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Abstract 
The expression ‘landscape of fear’ describes a situation in which prey behavior and space use 

across the landscape are shaped by spatial and temporal patterns in predation risk. Yet such 

behavioral and indirect effects of predation have been much less studied than its numerical 

and direct effects. One of the challenges in doing so is characterizing habitat at the resolution 

and extent necessary to effectively study this at the landscape level. In this thesis, I 

investigated the spatial risk patterns created by natural predators and human hunting and how 

these two predators influence the habitat selection and ecology of forest ungulates (roe deer, 

red deer, and moose) across several study systems in Norway. 

I used airborne LiDAR (light detection and ranging), an emerging technology, to obtain 

detailed data on habitat structure over large scales. The three-dimensional LiDAR data were 

used to 1) elucidate how understory vegetation density, canopy cover, and other habitat 

characteristics modify predator-prey interactions and 2) predict wildlife forage availability. 

Whereas structural information from LiDAR was sufficient to model predation risk from lynx 

and hunters well, it needed to be integrated with auxiliary data, particularly plant species 

information, to predict forage satisfactorily. 

Most studies address a situation with only a single prey-predator pair. Yet, with 

recolonization of large carnivores, ungulates are frequently facing multiple predators with 

contrasting hunting styles. An example of such an understudied multiple-predator situation is 

the roe deer in southern Norway facing two predators (lynx and humans). I documented how 

these predators create contrasting risk patterns due to their different hunting methods, as lynx 

risk increased and hunting risk decreased with increasing understory cover. I discussed how 

this could lead to lower non-consumptive effects of predation in such systems compared to 

systems with a single predator. Against this background, I investigated dynamic responses in 

space use to temporally structured predation risk. Diurnal and seasonal variation was studied 

in roe deer, and adaptive responses to the onset of hunting were studied in a heavily hunted, 

but otherwise predator-free red deer population. Roe deer shifted their habitat selection 

towards safer areas during periods of high predator activity, but have a weaker response, 

possibly no response, to lynx risk during winter. The latter is likely due to harsh winter 

conditions leading to a more severe trade-off between safety and energetic considerations that 

constrained roe deer habitat selection during this season. In the study on red deer, deer that 

were shot during the following hunting season differed from survivors in their habitat use. 

Whereas all males used similar habitat in the days before the hunting season, the onset of 
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hunting induced an immediate switch to habitat with more concealing cover in surviving 

males, but not in males that were later shot. Responding to the onset of hunting appeared to be 

adaptive, given that it was linked to increased survival, an important fitness component. A 

final case study expanded habitat characterization to include forage availability and related 

moose habitat selection to forage and two LiDAR variables capturing variation in 

concealment and thermal conditions: understory cover and canopy cover. All three functional 

gradients were important for moose habitat selection on landscape and home range scales, 

both during winter and summer. Including habitat structural characteristics directly derived 

from LiDAR datasets in habitat selection studies can be meaningful and successful, while also 

requiring less effort than alternative predictive approaches. 

This thesis elucidates the spatial patterns and temporal nature of spatial antipredator responses 

in ungulates, and the importance of trade-offs in that regard. My work demonstrates possible 

applications of LiDAR-derived data on habitat structure to ecological studies at large scales. It 

establishes that hunters and carnivores impact Norwegian forest ungulates not only 

numerically, but also behaviorally by creating a ‘landscape of fear’. The magnitude of indirect 

effects of human and natural predators on prey populations and the question of whether 

predation and hunting cause behaviorally mediated trophic cascades deserve further attention.  
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Samandrag 
Uttrykket «landskap av frykt» skildrar ein situasjon der åtferda og den romlege habitatbruken 

til byttedyr vert forma av mønster i predasjonsrisiko i tid og rom. Slike åtferdsmessige og 

indirekte effektar av predasjon har ikkje blitt studert i like stor grad som numeriske og direkte 

effektar. Ei av utfordringane med å studere dette på landskapsskala har vore evna til å 

karakterisere habitat over store områder med høg resolusjon. Denne avhandlinga tar for seg 

dei romlege risikomønstera som skapast av eit naturleg rovdyr og av menneskeleg jakt og 

korleis desse to funksjonelle predatorane påverkar habitatseleksjonen og økologien til 

skoglevande hjortevilt (rådyr, hjort og elg) i tre studiesystem i Noreg. 

Eg bruka nyvinninga flyboren LiDAR (light detection and ranging) til å samle data om 

habitatstruktur på stor skala. Dei tredimensjonale LiDAR dataa vart bruka til å 1) belyse 

korleis tettleiken av undervegetasjon, kronedekke og andre trekk ved eit habitat verkar inn på 

byttedyr-rovdyr vekselverknader, og 2) predikere beitetilgang for vilt. Strukturinformasjon frå 

LiDAR var tilstrekkeleg for å modellere predasjonsrisiko frå gaupe og jegerar. Derimot måtte 

LiDAR brukast i lag med andre datakjelder, fortrinnsvis informasjon om dominerande treslag, 

i prediksjonen av tilgjengeleg beite. 

Dei fleste studiar tek for seg eitt einskild byttedyr-rovdyr par. Når store rovdyr no re-etablerer 

seg i mange områder vil fleire byttedyr måtte ta stilling til fleire rovdyr som jaktar på dei med 

ulike taktikkar. Eit eksempel på ein slik understudert multi-predator situasjon er rådyr i Sør-

Noreg, der dei har to predatorar (gaupe og menneske). Eg dokumenterte at dei ulike 

jaktmetodane til desse to rovdyra førte til motstridande risikomønster for rådyra. Risikoen for 

å bli drepen av gaupe auka med tettleiken av undervegetasjon, medan risikoen for å bli drepen 

av jeger minka. Det kan på grunnlag av dette syntest som at indirekte effektar av predasjon vil 

vere mindre viktig i system med fleire rovdyr, enn i system med færre, eller berre eitt rovdyr. 

På grunnlag av dei romlege risikomønstra har eg undersøkt dynamiske endringar i habitatbruk 

som følgje av risikomønster i tid. Døger- og sesongvariasjonar vart studerte for rådyr og 

adaptive responsar til starten av jaktsesongen vart studerte i ein hjortebestand som hadde høgt 

jakttrykk og var praktisk sett fri for anna predasjon. Rådyr endra habitatbruken sin slik at dei 

bruka områder med låg risiko i den tidsperioden predatoren var mest aktiv. Unntaket var 

vinterstid, då tilpassa rådyret seg gaupa i mindre grad, kanskje ikkje i det heile. Dette var 

sannsynlegvis grunna tøffe vinterforhold som førte til at avveginga mellom risikoreduksjon 

og energetiske omsyn var meir kostbar enn i dei andre sesongane, og dette avgrensa rådyrets 

habitatseleksjon i denne sesongen. I hjortestudiet vart det klart at habitatbruken til dyr som 
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overlevde jaktsesongen det året skilde seg frå habitatbruken til dei som vart skotne. Alle 

bukkane bruka likt habitat i dagane forut for jaktstart, men habitatbruken rett etter jaktstart var 

ulik: bukkar som overlevde jakta hadde tatt i bruk habitat med meir skjul, medan dei bukkane 

som seinare vart skotne ikkje hadde endra habitatbruken sin. Denne responsen på jaktstart 

syntest å vere adaptiv, i og med at det var ein klar samanheng med overleving, som ein saman 

med reproduksjon er avgjerande for individuell fitness. I det siste studiet utvida eg 

habitatkarakteristikken til å omfamne også tilgjengeleg mengde beite, og undersøkte korleis 

habitatbruk hos elg avhenger av beite og to LiDAR variablar som fangar opp variasjon i skjul 

og temperaturforhold: tettleik av undervegetasjon og kronedekke. Alle desse tre funksjonelle 

habitatgradientane var viktige for å forklare habitatseleksjonen til elg sommar og vinter, både 

på heimeområdeskala og landskapsskala. I tillegg til å vere enklare enn å først predikere ein 

bakkemålt eigenskap, gjev det god meining og gode resultat å inkludere 

habitatstrukturvariablar som er direkte utrekna frå LiDAR data i studiar av habitatseleksjon. 

Denne avhandlinga belyser romlege mønster og tidsaspekt ved romleg antipredasjonsåtferd 

hos hjortevilt, og den viktige rolla avvegingar spelar for dette. Mitt arbeid demonstrerer nokre 

måtar å bruke habitatstrukturinformasjon frå LiDAR-data i økologiske studiar på stor skala. 

Det slår fast at jegerar og rovdyr påverkar åtferda til norsk hjortevilt gjennom «landskap av 

frykt», og ikkje berre bestandsstorleiken gjennom drap. Storleiken på dei indirekte effektane 

av menneskeleg jakt og naturlege rovdyr og spørsmålet om predasjon og jakt forårsakar 

kaskade-effektar i næringskjeda er verdt å forske vidare på.  
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Synopsis 
 

 

“During any given day, an animal may fail to obtain a meal and go 

hungry, or it may fail to obtain mating and thus realize no reproductive 

success, but in the long term, the day’s shortcomings may have minimal 

influence on lifetime fitness. Few failures, however, are as unforgiving as 

the failure to avoid a predator; being killed greatly reduces future fitness”  

 Lima and Dill, 1990 

 

 

“Whatever else may be said about predation, it does draw attention” 

 Paul Errington, 1946 
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Introduction 
Indirect effects of predation  

Predation is a ubiquitous phenomenon in nature that has been intensively studied. 

Starting with the work of Lotka and Volterra (Lotka 1925, Volterra 1928), predator-prey 

interactions have largely focused on consumptive effects. However, predation can have 

consequences beyond the direct numerical effects on prey populations; prey commonly use 

behavioral or morphological defenses against predation (Lima and Dill 1990, Bourdeau and 

Johansson 2012). Prey may reduce or manage risk by adaptations that make them undesirable 

as prey or less vulnerable to predation, for instance porcupines with their spines, species 

synthesizing or sequestering toxins, or species mimicking another species that is toxic. 

Desirable prey can alter their behavior to avoid encounters with predators, or to improve their 

chances of surviving an encounter with a predator (Lima and Dill 1990, Hebblewhite et al. 

2005). Factors influencing the latter would be increasing group size, being more vigilant, and 

using escape behavior (Roberts 1996, Seamone et al. 2014). Decreasing movement rates can 

reduce chances of encountering predators (Alós et al. 2012), while habitat selection can 

influence both stages of the predation process, both encounter rate and survival chances 

following an encounter (Hebblewhite et al. 2005, Atwood et al. 2009), as it affects the 

effectiveness of other risk-management behaviors such as vigilance and escape (Heithaus et 

al. 2009). 

Spatial patterns in risk between different habitat types can give rise to ‘landscapes of 

fear’, if prey detect this variation in risk and modify their behavior in response (Laundré et al. 

2001). The term was coined to explain the spatial nature of behavioral changes by elk, Cervus 

elaphus canadensis, in Yellowstone following the reintroduction of wolves, Canis lupus. Elk 

became more vigilant and shifted habitat use away from open areas and into forests, and as a 

result decreased the quality of their diet (Laundré et al. 2001, Fortin et al. 2005, Hernandez 

and Laundré 2005). Habitat shifting by a large herbivore redistributes browsing or grazing 

pressure, and has the potential to result in a behaviorally mediated trophic cascade (BMTC). 

Mesocosm experiments with insects point to the importance of hunting mode in creating 

strong spatial contrasts in risk (Schmitz 2008), and the trade-offs made by intermediate 

species (such as herbivores) in causing a BMTC (Schmitz et al. 2004). In Yellowstone, wolf 

presence and behavioral changes have been linked to aspen recovery (Ripple et al. 2001, 

Fortin et al. 2005), but a dispute ensued over the strength of evidence for this BMTC 

(Kauffman et al. 2010, Beschta and Ripple 2011, Kauffman et al. 2013). Unequivocally 

testing this on a landscape scale is challenging, and studies investigating how prey space use 
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is influenced by predators with distinct hunting modes are few (but see Willems and Hill 

2009, Thaker et al. 2011).  

 

Habitat selection and trade-offs 

Trade-offs between risk-avoidance and forage quality or quantity have been identified 

in several contexts (Nonacs and Dill 1990, Cowlishaw 1997, Godvik et al. 2009, Christianson 

and Creel 2010), and animals responding to predation risk by shifting habitat are expected to 

trade off foraging opportunities against risk avoidance. Prey species must thus undertake a 

balancing act in their habitat selection, so as to meet the demands they face at short and long 

time scales; particularly energy intake for growth and reproduction, energy use, and predation 

risk (Fig. 1). Higher energy use demands larger energy intake, but there can also be more 

subtle connections and trade-offs between foraging and energy use in a spatial context, for 

instance through the cost of movement between patches and forage depletion (Holand et al. 

1998). Ungulate species such as white-tailed deer, Odocoileus virginianus, roe deer, 

Capreolus capreolus, and red deer, Cervus elaphus elaphus, tend to use more open habitat 

during the night and forested habitat during daytime (Beier and McCullough 1990, Mysterud 

et al. 1999a, Godvik et al. 2009). This differential use of open, good foraging areas and 

habitat providing cover is commonly interpreted as a trade-off deer face due to predation or 

human disturbance. Furthermore, in a predator-free, high-density population, deer ceased to 

select for cover and selected only for forage resources, apparently because they experience a 

weaker trade-off (Massé and Côté 2009).  

 

 
 

Figure 1: Conceptual model of potentially conflicting factors influencing individual habitat 
use and their realized fitness consequences. Habitat use by animals can involve a trade-off 
between exposure to predation risk, foraging needs, and energy use, and the choices made 
affect survival, growth, and overall fitness. 
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Many studies have interpreted the use of cover in terms of risk factors and food 

availability, yet cover can have a plethora of functions for animals (Mysterud and Østbye 

1999, Camp et al. 2013, Olsoy et al. 2014). Canopy cover can intercept rain and snow, giving 

lower snow depth and altered snow conditions underneath dense canopy. It can also alter the 

thermoregulatory conditions by decreasing radiative transfer and wind speed and intercepting 

sunlight (Mysterud and Østbye 1999). Horizontal cover from topography or low vegetation 

can alter visibility and concealment, and affect the efficiency of hunting or the effectiveness 

of antipredator behavior (Camp et al. 2013, Olsoy et al. 2014). The effects of cover and 

vegetation structure on animal behavior need to be investigated in more depth since the 

simple binary classification of open vs. cover does not to explain all the effects of vegetation 

structure on animal behavior. 

Ecological processes are inherently scale-dependent (Senft et al. 1987, Wiens 1989). 

For instance, foraging decisions can be influenced by different factors at the patch, 

community, landscape and regional levels (Senft et al. 1987). Since patterns do not 

necessarily scale up or down, a study should be conducted at the temporal and spatial scale 

thought to reflect the question at hand. Measuring risk landscapes and forage at broad scales 

is challenging. Studies have typically been constrained by the use of field measurements of 

cover and forage for fine scale studies, or coarse grain and categorical habitat information for 

large scale studies. Light detection and ranging (LiDAR) technology can measure vegetation 

structure with fine grain over broad scales and presents an opportunity to obtain the necessary 

habitat information to study risk effects on habitat selection across large spatial scales. 

 

LiDAR 

In this thesis I use LiDAR to measure functional gradients in cover and vegetation 

structure with fine grain at a broad scale. LiDAR is an active remote sensing technique that 

gives detailed information about the three-dimensional (3D) distribution of vegetation and the 

ground surface by measuring the travel time of an emitted pulse of light that is reflected off an 

object and back to the sensor (Box 1 gives more technical details, see Wehr and Lohr (1999) 

for a comprehensive description). The utility of LiDAR as a tool in studies of animal ecology 

has been recognized and increasingly exploited over the last decade (Lefsky et al. 2002, 

Vierling et al. 2008, Davies and Asner 2014). Widespread application in other fields of 

research, most notably geomorphology (Jaboyedoff et al. 2012) and forestry (Hyyppä and 

Inkinen 1999, Næsset and Økland 2002), preceded its application to organism-habitat 

relationships. Its utility in ecological studies stems from its ability to directly measure 
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vegetation properties such as canopy height, height variability and foliage density in different 

height intervals (primary variables) and its demonstrated ability to predicting forest properties 

such as timber volume, standing dead trees, canopy volume and above-ground biomass 

(secondary variables) (Lefsky et al. 2002). Studies have used primary or secondary variables 

to inform how habitat structure relates to habitat quality (Hinsley et al. 2006), species 

diversity (Müller and Vierling 2014), species distribution/habitat use (Martinuzzi et al. 2009, 

Zhao et al. 2012), and related management or conservation applications (Vierling et al. 2008, 

Merrick et al. 2013). Yet it was not until 2010 that the first application to the study of 

ungulate habitat appeared (Coops et al. 2010) 

By now, a plethora of modeling approaches and descriptive variables have been 

derived from LiDAR data and used in studies of animal ecology or wildlife habitat (Merrick 

et al. 2013, Davies and Asner 2014). Given that 3D structure is a fundamental aspect of 

habitat that provides a frame for all biotic and abiotic interactions, it is not surprising that 

LiDAR can be applied widely and new applications keep appearing. In this thesis I use 

Box 1: A short introduction to LiDAR technology 

Laser altimetry, or LiDAR, is to use the travel time of a pulse of light to measure distance. 
Multiplying the travel time of the light pulse (from emittance to detection after reflection) with the 
speed of light gives the distance traveled by the light, and dividing this by two gives the distance 
between the sensor and the object that reflected it. Precise timekeeping is therefore an essential 
element in LiDAR sensors. When applied over vegetation, LiDAR is able to give information about 
the three dimensional distribution of biomass well as the ground surface topography, as parts of the 
laser beam penetrates through gaps in the canopy. The laser pulse has a certain extent or footprint (the 
size of which varies with type of sensor, flying height, and sensor settings) when it reaches the target 
where it is reflected, thus parts of the laser beam can be reflected at different distances from the 
scanner, and this will give several peaks or a spread in the return signal. How the return signal is 
analyzed and stored is different for the two main classes of LiDAR systems available, full waveform 
LiDAR and discrete-return LiDAR. While full waveform LiDAR stores the complete signal, discrete-
return systems register between one and four peaks in the return signal as echoes returned from point 
locations. While satellite-borne LiDAR is useful for large-area surveys, airborne laser scanning 
(ALS) systems are useful at intermediate- to large scales. Airborne systems use GPS, an inertial 
navigation system that takes account of the pitch, roll and yaw of the plane and the scanning 
mechanism of the sensor to georeference the position and orientation of the sensor in space. This is 
necessary to accurately calculate the path of each laser beam and the location of the object (biomass) 
that reflected it. The scanning mechanism allows the collection of LiDAR data continuously over a 
large area with a relatively uniform coverage of individual laser echoes in the resulting dataset. The 
acquired pulse density (and hence, resolution) depends on flying height and sensor settings, and 
datasets are typically collected to provide a density within the range 0.1–10 m-2, depending on the 
purpose. 
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airborne LiDAR to study behavioral responses to predation, evaluate its potential for 

elucidating trophic interactions on a broad scale and to predict the space use of a large 

ungulate. 

