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a b s t r a c t 

Electroencephalography (EEG) and magnetoencephalography (MEG) are among the most important techniques for non-invasively studying cognition and disease 

in the human brain. These signals are known to originate from cortical neural activity, typically described in terms of current dipoles. While the link between 

cortical current dipoles and EEG/MEG signals is relatively well understood, surprisingly little is known about the link between different kinds of neural activity 

and the current dipoles themselves. Detailed biophysical modeling has played an important role in exploring the neural origin of intracranial electric signals, like 

extracellular spikes and local field potentials. However, this approach has not yet been taken full advantage of in the context of exploring the neural origin of the 

cortical current dipoles that are causing EEG/MEG signals. 

Here, we present a method for reducing arbitrary simulated neural activity to single current dipoles. We find that the method is applicable for calculating extracranial 

signals, but less suited for calculating intracranial electrocorticography (ECoG) signals. We demonstrate that this approach can serve as a powerful tool for investigating 

the neural origin of EEG/MEG signals. This is done through example studies of the single-neuron EEG contribution, the putative EEG contribution from calcium 

spikes, and from calculating EEG signals from large-scale neural network simulations. We also demonstrate how the simulated current dipoles can be used directly 

in combination with detailed head models, allowing for simulated EEG signals with an unprecedented level of biophysical details. 

In conclusion, this paper presents a framework for biophysically detailed modeling of EEG and MEG signals, which can be used to better our understanding of 

non-inasively measured neural activity in humans. 
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. Introduction 

Electroencephalography (EEG) is one of the most important non-
nvasive methods for studying human cognitive function and diagnos-
ng brain diseases ( Cohen, 2017; Pesaran et al., 2018 ). Yet, we know
urprisingly little about the neural origin of these electric scalp poten-
ials ( Cohen, 2017 ): On the one hand, we have a relatively good under-
tanding of the biophysics of EEGs, in knowing that these signals origi-
ate from cortical current dipoles, and having a well-defined framework
or linking such cortical dipoles to electric scalp potentials ( Ness et al.,
020; Nunez and Srinivasan, 2006 ). This has been taken advantage of for
 long time in source localization, by inverse modeling of the underlying
ortical current dipoles from EEG data. On the other hand, even though
hese cortical dipoles are assumed to mainly originate from large num-
ers of synaptic input to cortical pyramidal cell populations ( Ilmoniemi
nd Sarvas, 2019; Lopes da Silva, 2013; Ness et al., 2020; Nunez and
rinivasan, 2006; Pesaran et al., 2018 ), the precise link between cor-
ical dipoles and the underlying neural activity has remained unclear.
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n other words, we know very little about exactly which types of neu-
al activity that cause even the most well-studied characteristics of the
EG signal, such as different types of oscillations (e.g., alpha, beta, and
amma waves) and stereotyped EEG shapes in response to sensory stim-
li (event-related potentials, ERPs) ( Cohen, 2017 ). Importantly, these
ifferent EEG characteristics are affected in predictable ways by vari-
us brain conditions, such as sleep and attention ( Klimesch et al., 1998;
alva and Palva, 2011; Siegel et al., 2012 ), and by brain disorders in-
luding epilepsy and schizophrenia ( Freestone et al., 2015; Light and
äätänen, 2013; Mäki-Marttunen et al., 2019a; Niedermeyer, 2003 ).
his means that a better insight into how different types of brain ac-
ivity is reflected in cortical current dipoles could help us not only in
aking better inverse models for source localization, but also in provid-

ng a better understanding of the mechanisms of human cortical activity
nd possibly curing brain diseases ( Cohen, 2017; Mäki-Marttunen et al.,
019a; Uhlirova et al., 2016 ). 

The reasons why we lack understanding of the neural origin of EEG
ignals are many, the main being (i) strong ethical constraints on inva-
ive human brain measurements and (ii) the high number of neurons
o (T.V. Ness). 
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hat contribute to the signal. However, in recent years there have been
ajor advances in several relevant branches of neuroscience, meaning

hat a better understanding of the EEG signal may now be within reach
 Cohen, 2017; Uhlirova et al., 2016 ). 

To bypass challenge (i), we look to the rapid development in the
echnology and methods used to study neural activity in lab animals.
he possibility to control and manipulate neural activity, while simul-
aneously recording both intracranial signals like the local field poten-
ial (LFP) ( Blomquist et al., 2009; Einevoll et al., 2007 ) and extracranial
on-invasive signals like the EEG ( Bruyns-Haylett et al., 2017 ), can be
xpected to make important contributions to our understanding of non-
nvasive measurements of human brain activity ( Cohen, 2017; Lopes da
ilva, 2013; Pesaran et al., 2018; Uhlirova et al., 2016 ). Furthermore, de-
ailed biophysical modeling of neural activity has become an important
ool for understanding intracranial LFP measurements ( Einevoll et al.,
013a; Pesaran et al., 2018 ). Given that EEG is expected to reflect the
ame basic process as LFP, that is, large numbers of synaptic input to
eometrically aligned pyramidal cells ( Buzsáki et al., 2012; Nunez and
rinivasan, 2006; Pesaran et al., 2018 ), it seems likely that detailed bio-
hysical modeling can also help shed light on the neural origin of EEG
ignals. 

As indicated in challenge (ii), EEG signals are expected to reflect
he activity of much larger neural populations than the LFPs, mak-
ng the simulations computationally demanding. Biophysically detailed
arge-scale simulations of neural networks have, however, been gaining
ubstantial momentum in recent years, thanks to large ongoing neu-
oscience initiatives like Project MindScope at the Allen Institute for
rain Science, the Blue Brain Project and the EU Human Brain Project
 Einevoll et al., 2019 ). The possibility to calculate EEG signals from such
xisting and future large-scale biophysically detailed neural simulations
ould lead to valuable insights into the neural origin of the EEG. 

Another complicating aspect of EEG modeling, is that these predic-
ions in general require a head model to account for the widely differ-
nt electrical conductivities of the brain, cerebrospinal fluid (CSF), skull
nd scalp ( Ilmoniemi and Sarvas, 2019; Nunez and Srinivasan, 2006 ).
hile many such head models exist, they tend to take current dipoles

s input ( Nunez and Srinivasan, 2006; Pesaran et al., 2018 ), instead of
he transmembrane currents that are available from biophysical neural
imulations and that form the basis for modeling LFPs ( Einevoll et al.,
013b ). 

Here, we introduce an approach for reducing arbitrary biophysically
etailed simulated neural activity to current dipoles, which represents
n enormous reduction in term of model complexity when computing
rain signals. We verify that the approach gives accurate results when
alculating EEG signals, but less so for intracranial electrocorticography
ECoG) signals. Next, we look into how the approach can be applied
or investigating the origin of EEG signals, with a particular focus on
alcium spikes, before demonstrating how our methods can be applied
or pre-existing large-scale network models. Finally, we show how cur-
ent dipoles can be combined with detailed head models, which enables
imulation of EEG signals with unprecedented biophysical detail. 

Note that the clear separation between calculation of current dipoles
nd the corresponding EEG is equally valid for magnetoencephalogra-
hy (MEG) signals. While we here focus mostly on EEG, the presented
pproach for calculating current dipoles from neural activity is equally
alid for MEG signals, through use of an appropriate forward model
 Hagen et al., 2018; Ilmoniemi and Sarvas, 2019 ). 

. Methods 

Neural activity generates electric currents in the brain, which in turn
reate electromagnetic fields. In this section, we explain how electric
rain signals can be modeled in both simple and more complex volume
onductors. 
.1. Forward modeling of electric potentials 

We assume negligible capacitive effects in the head ( Miceli et al.,
017; Pfurtscheller and Cooper, 1975; Ranta et al., 2017 ) and that elec-
ric and magnetic signals effectively decouple. We can then apply the
uasistatic approximation of Maxwell’s equations for calculating these
ignals ( Hämäläinen et al., 1993; Nunez and Srinivasan, 2006 ). In other
ords, for computing extracellular electric potentials, we envision the
ead as a 3D volume conductor, and combining Maxwell’s equations
ith the current conservation law, we obtain the Poisson equation for

omputing extracellular potentials ( Griffiths, 1999 ): 

 ⋅ 𝐉 = 𝛁 ⋅ ( 𝜎𝛁 𝜙) , (1)

here J is the electric current density in extracellular space, 𝜎 is the
xtracellular conductivity and 𝜙 is the extracellular electric potential.
he Poisson equation can be solved analytically for simple, symmetric
ead models, such as an infinitely big space and spherically symmetric
odels. For more complex head models, numerical methods such as the

inite Element Method (FEM) can be used ( Haufe et al., 2015; Logg
t al., 2012; Seo et al., 2016; Vorwerk et al., 2014; 2019 ). 

