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Summary 

There is a constant demand to determine the most probable relationship between a set of person 

given some genetic marker data and some hypotheses about pedigree structure. A constant stream 

of paternity cases is obtained at forensic laboratories around the globe and with the modernization 

of many underdeveloped countries the increase in a few years may be staggering. The case may be 

as trivial as to find out who is the true father of a child, but also more complex, as to large inbred 

pedigrees. In addition, cases may involve only two persons, e.g. an alleged father and a child, but also 

many persons, e.g. several cousins, aunts/uncles and siblings. Furthermore we may be looking at 

single cases, but also large scale disaster victim identification (DVI) problems. In the latter, 

identification through the use of DNA has risen to become the most important and reliable tool. 

With the arrival of new technologies, e.g. high density SNP microarrays and next generation 

sequencing, more and more genetic markers become available. Although providing opportunities 

they also present forensic scientists with great statistical problems as independence can no longer be 

assumed. This high-dimensionality problem is something recurring in all fields working with genetics 

and the solution is in many cases reduction of dimensionality using well established methods. 

However, in forensic genetics, evidence in general requires a likelihood ratio to be established, 

weighting the genetic evidence given hypotheses against each other. Therefore the dimensionality 

reduction cannot generally be applied and we need other methods to handle the dependency. One 

approach adopted in many situations when dependence is modeled, is Markov chains. The property 

of such chain relies on the fact that given the value of one node, e.g. one genetic marker, the values 

of the subsequent nodes in the chain is independent of all previous nodes. Variants of Markov chains 

will be a focus in this thesis. 

With the surge of increasing computational power, simulations have become a crucial tool in many 

fields of research. We may now study the effects of something random using complex models and 

investigate the outcome with little of thought on the computation time. In forensic genetics, 

simulations have many possible applications. For instance, in determination of relationships, we may 

simulate the outcome of a case and study the distribution of probabilities in order to determine the 

false positive/negative rates given some probability threshold. Simulations may also be used to study 

how the change in some parameter in our model affects the evidence value.  

In summary, this thesis describes means to solve complex computational problems arising when 

independence between genetic markers cannot be assumed. It further considers solutions to other 

statistical obstacles encountered in forensic genetics such as DVI operations, simulations and models 

for mutations. Different approaches are discussed and evaluated. Moreover, software is presented 

implementing the ideas and algorithms. 
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Sammanfattning 

Att bestämma det biologiskt mest sannolika släktskapet, baserat på genetisk data för ett antal 

individer, är något som ständigt intresserar människor. Ett konstant flöde av faderskapsfall tas emot 

och analyseras på forensiska labb runt om i världen och med den intensiva tekniska utvecklingen i U-

länder kan vi bara ana en explosion av antalet ärenden de kommande åren. Det enklaste fallet är att 

bestämma om en man är far till ett barn, men även mer komplexa fall, där invecklade släktskap skall 

utredas, blir allt vanligare. Det kan vidare vara enkla isolerade fall men också stora olyckor, där flera 

aspekter måste tas hänsyn till. I identifieringsprocessen som följer större masskatastrofer har DNA 

blivit den primära och säkraste metoden att använda. 

Den tekniska utvecklingen har introducerat flera nya metoder där det är möjligt att erhålla data från 

en stor mängd genetiska markörer billigt och på kort tid. Mer data förbättrar generellt 

urskiljningsförmågan, men medför dock flera statistiska problem som måste modelleras; det kanske 

viktigaste är beroendet mellan enskilda beräkningar. Mångdimensionalitetsproblem är ett känt 

fenomen inom statistik och hanteras ofta genom reduktion av antalet dimensioner medelst 

etablerade metoder. Dessa  tillvägagångssätt kan inte med samma självklarhet användas i forensisk 

statistik, givet de förutsättningar som föreligger. Vi behöver andra metoder för att hantera och 

modellera beroendet mellan beräkningarna. Ett vanligt tillvägagångssätt är att använda så kallade 

Markov-kedjor. Dessa kedjor har egenskapen att givet beräkningar/värden för en nod i kedjan så är 

alla senare beräkningar oberoende av tidigare beräkningar.  Markov-kedjor är ett centralt tema i 

denna avhandling. 

I enighet med Moores lag utvecklas beräkningskapaciteten hos datorer exponentiellt och som en 

följd har tunga beräkningar och simuleringar avsevärts förenklats. Detta har i sin tur haft som 

konsekvens att komplicerade modeller kan studeras med hjälp av de sistnämnda utan att ägna en 

tanke åt kapacitetsproblem. I forensisk genetik kan vi använda simuleringar för att studera 

fördelningar hos olika parametrar. Till exempel kan vi erhålla en summering av förväntade 

bevisvärden i ett specifikt släktskapsärende under givna förutsättningar. Vi kan undersöka hur många 

personer vi behöver inkludera i ärendet och hur många genetiska markörer vi behöver analysera. 

Detta är mycket användbart då vi på förhand kan avgöra om vi har möjlighet att lösa ett ärende eller 

ej. 

Sammanfattningsvis presenterar denna avhandling metoder och implementeringar för att lösa flera 

komplexa beräkningsproblem som uppkommer när kopplade genetiska markörer används. Den 

beskriver också lösningar på andra statistiska problem inom forensisk genetik såsom modeller för 

mutationer och matchningsalgoritmer vid större identifieringsarbeten samt simuleringar. Varje 

lösning implementeras också i fritt tillgänglig programvara för att vara ett enkelt hjälpmedel för 

andra forskare inom fältet. 
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1 Introduction 

Since the discovery of the DNA helix by Francis Crick, James Watson and Rosalind Franklin in the early 

1950s, the research on our genetic material has exploded. Even before that, work by Mendel and 

others provided insights into our inheritance patterns and there are still mysteries being uncovered 

concerning the elaborate mechanisms governing our cells. A myriad of different research fields 

benefit from this progression, not the least medical genetics, aiding humanity in the struggle against 

diseases and genetic disorders. The focus of this thesis will be on a field known as forensic genetics. 

The word Forensic is derived from Latin and means “before the forum” and relates to the times of 

the Roman Empire when criminal cases were presented to the public (forum). Modern use of the 

word is commonly connected to the investigation of any evidence in a case presented before a court 

of law. The following sections will introduce the readers to forensic genetics. More specifically the 

thesis will focus on statistical problems encountered when performing calculations on genetic 

relatedness.   

It is fascinating how people constantly wish to find their biological relationships and establish the 

genetics that bonds us together. In Norway alone, the number of relationship cases approximates 

2000 each year [Personal experience]. This in a population that is, in a larger context, small, only 

about 5 million. Without specific knowledge about the same numbers in other countries, we can, 

based on the global population of 7 billion, roughly estimate the number of annual paternity cases 

world-wide to 2 million. This is of course only a crude estimate and we know for a fact that some 

countries have considerably lower number of cases whereas still some countries may have higher 

levels.1 

Throughout history, disputed relationships have given rise to a number of intriguing feuds. From the 

first book of Kings (1 Kings 3:16-18) in the Bible we learn about possibly one of the first cases of 

disputed maternity. To briefly recapitulate, two women are presented to the wise King Solomon, 

both alleging to be the mother of a child. According to the lore, no evidence is held forward favoring 

either of the two women. The King sees no other option but to bring forward a sword and cut the 

baby in two, thus leaving each mother with a part. One of the women exclaims: “Please don’t kill my 

son, Your Majesty, I love him very much, but give him to her. Just don’t kill him”, while the other 

woman replies, “Go ahead and cut him in half. Then neither of us will have the baby”. The King is 

                                                           
1
The actual number is probably considerably lower, since the extent of paternity testing in some highly 

populated countries is substantially smaller 
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wise and decides not to cut the baby in halves, but proclaims the first mother to be the true mother 

as she was indeed willing to sacrifice her maternity to let the baby live.  

A more recent example, and perhaps more relevant in the current thesis, is the infamous case of the 

Romanov family [1]. The last Russian tsar and his family were allegedly killed by the Russians during 

the revolution, but no bodies were ever found. In 1991 a family, that could possibly be the remains of 

the Romanovs, was found buried in Ekaterinburg, Russia. Extensive investigations were undertaken 

leading to several papers [1-4], where the final conclusion was that there was a high probability of 

the remains actually being the Romanovs. The DNA evidence suggested that all the skeletons in the 

grave belonged to one family and that living distant relatives of the Romanovs matched up with the 

Tsar and Tsarina. 

 Another interesting example is the search for descendants of Thomas Jefferson, the third president 

of the United States. He allegedly had a child (or several children), with one of his maids, Sally 

Hemmings (who was a slave). This is a controversy dating back to the early 19th century when 

suggestions were brought forward that Jefferson had fathered one or more of Hemmings’ children. 

The arrival of DNA technology shed new light on the discussion as a perfect match for the Y 

chromosome (inherited unchanged through the male line), was found between descendants of 

Jefferson and Hemmings [5-7]. The case has not yet reached a final conclusion as the genetic 

evidence only points out that Jefferson or a male relative of him is likely to be the father, although 

other evidence does suggest paternity as well.  

In addition, more recent events include the identification of victims from mass disasters. For 

instance, the application of DNA played a crucial part in the identification process following the 9/11 

WTC terror attack [8-10] and the South Asia tsunami disaster in 2004 [11]. In the same field, large 

projects are undertaken to identify victims from recent wars, e.g. the First and Second World War as 

well as mass graves on several sites on the Western Balkan Peninsula. 

The use of biological markers to determine paternity was introduced using blood groups (ABO 

system) in the early 1920s. If inconsistent groups were observed for the father and the child, 

paternity could be excluded. However, the general exclusion rate was fairly poor since the probability 

to exclude for some blood groups is very low. Developments led to the introduction of serological 

markers with higher discrimination in the 1930s and HLA markers, which were the first real genetic 

markers, in the 1960s with even higher discrimination.  The arrival of polymerase chain reaction 

(PCR) in the late 1970s led to a revolution when DNA could be amplified to virtually unlimited 

amounts [12]. Still ongoing developments have led to the possibility of obtaining the complete 

genetic setup from a biological sample using next generation sequencing techniques [13-15]. 
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The broad motivation for this thesis is the computational obstacles encountered in forensic genetics, 

more specifically in family genetics, see Figure 1. It is convenient to make the following division, 

1. Models for population effects 

2. Models for pedigrees and family structures 

3. Models for observation levels effects 

The distinction between the first two points is not always easy as at some point we were all related, 

i.e. we all belong to a common founder or seen from another perspective, a giant pedigree. From the 

words of famous biologist Richard Dawkins; given an individual sufficiently long ago in time, either 

he/she is related to all now living individuals or none [16]. Nevertheless, for our purpose, we must at 

some point make a decision on where to put the limitation and what to model as something random 

from a population and what we like to incorporate into the pedigree. We will see that this is a topic 

recurring throughout the thesis and examples from each of the above mentioned points will be 

discussed. 

In order to fully explain the scope of this thesis and the papers we need to define some of the 

important concepts dealt with in forensic genetics. The selection herein is not complete as there are 

for example numerous population genetic effects that could be described. The topics are chosen 

such that they reflect the research conducted in the papers. 

 

Figure 1. Flowchart illustrating the position of Family genetics in the forensic field. 

1.1 Background 

As mentioned in the introductory text, the analysis of our genetic code, i.e. our DNA, has provided 

new insights into several fields; e.g. in medical genetics to find genes associated with certain 

disorders, in animal genetics to establish the inbreeding and the purity of species, in evolutionary 
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genetics to trace origins, and most importantly for this thesis, to establish the relatedness between 

individuals.  

1.1.1 Genetic markers 

The ground for the investigation of our DNA is the occurrence of genetic markers along the 

chromosomes [17, 18]. Genetic markers are defined as positions on the chromosomes that can be 

found in a majority of the population and where different variants can be observed. The degree of 

variation at a marker is known as its polymorphism. Consider, for instance, chromosome 1 in all 

individuals in the world. The first position on this chromosome may consist of an Adenine (A) base in 

60% of the individuals while the remaining 40% has a Guanine (G) base on the same position. This is 

called a genetic marker and the specific example illustrates a single nucleotide polymorphism (SNP). 

In forensic genetics, "variable number of tandem repeat" (VNTR) markers are often used. More 

specifically, short tandem repeat (STR) markers are most commonly investigated [19]. They consist of 

specific genetic sequences, e.g. AAGA, occurring with a certain number of repeats. The STR markers 

are favorable since they are usually highly polymorphic, i.e. there are a lot of variants better known 

as alleles [20]. This in turns makes it unlikely that two unrelated individuals share some alleles by 

chance, compared to, for instance SNP markers with only two alleles. In fact, for SNPs, the probability 

that two unrelated individuals share at least one allele identical by state (IBS) by chance is quite high. 

With the example frequencies given in the beginning, this probability can be calculated as                        

1-2∙0.62∙0.42≈88%. The utility of a genetic marker in a forensic application may be addressed using 

population genetic parameters such as typical paternity index, observed/expected heterozygosity 

and polymorphic information content [21]. 

One downside with STR markers is their scarcity throughout the human genome while SNP:s exist in 

great abundance [22]. Kling et al used a microarray chip [23] where 900.000 SNP:s were genotyped in  

a single reaction, while the current commercially available STR multiplexes amplifies maximally 24 

markers in one reaction [24]. New typing technologies, such as next generation sequencing [13], 

offers promising possibilities, not least sequencing of both STR markers and SNP:s, but will not be 

covered in this thesis. Indeed, obtaining the individual sequence of each STR allele cause an 

explosion of paths to explore for the biostatistical evaluations. 

Genetic markers can further be divided into autosomal and gonosomal markers. The latter is also 

known as sex specific markers and defines the gender of an individual. For the autosomal markers, 

we have 22 chromosome pairs, i.e. for each genetic marker we have two variants, one on the 

chromosome inherited from the mother and similarly one inherited from the father. Due to 

chromosomal abnormalities, e.g. duplication, some individuals may have three or more variants or 



5 
 

genes at a genetic marker. Possessing three variants, known as trisomi, is fairly uncommon, but is 

observed every now and then. These situations require special considerations that will not be 

included in this thesis. All individuals furthermore inherit one X chromosome from the mother and 

from the father either an additional X, specifying female gender, or Y chromosome, specifying male 

gender. It follows from this that Y-chromosomal markers are inherited directly between father and 

sons and can be used to trace paternal lineages, while the X-chromosomal markers have a more 

intricate inheritance pattern and is passed on between fathers and daughters while fathers and sons 

share no genes located on the X chromosome. The latter may be violated if other relations exists 

between the father and the son, e.g. through inbreeding.  

1.1.2 Likelihood ratio 

One of the most important statistical concepts in forensic genetics, and many other fields, is the 

likelihood ratio. A likelihood may be defined as 

( , ) ( | , )L H P Data H 

 

where we calculate the conditional probability of observing some Data given hypothesis H and some 

parameters φ, where the latter may be implicit. In relationship testing, H typically refers to some 

hypothesis about disputed relationship, such as paternity or non-paternity. For instance, we may 

specify 

 H1: An alleged father is the true father of a child 

 H2: A random man, not related to the alleged father or the mother, is the true father 

 of the child 

 
To compare different hypotheses we form likelihood ratios (LR:s), e.g.  

  

1

2

( | )

( |  )

P Data H Paternity
LR

P Data H Non paternity





 

We consider an introductory example (see Figure 2) where the alleged father is homozygous2 with 

alleles 12,12 and the child is heterozygous3 with alleles 12,18 while the mother is unavailable. 

(Similar notation will be used throughout the thesis.) 

                                                           
2
Homozygous means that an individual has inherited the same variant/allele from the mother and the father 

3
Heterozygous means that an individual has inherited different variants/alleles from the mother and the father 
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Figure 2. Pedigree describing a paternity case. Circles indicate females and squares males. Strikethrough 
means the genotypes for the indicated person for some reason are unavailable. 

The likelihood and the corresponding ratio would then be formed as 

( ) ( | )( | ) (12,12) (18) 1 1

( |  ) ( ) ( ) (12,12) (12,18) 2 (12)

AF C AF

AF C

P G P G GP Data Paternity P p
LR

P Data Non paternity P G P G P P p


     

where P(GAF) and P(GC) are the unconditional genotype probabilities of the alleged father and the 

child, while P(GC|GAF) is the conditional probability of the genotype for the child given that the 

alleged father is the true father. The joint probability for genotype x,y is denoted P(x,y) while the 

frequency of allele x in the population is denoted p(x). We see that following simplifications, the end 

formula depends solely on the frequency of allele 12, i.e. the allele shared between the alleged 

father and the child and can be interpreted as the probability that a random man has that specific 

allele. The paternity case, with variations, will be used in the following sections to exemplify the 

various concepts discussed. 

We may further combine prior information about the relationships to obtain posterior probabilities. 

The latter is attained using laws of conditional probabilities, in the present form known as Bayes 

theorem

 

( | ) ( )
( | )

( | ) ( )

j j

j

i i

i

P Data R P R
P R Data

P Data R P R



 

Where P(Rj | Data) is the posterior probability for relationship Rj and P(Ri) are the prior probabilities 

for the different hypotheses about relatedness. In many situations we use flat priors, i.e. 

P(R1)=P(R2)=…=P(Rn)=1/n, though in large scale accidents and database searches the priors can be 

adjusted to reflect the large number of comparisons and thus possible false matches, see Budowle et 

al for a discussion [25]. How priors should be specified is a discussion in its own and will not be 

covered in this thesis. Bayes theorem allows multiple hypotheses to be compared in a single 

framework, something which is not easily provided using likelihood ratios as described above. 

Norgaard et al [26] as well as Buckleton et al [27] provide ideas and approaches to a likelihood ratio 

framework when multiple hypotheses are considered. 



7 
 

1.1.3 Mutations 

Mutations constitute a particularly important topic in the field of forensic genetics. A mutational 

event is a situation bringing some change to the genome of an individual. It may occur on the 

somatic level, meaning that only the exposed individual will be affected, while it may also occur in 

the sex cells, resulting in a change that will be inherited to other generations. We are mostly 

interested in the latter as this could possibly spread in a population but also, and maybe more 

importantly in the current thesis, in a pedigree through the transmissions. There are several different 

causes for mutations, e.g. radiation, dysfunctional DNA repair enzymes, environmental factors. For 

STR markers, another mechanism for mutations is observed. The effect is commonly called DNA 

strand slippage error [28] and occurs during replication when the polymerase that duplicates the 

DNA slips, most likely due to the repeated structures of the STR markers, to produce a new variant 

with one (or more) repetition more or less than the original allele [20, 29]. The probability to observe 

a variant further away from the original allele, in terms of repeats, decreases fast. The process is 

illustrated in Figure 3. The slippage error is in fact quite common, compared to “normal” mutations, 

occurring in roughly >0.5% of all DNA replications. As a consequence, it is of paramount importance 

to model mutations when using STR markers in inference of relationships, not only in paternity 

testing but in general.  

 

 

Figure 3. Illustration of the stepwise mutation model. The numbers indicate STR repeats (alleles). 

Several models for mutations have been proposed, the simplest stating that it is equally probable to 

mutate to any other allele. A more reasonable approach is the stepwise model where we actually 

consider the alleles as repeats/steps [30-34]. In the basic stepwise model we define two parameters, 

the mutation rate μ, and the mutation range r. The first is the estimated overall mutation rate, i.e. 

the probability of observing a mutation while r is a parameter putting weight to different steps, i.e. 

how probable is one-step mutations compared to two-step mutations and so on. Mathematically, we 

define a mutation matrix M, consisting of elements mi,j, where the diagonal elements are the 

probabilities of not mutating and the other mi,j:s are the probabilities of mutating from allele i to 

allele j. We specify 

 (1 ),  if , i.e. the probability that an allele does not mutate.ijm i j    

14    15     16     17   18    19      20 
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| | ,  if ,  i.e. the probability to mutate from allele  to i j

ij im k r i j i j    

The rows must sum to 1 and therefore the normalizing constants ik  are determined by the 

constraints 
1

1
N

ij

j

m


 . 

To illustrate, consider the example where we have one marker with the set of alleles 

[12,13,14,15,16]. Table 1 then describes the elements of the stepwise mutation matrix M. 

 

Table 1. Description of a stepwise transition model for mutations. The inner elements contain the 
probabilities forming the mutation matrix M. 

Mutate to -> 12 13 14 15 16 

12 1-μ k1μr1 k1μr2 k1μr3 k1μr4 

13 k2μr1 1-μ k2μr1 k2μr2 k2μr3 

14 k3μr2 k3μr1 1-μ k3μr1 k3μr2 

15 k4μr3 k4μr2 k4μr1 1-μ k4μr1 

16 k5μr4 k5μr3 k5μr2 k5μr1 1-μ 

 

We may calculate for instance k1 as 1 2 3 4

1
k

r r r r


    

An extension of the stepwise model, also accounting for microvariants or intermediate alleles, e.g. 

12.3, is outlined by Kling et al and is implemented in the Familias software (described in Section 

1.3.1) [35]. The model introduces a second mutation rate (α) corresponding to mutations to 

intermediate alleles. We extend the above notation with 

 

 
 1 ( ),  if , i.e. the probability that an allele does not mutate.ijm i j      

 
| | ,  if  and if mutation from  to  is an integer stepi j

ij im k r i j i j  
 

 
 / ,  if  and if mutation from  to  is a non-integer stepij im N i j i j 

 

 

 Where Ni is equal to the number of non-integer mutations from allele i. Furthermore, for multi-

generation pedigrees, allele frequencies will change slightly due to the fact that pM≠p, where p is the 

vector of allele frequencies at any given locus, i.e. the resulting product when multiplying the allele 

frequency vector with the mutation matrix is not the allele frequency vector. In other words, adding 

untyped parents/founders of typed persons will change the results. To counteract this, we can create 

a stationary matrix S, based on M, where the above mentioned criterion is fulfilled, see Dawid et al 



9 
 

for further discussion and theory [30, 31]. One issue with the latter procedure is the fact that the 

matrix and its elements may change substantially, thus somewhat weakening the biological feasibility 

of the model. Further developments may improve the process of creating a stationary matrix, where 

the change, element wise, from the original mutation model is minimized. 

1.1.4 Silent alleles 

Silent alleles, also known as null alleles, are a subgroup of mutations where the primer binding site 

has a change such that no allele will be amplified by the PCR. The resulting profile is either 

homozygous or completely blank. As null alleles are estimated to be fairly uncommon, the latter is 

rarely observed, unless we consider haploid markers. In contrast, Kling et al [36] as well as Tomas et 

al [37] demonstrated that for the  X-chromosomal markers included in the Investigator Argus X12 kit 

(QIAGEN), the silent allele frequency could be as high as 10% in certain populations. Nevertheless, for 

commercially produced kits in general, several different primers are commonly included to provide 

redundancy and to minimize the risk of null alleles.  

The implication for the calculations is that we have to consider the possibility of a hidden allele, if an 

individual is genotyped as homozygous. In fact, also heterozygotes could have a silent allele given 

that he/she has a trisomi, but this can generally be neglected due to the rarity of such events to 

occur simultaneously. Consider a paternity case where the father is observed as having alleles 12,12 

while the child is 18,18. The resulting LR where we consider both mutations and silent alleles would 

be 

   
   

2

( | )

( |  )

(12,12) (12 18) (18) ( ) (12, ) 0.5 (12 18)( (18) ( )) 0.5 (18)

(12,12) (12, ) (18,18) (18, )

(12 18) (12) (12) (18) (12) ( ) (18) ( ) ( ) (18

P Data Paternity
LR

P Data Non Paternity

P t p p s P s t p p s p

P P s P P s

t p p p p p s p p s p s p

 

     


  

      

   

) (12) ( )

(12,12) (12, ) (18,18) (18, )

p p s

P P s P P s  

 

where P(12,12) is the probability of the father’s genotype and P(12,s) is the probability of the father 

having allele 12 and a silent allele, not observed in the data and with similar reasoning for P(18,18) 

and P(18,s) but for the child. The ( )t x y is a function describing the probability of a transition from 

allele x to y, and would be obtained from element mxy in the mutation matrix described in Section 

1.1.3. We further assume that no mutation can occur to or from a silent allele.  
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We see that if a mutation from allele 12 to 18 is improbable, compared to the probability of a silent 

allele, the formula reduces to 

   
( )

(12) 2 ( ) (18) 2 ( )

p s

p p s p p s  
 

Fixing p(12)=0.2 and p(18)=0.3 we can plot the LR as a function of p(s), see Figure 4. 

 

Figure 4. The LR for a paternity case with possible silent alleles. The frequency of the silent allele, p(s), is on 
the X-axis. 

As estimating p(s) is usually difficult, a number of different values of p(s) may be considered, see 

Gjertson et al [38] and the homepage of NIST for some estimates [39].
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1.1.5 Dropouts 

When dealing with low template (LT4) DNA, degraded or otherwise low quality samples we may 

observe dropouts. A dropout is defined as an event where the PCR fails to completely amplify one or 

more of the alleles. For diploid markers we use the term allelic dropout if one of the alleles is not 

observed and locus dropout if both alleles drop out, thus resulting in a blank profile. New 

technologies and kits to amplify and withstand challenging samples are constantly developed, but an 

established framework to deal with dropouts in kinship calculations has been lacking. Several papers 

have proposed solutions [40-42]. A method to deal with allelic dropouts was developed by Dørum et 

al [43] and has been implemented in the latest version of Familias [35]. Dropouts are similar to silent 

alleles in that there is something hidden, not observed, that we wish to model, though the statistical 

implications are different. Whereas a dropout is inferred from the quality of the profile and is 

something random, silent alleles are non-random and will be transmitted throughout a pedigree. 

Consider again the paternity case in Section 1.1.2, where the alleged father is homozygous 12,12 but 

the child is now heterozygous 17,18. Obviously a silent allele cannot explain the data as the child 

would then also need to be homozygous, disregarding other observation level effects. Instead, 

assume we suspect a dropout in the profile of the father. The LR, where we disregard mutations, can 

then be formulated as 

*

*

2

( ) ( | ) ( | )
( | )

( |  ) ( ) ( ) ( | )

(12,17) (1 )0.5 (18) (12,18) (1 )0.5 (17)

(12)(1 ) 2(17,18) (12,12)(1 ) (12, ) (1 )

j j j

j j

AF AF AF C AF

j

C AF AF AF

j

P G P G G P G G
P Data Paternity

LR
P Data Non Paternity P G P G P G G

P d d p P d d p d

p dP P d P x d d

  

  
 

     





d

 

where we sum over possible genotypes for the alleged father, GAFj, and where d is the probability 

that a single allele drops out. Dropouts are assumed to occur independently so the probability that 

both alleles in a homozygote drops out is d2. Furthermore, x denotes an allele different from 12. 

Dropout probabilities may be marker-specific, even profile specific, and may be estimated using a 

logistic regression model [44, 45]. The important point with the model for dropouts, described in 

detail in Dørum et al [43], is the conditional probabilities of observing the genotypes given the true 

(latent) genotypes, in this case given by the P(G*
AF|GAFj). Observe that for heterozygous genotypes we 

can model dropouts by stating that such an event has not occurred, obviously, with probability (1-d)2. 

In the formula above, modeling dropout for the genotype of child would cancel out as it would 

appear both in the numerator and the denominator. See Figure 5 for a graph of the above formula 

for some fixed values on p(12). 

                                                           
4
 In the current setting meaning low concentrations of DNA, e.g. <0.5 ng/µl 
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Figure 5. The LR for a paternity case with possible dropouts. The probability of dropout (d) is on the X-axis. 

1.1.6 Hardy Weinberg equilibrium and subpopulation correction 

From a larger perspective, there are a number of population genetic effects that could be modeled, 

see Balding for an overview [46]. In forensic genetics we may collectively combine several effects into 

one parameter known as kinship or subpopulation correction coefficient, typically denoted θ or Fst. 

To exemplify, consider some population frequency data. Due to inbreeding at the population level 

the data may require a correction of the allele frequencies. This is typically common in smaller 

isolated populations or when a general population is suspected to contain marriage between related 

individuals and will result in an excess of homozygotes. Other effects that may influence the allele 

frequencies include genetic drift, mutations and migration. 
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In a population where the allele frequencies obey the Hardy Weinberg equilibrium (HWE) the 

genotypes frequencies can be calculated as 

 

2 ,  if 

2 ,  if 

i j i

i j

p p p i j

p p i j

 


 

A model for subpopulation structure was proposed by Sewall Wright in the early 1940s [47]. This was 

further developed and adopted in a forensic setting by Balding et al [48, 49]. As described by Balding, 

we may consider the procedure of calculating allele frequencies as a sampling process using a 

Dirichlet distribution, see formula below 

(1 )
'

1 ( 1)

i i
i

n p
p

N

 



 


 
  (1) 

where p’i  is the updated frequency for allele i, θ is the subpopulation correction parameter, pi is the 

estimated frequency of allele i, ni is the total number of observations for allele i prior to sampling this 

allele and N is the total number of observed alleles prior to sampling this allele. For a complete 

derivation of the formula, see Section 5.3.2 in Balding [46]. We may use equation (1) to compute the 

genotype frequencies in a population where θ>0 as 

20 (1 ) 1 (1 )
(1 ) ,  for homozygotes

1 (0 1) 1 (1 1)

0 (1 )0 (1 )
2 2(1 ) ,  for heterozygotes

1 (0 1) 1 (1 1)

i i
i i

ji
i j

p p
p p

pp
p p

   
 

 

  


 

     
   

   

     
   

    
 

We see that if θ=0 the formulas reduce to the same as under HWE assumptions. We further note 

that for homozygotes the first term piθ can be interpreted as the probability that the two alleles in 

one individual are actually identical by descent (IBD). As pointed out by Balding, when testing for 

HWE commonly using an exact test, we may observe deviations even though HWE can be assumed. 

This is a consequence of the fact that we will always have finite populations and therefore deviations 

will always be observed. 

To better demonstrate the effect of subpopulation correction in calculation of likelihoods, we may 

visualize a pedigree in terms of founders and non-founders. Founders are defined as all individuals 

not having (defined) parents of their own, while non-founders can be defined as individuals with at 

least one (defined) parent. Founders, or rather the alleles of the founders, are the link between the 

pedigree and the population. For a pedigree with a large number of homozygous founders and a θ>0, 

allele frequencies will change significantly given that the founders have identical genotypes. In other 
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words, recurring alleles for founders would be more common in an inbreed population than 

otherwise. We can in fact illustrate the effect of θ on a simple paternity case. Consider genetic data 

where the alleged father is 12,12 and the child is 12,18. We may now write (ignoring at this point 

complexities as mutations, silent alleles, dropouts etc.) 

 

( | ) (Sampling two 12:s and one 18)

( |  ) 2 (Sampling three 12:s and one 18)

1 1 2

2 (1 ) (12) 2 2 (1 ) (12)
2

1 2

P Data Paternity P
LR

P Data Non Paternity P

p p



   



  


 

    
 

 

 

See Figure 6 for the effect of θ with different values of p(12). 

 

Figure 6. The LR for a paternity case with subpopulation correction. The value of θ is on the X-axis. 