I wanted to study indirect effects of predation and hunting on wildlife populations 

using the forest ungulates of Norway and their predators as the study system. How predation 

and hunting influence the behavior of large mammals has been largely unknown and thus 

largely unaccounted for in wildlife management (Solberg et al. 2003). There is a need to 

investigate this to complete our understanding of predator-prey interactions, especially in light 

of the return of large carnivores to these ecosystems (Chapron et al. 2014). The study system 

offers an opportunity to study wildlife responses in a situation with predation from multiple 

predators, and their responses to a predictable temporal pattern in risk from hunting. At the 

same time, hunting is a widespread management action, livelihood strategy and recreational 

activity world-wide. Through hunting, humans might not only influence game populations 

through numeric control, but also have unintended (or intended: (Cromsigt et al. 2013)) 

effects on animal behavior that are important to understand. 
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Objectives 

The main objective of this thesis was to study the landscape of risk created by natural 

predation and human hunting, and consequences for habitat use and survival of Norwegian 

forest ungulates, using an emerging technology, LiDAR, to characterize habitat structure at a 

large scale. There were a series of sub-objectives concerning methodology, mechanisms and 

emerging patterns that were dealt with in one or more papers:  

 

Methodology: 

1. Explore the use of LiDAR to quantify habitat structure relevant for forest ungulates, 

particularly pertaining to predation risk and forage availability (Papers I, IV) 

 

Documenting patterns and mechanisms:  

2. Characterize spatial patterns in risk imposed by natural and human predators 

(Paper I) 

3. Investigate whether animals dynamically adjust their habitat selection to temporal 

variation in risk (Papers II, III) 

4. Determine how use of cover and forage habitat relates to survival (Paper III) 

 

Trade-off between risk avoidance and other constraining habitat elements: 

5. To consider predation risk, forage and implicitly, energetic considerations, as 

determinants of habitat selection (Papers II, III, IV)  
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Methods 
Study areas 

The three study areas in Norway (Fig. 2) lie in the boreal vegetation zone and are 

largely forested mixed-use landscapes with some anthropogenic influence and presence. 

Within the northern study area there are also several mountainous areas with alpine character. 

Agricultural areas, paved roads and other anthropogenic developments are mainly restricted to 

valleys and areas that are relatively flat (Fig. 3). Land cover is dominated by commercially 

managed coniferous forests composed mainly of Norway spruce, Picea abies, and Scots pine, 

Pinus sylvestris. The birch species Betula pubescens and B. pendula in particular, but also 

other deciduous species, such as rowan, Sorbus aucuparia, willow, Salix spp., aspen, Populus 

tremula, common hazel, Corylus avellana, alder, Alnus spp., and elm, Ulmus glabra, occur 

scattered or in small stands. Our southernmost study site (Fritzøe; paper IV) also includes 

deciduous vegetation types of boreonemoral character closer to the coast, and the 

northernmost study site (Nordmøre; paper III) covers a gradient in forests from coast to  

 

 
Figure 2: Study areas in southern and central Norway and in which papers (I-IV) they were 

used. Green areas have forest cover. 
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inland from purely deciduous to coniferous forests. The central and northern study sites 

(papers I, II, III) have one or several pronounced valleys and an altitudinal gradient in 

vegetation cover, with a transition to only low alpine vegetation occurring at around 

1000 m a.s.l. at the inland sites and at lower elevation closer to the coast. All three study areas 

are large, exceeding 1000 km2. 

 

 
Figure 3: Illustration of a mixed-use landscape in Hallingdal (study area of papers I and II) 
with agricultural areas along the valley bottom and managed coniferous forests. 
   

Norwegian forest ungulates and their predators 

There are five wild-living ungulate species in Norway: a single, small population of 

reintroduced musk ox, Ovibus moschatus; wild reindeer, Rangifer tarandus, that occur 

patchily in mountain regions; and roe deer, red deer, and moose, Alces alces, all of which are 

considered forest ungulates and both more abundant and widely distributed than reindeer 

(Andersen et al. 2010). This thesis concerns roe deer, red deer and moose. These three species 

have a large spatial overlap in distribution in southern and central Norway. In the western 

parts, red deer dominate in terms of abundance, whereas moose dominate in the eastern parts. 

Moose and roe deer are absent from some areas on the West Coast with high population 

densities of red deer (Andersen et al. 2010). 
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The three species experience different levels of natural predation from different 

predators. European lynx, Lynx lynx, target all age classes and both sexes of roe deer (Odden 

et al. 2006). They also kill both young and adult red deer if they are available, but take moose 

calves only occasionally (Odden et al. 2010). The evolutionary history of predation differs 

between the three ungulates. Moose and red deer have evolved with pursuit predation from 

wolf, while roe deer have evolved with stalking predation and experience the same situation 

today (Nilsen et al. 2009).  

At the northern site (paper III), red deer is the dominant large ungulate present, but 

roe deer and moose are also present. Red deer experience high hunting pressure, but very low 

predation by natural predators as only a few lynx individuals are present in this region. At the 

central site (Hallingdal; papers I, II), roe deer, red deer and moose are all present, but to 

some degree utilize different areas (Mysterud et al. 2012), habitat types and diet types (but 

with substantial overlap). Lynx is the only large predator that is present in significant numbers 

as bears or wolves occur only sporadically. All three ungulate species are hunted by humans. 

At the southern site (paper IV) all three ungulate species are present and hunted. Lynx is also 

present here.  

The assemblage of forest-dwelling ungulates in Norway is well distributed along the 

body weight gradient (female moose = 300 kg, female red deer = 80 kg, adult roe deer = 

30 kg). The Jarman-Bell principle contends that small-bodied animals have larger nutritional 

needs per kg body mass, but the same digestive capacity per kg body mass as larger-bodied 

animals, leading them to require more easily digestible forage than larger species need (Illius 

and Gordon 1987). As heat loss rates also scales advantageously with body mass, the overall 

effect is that roe deer require high quality forage, moose are able to tolerate poorer quality 

forage, and red deer take an intermediate position between roe deer and moose along a 

gradient in forage quality. Whereas moose and roe deer are concentrate selectors (i.e., 

browsers), red deer are intermediate feeders (i.e., mixed feeders) (Hofmann 1989). Even 

though roe deer are generalists, they are highly selective for high quality forage such as herbs, 

fruits and grains (Duncan et al. 1998). At the same time, they are selective feeders at the scale 

of patches, consuming only the best plant parts (Duncan et al. 1998). There is relatively little 

overlap between diets in sympatric populations. Moose and roe deer diets overlap by about 

20% during summer and 30% during winter when they both mainly rely on browse (Mysterud 

2000). Since red deer and moose diets also overlap by about 30% during winter (Mysterud 

2000), the species have well separated diet niches, so exploitative competition for forage is 

mainly against conspecifics. 
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Data 

All four papers are observational studies using tracking data from GPS-collared 

animals. Lynx and roe deer were collared by NiNA and the project Scandlynx. The group also 

periodically monitored lynx movements intensively to document predation events, generating 

a set of locations of kill sites of roe deer. Locations where hunters had killed roe deer were 

obtained by asking local hunters to share this information. The red deer were collared by 

Bioforsk Tingvoll for the projects HjortAreal and TickDeer, and the moose were collared by 

HiHM for the Moose – Forage Project. All animal handling procedures were approved by the 

Norwegian Animal Research Authority and permission to capture wild animals was granted 

by the Norwegian Directorate for Nature Management (FOTS IDs: 1428, 2827, 1391, 4863). 

 Habitat was characterized using field-based surveys in paper III, and by a 

combination of LiDAR data, field data and other GIS map data (always including a digital 

elevation model, DEM) for papers I, II and IV. In my thesis I relied on six LiDAR datasets 

collected for other purposes but made available to me. Two datasets were used together in 

paper I, and four datasets were used together in paper IV. Although not collected during the 

same year, as would have been ideal, the datasets used together in the papers are all within a 

timeframe of a few years (Table 1).  

 

Table 1: When the data used in this thesis were collected. 
Data type Papers I, II Paper III Paper IV 

Animal data (GPS data, kill sites) 2007–2012 2007–2012 2007–2008 

Field data (habitat or browse survey) 2011–2012 2013 2007 

LiDAR data 2008–2009 Not used 2008–2010 

 

Specifically, the LiDAR datasets were collected using discrete-return scanning 

instruments (Optech ALTM Gemini and Leica ALS50-II) mounted on airplanes. These ALS 

datasets are ‘point clouds’ consisting of millions of individually registered echoes (return 

signals) with the x, y, and z coordinates of locations where the laser beam was reflected. 

Ground points were classified by the contractor, and from these I constructed a ground surface 

model that was subtracted from the height (z) of the point cloud to yield a point cloud with 

height above ground (dz). The ground surface model was also exported to yield an accurate 

DEM. 

There are seemingly endless possibilities for calculating variables describing the 

distribution of echoes (a set of commonly used variables are reviewed in Merrick et al. 2013, 
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Hill et al. 2014). Although variables can be used in a purely exploratory manner, it is a 

general goal for ecologists employing these tools to develop and use variables with ecological 

and functional rationales. I calculated LiDAR variables that described the vertical distribution 

of echoes, within circular areas centered on the center coordinates of each field plot and for 

raster cells of the same size in a grid covering the entire dataset (Table 2). Many of these 

variables are commonly used in area-based modeling of forest characteristics. Additional 

variables describe understory vegetation and density within absolute height intervals. Many of 

the LiDAR variables were highly correlated and hence many were excluded during pre-

screening of variables to avoid collinearity in the models. I retained the variables with the best 

explanatory power (paper I) or with the clearest ecological interpretation (paper IV). 

Several types of field data were collected either to be used directly in ecological 

analyses relating risk to habitat use (papers I, III), or as ground reference values to be 

modeled using LiDAR (paper IV). Habitat surveys were concentrated on quantifying 

concealment cover, collected using a 30 cm wide and 80 cm tall coverboard that was placed in 

the center of the plot (Mysterud et al. 1999b). As the viewer moved away from the  

 

Table 2: LiDAR variables used in papers I and IV describing the vertical distribution of laser 
echoes in a plot or raster cell (2500 m2) based on their height above ground (dz). 
Variable Description 
ulcda, understory coverb  proportion: nunderstory /nunderstory + nground,  

where ground:  0.5 m and understory: 0.5 < dz  2.0 m 
dground proportion of all returns  0.5 m 
d0.5 proportion of all returns 0.5  dz  3.0 ma (or 0.5  dz  2.5 mb) 
canopy coverb proportion of all returns > 3.0 m 
h10b 10th height percentile (of all returns > 0.5 m) 
h20 20th height percentile (of all returns > 0.5 m) 
h30b 30th height percentile (of all returns > 0.5 m) 
h40 40th height percentile (of all returns > 0.5 m) 
h50b 50th height percentile (of all returns > 0.5 m) 
h60 60th height percentile (of all returns > 0.5 m) 
h70b 70th height percentile (of all returns > 0.5 m) 
h80 80th height percentile (of all returns > 0.5 m) 
h90 90th height percentile (of all returns > 0.5 m) 
hmean mean height (of all returns > 0.5 m) 
hqmeana quadratic mean height (of all returns > 0.5 m) 
hsd standard deviation in height (of all returns > 0.5 m) 
hcv coefficient of variation of height (of all returns > 0.5 m) 
a Used in paper I 
b Used in paper IV 
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coverboard, the distance at which the coverboard disappeared from view was recorded, and 

the mean of the four cardinal directions was used as the habitat ‘sighting distance’. In one 

study an observer also stood back first 10 m, then 20 m, and counted how many of the 80 

squares drawn on the board were visible (i.e., not obstructed by vegetation or the ground). 

Canopy cover was registered with a densiometer. Habitat type, forest development class, and 

basal area of the main tree species were also registered. Plots were centered on a single point, 

and many of the measurements had a variable radius (e.g. sighting distance and basal area 

registrations with a relascope), but for other measurements the plot was considered to extend 

to a 20 m (paper III) or 50 m (paper I) radius. Additionally, forage resources were 

characterized as percent ground cover in three 2 × 2 m plots for the study in paper III. The 

forage survey used as ground reference data in paper IV consisted of estimates of available 

browse forage biomass of six tree species eaten by moose in 153 plots. Each plot consisted of 

five 50-m2 subplots, the average value of which was taken to represent the 2500 m2 area 

within which they were measured. Note that this was opportunistic use of an extensive, 

existing dataset and the use of LiDAR was not considered in the sampling design at the time 

of collection (van Beest et al. 2010). 

 

Study designs and statistical methods 

In each paper, I investigated one or more elements or relations in the habitat use-risk-

forage-energy use-survival complex (Fig. 4). I drew inferences on the basis of a series of 

statistical comparisons (Box 2), relating the outcome to specific expectations, specified in 

each paper, to test hypotheses. The main statistical procedures used were logistic regression 

(Hosmer and Lemeshow 2000), linear regression, mixed effects linear regression (Zuur et al. 

2009), and exponential resource selection functions (RSFs; Manly et al. 2002) estimated with 

mixed effects logistic regression (Gillies et al. 2006). The performance of predictive models 

was evaluated using AUC (the area under the ROC curve) (risk model, paper I), K-fold 

cross-validation with root-mean-square-error measures (browse model, paper IV), or K-fold 

cross-validation with spearman rank correlation (RSF models (Boyce et al. 2002), paper IV). 

RSF models in paper II were not evaluated as they were used to identify patterns in the 

selection, and not used predictively. 
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Figure 4: How the four papers are positioned within the conceptual framework of the three 
interdependent factors influencing habitat use, and whether the studies considered aggregate 
patterns or temporally dynamic patterns. Roman numerals refer to papers addressing various 
elements in this framework: the spatial distribution of animals and selection of safe locations 
(I, II, III) or forage resources and energetically favorable environments (IV); trade-offs or 
constraints between these (III, II, and IV); consequences of habitat use with respect to 
mortality (III). Dashed frames indicate elements which were studied implicitly. 
 
 
 

Box 2: Choice and rationale of methods  

In this thesis, I made extensive use of comparisons, through logistic regressions, exponential RSFs, 
and linear regressions to test the predictions regarding animal habitat use in a rigorous manner, and 
identify statistically significant relationships and their ecological relevance. Here follows a list of the 
main comparisons made, what they yield information about, and in which paper each was used. 

Kill sites vs. sites used by living prey  identifies factors influencing RISK I 

Used locations vs. available locations  identifies factors SELECTED on this scale II, IV 

Selection at t1 vs. selection at t2  identifies temporal change in selection: the  II 
   RESPONSE to factors changing between t1 and t2, 
   indicative of a trade-off 

Use at t1 vs. use at t2  identifies temporal change in use: the III 
  RESPONSE to factors changing between t1 and t2, 
   indicative of a trade-off 

Use by survivors vs. use by shot animals identifies how use CORRELATES with survival  III 
  (either directly or indirectly) 

Performance of LiDAR-enhanced models evaluates whether LiDAR captures additional  I, IV 
 vs. LiDAR-less models variation that is important in the studied process  

Performance of LiDAR-only models evaluating the performance of stand-alone I, IV 
 vs. LiDAR-less models LiDAR in comparison to alternative/traditional data 
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Figures 5 and 6 show the general analysis framework used in papers I, II and IV. 

Paper III was methodologically simpler as I used only field data on cover and forage 

collected at a systematic sample of locations used by 40 GPS-collared animals known to have 

been shot or survived the hunting season that year. Here, I compared the habitat 

characteristics at six sites used by survivors and shot animals shortly (1–9 days) before the 

onset of hunting and six sites used shortly (2–8 days) after the onset of the hunting season. I 

refer the reader to the specific papers for sample sizes and more details on the auxiliary data 

types and analyses. 

 

 

 

Figure 5: Flowchart of the analyses in papers I and II together. Blue links and boxes with 
blue frames are modeling steps and modeling outputs, black links and boxes with black 
frames are data input and preparatory steps, including modeling input. Grey boxes are data 
with complete cover over the study area (raster or point cloud). 
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Figure 6. Flowchart of the analysis in paper IV. Blue links and boxes with blue frames are 
modeling steps and modeling outputs, black links and boxes with black frames are data input 
and preparatory steps, including modeling input. Grey boxes are data with complete cover 
over the study area (raster or point cloud). 
 
 

Results and Discussion 
Functional habitat gradients from LiDAR 

LiDAR can describe physical properties of the habitat and vegetation structure that are 

directly linked to ecological function. To study the importance of risk, forage and energetic 

considerations for ungulate habitat selection, I attempted to derive measures related to amount 

of concealment cover in a habitat and the modification of the thermal- and light- environment, 

and to quantify available browse in a modeling approach. Quantifying habitat gradients in this 

way is an alternative to inferring relative forage and concealment cover from habitat 

classification, which disregards variation within habitat classes (Blix et al. 2014). 