.1.1. Compartment-based approach 
Extracellular potentials generated by transmembrane currents can be

alculated with a well-founded biophysical two-step forward-modeling
cheme. The first step involves multicompartmental modeling and in-
orporates the details of reconstructed neuron morphologies for cal-
ulating transmembrane currents ( Sterratt et al., 2011 ). In the sec-
nd step, Eq. (1) is solved under the assumption that the extracellular
edium is an infinitely large, linear, ohmic, isotropic, homogeneous and

requency-independent volume conductor. The transmembrane currents
ntering and escaping the extracellular medium can be seen as current
ources and sinks, and give the extracellular potential 𝜙 at the electrode
ocation r ( Ness et al., 2020 ), 

( 𝐫) = 

1 
4 𝜋𝜎

𝑁 ∑
𝑛 =1 

𝐼 𝑛 

|𝐫 − 𝐫 𝑛 | , (2)

here r n is the location of transmembrane current I n , N is the number
f transmembrane currents and 𝜎 is the extracellular conductivity. This
cheme is here referred to as the compartment-based approach, and was
pplied using the Python package LFPy 2.0 running NEURON under the
ood ( Carnevale and Hines, 2006; Hagen et al., 2018 ). 

.1.2. Current dipole approximation 
Analogous to how electric charges can create charge multipoles, a

ombination of current sinks and sources can set up current multipoles
 Nunez and Srinivasan, 2006 ). From electrodynamics, we know that ex-
racellular potentials from a volume of current sinks and sources can
e precisely described by expressing Eq. (2) as a multipole expansion
 Nunez and Srinivasan, 2006 ): 

( 𝑅 ) = 

𝐶 monopole 

𝑅 

+ 

𝐶 dipole 

𝑅 

2 + 

𝐶 quadrupole 

𝑅 

3 + ..., (3)

hen the distance R from the center of the volume to the measurement
oint is larger than the distance from the volume center to the most pe-
ipheral source ( Jackson, 1998 ). In neural tissue, the current monopole
ontribution is zero due to current conservation, since the transmem-
rane currents sum to zero at all times ( Koch, 1999; Pettersen et al.,
012 ). Further, the quadrupole, octopole and higher order terms are
egligible compared to the current dipole contribution when R is suf-
ciently large. In this case, the extracellular potential from a neuron
odel can be estimated with the second term of the current multipole

xpansion; an approximation known as the current dipole approxima-
ion ( Nunez and Srinivasan, 2006; Pettersen et al., 2014; Pettersen and
inevoll, 2008 ): 

( 𝐫) = 

𝐶 dipole 

𝑅 

2 = 

1 
4 𝜋𝜎

|𝐩 | cos 𝜃
|𝐫 − 𝐫 p |2 . (4)
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Fig. 1. Illustration of relation between 

transmembrane currents, axial currents, 

sources and sinks. A : Schematic illustration 

of a cell model. This toy model only has 

three cellular compartments, but note that bio- 

physically detailed neuron models typically 

have ~ 600–1300 compartments. An exci- 

tatory synaptic input initiates a current flow 

across the membrane and into the neuron. This 

current consists of an ionic flow of positive 

ions (e.g., Na + ), in addition to capacitive cur- 

rents, and is by convention a negative trans- 

membrane current ( I t ), also referred to as a cur- 

rent sink. This changes the membrane poten- 

tial at the location of the synaptic input, ini- 

tiating axial currents ( I a ), that is, currents in- 

side the neuron. The very strong electromag- 

netic attraction of opposite and repulsion of 

equal electric charges effectively prevents any 

charge accumulation, ensuring current conser- 

vation. This implies that the same amount of current that goes into a cellular compartment, must also leave the same cellular compartment, enforcing a simple 

relationship between transmembrane currents and axial currents. Current conservation also ensures that the sum of all transmembrane currents at any given time 

must sum to zero, which implies that a negative transmembrane current caused by an excitatory synaptic input (current sink), must be exactly balanced by positive 

transmembrane currents elsewhere on the cell (current sources). B, C, D : The extracellular potential around the cell can be calculated either from the transmembrane 

currents ( B , Eq. (2) ), from the current dipole moments stemming from all the individual axial currents ( C , Eq. (4) ), or from the single summed current dipole moment 

( D , Eqs. (6) and (4) ). Note that the single-dipole approximation is only expected to be valid far away from the neuron, see main text for discussion of the validity of 

this. 

Table 1 

Radii and electrical conductivities used in the four-sphere model. The ra- 

dius of each spherical shell in the four-sphere model, with 𝜎 denoting the re- 

spective electrical conductivities. 

Radius (cm) 𝜎 (S/m) 

Brain 8.9 0.276 

CSF 9.0 1.65 

Skull 9.5 0.01 

Scalp 10.0 0.465 

 

𝜎  

a  

R  

I  

r  

a  

l
 

l  

o  

i

𝐩  

 

d  

c  

d  

t  

b  

(  

r  

c  

e  

T  

i  

C  

2

 

s  

e

𝐩  

w  

w  

L

𝐩  

w  

r  

c  

s  

b  

p  

s  

r  

r  

t  

r  

C

2

 

t  

i  

c  

p

2
 

o  

(  

f  

m  
Here, p is the current dipole moment in a medium with conductivity
, 𝑅 = |𝐑 | = |𝐫 − 𝐫 p | is the distance between the current dipole moment
t r p and the electrode location r , and 𝜃 denotes the angle between p and
 . The current dipole moment p can be calculated from an axial current
 inside a neuron and the distance vector d traveled by the axial cur-
ent: 𝐩 = 𝐼𝐝 , analogous to a charge dipole moment. The current dipole
pproximation is applicable in the far-field limit, that is when R is much
arger than the dipole length 𝑑 = |𝐝 | ( Nunez and Srinivasan, 2006 ). 

Multi-dipole approach From some multicompartmental neuron simu-
ations ( Figs. 2–4 ), we computed multiple current dipole moments, i.e.,
ne for each axial current flowing between neighboring compartments
n the neuron: 

 𝑘 = 𝐼 axial 
𝑘 

𝐝 𝑘 . (5)

Here, 𝐼 axial 
𝑘 

is an axial current traveling along distance vector
 k , resulting in a current dipole moment p k . By inserting all the
urrent dipole moments from a neuron simulation into the current
ipole approximation ( Eq. (4) ), we get a good estimate of the ex-
racellular potential at any electrode location where the distance
etween the electrode and the nearest dipole is sufficiently large
 Nunez and Srinivasan, 2006 ). See Fig. 1 for an illustration of the
elation between these different approached for calculating extra-
ellular potentials. Note that the length of each (multi-)dipole is
qual to half the length of its corresponding neuronal compartment.
he calculation of multi-dipoles from simulated neural activity was

mplemented in LFPy 2.0, and can be used through the function
ell.get_multi_current_dipole_moments ( Hagen et al.,
018 ). 
Single-dipole approximation From each multicompartmental neuron
imulation, we computed one single current dipole moment. This can
ither be done by summing up the multiple current dipole moments, 

 ( 𝑡 ) = 

𝑀 ∑
𝑘 =1 

𝐩 𝑘 ( 𝑡 ) = 

𝑀 ∑
𝑘 =1 

𝐼 axial 
𝑘 

( 𝑡 ) 𝐝 𝑘 , (6)

here M is the number of axial currents, or equivalently from a position-
eighted sum of all the transmembrane currents ( Hagen et al., 2018;
indén et al., 2010 ): 

 ( 𝑡 ) = 

𝑁 ∑
𝑘 =1 

𝐼 trans 
𝑘 

( 𝑡 ) 𝐫 𝑘 , (7)

here N is the number of compartments in the multicompartmental neu-
on model and r k is the position of transmembrane current 𝐼 trans 

𝑘 
( 𝑡 ) . For

alculating EEG signals a location for the current dipole must be cho-
en, and unless otherwise specified we positioned the dipole halfway
etween the position of the soma and the position of the synaptic in-
ut (for multiple synaptic inputs, we used the average position of the
ynaptic inputs). Note, however, that the large distance from the neu-
on to the EEG electrode ( ~ 10 mm) implies that the EEG signal is
elatively insensitive to small changes in the dipole location within cor-
ex. The calculation of current-dipole moments from simulated neu-
al activity was implemented in LFPy 2.0, and can be used through
ell.current_dipole_moment ( Hagen et al., 2018 ). 

.2. Head models 

Electric potentials will be affected by the geometries and conductivi-
ies of the various parts of the head ( Nunez and Srinivasan, 2006 ), which
s especially important for electrode locations outside of the brain. This
an be incorporated into our extracellular potential calculations by ap-
lying simplified or complex head models. 

.2.1. Four-sphere head model 
The four-sphere head model is a simple analytical model consisting

f four concentric shells representing brain tissue, cerebrospinal fluid
CSF), skull and scalp, where the conductivity can be set individually
or each shell ( Nunez and Srinivasan, 2006; Srinivasan et al., 1998 ). The
odel solution is given in Næss et al. (2017) and is found by solving the
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Table 2 

Population names and sizes in large-scale neural network 

model The number of neurons in each population. E = excitatory, 

I = inhibitory, and TC = thalamocortical. 

Name Population size 

L2/3E 20,683 

L2/3I 5834 

L4E 21,915 

L4I 5479 

L5E 4850 

L5I 1065 

L6E 14,395 

L6I 2948 

TC 902 
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oisson equation subject to boundary conditions ensuring continuity of
urrent and electric potentials over the boundaries, as well as no cur-
ent escaping the outer shell. This model is based on the current dipole
pproximation. The parameters used in this paper ( Table 1 ) were taken
rom Huang et al. (2013) to be consistent with the parameters used in
he construction of the more complex New York head model (see next
ection). 