As an interesting detail, in a population where all individuals are full siblings the subpopulation 

correction parameter would be 0.25, while in a population where all individuals are 1st cousins the 
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same value would be 0.125. This can be compared to values usually applied in statistical calculations 

ranging from 0.01-0.05. Details on methods for estimating the parameter can be found in Balding et 

al [46]. 

1.1.7 Inbreeding 

Inbreeding is a concept that relates closely to subpopulation correction, but is handled differently in 

the statistical calculations. To illustrate, we may consider the relationship between two individuals in 

terms of identical-by-descent probabilities (IBD). For any pair wise fully outbreed relationship we 

may write 

0 1 2( | ) ( 0 | ) ( 1| ) ( 2 | )P Data R P IBD R g P IBD R g P IBD R g         (2) 

where P(IBD=x|R)=kx is the conditional probability of two persons sharing x alleles identical by 

descent (IBD probabilities) given a relationship R, while the set [g0, g1, g2] are functions of allele 

frequencies depending on if 0, 1 or 2 alleles are IBD. See Table 2 for some examples of IBD 

probabilities for given relationships, and Hepler et al for a more comprehensive list [50]. 

Furthermore, using Table 2, we may deduce that g0, g1 and g2 in equation (2) correspond to the 

probabilities of unrelated, parent-child and identical twins relationships. 

Table 2. IBD probabilities for some pair wise relationships. 

Relationship (R) P(IBD=0|R)=k0 P(IBD=1|R)=k1 P(IBD=2|R)=k2 

Identical twins 0 0 1 

Parent-child 0 1 0 

Full siblings 0.25 0.5 0.25 

Half siblings 0.5 0.5 0 

Unrelated 1 0 0 

 

To account for inbreeding we must consider an extension of equation (2) where we may actually 

have 0, 1,2,3 or 4 alleles IBD. To specify 

9

0

( | ) i i

i

P Data R g


     (3) 

where the Δi are called the Jacquard coefficients and relates to different inheritance patterns [51]. 

Further, the gi:s  are still functions of allele frequencies. To illustrate, consider the example pedigree 

in Figure 7, illustrating two full siblings where the parents are in addition siblings of their own. 
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Figure 7. Illustration of an inbreed relationship where the parents of two full siblings are full siblings of their 
own. 

Given the hypothesis depicted in Figure 7 the Δ1, which represents the probability that the two 

individuals share two alleles IBD and in addition the alleles are in turn IBD to each other, is given be 

the events where the parents share one allele IBD (0.5) and this allele is transmitted to both siblings 

and where the parents share two alleles IBD (0.25) and one of these are transmitted to both siblings; 

 4 4 4 4

1 0.5 0.5 0.25 0.5 0.5 0.5       . Similar reasoning applies for the rest of the coefficients, 

further details may be found in the given reference [51]. 

It is now fairly easy to see the distinction between inbreeding and the subpopulation correction 

(coancestry). Whereas the former influence the IBD patterns as illustrated above, the latter would 

affect the gi in (3) by adjusting the allele frequencies. Similar to the wording in the introduction, 

inbreeding as discussed above deals with models within pedigrees while coancestry as discussed in 

Section 1.1.6, require models for population effects. 

1.1.8 Linkage 

Genetic linkage is the phenomenon occurring within a pedigree when alleles at different loci are 

inherited dependently, i.e. there is a dependent inheritance pattern. The cause of this occurrence is 

generally attributed to the physical proximity of loci on the same chromosome. In fact, this is a truth 

with some modification as linkage may actually be quite different for two loci separated by say 1000 

bases on one chromosome and two loci separated by the same distance on some other 

chromosome, i.e. it is dependent on other things than physical distance alone. One measure of the 

genetic distance is centiMorgan (cM), where 1 cM is very roughly equal to 1 million bases (Mb). Even 

more commonly, we denote linkage in terms of recombination fraction (crossover rate), r, where this 

fraction is the probability that two loci will crossover in any given meiosis (actually the probability of 
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any odd number of crossovers). The relation between cM and recombination fraction can be 

obtained from a mapping function. For instance, Haldane’s mapping function specifies 

2 /1001

2

de
r


  

relating recombination fraction, r, to the genetic distance d, measured in cM. The formula relies on 

the assumption that the pattern of recombination along a chromosome follows a Poisson process. 

The assumption is reasonable in calculation though interference, i.e. the occurrence of previous 

crossovers affecting the probability of a subsequent crossover, is not accounted for. 

To obtain a measure of the linkage between two markers, we may typically analyze larger extended 

pedigrees where haplotypes and their inheritance as units can be traced throughout the tree. For 

statistical considerations, linkage only affects transitions probabilities within a pedigree, and we 

generally require at least two meioses to observe an effect.5 As a consequence, random match 

probabilities will never be affected by linkage, unless the alternative hypothesis is for instance “My 

brother did it” [52]. In medical genetics, linkage is commonly used as a first step to screen for 

potential genes. It is a natural approach as linkage extends quite far, in theory all along the 

chromosome, while other means may subsequently be used to get a more exact position.  

Although described for relationship estimation, see e.g. Thompson [53], the forensic genetics field 

has been more hesitant to using linked markers. This could be due to the fact that no user-friendly 

implementations have existed. In addition, linked markers introduce more parameters and require 

complex models. In general, they may provide crucial information in some relationship cases [54-56]. 

Gill et al demonstrated that linkage should be considered whenever two or more meioses separate 

two typed individuals in a pedigree [57]. Furthermore, Kling et al provides simulations illustrating the 

effect on some common relationship scenarios [58]. One scenario, which is frequently illustrated, is 

the example involving the relationship hypotheses  

HUNC: Two individuals are related as uncle/nephew 

HHS: The two individuals are related as half siblings 

Consider two individuals P1 and P2 with genotypes 17,19 and 19,21 respectively, at a genetic marker 

and 14,15 and 15,17 respectively at a second marker. Using two unlinked autosomal markers we may 

use equation (2) and obtain LR=1 as both relationship hypotheses have the same IBD probabilities, 

                                                           
5
 It should be noted that this is a very crude rule 
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i.e. k0, k1 and k2 are equal for both relationships. On the contrary, considering the same two markers 

to be linked we get the formula 

   

   

   

   

2 2

0,1 0,2 1,2

2 2

1,1 0,2 1,2

3 2 2 3

0,1 0,2 1,2

2 3 3 2

1,1 0,2 1,2

0.5 (1 ) 2(1 )

0.5 2(1 ) (1 )( | )

( | ) 0.5 (1 ) (1 )3 3(1 )

0.5 3(1 ) (1 ) 3 (1 )
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 

    
 

       
 

      
 

 

Where gi,j=Pj(Data|IBD=i) are functions of allele frequencies given that i alleles are IBD for locus j. The 

terms including r may look complicated but is understood from the fact that for half siblings we have 

two meioses while for uncle-nephew we have three meioses. The first term is explained by the 

probability that zero alleles is IBD at the second marker given zero alleles is IBD at the first marker, 

which can be the consequence of two recombinations or none, r2+(1-r)2. Further, evaluating the gi,j 

we see that the LR will be a function of r, p(19) and p(15), i.e. the shared allele at each locus. Figure 8 

illustrates the LR as a function of r for some fixed values on p(19) and p(15). It is obvious that the 

recombination rate has an impact on the results, as different number of meiosis differs between the 

two hypotheses, although given the current data fairly small. 

 

Figure 8. The LR  in a case where the disputed relationships are half siblings and uncle-nephew. The 
recombination rate (r) is on the X-axis. 
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Using linked markers has, as previously indicated, generally been considered an obstacle in forensic 

genetics, while it can actually be turned into great advantage. As noted by Thompson [53], 

dependency tends to reduce the individual information contribution from each marker, but given 

that the alternative is to exclude linked markers from the calculations, including them is always the 

better option, assuming you have a model for the dependency. Their use will most probably play an 

even more important part in the future with the arrival of next generation sequencing technologies, 

inevitably leading to a greater number of markers and as a consequence dependency.  

1.1.9 Linkage disequilibrium 

Linkage disequilibrium (LD), also known as allelic association, is the non-random association of alleles 

at different loci. The concept should not be confused with genetic linkage, described in Section 1.1.8, 

which is the dependence between loci, although they are sometimes closely intertwined. To illustrate 

LD, consider two biallelic SNP markers with alleles A,a and B,b. The corresponding allele frequencies 

are pA, pa, pB and pb. We may now estimate the expected frequency of the combination of alleles A 

and B, i.e. the haplotype [A B], as pApB. Similar calculation may be conducted for the rest of the 

haplotypes, see Table 3. 

Table 3. Expected haplotype frequencies for two biallelic SNP markers. 

 A a 

B pA∙pB pa∙pB 

b pA∙pb pa∙pb 

 

In reality the haplotype frequencies may deviate from the expected, presented in Table 3, due to 

association between the alleles. We denote the observed haplotype frequencies with pA,B, pa,B, pA,b 

and pa,b. One common measure of LD is the correlation r, defined as 

,A B A B

A B a b

p p p
r

p p p p




 

where r or the square of r, is a normalized parameter measuring the difference between the 

observed and expected haplotype frequencies.
 

One of the most common causes of LD is close proximity of the markers. As little recombination 

occurs throughout generations, the haplotypes at the markers tend to be inherited as units. This will 

in turn lead to a deviation from the expected haplotype frequencies in the population. In theory, LD 

may extend across chromosomes though normally the phenomenon is expected to occur for much 
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shorter distances for markers located on the same chromosome. Whereas linkage, i.e. recombination 

fraction below 0.5, may typically be measured for any two markers located at less than 50 cM apart, 

LD is more common for alleles at markers located less than 1 cM apart. In addition to proximity, 

natural selection may be another cause of LD as possessing a specific allele may be beneficial to the 

survival of an individual and thus giving rise to association. 

Contrary to linkage, LD does affect all calculations, even random match probabilities. We may again 

illustrate using a simple paternity case where we combine the two effects. Assume the alleged father 

is 12,14 at the first locus and 18,19 at the second locus. Similarly, the child is 12,13 at the first locus 

and 17,18 at the second locus. The LR (assuming no mutations or other complications except linkage 

and LD) may be formed as 

 
  

( | )

( |  )

(13,18) 0.5 2 (12,18) (14,19)(1 ) 0.5 (14,18) (12,19)
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where h(x, y) is defined as the frequency of haplotype with allele x at the first locus and y at the 

second locus; r is the recombination rate. If we assume linkage equilibrium (LE), i.e. 

h(x,y)=p(x)p(y),the formula simplifies to 

 
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 
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where the final formula does not include the recombination rate (r). If, however, LE cannot be 

assumed, we see that the weight of the different haplotypes for the father is important and thus, the 

value of r will be important to the results. 

 

1.1.10 Simulations 

Simulation is a versatile tool in virtually any scientific field. Using some stochastic model of how we 

think the reality works we may randomly simulate data based on this model and subsequently 

compare the simulated results with real data. In this way we can vary different parameters and see 

how they affect the outcome and also if the model may be simplified. In addition, simulations may 

well be the only practical way of finding summary statistics and measures of uncertainty. 
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In forensic genetics we can think of several situations where simulations are applicable. We may, for 

instance, study the distribution of likelihood ratios (LR:s) for a given relationship case. The 

simulations are then fairly straightforward and rely on some population frequency data to simulate 

founder genotypes and mutation models to simulate transitions from founder alleles to non-founder 

alleles, also known as the gene-dropping method. Kling et al provides a more thorough description of 

simulations in the software Familias [35]. In another forensic software, Forensim, simulations are 

used to estimate dropout probabilities [59, 60]. Simulations may further be used to solve complex 

models and find approximate posterior distributions. This may be particularly interesting in large 

node networks and Markov chains, e.g. Bayesian networks in forensics [61].  

1.2 Computational methods 

As mentioned in Section 1.1.2, forensic genetics commonly require a formulation of the likelihood, 

P(Data|R, φ), where the parameters φ are implicit and we may write P(Data|R). While it may be easy 

to write down the equations, algorithms to compute numerical results are generally harder to 

develop. There are two main such algorithms currently implemented for computations of likelihoods 

in relationship inference, Lander-Green and Elston-Stewart, with numerous extensions and 

implementations [62, 63]. For the sake of the current thesis, a brief description of the essentials is 

helpful, while detailed description is provided in e.g. Ziegler et al [64]. It is important to note that the 

complete models used in medical genetics also describe probabilities for the connection between 

genes and disease status, while the current description will be restricted to likelihoods for postulated 

relationships. 

1.2.1 Elston-Stewart 

In 1970, Robert Elston and John Stewart proposed an algorithm to effectively compute the likelihood 

for genetic marker data given some hypothesis about the relationship for the involved individuals 

[62], see also Ziegler et al [64] and Cannings et al [65] for further discussion. The general algorithm, 

without conditioning on observed data, can be formulated as 

1 { , }

( ) ... ( ) ( | )
N

f o p

G G f o p

L H P G P G G    

Where [G1,…,GN] is the set of all possible genotypes for all individuals in a pedigree H, f is the 

founders of the pedigree and o is the non-founders, defined as all individuals having parents p in the 

pedigree, and whose genotype probabilities are conditional on their parents'. The parents may be 

founders or non-founders and in the current setting we allow an individual to have only one 

(defined) parent. The likelihood, L(H), only makes sense once we condition on observed data, where 

the set of possible genotypes [G1,…,GN], is commonly greatly reduced. Unless we consider 
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observational level errors, such as dropin, dropouts and genotyping errors, the observations reduce 

the set of possible genotypes to one for each typed individual. In addition, if we do not consider 

mutations, a great number of P(Go|Gp) will be zero, thus further reducing the set of possible 

genotypes. 

In the general formula, described above, we must iterate over all possible genotypes for untyped 

individuals which increase exponentially, even though we condition on the observed genotype data. 

To effectively handle large pedigrees a peeling process is implemented. The Elston-Stewart (ES) 

algorithm divides the pedigree into nuclear families, where the children of a parent in a nucleus are 

independent of the rest of the pedigree given the parent. Conditioning on the connecting nodes, the 

performance time of the algorithm grows approximately linearly in terms of the number of 

individuals. 

Consider the example in Figure 9, where the dispute concerns whether the two individuals denoted 

U1 and U2 are related to the Child as paternal uncles or not. The pedigree indicates two founders, 

the parents of U1, U2 and the Father. The mother of the Child, also a founder, can be peeled away as 

her data is absent and not relevant using the current example. The non-founders are U1, U2, Child 

and Father. 

 

Figure 9. Illustration of a deficient paternity case where the data of two uncles (U1 and U2) are available. 

The ES algorithm would typically start by calculating the likelihoods for the genotypes of the Father 

given the genotype of the Child. The possible genotypes for the Father contain all possible genotypes 

for the given marker. Given that we disregard mutations, the set is greatly reduced. The latter 

simplification, or other restrictions leading to fewer genotypes, may sometimes be necessary for 

extended relationships with several connecting nodes. The algorithm would continue by calculating 

conditional probabilities for the different genotypes of the Father given the uncles and their 
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relationship as full siblings. The final step is the summation of products of the conditional 

probabilities and likelihoods. 

The ES algorithm can generally handle large pedigrees but is restricted to outbreed relations in its 

original formulation. Cannings et al [65] extended the algorithm to handle inbreeding, however, 

inbreed relationships and loops in the pedigree causes problems in the peeling process and is 

generally not effectively handled. It is also apparent that mutations may cause intense computations 

with a large set of possible genotypes for connecting nodes. O’Connell et al [66] present details on 

how to combine some of the core points of the Elston-Stewart with details from the Lander-Green 

algorithm, described below, by implementing inheritance vectors within the nuclear families. 

1.2.2 Lander-Green 

Another algorithm was proposed by Eric Lander and Phillip Green in 1987 [63]. The algorithm uses 

hidden Markov chains to handle marker dependency (linkage). Markov chains are commonly used in 

statistics to model dependency problems. Given the value at a node in a Markov chain, all 

subsequent nodes are independent of previous nodes. For genetic markers this model is in fact an 

approximation as there may be interference for markers several steps away given that a 

recombination has occurred between two other markers. However, for practical purposes this may 

be used as an acceptable approximation in the calculations. The general Lander-Green algorithm for 

the likelihood can be formulated as 

1

1 1

2 1

( ) ... ( ) ( | ) ( | )
N

N N

i i i i

V V i i

L H P V P V V P G V

 

     

where we for a given pedigree enumerate all the possible meioses and those constitute the 

inheritance vectors Vi for each locus i. Furthermore, the algorithm contains the transition 

probabilities between states in the hidden Markov chain, P(Vi|Vi-1) as well as the probability of the 

genotypes given the current inheritance pattern, P(Gi|Vi). 

To illustrate, consider the pedigree of two full siblings (Figure 10) and data for two autosomal 

markers. The length of V is two as we have two markers and for each Vi  we have a vector of binary 

indicators, vj where j=1,...,J is a specific inheritance pattern. Each vj has four elements, each element 

taking either the value 0 or 1. The first element represents the first meiosis in Figure 10, denoted v.1 

and the value is 0 if the paternal allele has been transmitted and 1 if the maternal allele has been 

transmitted from the parent. The complete set of inheritance patterns for each marker is then 

enumerated as, [0 0 0 0], [0 0 0 1],…,[1 1 1 1]; in total 16 different patterns. Using the marker data in 

Figure 10, we only have to consider the reduced set of inheritance patterns where the two 
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individuals share one or zero alleles IBD for both markers, given that we disregard the possibility of a 

mutation. 

 

Figure 10. Pedigree describing a full sibling relationship where the parents are unavailable. The arrows 
indicate inheritance patterns. Genotypes are indicated with brackets for two different loci. 

We may now write 

1 2

2

1 2 1

1

( ) ( | ) ( | )i i

V V i

L P V P V V P G V


   

where we sum over the complete inheritance space, in the current example defined by V1 and V2 and 

their components. The probability P(V1) is the prior probability for each element of V1 and is simply 

1/Length(V1)=1/16. We continue by calculating P(V2|V1), i.e. the conditional probability of the current 

inheritance pattern in V2 given the current inheritance pattern in V1. This is typically a product of r 

and (1-r) representing the total recombination probability (also known as transition probability) 

between two inheritance patterns. For instance, given V1=[0 0 0 0] and V2=[0 0 1 0] the transition 

probability would be (1-r)3r.  

The last part of the formula is given by the conditional probability of the genetic data given the 

current inheritance patterns at V1 and V2. This is typically a product of allele frequencies. Using the 

marker data specified in Figure 10, we may actually calculate P(Gi|Vi) for the set of Vi:s at V1 and V2. 

The inheritance patterns indicating that the two siblings share one allele IBD, e.g. [0 0 0 1], 

P(G1|V1)=p(a1)p(a2)p(a3) and P(G2|V2)=p(b1)p(b2)p(b3) while for patterns indicating that they share 

zero alleles IBD, e.g. [0 0 1 1], P(G1|V1)=4p(a1)
2p(a2)p(a3) and P(G2|V2)=4p(b1)

2p(b2)p(b3).  

We see that if the pedigree is large and we have a large number of meioses the inheritance vectors, 

Vi , grow in size and also, as a consequence, the number of possible transitions between Vi and Vi-1 

will increase substantially. Various improvements have been proposed, including reduction of the 

inheritance space using founder symmetries [67, 68], Fourier transforms [69] and other strategies  

[70]. As a general rule of thumb, the complexity increases linearly with the number of markers but 

exponentially with the number of persons, i.e. the number of meioses.  

[a1, a2] 
[b1, b2] 

[a1, a3] 
[b1, b3] 
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1.2.3 Approximate methods 

Besides the two algorithms mentioned above, there are methods that implement approximate 

approaches instead of exact calculations. We may for instance use Monte-Carlo simulation to 

estimate the likelihoods [71, 72]. Approximate methods are not covered in this thesis but may be the 

solution to complicated cases where exact computations are not feasible and where the above 

mentioned algorithms fail. In theory, we may actually reduce the complexity of the calculations to 

scale linearly both in the number of markers and the number of individuals. 

1.3 Software 

There are a number of relevant software implementations that compute likelihoods for a set of 

individuals given some genetic marker data and hypotheses about relationships. For instance, freely 

available R-packages such as MasterBayes [73] and paramLink [74]. In addition several programs 

intended for linkage computations and calculation of LOD scores exist, e.g. Merlin, Vitesse, 

GeneHunter and Allegro [67, 75-77]. For forensic purposes we usually require more specialized tools, 

in the sense that results are easily visualized and minimal user knowledge is demanded. Moreover, 

these software implementations typically require a model to account for mutations, silent alleles and 

subpopulation structure. According to a study made by Poulsen et al [78], Familias [35, 79] was used 

by the greatest number of forensic laboratories, followed by DNAview [80]. 

Below is a list of tools, developed by the author of this thesis and relevant for some of the statistical 

evaluation required in forensic genetics. 

1.3.1 Familias 

Familias was originally developed by Egeland and Mostad in the mid 1990s [79]. Its importance has 

since increased and is now considered a gold standard in the forensic genetic field [78, 81]. The 

software calculates likelihoods for a set of persons with some genetic marker data and a number of 

mutually exclusive hypotheses, given population frequency data in combination with models for 

mutations, silent alleles and subpopulation structure.  

Familias implements a variant of the Elston-Stewart algorithm, described in Section 1.2.1. The 

implementation works by dividing the pedigree into parts using cutsets, where each part is 

conditionally independent of other parts given the connecting node(s) the cutset consists of. Familias 

implements a number of features, such as advanced mutation models, subpopulation correction and 

dropouts. As pointed out by Drabek, the software has lacked some functionality, asked for among 

users [81]. Recent developments by Kling et al [35] have led to several extensions and new features. 

For instance, users may now simulate data to find false positive/negative rates as well as 

distributions of likelihood ratios for a given set of genetic markers and some hypotheses about 
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relationship for a set of individuals. The simulation interface uses a gene dropping method, whereby 

the alleles of all founders in a pedigree are sampled from the population frequency database. The 

alleles for the founders are subsequently dropped down through the pedigree to all non-founders. It 

is in fact easy to account for several complications resulting from the need to model e.g. dropouts, 

subpopulation correction and mutations, by means of simulation as the complexity does not grow 

noticeably with the number of individuals or the structure of the pedigree. Familias now further 

includes a disaster victim identification (DVI) module, where users can easily compare large sets of 

unidentified remains with reference data from relatives of missing persons. Following larger scale 

mass disaster identification it is obvious that tools to determine the connection between unidentified 

individuals with relatives of missing persons are crucial. During the past two decades the use of DNA 

has increased as a primary means of identification. The first use was reported by Olaisen et al in the 

identification following a plane crash in Spitsbergen, Svalbard [82]. Recent examples include the 9/11 

WTC terror attack, the South Asia tsunami in 2004 and the Katrina hurricane [9, 11, 41, 83-85]. 

Moreover, Familias now has the ability to perform blind searches where a large dataset can be 

scanned to find a priori unknown relationships. This is particularly useful in DVI operations where 

unidentified individuals may actually be related. 

1.3.2 FamLink 

In response to an ongoing discussion in the forensic community of how to handle linked markers [57, 

86, 87], the software FamLink was developed [58]. The software uses the methods available in Merlin  

[75] to compute likelihoods. Briefly the software implements a variant of the Lander-Green algorithm 

using sparse binary trees to effectively speed up the calculations. One of the drawbacks of the 

software, from a forensic genetic point of view, is its lack of ability to model mutations. However, we 

argue that in many of the cases where linkage has an effect, mutations is not as relevant to account 

for. FamLink further implements a simulation tool where the user may study the impact of 

recombination on a given case. 

1.3.3 FamLinkX 

One of the most recent additions to the set of programs developed by the author of this thesis is 

FamLinkX. The software implements a completely new algorithm for genetic marker data on the X 

chromosome. In fact the algorithm, described in Kling et al [105] is general and not restricted to X-

chromosomal markers. Several papers have demonstrated that the commercial X-STR kit from 

Qiagen includes sets of markers where linkage disequilibrium is observed [36, 88-90]. Moreover, 

several marker kits, developed in-house, include a number of different markers located on the X 

chromosome. Due to the shortness of the chromosome, the markers are often linked. Given that no 

existing software could provide all the necessary features, a new model was developed, 
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simultaneously accounting for linkage, linkage disequilibrium and mutations. The model relies on 

similar ideas as presented by Kurbasic et al [91] but further implements models for mutations. The 

general utility of X-chromosomal markers is not discussed in this introduction but is rather covered 

elsewhere [88, 92-95].  

1.4 Object Oriented Bayesian Networks 

As an alternative approach to the commonly used software described above, developed as Windows 

based programs, Bayesian networks may prove useful [61, 96-101]. Bayesian networks rely on 

Markov properties where probability distributions for nodes in the network are updated as 

information is specified. Given specific values for a set of connecting nodes, subsequent nodes are 

independent of previous nodes. An introduction as well as examples in a forensic setting are given in 

Taroni et al [101]. 

A framework was developed by Kling et al [61] for some relationship scenarios accounting for 

linkage, linkage disequilibrium and mutations. However, as concluded by Kling et al, the complexity 

of these networks grow quickly and a general implementation remains to be constructed. We may 

use sampling methods to calculate approximate probability distributions and compute the likelihood 

ratio. The Bonaparte software uses Bayesian networks to compute likelihoods in relationship testing 

and is specifically adopted towards DVI operations [102], but does not account for linkage or linkage 

disequilibrium.  
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2 Paper summaries 

The papers in this thesis cover several computational problems the modern forensic scientist is or 

will be faced with. We start by exploring a promising new typing method, high density SNP 

microarrays, where we genotype more than 900,000 genetic markers on small chips. The theme 

continues in the subsequent papers where we describe and explore new statistical methods. 

The first paper (I) provides a broad motivation for the other papers as we demonstrate the necessity 

of the research conducted in the following papers (II, III, V and VI). Throughout the articles we 

illustrate the computational and statistical issues encountered when using closely located genetic 

markers. Hopefully this thesis and its papers will shed some light on possible approaches to resolve 

the problems and take advantage of the information inherent in such data. Whereas paper II 

explores a more experimental approach using object oriented Bayesian networks, papers III, IV and 

VI describe general implementations of methods to handle issues such as linkage and linkage 

disequilibrium. 

We further consider other issues connected to computational problems encountered in forensic 

genetics, e.g. mass disaster identification problems, simulations and models for mutations. Paper VI 

provides new developments for the forensic software Familias [35], implementing ideas to resolve 

the mentioned issues. 

Paper I: DNA microarray as a tool to establish genetic relatedness – Current 

status and future prospects  

There is an increasing interest in using a greater number of genetic markers as more distant genetic 

relationships are investigated [23, 56]. Paper I uses data from two extended families genotyped on a 

high density SNP microarray chip from Affymetrix. The chip includes more than 900,000 SNP:s, more 

or less evenly spread throughout the entire genome. Software such as Merlin [73] is commonly used 

in medical genetics to study linkage in genetic disorders, but has been less used in forensic genetics. 

This paper is one of the first to present the application of the software on real high density marker 

data to calculate likelihoods for extended relationships in that setting. Previous studies have 

investigated the use of large sets of markers on simulated data [55], however importantly, as the 

present paper demonstrates there is an obvious deviation between real and constructed data. The 

latter is explained by the population genetic phenomena known as linkage disequilibrium, or allelic 

association. Whereas this can be simulated, no good algorithm to handle the implications in the 

statistical calculations has been proposed, though one approach is presented by Abecasis et al [103]. 
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In summary the paper outlines the general utility of using large numbers of linked genetic markers to 

solve extended and complex relationships. Moreover, it motivates many future projects. 

Paper II: Using Object Oriented Bayesian Networks to model linkage, linkage 

disequilibrium and mutations between STR markers  

The second paper focuses on Object Oriented Bayesian Networks (OOBN) as a tool to model 

dependency between markers and alleles [61]. Bayesian networks embody the central concept of 

Markov chains where one node is independent of the rest of the network given the connecting 

nodes. The paper presents a graphical network created in the software Genie [104], a free tool to 

visualize networks and easily modify values thereby obtaining the posterior distribution for all other 

nodes. As an example, the paper uses real data from two STR markers, adopted in regular forensic 

casework, where dependency between the markers (linkage) and association between alleles 

(linkage disequilibrium) had been suggested [57, 86]. Subsequent papers demonstrated that the 

latter could be ignored while the former should be accounted for in statistical calculations. The paper 

concludes that, although easy to present, the presented model suffer some drawbacks. For example, 

the network experiences computational problems when calculating the exact posterior distribution 

for a network given some nodes when a large number of alleles is present, e.g. a typical issue with 

polymorphic STR markers. Solution for the mentioned difficulties are suggested though a general 

implementation is not presented and the final conclusion is that OOBN:s may be used for research 

purposes. 

Paper III: FamLink – A user friendly software for linkage calculations in family 

genetics 

As an alternative to the framework presented in Paper II, the paper adapts the functionality and 

algorithm presented in the software Merlin [75]. Building on the existing computational core, 

FamLink provides a graphical user interface aimed at forensic users with the interest of calculating 

likelihoods or simulating linked genetic markers [58]. The paper considers some theoretical 

approaches to validations and simulations demonstrating the utility of FamLink on a number of 

cases. The software has since its release been used by a number of laboratories. 

Paper IV: A general model for likelihood computations of genetic marker data 

accounting for linkage, linkage disequilibrium and mutations  

The fourth paper builds on the ideas presented particularly in Paper II by presenting a general model 

to handle dependency between genetic markers in likelihood computations [105]. Similar to the 
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Lander-Green algorithm this new model relies on Markov chains to handle dependency between 

markers while also including a second multistep Markov chain to handle dependency between alleles 

across markers. In addition the model can handle data with genetic inconsistencies, i.e. mutations 

and is therefore specifically suited for forensic purposes. A detailed implementation of the algorithm 

is described for X-chromosomal marker data. X-chromosomal markers have for a period of time been 

of great interest in the forensic community [88, 92-95] due to their ability to provide information in 

several cases where autosomal markers fail. For instance, two half siblings may ask whether they are 

maternal or paternal half siblings; something which is undistinguishable with autosomal markers. 

The paper further continues by demonstrating the utility of the implementation using simulated data 

as well as some real examples. In summary, the software provides means to solve cases where no 

previous methods or implementations appear adequate. 

Paper V: Familias 3 – Extensions and new functionality 

Familias is a software for calculating likelihoods for genetic marker data given some hypotheses 

about relatedness for a set of persons [79]. The software has long been considered a gold standard in 

the forensic community, but has lacked some desired functionality [81]. This paper focuses on the 

new version, with user requests in mind, still keeping the computational core. The new version 

includes the possibility to handle disaster victim identification (DVI) operations and missing person 

databases, where large number of unidentified remains is compared against large numbers of 

reference families. In addition users may now use Monte-Carlo simulations to find distributions of 

likelihood ratios for any given case. This is particularly interesting in case work, as laboratories may 

now find out if planned case data is likely to result in sufficiently strong results, i.e. a high likelihood 

ratio, given the number of genotyped persons. Furthermore, the paper presents a new mutation 

model dealing with the increasing number of microvariant alleles. In summary the new version 

presented in the paper provides several new features while still preserving old functionality. The new 

version of Familias, freely available at www.familias.no, has been developed and coded by the author 

of this thesis. On a mathematical note, observant readers may note that the mutation 

parameterization presented in Section 1.1.3 for the extended stepwise model differs from that 

presented in Paper VI. A small change has been made, presenting a slightly updated notation herein, 

to obtain a more consistent model. 