Variables such as canopy cover, coefficient of variation of height (vegetation height 

heterogeneity), and understory cover are primary variables directly derived from the remote 

sensing data. Not using a predictive model can be an advantage because there are no errors 

attributable to the modeling step and there is no need for ground reference data for prediction 

and estimation, but a primary variable should always be interpreted with its technical 

definition in mind. Regardless, field validation is useful, and demonstrating the validity of the 

functional interpretation empirically can only strengthen the claim set forth. For instance, 
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others have demonstrated that several differently formulated canopy cover variables related to 

understory light conditions (Alexander et al. 2013), an interpretation I rely on to explain the 

relationship between canopy cover and browse biomass (paper IV).  

The understory cover variable was derived to describe the ability of the habitat to 

conceal a prey or predator. However, the correlations between LiDAR-derived understory 

cover and concealment as estimated by field based methods are low (Table 3). Several things 

could cause a poor correlation: imprecision in the LiDAR measurements, the relationship 

between amount of understory and concealment being noisy or non-linear, and imprecision of 

the ground reference data. Others using a similarly defined (differing by also incorporating 

intensity information) LiDAR measure of understory cover found that it was strongly related 

to field measured understory cover (R2 of 0.74 in ponderosa pine forest (Wing et al. 2012)).  

Imprecise ground reference data explain a larger part of the poor correlation. 

Concealment is a concept and a process involving an object and a viewer, one or both of 

which are moving, so defining what quantity to measure is a matter of debate and depends on 

the question being posed. Quantifying the concealment of a coverboard or an object of a 

certain size and shape is an established field method that has effectively been used to 

demonstrate habitat use patterns relating to visual exposure and predation risk (Mysterud 

1996, Ordiz et al. 2009, Ordiz et al. 2011, Camp et al. 2012). These sampling methods are 

powerful and easily interpretable because they functionally mimic prey concealment in the 

field, but they are imprecise, as is manifested in the low correlation between the three 

coverboard measurements: sighting distance and horizontal cover at 20 m and 10 m (Table 3). 

When evaluating the interpretation of LiDAR data in this way, there should ideally be 

a one-to-one relationship with little noise between a ground reference value and the LiDAR 

variable. I showed a positive correlation between understory cover as measured by airborne 

LiDAR and field measured concealment, but not a strong enough relationship to support 

interpreting one directly as a proxy for the other. However, proposing a few hypotheses and 

finding compliance with one of them, as I did in papers I and II regarding the concealing 

function of understory cover as measured by LiDAR, is also a strong indication that LiDAR is 

picking up the intended ecological signal. 
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Table 3: Pearson cross-correlation between LiDAR understory cover and measurements of 
cover and visibility using a 30 × 80 cm coverboard, in the 292 field plots from paper I. 
 Understory 

cover 
Sighting distance 
of coverboard 

% horizontal cover 
at 20 m 

Sighting distance of coverboard -0.41   
% horizontal cover at 20 m 0.40 -0.84  
% horizontal cover at 10 m 0.31 -0.77 0.73 

 

 

LiDAR – can it be used to predict risk and forage? 

In this thesis, I made several types of predictive models using LiDAR, with different 

purposes. Firstly, I modeled predation and hunting risk, aiming to identify the underlying 

causes of risk patterns (paper I), in addition to using the risk models predictively as the basis 

for understanding habitat selection (paper II). Secondly, I modeled browse forage 

availability, with the aim of predicting this across a larger area, and using it in a habitat 

selection study alongside primary LiDAR variables (paper IV). Both risk and browse were 

modeled as a function of vegetation structural variables derived from LiDAR, together with 

auxiliary data sources. Two of the key questions (Box 2) were whether LiDAR captured 

relevant habitat information for predicting risk and forage, and whether LiDAR data could 

complement or replace the auxiliary habitat data, to yield reliable predictions over large 

spatial scales. 

In paper I, LiDAR and terrain variables performed well on their own (and nearly as 

well as field data and terrain variables on their own), indicating that they had captured the 

relevant habitat variation influencing risk. LiDAR data did not greatly improve predictive 

ability of models when they were included together with field data, and can therefore best be 

described as a replacement rather than a complement of the field data. This supports the 

notion that understory cover from LiDAR likely captures some of the same variation in 

concealment cover as the field measurement with coverboard. The lynx models were 

practically equally good between LiDAR and field data, whereas the hunting models had a 

somewhat lower predictive ability, but still within the range considered ‘good’. Again, our 

measure of understory cover was the main variable that was positively correlated with risk 

from lynx and negatively correlated with risk from hunters. The importance and success of the 

understory cover variable (particularly in the lynx model) nonetheless emphasizes the 

usefulness of this variable as it pertains to risk. 
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The inclusion of LiDAR data moderately improved models of browse biomass 

available to moose (paper IV) because LiDAR captured additional habitat variation that 

explained browse availability. Increasing understory cover and decreasing canopy cover was 

associated with a higher amount of browse, probably relating to biomass in the browsing 

height range and more light reaching the understory (Alexander et al. 2013). However, some 

important habitat characteristics were evidently described better in the alternative data (forest 

management inventory maps with stand-level information on species composition, 

development stage and productivity), as models based only on LiDAR data performed poorly 

(best R2 attained was 0.24) in comparison with models based only on inventory data. I was 

not able to demonstrate an adequate method for predicting browse using only data on 

vegetation and terrain structure from LiDAR. LiDAR provides structural information and can 

thus complement, but not easily replace, species information. The performance of the LiDAR 

variables also likely suffered from the non-optimal matching between laser data and field 

data. The ground reference data incorporated a large random error, as the field survey of 

browse only covered 10% of the field plot area and a handheld GPS was used for 

georeferencing. Inaccurate matching between LiDAR data and ground data deteriorates the 

predictive ability of LiDAR (Gobakken and Næsset 2009). Therefore, the performance of 

LiDAR in this study should be thought of as a minimum estimate that would improve if the 

method was applied to ground data whose sampling was better designed for this purpose.  

The performance of the models was very different in paper I and in paper IV, but so 

were the quantities and processes modeled. Modeling risk has less in common with modeling 

a physical quantity such as browse than with modeling habitat selection, for which there is no 

real ground reference value, just plots classified as one or zero. LiDAR measurements and 

field measurements captured important habitat variation with regards to risk in similar ways. 

In contrast, in the prediction of browse, the relevant information captured by LiDAR was 

complementary to that captured by inventory data. In the former case, LiDAR data provided 

an alternative to field data, allowing extrapolation across the entire area of LiDAR coverage. 

In the latter case, LiDAR data were used together with the auxiliary data to extrapolate 

predictions, since the auxiliary data were also available on a large scale. Also others have 

highlighted the utility of combining structural information from LiDAR with other remote 

sensing or survey data to yield overall better habitat characterizations (Swatantran et al. 

2012). Modeling browse is a challenging exercise using remote sensing, as it depends both on 

plant species and structure, and while waiting for better tools for mapping it in greater spatial 

detail, extensive field surveys are the norm for moose (i.e. as in Massé and Côté 2009, 
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Månsson et al. 2012). LiDAR improved on the habitat selection analysis of moose through the 

inclusion of cover variables directly, not through improved browse predictions. This 

demonstrates the utility of primary LiDAR variables, which have also been used in other 

recent studies on roe deer and moose (Melin et al. 2013, Ewald et al. 2014).  

In my work I opportunistically paired LiDAR datasets collected for a different purpose 

with existing GPS data and available ground reference data. The modest results for browse 

forage prediction in paper IV is a reminder of the importance of using appropriate ground 

referencing data when predicting secondary variables. In essence, that means appropriately 

defining the quantities one measures, using accurately georeferenced plots, for instance using 

differential GPS, that are large enough that the point cloud is not too strongly influenced by 

randomness, and surveying a large portion of each plot, ideally 100%. I expect the results of 

both studies could be somewhat improved by using LiDAR datasets with higher point density 

or full waveform, as these will have more information from the understory height segment. 

Future studies could be improved by using the same settings for data collection across the 

whole study area, collecting field data and LiDAR data at the same time if predicting a ground 

referenced quantity, and collecting LiDAR data during both leaf-on and leaf-off conditions. 

Nonetheless, this is not always possible, and my work demonstrates the added value of 

analyzing existing data and applying it in new context – particularly using primary variables 

from LiDAR with existing, extensive GPS tracking datasets. 

  

Hunting style matters: lynx, hunters and their contrasting risk patterns 

Hunting mode matters for the spatial structure of risk, predictability of risk in space, 

and the type of antipredator response used by prey (Schmitz 2008, Thaker et al. 2011). 

Furthermore, hunting methods whose effectiveness varies between habitats will give rise to a 

spatial pattern in risk. In paper I, I investigated how predation risk from lynx and hunters was 

related to terrain attributes and vegetation classes or structure. The predation risk from lynx is 

expected to be higher in areas with dense understory vegetation because they stalk and 

ambush their prey. In contrast, predation risk from human hunters was expected to be higher 

where visual sight lines were longer. Increasing understory cover resulted in a contrasting 

lower predation risk from humans and higher predation risk from lynx. Predation risk was 

also contrasting with respect to distance to roads (a proxy for human activity and 

accessibility) and slope, while risk of being killed by both lynx and humans increased with 

increasing terrain ruggedness. Extrapolated risk maps showed that multiple predators can 

create areas of contrasting risk and areas of double risk in the same landscape (Fig. 7; 
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paper I). In this context it is not possible to avoid both predators by using a single behavioral 

rule for habitat selection; it requires a combination of behaviors or a temporal habitat shift. 

Most prey face multiple predators, yet many study the interactions of a single prey and single 

predator. As several predators are added to an assemblage, and these differ in their habitat use 

(May et al. 2008) or hunting methods (Thaker et al. 2011), one can expect the degree of 

complementarity to increase, and that there are fewer areas with low overall risk of being 

killed. The assemblage of large natural predators in Norway has been recovering over the last 

decades (Chapron et al. 2014). Although there are some areas with overlap between multiple 

large predators, up to four, the dominating pattern is that large carnivores in Norway currently 

have a very limited degree of sympatry (May et al. 2008), and therefore a limited ability to 

impose contrasting risk patterns on a spatial scale relevant for prey populations or individuals. 

Human hunters, on the other hand, overlap with all the natural predators. Indeed, several 

studies have shown an inherent conflict between responding to human hunting and natural 

predation (Ciuti et al. 2012b, Crosmary et al. 2012). Hunters and natural predators could in 

this way be facilitating each other’s hunting success (Kotler et al. 1992). 

 

Figure 7: The risk maps from paper I form the basis of the habitat selection analysis in 
paper II and were made possible by using LiDAR. Having a reliable risk map with high 
resolution and large extent that was based on a functional gradient in cover (as well as other 
important factors) was useful because it enabled asking questions directly about how animals 
relate to risk. 
 

 

Responding dynamically to risk in time 

Risk varies in space, but also in time. Discerning at what times a predator presents a 

risk and restricting responses to these times can be an advantageous strategy, because it 

changes the inherent trade-off rates between risk-avoidance, foraging and conserving energy 
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(Creel et al. 2008). Animals could then respond effectively to risk when it pays off, without 

giving up foraging or energetically favorable conditions when risk is low. Not only does the 

spatial risk pattern of these lynx and hunters contrast, their temporal risk pattern is also 

strongly contrasting between day and night. Human hunting is typically strongly temporally 

structured (Cromsigt et al. 2013), making it an ideal candidate for a temporally dynamic 

response in habitat selection. Do deer exploit this and adjust their habitat selection to match 

variation in risk at different time scales? In papers II and III, I investigated temporal 

variation in habitat selection, with respect to risk maps for roe deer and with respect to field-

measured cover and forage for red deer. I expected that deer responded to the onset of the 

hunting season within a few days, and that they selected risk habitat differently between night 

and day and among seasons, matching the activity pattern of hunters and lynx. 

Daily and seasonal changes in the use of risky habitat by roe deer reflected to a large 

extent the relative risk levels as gauged from temporal activity patterns of lynx and humans 

(paper II). Indeed, roe deer avoided areas with hunting risk more strongly during day than 

during night, and conversely avoided areas with lynx risk more strongly during night than day 

during summer and hunt (Fig. 8; paper II). The roe deer also appeared to adjust to the 

hunting season with stronger hunting risk avoidance during that season, whereas the seasonal 

pattern for lynx risk avoidance did not correspond to the expectations based on relative risk 

levels alone, as the weakest avoidance of lynx risk occurred during winter, the season in 

which their kill rates are highest (Gervasi et al. 2014). In paper III, I focused on the onset of 

the hunting season and identified a clear response by a subset of the animals (surviving males; 

Fig. 9) that shifted to using safer cover habitat within a few days of it. It is not clear whether 

this represented a permanent shift sustained throughout the hunting season or a behavioral 

response on a finer temporal scale to hunter activity and disturbance, which is particularly 

high during the first week of hunting, but either would represent an ability to detect and 

respond to hunting. Yet, females and the males that were shot later in the same hunting season 

did not change their habitat use at the onset of hunting. 
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0  

Figure 8: Diel patterns in roe deer selection of habitat that is risky with respect to hunters or 
with respect to lynx. Plotted values are fitted estimates ( ± SE) of the night vs. day contrast in 
selection, depending on season. 
 

 
Figure 9: Red deer use of (a) concealment cover (i.e., short sighting distances) and (b) forage 
habitat depending on sex, whether the animal survived the hunting season or was shot, and 
time (3 days within the last 9 days before the onset of hunting, and 3 days within 2–8 days 
after the onset of hunting). Fitted estimates ( ± SE) from the best models for males and 
females, for females this was the intercept-only null model. 

Stronger avoidance of
risky areas in day 

Stronger avoidance of
risky areas at night 
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Temporal patterns in risk alter the outcome of the habitat-specific trade-offs between 

risk, resources and energetics. Responding to the temporal pattern in risk from lynx and 

humans could also be a way for roe deer to respond to each predator at the times when it is 

active, thus reducing their exposure to both predators overall. It is not clear from my study to 

what extent the documented patterns in paper II show actual flexibility and behavioral 

plasticity in responding to current risk patterns, or if some of these patterns would persist in a 

predator-free population or in response to human disturbance without hunting. These issues 

are better resolved in paper III, where I also discuss human off-track activity and gunshots as 

possible cues used by deer to gauge risk. 

 

Shifting habitat is an effective antipredator strategy towards hunting 

Paper I demonstrated that hunting risk varied spatially depending on habitat 

characteristics for roe deer. It is generally expected to depend on cover and exposure for other 

ungulates as well (Godvik et al. 2009, Massé and Côté 2009). Paper III was an explicit 

investigation of whether individual differences in habitat use were linked with survival. In 

other words – is avoiding risk habitat an effective strategy against hunting? I found that male 

survivors had shifted to using forest habitat with 29% shorter sighting distance and 68% less 

bilberry cover within a week after the onset of hunting. In contrast, males that later in the 

hunting season were shot had, as a group, not changed their use of forest habitat at the onset 

of hunting.  

This indicated that animals that shifted to using cover habitat and less good foraging 

habitat, experienced higher survival rates as a result. This is evidence that habitat use matters 

for survival, but as this was an observational study that only looked at habitat use during a 

short period at the onset of hunting, it can only demonstrate correlation, not causation in a 

strict sense. It is possible that responding to the onset of hunting could be part of a behavioral 

syndrome of risk averseness, for which there is some evidence in several ungulate species 

(Ciuti et al. 2012a, Bonnot et al. 2014). As an example, a shift to denser habitat could be 

correlated with increased use of vigilance in a hunting situation, with vigilance ultimately 

being the factor causing higher survival. 

Hunting pressure is high in this population, with male mortality at around 45% 

annually (Veiberg et al. 2010). With such high probability of being shot, there can be a sizable 

negative fitness consequence of not responding to hunting. Alternatively, a large offset is 

required in non-consumptive mortality, growth or reproductive output (see Fig. 1). It is clear 
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that human harvesting can exert a selective pressure on morphological and life history traits 

exceeding the rate of phenotypic change in natural systems (Allendorf and Hard 2009), and 

several studies have identified possible consequences of selective harvesting on behavior also 

(Biro and Post 2008, Ciuti et al. 2012a, Madden and Whiteside 2014). Given that the shift in 

habitat appears to be an adaptive response to hunting, and contingent on the trait being 

heritable, there could be selection on behavioral plasticity in responding to hunting in our 

study system.  

 

Trade-offs between natural predation, hunting, forage and thermoregulation 

 The existence of trade-offs is central to whether antipredator behavior has a cost to the 

animal performing the behavior. The strength of the trade-off will also determine whether an 

antipredator activity is worthwhile based on the costs and benefits of that behavior and 

alternative behaviors. If the trade-off is steep, the optimal response to predation can be no 

response. In this thesis I have sought to identify directly or elucidate indirectly some of the 

main trade-offs ungulates in Norway make in their habitat selection. 

The clearest evidence of a trade-off between hunting risk and forage was the decreased 

use of sites with bilberry cover by male red deer that survived the hunting season (Fig. 9; 

paper III). Surprisingly, the link between bilberry cover and concealment cover was not very 

strong, so it is not obvious what was the proximate reason survivors decreased their use of 

good foraging habitat. Also there can be a trade-off between avoiding two risk factors, as 

demonstrated in paper I, and one solution for resolving such a trade-off is to vary habitat 

selection temporally (paper II). Additional trade-offs were indirectly inferred in or from the 

four papers. The lack of diurnal responses to lynx during winter (paper II), can be explained 

by roe deer behavior being constrained by a steep trade-off against thermoregulation and 

forage benefits. 