.2.2. New York Head model 
The New York Head model is a detailed head model based on high-

esolution, anatomical MRI-data from 152 adult heads ( Huang and
arra, 2015 ). The model was constructed by taking advantage of the
eciprocity theorem, stating that the position of the electrode and the
ipolar source can be switched without affecting the measured potential
 Rush and Driscoll, 1969 ). This means, that virtually injecting current at
he locations of the EEG electrodes and using the finite element method
 Logg et al., 2012 ) to compute the resulting potential anywhere in the
rain, gives the link between current dipoles in the brain and the result-
ng EEG signals ( Dmochowski et al., 2017; Huang et al., 2016; Malmivuo
nd Plonsey, 1995; Ziegler et al., 2014 ). This link was captured in a ma-
rix known as the lead field L ( Nunez and Srinivasan, 2006 ): 

 = 

𝐄 

𝐼 
(8)

Here, I is the injected current at the electrode locations and E is the
esulting electric field in the brain. The lead field matrix gives us the
recise link between a current dipole moment p in the brain and the
esulting EEG signals 𝚽 ( Nunez and Srinivasan, 2006 ): 

= 𝐋 ⋅ 𝐩 . (9)

We applied the New York Head model by downloading the lead
eld L from https://parralab.org/nyhead/ . The units incorporated in
he lead field matrix was not immediately obvious. However, from
mochowski et al. (2017) and Huang et al. (2013) it appears that an

njected current I of 1 mA gives an electric potential E in V/m, meaning
hat a current dipole moment p in the unit of mAm gives EEG signals in
he unit of V. 

.3. Simulation of neural activity 

All neuron simulations were performed using the python package
FPy 2.0, running NEURON under the hood ( Hagen et al., 2018 ). For
nvestigations of single-cell contributions to extracellular potentials, we
pplied three different morphologically reconstructed cell models: The
uman layer-2/3 pyramidal cell from Eyal et al. (2018) , the layer-5
yramidal cell from rat cortex constructed by Hay et al. (2011) and
 rat layer-5 chandelier cell; an interneuron model developed by
arkram et al. (2015) . 

The pyramidal cell models were downloaded from
ttp://www.senselab.med.yale.edu/modeldb/ , with accession num-
ers 238347 (2013_03_06_cell03_789_H41_03) and 139653 (cell1)
espectively, while we found the interneuron at the Neocortical
icrocircuit Collaboration Portal ( http://www.bbp.epfl.ch/nmc-

ortal/microcircuit ) under layer-5, Chandelier Cell (ChC), continuous
on-accomodating (cNAC), (rp110201_L_idA_-_Scale_x1.000_y0.975_z1.
00_-_Clone_3). 

For all simulations with passive ion channels only ( Figs. 2–
 ), we used the following cell parameters: membrane resistance of
0000 Ωcm 

2 , axial resistance of 150 Ωcm ( Mainen and Sejnowski, 1996 )
nd a membrane capacitance of 1 μF/cm 

2 ( Gentet et al., 2000; Sterratt
t al., 2011 ). When active mechanisms were included in the simulations
 Fig. 5 ), all cell properties were incorporated as described in the specific
ell’s documentation. 

Neural simulations shown in Figs. 2–5 received synaptic input mod-
led as conductance-based, two-exponential synapses ( Exp2Syn in
EURON). The rise time constant was set to 1 ms and the decay time
onstant was 3 ms, synaptic reversal potential was 0 mV and the synap-
ic weight was set to 0.002 μS, unless otherwise specified. 

.3.1. Large-scale network model 
For modeling of network activity ( Figs. 6 and 7 ), we used the so-

alled hybrid scheme proposed by Hagen et al. (2016) . Here, the neu-
al network activity is first simulated with point neurons in NEST
 Linssen et al., 2018 ) and the resulting spiking activity of all neurons
aved to file. Afterwards, the neurons are modeled with detailed multi-
ompartment morphologies and the spike times of the presynaptic neu-
ons are used as activation times for synaptic input onto these neurons
n a simulation where the extracellular potentials are calculated ( Hagen
t al., 2016; Senk et al., 2018 ). The simulation was unmodified from
he results presented by Hagen et al. (2016) with transient thalamocor-
ical input (their Figs. 1 and 7), except that all single-cell current dipole
oments were recorded, and the EEG signals calculated. Briefly, the net-
ork model consists of 8 neural populations across four cortical layers

L2/3, L4, L5 and L6), with one excitatory and one inhibitory popula-
ion in each of the four layers. The number of neurons in each popu-
ation is given in Table 2 , and the connectivity between the different
opulations is based on anatomical data ( Binzegger et al., 2004; Potjans
nd Diesmann, 2014 ), and given in Hagen et al. (2016) (their Table 5).
or the first step, simulating the network activity, the cortical neurons
ere modeled as leaky integrate-and-fire neurons, connected with static

urrent-based exponential synapses. External input was supplied both in
he form of a constant current input with a population specific strength,
nd thalamocortical input, which in the present example correspond
o simultaneous activation of all thalamocortical neurons ( t = 900 ms),
hich are projecting to neural populations in layer 4 and layer 6. In the

econd step for calculating LFP and EEG signals, all cell models were
assive, with population specific morphologies. The excitatory popula-
ions were pyramidal cells in L2/3, L5 and L6, and stellate cells in L4. All
yramidal cells were oriented with the apical dendrite along the depth
xis of cortex ( z -axis), and randomly rotated around this axis. Other cell
ypes (stellate cells and interneurons) were randomly rotated around
ll axes. To ensure some variability in the morphologies, the 8 cortical
opulations were further divided into a total of 16 subpopulations with
ifferent morphologies (although some of these subpopulations used the
ame morphology). 

For a full description of simulation details and parameters
sed for the large-scale network model, we refer to Hagen et al.
2016) . 

.4. Code availability 

Simulation code to reproduce all figures in this paper is freely avail-
ble from https://github.com/solveignaess/EEG.git . For a more general
nd detailed documentation and examples of how to calculate current
ipoles and EEG signals for biophysically detailed cell models, we refer
he reader to the LFPy documentation ( https://lfpy.rtfd.io ). 

https://parralab.org/nyhead/
http://www.senselab.med.yale.edu/modeldb/
http://www.bbp.epfl.ch/nmc-portal/microcircuit
https://github.com/solveignaess/EEG.git
https://lfpy.rtfd.io
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Fig. 2. Extracellular potentials become 

dipolar in the far field limit. A : Passive layer- 

2/3 pyramidal cell from human ( Eyal et al., 

2016 ) with an excitatory, conductance-based, 

two-exponential synapse placed on apical 

dendrite (red dot), see Methods (2.3) for 

parameters. The resulting transmembrane 

currents for each compartment are shown as 

a blue arrow (input current) and red arrows 

(return currents). B : Green arrows represent 

the multiple current dipole moments between 

neighboring neural compartments. C : Gray 

arrow illustrates the total current dipole 

moment, that is, the vector sum of the dipoles 

in B. D-F : Extracellular potential in immediate 

proximity of the neuron, computed with the 

compartment-based approach, multi-dipole 

approach and single-dipole approximation, 

respectively. Note that the multi-dipole results 

differ slightly from the compartment-based 

approach when the distance from the mea- 

surement point to the nearest current dipole 

moment is short compared to the dipole length. 

G-I : Same as D-F, but at a larger spatial scale 

(zoomed out). See 1 mm scalebar in panel A, 

D and G. The colorbar is shared for panels D-I. 
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. Results 

We introduce an approach for modeling electroencephalography
EEG) and magnetoencephalography (MEG) signals from detailed bio-
hysical multicompartment cell models. The approach involves two
teps: First, current dipole moments are extracted from activity in neu-
ons or networks. Second, the extracted current dipoles are used as
ources in established forward models. Here we only demonstrate the
pproach by computing EEG signals, but the current dipoles are equally
pplicable for computing MEG signals using the appropriate magnetic-
eld forward models ( Hagen et al., 2018; Hämäläinen et al., 1993; Il-
oniemi and Sarvas, 2019 ). For illustration, we first consider EEG sig-
als stemming from single synaptic input onto single neurons in an in-
nite homogeneous head model, before moving on to a simple, generic
ead model. Finally, we study EEGs from large-scale simulated network
ctivity, also applying a detailed head model. 