 

 

http://www.familias.no/
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Paper VI: FamLinkX – Implementation of a general model for likelihood 

computations for X-chromosomal marker data 

The sixth paper presents a validation of the software FamLinkX. The program implements the model 

outlined in Paper IV for X-chromosomal marker data. The paper provides ideas to validate and 

confirm results when using the software to calculate likelihoods. This includes some theoretical 

considerations as well as simulations and a discussion on choice of parameters. Validation is in 

general not as straightforward as in other similar programs implementing exact computations, e.g. 

Familias and Merlin [35, 75, 81]. Although the calculations in FamLinkX are exact, several parameter 

choices can influence the results considerably. The simulations provide an idea of the general power 

of X-chromosomal markers in some common cases in forensic genetics. 
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3 Discussion 

Using DNA to solve cases of disputed relationships has proven to be a truly valuable tool in many 

different scenarios. It may be as simple as a paternity case, where a child (or mother of a child) 

desires to find the true, unknown, father. More complicated cases, where distant relatives are 

investigated also are more and more common, definitively facilitated with the arrival of high density 

microarrays and next generation sequencing technologies [13, 23, 55]. It has become increasingly 

common to send saliva or blood samples to companies that may conduct such analyses for only 99$, 

e.g. 23andMe [106] and FamilyTreeDNA [107]. This is actually much cheaper than what many of the 

current forensic laboratories charge for a common paternity case and the potential, in terms of 

relationship analysis, based on the raw data obtained from the mentioned companies is almost 

unlimited. Kling et al investigated potential limits when analyzing distant relationships with high 

density SNP data [23], though new methods may extend the boundaries for what relationships can 

be accurately established using genetics. A noteworthy point, as mentioned in Kling et al, is that 3rd 

cousins only share on average 0.78% of their autosomal genetic material and the same value for two 

unrelated individuals was found to be 0.34% in the large HAPMAP project [22].  

Furthermore, DNA has in recent years been crucial in the identification process following large scale 

disasters, e.g. the hurricane Katrina, the South Asia tsunami and the 9/11 WTC terror attack [9-11, 

41, 83, 85]. We can in fact use information from other sources to update the prior probabilities in our 

Bayesian model. In combination with the genetic data we may provide a statistical statement as to 

the identity of an individual, something that other means of identification cannot generally do. For 

instance, fingerprinting and dental records generally rely on subjective opinions, even though 

statistical results may sometimes be produced. 

Whereas much has been done since the introduction of genetic markers to solve disputes of 

relationships in forensic genetics, there are still a number of computational issues to be resolved; not 

least is to find good models for linked genetic markers. Approaches to handle linkage are well 

established and commonly implemented in medical genetic studies [67, 75, 76, 108, 109]. The 

implementations generally use the Lander-Green algorithm where markers are modeled as nodes in 

a Markov-Chain. Though sufficiently well adopted in medical genetics, forensic genetics usually 

require more extended models where mutations are also accounted for; The latter is derived from 

the fact that STR markers are commonly used [19, 20, 29, 110, 111]. It may also be a consequence of 

the fact that the Elston-Stewart algorithm is implemented in the commonly used forensic statistical 

software and this algorithm is not easily extended to efficiently account for a greater number of 

linked markers. 
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Within the scope of this thesis we have also developed a new mutation model, based on the step-

wise transition model [29, 34]. The model has been well studied and is based on the fact that, for 

tandem repeat markers, mutations tend to depend on the repeat number, both in terms of the 

probability of mutating away from a marker and also, and perhaps most importantly, where we 

mutate to. We extend the model to also account for microvariants, also known as intermediate 

alleles, placed between distinct tandem repeats, i.e. 9.3 containing 9 repeats and three extra bases. 

From a mathematical point of view, the model we present is not stationary, i.e. the allele frequencies 

will change over time or in multi-generation pedigrees. This is a fact that is not disputed in 

population genetics, though in situation of calculating likelihoods this has the unwanted 

consequence of affecting the probabilities when introducing untyped persons in a pedigree. We are 

aware of developments, currently undertaken, to present a general method to create stationary 

mutation matrices based on any non-stationary ones. 

In summary, this thesis and its papers provide research and solutions to some of the current core 

problems in forensic genetics, 

1. Some of the problems and potentials with using high density genetic marker data are 

explored. 

2. Means to compute likelihoods for linked autosomal markers are provided.  

3. A new improved mutation model, accounting for microvariants, is described. 

4. Methods to account for dropouts. 

5. A new model to compute likelihoods for X-chromosomal markers, accounting for linkage, 

linkage disequilibrium and mutations, is described. 

6. For each method, an implementation, easily and freely accessible to forensic scientists is 

provided. 

As mentioned in the introduction, the genetic field involves a myriad of different subfields and family 

genetics, as discussed in this thesis, is only a small branch. However, in addition to the applications 

presented herein, the methods and approaches in the papers may have a wider use. For instance, 

some of the algorithms may be extended to medical genetics by including models about disease 

status. The Familias software, as introduced in Section 1.3.1, may further be adopted in the Criminal 

genetics field, see Figure 1, e.g. through familial searching6. 

                                                           
6
 The concept familial searching has not been discussed in this thesies, briefly the concept deals with the search 

for relatives of an unidentified trace/stain in  a database of convicted offenders.  
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4 What is next? 

As mentioned in the discussion, there is an ongoing debate on the implementation of next 

generation sequencing technologies in the forensic genetics community. An argument for not 

introducing new markers has been the large databases existing for the current STR markers. It can 

easily be counter argued that the new typing technologies will most likely involve biallelic SNP 

markers where large databases are no longer necessary. I personally think that current typing 

methods will remain for a while, as they are well established and provide reliable results. At the same 

time, I do think the forensic community is obliged to adopt the new techniques and begin to use 

them more eagerly, as there will otherwise be more and more private, non-forensic, laboratories 

offering the services, which in theory can provide much more information about relatedness. These 

companies, and the research, is driven by profit and therefore dependent, non-autonomous. In my 

opinion, independent research is needed to achieve progress beyond mere product developments. 

The thesis has provided the forensic community with description and implementations of various 

software. The goal has been, if not revolutionize, to provide great progression. The future certainly 

holds a great deal of development and maintenance of the programs, but due to shared functionality 

between the pieces of software, some synergy effects can be exploited.  

Finally, I have, during the thesis, provided education, free-of-charge both in collaboration with the 

EUROFORGEN7 initiative and on other occasions. These commitments will most probably continue 

following the closure of this thesis. 

                                                           
7
http://www.euroforgen.eu/ 
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1. Introduction

In the past decades, the use of DNA has revolutionized many
fields of research. It still remains the most important tool to trace
genetic relationships, both in forensic casework and in clinical
research. In medical research it is often crucial to accurately
establish the relationships between the individuals participating in
a study. In genetic association studies, unknown kinship between
cases and also between controls, or even between these two
groups, may give rise to false associations [1,2]. Also in linkage
analysis the results can be seriously biased as a consequence of
unknown relationships between pedigree founders [3].

In forensic casework, DNA can be used in crime scene
investigations to find or exonerate a perpetrator. In paternity
testing, the conventional problem is to determine whether a man is
the biological father of a child. DNA analyses can also provide
evidence todetermine a disputedrelationshipmore distant than first
generation relatives. In particular, immigration cases often present
genetic relationships where current forensic genetic methods do not
produce sufficient evidence [4]. In forensic genetics, the choice of
markers is at present mostly limited to short tandem repeats (STRs);
genetically due to their high variability and their ability to provide a
high power of discrimination; technically due to their suitability for
multiplex PCR analyses. However, one of the disadvantages when
using STR-markers is their high mutation rate. In addition the
multiplex assays are often limited to 16–20 markers [5,6]. The use of
single nucleotide polymorphisms (SNPs) has recently received some
attention in the establishing of genetic relatedness. In the forensic
field, the SNPforID Consortium has established a set of SNPs which
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In the past decades, microarray technology has definitely put an edge to the field of genetic research. Our

aim was to determine whether single nucleotide polymorphism (SNP) microarrays could be used as a tool

in establishing genetic relationships where current molecular genetic methods are not sufficient. We used

the Genechip, Affymetrix GenomeWide SNP Array 6.0, which detects more than 900,000 SNP markers

dispersed throughout the human genome. The intention was to find a good selection of SNP markers that

could be used for statistical evaluation of relatedness in a forensic setting. We conducted pairwise

comparisons in the R-package FEST as well as pedigree comparisons in Merlin. Our methods were applied

on two separate families, where relationships as distant as 3rd cousins were known. In addition, a question

about a possible common ancestry between the two families was tested. Relationships as distant as 2nd

cousins could be readily distinguished both from unrelated and other, genetically, closer relationships. This

was achieved with a selection of 5774 markers, where each pair of markers was separated by a genetic

distance of at least 0.5 cM (centiMorgan). When considering 3rd cousins, and more distant relationships,

the number of markers needs to be extended, consequently decreasing the genetic distance between the

markers. However, inclusion of a too large number of markers presents new challenges and our results

imply that the use of too dense sets of markers always yields the highest probability for the genetically

closest relationship hypothesis. Simulations confirm that this is most probably caused by the fact that the

computational model assumes linkage equilibrium between markers, a problem that will be further

evaluated. Our results do however suggest that SNP-data derived from microarrays are well suited for

kinship determination provided linkage disequilibrium is properly accounted for.
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performs sufficiently well to be used in court cases and can be
multiplexed in one PCR reaction [7–10]. SNPs possess several
advantages, which make them favourable when establishing
complex or distant relationships. For one, they have a very low
mutation rate, approximately 10�8 [11]. In addition, they can be
analyzed in short amplicons and are generally easy to multiplex.
Furthermore, there is an abundance of SNP markers to choose from in
the human genome; The most recent paper from the HapMap project
shows a map of 3.1 million of SNPs in the genome and the expected
total number are 9–10 millions [12]. However, single SNPs provide
very little genetic information, since they mostly are biallelic. The
shortage of information can, however, be counteracted by analysing
a larger number of markers. SNPs can be massively typed on high-
density microarrays, such as the Genechips produced by Affymetrix
or the HumanMap chips provided by Illumina, and have been
extensively used in medical genetics [13]. A great number of markers
is crucial in cases of distant relationships. The use of the standard STR
markers, as well as a small set of SNP markers and a set of VNTR
(Variable Number of Tandem Repeat) markers will not be enough
[14]. Although easy to accomplish, the use of a larger number of
markers presents challenges for the computational model used to
distinguish between alternative pedigree hypotheses.

Different algorithms can be used for the purpose of calculating
likelihood for a given pedigree and genotype data. They all share
certain characteristics and the choice of which one to use is mainly
depending on the number of markers and the number of individuals,
see Gao et al. for a review [15]. One such algorithm is the Elston–
Stewart algorithm [16,17], which can be described as a peeling
algorithm and peels in the direction of individuals. This means that the
calculation is only linear in the number of individuals. In contrast, the
Lander–Green algorithm allows for a linear increase in the number of
calculations to the number of markers [18]. The algorithm is
implemented in the software Merlin, the main software used in this
study [19]. The drawback is that both algorithms grow exponentially
in one direction. In other words, the Elston–Stewart algorithm is
capable of handling large pedigrees, but little genotype data, perhaps
100 markers, while the Lander–Green algorithm can handle hundreds
and thousands of markers but only approximately 25 individuals in
each pedigree. Besides this, the most prominent challenge, for any
model, is to take genetic linkage and linkage disequilibrium (LD)
properly into account. Genetic linkage has been shown, in simulation
studies, to provide conclusive information in cases of relatedness
[20,21]. The Lander–Green algorithm is able to take linkage into
account, but assumes linkage equilibrium (LE). Therefore measures
were taken to avoid the influence of LD, mainly by setting a minimum
distance between the chosen markers, but also by using different sets
of markers; see Supplemental Fig. S2 for a more thorough description

of the selection procedure [15,19]. In addition an evaluation of
possible LD for each selection of markers was carried out in PLINK [22].

In this study, we wanted to investigate if data from thousands of
SNP markers could be used to resolve distant relatedness issues.
For this purpose we used DNA from individuals representing
different relationships known a priori and selected SNP-data
derived from microarrays. We also applied our findings on a case of
genealogy with a presumable half 1st cousin relationship.

2. Materials and methods

2.1. Sample data

Nineteen blood samples were collected from two families, Figs. 1
and 2, each presenting a wide selection of a priori known
relationships, e.g. parent–child, grandparent–grandchild relations,
full siblings, 1st cousins, 2nd cousins and 3rd cousins and uncle–
niece. These known relationships were used to ascertain the validity
of the statistical calculations as well as to establish which relation-
ships could actually be determined. Finally, data from all tested
individuals were used to establish whether or not the two families
were related two generations back. Allele frequencies from 60
unrelated Swedish individuals were used as a reference population.

2.2. Simulations

Data were also simulated to further investigate the impact of
linkage disequilibrium for different marker densities. The simula-

Fig. 1. Large Family. The pedigree describes a large family where relationships as distant as 3rd cousins were known. The question mark denotes an unknown paternal

ancestor. Samples were drawn from the individuals marked with green.

Fig. 2. Small Family. The pedigree describes a small family where relationships as

distant as 1st cousins were known. Samples were drawn from the individuals

marked with green.
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tions were performed using FEST [20] where founder haplotypes
with markers in linkage disequilibrium were drawn using the R
package hapsim [23]. We used allele frequency information and
LD data for chromosome 22 derived from HapMap for the CEPH
(Utah residents with ancestry from northern and western
Europe) population. To convert physical map distances (bp) to
genetic map distances (cM), we used the Rutgers Combined
Linkage-Physical Map of The Human Genome [24]. The following
Bayesian approach was adopted; first, a true relation was drawn
using a flat prior. Second, genotypes were simulated given the
true relation: first the founder haplotypes assuming LD, then the
genotypes of the descendants. Third, posterior probabilities were
computed for each hypothesized family relation using Merlin.
For each given marker density, these steps were repeated 5000
times, and then the posterior probabilities were averaged. Note
that, if the likelihood computations were correct, the expected
value of the posterior should equal the prior. This fact follows
from E[P[M = k|G]] = E[E[1k(M)|G]] = E[1k(M)] = P[M = k], where M

is the family relation and G the genotype data. A bias in the
averaged posterior probabilities, by not taking LD into account,
would then be apparent as a deviation from the prior
probabilities.

2.3. Microarray analysis

DNA was extracted as described by Lindblom and Holmlund
[25]. The DNA concentration was quantified with Nanodrop
(Thermo Scientific, Wilmington, DE, USA) and adjusted to 50 ng/
ml prior to the microarray assay. Samples were analyzed on the
Affymetrix GenomeWide SNP Array 6.0 (Affymetrix, Santa Clara,
CA, USA) according to the manufacturer’s protocol.

2.4. Selection of markers

The raw data was analyzed in the software Genotyping Console
version 4.0 (GTC), supplied by Affymetrix. From the original
900,000 markers, different selections of autosomal SNP markers
were made. The selection criteria included minor allele frequencies
(MAF), minimum distances between two neighbouring markers as
well as Hardy Weinberg p-value for each marker (see Supplemen-
tal Fig. S2 for a graphical explanation of the selection procedure). In
addition to the previously mentioned criteria, a subsequent
evaluation of the LD between selected markers was carried out
in PLINK. Two different approaches to evaluate the presence of LD
were used. First computation of pairwise r2 values between each
SNP and the 100 most proximally located SNPs. For each selection
of markers, the fractions of pairwise r2 values above a ‘‘limit’’
(limit = 0.1; 0.2; 0.3; 0.5; 0.8) were calculated. Second, we searched
for the presence of haploblocks that can be defined as a cluster of
closely located SNPs in strong LD [26]. The number of haploblocks
was estimated from the ‘‘haplotype block estimation’’ option in
PLINK [22]. This estimation uses the algorithm published by
Gabriel et al. [27].

A more complex selection procedure could possibly account for
information content, as described by Krawczak et al. [28]. This
paper describes a formula which can be used to address the issue in
paternity cases. However, we consider more general pedigrees
using linked markers and therefore these measures of informa-
tivity cannot be used.

2.5. Statistical calculations

Likelihoods for the hypothetical pedigree structures were
obtained from the software Merlin [19]. In addition the R-package
FEST, which provides a front-end user interface to Merlin, was used
to perform simple pairwise comparisons between individuals [20].

FEST lets the user include certain predefined hypotheses in the
analysis. There are three different simple types of pairwise
relationships: (1) S–n–m – the sharing of two common ancestors
n and m generations back, (2) HS–n–m, the sharing of one common
ancestor n and m generations back. When n = m, we abbreviate to
S–n and HS–n. Finally (3) PC–n denotes a parent–child relationship
spaced by n generations. FEST was used due to its relative ease with
which it allows the user to calculate the likelihoods for a large
number of alternative hypotheses. In addition FEST provides an in-
built thinning procedure for genotype data. However, FEST has
some constraints. Firstly, pedigree structures with inbreed loops
and marriage loops are impossible to specify in terms of simple
pairwise relationships. Secondly, inclusion of genotypes from more
than two individuals in each analysis is impossible, which might be
necessary in distant relatedness cases.

The likelihoods, obtained from Merlin and FEST, were converted
to posterior probabilities according to a Bayesian approach using
flat priors. An in-house software (freely available from the
corresponding author), was used to perform extensive tests in
Merlin. In this study three different minor allele frequencies were
tested; 0.2, 0.3 and 0.4. For each minor allele frequency, 10
separate analyses were performed based on different minimum
distances between selected markers. The minimum distance was
evenly spaced between 0.05 and 2 cM, yielding approximately
49,000 and 1800 markers respectively. The numbers vary slightly
depending on which minor allele frequency was chosen. In
addition, for each minimum distance and MAF, three separate
selections, not including the same SNPs, were made in order to
minimize the possible influence of linkage disequilibrium.

2.6. Genotyping errors

Genotyping errors may have an impact on the calculations
[29,30]. A study was undertaken to establish the degree of
genotyping errors. One control sample was typed eleven
consecutive times and approximately 4000 markers, approxi-
mately 0.4% of the original 900,000, were excluded from all
analyses due to overrepresentation of inconclusive results. This is
an ad-hoc solution that requires further development for future
applications, possibly by inferring an error frequency and
implementing this into the statistical model. One example of a
model accounting for genotyping errors is provided by Epstein
et al. [31].

3. Results

3.1. Pairwise comparisons with known relationships using FEST

Using different sets of markers, pairwise relationships were
shown to yield high posterior probabilities for relationships as
distant as 2nd cousins (Tables 1 and 2). In Table 1, the calculated
posterior probabilities are shown based on a selection of 5774
markers for six known relationships. The first row contains the
true relationships; S-1 denotes full siblings, S-2 full cousins, S-3
full 2nd cousins, S-4 full 3rd cousins, while HS-1 denotes half
siblings, HS-2 half cousins and PC-2 a grandfather–grandchild
relationship. Table 2 shows the results where instead a selection
of 12,453 markers was used to calculate likelihoods (the number
of comparisons included to calculate the averaged posterior for
each true relationship depends on the available data, see
Supplemental Table S1). When calculating the posterior proba-
bility for a 3rd cousin relationship, see S-4 Tables 1 and 2, the
highest probability achieved was 0.9991 in favour of the true
hypothesis, with a selection of 12,453 markers. Although
sufficient to establish the 3rd cousin relationship, comparing
two unrelated individuals only yielded 0.64 in favour of the
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unrelated relationship, see Table 2 and the comparison denoted
Unrelated 2. Inclusion of a large number of markers revealed to
always favour the genetically closest relationship, also when
unrelated was the true relationship. The threshold value, when
this phenomenon starts to occur depends on which relationship is
tested. As a rule of thumb, when testing relationships closer than
2nd cousins, more than 20,000 SNP markers should not be
included to obtain reliable results. See Fig. 3(a)–(c) which describe
an approximate threshold for three different relationships, S-2, S-
3 and unrelated.

3.2. Pairwise comparisons with ‘‘unknown’’ relationships using FEST

The question whether the two families in Figs. 1 and 2 were
related to each other was first examined with FEST. Pairwise
comparisons between the individuals in the third generation, i.e.
3a/3b/3c/3d/3e/3f and 3h/3j/3l/3n, Figs. 1 and 2, were performed.
The following hypotheses were included, unrelated, half 1st cousins

(HS-2) and full 1st cousins (S-2). Table 3 shows an extraction of the
results with various selections of markers. All comparisons yielded
high probabilities for the two families to be unrelated.

3.3. Comparisons with ‘‘unknown’’ relationships using Merlin

We tested alternative hypotheses for the unknown relationship
between the two families in Figs. 1 and 2, including data from all
typed individuals in the third generation. All tests, independent of
marker selections, revealed high posterior probability for the
unrelated hypothesis (Table 4). The hypotheses tested assumed,
however, that the individuals in the family in Fig. 1 were full-
cousins. Separate tests also confirmed this relationship (see
Supplemental Table S2 and Fig. S1).

3.4. Evaluation of linkage disequilibrium using PLINK

For each selection of markers we performed pairwise LD
evaluations in PLINK. We tested for LD between markers
separated by less than 100 SNPs, which roughly means comparing
markers located less than 50 Mb apart, in a selection of 5774
markers. Of course this distance depends not on the number of
markers but on the minimum distance chosen between two
selected markers, e.g. choosing markers separated by 0.1 cM
yields a distance of roughly 10 Mb. Table 5 describes the results for
a selection of marker sets. Evidently, selecting markers located
0.05 cM apart, roughly 29,200 markers, yields a higher percentage
of r2 values above 0.5, while in a selection of 5800 markers, the
number is considerably lower. Also, r2 values above 0.3 are
comparatively rare in the latter selection. Furthermore, Fig. 4
describes the relation between number of markers and the
number of haploblocks. According to the estimation the depen-
dence is approximately exponential, meaning that choosing more
markers will yield an exponential increase in the number of
haploblocks, i.e. markers in tight LD.

3.5. Simulations using FEST

Table 6 summarizes the simulation results, based on genotype
data from chromosome 22, where we consider the hypotheses full
cousins (S-2), half cousins (HS-2) and unrelated. We see that by
reducing the distance between markers, the averaged posterior
probability is shifted progressively towards full cousins, the
genetically closest relationship. These results are in concordance
with our experience for real data (see also Supplemental Table S3
where the same simulations have been conducted without
accounting for LD).

Table 2
Posterior probabilities for each tested relationships, based on 12,453 SNP markers (markers separated by at least 0.25 cM). A Bayesian approach with flat priors has been used

to calculate posterior probabilities.

True relationship S-1 S-2 S-3 S-4 PC-2 Unrelated 1 Unrelated 2

S-1 >0.99999 <0.00001 – – <0.00001 – –

HS-1 <0.00001 0.0002 – – – <0.00001 –

S-2 <0.00001 0.9998 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 – <0.00001 – – – <0.00001 –

S-3 – <0.00001 >0.99999 – – 0.0017 –

PC-2 – – – – 0.99998 – –

S-4 – – – 0.9991 – – 0.36

Unrelated <0.00001 <0.00001 <0.00001 0.0009 <0.00001 0.9983 0.64

The true relationships in the first row and corresponding probability in bold. A hyphen in a specific row means exclusion of the relationship as an alternative hypothesis. S-1

means full siblings, HS-1 half-siblings, S-2 full 1st cousins, HS-2 half 1st cousins, S-3 full 2nd cousins, PC-2 grandparent–grandchild relation and S-4 means full 3rd cousins.

The same 5774 markers have been used in all comparisons. Due to the varying availability of pairwise true relationships (Supplemental Table S1), the number of examples

included for each relationship varies; For S-1 five comparisons, S-2 ten comparisons, S-3 four comparisons, S-4 ten comparisons, PC-2 nine comparisons, Unrelated ten

comparisons.

Table 1
Posterior probabilities for each tested relationship, based on a selection of 5774 SNP markers (markers separated by at least 0.5 cM). A Bayesian approach with flat priors has

been used to calculate posterior probabilities.

True relationship S-1 S-2 S-3 S-4 PC-2 Unrelated 1 Unrelated 2

S-1 >0.99999 <0.00001 – – <0.00001 – –

HS-1 <0.00001 <0.00001 – – – <0.00001 –

S-2 <0.00001 0.993 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 – 0.007 – – – <0.00001 –

S-3 – <0.00001 0.9999 – – 0.0035 –

PC-2 – – – – 0.9999 – –

S-4 – – – 0.81 – – 0.19

Unrelated <0.00001 <0.00001 <0.00001 0.19 <0.00001 0.997 0.81

The true relationships in the first row and corresponding probability in bold. A hyphen in a specific row means exclusion of the relationship as an alternative hypothesis. S-1

means full siblings, HS-1 half-siblings, S-2 full 1st cousins, HS-2 half 1st cousins, S-3 full 2nd cousins, PC-2 grandparent–grandchild relation and S-4 means full 3rd cousins.

The same 5774 markers have been used in all comparisons. Due to the varying availability of pairwise true relationships (Supplemental Table S1), the number of examples

included for each relationship varies; For S-1 five comparisons, S-2 ten comparisons, S-3 four comparisons, S-4 ten comparisons, PC-2 nine comparisons, Unrelated ten

comparisons.
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4. Discussion

DNA has proven to be the most important tool to evaluate genetic
relationships, both in forensic casework [32–34] and in medical
research [1–3]. During the last decade mtDNA and gonosomal (X, Y)
markers have been used to establish relatedness when lineages of
maternal or paternal inheritance can be followed [35,36]. However,
as soon as a line of inheritance is broken the genetic analyst loses
track. Using thousands of autosomal SNP markers we showed that

distant relationships could be established where the above-
mentioned methods did not prevail. Although too early to draw
any definite guidelines or conclusions, we believe the methods
proposed in this study can be applied whenever complex family
relations need to be resolved, as in for example genealogy studies.

The robustness of the tests was shown by using different sets of
markers. The marker selection was based on a set of criteria that
each chosen SNP-marker had to fulfil. Different minor allele
frequencies did not appear to influence the results notably, though
the issue was not extensively investigated. The distance between
the markers did, however, show more impact on the results;
especially when the number of markers exceeded 20,000, which is
approximately equal to a distance of 0.1 cM between each pair of
markers. It was apparent that a too dense selection of markers
rendered the genetically closest relationship as the most probable,
see Fig. 3(a)–(c). This phenomenon is, most likely, a consequence of
linkage disequilibrium, which is also evident in Table 5 where
more dense selections of markers yield a greater percentage of high
r2 values, but also, interestingly, an exponential increase in the
number of haploblocks, see Fig. 4. Our simulations also further
corroborates these results, see Table 6, where there obviously is a
shift towards the closest relationship as more markers are included
in the simulations. One of the reasons to why the results favour the
closest relationship can possibly be explained by the ‘‘random’’
sharing of uncommon alleles. According to this admittedly
speculative conjecture, a dense selection of markers amplifies
the effect, as the uncommon alleles can possibly be in LD with
other closely located uncommon alleles.

The Lander–Green algorithm, used to calculate the likelihoods,
assumes the markers to be in LE and the likelihood computation
collapses using many markers that are in LD. One reason to why the
calculations fail is the large difference between the observed and
the expected haplotype frequencies when dense sets of markers
are used. Moreover, unrelated individuals will share certain
haplotypes, as mentioned previously, due to a common ancestry,
although further back, and they will appear related, i.e. false
positives will arise [37,38]. In 2008 Kurbasic and Hossjer presented
an extension to the Lander–Green algorithm in order to account for
linkage disequilibrium [39]. They combined the Markov chain for
inheritance vectors (i.e. Lander–Green) with another Lth order
Markov chain that models LD structure. In this extension, the
Markov chain contains information about the genotypes of the
pedigree founders of L consecutive located loci. Kurbasic and
Hossjer applied their method on a smaller simulation study (L = 1)
and pointed out that the method is very computationally intensive
unless the pedigrees are small and L is small. This limitation was
also shown when the algorithm was implemented with a small
number of forensically relevant STR markers [40]. Using a
combination of kinship coefficient and IBS statistics, Manichaikul
et al. recently presented a software, KING, which allows pairwise
comparisons to be conducted on large sample material [41]. The
authors claim the problem with LD is circumvented based on large

sample theory. The KING software calculates a kinship coefficient,
i.e. a rough estimate of an abstract family relationship, and not a
forensically relevant probability value for a given pedigree
hypothesis. We used the software on our material and the
performance is comparable with our methods, for relationships
closer than 3rd cousin. Using KING, 3rd cousin relationships could
not be readily resolved. In addition, KING does not provide an
answer to our main problem, determining the most likely pedigree.

As for Merlin/FEST, true relationships as distant as 3rd cousins
could be distinguished with satisfactory posterior probabilities,
using 12,453 markers. Unfortunately, inclusion of more distant
relationships, e.g. 3rd cousins, as an alternative hypothesis when
comparing two truly unrelated individuals, yields unsatisfactory
probabilities, such as only a 64% posterior probability in favour of

Fig. 3. (a)-(c). Graphs displaying the posterior probability for each hypothesis

against the number of markers. (a) True relationship full 1st cousins (blue line)

versus alternative hypotheses of full siblings (red line) and unrelated (green line).

(b) True relationship full 2nd cousins (blue line) versus alternative hypotheses of

full 1st cousins (red line) and unrelated (green line). (c) True relationship Unrelated

(blue line) versus alternative hypotheses of full 2nd cousins (green line) and full 1st

cousins (red line). The upper threshold value, when the true relationship no longer

receives the highest posterior probabilities seems to be, for full 1st cousins:

�35,000 markers (markers separated by 0.05 cM), for full 2nd cousins: �20,000

markers (markers separated by 0.1 cM), and for unrelated �20,000 markers

(markers separated by 0.1 cM).
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the true hypothesis, i.e. unrelated, see Table 2. This value is
certainly not convincing in forensic genetics, nor should it be in
medical genetic research. We applied our findings, based on tests
using data from known relationships, on two families concerning a
common paternal ancestor two generations back. The results from
Merlin and FEST were unambiguous and showed that the two

families did not share a common ancestor and thus, according to
our findings, are unrelated.

A 2nd cousin relationship appears to be the limitation to what
can be determined with current methods, or by any means
presently available. It is debatable what the term unrelated really
stands for [42]. The genetic material is quickly diluted as each

Table 3
Posterior probabilities for the hypothesis of relationship between the two families, see Figs. 1 and 2, based on analyses using FEST.

Number of markers 19,518 12,453 10,144 5774 4074 3151

Comparison 1

S-2 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 0.024 8.5e�6 0.0002 0.0001 7e�5 0.00086

Unrelated 0.975 0.99999 0.9998 0.9999 0.9999 0.999

Comparison 2

S-2 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 0.0007 6e�6 5.1e�5 0.003 0.00085 0.006

Unrelated 0.999 0.9999 0.9999 0.997 0.999 0.994

Posterior probabilities for the included hypotheses. S-2 means full 1st cousins, HS-2 means half 1st cousins, see text for further details. Each value represents a posterior

probability for a given selection of markers, see column header. Comparison 1 and 2, represents two separate tests to whether the two families in Figs. 1 and 2 are related.

