
fgene-11-00345 April 20, 2020 Time: 18:33 # 1

ORIGINAL RESEARCH
published: 22 April 2020

doi: 10.3389/fgene.2020.00345

Edited by:
Jesús Fernández,

Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria

(INIA), Spain

Reviewed by:
Gregor Gorjanc,

University of Edinburgh,
United Kingdom

Miguel Angel Toro,
Polytechnic University of Madrid,

Spain

*Correspondence:
G. T. Gebregiwergis

Gebreyohans.tesfaye.gebregiwergis@
nmbu.no

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal

Frontiers in Genetics

Received: 04 June 2019
Accepted: 23 March 2020

Published: 22 April 2020

Citation:
Gebregiwergis GT, Sørensen AC,

Henryon M and Meuwissen T (2020)
Controlling Coancestry and Thereby

Future Inbreeding by
Optimum-Contribution Selection

Using Alternative
Genomic-Relationship Matrices.

Front. Genet. 11:345.
doi: 10.3389/fgene.2020.00345

Controlling Coancestry and Thereby
Future Inbreeding by
Optimum-Contribution Selection
Using Alternative
Genomic-Relationship Matrices
G. T. Gebregiwergis1* , Anders C. Sørensen2, Mark Henryon3,4 and Theo Meuwissen1

1 Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway, 2 Department
of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark, 3 Seges, Copenhagen, Denmark, 4 School of
Agriculture and Environment, University of Western Australia, Crawley, WA, Australia

We tested the consequences of using alternative genomic relationship matrices to
predict genomic breeding values (GEBVs) and control of coancestry in optimum
contribution selection, where the relationship matrix used to calculate GEBVs was
not necessarily the same as that used to control coancestry. A stochastic simulation
study was carried out to investigate genetic gain and true genomic inbreeding in
breeding schemes that applied genomic optimum contribution selection (GOCS) with
different genomic relationship matrices. Three genomic-relationship matrices were used
to predict the GEBVs based on three information sources: markers (GM), QTL (GQ), and
markers and QTL (GA). Strictly, GQ is not possible to implement in practice since we
do not know the quantitative trait loci (QTL) positions, but more and more information
is becoming available especially about the largest QTL. Two genomic-relationship
matrices were used to control coancestry: GM and GA. Three genetic architectures were
simulated: with 7702, 1000, and 500 QTLs together with 54,218 markers. Selection
was for a single trait with heritability 0.2. All selection candidates were phenotyped
and genotyped before selection. With 7702 QTL, there were no significant differences
in rates of genetic gain at the same rate of true inbreeding using different genomic
relationship matrices in GOCS. However, as the number of QTLs was reduced to 1000,
prediction of GEBVs using a genomic relationship matrix constructed based on GQ and
control of coancestry using GM realized 29.7% higher genetic gain than using GM for
both prediction and control of coancestry. Forty-three percent of this increased rate of
genetic gain was due to increased accuracies of GEBVs. These findings indicate that
with large numbers of QTL, it is not critical what information, i.e., markers or QTL, is
used to construct genomic-relationship matrices. However, it becomes critical with small
numbers of QTL. This highlights the importance of using genomic-relationship matrices
that focus on QTL regions for GEBV estimation when the number of QTL is small in
GOCS. Relationships used to control coancestry are preferably based on marker data.

Keywords: true inbreeding, genetic gain, genomic optimum contribution selection, genomic relationship
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BACKGROUND

Optimum contribution selection (OCS) is a selection method
that maximizes genetic gain while controlling inbreeding
(Meuwissen, 1997). It does this by optimizing the genetic
contribution of selection candidates to the next generation
using estimated breeding values and genetic relationships
between candidates. A pedigree-based relationship matrix (A)
was initially used to control inbreeding (Meuwissen, 1997).
However, pedigree relationships have limitations. The A-matrix
measures relationships and inbreeding at neutral, unlinked, and
independent loci. But, genomic regions flanking quantitative trait
loci (QTL) under selection lose more variation than neutral
regions of the genome (Roughsedge et al., 2008). It also does
not consider variation due to Mendelian sampling during gamete
formation, assuming the same relationship between all full-sibs
(Nejati-Javaremi et al., 1997; Avendaño et al., 2005). Dense panels
of single nucleotide polymorphism (SNP) markers may be used
to trace Mendelian segregation at marker loci (Hayes et al., 2009).
Therefore, genomic markers might help to overcome some of the
limitations imposed by pedigree.