.1. At sufficiently large distances, extracellular potentials become dipolar 

When modeling electric potentials within the brain, we can apply
he well-established compartment-based approach assuming a homoge-
eous volume conductor ( Section 2.1.1 ) ( Einevoll et al., 2013a; Holt
nd Koch, 1999 ). However, this assumption is no longer valid when it
omes to modeling EEG signals on the scalp, which calls for an inhomo-
eneous head model ( Ilmoniemi and Sarvas, 2019 ). Such head models
ypically take current dipoles as input, as opposed to individual cur-
ent sinks/sources, and must be based on the current dipole approxi-
ation ( Nunez and Srinivasan, 2006 ). Here, we introduce an approach

or computing current dipoles from arbitrary simulated neural activity,
nd compare current-based and dipole-based modeling of electric po-
entials generated by a single cell receiving excitatory synaptic input.
xcitatory synaptic input initiates a negative current at the synapse lo-
ation, since positive ions flow into the cell. Due to current conservation
 Koch, 1999 ), this negative current is exactly balanced by spatially dis-
ributed positive currents along the cellular membrane, as illustrated in
ig. 2 A for a single apical excitatory synaptic input to a passive human
ortical layer-2/3 pyramidal cell model ( Eyal et al., 2016 ). See Methods
.3 for simulation details. In the standard procedure for modeling extra-
ellular potentials, here referred to as the compartment-based approach ,
he transmembrane current in each cellular compartment corresponds to
 point current source/sink. Another strategy is to consider the axial cur-
ent of each cellular compartment as a small current dipole (see Eq. (6) ),
hich we refer to as the multi-dipole approach ( Fig. 2 B ). By vector sum-
ation of all these dipoles into one single dipole at a specific position,
e obtain the single-dipole approximation ( Fig. 2 C ). For the sake of com-
aring these modeling approaches, we have assumed that the cell is po-
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Fig. 3. Single-dipole approximation is jus- 

tified for EEG but not ECoG signals. A : Illus- 

tration of four-sphere head model, where the 

pink, blue, green and purple spherical shells 

represent the brain, CSF, skull and scalp respec- 

tively, see Table 1 . The pink inset shows the 

human layer-2/3 neuron ( Eyal et al., 2016 ) lo- 

cated in the brain, 88.0 mm above head cen- 

ter. 41 simulations lasting 100 ms with a single 

synaptic input after 20 ms to cell with passive 

ion channels only, were performed for vary- 

ing input locations, see colored dots. The z - 
component of the resulting current dipole mo- 

ments for two synaptic input locations (large 

colored dots) are shown in inset below as func- 

tions of time. The results presented in this fig- 

ure are computed at the simulation time points 

producing the largest current dipole moment 

for each synaptic input location. B : Magni- 

tude of extracellular potential | 𝜙| as function 

of distance from the top of the neuron, shown 

for two simulations with synaptic input loca- 

tions marked by large colored dots in upper in- 

set of A. In each simulation, we consider the 

time point with the largest current dipole mo- 

ment. Dashed lines show extracellular poten- 

tials computed with multi-dipole, and full lines 

show single-dipole calculations. C : Relative er- 

ror RE comparing the single-dipole model to 

the multi-dipole model, as function of distance 

from top of neuron to measurement point. D : 

Relative error RE showing how single-dipole 

model deviates from multi-dipole model EEG 

calculations, as function of distance from soma to synapse location. E : Magnitude of EEG signal, |EEG|, as function of distance from soma to synaptic input location. 

F : Relative error, RE, showing how EEG calculations performed with the single-dipole approximation deviates from multi-dipole approach as a function of amplitude 

of the EEG signal, |EEG|. 

Fig. 4. EEG signals and current dipole moment 

from three different cell types with various 

synaptic input. A : The morphologies of a human 

L2/3 pyramidal cell (blue; Eyal et al. (2016) ), a rat 

L5 pyramidal cell (red; Hay et al. (2011) ), and a rat 

L5 interneuron (orange; Markram et al. (2015) ). 

The remaining panels display data connected to 

each cell type, see cell-specific colors. B : Each dot 

represents an excitatory synaptic input at a spe- 

cific time ( x -axis) at a specific height of the neu- 

ron ( z -axis, corresponding to panel A) for a specific 

cell type (color). The bigger dots with black bor- 

ders mark inhibitory synaptic input. The four input 

bulks represent 1) 100 apical excitatory synaptic 

inputs, 2) 100 basal excitatory synaptic inputs, 3) 

400 homogeneously spread-out excitatory synap- 

tic inputs and 4) 400 homogeneously spread-out 

excitatory synaptic inputs and 50 inhibitory basal 

synaptic inputs. The synaptic weights sum to 0.01 

μS for all sets of excitatory / inhibitory synapses 

in each wave (see Section 2.3 for details). For the 

interneuron, which doesn’t have typical ”apical ”

or ”basal ” zones, the synapses were spread out all 

over the morphology for all input types. C : The x -, 
y - and z -components of the current dipole moment 

p for the three different cell types. D : EEG signals, 

𝜙 from the three cell types computed with the four- 

sphere model. 
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Fig. 5. Current dipole moment expose den- 

dritic calcium spikes. A : Layer-5 cortical 

pyramidal cell model from rat ( Hay et al., 

2011 ), receiving either a single excitatory 

synaptic input to the soma evoking a single 

somatic action potential (blue dot, results in 

B1-4 ), or in addition an excitatory synaptic 

input to the apical dendrite, evoking a den- 

dritic calcium spike and two additional somatic 

spikes (orange dot, results in C1-4 ). B1, C1 : 

Membrane potential at the two positions in- 

dicated in A. B2, C2 : Extracellular potential 

30 μm away from the soma (red diamond in 

A ), assuming for illustration an infinite homo- 

geneous extracellular medium. B3, C3 : Single- 

cell current dipole moment. B4, C4 : Sum of 

1000 instances of the single-cell current dipole 

moment (from B3, C3 ), that has been randomly 

shifted in time with a normally distributed shift 

with a standard deviation of 10 ms. D: Con- 

tour lines of extracellular potential around neu- 

ron at a snapshot in time during the somatic 

spike in B1 ( t = 32.2 ms; time marked by dashed 

line). E: Contour lines of extracellular potential 

around neuron at a snapshot in time during the 

calcium spike in C1 ( t = 36.0 ms; time marked 

by dashed line). The synaptic weight was 0.07 

and 0.15 μS for the somatic and apical input 

location, respectively. 
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itioned in an infinite homogeneous electric medium. Very close to the
euron, the extracellular potential will strongly depend on the exact dis-
ribution of transmembrane currents across the cellular morphology and
ill, therefore, typically not take a purely dipolar shape ( Fig. 2 D,E ver-

us F ). However, since the dipole contribution will dominate when we
re further away from the current sources (see Eq. (3) ), the extracellular
otential becomes more and more dipolar with increasing distance from
he cell ( Lindén et al., 2010 ). This implies that for the purpose of calcu-
ating extracellular potentials far away from the cell, the single-dipole
pproximation might be well justified ( Fig. 2 G-I ). Note that there can
e small differences between the results from the compartment-based
nd the multi-dipole approaches for electrode locations in the immedi-
te vicinity of the current sources, due to the approximations inherent
n using the current dipole model ( Fig. 2 D versus Fig. 2 E). 

.2. Single-dipole approximation is justified for EEG, but not ECoG signals 

In order to test the applicability of the single-dipole approximation
or calculating ECoG and EEG signals, we applied the four-sphere head
odel ( Hagen et al., 2018; 2019; Næss et al., 2017 ). Since the four-

phere head model takes current dipoles as input, the multi-dipole ap-
roach was used as benchmark: an assumption that should be well jus-
ified for the cell-to-electrode distances considered, see Section 3.1 . 

For different locations of a single excitatory synaptic input to a hu-
an cortical layer-2/3 pyramidal cell model ( Eyal et al., 2016 ) ( Fig. 3 A ),
e calculated the electric potential at point-electrode positions span-
ing from 100 μm above the top of the cell, to the surface of the head,
sing both the multi-dipole approach and the single-dipole approxima-
ion ( Fig. 3 B ). In the simulations shown, we used conductance-based
ynapses and included only passive membrane conductances, but we
onfirmed that using current-based synapses or a fully active cell model
ave very similar results. 
The electric potential decreased steeply with distance when crossing
he different layers of the head model, most strongly across the low-
onducting skull ( Fig. 3 B ). For all synaptic input locations, we observed
hat the electric potential calculated with the single-dipole approxima-
ion markedly deviated from the multi-dipole approach directly above
he neuron, but the difference strongly decreased with distance from the
euron ( Fig. 3 B , full versus dashed lines for two selected synapse loca-
ions). We quantified the model dissimilarities by looking at the relative
rror at the timepoint of the maximum current dipole moment, and for a
hosen distal synaptic input the relative error was 38.9% and 0.839% at
he position of the ECoG and EEG electrodes respectively ( Fig. 3 C , green
ine). For a specific proximal synaptic input we observed a relative error
f 86.1% at the ECoG position, and 13.2% at the EEG position ( Fig. 3 C ,
urple line). Inserting a single strong synaptic current (synaptic weight
.05 μS) into the soma of the same layer-2/3 pyramidal cell with ac-
ive mechanisms ( Eyal et al., 2018 ), resulting in a somatic spike, gave
elative errors of 34.2% and 0.813% for the computed ECoG and EEG
ignals, respectively (results not shown). We found that calculating EEG
ignals with the single-dipole approximation gave relative errors peak-
ng for synaptic locations ~ 60 and 400 μm above the soma, with a
harp drop in the relative error for synaptic inputs further away from the
oma than ~ 400 μm ( Fig. 3 D ). Here, synaptic inputs slightly distal to
00 μm away from soma resulted in the majority of the return currents
scaping the cell below the synaptic input (closer to the soma). This gave
 distinctly dipole-like source/sink distribution, and thereby low rela-
ive errors ( ~ 0.4%). Synaptic inputs slightly proximal to 400 μm away
rom soma instead resulted in almost balanced return currents above
nd below the synaptic input. This gave a multipole-like source/sink
istribution, and thereby larger relative errors ( ~ 7%). Note, however,
hat the synaptic input locations that resulted in higher relative errors,
lso gave relatively weak EEG signals ( Fig. 3 E ). This demonstrates that
he relative error of the single-dipole approximation is negatively cor-
elated with the amplitude of the scalp potential ( Fig. 3 F ). This is as ex-
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ected, given that the strongest EEG signals are expected to be caused
y dipole-like source/sink distributions ( section 2.1.2 ). In summary, the
ingle-dipole approximation can result in substantial errors at the posi-
ion of the ECoG electrodes, but gives small errors at the position of the
EG electrodes for synaptic locations leading to strong EEG signals. 