Table 5
Evaluation of linkage disequilibrium. The table describes the proportion of pairwise comparisons with a r2-value above each limit. In addition the number of haploblocks in

each selection has been calculated using PLINK. Limitcm stands for the minimum genetic distance between two markers in the selection.

Proportion of pairwise-SNP with r2 higher than r2 limit

limitcm0.5 limitcm0.25 limitcm0.15 limitcm0.1 limitcm0.075 limitcm0.05

Number of markers 5865 10,227 14,869 19,420 23,263 29,277

Number of pair-wise comparisons 471,704 903,536 1,363,046 1,813,620 2,194,050 2,789,420

r2 limit

0.1 0.0168 0.0176 0.0568 0.0418 0.0225 0.0615

0.2 0.0020 0.0022 0.0102 0.0085 0.0053 0.0178

0.3 0.0015 0.0014 0.0073 0.0060 0.0038 0.0132

0.5 0.0014 0.0012 0.0057 0.0042 0.0026 0.0090

0.8 0.0014 0.0010 0.0044 0.0026 0.0014 0.0047

Number of haploblocksa 4 80 355 824 1482 2896

a Estimated in PLINK.

Table 4
Posterior probabilities for the hypothesis of relationship between the two families, see Figs. 1 and 2, based on analyses using Merlin. A Bayesian approach with flat priors has

been used.

Number of markers 19,518 12,453 10,144 5774 4074 3151

Comparison 1

S-2 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 0.024 8.5e�6 0.0002 0.0001 7e�5 0.00086

Unrelated 0.975 0.99999 0.9998 0.9999 0.9999 0.999

Comparison 2

S-2 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 0.0007 6e�6 5.1e�5 0.003 0.00085 0.006

Unrelated 0.999 0.9999 0.9999 0.997 0.999 0.994

The question was whether the two families were sharing a common paternal ancestor two generations back. Data was included from all individuals in the third generations of

the two families. For each minor allele frequency, two different distances between two neighbouring markers has been tested, see column headings.

Table 6
Averaged posterior probabilities for simulated relationships. The table describes averaged posterior probabilities (with standard deviations in parentheses) from 5000

simulations of genotype data on chromosome 22. Markers are assumed to be in LD and are evenly spaced over the chromosome. Prior probabilities are equal to 1/3.

Number of markers

on chr 22

Distance (cM)

between markers

Number of markers

if extended to all

chromosomes

HS-2 S-2 Unrelated

1 45a 0.3333 (0.0000) 0.3335 (0.0002) 0.3332 (0.0002)

10 8.778 453 0.3333 (0.0000) 0.3339 (0.0005) 0.3327 (0.0005)

100 0.798 4535 0.3334 (0.0001) 0.3345 (0.0012) 0.3321 (0.0012)

200 0.397 9070 0.3332 (0.0001) 0.3355 (0.0013) 0.3312 (0.0013)

500 0.158 22,675 0.3337 (0.0002) 0.3445 (0.0015) 0.3218 (0.0015)

1000 0.079 45,349 0.3335 (0.0002) 0.3592 (0.0015) 0.3073 (0.0016)

1500 0.053 68,024 0.3338 (0.0003) 0.3927 (0.0015) 0.2735 (0.0016)

a Due to the variation in genetic length of different chromosomes, the number is not 22.
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generation passes. Perhaps the average background relatedness,
shared by all individuals of the same ethnicity, lies not very far
from the 3rd cousin relationship. Indeed the latest release from the
HapMap project demonstrates that two unrelated individuals in
the CEU population share in average 0.34% of their alleles through
identity by descent (IBD) [12]. This is in fact approximately equal to
the expected sharing of alleles (IBD) between two 3rd cousins. To
investigate this further, more families need to be analyzed, where
relationships such as half siblings, half cousins and half 2nd
cousins are known. Simulation studies can be performed but they
are more complicated since they raise the issue of how to model
and account for linkage disequilibrium. For example, relationships
can be simulated based on true haplotypes, where the issue of how
to model LD in simulations is irrelevant, but haplotypes are
complicated and computer demanding to infer. PHASE and
IMPUTE, as well as similar available software, offer the advantage
of inferring haplotypes from genotyping data, without any family
or pedigree information [43,44]. We simulated relationships
where instead the founder haplotypes were created using an
approximate LD map from the HapMap project and the results
agreed with our previous findings.

Regarding the statistical calculation, we suggest creating a new
model, or modifying an existing one, which accounts for linkage
disequilibrium. LD might be turned into an advantage if a proper
model is developed. Moreover, other algorithms should be
considered, i.e. other than Lander–Green, which is used in Merlin.
Indeed, algorithms that can handle large and complex pedigrees
with a large number of markers should be evaluated. For large and
complex pedigrees, with thousands of markers, approximate
approaches, such as Monte-Carlo Markov chain (MCMC), utilized
in the software MORGAN for example, might be a good candidate.
[15,45]. The existence of block-like structures, with clusters of
tightly linked SNPs may also prove useful [26,46]. Merlin provides
the possibility to calculate likelihoods based on specified cluster
information [47]. Although theoretically promising the current
implementation of the method in Merlin was, in our study, unable
to handle more extended pedigrees with an average amount of
clusters, i.e. 3rd cousins and 5000 clusters.

There are in addition alternative methods for the determination
of the most probable relationship between individuals. One such
approach is utilizing identity by state (IBS). This approach may not

be optimal from a statistical point of view, but can nevertheless be
useful to illustrate distant relationships [48,49].

In conclusion, genotype data from high-density SNP arrays have
proved to be useful in the investigation of distant genetic
relationships. In this study we solved a real case of half 1st
cousinship using different selections of SNP markers. Relationships
as distant as 2nd cousins could also be unambiguously resolved.
However, 3rd cousins and more distant relationships revealed hard
to distinguish from unrelated. Nevertheless, this task should not be
insurmountable using a good computer algorithm and enough
reference material to work with. Parameters such as genotyping
errors and LD should be more thoroughly investigated as well as
IBS approaches. Our conclusions regarding the relation between
the two families (Figs. 1 and 2) are primarily based on a small
number of established relationships (Tables 1 and 2) and thus
further simulations and families are needed to verify our results.
Even so, we are confident that our methods can be used to solve
other cases of disputed distant family relationships.
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Abstract

In a number of applications there is a need to determine the most likely pedigree for a group of persons based on genetic
markers. Adequate models are needed to reach this goal. The markers used to perform the statistical calculations can be
linked and there may also be linkage disequilibrium (LD) in the population. The purpose of this paper is to present a
graphical Bayesian Network framework to deal with such data. Potential LD is normally ignored and it is important to verify
that the resulting calculations are not biased. Even if linkage does not influence results for regular paternity cases, it may
have substantial impact on likelihood ratios involving other, more extended pedigrees. Models for LD influence likelihoods
for all pedigrees to some degree and an initial estimate of the impact of ignoring LD and/or linkage is desirable, going
beyond mere rules of thumb based on marker distance. Furthermore, we show how one can readily include a mutation
model in the Bayesian Network; extending other programs or formulas to include such models may require considerable
amounts of work and will in many case not be practical. As an example, we consider the two STR markers vWa and D12S391.
We estimate probabilities for population haplotypes to account for LD using a method based on data from trios, while an
estimate for the degree of linkage is taken from the literature. The results show that accounting for haplotype frequencies is
unnecessary in most cases for this specific pair of markers. When doing calculations on regular paternity cases, the markers
can be considered statistically independent. In more complex cases of disputed relatedness, for instance cases involving
siblings or so-called deficient cases, or when small differences in the LR matter, independence should not be assumed. (The
networks are freely available at http://arken.umb.no/,dakl/BayesianNetworks.)
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Introduction

There are several areas of applications motivating this paper.

The general problem is to determine the most likely pedigree and

in this paper we discuss models to achieve this goal. It is well

known that linkage analysis performed to locate disease mutations

may be misguided if the pedigree is incorrectly specified as will be

the case if for instance false paternities are not detected. Similarly,

association analyses frequently assume that all individuals are

unrelated and again deviations from this assumption may affect

conclusions. In forensic cases, for instance paternity cases or

identification following disasters, establishing the most likely

pedigree is the main objective. Traditionally forensic applications

have been based on unlinked markers in linkage equilibrium. For

some applications however, these assumptions have been ques-

tioned [1,2,3] Furthermore, the conventional markers used in

forensics may not have sufficient power to resolve some cases, e.g.

family relationships involving more distant relations than siblings

[4,5,6]. It is therefore an urgent need to consider methods and

practical implementations for more general markers and this is the

main objective for this paper.

The evidence is conventionally summarized by the LR

(likelihood ratio) [7]. The LR is the probability of the data given

one hypothesis (for instance that a specific man is the father)

divided by the probability conditioned on an alternative hypoth-

eses (for instance that some unknown man is the father). A large

value of the LR results in a man being declared to be a father. In

immigration cases, LR calculations can be decisive when decisions

are made on granting immigration. It follows that biased LR

calculations resulting from unwarranted assumptions may have

serious consequences. As far as we know, methods and

implementations accounting for linkage, linkage disequilibrium

and mutation have not previously been presented.

A forensic example involving two short tandem repeat (STR)

loci, D12S391 and vWa, will serve as a motivating case. These

markers are located on chromosome 12 only 6.3 Mb apart, but the

genetic distance has been estimated to be as large as 10.8 cM [3].

Following the introduction of D12S391 to the new European

forensic standard set [8], questions has been raised as to whether

the markers can be considered statistically independent when

assessing the evidence in specific cases. In addition, studies have

been performed to determine whether the physical proximity of
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the markers has caused linkage disequilibrium (LD) and whether

this should be taken into account [1,3]. Moreover, Phillips et al.

recently published an overview of the commercial STR kits

describing several pairs of markers separated by less than 50 cM

[9]. Commonly used software for likelihood ratio calculations,

such as Familias [10] and DNAView [11] do not consider linkage

or linkage disequilibrium in statistical calculations. Although

programs exist which model linkage, they are often more

complicated to use and it may be necessary to navigate a

command line user-interface, e.g. Merlin [12,13]. In addition, to

our knowledge, there is no complete model which simultaneously

handles linkage, LD and mutations.

Object Oriented Bayesian Networks (OOBN) may provide an

alternative solution with an appealing graphical interface. The

object-oriented approach also provides a simple user-interface,

hiding the complexities within the objects (nodes) [14]. In the

model, the nodes contain sub-structures such as states, conditional

probability tables and so forth. The nodes are connected to other

nodes and the interplay is governed by probabilities within each

node.. Several studies have already shown the advantages of using

OOBN in forensic contexts [15,16,17,18,19,20]. Taroni et al. [15]

offers a thorough introduction to the basic methodology. We used

the freeware GeNIe (http://genie.sis.pitt.edu) to create the

Bayesian networks. One alternative is the commercially available

Hugin (http://www.hugin.com).

In this paper we model linkage, linkage disequilibrium, and

mutations in a single Bayesian network (BN), freely available at

http://arken.umb.no/,dakl/BayesianNetworks/. We present

networks for some basic relationships, but the model can easily

be extended to other pedigrees as well. In addition to previous

investigations, this provides an alternative approach to the study of

LD between D12S391 and vWa, but also more generally when

studying pairs of linked STR markers. In contrast to other studies,

which often measures the disequilibrium, or association of alleles,

in terms of an r2 value or a p-value depending on a sample size, our

intention was to investigate the effects of LD on actual cases.

Materials and Methods

In order to model linkage disequilibrium (LD), haplotype

probabilities must be estimated. A simplified model was construct-

ed (Tillmar et al. [21]), based on a Dirichlet distribution, providing

non-zero probability estimates also for unseen haplotypes.

Specifically, a diallelic haplotype probability fij was estimated

with fij~(cijzlpiqj)=(Czl) where cij is the observed count of

the haplotype among C unrelated individuals, pi and qj are the

allele frequencies of the two alleles, and l is a constant, set to 1 in

the computations below. Further, to incorporate this into a

Bayesian Network (BN) the haplotype probabilities were used to

construct conditional allele probabilities, i.e. based on what allele

is observed at the first locus we estimated the conditional

probability of observing each allele at the second locus.

In order to obtain haplotype counts, we used data from regular

trio paternity cases. When the parenthood is established and no

mutations are present, the phase, i.e., the haplotypes can be

deduced for the child using a simple algorithm. There are,

however, ambiguous cases where the haplotypes cannot be

determined for the child, e.g. when the parents and the child

are all heterozygous for the same alleles. Out of 450 selected trios,

6 where discarded due to more than one possible haplotype

configuration. As these ambiguous cases constitute only 1.3% of

the total cases, it was not considered to bias the calculations

enough to influence the conclusions. Notice that the phased

haplotypes for the father and mother, based on the child’s

genotypes, are generally unknown since recombination might have

occurred. Although reasonable estimates of the parents’ haplo-

types can be obtained, e.g. through the EM-algorithm or Gibbs

sampling (PHASE by Stephens et al. and IMPUTE2 by Howie et

al., [22,23]), we found that haplotype probabilities computed this

way did not differ much from those based on the children and

therefore used the latter for simplicity (data not shown). Moreover,

it is well known that the LD as measured by D declines with (1-

recombination rate) per generation and hence,one generation will

only have a minor impact on the disequilibrium.

Data
A selection of 444 unrelated Norwegian trios were used to

estimate allele and haplotype probabilities at the STR loci

D12S391 and vWa (using only the genotypes from the children).

Table 1 describes the allele frequencies; in total 8 different alleles

were observed at vWa and 16 different alleles at D12S391. To

estimate haplotype probabilities, the number of observations for

each haplotype was first counted (using the data from the

children). In total, 100 different haplotypes were observed out of

128 possible. Haplotype probabilities were then estimated as

described above. (Tables S1 and S2 provide further details on the

observed haplotype frequencies and the estimated haplotype

probabilities). To calculate the conditional probability of each

D12S391 allele given a specific vWa allele, each column in Table

S1, containing the observed haplotype probabilities, is normalized

to 1. Table 2 describes the calculated conditional allele probabil-

ities. Conditioning rather on D12S391 would of course lead to the

same results.

Network
A simple Bayesian network describing a paternity case is

illustrated in Fig. 1, the network is more or less self-explanatory

and presents the given problem in a intuitive way. It is worth

pointing out that as more parameters (i.e. recombination rates, LD

Table 1. Sample allele frequencies for STR loci vWa and
D12S391, based on 444 unrelated Norwegian individuals.

vWa D12S391

14 0.08896

15 0.0732 0.04392

16 0.21621 0.02252

17 0.30968 0.12387

17.3 0.01351

18 0.1982 0.19369

18.3 0.01351

19 0.10248 0.10698

19.3 0.01126

20 0.10135 0.10811

21 0.00114 0.10248

22 0.01149

23 0.09234

24 0.03829

25 0.00901

26 0.00338

27 0.00225

doi:10.1371/journal.pone.0043873.t001
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and mutations), markers and more distant relationships are

considered, the network grows in complexity and can become

visually incomprehensible. This can be counteracted by rearrang-

ing the most relevant network nodes in a simpler way, hiding the

complexity from the user. The networks created in this study use a

simple naming convention, based on few abbreviations, but larger

networks might require shorter node names. All networks are

freely available at http://arken.umb.no/,dakl/

BayesianNetworks/. In addition we provide a short user manual

as well as a software to generate the networks based on your own

data.

Two different scenarios were considered; a regular paternity

case, Fig. 2 and a case of disputed siblingship, Fig. 3. For each

network the user can vary recombination rate, decide whether to

use conditional allele probabilities, based on Table 2, or allele

frequencies, see Table 1. In the paternity network the user can

decide whether to instantiate the mother’s genotypes (trio) or to

leave them unknown (duo), i.e. to use the allele frequencies. In the

sibling network the hypotheses compare whether the two persons

are unrelated or full siblings. (A separate network was also

constructed for a halfsibling case when the siblings are known to

share the same mother, see Fig. S1.) The parents’ genotypes can be

instantiated if available, otherwise allele frequencies will be used.

The network in Fig. 1 is in principle equal to the one described by

Taroni et al. for a paternity case [15]. The main differences lie in

the existence of a Recombination node as well as an LD node. The

Recombination node describes the probability for a cross-over to

occur, i.e. the recombination rate. Also for each possible

inheritance of a D12S391 allele, the P/M nodes transmit whether

the Paternal or Maternal vWa allele have been passed on. The

LD node is also connected to each possible inheritance of a

D12S391 allele. If the LD node is instantiated to Yes, conditional

allele probabilities will be used. The Mutation nodes contain a

transition matrix. In this study a simple mutation model was used,

where each transition has an equal probability of occurring, i.e. m/

(n21), where m is the mutation rate and n is the number of alleles.

Mutation rates for each locus were obtained from a local database.

The Child Paternal Allele (CPA) nodes are subject to the Hypothesis

node (Either Is Father or Are Siblings depending on the network),

with states Yes and No. The Hypothesis node will display the

posterior probabilities for the given relationships. The tables for

the CPA nodes are based on the Alleged father given that he is the

father and the allele frequencies if he is not the father. Also, if the

LD node is set to Yes, conditional allele probabilities for the

D12S391 allele will be used. (Please see user manual for a more

complete description.)

Results

The networks were tested on a selection of real cases where the

likelihood ratio (LR), assuming marker independence, had already

been calculated using the software Familias [10]. In addition an

attempt was made to create a worst-case-scenario (WCS)

regarding linkage disequilibrium, i.e.,selecting the haplotypes

where the observed haplotype frequencies deviated maximally

from the expected haplotype frequencies, see Table S1 and S2.

The genotypes used in the WCS include rare alleles and as a

consequence also often unobserved haplotypes. Table 3 describes

the results from the likelihood ratio calculations. Each case was

investigated using three different methods. The method denoted

M1 in Table 3 is equivalent to the most commonly used approach

in forensic laboratories, where the markers vWa and D12S391 are

considered to be independent, i.e. recombination rate of 50%, and

allele frequencies are utilized. In the two remaining methods,

denoted M2 and M3 in Table 3, a recombination rate of 9% was

used in accordance with previous studies by Budowle et al. [3]. In

addition, the decision of whether to use conditional allele

probabilities were evaluated, using in M2 allele frequencies

(Table 1) and in M3 conditional allele probabilities (Table 2).

Quotients between the LR values obtained using each method are

Table 2. Conditional allele probabilities for the alleles at D12S391 given the allele at vWa.

14 15 16 17 18 19 20 21

15 0.038049 0.030969 0.036497 0.043637 0.056745 0.054825 0.004392 0.021959

16 0.000282 0.030644 0.020842 0.029067 0.028376 0.011114 0.002252 0.011261

17 0.176548 0.062483 0.156082 0.112768 0.091095 0.131781 0.312387 0.061937

17.3 0.000169 0.000205 0.015614 0.018165 0.017026 0.011017 0.001351 0.006757

18 0.177421 0.199904 0.177169 0.207224 0.221433 0.154279 0.119369 0.096847

18.3 0.012669 0.015356 0.005251 0.014542 0.028325 0.000147 0.001351 0.006757

19 0.138837 0.062227 0.114544 0.09459 0.113599 0.131598 0.010698 0.053491

19.3 0.000141 0.015322 0.015602 0.018157 0.005713 0.000122 0.001126 0.005631

20 0.076351 0.168305 0.083462 0.090971 0.136204 0.142479 0.110811 0.054054

21 0.126281 0.153068 0.109339 0.098197 0.074025 0.09894 0.110248 0.051239

22 0.076437 0.122953 0.104222 0.14172 0.096694 0.109945 0.211487 0.057433

23 0.126154 0.062005 0.098924 0.083668 0.079618 0.109699 0.109234 0.546171

24 0.037979 0.061186 0.046831 0.032747 0.039764 0.022155 0.003829 0.019144

25 0.012613 0.015288 0.005228 0.010902 0.005701 0.010968 0.000901 0.004505

26 4.22E-05 5.12E-05 0.01038 1.22E-05 0.005669 3.67E-05 0.000338 0.001689

27 2.82E-05 3.41E-05 1.17E-05 0.003631 1.27E-05 0.010894 0.000225 0.001126

To account for unseen haplotypes, probabilities were estimated using a Dirichlet distribution. Each row indicates the allele at vWa, while each column indicates the
allele at D12S391. The table should be interpreted as follows, for a given allele at vWa (top row), the corresponding conditional allele probabilities for D12S391 are given
(column).
doi:10.1371/journal.pone.0043873.t002

Using OOBN to Model Linkage, LD and Mutations

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e43873



included in Table 3. (Note that M2 is not relevant in standard

duo/trio cases since recombination alone does not effect the

statistical calculations)

To further test the method, we also created a network where

instead of using data from D12S391 and vWa we used data from

two other closely located markers, D5S818 and CSF1PO (Table 4).

Figure 1. Bayesian network describing the basic layout for a paternity case.
doi:10.1371/journal.pone.0043873.g001

Figure 2. Bayesian network describing a paternity case. The Recombination node contains the probability for a recombination to occur, i.e.,
the recombination rate. The nodes P/M tell whether the vWa paternal or maternal allele is inherited. The LD node is connected to the paternal and
maternal allele nodes and decides whether or not to use conditional allele probabilities. Furthermore, the node Is Father? contains the different
hypotheses.
doi:10.1371/journal.pone.0043873.g002
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A recombination rate of 0.3 was used, close to the value obtained

using any of the mapping functions. The results reveal that, even

when comparing two markers accepted to be in LE, discrepancies

can be detected. Future studies should be conducted involving

markers known to be in LD. Our network can of course be

extended to include more linked markers in LD.

Discussion

We have demonstrated the application of Object Oriented

Bayesian Networks in modeling linkage, linkage disequilibrium

and mutations in cases of disputed genetic relatedness. As an

example, we present data from a pair of STR markers, vWA and

D12S391, recently studied with regards to possible linkage

disequilibrium. Two different networks were created to investigate

a selection of actual cases as well as fictional, see Worst Case

Scenarios in Table 3. The small differences in calculated LRs

between method M1 (not considering linkage and LD) and the

Comparison are due to the use of slightly different allele frequency

databases, where the Comparison LR has been calculated using a

Norwegian population database utilized in routine casework.

However, it is notable that the differences between the results

using any of M1, M2 (10% recombination rate and LD not

considered) or M3 (10% recombination rate and LD is considered)

are in many cases comparable to the differences between M1 and

the Comparison methods. Consequently, the differences between

method M2 and M3, allele frequencies versus conditional allele

probabilities, can perhaps be considered as merely a small bias in

the estimation of allele frequencies.

Since linkage has previously been measured between vWa and

D12S391, the most important concern of this paper is to evaluate

the effect of using conditional allele probabilities as measured by

the quotient between the LR values obtained using methods M3

and M2, see Table 3. None of the real cases display a quotient

LRM2/LRM3 larger than 2, and for most of the cases the quotient

is close to 1. Also, the Worst Case Scenarios do not display

quotients larger than 4. We should of course always expect some

differences since no data will indicate exact linkage equilibrium

(Table 4). Whereas our study has only included a small selection of

real cases, we are aware that larger studies considering hundreds of

cases should be conducted and also that our results, concerning

possible LD between vWA and D12S391, are partly anecdotal. A

recent paper by Gill et al. provides further evidence and discussion

on the matter [2].

Haplotype frequencies are generally hard to estimate as

genotype data does not normally indicate which chromosome,

i.e. paternal or maternal, each allele is located on. New methods,

such as mass-sequencing provide means to determine each

chromosomal setup, but given current forensic casework, using

STR markers, one might instead rely on the massive amount of

available data from families (trios mainly) where the haplotypes

from the children can, in most cases, be unambiguously

determined, as long as the possibility of mutation is disregarded.

In our study we used 444 phased unrelated children, i.e. 888

haplotypes, to determine the observed as well as expected

haplotype frequencies. We observed 100 of a total of 128 possible

haplotypes. An important consideration is if this is enough

material for a reliable estimation of population haplotype

frequencies? In particular, can we reliably estimate the probability

of observing a haplotype that has not been observed in the

database? The same dilemma exists when previously unseen or

new alleles are observed in regular genotyping, but for haplotypes

one may use allele frequencies to construct a reasonable guess at a

probability. Our formula contains a parameter l which loosely

corresponds to the pseudo-counts often used in the estimation of

population allele frequencies. Although a value for l might be

estimated for data, we have simply used l= 1. This gives the initial

estimates, constructed as products of allele frequencies, the same

weight as a single haplotype observation, leading to fairly small

estimates of conditional probabilities for unobserved haplotypes.

Figure 3. Bayesian network describing a sibling case. The nodes P/M tell whether the vWa paternal or maternal allele is inherited. The P/M
nodes connected to the D12S391 allele also contains the recombination frequency. The LD node is connected to the paternal and maternal allele
nodes and decides whether or not to use conditional allele probabilities. Furthermore, the node Are Siblings? contains the different hypotheses.
doi:10.1371/journal.pone.0043873.g003
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Conclusions

An imminent practical concern for forensic laboratories using

closely located STR markers, such as the pair studied in this paper,

is how computations should be performed with such data. One

issue is whether linkage must be taken into account. Though

statistical calculations in regular paternity cases is not affected by

linkage and disputed paternities make up the majority of cases for

most labs, we believe that in sibling cases and other more extended

relationships, linkage should be taken into account. We recom-

mend that forensic labs perform sensitivity calculations and/or

simulations to investigate the effect of recombination rate,

especially in kinship analyses and deficient paternity cases. The

recently released software FamLink provides features to perform

such analyses [24]. In addition to STR markers, our model can

easily be extended to accommodate SNP data. In fact, the

networks available at our repository are able to handle diallelic

Table 3. Comparison of calculated likelihood ratios (LR) based on the genotype data from STR loci vWa and D12S391, on a
selection of real cases.

Case id M1 M2 M3 Comparison LRM1/LRComparison LRM1/LRM2 LRM2/LRM3

Duos

1 3.608 3.608 1.909 3.78 0.954 - 1.89

2 3.038 3.038 2.769 3.099 0.98 - 1.097

3 25.455 25.455 35.036 24.243 1.05 - 0.727

4 8.723 8.723 9.638 9.447 0.923 - 0.905

5 8.93 8.93 10.792 9.036 0.988 - 0.827

6 39.487 39.487 51.46 41.563 0.95 - 0.767

7 11.761 11.761 11.859 10.631 1.106 - 0.992

8 2.943 2.943 3.721 2.66 1.106 - 0.791

9 5.956 5.956 6.457 6.463 0.922 - 0.922

10 6.81 6.81 8.912 6.815 0.999 - 0.764

WCS 750.879 750.879 308.597 404 1.859 - 2.433

Trios

11 5.567 5.567 5.055 5.239 1.063 - 1.101

12 96.809 96.809 107.696 89.208 1.085 - 0.899

13 11.626 11.626 7.026 10.834 1.073 - 1.655

14 87.652 87.652 52.191 54.74 1.601 - 1.679

15 8.32 8.32 7.772 9.498 0.876 - 1.071

16 29.479 29.479 21.491 28.919 1.019 - 1.372

17 6.214 6.214 7.347 6.624 0.938 - 0.846

18 11.234 11.234 9.624 11.628 0.966 - 1.167

19 24.483 24.483 33.811 24.8 0.987 - 0.724

20 11.635 11.635 12.358 10.827 1.075 - 0.941

WCS 2917.855 2917.855 736.46 2130 1.37 - 3.962

Siblings

21 9.917 7.097 9.732 9.766 1.015 1.397 0.729

22 0.264 0.287 0.296 0.405 0.652 0.92 0.97

23 38.841 62.98 71.993 38.331 1.013 0.617 0.875

24 0.351 0.339 0.314 0.34 1.032 1.035 1.08

25 1.331 1.584 1.439 1.331 1 0.84 1.101

26 0.46 0.621 0.633 0.455 1.011 0.741 0.981

27 0.378 0.354 0.363 0.38 0.995 1.068 0.975

28 0.83 0.622 0.612 0.815 1.018 1.334 1.016

29 8.61 10.962 11.92 9.1278 0.943 0.785 0.92

30 13.772 19.825 19.367 13.763 1.001 0.695 1.024

WCS 200.938 298.868 134.619 115.694 1.737 0.672 2.22

Three different methods have been used, denoted M1, M2 and M3. M1: 50% recombination rate, LD not considered; M2: 10% recombination, LD not considered; M3:
10% recombination, LD taken into consideration. The column Comparison is the LR obtained using the software Familias with the standard Norwegian population
database. WCS. abbreviates Worst Case Scenario and attempts to simulate a case where the likelihood ratios should differ the most due to linkage disequilibrium. The
columns to the right display three relevant quotients for each case; Note that the LR calculated using M2 and the quotient LRM1/LRM2 is only relevant in the non-
paternity cases, since recombination alone will not effect the likelihoods for these cases.
doi:10.1371/journal.pone.0043873.t003
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markers, but to process high throughput data a more automated

system is needed.

The other major concern, besides recombination, is whether to

use conditional allele probabilities, i.e. to account for linkage

disequilibrium. All calculations are affected by the use of such

probabilities, even standard paternity and match probability

calculations. The effect on the marker pair vWA/D12S391 is,

according to our results, reasonably small. In addition, the marker

pair D5S818/CSF1PO displays equal deviation from expectation,

further corroborating results in previous studies. Moreover, our

implementation heavily depends on the estimates of conditional

allele probabilities, which are currently fairly uncertain. We have

illustrated how estimates can be generated based on data from

trios, but clearly much larger datasets are needed to reduce the

uncertainty. Furthermore, other models to approach the problem

with unseen haplotypes should be considered.

Nevertheless, this paper demonstrates how software implement-

ing Object Oriented Bayesian Networks can be used to assemble

Table 4. Comparison of calculated likelihood ratios (LR) based on the genotype data from STR loci D5S818 and CSF1PO, on a
selection of cases.