There are several methods available to calculate genomic-
relationships matrices (Nejati-Javaremi et al., 1997; Eding and
Meuwissen, 2001; VanRaden, 2008; Yang et al., 2010; VanRaden
et al., 2011). They have been used in different settings to realize
high accuracies of genomic-prediction of breeding values and
increase genetic gain (Jannink, 2010; Gómez-Romano et al.,
2016). Moreover, genomic relationships that incorporate QTL
information realize higher accuracies of genomic breeding values
(GEBVs) than genomic relationships constructed based on
markers only (Nejati-Javaremi et al., 1997; Zhang et al., 2010).
In case of few QTL (100) and many records, accuracies of
GEBVs close to one have been achieved (Fragomeni et al.,
2017). Although, adding QTL information in the construction of
genomic relationship matrices improved accuracies of prediction,
there is no full understanding on the interaction of the use of
alternative genomic relationship matrices in genomic optimum
contribution selection (GOCS) schemes.

Optimum contribution selection can be extended into GOCS
by using genomic information for both prediction of breeding
values and estimation of relationship among selection candidates
to manage group coancestry and thereby future inbreeding
(Sonesson et al., 2012; Woolliams et al., 2015). Although, genomic
relationship matrices that are based on dense SNP markers
can reflect true relationship between individuals with a high
degree of precision (Goddard, 2009), the covariances between
additive genetic values of individuals for a specific trait are
more accurately estimated using the relationships based on
causal loci than SNP markers (Zhang et al., 2010; Habier et al.,
2013; Yang et al., 2015). Moreover, there are limitations on our
understanding of the way SNP markers are used to control group
coancestry and thereby future inbreeding in GOCS (De Beukelaer
et al., 2017; Henryon et al., 2019). Hence, our hypothesis is that
the use of genomic relationship matrices based on QTL for the
prediction of GEBV and marker based genomic relationships for
OCS to control coancestry could show synergies regarding the
rates of genetic improvement.

In this study, we investigated the use of alternative
genomic relationship matrices for the prediction of GEBV and
for the management of coancestry, where these relationship
matrices are not necessarily identical. We investigated these
combinations of relationship matrices by simulating three genetic
architectures with 7702, 1000, and 500 QTLs. Alternative
genomic relationship matrices were calculated using different
genomic information sources such as SNP markers, QTLs, and
both SNP markers and QTLs.

MATERIALS AND METHODS

We used stochastic simulations of breeding schemes to estimate
rates of genetic gain realized by OCS at the same rate of true
inbreeding with three matrices for prediction and two matrices
to control of coancestry using three genetic architectures. The
three prediction matrices were constructed using genetic markers
(GM), QTL (GQ), and markers and QTL (GA). The two matrices
to control coancestry were GM and GA. GQ was not used to
control coancestry because allele frequency changes at the QTL
were assumed desirable (increasing positive allele frequencies)
in order to realize genetic gains. The six alternative genomic
relationship matrix combinations for prediction and control of
coancestry were A_A (both prediction and control of coancestry
use GA), M_A (prediction of GEBV using GM and control of
coancestry using GA), Q_A (prediction of GEBV using GQ and
control of coancestry using GA), A_M (prediction of GEBV using
GA and control of coancestry using GM), M_M (both prediction
and control of coancestry using GM), and Q_M (prediction
of GEBV using GQ and control of coancestry using GM). We
investigated three genetic architectures with very many QTL
(7702), a large number of QTL (1000), and a moderate number
of QTL (500). For comparison, Wood et al. (2014) found that
∼2000,∼3700, and∼9500 SNPs explained∼21,∼24, and∼29%
of phenotypic variance of human height. QTL were randomly
positioned on the genome of 18 chromosomes of equal length
(167 cM), which resembles the pig genome.