.3. Single-dipole approximation simplifies estimate of EEG contribution 

In the previous section, we showed that the single-dipole approxi-
ation was applicable for calculation of EEG signals, and in this section
e demonstrate that the single-dipole approximation can substantially

implify the analysis of the biophysical origin of EEG signals. 
Pyramidal cells have a preferred orientation along the depth axis of

ortex (here the z -axis), and the direction of the current dipole moment p
an be expected to align with this axis since radial symmetry will tend
o make the orthogonal components ( p x , p y ) cancel at the population
evel ( Hagen et al., 2018 ). In contrast, interneurons show much less of
 preferred orientation, and are therefore expected to give a negligible
ontribution to the EEG signal, except indirectly through synaptic inputs
nto pyramidal cells ( Hagen et al., 2016 ). We illustrated this by applying
he single-dipole approximation to three different cell types ( Fig. 4 A ),
ach receiving a large number of synaptic inputs with target regions on
he cells set up to vary over time ( Fig. 4 B ). 

For the previously used human layer-2/3 cell ( Fig. 4 A , blue;
yal et al. (2016) ) receiving a volley of 100 excitatory synaptic in-
uts that were restricted to the uppermost 200 μm of the cell ( t = 50 ms;
ig. 4 B , blue dots), we observed a negative deviation of p z ( Fig. 4 C , blue
ine). For 100 basal synaptic inputs ( t = 100 ms; Fig. 4 B , blue line), the
olarity of p z was instead positive, but of slightly lower amplitude than
or apical input, as can be expected because the large area of the so-
atic region will cause strong return currents in the immediate vicinity

f the synaptic inputs, and therefore an overall weaker current-dipole
oment. 

A uniform distribution of 400 synaptic inputs across the cell mem-
rane with area-weighted probability ( t = 150 ms; Fig. 4 B , blue line),
nly gave rise to small ripples in p z , due to the substantial cancella-
ion of current dipoles of opposite polarity. It is sometimes assumed
hat excitatory input is relatively uniformly distributed onto pyramidal
ells, while inhibitory input is more directed to the perisomatic region
 Mazzoni et al., 2015; Skaar et al., 2020; Tele ń czuk et al., 2020; 2020 ).
s expected, we found that this combination of uniformly distributed
xcitatory synaptic input and perisomatic inhibitory input gave rise to
 clear negative response in p z ( t = 200 ms; Fig. 4 B , blue line), which
ould be part of the explanation why inhibitory synaptic input in some
ases has been found to dominate the LFP ( Hagen et al., 2016; Tele ń czuk
t al., 2017 ). 

For a rat cortical layer-5 pyramidal cell model ( Fig. 4 A , red;
ay et al. (2011) ), the resulting current dipole moment was very sim-

lar in shape to the previously described current dipole moment from
he human layer-2/3 cell model. The amplitude was however some-
hat larger, which was expected because the longer apical dendrite
ill tend to give larger current dipole moments ( Fig. 4 C , red line).
astly, we used a rat cortical layer-5 interneuron model ( Fig. 4 A , or-
nge; Markram et al. (2015) ), but since the dendrites of interneu-
ons are not structured into the same distinctive zones as pyrami-
al cells, the synaptic input caused very small net current dipole
oments. 

We calculated the EEG signals with the four-sphere head model, us-
ng both the multi-dipole ( Fig. 4 D , dotted lines) and the single-dipole
 Fig. 4 D , solid lines) approach. To compare the approaches, we com-
uted the relative error as a function of time, that is, the absolute differ-
nce between the results from the two approaches, normalized by the
aximum EEG magnitude computed with the multi-dipole approach.
he single-dipole approach gave a maximum error of 2.14%, 3.27% and
.313% for the human layer-2/3 cell, the rat layer-5 cell and the rat in-
erneuron, respectively. Importantly, the EEG signal is essentially fully
escribed by the z -component of the current dipole moment p z , that is, a
ingle time-dependent variable. This reduction in signal description rep-
esents a massive simplification in the understanding of the biophysical
rigin of the EEG signal, compared to considering the transmembrane
urrents and position of each cellular compartment. 

.4. Current dipole moment expose dendritic calcium spikes 

Suzuki and Larkum (2017) recently demonstrated that dendritic cal-
ium spikes can be recorded experimentally at the cortical surface, and
hat the signal amplitudes can be similar to contributions from synaptic
nputs. This demonstrates that active conductances may play an impor-
ant role in shaping ECoG and EEG signals. Furthermore, it suggests that
nformation about calcium dynamics might be present in such signals,
nd that this information could potentially be taken advantage of when
tudying learning mechanisms associated with dendritic calcium spikes
 Suzuki and Larkum, 2017 ). 

The previously introduced rat layer-5 cortical pyramidal cell model
rom Hay et al. (2011) can exhibit dendritic calcium spikes. When
his cell model received a single excitatory synaptic input to the soma
 Fig. 5 A , blue dot), strong enough to elicit a somatic action potential
 Fig. 5 B1 , blue), a small depolarization was also visible in the apical
endrite ( Fig. 5 B1 , orange). Even so, this did not initiate any dendritic
alcium spike. However, when combining the same somatic synaptic
nput with an additional excitatory synaptic input to the apical den-
rite, 400 μm away from the soma ( Fig. 5 A , orange dot), we observed
 dendritic calcium spike. This calcium spike did, in turn, induce two
dditional somatic spikes ( Fig. 5 C1 ). For both synaptic input strategies
escribed above, the extracellular potential simulated 30 μm away from
he soma took the shape of stereotypical extracellular action potentials:
hat is, a sharp negative peak followed by a broader and weaker posi-
ive peak ( Fig. 5 B2, C2 ). Further, we observed that the slow dendritic
alcium spike was not reflected in the extracellular potential close to
he soma ( Fig. 5 C2 ). We found that for the case with only a somatic
pike and no calcium spike, the single-cell current dipole moment re-
embled the inverse of the extracellular potential ( Fig. 5 B3 ), while for
he case with both somatic and dendritic spiking, a pronounced slow
omponent was also present in the single-cell current dipole moment
 Fig. 5 C3 ). Somatic action potentials are typically not expected to con-
ribute significantly to EEG signals (but see Tele ń czuk et al. (2015) ),
ecause the very short duration of spikes with both a positive and a neg-
tive phase implies that extreme synchrony is needed for spikes to sum
onstructively, and spikes that are only partially overlapping tend to
um destructively. The same cannot be expected to hold for the calcium
pikes, which are not only longer-lasting but also predominately cause
 negative response in the current current dipole moment. To mimic a
eural network scenario with multiple cells spiking at slightly different
imes, we calculated the sum of 1000 instances of the single-cell current
ipole moment that was jittered (shifted) in time (normally distributed,
tandard deviation = 10 ms). We found that the case with the dendritic
alcium spike now had a 6.6-fold larger maximum amplitude than the
ase with only the somatic spike ( Fig. 5 B4 versus C4 , max| p | = 30.8
Aμm and 204.2 μAμm respectively). This demonstrates that dendritic
alcium spikes are much more capable of summing constructively for a
opulation of cells, and substantiates the role of dendritic calcium spikes
n affecting ECoG/EEG/MEG recordings. 

The amplitude of the slow component of the current dipole mo-
ent from the calcium spike was about 0.5 μAμm ( Fig. 5 C3 ), and later

 Sec. 3.5 ) we will present results from a simulated neural network where
he average event-related current dipole moment of layer 5 pyramidal
ells were found to be about 0.1 μAμm ( Fig. 6 D , bottom right). This
ndicates that our results are compatible with the claim by Suzuki and
arkum (2017) that signal amplitudes from calcium spikes could be sim-
lar in amplitude to contributions from synaptic input. 

We can make a very rough estimate of the number of simultaneous
alcium spikes required to cause a measurable EEG response: A cur-
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Fig. 6. Large-scale neural simulations can 

be used to probe biophysical origin of EEG 

signals. A : Stimulus-evoked spiking activity 

from thalamic input (time 𝑡 = 900 ms, denoted 

by thin vertical line) in the cortical microcircuit 

model from Potjans and Diesmann (2014) . Dots 

indicate spike times of individual neurons, and 

populations are represented in different col- 

ors (I = inhibitory, E = excitatory). B : Multicom- 

partment model neurons used to produce the 

measurable signals, with colors corresponding 

to panel A , showing one example morphology 

per population. Layer boundaries are marked 

at depths relative to cortical surface, z = 0. A 

laminar recording electrode with 16 contacts 

separated by 100 μm (black dots) is positioned 

in the center of the population. C : LFPs calcu- 

lated at depths corresponding to black dots in 

B. D : For the two L5 populations (L5I and L5E), 

the three components of the current dipole mo- 

ment is shown for all individual cells (gray), to- 

gether with the population average (black). E : 

Illustration of the four-sphere head model, with 

the red column corresponding the the outline 

of the population in panel B. F : The EEG signal 

from each population found by summing the 

single-cell EEG contribution of all individual 

cells within each population (different colors, 

same color scheme as in A , B ), together with the 

total summed EEG signal (black). The simpli- 

fied EEG signal was found by first summing the z -component of the current dipole moments for all pyramidal cells, that is L2/3E, L5E and L6E, and calculating the 

EEG from these population dipoles (red dashed). 
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ent dipole moment of 1 μAμm gives an EEG amplitude on the order of
0 −3 𝜇V (see for example Fig. 4 C and D , note different scales). Assum-
ng that an EEG contribution must exceed ~ 10 μV to be detectable
 Hagen et al., 2018; Nunez and Srinivasan, 2006 ) implies a minimum
eeded current dipole moment of ~ 10 4 μAμm. A number of perfectly
ynchronous calcium spikes would each contribute with ~ 0.5 μAμm
 Fig. 5 C3 ), suggesting that about 20,000 synchronous calcium spikes
ould be needed to cause a measurable EEG response. Further, consid-

ring that the signal amplitude decreases by about 100-fold from corti-
al surface to scalp ( Fig. 3 B ) and assuming a similar detection threshold,
ndicates that a few hundred simultaneous calcium spikes would be de-
ectable by ECoG electrodes. 