Although I in paper II did not account for other ecological factors known to vary 

seasonally, such as forage quantity, quality and energy use, it is well known that Scandinavian 

habitats are considered to present extremely challenging environments for roe deer during 

winter (Holand et al. 1998). Snow is important in the habitat selection of ungulates, both on 

seasonal scales driving fall migration to lower elevations (Mysterud et al. 1997, Lundmark 

and Ball 2008), and within home ranges (Dussault et al. 2005). Two recent studies highlight 

the importance of recently fallen snow (Richard et al. 2014) and snow sinking depth (Ossi et 

al. 2014) on the habitat selection and behavior of mountain goats, Oreamnos americanus, and 

roe deer, respectively. These studies show the spatial and energetic constraints imposed by 



37

this environmental factor, which can increase the cost of movement, constrain space use, 

reduce forage availability, and render animals more vulnerable to predation. Additionally, low 

wintertime temperatures increase the cost of thermoregulation. As roe deer have a limited 

ability to store energy, their principal source of energy during winter is their food supply 

(Holand et al. 1998). In the balance between energy use, foraging and predator avoidance, it 

seems that predator avoidance is down-prioritized. It is clear that responding to predation 

from lynx is more costly for roe deer during winter; the ultimate cost being dying from 

starvation. Lynx have large territories (Herfindal et al. 2005). While the threat of starvation is 

constant, encounters with lynx are expected to occur only rarely. Habitat shifting at other time 

scales in response to predator presence could still be possible, as for instance caribou and 

moose alter their habitat selection for some days following the passage of grey wolf, Canis 

lupus (Latombe et al. 2014). 

 From a comparison of the patterns presented in papers I and IV, I indirectly infer that 

there is no trade-off between browse availability and avoiding hunting risk, as browse 

availability increased and hunting risk decreased with increased understory cover. This is 

assuming that the documented relationship in roe deer and red deer also holds for moose. Yet 

moose actually avoided understory cover, at the same time as they selected forage as it varied 

along other gradients. It is not clear why this is so, but perhaps a functional aspect of 

understory cover other than concealment cover (such as impeding overview (Camp et al. 

2013)) is of importance to moose. However, the study was conducted outside the hunting 

season, so avoidance of cover could not be due to the actual risk from hunting, although it 

could still be related to perceived risk from humans. The greater use of canopy cover during 

day than during night was especially pronounced in summer, and could be related to its 

function as shelter against high summer temperatures and insolation (Melin et al. 2014) 

during daytime or avoidance of human disturbance during daytime. Thermal shelter and 

human disturbance would be another set of factors that align rather than impose a trade-off for 

moose in their habitat selection. 

 It is clear that the presence and strength of trade-offs between the three factors risk, 

forage and energy use identified in the introduction (Fig. 1) are resource- and predator-

specific and temporally changing. Canopy- and understory openness can be related to summer 

forage availability for roe deer and red deer that preferably forage in the field layer during 

summer, while the same deer rely on browse during winter, which has the inverse relationship 

to canopy and understory. Since lynx predation risk increases with understory density, there 

could be a trade-off between avoiding lynx predation and gaining access to preferred forage 
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during winter, but not during summer. Instead, during summer the trade-off may be between 

avoiding hunter or human disturbance and access to preferred forage. A spatial trade-off 

between thermal shelter and a risk factor exists if risk increases with higher understory cover 

or canopy cover. It does so for lynx in my study, but not for hunting. The strength of the 

trade-off against thermal shelter is expected to be most important during winter and vary as a 

function of temperature and snow depth, since the cost of movement and thermoregulatory 

functions depends on these factors. In short, what species incur trade-offs and when is not a 

trivial question. It is a question that deserves further investigation, as it can be key to 

determining when animals respond to predation, and perhaps even more importantly, how 

costly it is for them. 

Documenting the cost of a trade-off or the non-consumptive effects (NCE) of 

responding to predation is not very easy in free-living vertebrates. However, some 

antipredator behaviors that were assumed to be costly have been shown to have limited effects 

on condition and reproduction (Creel et al. 2007, White et al. 2011, Middleton et al. 2013). 

One reason for this can be that animals are able to compensate for the behavior. For instance, 

if foraging deer are limited by handling time, they can increase vigilance while they are 

chewing, and in this way keep up their foraging efficiency completely or partially while 

improving their chance of detecting a predator (Illius and Fitzgibbon 1994, Fortin et al. 2004). 

Other possible compensatory mechanisms when giving up good foraging habitats (as red deer 

did in paper III), could be greater selectivity at the bite level, increased time spent foraging, 

increased forage intake or increased the rumination time. In future studies, an attempt should 

be made to quantify trade-offs, either in terms of energy intake rates, physiological effects, or 

ultimate effects on growth and reproduction, if the aim is to document the indirect impact of 

predators (Creel 2011). 

 

Are animals responding optimally to current predation patterns? 

Predator-prey interactions are a classic example of co-evolution. The tight feedback 

loop to fitness via mortality and energy intake has spurred arms races leading to a wide 

diversity in how predators and prey interact, including behavioral adaptations by both. 

Evaluating trade-offs may be a useful tool for understanding the factors influencing habitat 

selection, but making the assumption that animals behave optimally, i.e., in a way that 

maximizes fitness, is risky. Recent work has nicely demonstrated cases in which animals 

select habitat non-optimally (DeCesare et al. 2014), or even have maladaptive behavior so 

they are caught in an ecological trap (Robertson et al. 2013). I have also identified some cases 
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in my studies where habitat use or selection did not follow my expectation based on optimal 

behavior relative to current differences in risk. For instance, red deer females did not shift 

habitat at the onset of the hunting season (Fig. 9). However, they were already using more 

cover habitat than males before the onset of hunting. This seems not to be the optimal 

response to current hunting patterns and low or no natural predation, and could be a lingering 

behavioral pattern that evolved under past patterns of predation risk from wolves or human 

hunting. The use of safer habitat throughout the summer season, a period during which they 

have a young and hence vulnerable calf at heel, is common in many ungulates, also in 

populations not currently subjected to predation (Ruckstuhl and Neuhaus 2005), including 

Norwegian red deer (Bonenfant et al. 2004).  

 

Conclusions and future perspectives 
Behavioral responses are studied for several reasons. Behavioral adaptations 

and -mechanisms are interesting in themselves, they can impact the population dynamics of 

the prey species through NCEs manifested through reduced growth and reproduction, and 

they can have consequences for other segments of the food web or ecosystem. Such 

consequences could include altered prey availability for the predator and alternative predators 

(Kotler et al. 1992, Atwood et al. 2007) or trophically cascading effects from changed patterns 

of foraging and trampling (Beschta and Ripple 2009, Kuijper et al. 2013). This thesis is 

focused on the behavioral phenomena themselves as they relate to habitat use. I have found 

that risk has strongly contrasting spatial patterns between two predators, that the dynamic 

responses of prey can be attributed to changing levels of risk, and that hunting has ecological 

and potentially evolutionary consequences on behavior. I have also shown some ways in 

which predation risk, forage and thermal shelter act together in shaping the habitat selection 

of forest-dwelling ungulates in Norway. Based on the findings I have attempted to extract 

some insights related to the potential for indirect effects and cascading effects of predation in 

my study systems. NCEs are likely to be less under predation risk from multiple predators, 

but this depends on predator hunting methods and the degree to which animal responses are 

constant through the year. The ungulates studied altered their space use in response to 

variability in predation risk. This means that there is a potential for trophic cascading effects 

through changing browsing patterns as a response to hunting or the natural predator lynx.  

The invention of remote sensing, particularly satellite-based and airborne, has opened 

a large toolbox to wildlife researchers and managers who need information across large 

extents (Kuenzer et al. 2014). LiDAR is uniquely suited to investigate species-habitat 
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interactions relating to the physical structure of the habitat. Although the technology has 

existed for five decades, it is still developing rapidly. Current development trends include 

higher point densities and full-waveform storage capacities increasing the resolvable 

structural detail, lighter sensor systems and cheaper data acquisition and development of 

methods to fuse LiDAR with other data sources to better characterize habitats. Terrestrial 

laser scanning (TLS) systems, a ground-based LiDAR, have in particular become cheaper, 

lighter and more user-friendly over the last few years. They could have many applications in 

ecology, replacing manual collection of data on vegetation structure of small areas (Olsoy et 

al. 2014). TLS gives a very dense scan of the vegetation in a small area, and can be used to 

model the obstruction of any hypothetical visual sight line, giving a better classification of 

general (or particular) concealment characteristics over a ground reference plot (Olsoy et al. 

2014). From my work, understory cover stands out as a key habitat characteristic quantifiable 

with LiDAR that is likely to be relevant to most animals that spend their lives on the ground. 

An improved ground measurement of concealment cover with TLS could be very helpful in 

confirming or modeling the relationship understory cover and other structural metrics from 

LiDAR and concealing properties of the vegetation. 

Work et al. (2011) have pointed out that the strength of LiDAR comes evident when 

testing mechanistic hypotheses regarding plant and animal habitat associations. What sets it 

apart from field techniques is the possibility of testing such hypotheses over a range of scales. 

As this thesis exemplifies, the fine-grain and broad scale of LiDAR data collection also fills a 

specific need in wildlife management and conservation to expand our knowledge of processes 

at broad scales and develop tools to perform analyses at these scales. I have explored issues of 

scale in my thesis and there is potential to study these in even greater depth. One analysis that 

could be feasible using LiDAR data is to vary grain size to determine whether different 

habitat elements are selected at different ‘patch’ sizes or whether spatial antipredator 

responses occur on a characteristic scale. 

It is up to society and wildlife managers to consider how to apply new insights on the 

behavioral effects of hunting and human disturbance. In some cases, the management goal 

might be to preserve areas in as natural a state as possible, and behavioral responses to 

management actions such as artificial feeding sites, hiking trails and hunting could directly 

counter these goals (Möst et al. 2015). In other contexts it has been suggested that behavioral 

effects could be deliberately exploited. ‘Hunting for fear’ is a proposed management 

framework in which hunting is intentionally structured so as to elicit a desired behavioral 

response, such as avoiding damages to crops or vulnerable nature types (Cromsigt et al. 
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2013). Based on theoretical and empirical considerations, the idea needs further testing 

concerning applicability (Le Saout et al. 2014). ‘Hunting for fear’ could potentially be a 

successful management strategy in our study system to increase deer avoidance of pastures, as 

I have shown that roe and red deer respond spatially to temporally predictable risk. From a 

purely practical viewpoint (there are also ethical considerations to be made) the temporal 

pattern of hunting could be altered to make it unpredictable over the growing season or over 

the whole year. However, altering the temporal predictability also alters trade-offs, and as I 

have highlighted before, if trade-offs are sufficiently steep, as they might be for roe deer and 

also red deer during the winter, the result might be that deer do not respond at all. 

Observational studies on mammals are increasing the knowledge base regarding 

behavioral impacts of predation and hunting (DeCesare 2012, Kuijper et al. 2013, Sönnichsen 

et al. 2013, Rivrud et al. 2014), bringing new perspectives into the discourse regarding 

management of ungulates, carnivores and ecosystems. One thing that could have a direct 

application is quantified NCEs. We have a good understanding of the net consumptive effect 

of our large carnivores (Nilsen et al. 2009, Gervasi et al. 2012). Coupled with knowledge of 

how indirect effects impact population growth rate, one could estimate the total impact on 

prey populations and the proportion of the population that could sustainably be harvested. 

However, little is known about the strength of indirect effects of predation in the case of large 

mammals. One reason for this is that to measure the effect of predation, a case with no 

predation should ideally be available for comparison. Predation risk experiments are often 

able to manipulate the lethality of predators and in this way very elegantly measure the 

indirect effect on population growth caused solely by predator presence (Preisser et al. 2005), 

demonstrating that these can be large, in some cases even outweighing the direct effect of 

predation (Preisser et al. 2005, Creel and Christianson 2008). Such experiments are clearly 

intractable at large scales and there are few ‘natural experiments’ of predator removal and/or 

reintroduction that have been studied where direct and indirect effects have been teased apart 

(Fortin et al. 2005). The current trend of carnivore recovery in Scandinavia offers a rich 

opportunity to study behavioral effects of predation (Sand et al. 2006), but also for 

quantifying NCEs and ecosystem impacts from potentially altered browsing patterns. 

Recolonization of large carnivores provides an ideal study system in which prey species 

growth rates, reproductive rates, habitat use, predation rates and overall mortality could be 

monitored over time. 

Antipredator responses have been shown to be exhibited by naïve prey after only short 

exposure to their ‘old’ predators who have been absent for about a century (Berger et al. 
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2001). Thus a study could be designed in which one compared communities across the 

expansion front of recolonization (either in time or in space), documenting behavioral 

adjustments to risk made by prey as the predator community becomes more diverse. 

Potentially one could test whether the impact through BMTCs and prey NCEs is smaller or 

larger in a more diverse predator community. An increase could arise through animal 

responding incrementally more to each predator added to the assemblage. A decrease could 

come about if predators are largely complementary and facilitate the hunting success of the 

other. As a new predator is added to the assemblage, the overall spatial distribution of risk in 

the landscape would become more even and the ‘landscape of fear’ less pronounced. 

Interactions within the predator guild are likely important for the outcome (Elbroch et al. 

2014, Monterroso et al. 2014). Schmitz (2008) proposes that strength of BMTCs is strongly 

influenced by whether a predator hunts actively or is a sit-and-wait predator. It would be 

particularly interesting to compare data on impacts of hunting by wolves, lynx, and perhaps 

human hunters using different hunting styles to test these and similar predictions about the 

role of ‘landscapes of fear’ using the ungulate community in Scandinavia. Such a study could 

increase our general knowledge of the importance of predator identity and hunting mode for 

spatial risk patterns, NCEs and BMTCs. 
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Living and dying in a multi-predator landscape of fear: roe deer are 
squeezed by contrasting pattern of predation risk imposed by lynx 
and humans

Karen Lone, Leif Egil Loe, Terje Gobakken, John D. C. Linnell, John Odden, Jørgen Remmen  
and Atle Mysterud

K. Lone (karen.lone@umb.no), L. E. Loe, T. Gobakken and J. Remmen, Dept of Ecology and Natural Resource Management, Norwegian Univ. 
of Life Sciences, PO Box 5003, NO-1432 Aas, Norway. – J. D.C. Linnell and J. Odden, Norwegian Inst. for Nature Research, PO Box 5685 
Sluppen, NO-7485 Trondheim, Norway. – A. Mysterud, Centre for Ecological and Evolutionary Synthesis (CEES), Dept of Biosciences,  
Univ. of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway.

The theory of predation risk effects predicts behavioral responses in prey when risk of predation is not homogenous in 
space and time. Prey species are often faced with a tradeoff between food and safety in situations where food availability 
and predation risk peak in the same habitat type. Determining the optimal strategy becomes more complex if predators 
with different hunting mode create contrasting landscapes of risk, but this has rarely been documented in vertebrates. 
Roe deer in southeastern Norway face predation risk from lynx, as well as hunting by humans. These two predators differ 
greatly in their hunting methods. The predation risk from lynx, an efficient stalk-and-ambush predator is expected to 
be higher in areas with dense understory vegetation, while predation risk from human hunters is expected to be higher 
where visual sight lines are longer. Based on field observations and airborne LiDAR data from 71 lynx predation sites, 
53 human hunting sites, 132 locations from 15 GPS-marked roe deer, and 36 roe deer pellet locations from a regional 
survey, we investigated how predation risk was related to terrain attributes and vegetation classes/structure. As predicted, 
we found that increasing cover resulted in a contrasting lower predation risk from humans and higher predation risk 
from lynx. Greater terrain ruggedness increased the predation risk from both predators. Hence, multiple predators may 
create areas of contrasting risk as well as double risk in the same landscape. Our study highlights the complexity of 
predator–prey relationship in a multiple predator setting.

Behaviorally responsive prey should maximize fitness by 
balancing the need for resources and the risk of predation 
(Lima and Dill 1990). Temporal and spatial variation in 
the movement, activity and efficiency of predators may give 
rise to a ‘landscape of fear’ by affecting prey individuals’ 
decision making and behavior (Laundré et al. 2001). Anti-
predator responses decrease prey risk of mortality, but  
may carry some energetic or physiological cost to the indi-
vidual. Understanding such non-lethal aspects of predation 
is critical, since they can have a net effect on populations 
that sometimes even outweighs the effect of direct  
predation (Creel and Christianson 2008, but see White 
et al. 2011, Middleton et al. 2013). Most theoretical and 

empirical work has considered a one-predator one-prey 
case, but more complex cases with multiple predators have 
received increasing attention, as they more closely reflect 
reality for most prey species (Lima 1992, Sih et al. 1998). 
Attributes of the predator, such as their space use and  
hunting mode determine what kind of prey responses are 
effective (Schmitz 2008) and thus influence the strength of 
a prey response when facing a suite of predators (Thaker 
et al. 2011). Whether prey defenses are synergistic or  
predator-specific and conflicting may affect both the net 
predation rate from multiple predators (Sih et al. 1998), as 
well as the non-lethal effects operating through predator 
avoidance (Cresswell and Quinn 2013).
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In this study of risk effects in a multi-predator context, LiDAR data were used to quantify cov-
er in the habitat and relate it to vulnerability to predation in a boreal forest. We found that 
lynx and human hunters superimpose generally contrasting landscapes of fear on a common 
prey species, but also identified double-risk zones. Since the benefit of anti-predator responses  
depends on the combined risk from all predators, it is necessary to consider complete predator assem-
blages to understand the potential for and occurrence of risk effects across study systems.
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The attributes of the physical landscape are the mediators 
for the spatial ‘risk landscape’ and the behavioral choices 
both predators and prey face (e.g. escape tactics, Heithaus 
et al. 2009). Cover is a key habitat element whose multiple 
functions depend on the species and context (Mysterud  
and Østbye 1999, Camp et al. 2013). Cover represents  
relative safety in a plethora of cases across different systems 
and species (small mammals; Kotler et al. 1992, freshwater 
snails; Turner et al. 1999, ungulates; Hernandez and  
Laundré 2005, carnivores; Ordiz et al. 2011), but its 
visual and locomotive obstruction can sometimes be to 
the advantage of the predator, rather than the prey (Camp 
et al. 2013). There are well established field methods for 
quantifying horizontal and vertical cover (Mysterud and 
Østbye 1999), but these are time-consuming and limited 
to point measurements in the field. Measuring cover with 
high resolution on a large scale is potentially within reach 
by use of 3D remote sensing methods providing a much 
better basis for measuring relevant variables linked to  
predation risk. Light detection and ranging (LiDAR) data 
holds information on the three dimensional distribution 
of vegetation – and can be a source of detailed and  
continuous information of habitat characteristics across 
the whole study area (Vierling et al. 2008). The method 
has been used to estimate forest parameters such as tree 
height and stem volume successfully (Næsset 2002). Eco-
logical applications include mapping forest structure and 
habitat quality (Coops et al. 2010, Lesak et al. 2011) and 
understory vegetation (Martinuzzi et al. 2009, Wing et al. 
2012). In the setting of the African savanna, LiDAR based 
measurements of sighting distance at lion kills have been 
linked to sex differences in hunting behavior (Loarie et al. 
2013). Although the boreal forest interior is a more  
challenging setting, LiDAR data may hold valuable  
information on cover and risk also here.