Simulation of Genome and Population
Founder Populations
A schematic representation of the simulated breeding scheme
is presented in Figure 1. Using 25 males and 25 females,
a founder population was initiated and simulated for 1000
discrete generations. And, the effective-population size (Ne) of
50 was kept constant in each generation. The founder population
genomes consisted of 3006 cM contained 30,000,000 equidistant
monomorphic loci (both markers and QTLs; 1 × 104 loci per
cM). The ratio of QTL loci to marker loci was 1:7. As a result
1/8 of the monomorphic loci (3.75 × 106) were QTL loci and
the remaining loci were SNP markers. The mutation rate was
assumed to be 4 × 10−6 per locus in order to generate bi-allelic
polymorphism at mutated loci. The number of recombination
sites for the ith animal was sampled from a Poisson distribution
as nQi = Pois (λ), where λ = 30.06 is the length of the
genome in Morgans. The nQi recombination sites were placed
randomly on the genome.
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FIGURE 1 | Schematic representation of the simulated breeding scheme.

Recombination-drift-mutation-selection equilibrium of
the founder population was reached after 1000 generations.
Moreover, linkage disequilibrium between the QTL and markers
alleles was established during the simulation of the founder
population with a Fisher–Wright inheritance model (Fisher
1930, Wright 1931).

In each generation, male and female parents of the next
generation were randomly sampled with replacement from the
25 males and 25 females of the current generation. The additive-
genetic effect of the original allele at each QTL locus was
set to zero. The additive-genetic effect of the mutant allele at
each QTL was sampled from an exponential distribution and it
was assumed to be positive with a probability of 0.1. Selection
was introduced by culling and resampling approximately 5%

of animals with the lowest true breeding value (TBV) in
each generation.

The TBV of an individual in the founder population was
calculated as:

TBVi =
∑n

j=1(xij gj), where n is the number of QTL across the
genome in the i-th founder animal, xij is the number of copies of
the mutant allele that animal i inherited at the j-th QTL (xij = 0, 1,
2), and gj is the additive effect of the mutant allele at the j-th QTL.

The average decay of linkage disequilibrium with distance
between the segregating marker loci in generation 1000 of the
founder population was similar to the average decay seen in the
three commercial breeds of Danish pigs (Wang et al., 2013).

The founder population had 61,920 (7702 QTL and 54,218
marker) segregating loci at generation 0. All 54,218 segregating
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marker loci were used in our breeding schemes. The number
of segregating QTL used in the breeding schemes were all
segregating QTLs (7702 QTL), 1000 or 500 QTLs. The number
of segregating QTLs across the genome were reduced to a desired
number, i.e., 1000 QTLs or 500 QTLs by random sampling
from the 7702 QTLs.

The additive-genetic effects of the segregating mutant QTL
alleles (7702, 1000, or 500) were standardized in order to get a
total additive–genetic variance of 1 for the trait under selection in
the founder population at generation 0.

We sampled a population of 100 chromosomes of
chromosome number 1, representing the chromosome 1
chromosomes of 50 animals (two chromosomes per animal).
The same sampling was performed for chromosome 2, 3, . . ., 18.
These 50 animals formed the founder generation 0.

Base Populations
In each replicate of the simulation, a unique base population with
a size of 110 animals (10 males and 100 females) was sampled
from the pools of chromosomes of the founder population to
initiate the breeding schemes. The genotype of each base animal
was sampled from the 18 pools of chromosomes in the founder
population. For chromosome j (j = 1 . . . 18), two chromosomes
were randomly sampled without replacement from the jth
pool of 100 chromosomes. The sampled chromosomes were
replaced before the next base animal was sampled. Base animals
were assumed unrelated and non-inbred based on pedigree
and identical by descent (IBD) alleles. They were genotyped,
but not phenotyped.

Identical by Descent Markers
A total of 12,024 IBD loci were used to measure the true rate of
inbreeding (1Ftrue) and were placed evenly across the genomes
in the base population at 4 IBD loci per cM. Base animals were
assigned unique alleles at each IBD locus (i.e., 2n distinct alleles
at each IBD locus among the n animals in the base population),
such that identical alleles in any later generation indicates that the
loci are IBD with a single unique base population allele. The IBD
loci were not involved in any way in the selection.