It might initially seem surprising that the dendritic calcium spike is
o strongly reflected in the single-cell current dipole moment, given that
he transmembrane currents associated with the somatic action poten-
ial are much larger than those associated with the dendritic calcium
pike: the maximum amplitude of the transmembrane currents of the
omatic compartment was 45.1 nA, compared to just 0.30 nA for the
ompartment in the apical dendrite ( Fig. 5 A , blue and orange dots).
owever, the current dipole moment is given as the product between

he amplitude of the current and the separation between the source and
ink ( 𝐩 = 𝐼𝐝 ; Eq. (6) ). While the currents associated with the somatic ac-
ion potential will for the most part be contained within the somatic re-
ion, giving very small sink/source separations, the currents associated
ith the dendritic calcium spike will be distributed over a much larger
art of the cell membrane. This effect can be illustrated by comparing
he spatial profile of the extracellular potentials around the neuron at a
napshot in time during a somatic spike or during a calcium spike ( Fig. 5
 versus E ). 

.5. EEG from large-scale neural network simulations 

So far, we have only considered EEG contributions from single cells,
ut real EEG signals are expected to reflect the activity of hundreds
f thousands to millions of cells ( Cohen, 2017; Nunez and Srinivasan,
006 ). Biophysically detailed modeling of large populations is still in its
nfancy ( Einevoll et al., 2019 ) and at present typically include “only ”
 few tens of thousands of biophysically detailed cells ( Billeh et al.,
020; Markram et al., 2015 ). Networks of point neurons, on the other
and, are regularly used to simulate hundreds of thousands ( Billeh et al.,
020 ) or even millions of cells ( Schmidt et al., 2018; Senk et al., 2018 ),
ut LFP, ECoG, EEG or MEG signals can not be computed directly from
oint neurons ( Einevoll et al., 2013a; Ness et al., 2020 ). To investigate
EG signals generated by neuronal networks, we therefore used a hy-
rid scheme ( Hagen et al., 2016; Senk et al., 2018; Skaar et al., 2020 ),
here the network activity is first simulated in a highly computationally
fficient manner with point neurons in NEST ( Linssen et al., 2018 ) and
he resulting spiking activity of each neuron saved to file. Afterwards,
ach cell is modeled with biophysically detailed multicompartment mor-
hologies and the stored spikes of all the presynaptic neurons are used as
ctivation times for synaptic input onto these neurons in a simulation
here the extracellular potentials are calculated ( Hagen et al., 2016;
enk et al., 2018 ). 

We used the large-scale point-neuron cortical microcircuit model
rom Potjans and Diesmann (2014) and Hagen et al. (2016) . This model
as ~ 80,000 neurons divided into 8 different cortical populations, that
s, one excitatory and one inhibitory population in each of the four lay-
rs L2/3 - L6 (see Section 2.3.1 ). This model can exhibit a diverse set
f spiking dynamics including different oscillations and asynchroneous
rregular network states ( Brunel, 2000; Hagen et al., 2016 ). We here
hose to focus on the scenario with transient thalamocortical input for
imicking event-related potentials (ERPs). However, focusing on dif-

erent neural oscillations (brain waves) or spontaneous activity would
ave served equally well for our purposes. The only difference from the
riginal simulation by Hagen et al. (2016) was the added calculation of
urrent dipole moments and EEG signals. We simulated transient thala-
ic synaptic input to layers 4 and 6 ( Fig. 6 A ), and after the spikes had

een mapped onto the multicompartment cell models ( Fig. 6 B ), we cal-



S. Næss, G. Halnes, E. Hagen et al. NeuroImage 225 (2021) 117467 

Fig. 7. EEG signals from cortical column 

network with simple or complex head mod- 

els . EEG signals from the population dipole 

from the cortical microcircuit model (same as 

in Fig. 6 ), can be used both with the complex 

New York Head model ( A ), or the simple four- 

sphere head model ( B ). The dipole was located 

either in the parietal lobe ( C-G ) or in the oc- 

cipital lobe ( H-L ). C : The dipole location and 

orientation in the parietal lobe is illustrated 

with black arrow on the cortical surface of the 

New York Head model. D, E : EEG signals ( 𝜙) 

on scalp surface electrodes computed with the 

New York Head model ( D ) or the four-sphere 

head model ( E ), seen from above. The data is 

from the time point of the strongest current 

dipole moment | p |. Dipole location is marked 

by orange star, with coordinates in the New 

York Head model (55, -49, 57) mm. F : EEG 

trace computed with the New York Head model 

(gray) or the four-sphere head model (black) 

on the scalp surface electrode with the short- 

est distance to the dipole location. The dis- 

tances were 16.76 mm (New York Head) and 

16.78 mm (four-sphere). G : Absolute value of EEG signals from panel D,E as a function of distance from dipole to measurement electrode. H-L : Same as for C-G , but 

with the dipole located in the occipital lobe. Note that panel I, J are rotated to show the back of the head. The dipole coordinates in the New York Head model were 

(-24.3, -105.4, -1.2) mm, and the distance to the closest electrode in panel K was 14.64 mm (New York Head) and 17.51 mm (four-sphere). 
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ulated the LFP ( Fig. 6 C ) similarly to Hagen et al. (2016) (their Fig. 1 ),
n addition to the current dipole moments of each cell. 

For all cell populations, we found that the current dipole moments
rom individual cells could show large transient responses to thalamic
nput ( Fig. 6 D ; gray lines show current dipole moment from individ-
al cells in two example populations: L5 inhibitory (L5I) and L5 exita-
ory (L5E)), but for all inhibitory populations, as well as for the exci-
atory stellate cells in L4, the thalamic response was not visible in the
verage current dipole moment ( Fig. 6 D ; black lines, L5I). The same
as true for the current dipole moment components perpendicular to

he depth axis for excitatory populations ( Fig. 6 D ; L5E, p x , p y , black
ines), but not for the component along the depth axis which had a
ubstantial average response to the thalamic input ( Fig. 6 D ; L5E, p z ,
lack line). These observations imply, as previously noted, that only the
 -component of the current dipole moment from excitatory pyramidal
ell populations can be expected to contribute significantly to the EEG
ignal. 

Our findings invite a simplified approach to calculate the EEG signal:
he original approach involves calculating all the ~ 80,000 single-cell
EG contributions and summing them, taking into account the position
f the individual cells, similarly to what is done for the LFP signal. A
uch simpler alternative would be to compute a single summed p z -

omponent from all neurons in each pyramidal cell population (L2/3E,
5E and L6E), and place it in the center of the given pyramidal cell pop-
lation (with a population-specific depth). We can then calculate the
esulting simplified EEG signal from these population dipoles. This ap-
roximation can be expected to be accurate when the population radius
s small compared to the distance from the population center to the EEG
lectrode. Note that the distance from the top of cortex to the top of the
ead is typically ~ 10 mm, while the diameter of the present simulated
opulation is only ~ 1 mm ( Fig. 6 ; population outline in B is drawn in
ed in E ). 

To test this simplified approach, we combined the current dipole
oments with the four-sphere head model ( Fig. 6 E ). We calculated the
EG signal by the simplified approach, that is, from one time-dependent
rray, p z , for each pyramidal cell population, located in the center of
he given population. We then compared this simplified approach with
he original approach, that is, the sum of EEG contributions from all
P  
80,000 cells at their respective positions. The simplified approach
ave a maximum relative error of 1.1% (maximum absolute difference
ormalized by maximum value of EEG from original approach) ( Fig. 6 F
lack versus red dashed line). This implies that the EEG signal from the
imulated cortical activity can be nearly fully represented by a single
ime-dependent variable for each pyramidal cell population. Further,
umming these population dipoles into one single dipole, and locating
t in the center of the population column at 1 mm depth, instead gave a
aximum relative error of 6.6%. This highlights that the exact position

f different pyramidal cell populations are relatively unimportant for
haping the EEG signal. 

We also compared the relative amplitude of the EEG signal from each
opulation, and found that for the present example, the excitatory pop-
lation of L2/3 was the dominant source of the EEG signal ( Fig. 6 F ).
ote, however, that we expect this observation to be somewhat model-
ependent, and that strong general claims about the contribution of dif-
erent pyramidal cell populations to the EEG signal cannot be made from
his example study alone. 