Case id M1 M2 M3 Comparison LRM1/LRComparison LRM1/LRM2 LRM2/LRM3

Duos

1 1.4632 1.4632 1.5058 1.4215 1.029 - 0.972

2 1.062 1.062 1.034 1.037 1.024 - 1.027

3 4.84 4.84 7.998 5.176 0.935 - 0.605

4 395.668 395.668 362.636 485.808 0.814 - 1.091

5 9.598 9.598 9.016 10.246 0.937 - 1.065

6 74.489 74.489 80.653 100.604 0.74 - 0.924

7 8.072 8.072 8.013 7.734 1.044 - 1.007

8 19.193 19.193 20.172 20.491 0.937 - 0.951

9 49.869 49.869 42.537 55.005 0.907 - 1.172

10 77.215 77.215 121.659 114.202 0.676 - 0.635

W.C.S. 1520.143 1520.143 11036.52 3656 0.416 - 0.138

Trios

11 40.007 40.007 64.944 48.709 0.821 - 0.616

12 11.369 11.369 11.272 9.947 1.143 - 1.009

13 5.746 5.746 5.577 8.65 0.664 - 1.03

14 101.284 101.284 85.736 63.917 1.585 - 1.181

15 604.62 604.62 383.645 777.506 0.778 - 1.576

16 23.505 23.505 22.616 25.496 0.922 - 1.039

17 76.821 76.821 52.45 87.727 0.876 - 1.465

18 1838.249 1838.249 1964.408 2138.332 0.86 - 0.936

19 394.116 394.116 216.855 346.241 1.138 - 1.817

20 53.305 53.305 69.457 66.978 0.796 - 0.767

W.C.S. 139.278 139.278 709.883 138.139 1.008 - 0.196

Siblings

21 6.218 5.808 5.02 6.742 0.922 1.071 1.157

22 0.906 0.906 0.93 0.696 1.301 1 0.974

23 4.202 3.99 3.92 3.75 1.121 1.053 1.018

24 3.632 3.343 3.499 2.856 1.272 1.086 0.955

25 0.247 0.265 0.139 0.255 0.968 0.935 1.903

26 6.407 6.407 6.165 4.441 1.443 1 1.039

27 0.158 0.177 0.171 0.154 1.022 0.892 1.037

28 0.256 0.256 0.157 0.16 1.596 1 1.636

29 0.5 0.5 0.548 0.25 2.001 1 0.912

30 0.758 0.758 0.727 0.563 1.347 1 1.043

W.C.S. 23254.65 24999 40649.41 93209.73 0.249 0.93 0.615

Three different methods have been used, denoted M1, M2 and M3. M1: 50% recombination rate and LD not considered. M2: 30% recombination and LD not considered,
M3: 30% recombination and LD taken into consideration. The column Comparison is the LR obtained using the software Familias with the standard Norwegian
population database. WCS abbreviates Worst Case Scenario and attempts to simulate a case where the likelihood ratios should differ the most due to linkage
disequilibrium. The columns to the right display three relevant quotients for each case; Note that the LR calculated using M2 and the quotient LRM1/LRM2 is only relevant
in the non-paternity cases, since recombination alone will not effect the likelihoods for these cases.
doi:10.1371/journal.pone.0043873.t004
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and code models reasonably quickly, and how these models can

subsequently be used to explore complex questions about the

interplay between genetic phenomena such as linkage, LD, and

mutations. The models can then in fact be used for relevant

computations in actual cases. We present Bayesian networks for

two basic relationships, available at http://arken.umb.no/,dakl/

BayesianNetworks/, which can be used as prototypes for

investigations of linkage and linkage disequilibrium for pairs of

closely located STR markers.

Supporting Information

Figure S1 Bayesian network describing a sibling case, where the

children are known to share the same mother. The nodes P/M tell

whether the vWa paternal or maternal allele is inherited. The P/

M node connected to the D12S391 allele also contains the

recombination frequency. The LD node is connected to the

paternal and maternal allele nodes and decides whether or not to

use conditional allele frequencies. Furthermore, the node Are

Siblings? contains the different hypotheses.

(DOC)

Table S1 Observed haplotype frequencies.

(DOC)

Table S2 Expected haplotype frequencies.

(DOC)
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1. Introduction

For relationship testing the present number of commonly used
STR loci (normally 15) is sufficient to solve the vast majority of
paternity cases, trios and duos. However, there is still a need to
expand the number of STR loci in order to solve more complex
cases, e.g. full sibs, half sibs, etc. [1] and also to be able to solve
paternity issues where a close relative is the alternative man [2].

Lately, a number of new PCR kits have been released, offering
the possibility to combine DNA data from up to 40 STR loci (Supp.
Data 1). For complex relationship cases, it is important to have
access to as many markers as possible, given that more family
members are not available, in order to reach a well founded
conclusion. There are also cases which cannot be resolved based on
DNA from independently segregating loci [3]. A number of the loci,
included in the different PCR multiplexes, are located on the same
chromosome, and in some cases the genetic distances are so small
that that the linkage may have a considerable impact on
calculations. Phillips et al. [4] studied pairs of closely located
STR loci included in different forensic PCR multiplexes in order to
estimate the genetic distance (centiMorgans, cM) between them.
Among 29 syntenic loci, 14 pairs were found to have a genetic
distance less than 50 cM. The closest pair of loci included in the
study (SE33 and D6S1043) is separated by a genetic distance of

4.4 cM, corresponding to a recombination rate of about 4%.
Moreover, when using data from the three commercial kits
PowerPlex1 ESI 17 System (Promega Corp.), Investigator HDplex
Kit (Qiagen Inc.) and PowerPlex1 18D System (Promega Corp.)
there are 9 pairs of syntenic STRs with a genetic distance less than
50 cM (Supp. Data 1).

When using DNA markers that are physically close on the same
chromosome, two concepts are relevant to discuss – genetic
linkage and linkage disequilibrium (LD). See Thompson [5] for a
general discussion of these concepts and calculations of likelihoods
on pedigrees. For the current markers of interest, LD has been
reported to have negligible impact on the likelihood ratio (LR)
value unless a very recent evolutionary event, such as the
admixture of two previously separated populations, has occurred
[6]. Genetic linkage, or linkage, can be described as the co-
segregation of closely located loci within a family and can be
measured and discussed in terms of the recombination frequency r.
In criminal casework, linkage only has impact on match probability
calculations when the alternative hypothesis is a close relative
according to Buckleton and Triggs [7]. For relationship testing,
however, linkage becomes relevant in the transition probabilities
for alleles passing from founder to a child within a pedigree.

Recently, there have been discussions and concerns within the
forensic community regarding the inclusion of the STR locus
D12S391 as a core locus in the European Standard Set of STR loci
[8,9]. The reason for these concerns is that D12S391 is located on
the short arm of chromosome 12 only 6.3 megabases (Mb) from the
established vWA. Studies have been performed to test the impact
of ignoring linkage between D12S391 and vWA and have shown
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that even though the median error is small, the case specific error
can be considerable [6,10].

In this paper, we present a statistical freeware (FamLink) that
can be used to (1) calculate case specific likelihood ratios for two
(or more) hypotheses with observed DNA-data for a pair of
linked DNA markers and (2) perform simulations for two or
more pedigrees (hypotheses) in order to study the impact of
ignoring linkage for a specified pair of linked STR markers. In
addition, FamLink can analyze cases involving loops giving rise
to complex pedigrees. Such loops may arise because of
inbreeding or some individuals having children with different
spouses, where the spouses are related (marriage loop).
Moreover, several linked markers can be handled based on a
Familias file [11]. For this approach, a genetic map of all markers
is used. Altogether, FamLink provides relevant functionality
previously not easily and freely available to the forensic
community.

Below we describe the software, its main functions and also
demonstrate its usefulness by applying FamLink on two different
examples from routine casework. Furthermore, we make use of the
simulation module to study the difference between accounting for
linkage and not accounting for linkage between the two STR loci
SE33 and D6S1043 for two different case examples. A mathemati-
cal derivation of a fairly general case is also included to validate the
software.

2. Implementation

2.1. General description of the software and algorithm

The software provides an easy-to-use graphical user interface,
which allows for linkage calculation. FamLink uses the Merlin
engine [12] for numerical calculations. Merlin, as several similar
programs, is based on the Lander–Green algorithm [13]. This
algorithm is computationally linear in the number of markers,
but not in the complexity of the pedigree. In cases where there is
a large number of markers and the pedigree is complex,
simulation based methods may be required and then the
software MORGAN [14] is an alternative. However, we have
found that fairly complex pedigrees can be handled and we have
not encountered practical cases where computation time has
been a serious problem.

FamLink cannot presently accommodate coancestry (theta)
corrections nor mutations. The effect on LR values of coancestry
is, however, minor in well-mixed populations [15,16]. When it
comes to mutations, these have greatest impact on LR values for
pedigrees where genetic inconsistencies are apparent. For such
instances, proper modeling of the possibility of a mutation is
crucial in order to avoid a likelihood of zero [17]. With the
current version of FamLink, it is, however, possible to model
genotyping errors whereby the true allele is recorded as a
randomly chosen allele with a specified probability. In addition,
FamLink allows for unseen alleles using two different methods;
Normalizing, whereby all frequencies are normalized so the final
sum is 1.0 and Search and Substract, whereby the new allele
frequency is substracted from other alleles not used in the
current case.

2.2. Theoretical considerations and validation

In this section we present a result which can be used to study
the impact of linkage on the likelihood ratio and also to validate
FamLink for a specific case. Consider the hypotheses:

� H1: ‘‘Two individuals are grandparent and grandchild’’

� H2: ‘‘Two individuals are unrelated’’.

Marker data is available for two markers separated by a
recombination distance r. Below we show the following:

LR for markers linked at distance r

LR for unlinked markers ði:e: r ¼ 0:5Þ ¼ �2r þ 2

if the individuals do not share any alleles.
The proof for this is based on Eq. (10) in the appendix of [3]:

Pðdataj ped:iÞ ¼ ðp00 þ p11 � p10 � p01Þki
1;1ðrÞ þ

1

2
ð p10 þ p01Þ:

The formula is more general than currently needed and we next
explain the notation in the present context. We will use the
formula for ped. i corresponding to hypothesis H1 and then ki

11ðrÞ þ
ð1� rÞ=2 as explained in Chapter 4.5 of [5]. The remaining terms on
the right hand side, puv;u; v ¼ 0;1 depend only on allele
frequencies for the markers and can be calculated using Table 1
in [3]. Therefore the required probability is a linear function of r

and may thus be written

f ðrÞ ¼ pðdatajH1Þ ¼ ar þ b

where a and b depend only on the allele frequencies for the
markers and are given as

a ¼ p10 þ p01 � p00 � p11

2

b ¼ p10 þ p01 �
p00 þ p11

4

Observe next that

gðrÞ ¼ LRðrÞ
LRð0:5Þ ¼

LR for markers linked at distance r

LR for unlinked markers
¼ ar þ b
ð1=2Þaþ b

since the likelihood for the unrelated alternative does not depend
on r and therefore cancels in the above expression. By rewriting

gðrÞ ¼ a1r þ b1; say;

it is apparent that there is a linear effect of linkage, as measured by
r, on the quantity of interest, g(r)

It remains to show that a1 = �2 and b1 = 2.
Assume the individuals do not share any alleles. Then there can

be no identical by descent (IBD) sharing (mutations and genotyp-
ing errors are disregarded) and so puv > 0 if and only if u = v = 0.
Then

a ¼ p10 þ p01 � p00 � p11

2
¼ p00

2

b ¼ p00 þ p11

2
¼ p00

2
¼ �a

a1 ¼
a

ð1=2Þaþ b
¼ a
ð1=2Þa� a

¼ �2

b1 ¼
b

ð1=2Þaþ b
¼ �a
ð1=2Þa� a

¼ �2 and therefore

gðrÞ ¼ �2r þ 2

Observe that above expression for g(r) is valid regardless of allele
frequencies as long as the individuals do not share any alleles.

For instance g(0.1) = 1.8. In other words, the true LR accounting
for linkage is almost twice the approximation corresponding to the
result obtained assuming unlinked markers. Using FamLink, we
find 0.45/0.25 = 1.8 (regardless of specified allele frequencies)
confirming the theoretical result. For r = 0.2, FamLink gives 0.4/
0.25 = 1.6 which equals g(0.2) = 1.6 as it should.
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To further validate FamLink, we have written an R-function
(Supp. Data 3) which extends the above examples by also
considering halfsibling and avuncular relations in addition to
allowing for general genotypes. The numerical results coincide as
they should for a number of examples.

3. Examples

3.1. Case 1

In this case, two full siblings wanted to know if a third
individual was their paternal half-sibling (Supp. Data 2). All
individuals were typed for the 21 STR loci included in the
AmpFlSTR1 Identifiler1 PCR Amplification Kit (Applied Biosys-
tems) and PowerPlex1 ESI 17 System kit (Promega Corp.). For this
set of loci, there is one pair of closely located loci on chromosome
12, namely D12S391 and vWA [4]. The likelihoods for the two
hypotheses ‘‘Two full siblings and one half sibling’’ (H1) and ‘‘Two
full siblings and one unrelated’’ (H2) were first calculated by means
of Familias [11] with Swedish allele frequencies ([18] and K.
Montelius, personal communication) assuming the 19 loci
(excluding D12S391 and vWA) to be unlinked. For the statistical
interpretation of the genotype data from D12S391 and vWA we
used FamLink with a recombination frequency of 0.089 [10]. This
estimate may be uncertain and other values can be tried. In fact, an
important purpose of FamLink is to facilitate sensitivity analyzes
studying the impact of assumptions that may be questioned.

The genotypes for D12S391 and vWA can be found in Supp. Data
2. The combined LR for D12S391 and vWA was computed to 3.91
when linkage was assumed and to 1.10 when linkage was ignored.
The total LR (all 21 STRs) increased from 20.0 to 71.4 when linkage
was accounted for. Thus, the difference between accounting for
linkage and not accounting for linkage could in this case be
considered to be large, almost a four fold increase. Assuming equal
priors, for the two hypotheses, the posterior probability increased
from 95% in favor of the first hypothesis to almost 98.6%, when
linkage was assumed. Based on this, it is obvious that reaching a
threshold in terms of LR or posterior probability may well depend
on whether linkage is accounted for. In other words, accounting for
linkage may well directly determine how cases are reported.

3.2. Case 2

Fig. 1 depicts a rather complex relationship question, including
a marriage loop located between the individuals denoted
Grandmother and Sister of grandmother. The Child wanted to know
if the individual denoted Alleged father was her biological father
with the second hypothesis being that the individual denoted
Alternative father was the father (Fig. 1). Previous results had
already yielded high probabilities in favor of the Alleged father (or a
close relative of him) being the father, with the second hypothesis
including an unrelated man as the father. We used 36 STR loci
included in the Investigator HDplex Kit (Qiagen Inc.), PowerPlex
ESI 17 (Promega Corp.) and PowerPlex 16HS (Promega Corp) PCR
multiplexes as well as an inhouse kit containing three highly
polymorphic STR markers (D17S906, APOAI1 and D11S554). For
these sets of loci, there are several markers located less than 50 cM
from each other [4]. The likelihoods were first calculated in
Familias, excluding the marriage loop, i.e. removing the great

grandparents, and using mutation rates of zero in combination with
a Norwegian frequency database for all marker sets. For the
complete statistical evaluation we used the QuickAnalysis option
of FamLink allowing us to include all markers and account for
linkage between every pair of loci, as well as the marriage loop.

The results from Familias, excluding the marriage loop and
using mutation rates of zero, yielded a combined LR of 1.3E + 08 in
favor of the Alleged father being the father (or a close relative other
than the individual denoted Alternative father). Using the Quick-
Analysis option of FamLink, including the marriage loop and
recombination between markers, a combined LR of 368577 was
computed in favor of the Alleged father being the father. In other
words, ignoring linkage and the marriage loop the LR is over-
estimated by factor of roughly 350. If only the marriage loop is
disregarded, the LR is overestimated by a factor of 6. This clearly
illustrates the importance of properly accounting for linkage and
marriage loops.

3.3. Simulation cases

Two case scenarios were investigated further by simulations in
order to study the impact of accounting for linkage. In the first
example, the hypothesis ‘‘three full siblings’’ (H1) was compared
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with ‘‘two full siblings and one unrelated’’ (H2) and the second case
involved the hypothesis ‘‘grandparents’’ (H1) versus ‘‘unrelated’’
(H2) (Supp. Data 2). For both examples, the markers SE33 and
D6S1043 were used with Chinese Han population frequencies
[19,20], together with a recombination frequency of 0.044 [4]. The
simulation was performed twice, first with 10,000 datasets where
hypothesis H1 was assumed to be true, and then 10,000 instances
where hypothesis H2 was assumed to be true.

The simulation of the impact of linkage on LR values for the case
‘‘three full sibs’’ versus ‘‘two full siblings and one unrelated’’
resulted in a general underestimation of the LR if linkage between
SE33 and D6S1043 was ignored. The median of the ratio
LR(unlinked)/LR(linked) was computed to 0.52 [with a 95%
interval, 0.21–5.1] when the simulations were performed assum-
ing H1 to be true. When simulating assuming the alternative
hypothesis to be true, genetic inconsistencies were found in 70% of
the simulated cases. For the remaining instances the median ratio
was computed to 0.67 [0.19–6.8]. Fig. 2 is a box plot of the spread of
the simulated data values, showing a considerable variation of the
impact of linkage on LRs for this pair of loci for these hypotheses.

The simulation of the second case example, ‘‘grandparents’’
versus ‘‘unrelated’’, also resulted in a general underestimation of
the LR when linkage between SE33 and D6S1043 was ignored. The
median of the ratio was calculated to 0.73 [0.52–2.2] when the
simulations were performed assuming H1 to be true. When
simulating assuming hypothesis H2to be true, genetic inconsis-
tencies were found in 77% of the simulated cases. For the remaining
instances the median ratio was computed to 1.0 [0.52–11.84].
Fig. 3 is a box plot showing the scattering of the simulated data.

4. Discussion

Recently, a number of new PCR multiplexes have been released
on the market. These include a number of additional STR markers
to be used in forensic relationship testing. Although more DNA
markers generate more information and therefore generally makes
it easier to report a complex case, it also increases the risk of having
multiple markers located closely on the same chromosome. Thus
linkage needs to be accounted for in the statistical evaluation when
calculating the weight of evidence. Phillips et al. [4] previously
studied the genetic distance between 29 syntenic STR loci included
in several forensic PCR multiplexes and concluded that 14 pairs of
markers were located less then 50 cM apart.

In this paper we address the issue of taking linkage properly
into account in relationship testing by presenting a new statistical
tool, FamLink, that calculates the likelihood ratio of observing the
case specific DNA-data given two (or more) specified hypotheses of
possible genetic relationships. We demonstrate, based on two real
cases, simulations and a mathematical derivation, that it is
important to account for linkage. This applies particularly to
pedigrees beyond the standard trios/duos. In such cases, the LR
may well be below, say 100,000 and accounting for linkage or at
least studying sensitivity with respect to the effect of linkage,
should be performed.

With this in mind, we have developed a software, freely
available from http://www.FamLink.se. FamLink is a user friendly
front-end to an existing framework, Merlin [12]. Merlin is widely
used in medical linkage studies and provides a fast and reliable
computation algorithm. Our software adopts the advantages of the
computation algorithm and provides several features which
simplifies the interactivity and provides the possibility to include
linked markers in relationship calculations.

Although the main purpose with FamLink is focused on
relationship testing, it is also possible to quantify the impact of
linkage for match probability calculations including the issue of a
close relative being the alternative man [7]. We refer to the manual
on a more detailed description of this feature.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.fsigen.2012.01.012.
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Abstract Several applications necessitate an unbiased
determination of relatedness, be it in linkage or associa-
tion studies or in a forensic setting. An appropriate model
to compute the joint probability of some genetic data for
a set of persons given some hypothesis about the pedi-
gree structure is then required. The increasing number
of markers available through high-density SNP microar-
ray typing and NGS technologies intensifies the demand,
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where using a large number of markers may lead to biased
results due to strong dependencies between closely located
loci, both within pedigrees (linkage) and in the popula-
tion (allelic association or linkage disequilibrium (LD)).
We present a new general model, based on a Markov
chain for inheritance patterns and another Markov chain
for founder allele patterns, the latter allowing us to account
for LD. We also demonstrate a specific implementation
for X chromosomal markers that allows for computation
of likelihoods based on hypotheses of alleged relationships
and genetic marker data. The algorithm can simultaneously
account for linkage, LD, and mutations. We demonstrate
its feasibility using simulated examples. The algorithm
is implemented in the software FamLinkX, providing a
user-friendly GUI for Windows systems (FamLinkX, as
well as further usage instructions, is freely available at
www.famlink.se). Our software provides the necessary
means to solve cases where no previous implementation
exists. In addition, the software has the possibility to per-
form simulations in order to further study the impact of link-
age and LD on computed likelihoods for an arbitrary set of
markers.

Keywords FamLinkX · Lander-Green · Likelihood
computations · X chromosome · Markov-chain · Linkage
disequilibrium · Linkage · Mutation

Introduction

In several applications, there is a need to determine the
most probable pedigree structure given some genetic marker
data for a set of persons; e.g., to get an unbiased result in
a medical genetic study, for example linkage or associa-
tion studies, or in a forensic setting, for example paternity
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cases, immigration cases or in identification of victims fol-
lowing a disaster. Medical genetics is often concerned with
thousands of markers from high-density SNP arrays and
concepts such as linkage between neighboring markers is
inescapable. Accounting for the possibility of a crossover
in statistical computations is crucial to obtain an unbiased
result. In forensic genetics, where short tandem repeats
(STR) is the primary data, the use of linked markers is not as
widely accepted, though their utility has been studied. Using
linked markers, several symmetrical pedigrees can be distin-
guished due to different inheritance patterns, [7, 12, 13, 22,
27]. [8] presented an algorithm where likelihoods could be
calculated based on genetic marker data and hypothesized
pedigree structures. The algorithm is, in effect, a peeling
algorithm calculating conditional probabilities based on cut-
sets, with cutsets being a set of persons separating the
pedigree into independent parts. The algorithm proceeds by
updating conditional probabilities as each cutset is peeled.
In practice, the algorithm is feasible for complex/extended
pedigrees with many individuals. Indeed, the algorithm is
useful for many unlinked markers, while for linked mark-
ers, the number of iterations can grow exponentially with
the number of markers, as we have to consider all possible
founder haplotypes. To model many linked markers, [18]
proposed another algorithm using identity-by-descent (IBD)
instead. Given a pedigree, we can calculate the probability
that two alleles are IBD, meaning that they originate from
the same ancestral allele, see [28] for an introduction. The
algorithm generalizes the concept by looking at inheritance
graphs, see [2]. Given a specific pedigree, we can define the
meioses, and all possible combination of meiotic outcomes
determines the inheritance space. The algorithm continues
by setting up each locus as a node in a hidden Markov-chain
where the meiotic outcome of the next locus only depends
on the previous one. This is, in reality, an approximation,
since we disregard any interference caused by a crossover,
but is often a good enough approach. In the absence of
optimizations, the complexity grows exponentially with the
number of meioses, i.e., approximately with the number of
individuals.

We further consider linkage disequilibrium (LD), or
allelic association, which is the non-random association of
alleles at different loci. For the purpose of association stud-
ies, LD can extend across chromosomes, but for the current
setting, we focus on LD between closely linked markers
on the same chromosome. The degree of LD is often more
apparent for STR markers (as compared to SNP markers)
where more alleles at each marker yield more possible hap-
lotypes for a set of markers; e.g., for two SNP markers
we have maximally four haplotypes (given biallelic SNP:s)
while for two STR markers with 10 alleles each, we have
100 possible haplotype configurations. LD is a source of
bias in the statistical calculations since allele frequencies for

alleles at two closely located loci may no longer be regarded
as independent. As demonstrated by previous papers, LD
may cause erroneous conclusions when not accounted for,
see [3, 10]. [17] presented an extension of the Lander-Green
algorithm modeling founder allele patterns with Markov
chains. Moreover, a paper by [1] also addresses the issue
by demonstrating how Merlin handles clusters of mark-
ers in LD. Both of these approaches lack the possibility to
model mutations. In addition, the implementation in Merlin
does not allow for recombination between markers within
a cluster. As will be demonstrated, accounting for both
the mentioned parameters is crucial in a forensic setting,
but also often in a more general setting when establishing
relatedness.

The use of the Lander-Green algorithm has gained wide
acceptance in the medical genetic field, while the forensic
community has been more hesitant to implement it. The lat-
ter can be explained by no current model of how to handle
mutations, though the software Merlin includes the possi-
bility to model genotyping errors, which might be sufficient
in an extended pedigree with untyped founders and SNP
markers. For STR markers and a forensic context where
genetic inconsistencies are frequently observed, we need a
better way to handle mutations. Mutation rates above 0.005
(per marker and generation) have been observed for some
highly polymorphic markers and in addition, female muta-
tion rates may vary from male mutation rates [4, 5]. Several
models exist to handle transitions of alleles within a pedi-
gree, see e.g., [6]. The most commonly accepted approach
is the step-wise model where the probability of a mutation
decreases with the number of transition steps. Each step
here is defined as the difference between the two alleles
in tandem repeats. Again, this is mostly relevant for STR
markers with a distinct number of tandem repeats for each
allele.

In forensic genetics, there is a growing focus on STR
markers located on the X-chromosome. Previous studies
demonstrate their utility in several relatedness settings,
especially some cases where autosomal markers are not able
to distinguish between the different alternative hypotheses
[14, 20, 21, 25, 27]. Consider, for example, the hypotheti-
cal case where two sisters want to know if they share the
same father or the same mother, see Fig. 1. In practical-
ity, autosomal data cannot distinguish these two hypotheses,
whereas X- chromosomal markers obviously display differ-
ent inheritance patterns. Two sisters with the same father
share at least one allele IBD for each X- chromosomal
marker, disregarding mutations, whereas two sisters shar-
ing only their mother, do not have the same obligate allele
sharing. The point is that X- chromosomal data, be it SNP-
data or STR-data, can provide crucial information in several
situation where autosomal markers do not prevail. Sev-
eral studies have shown that the clusters of STR markers
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Fig. 1 Half siblings. X- chromosomal markers are useful to distin-
guish between the maternal (left) and paternal (right) pedigree

included in the Argus X12 kit display a high degree of LD,
but also that recombination can be observed within a cluster
[19, 24, 27]. In addition to constructed SNP data, we will
use population data from the X12 kit to prove the neces-
sity of our approach. This paper describes a general model
to simultaneously handle linkage, linkage disequilibrium,
and mutations in calculation of genetic relatedness. We
demonstrate an implementation for X- chromosomal data
and perform a feasibility study using some common pedi-
grees encountered in case work, demonstrating the utility
of our implementation. In addition, we present a graphical
user interface to assist in the interpretation of the statistical
results.

Methods

Consider some hypotheses of postulated relationships
between a set of individuals and some genetic marker data.
We present a joint probability model accounting for linkage,
linkage disequilibrium, and mutations. We further demon-
strate a specific implementation for markers located on the
X chromosome, though the model is not constrained to such
data. The algorithm is similar to the algorithm of [18], but
provides extensions for allelic dependencies across different
loci, similar to [17]. The algorithm also implements a transi-
tion model to account for mutations, which may be different
for male and female transmissions.

In mathematical notation, we want to compute the
probability of observing marker data given a pedigree,
a specified model, and values for the parameters in that
model:

Pr(d, s | p, r, m) (1)

Here, the marker data is split into data s for pedigree
founders and d for non-founders, and p, r, and m indi-
cate the values of parameters for the haplotype population
frequencies, the recombination frequencies, and mutation
probabilities, respectively. For precise information about the
notation see the Appendix.

To facilitate the specification of the model, we introduce
a variable v specifying the inheritance pattern in the pedi-
gree (whether paternal or maternal alleles are inherited at
each locus) and variables g and f specifying the genotypes

of typed and untyped founders, respectively. Our model
specifies the probability

Pr(d, s, v, f, g | p, r, m)

and our algorithm represents an efficient way to compute
from this the probability in Eq. 1.

Model

We assume we have data from I different loci. In applica-
tions, it may be that we have clusters of loci where we have
to take into account both LD and linkage, while we only
have to take into account linkage between clusters. In its
simplest form, the model uses a one-step Markov chain for
the founder haplotypes, so that we assume the allele at locus
i is independent of alleles at loci with indexes lower than
i − 1 given the allele at locus i − 1. More generally, when
the one-step Markov chain model is not supported by data,
we use an L step Markov chain, where the allele at locus i is
independent of alleles at loci with indexes lower than i − L

given the alleles at loci i − L, . . . , i − 1. In all cases, we
assume independence between the haplotypes of different
clusters.

With this Markov assumption, we can write

Pr(d, s, v, f, g | p, r, m) = Pr(d1, s1, v1, f1, g1 | p1, m1) (2)

·
I∏

i = 2

Pr(di, si , vi , fi , gi | vi−1, fi−L, . . . , fi−1,

gi−L, . . . , gi−1, pi, ri , mi).

Let us start with specifying the first term

Pr(d1, s1, v1, f1, g1 | p1,m1) (3)

= Pr(d1 | v1, f1, g1,m1)Pr(s1 | g1)Pr(f1 | p1)Pr(g1 | p1)Pr(v1),

where the most involved specification is for the factor
Pr(d1 | v1, f1, g1, m1). Each value of v1 specifies a
sequence of transmissions from the founder alleles, whose
identities are given by f1 and g1, to the alleles observed in
d1. This sequence of transmissions may contain branching.
We get that

Pr(d1 | v1, f1, g1, m1) =
∑

t1,t2,...,tT

m1(t1)m1(t2) . . .m1(tT )

where the sum goes over all possible sequences
t1, t2, . . . , tT of transmissions from the founder alleles to
the observed alleles, and where the function m1 indicates
the probability for each transition. For the small pedigrees
we consider, and in particular as we are focusing on X-
chromosomal data, this sum is less formidable to handle
than it might be in general. Also, simplifications can be
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employed where extremely unlikely combinations of multi-
ple mutations within a single sequence of transmissions are
ignored. Note that the relevant sums may be pre-computed
for the transmission trees that may occur in our pedigree.

The remaining factors of Eq. 3 are easily specified:
Pr(s1 | g1) is 1 if each s1j is a permutation of g1j , otherwise
zero. The factor Pr(f1 | p1) is a product of components of
p1, as is Pr(g1 | p1). (Note that we assume Hardy-Weinberg
equilibrium (HWE) in the model). Finally, Pr(v1) should
specify equal probability 2−N for each of the 2N possible
values for v1.

We continue specifying the remaining factors of Eq. 2
with

Pr(di, si, vi, fi, gi | vi−1, fi−L, . . . , fi−1,

gi−L, . . . , gi−1, pi, ri, mi)

= Pr(di | vi, fi, gi, mi)Pr(si | gi)Pr(vi | vi−1, ri)

Pr(fi | fi−L, . . . , fi−1, pi)Pr(gi | gi−L, . . . , gi−1, pi),

where the factors Pr(di | vi, fi, gi, mi) and Pr(si | gi)

are specified as for i = 1. Each of the factors Pr(fi |
fi−L, . . . , gi−1, pi) and Pr(gi | gi−L, . . . , gi−1, pi) are
products over the components of pi , with one factor for each
haplotype. Finally, Pr(vi | vi−1, ri) = ra

i (1 − ri)
b , where

a and b are the number of haplotypes where vi and vi−1

indicate a recombination, respectively no recombination,
between locus i and i − 1.