Simulation of Phenotypic Values
Phenotypic value of animal i, Pi, were simulated as:
Pi = TBVi + ei, where ei is an error term for individual i
sampled from ei ∼ N(0, σ2

e = 4) resulting in a trait heritability
of 0.2; and TBVi is the TBV of animals which was obtained as
described above.

Genomic Estimated Breeding Values
The G-BLUP model (Meuwissen et al., 2001) was used to predict
GEBVs:

y = 1 µ+ Zg + e, (1)

where y is a vector of phenotypes, µ is the overall mean, 1
is a vector of ones, Z is a design matrix allocating records to
breeding values, g is a vector of breeding values for all animals
with Var

(
g
)
= Gσ2

g , G is the genomic relationship matrix, and σ2
g

is the additive genetic variance. The term e is a vector of normal
independent and identical distributed residuals with variance σ 2

g .

Genomic-Relationship Matrices
Genomic relationship matrices (G) were computed using
VanRaden method 2:

G =
WD−1W′

L
,

where W is a matrix of centered marker genotypes by subtracting
the mean of the marker or QTL genotypes; L is the number of loci;
D is a diagonal matrix with entries 2pi (1−pi); and pi is frequency
of the minor allele at locus i in the base population. All animals
in the base population were used to calculate pi to center and
scale genotypes at locus i. After scaling, each locus obtained equal
weight. The prediction and control of coancestry matrices, GM,
GQ, and GA, were constructed using marker, QTL, and marker
and QTL genotypes, respectively.

Truncation Selection
The base population animals were randomly mated to produce
500 offspring with equal sex ratio in generation 1. A truncation
selection breeding program was conducted in generation 2–5 in
order to mimic a population that had undergone selection. Ten
sires and 100 dams were truncation selected based on genomic-
estimated breeding values. Each selected sire was randomly
mated with 10 dams and each mating produced five offspring.
As the result of these matings, 500 offspring with an equal sex
ratio were obtained.

Optimum Contribution Selection
Evolutionary algorithms (EVA) was used to optimize individual
genetic contributions by maximizing the function Ut with
respect to c:

Ut(c) = c′ĝ − ωc′Gc, (2)

where c is a n vector of genetic contributions of the current
generation to the next which is proportional to the number
of offspring each animal obtains; ĝ is a n vector of genomic
estimated breeding values, ω is a penalty applied on the average
relationship of the selected parents for the next generation, and G
is a n × n genomic relationship matrix among all animals in the
population calculated as GM or GA. In the above function, c′ĝ and
c′Gc represent the average genetic value and average relationship
of the new generation. For a detailed description of the EVA
method see Henryon et al. (2015).

Optimum contribution selection was carried out in
generations 6–11. A total of 25 matings were allocated to
500 selection candidates (approximately 250 males and 250
females) by OCS in each generation. Each male was allocated
0, 1, 2, . . ., or 25 matings in correspondence to their optimum
contributions, c. Each of 25 selected female was allocated a single
mating. The 25 sire and dam were mated randomly. Each mating
produced 20 offspring, resulting in 25 full-sib families and 500
offspring. Offspring were assigned as males / females with a
probability of 0.5.

Data Analyses
We plotted the rate of genetic gain against the rate of true
inbreeding at different penalties (ω) for the schemes with 7702
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and 500 QTL. The ω-values used were −50, −25, −10, and −5.
For the scheme with 1000 QTL, we presented rates of genetic gain
at 1 and 0.5% rates of true inbreeding. The 1 and 0.5% rates of true
inbreeding were realized by calibrating the penalty, ω, in Eq. 2.
We also compared the accuracies of males and females selection
candidates for 1000 QTL at 1% rate of true inbreeding. Rates of
genetic gain were calculated as the slope of the linear regression
of Gt on t where Gt is the average true genetic value of animals
born in generation t (t = 6 . . . 11). Rates of true inbreeding (using
the IBD markers) and rates of inbreeding based on pedigree
were calculated as 1-exp(β), where β is a linear regression of
ln(1−Ft) on t and Ft is the average coefficient of true inbreeding
or pedigree inbreeding for animals born at generation t (t = 6 . . .
11) (Sonesson et al., 2005). Ft for true inbreeding was calculated
using the d = 12,024 IBD markers as Ft =