.6. Dipole approximation in complex head models 

Even though the four-sphere head model is convenient for generic
EG studies, many applications such as accurate EEG source analysis,
ay require more detailed head models ( Dale et al., 1999; Vorwerk

t al., 2014 ). The construction of such complex head models is de-
endent on expensive equipment, that is magnetic resonance imaging
MRI), to map the electrical conductivity of the entire head at resolu-
ions of ~ 0.5–1.0 mm 

3 ( Huang and Parra, 2015; Huang et al., 2016 ).
fterwards, numerical techniques such as the Finite Element Method

FEM) ( Logg et al., 2012 ) can be used to calculate the signal at the EEG
lectrodes for arbitrary arrangements of current dipoles in the brain,
ut at a high computational cost. The number of computing hours is,
owever, reduced by applying the reciprocity principle of Helmholtz.
he reciprocity principle states, in short, that switching the location of
 current source and a recording electrode will not affect the measured
otential ( Dmochowski et al., 2017; Huang et al., 2016; Malmivuo and
lonsey, 1995; Ziegler et al., 2014 ). This implies that it suffices to use
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EM to calculate the lead field in the brain from virtual current dipoles
laced at each of the EEG electrodes. From the lead field matrix, we can
nfer the potential at the EEG electrodes, given an arbitrary arrangement
f current dipoles in the brain. Luckily, several such pre-solved com-
lex head models are freely available, and one example is the New York
ead (NYH) ( Fig. 7 A ), which we have applied here ( Huang et al. (2016) ;
ttps://parralab.org/nyhead/ ). 

To illustrate the use of pre-solved complex head-models, we inserted
he current dipole moment obtained from the cortical column model in
ection 3.5 into the New York Head model ( Fig. 7 A ), at two manually
hosen positions: one in the parietal lobe ( Fig. 7 C and D ), and one in the
ccipital lobe ( Fig. 7 H and I ). In both cases, the current dipole moment
as oriented along the normal vector of the brain surface, and the EEG

ignal was calculated. For comparison with a simplified head model,
e inserted the same current dipole moment into the four-sphere head
odel ( Fig. 7 B ) at locations comparable to the dipole positions chosen

n the occipital and parietal lobe in the NYH model: the locations in the
our-sphere model were chosen close to the brain surface, such that the
istance from dipole position to the closest electrode ( Fig. 7 E and J ) and
he brain surface normal vectors were similar to the respective positions
n the NYH model. 

The two head models generated EEG signals of the same temporal
hape, which is expected, given that neither of the models included any
emporal filtering ( Miceli et al., 2017; Pfurtscheller and Cooper, 1975;
anta et al., 2017 ). The computed EEG signals from the two head models
lso gave comparable results in both spatial shape and amplitude ( Fig. 7
 versus E; I versus J ). The relative difference between the EEG signals
alculated with the four-sphere model and the NYH model at the time
f maximum signal amplitude was 201% and 25.2% for the positions in
he parietal and occipital lobe respectively ( Fig. 7 F and K ). Note that
hile the four-sphere head model gave very similar EEG amplitudes for

he two different dipole locations (as expected from symmetry), the EEG
mplitudes from the complex head model was much more variable, even
or similar distances to the closest electrode ( Fig. 7 F and K ). 

The higher variability of the complex head model was also apparent
n the decay of the maximum EEG amplitude with distance, which was
erfectly smooth, exponential-like ( Nunez and Srinivasan, 2006 ), and
ery similar for the two locations in the four-sphere model, but very
ariable for the complex head model, although with the same general
hape ( Fig. 7 G and L ). 

Note that despite the complexity, the NYH model is substantially
aster than the four-sphere model. In order to simulate the EEGs from a
ipole moment vector containing 1200 timesteps, the NYH model exe-
ution times were ~ 0.3 s, while the four-sphere model needed ~ 0.9 s.

. Discussion 

.1. Summary 

In this paper, we have introduced an approach for reducing arbitrary
imulated neural activity from biophysically detailed neuron models to
ingle current dipoles ( Fig. 2 ). We verified that the approach was ap-
licable for calculating EEG, but generally not for ECoG signals ( Figs. 3
nd 4 ), and gave examples of how reducing neural activity to a sin-
le dipole can be a powerful tool for investigating and understanding
ingle-cell EEG contributions ( Figs. 4 and 5 ). Furthermore, we demon-
trated that the presented approach could easily be integrated with ex-
sting large-scale simulations of neural activity. Moreover, we showed
ow single dipoles are useful for constructing compact representations
f the EEG contributions from entire neural populations, with methods
till firmly grounded in the underlying biophysics ( Fig. 6 ). Finally, we
emonstrated how the simulated current dipoles, from single cells or
arge neural populations, can be directly inserted into complex head
odels for calculating more realistic EEG signals ( Fig. 7 ). 
.2. Application of current dipoles for computing EEG, MEG and ECoG 

ignals 

We have highlighted that the calculation of current dipoles from neu-
al activity is cleanly separated from the calculation of the ensuing EEG
ignals. Since MEG sensors like EEG electrodes are positioned far away
rom the neural sources, the same is true for MEG signals. The calculated
urrent dipoles can therefore also be used in combination with simpli-
ed or detailed frameworks for calculation of MEG signals, for example
y following methods outlined in Hagen et al. (2018) and Ilmoniemi and
arvas (2019) . 

ECoG electrodes are in general positioned closer to the neural
ources. For our example simulations of the ECoG signal generated by
ndividual neurons, we found that use of the single-dipole approxima-
ion gave substantial errors ( Fig. 3 ). Thus for computation of ECoG sig-
als, the standard compartment-based formalism or the multi-dipole ap-
roach ( Fig. 2 ) requiring much more computational resources, may be
equired. Here an alternative to using full head models is to use the
ethod of images, taking into account the discontinuity of electrical

onductivity at the cortical surface ( Hagen et al., 2018; Pettersen et al.,
006 ). A further complication of ECoG signals is that since the electrodes
re both relatively large and close to the neural current sources, the
CoG electrodes themselves might be expected to substantially impact
he measured signals ( Ness et al., 2015; Rogers et al., 2020; Vermaas
t al., 2020 ). 

Note that while we here used LFPy 2.0 ( Hagen et al., 2018; 2019 ), a
ython interface to NEURON ( Carnevale and Hines, 2006 ), calculation
f current dipole moments can easily be implemented into any frame-
ork where the transmembrane currents are available, through the sim-
le formula given in eq. (7) . 

.3. Generalization to non-compartmental models 

EEG and MEG recordings reflect neural activity at the systems-level
 Einevoll et al., 2019; Pesaran et al., 2018 ). Here, we have focused
n calculating current dipoles from detailed multi-compartment neu-
on models, but neural modeling at the systems-level is often based on
igher levels of abstraction, like point neurons ( Linssen et al., 2018 ) or
ring rate populations ( Sanz-Leon et al., 2013 ). Calculation of electric
r magnetic signals from such higher-level neural simulations must in
eneral rely on some kind of approximation trick, since neurons require
 spatial structure to be capable of producing electromagnetic signals
 Einevoll et al., 2013a ). One such trick that we took advantage of here
s the hybrid scheme ( Hagen et al., 2016 ). This two-step scheme involves
eural network activity first being simulated by point neurons, before
he resulting spike trains are replayed onto multi-compartment neuron
odels for calculating LFP and EEG signals ( Section 3.5; Fig. 6 ). 

Further, the hybrid scheme can be generalized to also allow for cal-
ulation of EEG/MEG signals from firing-rate models by using the so-
alled kernel method, which has previously been successfully applied to
he LFP ( Hagen et al., 2016; Skaar et al., 2020; Tele ń czuk et al., 2020 ).
n practice, this can be done in two steps: First, simultaneously activat-
ng all outgoing synapses from a specific (presynaptic) simulated pop-
lation, and recording the total current dipole moment of the response
the kernel) ( Hagen et al., 2016 ). Second, computing the EEG/MEG con-
ribution stemming from this (presynaptic) population by convolving
he kernel with the population firing rate, and applying an appropri-
te forward model. Here, the firing rate would be obtained separately
n point neuron network models or firing-rate models. In this way, the
asic biophysics of EEG and MEG signals from synaptic activation of
ulti-compartment neuron models is included, avoiding, however, com-
utationally heavy multicompartmental modeling of spiking dynamics.
he calculated current-dipole kernels should be applicable for different
inds of input to the original network model, but would in general have
o be recomputed for changes to cell or synaptic parameters. 

https://parralab.org/nyhead/
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.4. Connection to other work 

Calculation of current dipole moments from morphologically com-
lex cell models has been pursued before, for example to study the
EG and MEG contribution of spiking single cells ( Murakami and
kada, 2006 ), or to study how the synaptic input location affects the cur-

ent dipole ( Ahlfors and Wreh II, 2015; Lindén et al., 2010 ). Important
ork on EEG interpretation in terms of the underlying neural activity
as also previously been done through use of ”minimally sufficient ” bio-
hysical models, see for example Murakami et al. (2003, 2002) , Jones
t al. (2009, 2007) , Sliva et al. (2018) and Neymotin et al. (2020) .
ere, ”minimally sufficient ” means that the cell models only had mini-
ally needed multi-compartment spatial structure (point neurons can-
ot produce current dipole moments), only considered a few cell types,
nd employed simple synaptic connection rules. In particular, the Hu-
an Neocortical Neurosolver (HNN) ( Neymotin et al., 2020 ) enables

esearchers to link measured EEG or MEG recordings to neural activity
hrough a pre-defined canonical neocortical column template network.
NN comes with an interactive GUI, designed for users with little or no
xperience in computational modeling, and might therefore be an ap-
ropriate choice for researchers seeking to gain a better understanding
f their EEG/MEG data. However, while the use of such minimally suffi-
ient models allows for quick and direct comparison between simulated
nd recorded EEG signals, it is not (presently) compatible with simu-
ating EEG or MEGs from biophysically detailed single cell- or network
odels, constructed from detailed experimental data ( Arkhipov et al.,
018; Billeh et al., 2020; Egger et al., 2014; Gratiy et al., 2018; Hagen
t al., 2016; Markram et al., 2015; Reimann et al., 2013 ). 

