings using electric or non-electric heating is based on assumptions, and mixed heating systems, e.g.

combined electric and district heating, or the use of heat pumps, are not considered. For most categories electricity

consumption in buildings with non-electric heating is modeled by setting the HDD-dependent consumption to zero,

implying some error. Due to the low number of observations the impact of different energy standards, or building age

as a proxy, is not considered in our models. Since better insulation standard and air-tightness, and thus lower heat

losses, in theory imply a reduction in HDD-dependent consumption, we can roughly account for improved energy

standards in our forecasts using a reduction factor r. The value of r is very uncertain and only serves as a rough

approximation. A reduction in cooling energy demand can be estimated using factor r as well, however, we leave the

CDD-dependent component unchanged in our forecasts in this paper. Our models for category others, representing

hotels, restaurants, and museums, are based on very few observations and merge three building groups that might

exhibit quite different hourly consumption profiles. Although there is an error connected to category others we find it

useful to include it in order to be able to model consumption in the entire service sector.

6.1.3. Forecasts

According to our forecasts the increase in electricity consumption for electricity-bound purposes in Oslo from 2013

to 2040 is similar to the increase in population in all scenarios, which can be explained by simplified input vari-

ables, implying that the number of buildings and households increases proportionally to population. Moreover, no

energy-efficiency improvements, or changes with respect to average floor space, number of residents per household,
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or the use of electric appliances were implemented in the forecasts, so that temperature-independent consumption

is merely scaled up. Assuming e.g. unchanged values for epb (employees per building), average floor spaces, and

share of employed people per category (Fig. 12) implies that the number of non-residential buildings and thus mod-

eled electricity-bound consumption increases similarly to total population. Especially in metropolitan areas like Oslo,

where construction ground might be limited, both the number of employees per building as well as average floor space

per building are likely to increase to a certain extent as population increases. Similarly, leaving household-describing

factors like pph (persons per household) and shares of detached and attached dwellings constant (Fig. 8), also modeled

electricity-bound consumption in the household sector exhibits a similar relative increase as population. All input fac-

tors can be adjusted when feasible estimates are available. However, the purpose of this study was to merely present

the methodology and make simple forecasts for 2040.

6.2. Further work

While we practically only could validate our models with annual electricity consumption data in this study, more

disaggregated hourly data, e.g. per sector and county or Nord Pool region, would enable model validation also on an

hourly level.

Larger samples of reliable meter data and cross-sectional data would enable refined models for both residential and

non-residential consumers. Detailed surveys among different consumer groups could collect important cross-sectional

information needed for building specific models, and as input data for model validation and forecasts on a regional

level. Especially the impacts of different building standards with respect to energy demand, or comparably new

appliances like electric vehicles need to be implemented in more reliable models. While we only include forecasts for

electricity consumption in Oslo in this paper, forecasts for each county or municipality could be performed, yielding

consumption forecasts per region that could e.g. be aggregated according to Nord Pool regions.

Base temperature tb varies across consumers and is not only dependent on building physics and standards but also

on behaviour and individual preferences, e.g. regarding indoor temperature and thermostat usage. As the building

stock is renewed base temperature is expected to decrease for both residential and non-residential buildings so that the

calculation of HDD and CDD needs to be adapted. The impact of different cross sectional or other weather related

factors (e.g. wind, solar irradiation) on tb could be examined in order to obtain estimates on today’s and future base

temperatures useful for different consumer groups. Space cooling is expected to become more important assuming

an increase in outdoor temperatures, also outside the heating period. Today, space cooling in Norway is mainly used

in non-residential buildings, e.g. office buildings, however, improved models used for forecasting should be able to

consider space cooling also in other non-residential and residential building types.
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7. Conclusion

We developed separate regression models for household consumers and different consumer categories within the ser-

vice sector, and divided modeled consumption into an electricity-bound and an electric space heating component.

Moreover, we estimated non-electric net heating energy covered by other energy carriers on an annual level. Model

validation indicates that the models are able to reproduce historic annual electricity consumption data in households

and service sector on county level with acceptable results. The overall shape of total hourly electricity consumption

in South-East Norway and in Norway as a whole is reproduced well by the models, indicating that mainly household

and service sector cause hourly variations in total regional electricity consumption. However, important input data,

especially regarding the non-residential building stock, is largely based on assumptions and the models lack some

important explanatory variables, e.g. building age or energy standard. The applicability of the models for forecast-

ing was briefly tested by modeling electricity consumption in Oslo in 2040, based on existing forecasts on outdoor

temperature and population. Leaving most input factors constant leads to the number of buildings and dwellings and

thus electricity-bound consumption increasing roughly according to population growth. In contrast, assuming low or

medium population growth, modeled energy consumption for space heating exhibits only small changes, indicating

that a reduction in heating degree days and the renewal of the building stock counterbalances an increase in the number

of heated buildings and dwellings. The presented method can be refined and – with more detailed input data available

– applied to any other Norwegian region and can thus produce estimates on regional electricity consumption on an

hourly level.
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Appendix A. Regression models for hourly electricity consumption