1
ntd
∑nt

i=1
∑d

j=1 δij,
where nt is the number of animals born in generation t and δij
is the IBD status at IBD-marker locus j (j = 1 . . . d) for animal
i (i = 1 . . . nt). δij was equal to 1 if the alleles at IBD locus j for
animal i were identical for a unique base-allele, and 0 otherwise.

Software
The simulations were run using the program ADAM (Pedersen
et al., 2009). BLUP-breeding values were estimated using
DMU6 (Madsen et al., 2006). OCS was carried out by EVA
(Berg et al., 2006).

RESULTS

500 QTL
Quantitative trait loci based genomic relationship matrices
for prediction of breeding values with marker based genomic
relationship matrices to control coancestry, Q_M, realized more
rate of genetic gain at a true inbreeding rate of 0.01 than the 5
alternative methods tested in this study (see Figure 2).

1000 QTL
Quantitative trait loci based genomic relationship matrices for
prediction of breeding values with marker or all loci based
genomic relationship matrices to control coancestry, Q_M and
Q_A, realized more rate of genetic gain at a 1% rate of true
inbreeding than 4 alternative methods of G-matrices. Q_M and
Q_A realized between 21.5 and 29.7% more genetic gain than
A_M, A_A, M_M, and M_A at 1% rate of true inbreeding
(Table 1). At 0.5 % rate of true inbreeding, it realized between
29.9 and 53% more genetic gain than A_M, A_A, M_M, and
M_A. Q_M realized almost the same rate of genetic gain as Q_A
with both 1 and 0.5% rate of true inbreeding. Use of genomic
relationship matrices computed based on QTLs (GQ) to predict
GEBVs gave higher accuracy of prediction than GM or GA at
1% rate of true inbreeding (Table 2). The accuracy of prediction
of male selections using Q_M was 12.7% higher than M_M
at 1% rate of true inbreeding (Table 2). This implies that the
improvement in accuracy (12.7%) of the GEBVs explained only
part of the increased in genetic gain (29.9%), i.e., 43% (12.7/29.9)
of genetic gain was due to improvement in accuracy of GEBVs.

FIGURE 2 | Rate of genetic gain and true inbreeding (IBD) using 500 QTLs in
genomic optimum contribution selection.

7702 QTL
With 7702 QTL, the six genomic relationships matrix
combinations for prediction and control of coancestry realized
almost the same rate of genetic gain at the same rate of true
inbreeding (Figure 3). However, with an increase of the rate of
true inbreeding >1%, the differences between the rate of genetic
gain obtained by the different genomic relationship matrices
became visible and the rate of genetic gain of Q_M and Q_A
became slightly higher than the other four genomic relationships
matrix combinations. However, all these differences in rate
of genetic gain at the same rate of true inbreeding were not
significant at 95% confidence intervals.

DISCUSSION

Our findings partly supported our hypothesis that prediction
with QTL and control of coancestry with markers, Q_M, realizes
more genetic gain at the same rates of true inbreeding than
prediction and control of coancestry with markers, M_M. We
found that prediction with QTL and control of coancestry with
markers realized more genetic gain when 500 and 1000 QTL
controlled the trait under selection. However, when the trait was
controlled by 7702 QTL, prediction and control of coancestry
with markers realized just as much genetic gain as prediction with
QTL and control of coancestry with markers. These findings are
important because they highlight that when traits under selection
are controlled by small numbers of QTL, we need to select directly
for the QTL to maximize genetic gain at pre-defined rates of true
inbreeding. This implies that we need to know the exact number
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TABLE 1 | Rate of genetic gain and rate of pedigree based inbreeding in genomic
optimum contribution selection using different genomic information to predict
GEBV and control of coancestry.