A more high-level approach for simulating MEG/EEG signals from
he underlying neural activity has been pursued through neural field
r neural mass models ( Bojak et al., 2010; Coombes, 2006; David and
riston, 2003; Deco et al., 2008; Jirsa et al., 2002; Ritter et al., 2013 ),
hich aim to model the evolution of coarse-grained variables such as

he mean membrane potential or the firing rate of neuron populations.
uch coarse-graining drastically reduces the number of parameters and
he computational burden of the simulation, and can be used to study the
nterplay among entire brain regions, and indeed run whole-brain simu-
ations. The Virtual Brain (TVB) is an excellent example of a software for
hole-brain network simulations ( Ritter et al., 2013; Sanz-Leon et al.,
015; 2013 ), where detailed and potentially personalized head mod-
ls can be combined with tractography-based methods identifying the
onnectivity between brain regions ( Sanz-Leon et al., 2013 ). To calcu-
ate measurement modalities like MEG and/or EEG signals from neural
eld or neural mass models, it is typically assumed that the population
urrent dipole moments are roughly proportional to, for example, the
verage excitatory membrane potential ( Bojak et al., 2010; Ritter et al.,
013 ). Further, EEGs can be calculated from the resulting current dipole
oments in combination with head models as presented in this paper,

r through other softwares or techniques ( Gramfort et al., 2014 ). This
uggests an intriguing future development, where one could apply the
bove-mentioned kernel method based on biophysically detailed neu-
on models to substantially increase the accuracy of LFP, EEG and MEG
redictions from high-level large-scale simulations of neural activity. 

.5. Outlook 

EEG and, later, MEG signals have been an important part of neu-
oscience for a long time, but still very little is known about the neu-
al origin of the signals ( Cohen, 2017 ). A better understanding of these
ignals could lead to important discoveries about how the brain works
 Ilmoniemi and Sarvas, 2019; Lopes da Silva, 2013; Pesaran et al.,
018; Uhlirova et al., 2016 ), and provide new insights into mental dis-
rders ( Mäki-Marttunen et al., 2019a; Sahin et al., 2019 ). This work
ays some of the foundation for obtaining a better understanding of
EG/MEG recordings, by allowing easy calculation of the signals from
rbitrary neural activity. The presented formalism is well suited for
odeling EEG/MEG contributions from various potential neural ori-
ins, including different cell types, different ion channels and differ-
nt synaptic pathways. For example, to study the effect of calcium
pikes ( Suzuki and Larkum, 2017 ), I h currents ( Kalmbach et al., 2018;
ess et al., 2016; 2018 ), or gene expression on EEG signals ( Mäki-
arttunen et al., 2019b ), one only needs to know how the z -component

f the resulting population current dipole is affected. This decoupling of
he current dipole moment and head model allows for easier investiga-
ion and improved understanding of the origin of the EEG/MEG signal.

This study has only considered how one can calculate EEG/MEG
ignals from the underlying neural activity (so-called forward model-
ng). EEG/MEG measurements are, however, often used for source local-
zation (so-called inverse modeling), aiming to identify the underlying
ortical current dipoles ( Gramfort et al., 2014; Ilmoniemi and Sarvas,
019; Nunez and Srinivasan, 2006 ). However, such reconstructed cur-
ent dipoles are generic in the sense that they are typically not intended
o represent specific neural populations. By allowing for calculation of
urrent dipoles from cortical populations, the work presented here takes
 step towards consolidating the, so far, mostly separate scientific dis-
iplines of neural modeling and EEG/MEG data analysis (but see also
eymotin et al. (2020) ). 

The main challenge in inverse modeling, is that the problem
s mathematically ill-posed, because the number of possible current
inks/sources is much larger than the number of recording electrodes.
his implies that unique solutions can in general not be found, without
aking additional assumptions on cortical current dipole distributions

 Pettersen et al., 2012 ). In practice, this means that the performance
f inverse methods will depend on design choices that need testing. The
resented approach can be used to create simulated EEG/MEG data with
nown underlying current dipoles, which can be used for benchmark-
ng inverse methods for source localization, similar to what has previ-
usly been done for current source density estimations ( Pettersen et al.,
006 ). Further, Pettersen et al. (2006) demonstrated that an improved
nverse method for LFP analysis, the so-called iCSD method, could be
ade by building the forward model into the inverse model. Going one

tep further, we can envision incorporating the presented approach into
n EEG inverse model, aiming to identify synaptic input regions to dif-
erent pyramidal cell populations instead of cortical current dipoles. 

While there are many examples of detailed biophysical modeling of
eural activity improving interpretation of measured intracranial extra-
ellular potentials in lab animals ( Blomquist et al., 2009; Chatzikalym-
iou and Skinner, 2018; Einevoll et al., 2007; Luo et al., 2018; McColgan
t al., 2017; Tele ń czuk et al., 2020 ), much less has been done for hu-
an EEG/MEG signals. This is natural given that studies of healthy hu-
an brains necessarily are limited to non-invasive technologies ( Cohen,
017; Lopes da Silva, 2013; Uhlirova et al., 2016 ). However, given all
he valuable insights that could be gained from an increased under-
tanding of non-invasive measurements of neural activity in humans, an
mportant challenge in modern neuroscience is to build on the mecha-
istic insights from animal studies and use them for understanding non-
nvasive signals in humans ( Cohen, 2017; Einevoll et al., 2019; Lopes da
ilva, 2013; Mäki-Marttunen et al., 2019a; Uhlirova et al., 2016 ). The
pproach for calculating EEG/MEG signals in this paper should there-
ore ideally be used in combination with animal studies simultaneously
easuring multisite laminar LFP (and MUA) signals within cortex, as
ell as EEG/MEG signals (see for example Bruyns-Haylett et al., 2017;
ohen, 2017 ). 

Today, we have a reasonably good understanding of how single neu-
ons operate, that is, how they respond to synaptic input, and how
ultitudes of synaptic inputs combine to produce action potentials

 Einevoll et al., 2019 ). Similarly, we can, to a high degree, explain
he measurement physics of EEG/MEG, that is, how neural currents af-
ect electromagnetic brain signals recorded outside of the head ( Cohen,
017; Ilmoniemi and Sarvas, 2019; Nunez and Srinivasan, 2006 ). The
hallenge of understanding EEG/MEG signals is therefore closely related
o the greatest challenge in modern neuroscience: understanding neural



S. Næss, G. Halnes, E. Hagen et al. NeuroImage 225 (2021) 117467 

n  

c  

c  

w  

d  

i  

t  

t  

e  

2  

i  

S  

b  

f  

r  

s  

r  

w  

h  

C

 

a  

-  

t  

g  

-  

o  

D  

&  

i  

i  

r  

s  

i

A

 

2  

7  

t  

P  

(

R

A  

 

A  

 

 

 

 

B  

 

 

B  

 

B  

 

 

B  

 

B  

B  

 

 

B  

 

C  

C  

 

C  

C  

D  

D  

D  

 

D  

 

E  

 

E  

 

E  

 

E  

 

E  

 

 

E  

 

E  

 

 

F  

 

G  

G  

 

G  

 

 

G
H  

 

 

H  

 

H  

 

 

H  

 

H  

 

H  

 

H  
etworks. Making sense of such complicated dynamical systems typi-
ally requires computational modeling ( Einevoll et al., 2019 ), but the
omplexity of neurons, and the complexity and size of the neural net-
orks involved in even the simplest of cognitive tasks, makes this a
aunting challenge. The steady increase in available computing power,
n combination with the ever-increasing knowledge on synaptic connec-
ivity patterns is, however, making this approach more and more attrac-
ive ( Arkhipov et al., 2018; Billeh et al., 2020; Egger et al., 2014; Gratiy
t al., 2018; Hagen et al., 2016; Markram et al., 2015; Reimann et al.,
013; 2019 ): Today, there are several ongoing research projects pursu-
ng such modeling efforts, for example at the Allen Institute for Brain
cience and in the Human Brain Project ( Einevoll et al., 2019 ). While
iophysically detailed, large-scale neural simulations are still in their in-
ancy, we expect these simulations to become an increasingly important
esearch tool in neuroscience ( Einevoll et al., 2019 ). The presently de-
cribed method enables EEG/MEG simulations combining detailed neu-
al simulations with realistic head models. We believe that this approach
ill help shedding light on the neural origin of EEG/MEG signals, and
elp us take full advantage of these important brain signals in the future.
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