In our study site in Norway, the European roe deer 
Capreolus capreolus face predation from the Eurasian lynx 
Lynx lynx as well as human predation (through regulated 
hunter harvest). We aim 1) to determine whether these 
two predators present a case of synergistic or conflicting 
risks, i.e. whether they impose similar or different risk 
landscapes on their shared prey. Also, we aim 2) to quan-
tify how the predation risk is related to habitat character-
istics, in particular cover, and whether this can be 
satisfactorily measured using remote sensing LiDAR tech-
nology relative to field based measures. We estimate pre-
dation risk by using information from roe deer kill sites 
caused by lynx and humans relative to sites used by GPS-
marked roe deer. Lynx and hunters differ greatly in their 
hunting methods. The Eurasian lynx is a highly efficient 
stalk-and-ambush predator (Nilsen et al. 2009), which 
relies on auditory, olfactory and visual cues for detection 
of their prey, whose predation success should be highest 
when attacking unaware prey from short distances. 
Although hunters employ a range of strategies (waiting, 
calling, stalking), using a gun (mainly rifle, but some also 
use a shotgun) for shooting is common to all of them and 
requires high visibility of the target. We expect these dif-
ferences in hunting methods to link predation risk with 
habitat characteristics. Within this framework, we make 
the following predictions:

P1:  Risk-habitats exist for roe deer, i.e. deaths are not  
distributed proportional to the time roe deer spend in 
each habitat.

P2: Landscapes of risk imposed by hunters and lynx differ;
2A) The risk of being killed by lynx increase (providing 

stalking cover) – while the risk of being shot by  
a hunter decrease (impedes shooting) with vege-
tation density.

2B) The risk of being killed by lynx is higher in  
rougher and steeper terrain (because they  
prefer and master this habitat) while the risk of 
being shot by a hunter is highest in smoother  
and more even terrain (due to human hunter  
preference).

Material and methods

Study area

The study area was in Hallingdal in Buskerud County, in 
south-central Norway (8 50 E, 60 40 N, Fig. 1). The  
landscape is dominated by a forested valley system with  
high relief, rising steeply from about 200 m a.s.l. at the  
valley floor up to mountains of subalpine character  
(  900 m a.s.l.) on either side. It is a multiple-use landscape, 
with a main road, small towns and agricultural land all  
along the valley. The forest consists mainly of Scots pine 
Pinus sylvestri and Norway spruce Picea abies which is inten-
sively managed using small clear-cuts and a belt of forest 
dominated by downy birch Betula pubescence spp. tortuosa  
at higher elevations.

The average temperature in Nesbyen is –10.5 C in  
January and 15.2 C in July (  http:\\eklima.met.no ),  
and snow cover typically lasts from December to April.  
Supplementary winter feeding (ca January–March) of wild 
ungulates is a recently adopted practice (the last 10–15 
years), but is becoming relatively common in this area. The 
feeding sites for roe deer are located in habitats that the  
deer would also otherwise use frequently in winter, often in 
the transition between forest and agricultural landscape.

The study area hosts a partially migratory roe deer popu-
lation (Mysterud et al. 2012) occurring at low densities 
(about 0.1 animals are shot per km2) and a population of 
Eurasian lynx at intermediate densities (estimate 2006–2011: 
90–107 lynx in the 40 000 km2 management region;  
Brøseth and Tovmo 2012). The roe deer population is  
stable and the offtake by lynx and hunting were of a compa-
rable magnitude in the region at the time of the study. In an 
area slightly greater than the study area, 65 roe deer were 
shot annually (source: Statistics Norway), and ca 90 roe deer 
were estimated killed by lynx annually (Odden unpubl.). 
The only other notable source of predation is from red  
foxes Vulpes vulpes that may take newborn fawns. Lynx may 
take a range of different prey species, including red deer  
Cervus elaphus, but roe deer is their most important prey, 
even at very low roe deer densities (Odden et al. 2006). The 
lynx population is subjected to quota hunting in a short 
period in February and March each year. A total of 112 indi-
viduals were shot in the lynx management region in the 
period 2006–2011 (source: Statistics Norway). Roe deer 
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hunting is allowed throughout the area and is loosely regu-
lated through quotas, but actual harvest is well below  
the quota limits. The hunting season for adult males starts  
10 August, while all age and sex categories can be harvested 
in the period 25 September to 23 December. Hunters use 
either a rifle (most common) or shotgun. The most common 
hunting tactic is ‘sit-and-wait’ hunting during the early buck 
hunting season, both in meadows and in the forest, while 
drive hunting in teams with or without small barking dogs  
is the most common tactic during the late hunting season.

Study design

Field plots were established at locations where roe deer had 
been killed, either by a lynx (n  71) or by a hunter (n  53), 
at a sample of locations used by GPS-marked roe deer 
(n  132), and at locations where roe deer fecal pellets had 
been found in large-scale pellet-count surveys (n  36). All 
plots (n  292) were within the area of LiDAR data coverage 
(Fig. 1).

Kill sites
Between 2006 and 2011, nine lynx (four females and  
five males) were captured and monitored by use of Global 
positioning system (GPS) collars (Arnemo et al. 2012). 
Between November and April in winter, and May and  
September in summer we visited ‘clusters’ of GPS-locations 
of the marked lynx, indicative of kill sites. We defined  

clusters as a set of at least two locations within 100 m 
(within the three-to-four week monitoring periods), and 
visited them to confirm a predation event, identify the prey 
species if possible, and record the spatial coordinates (see 
Nilsen et al. 2009 for details on the methodology). The 
nine lynx individuals killed in total 71 roe deer within the  
study area restricted by the LiDAR coverage. Through  
local wildlife managers we got in contact with eight recre-
ational hunters that shared information on where they had 
shot roe deer in the past five years (2006–2011). They 
either showed us the locations in situ or shared coordinates 
they had registered with a hand-held GPS. The hunters 
contributed 2, 3, 3, 4, 7, 9, 9 and 16 kill sites each: alto-
gether 53 harvest kill sites, roughly one-fifth of all animals 
harvested in the study period. Since hunting takes place on 
private property of limited lot-size, there was some cluster-
ing of these hunter kill sites, but the clusters are well spread 
geographically in the area they occur along the valley  
(Fig. A1 in the online Supplementary material Appendix 1 
shows the clustering by field plots by individual). Stalking, 
sit-and-wait hunting in meadows and in forest, and drive 
hunting were all represented in the dataset, reflecting  
the variation in hunting methods practiced in the region.

Locations used by live roe deer
Fifteen roe deer (eight females and seven males, all older 
than nine months) were captured in box traps at feeding sites 
close to the villages of Gol and Ål during the winters of 

Figure 1. Map of the study area in Buskerud county, Norway, showing the valley topography and the field plots. The extent of the two 
LiDAR data projects that define the study area are outlined in grey.
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2008–2011. Since most animals use winter feeding sites, we 
regard the possibility for a biased sampling within the deer 
population to be low. Since the animals have relatively small 
home ranges, especially in winter, each deer will often be 
found close to the site it was captured (Supplementary mate-
rial Appendix 1 Fig. A1), but we assume their habitat selec-
tion represents that of roe deer throughout the study area. 
The animals were fitted with GPS-collars programmed with 
several different sampling schedules, but all with at least 
three positions per day (average GPS fix rate: 95.5%). Out of 
all recorded positions we randomly selected five May-to-
October and five November-to-April locations per individual 
for field sampling. For the analysis, we discarded plots out-
side the area of LiDAR coverage, leaving 132 locations, and 
we defined seasons as the hunting season (10 August – 23 
December), winter (24 December – 31 April) and summer 
(1 May – 9 August). Additional information on sample sizes 
by season for each individual and individual GPS collar fix 
rates are available in the Supplementary material Appendix 
1, Table A1. To extend roe deer use locations southwards to 
the same geographical extent as kill sites of lynx and hunters, 
we also included locations where roe deer pellets were regis-
tered as present in a pellet count survey (36 out of 2657 
plots) (Fig. 1). The pellet count surveys reflected winter dis-
tribution as they were conducted soon after snowmelt dur-
ing 2007 and 2008. Transects consisting of a triangle of 
1  1  1 km sides were placed randomly, but stratified 
according to altitude and location of known lynx territories. 
Ten-m2 plots were surveyed for pellets every 100-m interval 
along each triangle (Torres et al. 2012).

Field data on vegetation characteristics

Field data on vegetation characteristics were collected in the 
summers of 2011 and 2012. Plots were centered on the 
known coordinates of kill sites and live sites using a hand 
held GPS device. Along the four cardinal directions, a  
30 cm wide and 80 cm tall cover board (cf Mysterud and 
Østbye 1999) was used to estimate percent horizontal cover 
at 10, 20, 30, 40 and 50 m distance, as well as distance at 
which the cover board was first completely covered (sighting 
distance; truncated at 50 m). The 40 m and 50 m readings 
were not used as candidate predictor variables because they 
had a poor spread in values and contained a high proportion 
of 100% cover. A concave densiometer was used to estimate 
canopy cover in the four directions. Relascope counts, devel-
opment class and general habitat category were registered 
separately for each quarter-sector of the plot. Horizontal 
point sampling with relascope by tree species gave us a mea-
sure of basal area (m2 ha 1) of trees of different species,  
and hence also tree species proportions of basal area. We reg-
istered species as pine, spruce, birch, RAW or ‘other’.  
RAW is an acronym for rowan, aspen and willows, which 
were grouped because they are high quality forage, and not 
very abundant. Development class was registered either as 
‘none’ where not applicable, or as a categorical value (1   
forest under regeneration, 2  regenerated areas and young 
forest, 3  young thinning stands, 4  advanced thinning 
stands, and 5  mature forest). Habitat category was  
registered in more detail, but grouped into three general  
categories before analysis: coniferous (  80% conifers), 

Table 1. Description of field, LiDAR and terrain variables used to 
assess habitat characteristics for roe deer in Norway.

Variable Description

Field data
cov10 % of cover board covered at 10 m from plot 

center, mean of four cardinal directions
cov20 % of cover board covered at 20 m from plot 

center, mean of four cardinal directions
cov30 % of cover board covered at 30 m from plot 

center, mean of four cardinal directions
covgone sighting distance to cover board at plot center, 

mean of four cardinal directions
canopy % canopy cover at plot center, mean of  

densiometer reading in four cardinal directions
habitat dominating habitat category – the one registered in 

most of the four quartiles
devclass dominating development class – the one registered 

in most of the four quartiles
RAW.ba rowan, aspen and willow species basal area  

(m2 ha 1) from relascope measure
total.ba total basal area (m2 ha 1) from relascope measure
spruce.prop proportion of total basal area that is spruce
pine.prop proportion of total basal area that is pine
SP.prop proportion of total basal area that is spruce or pine
Terrain
dist.road euclidian distance (km) to closest public road
elev height above sea level, based on 100 m DTM
slope slope of terrain in degrees, based on 100 m DTM, 

3  3 neighbor cells
slope10 slope of terrain in degrees, based on 10 m DTM, 

3  3 neighbor cells
vrm vector ruggedness measure, based on 100 m DTM, 

using 3  3 neighbor cells
vrm10 vector ruggedness measure, based on 10 m DTM, 

using 3  3 neighbor cells
LiDAR data
ulcd understory LiDAR cover density – ratio of 

understory returns to the total number of 
understory and ground returnsa

dground proportion of all returns  0.5 m
d0.5 proportion of all returns 0.5    2.5 m
h20 20th height percentile (of all returns  0.5 m)
h40 40th height percentile (of all returns  0.5 m)
h60 60th height percentile (of all returns  0.5 m)
h80 80th height percentile (of all returns  0.5 m)
h90 90th height percentile (of all returns  0.5 m)
hmean mean height (of all returns  0.5 m)
hqmean quadratic mean height (of all returns  0.5 m)
hsd standard deviation in height (of all returns  0.5 m)

hcv coefficient of variation of height (of all returns  0.5 m)

amodified from Wing et al. (2012). Defined in Methods.

Table 2. Sensor and flight parameters for the airborne scanning 
LiDAR campaigns.

Parameter Southern part Northern part

Instrument Optech ALTM 
Gemini

Leica ALS50-II

Aircraft fixed wing fixed wing
Date of acquisition 3–4, 25–26 June 

and 2–3, 10, 22 
July (2008)

23, 30, 31 May, 
and 1 June 
(2009)

Average flying altitude 1500 m a.g.l. 1550 m a.g.l.
Flight speed 75 m s 1 70 m s  1

Pulse repetition frequency 70 kHz 69 kHz
Scan angle 16.0 17.0
Pulse density on ground mean 1.5 m 2

range 0.6–4.6 m 2
mean 1.5 m  2

range 0.5–4.5 m  2
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Statistical analyses

Logistic regression was used to relate habitat characteristics 
to predation risk. The response variable (y) represented  
relative predation risk: plots where roe deer had been killed 
had y  1, plots from GPS marked animals or registered 
feces had y  0. In this way, kill sites were compared with  
the plots assumed to represent the proportional time use of 
the habitat by roe deer. Predictor variables in this model 
quantify the change in predation risk (on logit scale) per unit 
predictor variable of a location being a kill site instead  
of a live site. Risk of predation from humans and lynx  
were carried out as two separate analyses, with different sets 
of kill sites, but with the same set of used locations (y  0). 
All statistical analyses were performed with the software R 
ver. 2.14.1.

Logistic regression models were grouped in three sets: 
first using only field registered vegetation information as 
predictor variables; second adding LiDAR data in addition 
to field data; and third using LiDAR data alone. Terrain 
variables were always included. To avoid problems of multi-
collinearity, highly correlated variables (r  0.5) were iden-
tified and only the variable with the lowest AIC in a 
univariate regression was kept (results of the univariate 
modeling and variable selection: Supplementary material 
Appendix 1 Table A2). To allow comparison between the 
lynx and hunting models the same cover board variable  
and understory LiDAR metric was included in both. These 
two variables were chosen so as to minimize the sum of the 
AIC of both models. The final model selection made use  
of the stepAIC forward selection, which ends when it can-
not reduce the AIC value any further by adding a new vari-
able. In the lynx predation model, potential interactions 
between season and selected variables (canopy cover, basal 
area of RAW, habitat, cov20 and ulcd) were also considered. 
If no interactions with season were included in the model, 
the main effect of season was not kept either, as it would  
only reflect different proportions of kill- and live sites by 
season, an effect which is dominated by variable sampling 
intensity of kill sites by field personnel (Table 3). For the 
hunting risk model, interactions with season were not con-
sidered since there were no hunting kills outside the  
hunting season. The final models were checked against 
hunting season data only, and also against a dataset exclud-
ing southern geographical outliers, and found to provide 
qualitatively similar estimates (model estimates in the  
Supplementary material Appendix 1 Table A3, A4). A mul-
tivariate analysis was also explored, indicating relative con-
sistency in grouping patterns of lynx kill sites, hunter kill 
sites and used kill sites in multivariate space across individu-
als and across seasons (Supplementary material Appendix 2).

deciduous (  20% broadleaved, hence also including some 
mixed forest types) and open. The four directional or secto-
rial measurements per plot were combined into one value  
by taking the mean of numerical values and the mode of 
categorical values. The field derived variables that were  
considered in the model selection are defined in Table 1.

LiDAR and terrain variables

The LiDAR data in this study are a composite of two  
projects that were originally acquired for other purposes 
under leaf-on conditions (Table 2). The two projects are 
from different dates that can potentially influence the LiDAR 
variables due to differences in plant phenology. Regarding 
the early 23 May flight, we assume leaves were sprung out, 
since the data was intended and used for forest inventory 
purposes. Moreover, we found a close to 1:1 relationship and 
a strong correlation in two focal LiDAR variables in a 9.5 km2 
overlap zone (Supplementary material Appendix 1, Fig. A2). 
The initial processing of the data was done by the contractors 
and datasets were delivered as points clouds with planimetric 
coordinates and ellipsoidal height, with ground returns clas-
sified. A ground surface was created as a triangular irregular 
network (TIN) of the echoes classified as ground returns. 
Height above the ground (dz) was calculated for all echoes 
by subtracting the height of the ground surface TIN. Two 
digital terrain models (DTMs) were derived from the TIN, 
one with 100 m cell size, and one with 10 m cell size. For 
each DTM, we calculated slope and vector ruggedness  
measure (VRM) (Sappington et al. 2007) using a 3  3 cell 
neighborhood; thus providing measures of topo graphy at 
two different scales (30 m and 300 m). Values for elevation, 
slope and VRM were extracted for the raster cell that the plot 
center fell within. Distance to the closest public road was 
calculated and included as a proxy for hunter accessibility 
and/or human activity.

Accurate coordinates for the plot centers (kill sites  
and live roe deer sites) were acquired with a differential  
GPS system and post-processing of the GPS signal using 
base stations of the Norwegian Mapping Authority. When 
available (250 out of 292 plots), the accurate plot center 
coordinates (software estimated average SE  0.3 m) were 
used in the extraction of LiDAR and terrain variables. 
LiDAR data were extracted from 2500-m2 circular areas cen-
tered on each plot. The sensors were capable of recording  
up to four echoes per pulse. All echoes were used in the anal-
ysis, as it yielded better results than splitting the dataset into 
first and last echoes did. Various variables describing the  
vertical distribution of the echoes (Table 1) were calculated 
for each plot. Three variables were aimed at quantifying  
the amount of understory vegetation. The understory 
LiDAR cover density (ulcd) variable is defined as the ratio 
of understory returns to the total number of understory 
and ground returns (Wing et al. 2012). Our variable is a 
simplification of that used by Wing et al. (2012) because 
we lacked calibrated intensity measures, thus we defined 
the returns only based on height (ground: dz  0.5 m, 
understory: 0.5  dz  2.0 m). The two other understory 
metrics were dground, the proportion of all returns with 
dz  0.5 m, and the variable d0.5, the proportion of all 
returns with 0.5  dz  2.5 m.