Appendix A.1. Panel data regression

Combining time series (meter data) and cross sectional data (e.g. survey response data) from a sample of consumers

results in panel data. For each consumer (household or non-residential building) a time series of hourly electricity

meter values (E1, E2, ..., E24) is available, that is combined with cross-sectional data, temperature data, as well as

calendric information (weekday, holiday, month, ...) for each day. The plm-package [36] in R enables different panel

data regression methods. We apply the method of pooled ordinary least squares (pooled OLS) to our panel data sets,

estimating separate models for each hour of the day, so that a model set consist of 24 single models. The hourly

model set is determined by the formula for ordinary least squares regression (Equ. A.1) where Ei,h represents hourly

electricity consumption of observation i in hour h, β0,h is the intercept parameter, βk,h the slope parameters, and εi the

unobserved error term. The included explanatory variables xk are described in Appendix A.3.

Eh=1,...,24,i = β0,h +
k

∑
k=1

βk,h · xk,i + εh,i (A.1)

Appendix A.2. Definition of heating and cooling degree days

Heating and cooling degree day are defined as the differences between daily mean outdoor temperature and chosen

base temperatures tb,HDD and tb,CDD. Daily mean outdoor temperature t̄o,d is represented by the arithmetic mean value

of 24 hourly temperature values, metered during day d, e.g. at local weather stations. For each county we calculate t̄o,d

based on mean values of hourly meter data from at least one weather station located near the most densely populated

area(s) (Tab. A.5). Based on the assumption that no temperature-dependent heating energy consumption takes place

during the summer season, heating degree day HDD is zero in case t̄o,d ≥ tb,HDD (Equ. A.2).

HDDd =





tb,HDD − t̄o,d , for t̄o,d < tb,HDD

0, else
(A.2)

We define first differences in heating degree days HDD1st as the difference in heating degree days between any day

d and the day before (d − 1) (Equ. A.3). A positive value of HDD1st implies that mean outdoor temperature during

day d is lower compared to the day before.
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HDD1std = HDDd −HDDd−1 (A.3)

In order to model the linear relationship of cooling energy consumption and outdoor temperature cooling degree day

CDD is defined as the positive difference between daily mean outdoor temperature t̄o,d and tb,CDD (Equ. A.4).

CDDd =





t̄o,d − tb, for t̄o,d > tb

0, else
(A.4)

Appendix A.3. Explanatory variables

Tab. A.2: Explanatory variables for service sector models

variable symbol description type reference group

x1 A avg. floor space continuous -
x2 HDD heating degree day continuous -
x3 HDD1st 1st differences in HDD continuous -
x4 CDD cooling degree days continuous -
x5,...,15 month month = 2, ..., 12 dummy 1 (January)
x16 f ree d is a non-workday day dummy no
x17 Sat d is a Saturday but no holiday dummy no
x18 Sun d is a Sunday or holiday dummy no
x19 schoolholidays d is within school holidays but no weekend or holiday dummy no

Tab. A.3: Explanatory variables in each service sector models

variable offices, el. offices, non-el. schools, el. schools, non-el. kindergartens shops health others

A x x x x x x x x
HDD x - x - x x x x
HDD1st x - x - x x x x
month - x - - - - - -
f ree x x x x x - - -
schoolholidays - - x x x - - -
Sat - - - - - x - -
Sun - - - - - x - -
A ·month x - x x x x x x
A · f ree x x x x x - x x
A · schoolholidays x x - - - - - -
A ·HDD x - x - x x x x
A ·Sat - - - - - x - -
A ·Sun - - - - - x - -
A ·HDD · f ree x - x - x - - -
A ·CDD · f ree x x - - - - - -
A ·HDD ·Sun - - - - - x - -
A ·CDD ·Sun - - - - - x - -
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Tab. A.4: Explanatory variables, households

variable description type reference group

x1 dwelling group = attached dummy dwelling group = detached
x2,...,4 number of adults (incl. children ≥ 16 years) = 2, 3, >3 dummy adults = 1
x5,...,7 number of children (< 16 years) = 1, 2, >2 dummy children = 0
x8 senior resident (> 65 years) = yes · daytype = workday dummy senior residents = no
x9 resident more than 20h at home (no senior residents) = yes · daytype = workday dummy residents home all day = no
x10 weekend resident = yes · daytype = workday dummy weekend residents = no
x11,...,13 daytype = Saturday but no holiday, Sunday or holiday, workday within school holidays dummy daytype = workday
x14 cold storage = yes dummy cold storage = no
x15 other electricity-intensive appliances = yes dummy appliances = no
x16,...,24 month = 2, 3, 4, 5, 8, 9, 10, 11, 12 dummy month = 1 (January)
x25 HDD continuous -
x26 HDD1st continuous -
x27 HDD · floor space continuous -
x28 HDD · dwelling group = attached cont./dummy dwelling group = detached
x29 HDD · heat pump = yes cont./dummy heat pump = no
x30 HDD · central electric boiler = yes cont./dummy central electric boiler = no
x31 HDD · central heat pump = yes cont./dummy central heat pump = no
x32 HDD · age = ≥ 2000 cont./dummy age = < 2000
x33 HDD · wood burning = supplementary cont./dummy wood burning = no or only for coziness
x34 HDD · wood burning = mainly cont./dummy wood burning = no or only for coziness