Algorithm

Our goal is to compute the probability of the data d and
s, given the pedigree and the parameters p, r , and m. As
mentioned, our algorithm is a version of the Lander-Green
algorithm, which again is a version of the forward-backward
algorithm for hidden Markov Models. In fact, for our pur-
poses, we only need the forward part of the algorithm.
Specifically, for i = 2, . . . , I and for all possible val-
ues of vi , fi−L+1, . . . , fi , and gi−L+1, . . . , gi , we have the
recursive formula

Pr(d1, . . . , di , s1, . . . , si , vi , fi−L+1, . . . , fi , gi−L+1, . . . , gi ) (4)

= Pr(di | vi , fi , gi)Pr(si | gi)∑

vi−1

∑

fi−L

∑

gi−L

[
Pr(d1, . . . , di−1, s1, . . . , si−1, vi−1,

fi−L, . . . , fi−1, gi−L, . . . , gi−1)Pr(fi | fi−L, . . . , fi−1)

Pr(gi | gi−L, . . . , gi−1)Pr(vi | vi−1)
]

where we have omitted the conditioning on the parameters
p, r , and m for brevity. Our algorithm starts with computing
and listing Pr(d1, s1, v1, f1, g1) according to Eq. 3 for all
values of v1, f1, and g1 that makes it non-zero. Then Eq. 4
is used to compute for i = 2, . . . , I the left-hand side for
all combinations of vi , fi−L+1, . . . , fi , and gi−L+1, . . . , gi

1*

A/−

2*

B/C

3*

D/−

4

A/B

5

D/C

Fig. 2 Figure used to explain the notation of the likelihood calculation

making it non-zero. The final result is obtained by summing

Pr(d, s) =
∑

Pr(d1, . . . , dI , s1, . . . , sI , vI ,

fI−L+1, . . . , fI , gI−L+1, . . . , gI )

where the sum is taken over all vI , fI−L+1, . . . , fI , and
gI−L+1, . . . , gI . Clearly, the applicability of the algo-
rithm depends on the number of combinations of vi ,
fi−L+1, . . . , fi , and gi−L+1, . . . , gi making Eq. 4 non-zero
(or at least of non-negligible relative size). Note that each
of gi−L+1, . . . , gi need to have components that are per-
mutations of the corresponding data si−L+1, . . . , si to get a
non-zero probability. However, as we are including muta-
tions, many of the various possible values for f need to be
considered for the calculations.

Example

Let us consider an example with X- chromosomal data and a
pedigree with two girls sharing the same mother but having
different fathers. Initially, consider only one marker denoted
i. The notation is explained with reference to Fig. 2. The
founders 1, 2, and 3 are marked with ‘*’. Possible genotypes
are indicated with the paternal allele, i.e., the one inherited
from the father given to the left so that for instance indi-
vidual 2 has inherited ‘B’ from her father and ‘C’ from her
mother, and has passed on ‘B’ to her daughter 4 and ‘C’ to
her daughter 5.

We now assume only the two girls are typed, with the
data indicated in the figure. Using the notation of the
Appendix, S = 0 and M = 2, and di = ((A, B), (C, D)).
There are two mother-child relationships so the vector vi

has length 2, and four possible values. The value indi-
cated in the figure is vi = (0, 1). There are no typed
founders, so there is no g in the example. There are F = 4
founder alleles in the pedigree: the allele each girl inher-
its from her untyped father, and the two alleles of the
untyped mother. The value of fi indicated in the figure is
fi = (A, B, C, D).

The algorithm starts by computing a table with

Pr(d1, v1, f1) = Pr(d1 | v1, f1)Pr(v1)Pr(f1)
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for all combinations of the values of v1 and the values of
f1 making the probability non-zero: Note that there are A2

1
possible (phased) genotypes for the mother (remember that
we include the possibility of mutations) and, given the data,
two possible values for each of the two founder alleles com-
ing from the fathers. Thus, there are, at most, 4A2

1 values for
f1 making the probability above non-zero, and fewer if one
or both of the girls have been observed to be homozygote at
locus 1. With four possible values for vi , the table has a size
at most of 16A2

1.
In the recursive step, the table for Pr(d1, . . . , di, vi,

fi−L+1, . . . , fi) given the table for Pr(d1, . . . , di−1, vi−1,

fi−L, . . . , fi−1) is computed as follows: The value Pr(di |
vi, fi) is computed as above for the at most 16A2

i values
making it non-zero, and the small table for Pr(vi | vi−1) is
computed. Then, as the values of Pr(fi | fi−L, . . . , fi−1)

are stored directly in pi , the entries of the table for
Pr(d1, . . . , di, vi, fi−L+1, . . . , fi), which is of length at
most 4L+1A2

i−L+1 . . . A2
i , can be computed by summation

using Eq. 4.

Estimation of haplotype frequencies

Our model requires as parameters haplotype frequencies,
or rather, for each i = 1, . . . , I and j = 1, . . . , Ai

the probability of observing an allele of type j at locus
i conditional on the alleles at loci i − L, . . . , i − 1. In
our implementation, we require as input a list of observed
haplotypes for each cluster of loci. Estimates of haplo-
type frequencies based directly on haplotype counts would
assign zero probability to all unobserved haplotypes, which
would generate unreasonable results. Instead, and similar to
[27], we use haplotype probabilities that are weighted aver-
ages between observed haplotype frequencies and haplotype
frequencies estimated under the assumption of marker inde-
pendence. If the count of haplotype k is ck , we use as
the haplotype probability hk = (ck + λxk)/(

∑
ck + λ),

where we sum over all possible haplotypes, where xk is
the product of the frequencies of the alleles of the haplo-
type, and λ is a positive number. We use allele frequencies
based on the haplotype input, but one could also use allele
frequencies from another source. Then, using a Dirichlet
distribution with parameters λxk as a prior for haplotype
probabilities, hk is the expected posterior haplotype proba-
bility after updating the prior with haplotype observations.
In this paper, we use λ = 1, but one could explore more
optimal ways of setting this parameter. We do not discuss
how to estimate haplotype frequencies when the phase of
the genetic data is unknown, since with X- chromosomal
marker we can use data from males where the gametic phase
is always known. For data with unknown gametic phase,
frequencies can be estimated for example with the EM
algorithm [23].

Models for mutations

In our setting, mutations are defined as the possibility of
observing a transition from one allele to another within a
pedigree. We specify a matrix Mi , containing the transition
probabilities. Mi has a dimension of Ai × Ai where Ai is
the number of alleles at locus i and where each row in M

must sum to 1.0, such that the row indicates the initial allele
and the column the resulting allele. See [6] for a summary
of different models. Accounting for mutations is mostly rel-
evant when dealing with STR marker data, where genetic
inconsistencies are frequently observed. In such data, con-
trary to SNP marker data, alleles are determined as a distinct
number of tandem repeats. For the well-accepted stepwise
model, which we implement a version of, the probabil-
ity of observing a transition between two alleles decreases
with a specified factor with the difference in the num-
ber of repeats, such that, say, a single-step mutation can
be relatively common while a four-step mutation is very
improbable.

Feasibility, simplifications, approximations, and
implementation

The feasibility of the algorithm depends mostly on the
length of the list of probabilities that needs to be stored
in each recursive step. Note that each of gi−L+1, . . . , gi

need to have components that are permutations of the
corresponding data si−L+1, . . . , si to get a non-zero prob-
ability. This means that the factor in the size of the
list stemming from the variation in g becomes at most
2SL. The factor coming from variation in f is at most
(Ai−L+1 · · ·Ai)

F−Q2Q, where Q is the number of found-
ing alleles that occur in typed persons. Finally, variation
in v contributes the factor 2N , which, for our small pedi-
grees, will be a small number. Clearly, the length of the
list will grow very quickly with L. Unfortunately, LD
seems to be a complex phenomenon which is often not
well modeled with 1- or 2-step Markov chains. How-
ever, when markers are grouped into fairly small clusters,
the size of these clusters limit L. When L is small and
the pedigree is comparably large, a useful simplification
may be based on the fact that Pr(d1, . . . , di, s1, . . . , si, vi,

fi−L+1, . . . , fi, gi−L+1, . . . , gi) is invariant under permu-
tations of maternal and paternal haplotypes of founders. In
other cases, one may use approximations based on exclud-
ing from the list combinations fi+L+1, . . . , fi which have
very low relative probabilities. For example, many combina-
tions may be incompatible with observed data except when
assuming that several mutations have taken place, and they
will thus have quite low probabilities.

The algorithm is implemented in a Windows-
compatible graphical user interface FamLinkX, available at
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http://www.famlink.se, for a number of predefined rela-
tionships relevant to X- chromosomal marker data. In
addition, the software can simulate data based on the same
predefined relationships, accounting for linkage, LD, and
mutations, as modeled in this paper.

Results

To demonstrate the utility of our model, we provide exam-
ples highlighting the effect of linkage/LD as well as cases
where mutations are present. We compare the results from
our software with results using previously published meth-
ods. All calculations were performed using three different
models, M1: only linkage is accounted for and the mark-
ers are considered to be in LE [2]; M2: linkage and LD
are accounted for, however no recombination is allowed
for within a cluster [1]; and M3: linkage, LD and muta-
tions are modeled as well as recombinations within a cluster
are accounted for. Whenever posterior probabilities are
presented, flat priors are assumed.

Simulations

We have simulated test data with an algorithm accounting
for linkage, LD, and mutations (available in our software).
Other simulation algorithms have similar functionality but
none contains the full complexity required to test our
model. The algorithm, which is similar to the “gene drop-
ping” method, starts by defining and sampling all founder
alleles, consistent with the haplotype frequencies and LD
structure. Within clusters of markers, haplotype frequen-
cies are estimated for each possible haplotype using the
model described in the ‘Models for mutations’ section.
Two haplotypes are sampled for each female founder and
one haplotype for each male founder. The algorithm con-
tinues by simulating transitions from the founder alleles
to all non-founders using a mutation matrix where each
transition is assigned a specific probability. In addition,
recombination is considered when two neighboring markers
are simulated, i.e., the algorithm keeps track of the mater-
nal/paternal chromosomes. The last step is iterated until all
non-founders has been simulated. Calculations are then per-
formed using only observed genetic data from the typed
persons.

Case 1 - Demonstrating the effect of mutations and
recombinations

The first example contains simulated data from the Argus
X12 multiplex provided by QIAGEN. The kit divides 12
STR markers located on the X chromosome into four dis-
tinct clusters, each containing three markers. Since we are

dealing with STR markers, we implement a stepwise muta-
tion model for transmissions within the pedigree. We use
haplotype frequency estimates from [26] and recombination
rates from [19]. In total, 1000 simulations were performed
for each relationship. For reasons that will be apparent in the
M1/M2/M3 comparison below, we use an example of three
full sisters versus two full sisters and a maternal half-sister.
We specify,

H1: Three full sisters
H2: Two full sisters and one maternal half sister

We simulate data given by both hypotheses and calcu-
late the LR using three different methods as previously
described. Obviously, using the 12 STR markers we obtain
sufficiently high LR values in most cases to distinguish
between the two hypotheses, given that H1 is true, see
Table 1. We observe some extremes LR:s below 1, but
97.5 % of the simulations are above 28, which given equal
prior probabilities yield a posterior probability above 95 %.
We notice however that simulating the opposite hypothesis
H2, where we are likely to observe genetic inconsistencies
when calculating likelihoods for H1, we do observe some
LRs above 1, though none above 20. It is further inter-
esting to note that mutations and obligate recombinations
within a cluster may be observed. Using highly polymor-
phic STR loci will also more likely result in an actual
observable recombination/mutation, whereas for SNP data
many of the mutations/recombinations may be hidden. In
our given example, recombinations within a cluster were
observed in 23 % of the cases and one or more mutations
are observed in 4.3 % of the cases when H1 was simu-
lated. The most interesting comparison with M1 and M2
is for data simulated under H1, where only M3 calculated
non-zero likelihoods in all the 1000 cases. Even in the 957
cases where M1 provided a non-zero LR, there is a sub-
stantial bias and variation compared to M3, see Table 2,
which also demonstrates that in the 723 cases where M2
provided a non-zero LR, there is less bias and variation, as
expected. Figure 3 illustrates the quotients of LR:s for the
cases where these can be computed. Note that the distribu-
tion of LR:s for method M2 has not been included in Fig. 3
as these values, where computable, fits closely the line
y = x.

Case 2 - Exploring the influence of linkage disequilibrium

In the second example, we explore how linkage disequilib-
rium may influence the results. Consider the fairly distant
relationship of two maternal cousins, see Supplementary
Figure S1 depicting two individuals being maternal cousins,
where LD may have a greater impact on the results. More-
over, for SNP marker even two unrelated individuals are
likely to share some alleles IBS and it is interesting to see

http://www.famlink.se
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Fig. 3 Scatter plot based on 1000 simulations in Case 1. Three full
sisters have been simulated using the model described in the text, alter-
native hypothesis is two full sisters and one maternal half sister. The
plot displays LR = P (Data | H0)/P (Data | H1), as calculated using
the two models M1 and M3. If all the dots are projected on the x-axis,
we obtain the distribution of LR:s calculated using M3, while if we
project all dots on the y-axis we obtain the distribution of LR:s cal-
culated using M1. If, for a specific dot, y = x, we have concordance
between the models. (The plot actually contains data from 957 of the
1000 simulation, discarding all simulations where a mutation were
observed

how this effects the IBD calculations when LD is present in
the data. We specify,

H1: Two females are maternal cousins, i.e. their mothers
are full sisters.
H2: The two females are unrelated.

The simulations are based on 100 SNP clusters, where
each cluster consists of two tightly linked triallelic SNP
markers. The genetic distance between the markers within
the cluster is specified as 0.1 cm, while the distance between

Table 1 Distribution of quotients of likelihood ratios (LR:s) from
1000 simulations, using the model described in this paper (M3)

LR (H0) LR (H1)

Median 3.38E+6 0

95 % cred. [28, 7.23E+9] [0, 2.29E-6]

Max/min 6.939E+10 / 0.0475 17.46 / 0

We define LR = P (Data | H0)/P (Data | H1), where H0: three full
sisters, H1: two full sisters and one half sister

Parentheses H0/H1 indicate which hypothesis has been simulated.
Simulating H1, we are likely to observe genetic inconsistencies and
even though we account for mutations in our model, the accumulated
number of mutation needed to explain some of the data may result in
an LR approximated by zero

Table 2 Distribution of quotients of likelihood ratios (LR:s) from
1000 simulations, using different methods (M1, M2 and M3) We
define LR = P (Data | H0)/P (Data | H1), where H0: Three full
sisters, H1:Two full sisters and one half sister

LR(M2)/LR(M3) LR(M1)/LR(M3)

Median 1.016 4.26

95 % cred. [0.0776, 2.4275] [0.0121, 307]

Max/min 5.51 / 0.001 3.42E+5 / 0.00105

We are only interested in the case where H0 is true, since simulat-
ing H1 will likely yield genetic inconsistencies. Although our model
accounts for mutation, none of the compared models do. The actual
number of simulation included in the results are for LR(M2)/LR(M3)
723 and for LR(M1)/LR(M3) 957, removing cases with mutations and
recombinations within a cluster

the clusters is 0.8 cm. We specify LD as illustrated in
Table 3. Given the presence of LD, we expect that M1 com-
pared to M3 and M2 will show clear bias, as the difference
between these two methods relevant here is that M1 does
not include LD. When we compare M2 and M3, there is
very little difference, as the data was simulated with very
low mutation rates and recombination rates within the clus-
ters are not observable for either of the hypotheses. See
Table 4 for a summary of the comparisons. As is evident
from Figs. 4 and 5, there is an overestimation of the evi-
dence using M1, both when the relation is simulated as true
as well as when unrelated is simulated as true. In fact, as
depicted in Fig. 5 using model M1 when H2 is true yields a
fairy high false positive rate of almost 10 %, while the same
rate when using M3 is only 1.

Case 3 - Further exploration of linkage disequilibrium and
recombinations

In the third case, we will again use data from clusters of
SNP:s. We specify,

H1: Two females are full siblings, with data available
for the mother
H2: The two females are maternal half siblings, with
data available for the mother.

Table 3 Specification of haplotype observations for two triallelic SNP
markers

A1 A2 A3 Total

B1 10 210 80 300

B2 80 35 5 120

B3 10 55 515 580

Total 100 300 600 1000

A1, A2, and A3 are the alleles for the first SNP while B1, B2, and B3
are the alleles for the second SNP

The total number of observations equals 1000
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Table 4 Distribution of likelihood ratios (LR:s) from 1000 simulations, using different methods (M1, M2, and M3) We define LR = P r(Data |
H0)/P r(Data | H1), where H0: Maternal cousins, H1:Unrelated

LR(M2)/LR(M3) LR(M1)/LR(M3)

H0 H1 H0 H1

Median 1.006 1.007 144945 1.26

95 % cred. [0.223, 1.494] [0.84, 1.128] [0.9, 4.9E+16] [0.954, 14.2]

Max/min 2/0.015 1.475/0.194 3.2E+23/0.014 427/0.491

Subheading H0 indicates H0 is simulated as true, while H1 indicates H1 is simulated as true

We compare M1/M2/M3 with data from 10 clusters,
where each cluster contain three markers which is more
widely spaced, 0.2 cm apart, so that crossovers within clus-
ters are likely. However, reasonably, we have lower levels of
LD in this situation. For each cluster, we specify three SNP:s
with alleles [A, a], [B, b], and [C, c]. We further define fre-
quencies, p(A) = 0.4, p(a) = 0.6, p(B|A) = 0.833,
p(B|a) = 0.25, p(b|A) = 0.167, p(b|a) = 0.75,
p(C|A, B) = 0.6, p(C|A, b) = 0.5, p(C|a, B) = 0.5,
p(C|a, b) = 0.667, p(c|A, B) = 0.4, p(c|A, b) = 0.5,
p(c|a, B) = 0.5, and p(c|a, b) = 0.333. Table 5 reflects
the power for this kind of data in the given case, where
likelihood ratios are generally quite high even when H1 is
true. When H2 is true, the simulated data is likely to con-
tain several exclusions and thus result in very low LR:s (for

Fig. 4 Scatter plot based on 1000 simulations in Case 2. A pair of
maternal cousins have been simulated using the model described in
the text, alternative hypothesis is unrelated. The plot displays LR =
P (Data | H0)/P (Data | H1), as calculated using the two models M1
and M3. If all the dots are projected on the x-axis, we obtain the distri-
bution of LR:s calculated using M3, while if we project all dots on the
y-axis we obtain the distribution of LR:s calculated using M1. If, for a
specific dot, y = x, we have concordance between the models

SNP data, our model for mutations is still applicable but
perhaps less relevant). Comparing M3 to M1, we observe
some bias but much less than in the previous example; see
Table 6 and Fig. 6. Comparing M3 to M2, however, we now
observe greater problems: We can separate out the simu-
lated cases where crossovers within the clusters have been
simulated. In these cases, it is obvious that the quotient of
likelihood ratios quite often will be zero, in fact, in 17 % of
the simulations as a consequence of recombination within
the cluster. In the remaining simulated cases where there
is no crossover simulated, the differences are much smaller
when M2 is compared to M3, see Table 6. As in Case 1, the
distribution of LR:s for method M2 has not been included
in Fig. 6 as these values, where computable, fits closely the
line y = x.

Fig. 5 Scatter plot based on 1000 simulations in Case 2. A pair unre-
lated pair have been simulated using the model described in the text,
alternative hypothesis is maternal cousins. The plot displays LR =
P (Data | H0)/P (Data | H1), as calculated using the two models M1
and M3. If all the dots are projected on the x-axis, we obtain the distri-
bution of LR:s calculated using M3, while if we project all dots on the
y-axis we obtain the distribution of LR:s calculated using M1. If, for a
specific dot, y = x, we have concordance between the models
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Table 5 Distribution of quotients of likelihood ratios (LR:s) from
1000 simulations, using method M3. We define LR = P r(Data |
H0)/P r(Data | H1), where H0: Full sisters (data from mother), H1:
Maternal half siblings (data from mother)

LR

Median 1.72E+6

95 % cred. [1959, 1.72E+8]

Max/min 1.95E+10 / 0

Case 4 - Bias in sibship test

In the last case, we explore the distribution of LR:s for SNP
markers when siblingship is disputed. This may be relevant
in a larger medical study where we wish to include only full
siblings. We may indeed wish to study the inheritance of
some disease, possibly linked to the X chromosome, where
it is crucial to determine if the alleged siblings share the
same father or/and mother. X- chromosomal marker data
provides a crucial bit of information to resolve this. We
specify the hypotheses as,

H1: Two females are full siblings.
H2: The two females are maternal half siblings.
H3: The two females are paternal half siblings.
H4: The two females are unrelated.

We use data from a set of 100 clusters of biallelic SNPs,
where each cluster consisted of two tightly linked SNP
markers demonstrating a high level of LD. To specify, for
each cluster let the first SNP have alleles [A, a] with fre-
quencies p(A) = 0.4 and p(a) = 0.6, the second
SNP have alleles [B, b] with frequencies p(B) = 0.4
and p(b) = 0.6. We specify LD as conditional allele
frequencies, p(B|A) = 0.9833, p(B|a) = 0.025,
p(b|A) = 0.0167, and p(b|a) = 0.975, see also
Supplementary Table S1.

Table 6 Distribution of likelihood ratios (LR:s) from 1000 simula-
tions, using different methods (M1, M2, and M3) We define LR =
P r(Data | H0)/P r(Data | H1), where H0: full sisters (data from
mother), H1:Maternal half siblings (data from mother)

LR(M2)/LR(M3) LR(M1)/LR(M3)

Median 1.0188 21.3122

95 % cred. [1.0019, 1.0522] [0.175, 2640]

Max/min 0.9994 / 1.2938 0.004 / 73008

Recombinations 1723 NA

We are only interested in the case where H0 is true, since simu-
lating H1 will likely yield genetic inconsistencies when computing
likelihoods given H0. Row ‘Recombinations’ denotes the number of
obligate recombinations within a cluster

Fig. 6 Scatter plot based on 1000 simulations in Case 3. We have H0:
Full sisters (data from mother) have been simulated using the model
described in the text, alternative hypothesis is H1: maternal half sisters
(data from mother). The plot displays the LR as calculated using the
two models M1 and M3. If all the dots are projected on the x-axis, we
obtain the distribution of LR:s calculated using M3, while if we project
all dots on the y-axis, we obtain the distribution of LR:s calculated
using M1. If, for a specific dot, y = x, we have concordance between
the models

We compare results from methods M1 and M3, see
Table 7, where we investigate the number of falsely classi-
fied relationships. Observe that for X- chromosomal data,
the likelihood for hypotheses H1 and H3 may be close to
zero when simulating H2 and H4 as multiple genetic incon-
sistencies is likely to be observed. With such an extreme
level of allelic dependency, it is obvious that method M1,
where we do not consider LD, overestimates the degree of
relationship. Specially when we simulate ‘unrelated’, the
‘Maternal half siblings’ hypothesis often obtain the high-
est posterior probability and similarly when we simulate
paternal half siblings, the full siblings hypothesis obtain the
highest posterior probability. As for method M3, a major-
ity of the falsely classified relationships are inconclusive,
i.e., the probabilities are not sufficiently high to exclude the
true relationship. To get further evidence as to the true rela-
tionship, we need to genotype further markers, autosomal or
gonosomal, to obtain conclusive results.

Discussion

This paper describes a new probability model simultane-
ously handling linkage, linkage disequilibrium, and muta-
tions, in likelihood computations using genetic marker data.
An implementation of the model, aimed at X- chromosomal
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Table 7 Number of correctly classified relationships from 1000 sim-
ulations, using methods M1 and M3. In the first row, each column
corresponds to the true relationship while the other rows indicate the
alternative hypotheses. For every column, each element contains the
number of cases for each simulation where the indicated hypothesis
has obtained the highest posterior probability. Results are displayed as
number of cases with M1/number of cases with M3

True Full siblings Maternal half Paternal half Unrelated

Full siblings 999 / 992 0 / 0 734 / 2 0 / 0

Maternal half 1 / 0 998 / 803 0 / 1 440 / 8

Paternal half 0 / 1 0 / 0 101 / 984 0 / 0

Unrelated 0 / 0 0 / 15 0 / 0 168 / 813

Inconclusive 0 / 7 2 / 182 165 / 13 392 / 179

We specify a falsely classified relationship when the posterior prob-
ability is below 0.1 for the true relationship and correctly classified
if the posterior probability is above 0.9. If the posterior probability is
between 0.1 and 0.9 for the true relationship, the results are considered
inconclusive

marker data, is provided in a user-friendly windows inter-
face, FamLinkX, freely available at http://www.famlink.se.
As stated in the paper, our model is not restricted to X-
chromosomal data, but could fairly easily be implemented
for autosomal markers. Similar to the Lander-Green algo-
rithm, our model utilizes Markov chains to handle linkage
between adjacent markers, i.e., the likelihood at a given
marker is conditionally independent of any other marker
given the IBD status of the previous marker. In addition,
a multi-step Markov chain is used to handle linkage dis-
equilibrium, similar to the extension presented by [17].
Whereas a single-step Markov chain is sufficiently good
for linkage, LD requires a multi-step chain since allelic
dependency can stretch further and a single-step chain is
not a satisfactory approximation. Moreover, we implement
a mutation model allowing for genetic inconsistencies in
the data. The latter is crucial using STR marker data where
mutations are not uncommon. This paper demonstrates the
feasibility of the model whereas validation and details on
the implementation is published elsewhere [manuscript in
preparation].

Similar to the Lander-Green algorithm our model has
limitation when it comes to the pedigree complexity, as
the inheritance space grows exponentially with the num-
ber of meiosis, though to our best knowledge, this should
not present any problems in any of the common pedigrees
encountered in forensic genetics. For extended pedigrees
with several typed persons the implementation requires opti-
mization. We may for instance reduce the inheritance space
[9, 16], e.g., by neglecting vectors with low contribution to
the overall likelihood, though one must proceed carefully as
many small likelihoods can yield a large combined contribu-
tion, especially when a mutation is necessary to explain the
data. There are also some other considerations described by

[11] and [15]. Moreoever, we assume Hardy-Weinberg equi-
librium (HWE) for allele frequencies and whereas it is fairly
easy to account for devations from HWE when the alleles
at two loci are in LE, LD will provide computational prob-
lems where this is not as straightforward. Combining LD
and subpopulation structure requires further developments
of our model.

As we simulate data using our own stochastic model, it is
of course given that our model will be best at differentiating
between cases. However, our points are that

1. It is well documented that SNP data and, in particular,
STR data do not fit the simplifications inherent in the
other models discussed while they fit reasonably well in
our model, so using it for simulations is reasonable.

2. Using the competing simplifications/models give a
clearly different result in a considerable proportion of
the cases.

In summary, our software provides the means necessary
to solve extended/complex relatedness cases with clusters
of X- chromosomal markers. In our implementation, we
define clusters as groups of tightly linked markers also
demonstrating linkage disequilibrium. It is worth noting that
our model for LD is currently implemented as a two-step
Markov chain. For SNP markers, it is fairly straightfor-
ward to extend this to a multi-step model spanning a greater
number of steps, whereas for STR markers with more
than 20 alleles, using more than two steps in the Markov
model is computationally infeasible without additionalss
speed-ups.

Appendix

The following section includes a more detailed description
of the notation used in the paper. First, we assume locus i,
(i = 1, . . . , I ) has Ai possible alleles, and let pi be a vec-
tor specifying the probabilities of a haplotype’s alleles at
locus i given the haplotype’s alleles at lower indexes. We let
r2, . . . , rI denote the recombination rates between the loci,
which are assumed known. For a locus i, let t be a trans-
mission, specifying a start allele in the parent, a resulting
allele in the child, and whether the parent is a mother or a
father. We then denote with mi(t) the probability that the
child obtains the resulting allele, given that the parent has
the start allele. This function specifies the mutation model at
locus i. The parameters of our model are p = (p1, . . . , pI ),
r = (r2, . . . , rI ), and m = (m1, . . . , mI ).

If parents’ alleles follow the population frequencies,
the probabilities for a child to have various alleles are
not given by the population frequencies, unless the pro-
cess represented by the mutation model happens to have
the population frequencies as stationary distribution. This

http://www.famlink.se
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means that adding the untyped father or mother to a per-
son in the pedigree may change the probability results
we are computing. To avoid this nuisance, we recom-
mend that all untyped founders with only one child in
the pedigree are (recursively) removed prior to computa-
tions. In our pedigree, a person may have specified no
parents, only a mother, only a father, or both parents.
Founders are those who have no parents in the pedigree.
We also assume the pedigree does not contain untyped chil-
dren with no descendants as such children cannot affect
the result.

Our observed data is divided into data s for S typed
founders and data d for M typed non-founders: Let sij for
i = 1, . . . , I , j = 1, . . . , S denote the observed allele
or alleles of typed founder j at locus i. For males and
X- chromosomal data, sij specifies only one allele, other-
wise sij specifies the two observed alleles in no particular
order. For the typed non-founders, let dij specify the sim-
ilar data. We write si = (si1, . . . , siS), s = (s1, . . . , sI ),
di = (di1, . . . , diM), and d = (d1, . . . , dI ).

We also need a number of ancillary variables: The inher-
itance pattern at locus i can be described as a vector vi

of length N , with one component for each parent-child
relationship in the pedigree when the locus is autosomal,
and one for each mother-child relationship for X- chro-
mosomal loci. Each component is 0 or 1 depending on
whether the paternal or maternal allele is inherited, we write
v = (v1, . . . , vI ). We also need to describe the founder
alleles of the pedigree: These are maternal or paternal alle-
les whose relevant parent is not in the pedigree. First, there
are founder alleles belonging to typed founders: Let gij be
the allele or alleles of typed founder j at locus i listed
with the paternal allele first. Write gi = (gi1, . . . , giS) and
g = (g1, . . . , gI ). For the remaining F founder alleles, let
fij denote the j ′th founder allele at locus i. Finally, we
write fi = (fi1, . . . , fiF ) and f = (f1, . . . , fI ).
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1. Introduction

There are several applications that require determination of
genetic relatedness. The focus of this paper is to describe
methods and implementations for complex relationships pro-
blems and disaster victim identification (DVI). While we have
forensic applications in mind similar problems occur in a wide
range of areas. The core computational problem is to calculate
the likelihood of the data given competing hypotheses and from
this to form the likelihood ratio (LR). We may further use a
Bayesian approach with prior information to compute the
posterior probabilities. In this paper we restrict attention to
unlinked STR markers and then likelihoods are typically
calculated using extensions of the Elston–Stewart (ES) algorithm

[1] accommodating correction for population substructure
(theta-correction), mutations and silent alleles [2]. The algorithm
is in concept a peeling algorithm, where we consider subsets of
a pedigree as conditionally independent given the connecting
node. As a consequence, the algorithm may require long
computation time, when marriage and inbreeding loops are
present [3]. An implementation of the ES algorithm is provided in
the software Familias [4]. The program is used by a large number
of laboratories worldwide [5] when calculating likelihoods in
relationship scenarios. Though previous versions of the software
have included several important features, such as null/silent
alleles, advanced mutation models and subpopulation correction,
Familias has also lacked some desired functionality [6]. With the
advent of new STR markers, micro-variant alleles (i.e., 9.3) have
become more common necessitating an appropriate mutation
model to handle transitions to and from such alleles. Whereas
previous models are generally not designed to handle these
transitions, this paper presents a new model, providing an
extension of the stepwise mutation model [7,8], thereby
accommodating for microvariants.
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relatives of the missing persons can be considered to be a collection of relationship problems. Forensic

calculations in investigative mode address questions like ‘‘How many markers and reference persons are
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Equilibrium (or more generally, accounting for population substructure) and silent alleles cannot be

ignored when evaluating forensic evidence in case work. With the advent of new markers, so called

microvariants have become more common. Previous mutation models are no longer appropriate and a
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simulation model to study distribution of likelihoods. There are softwares available, addressing similar
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compute likelihoods in relationship scenarios, though previous versions have lacked desired
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Monte Carlo simulation is a generic approach of relevance to
virtually all areas of science. In our context, simulations can be
used to get an idea of what evidential strength we will achieve for a
given case. Based on simulations, one may for instance conclude
that it is not worthwhile to proceed with a case unless more
reference persons are genotyped or the number of genetic markers
is increased. Simulation also extends the results from a point
estimate of the LR to a complete description of its probability
distribution. The model used for simulation is the same as the one
used for likelihood and LR calculation. In other words, the
simulations reflect the chosen mutation model, silent alleles and
incorporate theta correction.