Table 3. Seasonal distribution of roe deer live-sites (feces and GPS) 
and kill-sites from Hallingdal, Norway. Number of sites (independent 
observations) in each category is listed.

Hunt Winter Summer

Feces  0 36  0
GPS 47 45 40
Hunter kill 53  0  0
Lynx kill 20 40 11
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model. The model had an AUC of 0.763, indicating a fair 
predictive ability of the model. When adding LiDAR vari-
ables, the lynx predation model became more complex. In 
addition to slope entering the model, one LiDAR variable 
was included: understory cover (ulcd), which was positively 
correlated with predation risk (Table 4). The performance of 
the model improved slightly with an increase in AUC from 
0.763 to 0.785, and a 4.0 unit improvement in AIC.

The best model predicting predation risk from hunting 
using only terrain variables and field based measures  
contained horizontal cover at 20 m, canopy cover, habitat 
type, proportion of pine, distance to road, slope, and terrain 
ruggedness at 30 m scale (Table 5). An increase in distance 
to road, horizontal cover and canopy cover was associated 
with a decrease in predation risk by humans. Steeper slope, 
a greater proportion of pine, and more rugged topography 
led to greater risk. Open habitats were most risky, followed 
by coniferous, while deciduous were the least risky. The 
AUC statistic for this model was 0.796. The best model 
considering also LiDAR variables differed by including  
the LiDAR metric hcv (the coefficient of variation of  
echo heights), and excluding canopy cover and ruggedness 
(Table 5). Field measured horizontal cover remained in the 
model, while LiDAR measured understory (ulcd) was not 
included. Overall, the inclusion of LiDAR measures made 
only slight improvements on this model also. AUC remained 
similar (increased from 0.796 to 0.798), and there was a  
2.2 unit improvement in AIC.

Compared to the field based and the combined models, 
a model with only remotely sensed terrain- and LiDAR 
variables performed nearly equally well for lynx predation 
(Table 4). The model’s AUC statistic of 0.756 indicates  
fair predictive power. The hunting risk is captured less  
well by the LiDAR-only model, the model’s AUC of 0.713 
indicates a notable drop in predictive performance relative 

The predictive ability of the models was evaluated  
using the area under the ROC curve (AUC), which com-
pares true vs. false positives for a range of discrimination  
values. When reporting results of the models, we define  
values for AUC of 0.5 to 0.6 as no evidence of predictive 
ability, 0.6 to 0.7 as poor predictive ability, 0.7 to 0.8 as fair 
predictive ability, 0.8 to 0.9 as good predictive ability, while 
an AUC above 0.9 indicate excellent predictive ability.

Based on the best LiDAR and terrain variable models for 
lynx and hunters, we created spatial maps of the predicted 
predation risk. To stay within the range of the variables used 
in the models, we restricted the spatial prediction to areas 
within 4500 m from a public road. Because the number of 
roe deer shot by hunters and killed by lynx does not reflect 
absolute risk levels, we standardized the raster values in  
each map individually, with a mean of zero and standard 
deviation of 1. For each map, a pixel value higher than zero 
mean a higher than average risk of being killed by that  
predator. We define 1 and –1 as cut off values for high and 
low predation risk (which give a theoretic expectation of  
ca 16% of pixel values beyond the cut off values in each tail 
of the distribution). After standardizing it is possible to 
identify ‘safe zones’ where both predators have lower preda-
tion risk, contrasting areas where one predator has high  
risk and the other low, and areas with ‘double predation’.

Results

The best model predicting lynx predation risk using only  
terrain variables and field data included basal area of  
RAW, proportion of spruce, distance to road, and terrain 
ruggedness both at 30 m and 300 m scale (Table 4). All  
variables were positively correlated with predation risk. 
Interactions with season were not included in the best  

Table 4. The best models for lynx predation risk using field data only, LiDAR data only and both types of data together (combined model). 
Significant effects (p  0.05) are in bold. Lynx kill sites (n  71) are compared to all used sites (GPS and feces) (n  168).

FIELD model LiDAR model COMBINED model

SE p SE p SE p

(intercept) 2.72 0.37  0.001 2.16 0.39  0.001 2.89 0.47  0.001
Field data
cov20 – – – – – –
canopy – – – – – –
habitata

deciduous – – – – – –
open – – – – – –

RAW.ba 0.118 0.052 0.024 0.0964 0.054 0.075
spruce.prop 1.98 0.49  0.001 1.84 0.51  0.001
pine.prop – – – – – –
LiDAR
ulcd 12.6 3.6  0.001 10.0 3.8 0.008
hcv – – – – – –
Terrain
dist.road 0.499 0.22 0.021 0.604 0.22 0.005 0.580 0.22 0.008
slope10 – – – 0.0394 0.025 0.11 0.0429 0.025 0.090
vrm 67.6 32 0.033 93.0 35 0.008 82.6 36 0.021
vrm10 108 44 0.013 112 43 0.009 121 45 0.008
AUC 0.763 0.756 0.785
AIC 253.9 260.6 249.9

areference  coniferous.
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and positive effect on hunter risk were the reverse of what 
we predicted (P2B). There were strong spatial contrasts in 
the risk patterns for both lynx and hunters (Fig. 3a–b). 
When combined (Fig. 3c), there tended to be a spatial  
relationship with the distance to roads where strong  
contrasting predation risk occurred close to roads and far 
away from roads. Additionally, there was a patchy distribu-
tion in valley sides with ‘double high’ predation risk  
from lynx and hunters, and a few scattered small patches 
with double low predation risk. With our defined threshold 

to the two models including field data (Table 5). In the 
LiDAR-only models there was a contrasting effect of  
understory cover on the risk of lynx predation versus 
human harvesting (Fig. 2) supporting prediction 2A. When 
it comes to terrain, effects differed notably from our predic-
tions. Ruggedness was associated with higher risk in all 
three top models for lynx, and with higher risk in two of 
the models for hunting (Fig. 2). In the models where slope 
was included, there was a contrasting effect of slope from 
the two predators, but the negative effect on lynx risk  

Table 5. The best models for hunter predation risk using field data only, LiDAR data only and both types of data together (combined model). 
Significant effects (p  0.05) are in bold. Hunter kill sites (n  53) are compared to all used sites (GPS and feces) (n  168). Running the model 
on data from the hunting season only (total n  99) yielded qualitatively similar estimates.

FIELD model LiDAR model COMBINED model

SE p SE p SE p

(intercept) 0.927 0.96 0.33 1.82 0.57 0.001 0.557 0.90 0.54
Field data
cov20 0.0279 0.0087 0.001 0.0338 0.0093  0.001
canopy 0.0128 0.0058 0.026 – – –
habitata

deciduous 1.24 0.61 0.043 1.31 0.62 0.034
open 0.168 0.60 0.78 0.464 0.49 0.35

RAW.ba – – – – – –
spruce.prop – – – – – –
pine.prop 0.980 0.54 0.072 1.32 0.53 0.013
LiDAR
ulcd 17.6 5.3  0.001 – – –
hcv 0.0158 0.0090 0.080 0.0244 0.0094 0.009
Terrain
dist.road 1.09 0.56 0.050 1.13 0.49 0.020 1.06 0.56 0.058
slope10 0.0665 0.027 0.015 0.0441 0.029 0.12 0.0692 0.027 0.009
vrm – – – 80.0 44 0.026 – – –
vrm10 95.4 63 0.13 131 59 0.026 – – –
AUC 0.796 0.713 0.798
AIC 212.8 231.6 210.6

areference  coniferous.
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Figure 2. Odds ratio (  95% CI) of predation risk of lynx and humans with respect to change in two selected habitat attributes: understory 
cover density and terrain ruggedness on 30 m scale, based on the best models using LiDAR and terrain variables. The odds ratios are relative 
to the case of no understory cover, or even terrain (x  0). Distribution of data points is shown as rug plots along the top and bottom of 
each graph for lynx and hunter models separately.
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Figure 3. Predicted risk map for (a) lynx and (b) hunters and (c) combined based on normalized values (mean = 0, standard deviation  1) 
from predictions on the logit scale. In (a) and (b), pixels with higher than mean risk will get positive values while pixels with lower than mean 
risk will get negative values. The combined risk map (c), display areas with ‘contrasting’ risks (one predator  1 and the other  0, or one 
predator  1 and the other  0), ‘double high’ indicate additive high risk (one predator  1, the other  0), while ‘double low’ indicate 
safe areas with low risk from both predators (one predator  1, the other 0). The remaining category “weak additive or contrast” indicate 
areas with no strong pattern of risk (absolute value between 0 and 1 for both predators; i.e. both are within 1 SD from the mean risk).

of high risk, 31% of the total area had large contrast  
in predation risk, 8% double high risk, and 1% double  
low risk.

Discussion

Many ungulates now experience a situation in which large 
carnivores such as wolves, bears and lynx have recolonized 
former ranges, thus adding a new potential risk in addition to 

human hunting (Berger et al. 2001). However, even though 
large habitat differentiation among large carnivores is docu-
mented (May et al. 2008), ungulates risk landscapes  
in a multiple predator setting has been explored only in a  
few carnivore–ungulate systems (Atwood et al. 2007, 2009, 
Proffitt et al. 2009, Thaker et al. 2011). Understanding this 
is particularly important in multi-use landscapes where 
human hunting is a major cause of death. For roe deer  
in southern Norway, we found evidence that the risk land-
scape imposed by humans and lynx differed. The risk of  
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In addition to understory cover, terrain attributes and 
tree species composition modified predation risk. That tree 
species composition affected predation risk can also be  
due to lateral cover. For instance, mature spruce stands are 
generally much more visually dense in the horizontal  
plane than mature pine stands, making the first a good 
hunting site for lynx and the second a better hunting  
site for humans. The terrain effects did not follow the 
expectation of human preference of ‘easy’ terrain and lynx 
preference of ‘difficult’ terrain. More rugged terrain 
increased the risk of hunting mortality from both – creat-
ing ‘double risk’ areas. It is possible that steeper and more 
rugged terrain can give hunters an advantage in locating 
and stalking up to roe deer during a hunt, or in predicting 
animal movement during drive hunts if deer are more 
prone to follow paths in difficult terrain. That lynx preda-
tion risk increases with ruggedness is as expected for an 
agile stalking felid that can use also topography as stalking 
cover while the reduction in predation risk in steep slopes 
may be associated with risks of injury during attack.

Two components of predation risk can differ according to 
habitat: encounter rate and hunting success (Hebblewhite 
et al. 2005). If lynx exactly matched the habitat specific  
time use of roe deer and were equally successful in all habitat 
types there would be no effect of habitat characteristics on 
predation risk. The presence of such effects documented  
here means that lynx either spend more time than roe deer in 
dense, rugged habitat (increase encounter rate) or that  
hunting success increased in such habitat. We invoke both 
mechanisms in our explanations, but stress our main hypoth-
esis that hunting modes of lynx and human hunters influ-
ence predation risk through hunting success. For human 
hunters, the need for high visibility when using a gun may 
both affect hunting success and, indirectly, hunter habitat 
preference. For lynx, the positive association between cover 
and hunting success is corroborated by snow-tracking data 
from southeastern Norway (Odden unpubl.). Other studies 
that have analytically decomposed risk into encounter rate 
and hunting success for wolves and cougar, found that  
habitat affected both processes (Hebblewhite et al. 2005, 
Atwood et al. 2009). Lynx select for suitable roe deer habitat 
(Odden et al. 2008), but may select for denser habitat than 
roe deer due to secondary factors, such as exposure to 
humans. Lynx are attracted to human-disturbed areas due to 
the high density of roe deer on agricultural fields and feeding 
sites in winter, but avoid the areas with most human activity, 
which could potentially function as refuges for roe deer from 
lynx (Basille et al. 2009), but not from human hunting, as 
seen by the contrasting effect of distance from public roads.

Measurement of cover and scale

Resource selection functions and habitat suitability model-
ing are frequently used in management. In some cases, such 
maps provide very broad descriptions limited by the lack of 
a link between habitat categories and resource levels  
(Loe et al. 2012). This is where LiDAR holds promise for 
bridging the gap of spatial scales, and allows for analysis on 
a range of scales. Terrain characteristics on 30 and 300 m 
scale were both relevant for predation risk. With coverage  
of LiDAR in our study area, it is possible to extend the  

lynx predation increased with LiDAR understory cover, 
while the risk of hunting mortality decreased with LiDAR 
understory cover. However, there were also ‘double risk’ 
areas, as for example rugged terrain increased risk of preda-
tion from both. Refuge areas with low predation from both 
predators were rare. Our study thus highlights how multiple 
predators may squeeze prey from two sides, making it diffi-
cult to single out one simple strategy to avoid predation.

A multiple predator squeeze – being ‘food for  
the many’

It is suggested that large carnivores may create a landscape 
of fear for ungulates. The most famous example being  
wolf-elk in Yellowstone National Park, USA (Laundré  
et al. 2001), where a behavioral shift of elk has been claimed 
to cause a trophic cascading effect in the ecosystem (argued 
by Ripple et al. 2001, but contested by Kauffman et al. 
2010). Similarly, it has been shown that elk using more 
open habitat are at higher risk of being killed by human 
hunters (Ciuti et al. 2012). The smaller roe deer is in a  
parallel manner subject to spatially heterogeneous and  
habitat dependent predation risk. With a contrasting effect 
of two predators, avoiding predation by one can lead to 
increased exposure to the other predator, i.e. risk enhance-
ment (Sih et al. 1998). A similar conflict with regards to 
habitat use was documented by (Atwood et al. 2007, 2009) 
who found that avoidance of wolf predation by moving  
into denser cover left elk at greater risk of cougar predation. 
If the roe deer in our study area use more open habitat they 
are at greater risk of being shot; if they use habitat with 
denser understory they are at greater risk of being killed by 
lynx. Contrasting spatial patterns in risk from two predators 
could therefore result in higher net predation rates, but 
lower non-lethal effects (Cresswell and Quinn 2013) and 
lower potential for behaviorally mediated trophic cascades 
than would be predicted considering only one predator. 
This is because when gradients in predation risk get flatter 
by considering several predators, the potential gain of shift-
ing habitat is smaller. Thus the optimal response from prey 
would be weaker, implying also weaker overall risk effects 
and ecosystem effects. On the other hand, synergistic spatial 
patterns in risk may strengthen anti-predator behavior. 
When relative predation risks align, prey may be able to take 
one unified strategy to reduce risk, implying potentially 
greater overall risk effects or ecosystem effects. This is  
particularly true if the double predation risk has a strong 
trade off against important resources, meaning that double 
predation will be costly. Studies on elk–wolf–cougar have 
documented contrasting, habitat specific differences in pre-
dation risk from two predators, and an explicit (Atwood 
et al. 2007, 2009) tradeoff in risk associated with shifting 
habitat use. Proffitt et al. (2009) also found contrasting risk 
with habitat and habitat modulated strength of anti-predator 
responses. A wintertime study on roe deer in southern  
Norway found that roe deer did not shift away from dense 
forest habitat (Ratikainen et al. 2007) probably because  
they were constrained by other factors such as food and thermo-
regulation. In addition, encounters with lynx may be rare  
while the risk of starvation is a constant threat, possibly exerting 
pressures strong enough to subvert any risk response.
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Appendix 1 
Table A1. Detailed sample sizes for individuals by season for individual GPS marked roe deer, 
lynx providing kill-sites and hunters providing kill-sites. Sex of roe deer and lynx, and GPS collar 
fix success rate for roe deer. 
individual     hunt summer winter total sex fix rate (%) 
Roe deer 47 40 45 132   
6212             3 0 0 3 female 99.8 
6214             3 2 4 9 female 99.1
6216             0 0 5 5 male 99.5 
6219             4 2 4 10 male 99.2 
6221             6 2 2 10 male 99.0 
62242           2 3 4 9 male 99.5 
6480             4 4 2 10 male 98.8
6484             3 5 2 10 male 99.2 
6485             3 4 2 9 female 98.6 
8001             4 3 3 10 male 99.1 
8003             1 4 4 9 female 95.0 
8004             3 3 4 10 female 77.2 
8005             3 3 3 9 female 86.8 
8006             5 3 2 10 female 91.8 
8007             3 2 4 9 female 89.7
Lynx 20 11 40 71   
F189             8 5 4 17 female  
F218             5 1 14 20 female  
F228             1 0 5 6 female  
F237             1 1 7 9 female  
M187           0 1 0 1 male  
M209           3 1 2 6 male  
M263           2 1 6 9 male  
M273           0 0 2 2 male  
M275           0 1 0 1 male  
Hunters 53   53   
EK              3   3   
GRAN        2   9   
HT                9   4   
JA               7   3   
JN               4   2   
KHJ            3   7   
KPR            16   16   
ODE 9   9   

1



Table A2. Results of the univariate modeling for variable selection (included variables for lynx 

models and hunting models are in bold). Variables denoted with the same letter (a–g) were 

correlated  > 0.5. In some of the groups it was possible to include several variables because only 

some of the variables were correlated  > 0.5, within these groups, the lowest AIC variable was 

chosen first, highly correlated variables were excluded, and again the lowest AIC variable was 

chosen. From groups denoted with a * (a, f) one variable measuring cover was chosen by 

minimizing overall AIC in both analyses. Variables AICs marked with ** were chosen out of their 

groups prioritizing ease of interpretation, as there was only very minor differences in AIC. AIC

values are relative to the constant model. 