G-matrices 1IBD = 0.01 1IBD = 0.005

1G(SE) 1F (SE) 1G (SE) 1F (SE)

Q_M 0.677 (0.005) 0.012 (0.0002) 0.586 (0.007) 0.0086 (0.0003)

Q_A 0.672 (0.005) 0.012 (0.0002) 0.586 (0.006) 0.0085 (0.0003)

A_M 0.537 (0.005) 0.012 (0.0002) 0.433 (0.006) 0.0092 (0.0002)

A_A 0.544 (0.004) 0.012 (0.0002) 0.401 (0.005) 0.0093 (0.0003)

M_M 0.522 (0.005) 0.012 (0.0003) 0.383 (0.006) 0.0085 (0.0003)

M_A 0.557 (0.005) 0.012 (0.0002) 0.451 (0.007) 0.0086 (0.0003)

Rates of true inbreeding were 1 and 0.5% and there were 1000 QTL. 1G, rate
of genetic gain; 1IBD, rate of true inbreeding; 1F, rate of inbreeding based on
pedigree; and SE, standard errors based on 100 replicates.

TABLE 2 | Accuracy of GEBVs for alternative genomic relationship matrices used
to predict GEBVs and control of coancestry in genomic optimum contribution
selection in generation 11 and at a rate of true inbreeding of 0.01.

G-matrices Male accuracy (SE) Female accuracy (SE)

Q_M 0.728 (0.005) 0.738 (0.005)

Q_A 0.721 (0.005) 0.720 (0.005)

A_M 0.661 (0.005) 0.661 (0.005)

A_A 0.656 (0.005) 0.660 (0.005)

M_M 0.646 (0.006) 0.646 (0.006)

M_A 0.659 (0.006) 0.659 (0.005)

The number of QTLs = 1000.

of QTLs controlling the trait. On the other hand, we do not need
to select directly for the QTL to maximize genetic gain when
traits are controlled by large numbers of QTL. In this scenario,
prediction using markers that are in linkage disequilibrium with
the QTL (and control of coancestry using markers in LD with IBD
alleles) is sufficient. Therefore, the method used in prediction and
control of coancestry when using OCS depends on the number of
QTL controlling the trait under selection.

Prediction with QTL and control of coancestry with markers
only realized more genetic gain when 500 and 1000 QTL
controlled the trait under selection for two reasons. First,
prediction with QTL was more accurate than prediction with
markers when small numbers of QTL controlled the trait.
Prediction with QTL generated accurate breeding values because
it had perfect knowledge of the true genetic (co)variance among
individuals for the trait under selection. Prediction with markers
was not as accurate because there was insufficient LD between
the markers and QTL. Many of the markers where not located
near QTL. With high numbers of QTL, prediction with markers
had similar accuracy of prediction as prediction with QTL.
There was more LD between the markers and QTL when many
QTL were distributed across the genome. The second possible
reason was that control of coancestry restricted changes in QTL-
allele frequencies less when there were small numbers of QTL
controlling the trait under selection. Control of coancestry in
GOCS traced and penalized changes in marker-allele frequencies
brought about by realized genetic drift and selection (Woolliams

FIGURE 3 | Rate of genetic gain and true inbreeding (IBD) using 7702 QTLs.

et al., 2015). It penalized changes in allele frequencies at
all marker loci. Because these marker alleles were in linkage
disequilibrium with QTL alleles, it restricted changes in QTL-
allele frequencies. Inbreeding control is spread over the whole
genome. With few QTL, much of the inbreeding control could
be at regions of the genome that do not harbor QTL. With
many QTL, inbreeding control is at all regions of the genome
that harbor QTL – it penalized changes in allele frequencies
at all loci, when we need to allow allele-frequency changes at
some QTL loci. Therefore, genomic relationship matrices used
to predict GEBV may differ from that used to control coancestry
and thereby future inbreeding. In addition, genomic relationship
matrices that consider the true genetic architecture of a trait
under selection and allow differentiating the inbreeding rates at
the QTL from the general rates at the genomic level could realize
higher rates of genetic gain at the same rate of true inbreeding.