Appendix A.4. Decomposition method and estimating reduced heat losses

By including temperature variables HDD and HDD1st, modeled consumption can be broken down into a HDD-

independent and a HDD-dependent component5. The HDD-dependent component is the the sum of all elements con-

taining HDD or HDD1st and can be interpreted as electric space heating consumption Êh,sh. The HDD-independent

part is the sum of all remaining elements and can be interpreted as consumption for electric appliances including

electrically heated hot water tanks and space cooling equipment, i.e. electricity-bound consumption Êh,eb. Since

categorical variable month takes into account seasonal differences in HDD-independent consumption (e.g. higher

electricity consumption for illumination during winter) the assumption of a HDD-dependent component representing

mainly space heating energy seems reasonable. However, estimated space heating consumption does not necessarily

include all space heating appliances, but only those with HDD-dependent behavior, i.e. increasing consumption with

decreasing outdoor temperature.

Since the building stock is continuously renewed, i.e. mainly older buildings are removed and new buildings are built,

so that the share of newer buildings – with in general higher energy standards – increases. Since different energy

standards are not considered in our service sector models, we estimate a reduction in heat losses – needed for our

2040-forecasts – by multiplying temperature-dependent consumption Ê∗
h,sh by an arbitrarily chosen reduction factor

rsh. A reduction in cooling energy demand, i.e. CDD-dependent consumption, due to a higher energy standard can be

estimated analogously.

Ê∗
h,sh = Êh,sh · (1− rsh) (A.5)

5See [21] for a more detailed description of the decomposition method.

30



Appendix A.5. Weather stations per county

Tab. A.5: Weather stations per county

station no station location county county no

3190 SARPSBORG Sarpsborg Østfold 1
3290 RAKKESTAD Rakkestad Østfold 1
2650 AURSKOG II Aurskog Høland Akershus 2
4780 GARDERMOEN Ullensaker Akershus 2

17850 ÅS Ås Akershus 2
18700 Oslo Blindern Oslo Oslo 3

180 TRYSIL VEGSTASJON Trysil Hedmark 4
12320 HAMAR - STAVSBERG Hamar Hedmark 4
12680 LILLEHAMMER - SÆTHERENGEN Lillehammer Oppland 5
16560 DOMBÅS - NORDIGARD Dombås Oppland 5
20301 HØNEFOSS - HØYBY Hønefoss Buskerud 6
26990 SANDE - GALLEBERG Sande Vestfold 7
27450 MELSOM Stokke Vestfold 7
27500 FÆRDER FYR Tjøme Vestfold 7
30420 SKIEN - GEITERYGGEN Skien Telemark 8
30650 NOTODDEN FLYPLASS Notodden Telemark 8
36200 TORUNGEN FYR Arendal Aust-Agder 9
38140 LANDVIK Grimstad Aust-Agder 9
40880 HOVDEN - LUNDANE Bykle Aust-Agder 9
39040 KJEVIK Kristiansand Vest-Agder 10
41090 MANDAL III Mandal Vest-Agder 10
44640 STAVANGER - VÅLAND Stavanger Rogaland 11
47350 RØVÆR Haugesund Rogaland 11
50500 FLESLAND Bergen Hordaland 12
51530 VOSSEVANGEN Voss Hordaland 12
55700 SOGNDAL LUFTHAVN Sogndal Sogn Og Fjordane 14
57420 FØRDE - TEFRE Førde Sogn Og Fjordane 14
57710 FLORØ LUFTHAVN Flora Sogn Og Fjordane 14
60945 ÅLESUND IV Ålesund Møre Og Romsdal 15
62270 MOLDE LUFTHAVN Molde Møre Og Romsdal 15
64330 KRISTIANSUND LUFTHAVN Kristiansund Møre Og Romsdal 15
10380 RØROS LUFTHAVN Røros Sør-Trøndelag 16
68860 TRONDHEIM - VOLL Trondheim Sør-Trøndelag 16
69150 KVITHAMAR Stjørdal Nord-Trøndelag 17
71000 STEINKJER - SØNDRE EGGE Steinkjer Nord-Trøndelag 17
72580 NAMSOS LUFTHAVN Namsos Nord-Trøndelag 17
79600 MO I RANA LUFTHAVN Rana Nordland 18
82290 BODØ VI Bodø Nordland 18
84700 NARVIK LUFTHAVN Narvik Nordland 18
87640 HARSTAD STADION Harstad Troms 19
90490 TROMSØ - LANGNES Tromsø Troms 19
93140 ALTA LUFTHAVN Alta Finnmark 20
94280 HAMMERFEST LUFTHAVN Hammerfest Finnmark 20
99370 KIRKENES LUFTHAVN Sør-Varanger Finnmark 20
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