Disaster victim identification (DVI) applications can be
considered as a potentially large collection of relationship
estimation problems. Typically, LR ratios (sometimes converted
to posterior probabilities) are reported and the aim is to compare
large amounts of reference data, i.e., family members or personal
belongings of missing persons, with unidentified remains. The
underlying core computational model remains the same as in
standard likelihood calculations. Since the early report on the
successful use of DNA as a tool to identify victims of a mass disaster
by Olaisen et al. [9], numerous papers have been published
demonstrating its application and utility [10–15]. For the scope of
this paper we consider smaller to medium sized DVI situation
where the number of missing persons is typically limited to 1000.

As previously stated, the emphasis of this paper is on the new
methods. Details on implementation and validation of the new
software Familias 3 [hereafter called only Familias], which
extends on Familias 2.0 [4], appear as supplementary material
and in the manual. Some of the functionality of the new version
or similar features can be found in other software [6,16,17].
However, (i) Familias is validated Drabek [6], (ii) widely used [5]
(iii) freely available and (iv) the basic code is open (see http://
familias.name/OpenFamilias). In addition, the implementation
benefits from integrating similar problems (LR calculations,
simulations and DVI feature) into one user friendly environ-
ment.

2. Methods

In relationship testing, mutually exclusive hypotheses are
normally formulated. A hypothesis H corresponds to a pedigree,
where the latter connects two or more individuals in a
relationship tree. The core problem is to calculate the
PðdatajH; fÞ where the data consists of alleles for different
genetic markers and f represents parameters needed to model
e.g. mutations and subpopulation structure. The computation of
the likelihood is in this paper based on the Elston–Stewart
algorithm [1] and later extensions described in [18]. Briefly the
algorithm peels the pedigree by calculating conditional proba-
bilities for cutsets, where each cutset is conditionally indepen-
dent given the rest of the pedigree, and can thus be effectively
used on large pedigrees. The algorithm can also effectively
accommodate many unlinked markers. Should we need to
account for dependency between markers, other algorithms and
implementations must be considered, e.g. FamLink[19] or Merlin
[20]. For two different hypotheses H1 and H2, the likelihood ratio
LR ¼ PðdatajH1; fÞ=PðdatajH2; fÞ is typically calculated and
reported.

The next section first describes the new mutation model, then
the simulation approach and a framework to deal with DVI
problems. Thereafter, some general principles related to validation
are described. Finally, the implementation is briefly described
deferring more complete descriptions to supplementary sections
and the manual.

2.1. Mutation model

As mentioned, there is a need for a new mutation model capable
of handling transitions to and from microvariants, e.g. between 9
and 9.3. Some current models treat such microvariant mutations

(MVM) in the same way as integer mutations (IM) or neglect them
as the mentioned transitions are considered improbable. This is
biologically unreasonable and the problem has become more
pronounced as MVM are more common in the latest STR kits. We
provide a new stepwise mutation model accounting for MVM. The
model is called the extended step wise model in the implementa-
tion.

We specify the model by letting M be the mutation matrix, with
elements mij, where i,j = 1, . . ., N and where N is the number of
alleles. Each element mij is the probability of a transition from
allele Ai to allele Aj. The current model separates the overall

mutation rate, denoted m, into two parts, one corresponding to

integer mutations, R, and one to the micro-variants a, i.e.,

m ¼ R þ a. Biologically R is often explained by slippage error

during DNA replication [8] while a is connected to insertions/

deletions and point mutations. The last parameter, the mutation
range r, is defined as for previous IM models; it is the value with
which the probability decreases for each further step away from
the original allele mutates.

Next the model is specified precisely by the transition
probabilities mij. There are three different alternatives:

1. mi j ¼ ð1 � ðR þ aÞÞ if i ¼ j, i.e. the probability that an allele does
not mutate.

2. mi j ¼ kið1 � aÞrji� jj for integer mutations.
3. mi j ¼ kia=Ni for micro variant mutations: Ni is the number of

MVM-s from allele i. The rows must sum to unity and therefore
the normalizing constants ki are determined by the constraintsPN

j¼1 mi j ¼ 1.

Example 1. Consider a marker containing the alleles 9, 9.3, 10, 10.3
and 15. The transition matrix M is then given by:

M ¼

1� ðRþaÞ k1a=2 ð1 �aÞk1r1 k1a=2 ð1�aÞk1r6

k2a=3 1� ðRþaÞ k2a=3 ð1�aÞk2r1 k2a=3
ð1�aÞk3r1 k3a=2 1�ðRþaÞ k3a=2 ð1�aÞk1r5

k4a=3 ð1�aÞk4r1 k4a=3 1�ðRþaÞ k4a=3
ð1�aÞk5r6 k5a=2 ð1 �aÞk5r5 k5a=2 1�ðRþaÞ

2
66664

3
77775

In this case, k1 is found as follows 1 ¼ 1 � ðR þ aÞ þ k1a=2 þ
ð1 � aÞk1r þ k1a=2 þ ð1 � aÞk1r6, k1 ¼ ðR þ aÞ=ða þ ð1 � aÞðr þ
r6ÞÞ: Similar calculation can be shown for the other ki. Note that, the
matrix M is not necessarily symmetric, meaning that the
probability of observing a mutation from 9 to 9.3 is not the same
as observing a mutation from 9.3 to 9. This is a consequence of the
definition of M. Further note that for transitions from allele 9 for
example, Ni = 2 as there are two MVM:s given allele 9 as starting
point.

2.2. Simulation

Simulations provide means to calculate prediction intervals
and investigate specific likelihood ratio thresholds for a given
case. The probability of falsely including/excluding a true
hypothesis with a given LR threshold can be estimated.
The interface may be utilized to examine the number of
genetic markers we need to obtain a sufficiently good LR,
prior to deciding to accept a case, as well as providing intervals.
The simulation interface accounts for all parameters in the
model.
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Specifically, the simulation algorithm starts by detecting all
founders for a given pedigree. Founder genotypes are sampled
using defined allele frequencies in combination with possible
subpopulation correction, modeled by the parameter u (some-
times denoted Fst in the literature). Furthermore, transitions
within the pedigree are sampled using a transition matrix, the
latter depending on the selected mutation model. Interested
users may use raw data from the simulations to study observed
mutation rates or the occurrence of silent alleles. Moreover, in
addition to providing prediction intervals, the interface provide
relevant functionality to study thresholds and false positive/
negative rates, i.e., given two mutually exclusive hypotheses, H1

and H2, the probability PðLR � xjHÞ is estimated for a given
threshold x and an assumed hypothesis H. Simply put, it gives
the probability of obtaining a LR at least as great as a given
threshold.

2.3. DVI

Since the introduction of DNA, genetic data from relatives or
personal belongings of missing persons have become one of
the most important and reliable means of identification
[10–12,14,21]. The disaster victim identification (DVI) module
in Familias is provided to assist in any operation that requires an
all-against-all search. To specify, we have K number of
unidentified DNA profiles and M number of reference DNA
profiles. The former data set may be reduced to K0 as identical
DNA profiles are found through blind matching while the latter is
reduced to L0 if some of the M reference profiles belong to
the same cluster, i.e., in this setting meaning the same reference
family. We have K � K 0 and L � L0. For k = 1, . . ., K0 we compare
each unidentified DNA profile k with the l = 1, . . ., L0 reference
families. In Familias we specify two sets of data; PM (Post
Mortem) data – obtained from unidentified remains, where
several of the remains as mentioned may originate from the
same individual and AM (Ante Mortem) data, where we define
missing persons. In the AM data we define reference families for
each missing person, where we may have genetic data from
relatives of the missing person or direct matching samples such
as personal belongings. The reference family can contain
arbitrary pedigree structures., Complex pedigrees, mutation
models (see below) and theta correction, will typically produce
longer computation times. The module calculates likelihoods for
each combination of PM data and AM data. Using a Bayesian
approach the likelihoods are converted to posterior probabilities
including prior probabilities set by the user. The choice of priors
has been debated elsewhere [22] and can be influenced in
Familias by changing the size of the DVI operation. As of now,
meta data is not used to adjust priors or to exclude unidentified
persons based on gender. This may in some situations be
appropriate as the meta data may have been incorrectly
specified.

In addition to the DVI module, there is a blind search
interface, allowing the user to search a set of persons for
unknown relations. The feature may be used on any data set, e.g.
to search for relations in a set of individuals before creating a
population frequency database or as in the DVI situation to find
direct matches or relations between PM samples. The blind
searching is restricted to pairwise searches for a number of
predefined relationships and implements a fast algorithm based
on the formulas presented in Table 4 in Hepler et al. [23]. The
algorithm does not account for mutation unless the parent–child
relation is chosen; while theta correction is applied in all
scenarios should the value be nonzero. Briefly, the formulas
implemented are based on identical by descent (IBD) sharing
probabilities not accounting for inbreeding. The general

formula is,

PðdatajHÞ ¼ PðIBD ¼ 0jHÞg0 þ PðIBD ¼ 1jHÞg1 þ PðIBD

¼ 2jHÞg2 (1)

where P(IBD = 0jH) = k0, P(IBD = 1jH) = k1 and P(IBD = 2jH) = k2 are
the probabilities that two individuals share 0, 1 respectively 2
alleles identical by descent.; g0, g1 and g2 are functions of allele
probabilities depending only on the genotype data. A more
general formula, also accounting for inbreeding can be derived,
though its utility in the current setting is limited.

For the new direct matching feature, Familias implements a
general approach. To specify, consider two profiles G1 and G2.
Further, consider the competing hypotheses:

H1: The profiles belong to the same person
H2: The profiles belong to two unrelated persons

The hypotheses, and the current setting, is distinct from the
more common situation where we have some trace evidence from
a crime scene and a reference profile to compare with. The former
being uncertain while the latter is commonly considered to be
accurate.

To compute the LR we require some more definitions. We
consider a latent genotype Gtrue, consisting of all possible
genotypes for the current marker. We can now specify the LR as

LR ¼ PðG1; G2jH1Þ
PðG1; G2jH2Þ

¼
PN

i¼1

PN
j¼1 PðGtrue;i; jÞPðG1jGtrue;i; jÞPðG2jGtrue;i; jÞ

PðG1ÞPðG2Þ
(2)

where N is the number of alleles at the current marker and
P(Gtrue,i,j) is the genotype probability, pi*pj, for the latent genotype
with alleles i and j. P(G1jGtrue,i,j) and P(G2jGtrue,i,j) are the transition
probabilities from the latent genotype to the observed genotypes.
To calculate the transition probabilities in the direct matching we
specify three parameters, d = allelic dropout probability, c = allelic
dropin probability and e = typing error probability. Here, we
specify dropout as the probability of one allele not being
unobserved for a heterozygous genotype (allelic dropout), dropin
as the probability of an extra allele being observed for a
homozygous genotype (allelic dropin) and typing error as the
probability of some other laboratory error leading to an incorrect
genotype [24]. Dropouts, dropins and errors are assumed to occur
independently. Note that these parameters only apply to direct
matching function and are not used in the kinship calculations. See
Table 1 below for a list of P(G1,G2jH1) and P(G1,G2jH2) for some
combinations of genotypes G1 and G2. (The formulas are simplified
to fit, removing terms negligible in the calculations assuming
d > > c > e; the implementation is exact, see Supplementary data
1 for a more thorough walkthrough of Eq. (2), including an example
where the simplifying assumptions are omitted)

We see that if d = c = e = 0, the LR [P(G1,G2jH1)/P(G1,G2jH2)] in
the first and fifth line of Table 1 reduces to1/P(A,A) and 1/P(A,B),
while the remaining lines simplifies to zero. Further note that if
d > >c > e and d is comparatively small, say below 0.1, several
latent genotypes are unlikely as the transition probabilities are
very small. Moreover, if subpopulation correction is nonzero the
allele probabilities are not independent. The user-friendlyness of
handling three parameters (d, c and e) instead of one can be
discussed. Similar to Merlin [20], one may instead use a general
error variable, including all the effects possibly causing an
erroneous genotype.
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2.4. Validation

Validation can mean several things, including validation of
methods and validation of the implementation. Here we focus on
approaches that may be of general interest and which can be used
to validate also other programs. Specific validation examples
showing correct numerical results, i.e. results that can be derived
by other means, typically exact formulae, appear in Supplementary
data 2. (Some useful validation files are available at the Familias
homepage)

2.4.1. Some useful validation formulae in simulations

The expected value of the LR assuming the denominator
hypothesis H2 to be true is 1

EðLRjH2Þ ¼ ð1 � pÞ0 þ p
1

p
¼ 1 (3)

where p is the random match probability and 0 and 1/p are the
two possible values for the likelihood ratio. This follows directly
from the definition of the likelihood ratio and expectation as
pointed out by Thompson [18]. This is true also if mutations and
population substructure are modeled. Slooten and Egeland [25]
presents further theoretical properties of LR:s. For instance, the
identity

SDðLRjH2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðLRjH1Þ � 1

p
(4a)

relating the standard deviation (SD) under H2 to the expected value
under H1. This last equation, however, is not valid when there are
mutations or theta correction is made.

Eqs. (3) and (4) can be used to check simulations under the
denominator hypothesis when p is not too small, typically for one
marker. When p is small, say below 10–10 any reasonable number
of simulations should lead to all LR-s being 0 as the probability of a
random match is then negligible.

Turning to validation for simulations under the numerator
hypothesis, the general formula for the expected value for all
pairwise, non-inbred relationships presented in Slooten and
Egeland [25] can be used

EðLRjH1Þ ¼ aL2 þ bL þ ð1 � a � bÞ (4b)

where L ¼ alleles; a ¼ k2
2

2
; and b ¼ k2

1 þ 4k1k2 þ 2k2
2

4

As an example, note for a parent–child relation k1 = 1 and k2 = 0
and the expected LR is therefore (L + 3)/4 for one marker. This
generalizes directly to n independent markers

EðLRjH1Þ ¼
Yn

i¼1

Li þ 3

4

where Li is the number of alleles for marker i.

We have checked the code using the above formulae for one
marker at the time. To get an indication of the simulation
uncertainty, several simulations can be run with different seeds.

Exact calculations are hard for general mutation models.
There is, however, one exemption as explained next. Consider the
hypotheses H1:AF is the father CH and H2:AF and CH are unrelated.

The genotypes of AF and CH are denoted a/b and c/d. For instance,
if both individuals are homozygote 9,9 then a = b = c = d = 9. A
case which would need a mutation to be consistent with
paternity occurs for genotypes 9,9.3 and 10,10.3 corresponding
to a = 9, b = 9.3, c = 10 and d = 10.3. The likelihood ratio may be
written [26]

LR ¼ 1

4

ðmac þ mbcÞ pd þ ðmad þ mbdÞ pc

pc pd

(5)

where p denotes allele frequency. Example 2 below relies heavily
on the above equation.

2.5. Implementation

The software functionality described herein is implemented in a
Windows friendly software, Familias version 3.1.4 at the time of
writing. See Supplementary data 2 for some validation examples.
The mayor changes since Familias 2.0 is the introduction of the
new mutation model, the simulation interface as well as the new
DVI module. We also introduce a new blind match searching
function implementing some new functionality, primarily con-
nected to the direct matching, see previous description. The latest
version of Familias is freely available at www.familias.no.
Moreover, several other new features will be presented in the
next releases, e.g. the possibility to model profiles with dropouts
[Manuscript submitted].

3. Results

3.1. New mutation model and simulation

Example 2. In this example both simulation and the new mutation
model is illustrated. Consider one marker with the mutation model
and alleles as described in Section 2 of this paper. The mutation
parameters are specified as:

R ¼ 0:005; r ¼ 0:1 and a ¼ 0:001:

The mutation matrix M becomes

Allele 9 9.3 10 10.3 15

9 9.940e�01 2.973e�05 5.945e�03 2.973e�05 5.945e�08

9.3 1.982e�05 9.940e�01 1.982e�05 5.945e�03 1.982e�05

10 5.939e�03 2.973e�05 9.940e�01 2.973e�05 5.939e�07

10.3 1.982e�05 5.946e�03 1.982e�05 9.940e�01 1.982e�05

15 5.929e�06 2.967e�03 5.929e�05 2.967e�03 9.940e�01

For the numerical examples below, the allele frequencies for the
alleles (9, 9.3, 10, 10.3, 15) are (0.05, 0.05, 0.20, 0.30, 0.40). From
Eq. (5) we find, when the alleged father is 9, 9.3 and the child 10, 10.3

LR ¼ 1

4
ðð5:94e � 03 þ 1:98e � 05Þ � 0:2 þ ð2:97e � 05 þ 5:94e

� 03Þ � 0:3Þ=ð0:2 � 0:3Þ

¼ 0:0124:

which is accurately reproduced by Familias 3. Similarly, simula-
tions closely reproduce the theoretical values. For instance, the
expected value of the LR assuming AF and CH to be unrelated is 1

Table 1
LRs based on the direct matching feature of Familias.

G1 G2 P(G1,G2jH1) P(G1,G2jH2)

A,A A,A [

(1 � d2)2(1 � e)2(1 � c)2]P(A,A)

P(A,A)*P(A,A)

A,A A,B (1 � e)2[P(A,A)(1 � d2)2cP(B) + P(A,B)d(1 � d)

(1 � c)(1 � d2)]

P(A,A)*P(A,B)

A,A B,B (1 � e)2[(1 � c)2d2(1 � d)2]P(A,B) P(A,A)*P(B,B)

A,A B,C (1 � e)2[P(A,B)d(1 � d)cP(C) + P(A,C)d(1 � d)cP(B)] P(A,A)*P(B,C)

A,B A,B (1 � e)2[(1 � d)2(1 � c)2] P(A,B) P(A,B)*P(A,B)

A,B B,C (1 � e)2[P(B,B)(1 � d)2c2P(A)P(C)]a P(A,B)*P(B,C)

A,B C,D (1 � d2)2(1 � c)2[P(A,B)e + P(C,D)e]a P(A,B)*P(C,D)

a Note that neither of the observed genotypes, G1 or G2, is probable as the latent

genotype.
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according to Eq. (3) and the computer output based on 10,000
simulations gives a value close to the theoretical. Furthermore, the
expected LR assuming AF to be the father, (L + 3)/4 = (5 + 3)/5 = 2,
from Eq. (4b) is also consistent with simulations.

3.2. DVI module and blind search interface

To validate the DVI module simulated data was constructed
for a number of relationships (Data available upon request).
Specifically, 100 pairs of siblings, 100 pairs of grandparents/
grandchildren and 100 pairs of parent/childs were generated
using the simulation interface. For each pair one of the
individuals was withdrawn and denoted as missing. All missing
persons, in total 300, were collected into a data set of
unidentified remains. The reference families were constructed
according to the simulated relationship, i.e., 100 families where
the reference data was from siblings, 100 families where the
reference data was from grandparents and 100 families where
the reference data was from a parent. An all-against-all search
was performed in the DVI module, where LRs were calculated for

all possible combinations of unidentified remain and reference
family. In total 300 � 300 = 90,000 comparisons were done,
producing a list of matches above a given threshold (in this case
set as low as LR = 1). The match list indicated some false matches
(i.e. false inclusions), which is most probably due to the low LR
threshold. However, no false match obtained a LR higher than the
true match. Some true matches for the missing persons obtained
very low LR barely above 1.0, which was in some of the cases
explained by simulated mutations (grandparents and parent)
and in other cases by low number of shared alleles (sibling cases),
(Data available upon request). See also Ge et al. for a discussion
on choice of reference family relatives in DVI operations [27]. The
point with this validation is not to investigate the match
threshold but rather to demonstrate the accuracy in the
calculations.

We further use constructed data to validate the blind searching
function. Consider a system with alleles similar to the first
example, i.e., the allele frequencies for the alleles [9, 9.3, 10, 10.3,
15] are [0.05, 0.05, 0.20, 0.30, 0.40]. For simplicity we let the
mutation rate be zero, while we consider both u = 0 and u = 0.01.
Consider two persons P1 and P2 with genotypes G1 and G2. We can
now easily calculate the likelihood ratio for the predefined
relationships in the blind search interface using Eq. (1). Note that
the interface allows us to scale versus some other relationship
rather than unrelated, but for the current calculation we use
unrelated as the alternative hypothesis.

Let G1 = 9,9 and G2 = 9,10. For u = 0.01 we need to calculate the
updated set of frequencies, [p(9), p(9j9), p(9j9,9),
p(10j9,9,9)] = [0.05, 0.0595, 0.0688, 0.194], using formulas in
Balding et al. [28]. Note that this set of frequencies will change
if two alleles are IBD, i.e. for IBD = 2 and IBD = 1 we need to update
the frequencies as only two respectively three alleles are drawn
from the population.

The likelihood for the different hypotheses of relatedness
can now be calculated from Eq. (1) as, LðDatajHÞ ¼
k02 pð9Þ2 pð9Þ pð10Þ þ k1 pð9Þ pð9Þ pð10Þ, where k0 and k1 are
replaced by the values according to the relationship H.

The direct match LR can be calculated according to Eq. (2), by
summing over all possible genotypes for the latent genotype and
compute the likelihood for each case according to: (We specify
d = 0.1, e = 0.001 and c = 0.001, which are the default values in
Familias)

The theoretical values in coincide with the values calculated in
Familias (Table 2). Also note that the Direct match obtain a high LR
even though the profiles are not identical, this is due to the high
values on the parameters d, c and e.

3.3. Simulations

To further corroborate output from the simulation interface we
compared results on some standard forensic cases with simula-
tions reported in Table 6 of Ge et al. [27], see Table 3. The
investigated relationships are described elsewhere, op.cit., but are
based on simulations on the standard 13 CODIS STR markers, in
order to determine how many relatives are necessary in a given

Table 2
LRs for some relationship hypotheses, calculated versus unrelated as alternative

hypothesis, for a pair of individuals P1 and P2.

Relationship LR (u = 0) LR (u = 0.01)

Direct match 29.07 18.12

Siblings 5.25 3.919

Half siblings 5.5 4.169

Cousins 3.25 2.584

Parent–child 10 7.338

2nd cousins 1.5625 1.396

Table 3
Distribution of log10 likelihood ratios for 10,000 simulations using three different

methods.

Method Pedigree Mean 5percentile 1percentile

Familias3_no_mut Both parents 10.25 8.1 7.4

Ge et al. Both parents 10.26 8.07 7.34

Familias3_mut Both parents 10.17 7.85 6.63

Familias3_no_mut One parent/One child 4.08 2.47 1.90

Ge et al. One parent/One child 4.09 2.48 1.92

Familias3_mut One parent/One child 4.07 2.43 1.69

Familias3_no_mut 2 full sibs 5.88 2.64 1.25

Ge et al. 2 full sibs 5.88 2.65 1.34

Familias3_mut 2 full sibs 5.86 2.48 1.09

Familias3_no_mut 1 halfsib 0.92 �0.59 �1.16

Ge et al. 1 halfsib 0.91 �0.57 �1.16

Familias3_mut 1 halfsib 1.16 �0.70 �1.29

Familias3_no_mut 2 children (same parent 2) 6.97 4.31 3.43

Ge et al. 2 children (same parent 2) 6.98 4.33 3.35

Familias3_mut 2 children (same parent 2) 6.94 4.24 3.14

The methods are Familias 3 (with and without mutations considered) as well as

results presented by Ge et al., the pedigrees are described elsewhere [27].

LR ¼ PðG1; G2jH0Þ
PðG1; G2jH1Þ

¼
PA

i¼1

PA
j¼i PðGtrue;i; jÞPðG1jGtrue;i; jÞPðG2jGtrue;i; jÞ

PðG1ÞPðG2Þ
¼ We simplify and remove terms which is negligible in the numeratorh i

¼ pð9Þ pð9j9; uÞPð9; 9j9; 9ÞPð9; 10j9; 9Þ þ 2 pð9Þ pð9j10; uÞPð9; 9j9; 10ÞPð9; 10j9; 10Þ
2 pð9Þ pð9j9; uÞ pð9j9; 9; uÞ pð10j9; 9; 9; uÞ

¼ ð1 � eÞ2½ pð9Þ pð9j9; uÞð1 � d2Þc pð10Þ þ 2 pð9Þ pð9j10; uÞdð1 � dÞð1 � dÞ2ð1 � cÞ�
2 pð9Þ pð9j9; uÞ pð9j9; 9; uÞ pð10j9; 9; 9; uÞ
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case to obtain sufficient LRs. The Familias simulation interface
produces almost identical output as presented by Ge and
colleagues. As a comparison we also included simulations using
the extended stepwise mutation model and the results are still
close to the simulations without mutations.

4. Discussion

Familias is a well-known software in the forensic community
and used by a number of laboratories [5]. The software facilitates
the interpretation of the evidence by computing likelihood ratios
and posterior probabilities for a given set of relationship
hypotheses and genetic marker data. This paper describes methods
implemented in the new version (Familias 3), providing consider-
able extensions to previous versions [4].

A comprehensive simulation interface provides versatile
functionality for studying distribution of likelihood ratios for a
given case. Users may now investigate a case prior to accepting it
by computing prediction intervals and decide whether decisive
evidence is likely to be obtained. The authors are aware of the
discussion in the forensic community on the use of case specific
thresholds rather than using an general LR/Posterior probability
threshold for all cases. We do not propagate for lowering the
threshold only because for a given case the evidence will never
reach the required value. The users should instead study the false
positive/negative rates to find an appropriate limit. As presented in
this paper, the algorithm can simulate arbitrary pedigree
structures where the only limitation is set by the computation
time.

To assist in mass disaster identifications, we have developed a
DVI module, allowing users to handle small to medium scale
identifications. There are several papers and online discussions
following previous larger scale mass disaster incidents, e.g. the
Tsunami disaster [12], the WTC terror attack [11,14] and
the hurricane Katrina [29,30]. This paper includes some points
on the implementation and interested users should follow the
references given above for further mathematical discussions.
Similar to the simulation interface, the DVI module adopts the full
functionality of Familias, allowing for subpopulation frequency
correction, silent alleles and mutations. The module further allows
the definition of multiple alternative family hypotheses, within
each family, thus permitting each reference family to have several
missing persons and the user can weigh the evidence given a match
based on the possibility that the unidentified person may fit in
several locations in a family tree.

To further aid in the identification of unidentified remains, a
blind search tool is included. As presented in this paper the tool can
be used to rapidly scan data sets for unknown relations; unknown
in the sense that we have no prior knowledge how the individuals
in the data set are related. In addition to assist in DVI operations the
search can also be performed to verify that data sets for the
creation of population frequency databases do not contain related
individuals. The blind search is restricted to pair wise comparisons
on a number of predefined relationships implementing the
formulas presented in Hepler et al. not accounting for inbreeding
and mutations [23]. As the formulas are general in the sense that
any non-inbreed pair wise relationship can be defined, the
implementation in Familias opens up for future extensions where
any non-inbred relationship between two individuals could be
specified using the k0, k1 and k2 parameters, see Eq. (1).
Furthermore, the search also includes a newly developed direct
matching function (also part of the DVI module), which
incorporates dropout, dropin and typing error probabilities. The
latter is probably hard to estimate but can in some situations not
be neglected, and therefore equally important as the two first
mentioned probabilities.

Further, to cope with the increasing polymorphism in the new
STR markers, we have developed a new mutation model. The
model builds on the stepwise model [7], but provides extensions
for microvariants, e.g. 9.3. Microvariants are more and more
common, for instance the STR marker SE33 (ACTPB2) includes
several alleles with a non-integer repeat unit and even though
mutation rates for transitions between non-integer alleles and
integer alleles may sometimes be negligible we require an
appropriate model to handle them. This transition model is not
stationary. In other words, the distribution of allele frequencies
will change slightly with each generation in the pedigree. A
stationary version of the above model would be a welcomed
extension. Such an extension should preserve the main features
like the diagonal elements, i.e., the overall mutation probability.
We have not yet been able to derive such a stationary model.

In summary, the software Familias has previously been proven
to be a resourceful tool in calculations concerning genetic
relatedness [4–6]. We believe the extensions provided in this
paper will be important for many users where previous versions
have lacked desired functionality. The latest version can be freely
downloaded at http://www.familias.no.
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FamLinkX – A general approach to likelihoods computations for X-chromosomal markers 

Abstract 

The use of genetic markers located on the X chromosome has seen a significant increase in the 

last years and their utility has been well studied. This paper describes the software FamLinkX, 

freely available at http://www.famlink.se, implementing a new algorithm for likelihood 

computations accounting for linkage, linkage disequilibrium and mutations. It is obvious that 

such software is sought for among forensic users as more and more X-chromosomal markers 

become available. We provide some simulated examples demonstrating the utility of the 

implementation as well as its application in forensic casework. Though algebraic derivations are 

generally unfeasible, the paper outlines some theoretical considerations and provides a 

discussion on the validation of the software. The focus of this paper is to compare the software to 

existing methods in a forensic setting, perform a validation study as well as to provide an idea of 

the discriminatory power for X-chromosomal markers. 

Keywords 

Linkage, X chromosome, FamLinkX, Linkage disequilibrium, Mutations 

1. Introduction 

There has been an emerging focus on X-chromosomal markers in recent years [1-6]. The most 

recent commercial Investigator Argus X12 kit from Qiagen divides 12 STR markers into four 

distinct clusters on the relatively short X chromosome [2, 7-10]. There is furthermore several in-

house developed STR kits such as the Decaplex by Gusmao et al [11] as well as SNP multiplexes  

by Pereira et al [12, 13]. Several papers have presented approaches to handle X-chromosomal 

marker data in statistical calculations, though none have presented a general approach [5, 6, 14]. 

As the X chromosome is relatively short, and many of the kits include several markers, genetic 

http://www.famlink.se/


 

 

linkage and also linkage disequilibrium (LD) is a necessary concern [1, 3]. Whereas genetic 

linkage is the dependence between two markers within a pedigree, i.e. two alleles at the two 

markers may be inherited as a unit, with increasing probability the shorter the distance is, linkage 

disequilibrium, also referred to as allelic association, is the non-random association of alleles at 

two different loci (See Thompson et al for a more thorough review [15]). The consequence is 

that we require an appropriate statistical model to handle these concepts in the statistical 

calculations.  