Prediction with QTL and control of coancestry with markers
cannot be implemented directly in practical breeding schemes.
However, this scheme does teach us some principles that
apply to practical breeding schemes. Genomic relationship
matrices based on QTL are not currently available in practice
and it is unlikely to be available soon since exact number
of QTLs controlling a trait are not known. Although, it
is not possible to get a genomic-relationship matrix based
on QTL, a trait specific genomic relationship matrix could
be available from genome-wide association studies. Previous
studies have shown that trait-specific genomic-relationship
matrices realize higher prediction accuracy than marker-
based genomic-relationship matrices but it realizes lower
accuracy of prediction than the QTL-based genomic-relationship
matrix (Nejati-Javaremi et al., 1997; Zhang et al., 2010;
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Fragomeni et al., 2017). Until QTL-based genomic-relationship
matrices become available, trait-specific genomic-relationship
matrices could be used for prediction. Moreover, the inbreeding
can be controlled using a selected panel of markers that has
no association with the trait under selection to relax inbreeding
control around the QTL regions. Therefore, when a trait under
selection is controlled by a small number of QTLs, OCS that
incorporates information about the trait for breeding value
prediction realizes more genetic gain. Hence, there is an incentive
for research work aiming to obtain more biological information
about the QTL that underlie the breeding goal traits.

Our findings with 500 and 1000 QTL controlling the
trait under selection are supported by several studies that
assessed the role of alternative genomic relationship matrices
on accuracy of genomic estimated breeding values (Nejati-
Javaremi et al., 1997; Zhang et al., 2010; Hickey et al., 2013;
Fragomeni et al., 2017). These studies addressed the effects
of alternative genomic-relationship matrices on predictions
without considering inbreeding control. However, our results
are generally supported by their findings as we extended
the study toward OCS and assessed both the effects on
prediction and on control of coancestry. Fragomeni et al. (2017)
showed that, adding causative QTN in an unweighted genomic
relationship matrix improved the accuracy of prediction by
0.04. However, using a weighted genomic relationship matrix
with weights obtained from genome-wide association studies,
they reported an increase of accuracy by 0.1. These findings
in general agree with our findings on (500 and 1000) QTL
where Q_M realized the highest accuracy of prediction and
genetic gain. Moreover, prediction with all loci (both markers
and QTL) and inbreeding control with markers, A_M, realized
higher accuracy of prediction than M_M. Our results also
showed that the difference in rate of genetic gain obtained
between Q_M and M_M became smaller as the number
of QTL became larger, i.e., 500 and 1000 QTL. Moreover,
this difference became insignificant as the number of QTLs
further increased to 7702 QTL. Similarly, Nejati-Javaremi et al.
(1997) reported higher accuracies and response to selection
using genomic relationship matrices constructed based on
QTL genotypes when a trait is controlled by a small number
of loci (5 vs 25 and 100). Fragomeni et al. (2017) also
reported higher accuracy using 100 QTL than 1000 QTL. This
implies that the accuracy of prediction of the QTL based
genomic relationship matrices increases as the number of
QTLs controlling the traits decreases. Therefore, our findings
that differences in rate of genetic gain between Q_M and

M_M increase as the number of QTL decrease from 1000 to
500 QTLs may hold also for very few QTLs controlling the
traits as previous studies reported (Nejati-Javaremi et al., 1997;
Fragomeni et al., 2017).

CONCLUSION

This study showed that as the number loci involved in the
control of the trait of interest are large, genomic relationship
matrices based on markers for both prediction and control of
coancestry, M_M, perform as good as genomic relationship
matrix constructed based on QTLs (Q_M) in GOCS. Whereas,
when the trait is controlled by a small number of genes,
genomic relationship matrix constructed based on QTLs (Q_M)
realize higher rates of genetic gain than genomic relationships
constructed based on markers (M_M) at the same rate of true
inbreeding in GOCS. This improved rate of genetic gain of
Q_M was partly explained by the increased prediction accuracy
using GQ, and partly by using a different relationship matrix
for prediction as for coancestry control GM, which creates
opportunities for the genomic optimum contribution algorithm
to enhance genetic gain.
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