Variable Comparison AIClynx AIClynx AIChunt AIChunt
constant 0 292.8 0.0 245.5 0.0 
cov10 a* 294.6 1.8 240.9 -4.6 
cov20 a* 294.2 1.4 229.3 -16.2 
cov30 a* 292.8 0.0 237.7 -7.8 
covgone a* 294.8 2.0 237.3 -8.1 
canopy b 289.1 -3.7 244.8 -0.7 
total.ba b 288.8 -4.0 247.2 1.7 
habitat c 277.4 -15.4 234.2 -11.3 
SP.prop c 279.1 -13.7 246.2 0.7 
spruce.prop c 272.1 -20.7 245.1 -0.4 
devclass c - - 240.3 -5.2 
pine.prop c - - 240.9 -4.6 
total.ba c - - 247.2 1.7 
slope d 294.5 1.7 242.2 -3.2 
slope10 d** 293.4 0.6 242.4 -3.1 
elev e 288.4 -4.4 246.7 1.2 
dist_road e 286.0 -6.8 245.1 -0.4 
ulcd f* 284.1 -8.7 242.9 -2.6 
dground f* 288.5 -4.3 241.4 -4.1 
d0.5 f* 282.6 -10.2 245.6 0.1 
h20 g 294.2 1.4 247.2 1.7 
h40 g 294.6 1.8 247.1 1.6 
h60 g 294.8 2.0 247.1 1.6 
h80 g 294.5 1.7 247.1 1.6 
h90 g** 293.5 0.7 247.1 1.6 
hmean g 294.8 2.0 247.1 1.6 
hqmean g 294.6 1.8 247.1 1.6 
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Figure A1. Distribution of individuals across the landscape shown by minimum convex polygons 

(MCPs) of the plots associated with unique individuals: hunters contributing kill sites, marked 

lynx contributing kill sites and marked roe deer contributing used sites. 
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Figure A2. Correlation between LiDAR variables understory LiDAR cover density (ulcd) and 

coefficient of variation of non-ground echoes (hcv) calculated for the same cells in an area of 

overlap of the two LiDAR scanning projects. All ulcd values are shown (n = 3906), while only 

hcv values < 200 are used in the comparison (n = 3839). The blue line shows the ideal 1:1 

relationship between the two variables, the red line is the estimated slope; coefficients are given 

in the plot panels. 
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Appendix 2 

Explorative multivariate analysis 

To identify differences between the groups of plots belonging to used sites, lynx kill sites and 

hunter kill sites, we performed a between-class principal component analysis. The three groups 

can be separated in multivariate space, but not fully, as the region of overlap is substantial (Fig. 

A3). We can assess which variables capture differences between the groups by looking at their 

contribution to the principal components (PC) in the loading plot (Fig. A4). PC1 (x-axis) is an 

axis representing a gradient from more open to more closed, left to right, and separates lynx kills 

from hunter kills with used sites in the middle. PC2 (y-axis) separates both types of kill sites from 

used sites, and aligns with the contrast between deciduous  and coniferous habitat, ruggedness 

measures, laser height measurements, and slope. How different individuals are placed in the 

multivariate space is shown in Fig. S5. Here, we see that there is some inter-individual variation, 

and it is the greatest in hunters where some individuals (HPR and GRAN) lean into the region 

typical of lynx kill sites, while other individuals (e.g. JN, KHJ) are farther to the right on PC1, 

and hunt in terrain characterized by openness. This is as expected, and shows that the data spans a 

range of methods known to be used in hunting. Differences between seasons are also present in 

lynx kill sites (Fig. A6), but the kill sites from the hunting season represent the centre of mass of 

year-round lynx-kill sites. 
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Figure A3. Observations and their group membership (used, lynx kill or hunter kill) shown on the 

principal component axis 1 (x) and 2 (y). 
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Figure A4. Loadingplot of the contribution of the variables to the principal components axis 1 (x) 

and 2 (y). The centers of the three groups of observations (used, lynx kill and hunter kill) are 

shown.
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Figure A5. Panel A: Observations and their group membership (used, lynx kill or hunter kill) 

shown on the principal component axis 1 (x) and 2 (y). Panels B, C, D: Observations are grouped 

by individuals on the same scales (PC1 and PC2). Lynx M275 contributed only a single point, 

and has no associated ellipse. 
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Figure A6. Observations and their group membership (used, lynx kill or hunter kill) shown on the 

principal component axis 1 (x) and 2 (y). Panel A shows all data together, while it is split by 

season in panels B through D.
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ABSTRACT 

Predator avoidance depends on prey being able to discern temporal and spatial distribution 

patterns of risk, but this is made considerably more complicated if risk is presented by 

multiple predators. This scenario describes the current situation for many prey species, and 

the future situation for an increasing number of mammalian prey species as large carnivores 

recover or are reintroduced in ecosystems on several continents. Roe deer, Capreolus 

capreolus, in southern Norway illustrate the case in which prey face two predators with 

contrasting patterns of predation risk. They face a catch-22; spatially avoiding the risk from 

one predator implies exposure to the other. We tested for daily and seasonal variation in roe 

deer selection for habitat with respect to its year-round average risk level. Generally, roe deer 

increased their avoidance of risk from the nocturnal lynx, Lynx lynx, during night and 

increased avoidance of diurnal hunting risk during day. Seasonal variation matched only 

partially with the known variation in risk. Whereas roe deer avoided areas with high risk of 

hunting more strongly during hunting season than in other seasons, as expected, there was a 

lack of response to the risk of lynx predation during winter. We explain this by risk of 

starvation constraining roe deer habitat selection during this energetically challenging season 

with snow cover and limited natural forage. Our study demonstrates that roe deer adjust 

habitat selection in response to two documented risk gradients that in turn integrate several 

gradients in habitat characteristics. Adjusting risk-avoidance behavior temporally can be an 

optimal response in the case of several predators whose predation patterns differ in space and 

time. 

 

Keywords: antipredator strategy, Capreolus capreolus, day vs. night, diel pattern, dynamic 

risk responses, European roe deer, European lynx, habitat selection, hunting, Lynx lynx, 

Norway, trade-off. 
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INTRODUCTION 

Predation is a ubiquitous phenomenon in nature and many organisms have developed 

chemical, morphological or behavioral adaptations to predation (Lima and Dill 1990, 

Bourdeau and Johansson 2012). In this way, prey can influence their desirability as a prey 

(Mukherjee and Heithaus 2013) or their vulnerability in the predation process. Vulnerability 

can be decomposed into the encounter rate with predators and the probability of surviving an 

encounter with a predator (Lima and Dill 1990, Hebblewhite et al. 2005). Prey species can 

reduce the encounter rate with predators by decreasing movement rates (Alós et al. 2012). 

Survival on encounter is affected by a range of behavioral mechanisms, such as increasing 

group size, being more vigilant, ‘freezing,’ fighting or using escape behavior upon detecting a 

predator (Roberts 1996, Stevens et al. 2011, Mukherjee and Heithaus 2013). Habitat selection 

can influence both encounter rate and chance of survival following an encounter, thus relating 

both to the space use of predators and their hunting success in different habitats. Habitat 

characteristics affect the effectiveness of other risk-management behaviors such as vigilance 

and escape. Spatial variation in predation risk can be large, and one of the most common 

responses of prey is to alter habitat selection toward use of safer areas (Werner et al. 1983, 

Laundré et al. 2001, Hebblewhite et al. 2005, Heithaus et al. 2009, Willems and Hill 2009). 

Most studies of habitat selection trade-offs between foraging and predator avoidance 

consider a simple one prey-one predator situation. However, prey often face contrasting 

spatial risk patterns from multiple predators (Moreno et al. 1996, Cresswell and Quinn 2013, 

Lone et al. 2014). Under such conditions, prey can spatially avoid only one predator at a time 

and when doing so they increase their exposure to the other predator. This double predation 

trade-off is what we call their ‘catch-22’ as it precludes simple strategies in predator 

avoidance and habitat selection. Different predators not only differ in their spatial predation 

pattern, but also in their diel activity pattern when they occur in sympatry (Monterroso et al. 

2014). Therefore, contrasting risk in both space and time is a general expectation for 
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increasing numbers of coexisting predators segregating across temporal and spatial niches 

(Monterroso et al. 2014). 

Several studies have shown the importance of both spatial and temporal patterns for 

risk avoidance behavior (Creel et al. 2008, Latombe et al. 2014). Deer that are able to 

discriminate on the basis of instantaneous risk level or predictable temporal patterns in 

predation risk can restrict costly behaviors to the times when this actually pays off in 

increased survival. Diel patterns in activity levels and habitat selection have been linked to 

mortality risks in a range of species (Pizzatto et al. 2008, Aumack et al. 2011, Kadye and 

Booth 2014, Marchand et al. 2014), as have diel patterns in risk-avoidance behaviors such as 

vigilance, reduced movement rates and group size (Crosmary et al. 2012, Ordiz et al. 2012, 

Sönnichsen et al. 2013). Avoiding predators typically come with increased energetic costs in 

terms of reduced foraging opportunities (Nonacs and Dill 1990, Cowlishaw 1997, 

Christianson and Creel 2010). During periods of energetic stress, such as during winter for 

deer, antipredator behavior might be too costly to apply over longer periods. The strength of 

the trade-off against foraging opportunities or thermoregulation could in this way influence 

the selection of riskier or safer areas. The resource situation and animals’ internal states (e.g. 

reproductive state and energy reserves) do not vary between night and day, but they do vary 

between seasons and could thus influence the strength of selection of riskiness between 

seasons (Fig. 1).  

Distribution of risk is often coarsely defined and inferred from habitat characteristics 

or animal behavior. Deer species such as white-tailed deer, Odocoileus virginianus, roe deer, 

Capreolus capreolus, and red deer, Cervus elaphus, tend to use more open habitat during the 

night and forested habitat during daytime. This difference in the use of open, good foraging 

areas and habitat providing cover is commonly interpreted as a trade-off deer face due to 

predation or human disturbance (Beier and McCullough 1990, Mysterud et al. 1999a, Godvik 

et al. 2009). Agile mountain ungulates modify their behavior depending on distance to steep 
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slopes, presumably because predators have limited access to or poor predation success in 

steep ‘escape terrain’ (Risenhoover and Bailey 1985). Such findings are valuable, yet 

behavioral adaptations to risk should also be supported by empirical evidence of predation 

risk patterns, such as that presented by Hebblewhite et al.( 2005) and Atwood et al. (2009). 

Predation from lynx and hunting from humans represent the largest sources of 

mortality for European roe deer, Capreolus capreolus, in a region in southern Norway (Melis 

et al. 2013) . Hunters and lynx, Lynx lynx, impose contrasting spatial patterns of predation risk 

on roe deer (Lone et al. 2014), but the ways in which contrasting temporal patterns in 

predation risk affect roe deer habitat selection have not been quantified. Hunter activity and 

hunting risk is greatest during daytime, whereas risk from the nocturnal lynx is likely higher 

during night (Schmidt 1999, Podolski et al. 2013). While hunting only takes place in fall, lynx 

prey on roe deer year round, yet with higher kill rates during winter (Nilsen et al. 2009, 

Gervasi et al. 2014).  

In this paper we investigate whether roe deer adjust their selection of habitat to 

temporally avoid the predator most active in a given season or time of day. We hypothesize 

that prey track the temporal variation in predation risk, due to predator activity, and 

dynamically adjust their habitat selection away from areas that are risky at a given time. 

Specifically, we make predictions (P1–4) concerning the diel and seasonal patterns observed. 

We predict diel patterns in which lynx risk is avoided more during night than day during all 

seasons (P1), and hunting risk is avoided more during day than during night during the 

hunting season (P2). Seasonal variability in selecting for or against risk is expected to match 

the predator’s seasonal activity pattern (Fig. 1). Specifically, avoidance of lynx risk at night 

was expected to be of similar strength during all seasons (no significant seasonal contrasts; 

P3a) or possibly strongest during winter when lynx kill most roe deer (Nilsen et al. 2009, 

Gervasi et al. 2014). Avoidance of hunting risk in daytime was expected to be greater during 

hunting season than during summer and winter (P4). 
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Figure 1: Seasonal variation in important factors influencing roe deer ecology and habitat 

selection: predation pressure from lynx and hunters, forage availability and quality, snow 

cover (influencing energy use, predation risk from lynx and forage availability) and 

reproductive events. 

 

METHODS  

Study area 

The study was conducted in Hallingdal in Buskerud County, in south-central Norway 

(60° 40’ N; 8° 50’ E). The study area is a large valley system with high relief, with steep 

valley sides rising up from the valley floor at around 200 m a.s.l. to mountains of subalpine 

character (> 900 m a.s.l.) on either side. It is a multiple-use landscape, in which a main road, 

small towns and agricultural land are situated along the length of the valley, mainly at low 

elevation. The forest cover is mainly the managed species Scots pine, Pinus sylvestris, and 

Norway spruce Picea abies, and, in a transitional zone before alpine vegetation takes over at 

high elevations, downy birch, Betula pubescence spp. tortuosa. The average temperature in 

measured at the meteorological station Nesbyen at 167 m a.s.l. in the valley floor, is –10.5°C 
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in January and 15.2°C in July (http:\\eklima.met.no), and snow cover typically lasts from 

December to April. 

The study area hosts a partially migratory roe deer population (Mysterud et al. 2012) 

occurring at low densities (0.1 animals are shot per km2 annually (Statistics Norway 2014)) 

and a population of Eurasian lynx at intermediate densities (estimate 2006–2011: 90–107 lynx 

in the 40 000 km2 management region (Brøseth and Tovmo 2012)). The roe deer population is 

stable and losses to lynx and hunting were of a similar magnitude in the region at the time of 

the study. Annually, around 65 roe deer were shot (Statistics Norway 2014) and ca. 90 roe 

deer were estimated killed by lynx (John Odden, unpublished data) in the study area. The only 

other notable source of predation is newborn fawns being lost to red foxes, Vulpes vulpes. 

Hunting is allowed throughout the area at the discretion of landowners under a formal quota 

system. The hunting season for adult males starts 10 August, and after the 25 September all 

age and sex categories can be harvested until the hunting season ends on 23 December.  

 

GPS-collared deer and analysis of habitat selection 

We studied whether habitat selection of roe deer differed between different times of 

day and different seasons using data from GPS-collared roe deer in Hallingdal valley in 

southern Norway and previously developed risk maps for lynx predation and hunting for the 

same region (Lone et al. 2014). Roe deer (n = 30) were captured in box-traps at 13 established 

supplementary feeding stations in the period January – April in years 2008–2010. All animal 

handling procedures were approved by the Norwegian Animal Research Authority (FOTS 

ID: 2827 & 1391) and permits to capture wild animals were provided by the Norwegian 

Directorate for Nature Management. Adult deer (>1.5 years old) were equipped with ear tags 

and fitted with a GPS collar (VECTRONIC Aerospace GmbH, Berlin, Germany; Followit 

Lindesberg, Sweden; ATS, Isanti, MN, USA), providing wireless data download over the 

GSM telecommunications network. A variety of sampling schedules were used, all of them 
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recording three positions per day or more during the first year of operation. Most collars were 

programmed to drop off after one or two years, but the length of data collection was often 

shorter due to collar malfunction, limited battery life or roe deer mortality. Details on data 

collection for each individual are available in Table A1. GPS data were screened for errors 

with a method excluding unrealistic movements, removing less than 0.05% of the data 

(Bjørneraas et al. 2010). Timing of migration or dispersal was classified by visual inspection 

(Bischof et al. 2012) and GPS positions on migration or dispersal routes were excluded from 

the dataset used in analysis. We defined the seasons as winter, summer and hunting season 

(August 10 – December 23). The division between winter and summer season was defined 

individually by the time of migration or dispersal, for migrating (n = 5) and dispersing (n = 6) 

deer, and by the median date of spring migration (May 3) for stationary animals (n = 18). The 

small fraction of the population that was migratory moved to winter ranges during the hunting 

season (median date October 21). Positions were excluded if they lay outside the risk map, as 

was the case for some deer that dispersed out of the study area and for some migrating deer 

whose summer ranges were around the outskirts of the study area. If a deer was represented 

with fewer than 80 different Julian dates from one season (60 for summer), all data from that 

season were excluded for that deer. This screening left data from 23 individuals in the habitat 

selection analysis, with 16 or 17 individuals contributing data in any given season (more 

information on the contribution of each collared animal in Appendix 1). 

A resource selection function (RSF) is any function proportional to the probability of 

use of a resource by an animal (Manly et al. 2002). In our use-availability design (design III 

data; Thomas and Taylor 2006), we defined resources within seasonal home ranges as 

available (third selection order of Johnson 1980). Seasonal home ranges were delineated as 

the 100% minimum convex polygons (MCPs) of the animal relocations, with a lower 

threshold for calculating a MCP of one hundred relocations. We chose 100% MCPs so the 

home ranges would not only consider the most intensively used areas, but also include the 
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relevant variability in resources on the outskirts of the core home range. The hunting season 

home ranges of migrating deer consisted of two areas (those used before and after fall 

migration), for which we calculated separate home ranges. Within each seasonal home range, 

we sampled randomly the same number of available locations as the number of animal 

relocations within that home range to achieve a 1:1 ratio of used vs. available positions for 

each id, season, and time of day considered. 

We have previously developed standardized relative risk maps specific to roe deer in 

Hallingdal, Norway based on kill sites of deer and sites used by live roe deer (Lone et al. 

2014). The maps reflect the overall (year-round) risk of being killed by lynx and by humans 

as a function of terrain characteristics (i.e. elevation, slope and ruggedness), understory 

density, and anthropogenic influence (i.e. distance to roads) (Lone et al. 2014). In the current 

study we extracted the relative risk of being killed by lynx and the relative risk of being killed 

by human hunters from these maps for all locations (both used and available). We estimated 

the coefficients of an exponential RSF using a mixed-effect logistic regression analysis using 

package lme4 in R (R Development Core Team 2011, Bates et al. 2012).  

To test the hypothesis that avoidance of risk (i.e., negative selection of risk) differed 

between day and night and between different seasons, we fit a model in which used or 

available location was the response variable and day/night/twilight, season and risk level 

(including all two-way interactions and the three-way interaction) were fixed effects. A 

random intercept for each individual was incorporated to adjust both for unbalanced sampling 

between individuals and for dependence among positions originating from the same animal 

(Gillies et al. 2006). Light conditions (daylight/darkness/twilight) were defined using tables 

for sunrise, sunset and civil twilight at a location central with respect to all GPS tracks within 

the study area (60° 35’ N; 9° 4’ E) (http://aa.usno.navy.mil). Risk from hunting and risk from 

lynx were treated in separate models, as there were signs of collinearity in a model including 
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both. The two variables were also relatively strongly correlated in the set of used positions 

(ρ = 0.57), indeed much more than in the set of available positions (ρ = 0.29).  