One of the suggested solutions has been to use only one marker from each cluster, where 

the markers are divided into haplogroups/clusters, thus, according to propositions, removing the 

problem with LD. This is not an attractive approach from a statistical point of view as we may 

lose a lot of information in the discarded data. Another naive solution may be to disregard 

linkage/LD and instead use the product rule, assuming the loci to be independent. As will be 

obvious this can greatly overestimate the evidence and may even cause false positives. In 

addition, in a forensic setting we need good models to handle mutations as the mutation rates for 

STRs are not negligible.  

Recently, we presented a joint probability model to handle genetic marker, accounting for 

linkage, linkage disequilibrium and mutations [16]. The model is implemented in FamLinkX for 

X-chromosomal markers. This paper will provide a walkthrough on some examples and prove 

the necessity of the software in a forensic setting. Note, the paper does not describe the general 

utility of X-chromosomal markers, but rather the utility of our algorithm in likelihood 

calculations involving linkage, linkage disequilibrium and mutations, specifically implemented 

for X-chromosomal data. Moreover, the paper demonstrates the application and validation of the 



 

 

software in forensic casework, whereas Kling et al [16] provide a more thorough general 

description of the algorithm. 

2. Model  

2.1. General description 

The complete description of the model is provided in Kling et al [16]. In short, the model 

embodies the idea of Markov-chains to account for dependency between markers as well as 

dependency between alleles at different loci. A one-step Markov-chain is used to handle linkage 

between neighboring markers, similar to the Lander-Green algorithm [17], such that the 

likelihood at a given marker is independent of all other markers given the previous marker. In 

addition, a multi-step Markov-chain is employed to account for allelic dependency (linkage 

disequilibrium). The algorithm starts by defining all meiosis in a given pedigree. The 

combination of all possible meiotic outcomes defines the inheritance space. In addition, we 

define all founders and all founder alleles for the given pedigree. All possible combinations of 

founder alleles define the founder allele space. The algorithm proceeds by calculating the 

likelihood for marker 1 using the defined mutation model and the founder allele space to 

compute pedigree likelihoods. At marker 2 we also consider all possible paths from marker 1, 

such that the dependency is a sum over all possible inheritance patterns and founder allele 

patterns yielding non-zero likelihood at the previous marker.  

2.2. The λ model 

We consider an approach using a Dirichlet distribution for haplotype probabilities see Equation 1 

and Tillmar et al [3]. 
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Where Hi is the updated probability for haplotype i, given ci number of observations, pi is the 

prior probability for the haplotype calculated using the expected haplotype frequencies, C is the 

total number of observations in the database and lambda is a parameter giving weight to the prior 

haplotype probabilities. We explore the impact of lambda on the likelihood ratio for a number of 

cases in this paper, though more studies should be undertaken to decide if the model (1) is proper 

and which values for lambda that should be chosen. Equation 1 allows for unobserved 

haplotypes to be assigned an estimated frequency, but also observed haplotype frequencies are 

adjusted in the model. 

2.3. Theoretical example 

Maternity 

Algebraic derivation is generally unfeasible, but for a maternity case with a female child the 

formula is simple enough. We consider X-chromosomal data (two markers) and hypotheses: 

H1: An alleged mother (AM) is the true mother of the child (C) 

H2: Another woman, unrelated to the alleged mother, is the true mother of the child. 

We can now calculate the likelihoods P(Data|H1) and P(Data|H2).  

 
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where Gi,C denotes the genotype data for the child at locus i. Similar reasoning applies for the 

Gi,AM for the mother. Using the notation of the model, described in detail in [16], we define Di as 

the genotype data at locus i, Vi as the inheritance pattern at locus i and Fi as the founder allele set 

at locus i. (See also Supplementary Equation file for a general description of the derivations) 



 

 

Similarly 

 

1 2
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It is obvious from the above equations that the main difference from the Elston-Stewart 

algorithm [18] lies in the part where we sum over inheritance patterns for two neighboring loci. 

For the mentioned algorithm, we typically need to sum over all possible haplotypes, which for 

many consecutively linked loci grows exponentially. 

Now, consider markers L1 and L2 with alleles A1,A2,A3 and B1, B2, B3 respectively. Allele 

probabilities for L1 are p(A1)=0.595, p(A2)=0.395, p(A3)=0.01 and the unadjusted conditional 

allele probabilities for L2 are p(B1|A1)=585/595, p(B1|A2)=10/395, p(B2|A1)=10/595 and 

p(B2|A2)=385/395. For B3 we only have p(B3|A3)=1. To estimate remaining haplotype 

frequencies, i.e. p(B1|A3), p(B2|A3), p(B3|A1) and p(B3|A2), we use the lambda model described in 

Section 2.2 with λ=0.001 and as a consequence the formerly defined conditional allele 

probabilities will be slightly adjusted. The markers are separated by 0.1 cM which is accepted to 

be approximately equal to a recombination rate of 0.001. We let the mother be heterozygous [A1, 

A2] at L1 and [B1, B2] at L2 while the child is [A1,A1] at L1 and [B2, B3] at L2. P(Data|H2) is 

calculated as a summation of the product of the probability for all possible founder allele sets for 

L2 given all possible founder allele sets at L1, defined by the two alleles for the mother and the 

two alleles for the child. P(Data|H1) is calculated in two steps. The first step calculates a table of 

pedigree likelihoods for L1 given all possible inheritance patterns; in this case either 0, 

indicating the maternal allele from the mother is passed down, or 1, indicating the paternal allele 

from the mother is passed down, and given all possible founder allele sets, in this case given by 



 

 

the possible combinations of the two alleles from the mother and one of the alleles from the 

child, i.e. [A1, A2, A1]. Each element in the table is also multiplied with the probability for the 

given founder allele set and the probability for the given inheritance pattern. We proceed to L2 

and similarly calculate a table of pedigree likelihoods for each set of inheritance pattern and 

founder allele combinations. We multiply each element with a summation over all elements from 

the table for L1 and, for each element, computes the conditional probability for the inheritance 

pattern at L2 given the inheritance pattern at L1 and the conditional probability for the founder 

allele pattern at L2 given the founder allele pattern at L1. At last we sum all elements of the table 

to yield the final likelihood. To specify 
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 where the last step is in fact an approximation as we here disregard mutations. Furthermore  
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LR
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This value coincides with the result computed with FamLinkX, if λ is very small; see Section 2.2 

for a discussion on λ. If, on the other hand, λ is larger, say above 1, the conditional probabilities 

will change slightly and we will obtain different likelihoods and likelihood ratio (LR) with 

FamLinkX. Furthermore, we note that the recombination rate is actually in the final formula and 

does affect the result even for a simple case such as disputed maternity.  



 

 

 

Recombination within a cluster 

We next consider the theoretical derivation on a case of two sisters with data available from the 

mother. We consider X-chromosomal data and hypotheses: 

H1: The two sisters are full siblings (Data from mother) 

H2: The two sisters are maternal half siblings (Data from mother) 

We specify again two allele systems (L1 and L2), with alleles A1, A2, A3, and B1, B2, B3 

respectively. We use the same allele probabilities as in the previous example and let the mother 

be heterozygous A1, A2 at L1 and B1, B2 at L2 while the first sister is heterozygous A1, A3 at L1 

and B1, B3 and the second sister is A1, A3 at L1 and B2, B3 at L2. Again, similar to the previous 

example we specify 

 1 3 3 3 1 2 1 1 2 2 2 1 1 2( | ) 1/ 4 ( ) ( | ) ( ) ( ) 2 ( | ) ( | ) (1 ) 2 ( | ) ( | ) (1 )

1.12e-6
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where we disregard the possibility of mutations and where r is the recombination rate. (For 

details on the derivation, see Supplementary Equations). Similarly 
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and 

1

2

( | ) 1.12e-6
100

( | ) 1.12e-8

P Data H
LR

P Data H
    

This value again coincides with the result computed with FamLinkX, whereas for models not 

accounting for recombinations within the cluster, the LR will be zero in the given case. 



 

 

Moreover, should we not account for LD the LR would instead become 10,000, i.e. 100 times 

larger. 

 

3. Results 

We provide several examples demonstrating the utility of our software as well as illustrating the 

general information content in X-chromosomal markers. Unless something else is stated, we use 

data from the Argus X12 kit from Qiagen which divides 12 STR markers on the X chromosome 

into four distinct clusters, each containing three closely linked markers. We use recombination 

frequencies and mutation rates from Nothnagel et al [1], see Table 1.  

Table 1. Recombination frequencies and mutation rates for the STR markers included in the Argus X-8 and 

Argus X-12 multiplexes. 

Cluster Marker Kit Position (cM)* Recombination frequency Mutation rate 

 

Cluster 1 

DXS10148 X-12 10.000 - 0.0031 

DXS10135 X-8/X-12 11.123 0.0111048 0.0041 

DXS8378 X-8/X-12 11.263 0.00139804 0.0008 

 

Cluster2 

DXS7132 X-8/X-12 321.993 0.499 0.0027 

DXS10079 X-12 322.739 0.00740462 0.0049 

DXS10074 X-8/X-12 323.637 0.00889984 0.0024 

 

Cluster 3 

DXS10103 X-12 418.626 0.425199 0.0015 

HPRTB X-8/X-12 419.687 0.0104982 0.0018 

DXS10101 X-8/X-12 419.697 9.999E-5 0.0006 

 

Cluster 4 

DXS10146 X-12 471.329 0.321967 0.0022 

DXS10134 X-8/X-12 473.422 0.020498 0.0028 

DXS7423 X-8/X-12 473.572 0.00149775 0.0009 

* Converted from recombination rates to genetic positions via Haldane’s mapping function 



 

 

All calculations in the following section are, unless something else is stated, performed 

using five different approaches; M1: A naïve approach where all markers are considered to be 

independently inherited, LE is assumed, M2: Linkage between all markers is considered, LE is 

assumed, M3: Only the first marker from each cluster is included in the calculations, linkage is 

not considered, M4: Linkage and LD is accounted for through a cluster approach [19] and M5: 

Linkage, LD and mutations are simultaneously considered while in addition recombinations 

within a cluster is considered, see Table 2. The last approach (M5) is presented in Kling et al [16] 

and is the model implemented in FamLinkX. 

 

Table 2. Different approaches used in this paper. 

Model All markers Linkage LD Recombinations between all markers Mutations 

M1 Yes No No No No 

M2 Yes Yes No Yes No 

M3 No No No Yes* No 

M4 Yes Yes Yes No No 

M5 Yes Yes Yes Yes Yes 

* Recombination is considered for the subset of markers 

3.1. Validation examples 

3.1.1. Definition of pedigrees 

We compute the likelihood for a case containing only one marker with two alleles and compare the results 

to theoretical values. This is repeated for all pre-defined pedigrees such that the specification of the 

pedigrees, i.e. the calculation of pedigree likelihoods, can be validated. We define a system with two 

alleles, 13 and 14. We specify allele probabilities p(13)=0.2 and p(14)=0.8. We further specify that all 



 

 

typed persons are homozygous 13, 13. Given only one marker it is fairly straightforward to compute the 

theoretical likelihood for the data given the different hypotheses. See  

Table 3 where the results in FamLinkX correspond to the theoretical values in all currently defined 

pedigrees. See software interface for the list of corresponding pedigrees and also Supplementary Table 1 

for more exhaustive information (FamLinkX save files for all pedigrees are available at 

http://famlink.se/fx_index.html). 

 

Table 3.  Likelihood ratios for all predefined pedigrees in FamLinkX. 

Pedigree 11 21 32 4 51 61 71 8 93 104 11 121 135 141 152 161 176 187 

M5 LR 5 5 5 - 15 3 5 - 25 5 - 5 5 3 3 4 3.3 3.3 

Theoretical LR 5 5 5 - 15 3 5 - 25 5 - 5 5 3 3 4 3.3 3.3 

Pedigree 196 207 216 226 238 24 25 26 27 28 293 303 31 321 331    

M5 LR 16.7 41.7 3.3 5 5 - - - - - 5 5 - 2.5 3    

Theoretical LR 16.7 41.7 3.3 5 5 - - - - - 5 5 - 2.5 3    

We consider only one marker with data as given in the text. 
1
LR is scaled versus Pedigree 8, 

2
Versus Pedigree 4, 

3
Versus Pedigree 31. 

4
Versus Pedigree 11. 

5
Versus Pedigree 25. 

6
Versus Pedigree 24. 

7
Versus Pedigree 26. 

8
Versus 

Pedigree 28 

 

3.1.2. Comparison with Tillmar et al 

We compute the likelihood ratio for 12 different cases using FamLinkX and compare the results 

to the algorithm provided in Tillmar et al [3]. Results are displayed in Table 4 and there is 

concordance for all cases.  (DNA-profiles for each case are available in Supplementary Table 2). 

  

Table 4. Likelihood ratios for a selection of cases. The LR:s are calculated using two different methods 

described in the paper. 

Case Pedigrees LR 

(FamLinkX) 

LR 

(Tillmar et al.) 

Comment 

C1 Full siblings vs. maternal half siblings 4101.79 4101.79 DNA data available for two female  

children 

http://famlink.se/fx_index.html


 

 

C2 Full siblings vs. maternal half siblings 117.245 117.245 DNA data available for two female  

children 

C3 Full siblings vs. maternal half siblings 79.2942 79.2942 DNA data available for two female  

children 

C4 Full siblings vs. maternal half siblings 8.45247 8.45257 DNA data available for two female  

children 

C5 Full siblings vs. maternal half siblings 0 0 DNA data available for two female  

children 

C6 Full siblings vs. maternal half siblings 238238 238238 DNA data available for two female  

children 

C7 Full siblings vs. maternal half siblings 654316 654316 DNA data available for two female  

children and their mother 

C8 Full siblings vs. maternal half siblings 89763.1 89763.1 DNA data available for two female  

children and their mother 

C9 Full siblings vs. maternal half siblings 14536100 14536100 DNA data available for two female  

children and their mother 

C10 Maternal half siblings vs. unrelated 242130 242130 DNA data available for two male  

children 

C11 Maternal half siblings vs. unrelated 0.0778469 0.0778469 DNA data available for two male  

children 

C12 Maternal half siblings vs. unrelated 0.0903502 0.0903502 DNA data available for two male  

children 

 

3.1.3. On the impact of values for λ and database size 

We have computed the likelihood ratio on a number of cases in order to investigate the effect of 

different values of λ. 15 different cases were considered, comprising five different pedigree 

questions (full siblings versus unrelated, full siblings versus half siblings, mother (duo)  versus 

unrelated, father (duo) versus unrelated and father (trio) versus unrelated), with data from the 

Argus-X12 kit. The tested individuals were from donor families with a priori known 

relationships. The LRs were computed with three different values of lambda, i.e. 1, 100 and 652 

(The latter being the size of the database). As indicated in Table 5 the variation using different 

values of lambda is in general minor, although larger discrepancies can be observed. When a 

greater difference does exist, the case involves an earlier unseen haplotype, necessary in order to 

explain the true relationship. The subject highlights the importance of a decision on how much 

weight the “prior” information should have, i.e. the unconditional allele probabilities. Since there 

is no general consensus approach whether to use large or small values of λ, we recommend users 

to calculate LR:s with a selection of different values on λ and report the least extreme LR 



 

 

(analogous to earlier recommendation on how to handle silent alleles with unknown frequencies 

[20]).  

 

Table 5. Comparison of LR:s computed using λ = 1, 100 and 652. 

ID Relationship case LR(Lambda=100)/LR(Lambda=1) LR(Lambda=652)/LR(Lambda=1) 

L1 Full siblings vs. half siblings 0.32 0.11 

L2 Full siblings vs. half siblings 1.3 2.7 

L3 Full siblings vs. half siblings 1.3 3.4 

L4 Full siblings vs. unrelated 0.0099 0.023 

L5 Full siblings vs. unrelated 0.051 0.014 

L6 Full siblings vs. unrelated 0.15 0.17 

L7 Paternity (duo) vs. unrelated 1.1 1.6 

L8 Paternity (duo) vs. unrelated 0.7 0.37 

L9 Paternity (duo) vs. unrelated 0.54 0.35 

L10 Maternity (duo) vs. unrelated 0.014 0.0058 

L11 Maternity (duo) vs. unrelated 0.014 0.0039 

L12 Maternity (duo) vs. unrelated 3.3 9 

L13 Paternity (trio) vs. unrelated 17 35 

L14 Paternity (trio) vs. unrelated 0.0014 0.00011 

L15 Paternity (trio) vs. unrelated 0.00001 0.00000013 

L16 Mat half sibs vs. unrelated 100000 100000 

 

Furthermore, in order to highlight the relevance of having larger population 

databases we performed a simulation test with the goal to demonstrate the dependence of the 

power to detect LD in relation to the size of the database. We used X-chromosomal data that for 



 

 

a large Swedish population sample displayed LD for the pair of loci in each cluster using the 

Argus X-8 marker kit. The haplotype data was taken from Tillmar et al [21], comprising 718 

Swedish males genotyped for the eight X-STRs. For the pair of loci within each cluster, 

significant p-values were found when performing exact test for allelic association of the 

complete data set (P<0.001, P=0.001 P<0.001 and P<0.001 for the pair of markers in each of the 

four clusters, respectively). To calculate the power, using smaller database sizes, we performed a 

simulation study where we randomly picked n profiles (n=100, 200, 400, 600) out of the 718 

profiles, and repeated this 100 times for each n. For each iteration, we calculated the p-value 

using Fisher’s exact test and calculated the number of instances where we got significant p-

values (P<0.05). This resulted in the power estimates presented in Table 6 below. 

 

Table 6. Power estimates for exact test of linkage disequilibrium. 

 

 

 

 

 

 

3.1.4. Mutations 

We further compare LRs calculated using FamLinkX with LRs calculated using Familias 3 [22], 

to verify the implementation of  the model accounting for mutations. As Familias does not 

generally deal with X-chromosomal data we consider some special cases where the inheritance 

patterns are identical for autosomal marker data. Data for five different cases was set up using 

the same mutation model (“extended step-wise model”) and mutation rate (0.001) in both 

 n=100 n=200 n=400 n=600 

Linkage 

Group 

1 0.22 0.61 0.97 1.00 

2 0.08 0.14 0.40 0.83 

3 0.68 1.00 1.00 1.00 

4 0.11 0.33 0.86 1.00 



 

 

FamLinkX and Familias. We specify one artificial cluster, including two markers. Haplotype 

frequencies were in LE and the markers were put at a virtual distance of 200 cM in order to 

obtain comparable results to Familias. Identical LRs were obtained in all cases (Table 7). 

Table 7. Comparison of LR:s calculated using FamLinkX and Familias 3, with a genetic inconsistency present 

in the data. 

Case scenario Genotype data 

(Marker 1; Marker 2) 
LR (FamLinkX) LR (Familias 3) 

Maternity (duo) vs. unrelated 

- 

One-step inconsistency 

Female: 11/12; 11/12 

Child: 11/13;13/13 

0.000886 0.000886028 

Maternity (duo) vs. unrelated 

- 

Two-step inconsistencies 

Female: 11/11; 11/11 

Child: 13/13;13/13 

2.066E-08 2.06612E-08 

Maternal half siblings vs. mother-

child and unrelated 

- 

Two-step and one-step 

inconsistencies 

Mother: 11/11;11/11 

Child1: 11/11;12/12 

Child2: 11/11;13/13 

0.00108982 0.00108982 

Trio vs. maternity (duo) 

- 

Two-step inconsistencies 

Mother: 11/11;11/11 

Child: 13/13;13/13 

AF: 11;11 

2.06612E-08 2.06612E-08 

Trio vs. maternity (duo) 

- 

Two-step and one-step 

inconsistencies 

Mother: 11/11;11/11 

Child: 13/13;13/13 

AF: 12;12 

6.25E-07 6.25E-07 

 



 

 

3.2. Simulated examples 

Simulations are performed using an algorithm simultaneously accounting for linkage, linkage 

disequilibrium and mutations. To specify, the algorithm starts by defining all founder alleles. 

Founder alleles are sampled using haplotype frequencies where LD structure is accounted for. 

The model presented in Section 2.2 is used in the frequency estimation using λ=1. The algorithm 

continues by simulating transitions from the founder alleles to all non-founders using a mutation 

matrix where each transition is assigned a specific probability. In addition, recombination is 

considered when two neighboring markers are simulated, i.e. the algorithm keeps track of the 

maternal/paternal chromosomes. Calculations are then performed using only genetic data from 

the typed persons and the specified approach with FamLinkX. The simulations are intended to 

demonstrate the necessity of our model and provide insight into the utility of X-chromosomal 

marker data. 

 

3.2.1. A comparisons on different computational approaches 

The first example is used to illustrate the difference between the different approaches  (M1, M2, 

M3, M4 and M5) on a number of selected cases, see Table 8. As the table indicates the largest 

difference can be seen for approach M3, which is obvious as we omit all but one marker from 

each cluster. For several of the cases we may observe genetic inconsistencies in the data and thus 

methods not accounting for mutation will have a likelihood equal to zero, see intervals for all 

quotas in Table 8 that, besides the “one marker” approach, M1,, includes zero. It is interesting to 

see that for some quotas the value is close to 1 for the median, i.e. in average we can use either of 

the compared approaches. However, it is even more important to notice that the 95% interval is 

quite large, suggesting that a considerable error could be made in some cases. 



 

 

 

Table 8. Distribution of ratios of LR for a number of forensically relevant cases. (1000 simulations have been 

performed for each case). 

Relationship Versus M1/M5 M2/M5 M3/M5 M4/M5 

Paternity Unrelated 1.67  

[0, 713] 

1.67  

[0, 713] 

1.25E-5  

[1.6E-7, 1.6E-2] 

1.02  

[0, 1.03] 

Full siblings 

(Data mother) 

Maternal half 

siblings (Data 

mother) 

4.9  

[0, 2.7E+5] 

8.8  

[0, 6.0E+5] 

9.25E-7  

[4.2E-3, 3.6E-9] 

5.76E-2  

[0, 4.95E+3] 

Paternal aunt Unrelated 0.28  

[3.1E-3, 11.9] 

0.55  

[2.7E-3, 15.7] 

5.22E-2  

[2.9E-5, 9.3] 

1.02  

[2.8E-3, 1.2] 

Paternal 

grandmother 

Unrelated 0.42   

[0, 622] 

0.42  

[0, 622] 

1.7E-4  

[6.0E-7, 0.49] 

1.07 

 [0, 1.11] 
We simulated the hypothesis in the column Relationship and use the hypothesis indicated in the column Versus as 

the alternative hypothesis. The table contains the medians as well as a 95% credibility interval in parenthesis. The 

headers indicate the compared methods. 

 

3.2.2. Discriminatory power of X-chromosomal markers 

The following example provides a range of cases where we have calculated the LR using 

approach M5, i.e. the model implemented in FamLinkX, with data based on the Argus X12 kit 

from Qiagen. Table 9 illustrates the distributions on a range of cases where X-chromosomal 

markers are applicable.  

 

Table 9. Distribution of LRs for a number of forensically relevant cases. (1000 simulations have been 

performed for each case). We simulated the hypothesis in the column Relationship and use the hypothesis 

indicated in the column Versus as alternative hypothesis 

Relationship Versus Available 

DNA 

data 

Median Max Min 95% cred. 

Paternal half Unrelated Two 
female 

2.1E+05 4.9E+14 1.1E+00 [3.0E+02,3.1E+07] 



 

 

sisters children 

Paternal half 

sisters 

Full sisters Two 
female 
children 

1.4E+01 1.6E+01 1.1E-03 [1.5E-01,1.6E+01] 

Full sisters Maternal half sisters Two 
female 
children 

1.2E+04 3.3E+10 1.3E-02 [6.8E-01,2.1E+08] 

Maternal half 

sisters 

Paternal half sisters Two 
female 
children 

1.1E+01 1.5E+01 6.1E-03 [4.2E-01,1.4E+01] 

Full sisters 

(Data mother) 

Maternal half sisters 

(Data mother) 

Two 
female 
children 
and their 
mother 

7.2E+08 3.2E+12 5.1E+03 [4.8E+05,3.2E+10] 

Paternal aunt Unrelated One 
female 
and one 
female 
child 

4.1E+01 3.8E+07 6.3E-02 [7.9E-02,2.5E+05] 

Paternal 

grandmother 

Unrelated One 
female 
and one 
female 
child 

1.5E+05 7.8E+08 2.2E-02 [2.5E+01,3.6E+07] 

Maternal 

grandmother 

Unrelated One 
female 
and one 
female 
child 

2.7E+01 2.0E+07 9.0E-02 [9.5E-02,1.0E+05] 

Paternity Unrelated One 
male, one 
female 
and one 
female 
child 

1.1E+07 6.3E+11 4.0E+01 [7.1E+03,8.2E+08] 

Maternal half 

sisters 

Unrelated Two 
female 
children 

3.8E+01 1.6E+08 6.4E-02 [8.3E-02,1.8E+05] 

 

3.3. Case examples 

3.3.1. Case 1 – Three full siblings 

The first example is an interesting case involving three young girls. The hypotheses were 

presented by the client as, 



 

 

H1: All three girls are full siblings. 

H2: Other possible relationships. 

The definition of H2 is apparently not sufficient and we require narrowing the list of possible 

alternative hypotheses. It was assumed that the three girls were all children, with no children of 

their own. We used Familias [23] to generate all possible relationship hypotheses based on the 

three girls and two extra, untyped, persons, and based on data from 35 autosomal STRs. In total 

64 pedigrees were generated, using some restrictions on the pedigree structure, see 

supplementary Familias file. Out of these 64, only three obtained a posterior probability above 

0.001, given the autosomal marker data.  The hypotheses were reduced to: 

H1: All three girls are full siblings. 

H2: Two of the girls are full siblings, the last girl being a maternal half sibling. 

H3: Two of the girls are full siblings, the last girl being a paternal half sibling. 

With posterior probabilities for the autosomal data H1:0.99773, H2:0.001135 and H3:0.001135 

respectively. 

Obviously, autosomal data, disregarding mutations, cannot distinguish between H2 and 

H3. All three children were subsequently typed with the Argus X12 kit, see Supplementary Table 

3.The data were analyzed in FamLinkX with the mentioned hypotheses and haplotype 

frequencies from a Swedish population [2]. The result indicates a strong LR in favor of H1, both 

when compared to H2, LR=4.3E+13, and H3, LR=5.3E+7.  Combining the autosomal results with 

the X-chromosomal results in the following posterior probabilities, assuming equal priors: H1: 

>0.99999, H2: <0.000001, H3: <0.000001 . Thus in favor of hypothesis H1. (Mitochondrial data 

from HV1 and HV2 further supported H1 and H2)  

 



 

 

3.3.2. Case 2 – Relationship testing workshop of the ESWG (ISFG) (2013) 

The case involved data from two females with the hypotheses: 

H1: The alleged mother is the true mother of the child. 

H2: Another female, unrelated to the alleged mother, is the mother of the child. 

We used FamLinkX to compare the results for M3/M4/M5, see Table 10. As the provided 

frequency data was incomplete, in the sense that not all observed haplotypes were given, the total 

number of observations had to be adjusted, i.e. some assumptions about the haplotypes had to be 

made which may affect the results. As is obvious there is a large difference, almost 100 times, 

accounting for LD (M4 and M5) and not (M3). 

Table 10. Results from the relationship testing workshop of the ESWG (ISFG) 2013. The LR has been 

calculated using three different methods, described in the text. 

M3 M4 M5 

8.887E+6 5.758E+8 5.755E+8 

 

See supplementary data for FamLinkX save file. 

3.3.3. Case 3 – Mutation case 

The last case concerns a disputed half siblingship (paternal), between two female individuals. 

Testing with 15 autosomal markers yielded an LR of 0.014 (H1: Paternal half siblings, H2: 

Unrelated) and additional testing of 8 X-chromosomal markers resulted in one two step 

inconsistency at marker DXS10134 (Individual 1: 36/38.3 and Individual 2 34/34) (See 

Supplementary Table 4 for complete X-chromosomal data). Taking the possibility of a mutation 

into account, using the implemented “Extended mutation model” with the mutation rate given in 

Table 1, the calculation resulted in an LR of 0.025 (H1: Paternal half siblings, H2: Unrelated). In 



 

 

total the LR was calculated to 0.00035 (or 1 in 2857), thus evidence against a paternal half 

siblingship between the two tested female individuals. 

 

4. Discussion 

The recent progress in forensic genetics has promoted the use of X-chromosomal markers 

and several papers have assessed their utility and addressed the statistical complications [1, 3, 5, 

6]. We have developed a new algorithm, simultaneously handling linkage, linkage disequilibrium 

and mutations for such marker data [16]. We have provided examples demonstrating the 

necessity of a proper model and why our software could be adopted in any calculations involving 

linked X-chromosomal markers. With this mind, we have developed a software, FamLinkX, 

freely available from http://www.FamLink.se, implementing our algorithm. 

Furthermore, we argue that for X-STRs, larger sample sizes should be used (compared 

with the size used for standard allele frequency databasing) in order to increase the power to 

detect possible dependence between alleles at different loci and to obtain more accurate 

haplotype frequency estimates. We demonstrated that using sample sizes less than 200 will most 

often not detect LD, even if such exists in the population. This definitely highlights the 

importance and relevance of the database size when testing for independence and creating 

haplotype databases. Our model for haplotype frequency estimation of earlier not observed 

haplotypes relies on the value of lambda, see Equation 1. If such haplotypes are critical for 

evaluation of a particular case and no data from which to estimate the lambda value exists a 

generous bracket of plausible values for lambda could be considered, and thus compute a 

corresponding range of values for the LR. The least extreme LR from such analysis could then 

be used in the expert report. An interesting case was recently encountered where the disputed 

http://www.famlink.se/


 

 

relationship was paternal half siblings (unrelated as the alternative hypothesis) for two females, 

see L16 in Table 5. The genotype data indicated a common haplotype possibly derived from the 

same father under the half sibling hypothesis. The LR ranged from <0.01 to >100 using λ=1 and 

λ=650 respectively. The explanation is that the shared haplotype is extremely uncommon and the 

result heavily relies on the value of λ. Furthermore, under the alternative hypothesis, 

"Unrelated", other more common haplotype configurations are more probable for the two 

females and thus the LR will be higher the more ”uncommon” the shared haplotype is. As 

discussed above we suggest reporting the least extreme LR for such a case. 

FamLinkX does not implement a model for subpopulations effects, also referred to as 

θ/Fst correction. While the model could be adopted to include correction for these effects, the 

theoretical considerations are more complicated. In a setting where linkage disequilibrium is not 

present, allele probabilities are adjusted according to the number of observations for each 

founder allele, i.e. there is a dependency across founder genotypes. However, when accounting 

for LD, where we also have dependency for genotypes at different loci, other approaches must be 

considered. One possible solution may be to adjust haplotype frequencies instead, though more 

research needs to be done on the subject. 

In summary, the paper provides ideas on how to validate the software FamLinkX as well 

as some theoretical derivations. We acknowledge the need to better understand the estimation of 

haplotype frequencies and their impact on the results. The software uses a Dirichlet model, 

described in equation 1, which relies on a parameter λ, giving weight to unobserved haplotypes. 

Further work is needed to improve the understanding of how this parameter affects the outcome 

and if a superior model is required. Nevertheless, no other implementation, to our knowledge, is 

currently available providing the same features as does FamLinkX. 
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