As the risk maps (Lone et al. 2014) were based on a subsample of GPS positions from 

the same animals whose habitat selection we investigate here, the derivation of risk in Lone et 

al. (2014) could possibly influence our habitat selection analysis towards selection against 

risky habitat in absolute terms. Risk was defined as the relative probability of being killed in a 

unit time spent in a certain habitat and derived from the distribution of predator kill sites 

relative to year-round positions used by marked roe deer, as a function of habitat 

characteristics. If the distribution of sampled positions of the marked animals differs from the 

proportional time use of the roe deer population, it could result in bias towards lower risk 

defined for the positions used by the sample deer. We therefore frame our investigation 

around the contrast between day and night and among seasons: comparisons in which the 

expected pattern following our hypotheses cannot arise from the sampling and our definition 

of overall risk. 

 

RESULTS 

Roe deer tended to select similarly for risk levels during night and twilight, and both night and 

twilight were significantly different from daylight (Appendix 2). We present results based on 

pooling the categories ‘dark’ and ‘twilight’, thus separating only between ‘night’ and ‘day’ 

positions based on sunrise and sunset. A positive difference in the selection coefficient 

between night and day indicates that deer shift towards selecting riskier areas during night 

relative to day (or, equivalently, shifting towards selecting safer areas during day than night). 

Negative differences indicate a shift in the opposite direction, towards selecting safer areas 

during night relative to day. Roe deer showed diel differences in selection of risky habitat 

between night and day in summer and during hunting season, but not in winter (Fig. 2). The 

patterns in the selection of risk went in the expected direction (P1, P2), as roe deer selected 
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relatively riskier areas at night with regards to spatial hunting risk, and relatively safer areas at 

night with respect to spatial lynx risk (Fig. 2). Yet, day vs. night differences diverged from the 

predicted seasonal pattern (P1, P2) in two ways. First, there was no diel response to lynx risk 

during winter, and second, a diel response to hunting risk was present during summer when 

no hunting occurred (Fig. 2). In contrast, the pattern of seasonal differences in selection 

during daytime did not involve a strong response to hunting risk during summer, but followed 

our expectations (P4a). The differences in selection coefficient of risk between seasons reveal 

that animals shifted towards selecting safer areas during hunt and summer compared to winter 

(Fig. 3). Responses to hunting were highest during hunting season and no differences between 

summer and winter, and the strongest responses to lynx occurred during summer (Fig. 3). 

Deer avoided risky areas more strongly during the hunt than during winter or during summer 

(Fig. 3; hunt vs. summer difference in selection coefficient = –0.52; 95% CI: [–0.58,–0.46]). 

Roe deer avoided lynx risk more strongly during hunting season and summer than during 

winter (Fig. 3), and also more strongly during hunting season than during summer (Fig. 3; 

hunt vs. summer difference in selection coefficient = 0.25; 95% CI: [0.16,0.34]). This 

contradicted P3a and P3b, which postulated equal selection through the year because deer are 

exposed to lynx predation throughout the year, or possibly stronger responses during winter 

when predation rates are highest. 
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Figure 2: Change in the selection coefficient (with 95% CI) for lynx risk or hunting risk 

between night and day. Day is the reference.  

 

 

Figure 3: Change in the selection coefficient (with 95% CI) for lynx risk and hunting risk 

during the relevant time of day for risk exposure (day or night) between seasons, where winter 

is used as the reference level.  

  

Stronger avoidance of 
risky areas in day 

Stronger avoidance of 
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DISCUSSION 

Prey responses to multiple predators may involve complex trade-offs between spatial and 

temporal risk. We have shown that roe deer selected habitat in a manner that reduced their 

predation risk to hunters in daytime and lynx at night, during the relevant risk seasons. In this 

manner, deer were to some degree able to avoid both lynx risk and hunting risk, even though 

the two contrast strongly spatially with respect to habitat features such as distance to roads 

and understory density (Lone et al. 2014). Winter represented a discrepancy in the pattern 

because roe deer lacked a response to lynx during winter, when their predation rates are high. 

We suggest that this seeming anomaly can be due to risk of starvation which might constrain 

behavior during this energetically demanding season (Holand et al. 1998). Increased exposure 

to lynx risk may explain the higher predation during this period (Gervasi et al. 2014). It is 

recognized that both spatial and temporal structure of risk is important to prey (Valeix et al. 

2009, Laundré 2010). We demonstrate that roe deer respond dynamically to their mortality 

risk, and adjust their habitat selection to match the activity pattern of their predators for large 

parts of the year. 

Following centuries of human persecution, many large carnivores are now returning to 

their former ranges across Europe and North America (Swenson et al. 1995, Wabakken et al. 

2001, Fortin et al. 2005, Linnell et al. 2009). During the period of absence, many deer 

populations have exploded due to a number of coinciding factors (McShea et al. 1997, 

Apollonio et al. 2010). Animals’ behavioral response to the presence of both human hunting 

and returning large carnivores has become a topical issue. 

Our analyses show that roe deer responded dynamically to temporal variability in 

predation risk by altering their habitat selection diurnally and from season to season. The 

contrast between day and night matched our expectations. Deer avoided risky habitat with 

respect to either predator at the times of day when they are active: night for lynx and during 

the day for hunters. Still, the interpretation of the patterns and their causes requires some 
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caution because lynx risk and hunting risk depend on the same habitat variables, but are 

inversely related. The inherent correlation between the two kinds of risk means that the diel 

response to hunting risk during summer can be explained as a response to lynx. It follows that 

the risk of lynx alone could explain the diel pattern in which deer select areas with thick 

understory vegetation or far from roads in daytime and areas that are open or closer to people 

in nighttime. Human disturbance (rather than only human hunting) in daytime is another 

possible explanation for the diel patterns in hunting risk (and possibly also lynx risk) during 

summer and hunting season. Yet, we judge this mechanism as less likely, as other studies 

have shown that animals are acutely aware of the onset of hunting, and respond specifically at 

times of risk (Ordiz et al. 2012, Lone et al. in press), and that human activity can instead 

cause habituation (Stankowich 2008, but see Ciuti et al. 2012). Diel patterns of vigilance have 

been seen in roe deer in Germany, where deer were more vigilant during day than during 

night and increased their level of vigilance during the hunting season (Sönnichsen et al. 

2013). The dynamic habitat selection we documented is thus largely consistent with vigilance 

behavior with respect to the spatio-temporal variation in risk presented by hunters and one or 

more natural predators, and is further evidence of the behavioral plasticity of roe deer as 

described by Sönnichsen et al. (2013). 

 Many ecological factors change across seasons (Fig. 1). Seasonal differences in 

resource availability, calf vulnerability and energy budget constraints could interplay with 

predation risk and cause weaker responses to risk in winter, stronger responses due to calf 

vulnerability or either weaker or stronger responses due to a positive or negative correlation 

with resources to risk in summer. Nonetheless, we found that the deer habitat selection 

behavior could be explained on the basis of daytime hunting risk alone, without invoking 

other factors.   

In some seasons roe deer behavior did not conform to our expectations on the basis of 

predation risk alone. Directly opposing prediction P3b, the seasonal response to lynx was 
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lowest during the winter and there was no diel pattern in risk avoidance during this season. 

Winter is a challenging season for roe deer across their geographical range, and especially in 

Norway which lies at the northern edge of their distribution range (Holand et al. 1998). Roe 

deer have limited fat reserves and therefore depend on continuous energy intake through the 

winter, a season when forage availability and quality is low (Holand 1992). Maintaining body 

temperature in low temperatures and moving in snow are energetically demanding, so 

conserving energy and obtaining sufficient food are critical for survival (Holand et al. 1998). 

Nutritional and thermoregulatory constraints are thus likely reasons for reduced ability to 

respond to predation risk during the winter. Another investigation in southern Norway 

(Ratikainen et al. 2007) found similar results. In that study, roe deer resting sites and feeding 

sites were both located in denser vegetation than random sites and selection of canopy cover 

depended on weather, indicating selection of thermal shelter even if it implied a higher risk of 

lynx predation. We also know that there is much less food in open areas during winter 

(Mysterud et al. 1999b), effectively forcing roe deer to select closed vegetation both day and 

night.  

Understory cover contributed strongly to the contrast in risk gradient in our study, and 

was included because we could quantify it across the study area using LiDAR (laser scanning) 

data (Lone et al. 2014). Cover affects both concealment and visibility. Depending on the 

hunting style of the predator, this confers some advantage to the prey or leaves them at a 

disadvantage (Camp et al. 2013). The interplay between cover, predation risk and time of day 

may differ between predator-prey assemblages; in our case, cover was safe habitat during day 

and risky during night. In other species as well, cover has been linked to differing risk levels 

during day and night depending on the function of the predators and their activity pattern, 

with animals alternating preference and avoidance in a diel cycle, e.g. in hares (Moreno et al. 

1996). Another LiDAR-based study on roe deer in the Bavarian forest in Germany found that 

animals did discriminate in their use of areas depending on understory density in winter. 
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These roe deer selected high density understory during active bouts, and low density during 

resting periods (Ewald et al. 2014). This suggests the existence of dynamic patterns of 

selection against lynx predation risk correlating with cycles of activity and rest, in agreement 

with the diurnal pattern found in our study.  

 

Conclusion and Perspectives 

Populations of wild ungulates are often subject to harvesting, and game species have 

learned to avoid hunters in space and time. As large carnivores recover in Europe and North 

America, an increasing number of prey populations return to a more natural state in which 

they face multiple predators. In many cases, such as the human and lynx predators in our 

study, the predation risk patterns contrast in either space or time (Crosmary et al. 2012, 

Cresswell and Quinn 2013), as can be expected due to predator niche differentiation. This 

reduces the possibility for the prey to adapt through risk avoidance (Lone et al. 2014). We 

demonstrate here that in cases where temporal variation in risk and spatial variation both are 

contrasting, prey can get out of a spatial catch-22 by dynamically adjusting their behavior in 

response to the seasonal and diurnal variation in risk posed by their suite of predators 

(Monterroso et al. 2014).  

It is important to understand how prey respond to the presence of large carnivores, as 

it can have large impacts on ecosystems through cascading effects (Schmitz et al. 1997, 

Werner and Peacor 2003, Beschta and Ripple 2009, Ripple et al. 2014). Yet the evidence base 

for the prime example from terrestrial systems involving large mammals is heavily debated 

(Kauffman et al. 2010, Beschta and Ripple 2011, Kauffman et al. 2013). The predation of 

lynx seems to shape roe deer habitat selection more during summer and fall than during 

winter, and any cascading effects from lynx predation mediated through altered browsing 

patterns by deer are unlikely during the energy-restricted period with snow cover. We suggest 

that in the case of predators who present a set of risks contrasting in space and time, optimal 
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habitat selection shifts temporally, making strong predator-induced patterns in overall 

browsing pressure less likely than in a case with a single predator. Our study also indicates 

that large costs of responding to predation can limit prey responses, opening up for a 

discussion on whether strong trade-offs can lead to weaker rather than stronger indirect 

effects. 
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Appendix 1: Roe deer GPS data 

Table A1: Number of GPS-marked roe deer contributing to the analyses in different seasons 
and years and average home range sizes 
 winter summer hunt 
Distinct individuals (n) 17 16 17 
Distinct id-season-year (n) 30 21 21 
Size of 100% MCP home range (km2)    
 median 1.5 1.8 1.6 
 mean 3.4 14.1 7.5 
 range 0.4-21.7 0.7-105 0.3-88 
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Table A2: The 30 collared individuals, their migratory status and the number of used points 
considered for each id-season-year (data from multiple years separated by commas). 
Individual fates and movement pattern cause data to be imbalanced across seasons at the 
individual level, but all three seasons are well represented in the aggregate by 16 (summer) or 
17 (winter and hunt)  individual roe deer whose data were weighted so each individual 
contributed equally at the within-season level. Collared animals were monitored for a mean of 
337 days, with the range 16-901 days.  
 ` 

 
migratory status 

reason for 
partial 

representation 

Used points from different years  

individual winter summer hunt 
6212 migratory migrationa  831,202 
6214 dispersal dispersal out 1103 
6215 stationary  877,682,246 763,194 1082,268 
6216 dispersal dispersal out 787 
6217 stationary killed by car 670 
6219 stationary  714,666 768,194 1079,271 
6221 migratory  1010,699,191 450,171,103 1051,268 
6224B stationary  239,584 780 1080 
6480 migratory collar failure 1485 1601 
6482 migratory collar failure 1206 
6483 stationary killed by lynx 1166 1113 
6484 stationary  495,485 1147 1498 
6485 stationary killed by car 1161 1603 
B2008001 stationary  712,665 774,196 1079,206 
B2008003 migratory  355,335 536 745 
B2008004 stationary  316,179 503 604 
B2008005 stationary  286,407 491 682 
B2008006 migratory migrationa 305,439 500 
B2008007 dispersal  489 
R3055 stationary  277 257 318 
R3056 stationary  188 287 350 
R3059 stationary  219 338 
R3066 dispersal dispersal out 452 
B2008002  starvation    
6224  killed by lynx    
6227  hit by car    
R3046  hit by car    
R3063  killed by lynx    
R3064  killed by train    
R3067  dispersal out    

Note: a summer home range outside risk map 
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APPENDIX 2: Additional results from the modelling  

 
Figure A1: Roe deer habitat selection with regards to relative risk depending on time of day 
and season. Absolute selection for risk could be influenced by our definition or risk, and 
therefore requires cautious interpretation, while contrasts (changes in slope) among seasons 
and time of day are unaffected by this 
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ABSTRACT 

Human hunting can be a potent driver of selection for morphological and life history traits in wildlife 

populations across continents and taxa. Few studies, however, have documented selection on 

behavioural responses that increase individual survival under human hunting pressure. Using habitat 

with dense concealing cover is a common strategy for risk avoidance, with a higher chance of survival 

being the pay off. At the same time, risk avoidance can be costly in terms of missed foraging 

opportunities. We investigated individual fine-scale use of habitat by 40 GPS-marked European red 

deer, Cervus elaphus, and linked this to their survival through the hunting season. Whereas all males 

used similar habitat in the days before the hunting season, the onset of hunting induced an immediate 

switch to habitat with more concealing cover in surviving males, but not in males that were later shot. 

This habitat switch also involved a trade-off with foraging opportunities on bilberry, Vaccinium 

myrtillus, a key forage plant in autumn. Moreover, deer that use safer forest habitat might survive 

better because they make safer choices in general. The lack of a corresponding pattern in females can 

be because females were already largely using cover when hunting started, as predicted by sexual 

segregation theory and the risk of losing offspring. The behavioural response of males to the onset of 

hunting appears to be adaptive, given that it is linked to increased survival, an important fitness 

component. We suggest that predictable harvesting regimes with high harvest rates could create a 

strong selective pressure for deer to respond dynamically to the temporal change in hunting risk. 

Management should consider the potential for both ecological and evolutionary consequences of 

harvesting regimes on behaviour. 

 

Keywords: behavioural plasticity, cover, fitness, food, forage, risk-avoidance, safety, survival, 

trade-off, wildlife management. 
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INTRODUCTION 

Human harvesting is a major source of mortality and potent force of ‘unnatural’ selection in 

many wildlife populations (Darimont et al., 2009). The pattern of mortality from harvesting is 

rarely random and often differs from patterns of natural mortality (Allendorf & Hard, 2009). 

Thus, recently, there has been much interest in potential evolutionary effects of harvesting on 

life history attributes and morphological traits such as horns, antlers and body size (Allendorf 

& Hard, 2009; Festa-Bianchet, 2003). Systems dominated by human harvesting outpace 

systems dominated by natural selection or other anthropogenic agents in the rate of 

phenotypic change (Darimont et al., 2009). Harvested populations have shown substantial 

alteration of morphological and life history traits with net documented changes in these types 

of traits averaging 18% and 25%, respectively (Darimont et al., 2009). Yet, discerning 

between ecological and evolutionary causes is neither a trivial nor a simple matter (Bunnefeld 

& Keane, 2014; Fenberg & Roy, 2008) and, in one recent study, demographic changes 

resulting from hunting explained observed phenotypic changes that were earlier attributed to 

evolution (Traill, Schindler, & Coulson, 2014). Still, potential evolutionary impacts of 

harvesting deserve consideration in applied management and conservation efforts, not least 

because they can be difficult to reverse (Bunnefeld & Keane, 2014; Coltman et al., 2003; 

Darimont et al., 2009; Fenberg & Roy, 2008). ‘Unnatural’ selection from hunting can 

potentially also affect heritable behavioural traits (Allendorf & Hard, 2009), but there is still 

limited knowledge of the link between human harvesting and animal behaviour. 

Behavioural responses to human or natural predators are widespread, diverse and 

generally carry some cost (Lima & Dill, 1990; Peacor, Peckarsky, Trussell, & Vonesh, 2013). 

One widespread response to reduce predation risk is to shift habitat use away from areas with 

high predation risk (Creel, Winnie Jr, Maxwell, Hamlin, & Creel, 2005; Valeix et al., 2009). 

Across a range of taxa, such a habitat shift involves a trade-off between access to resources 
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and safety (Breviglieri, Piccoli, Uieda, & Romero, 2013; Embar, Raveh, Burns, & Kotler, 

2014; Heithaus, Wirsing, Burkholder, Thomson, & Dill, 2009; Nonacs & Dill, 1990). A 

typical situation for large grazing mammals is that individuals have to choose between open 

habitats with good foraging opportunities, but where they are visible to predators, and habitats 

that provide more cover from potential dangers but which might limit foraging efficiency 

(Godvik et al., 2009; Werner, Gilliam, Hall, & Mittelbach, 1983). Individuals can differ 

substantially in how they respond to such a trade-off (Bonnot et al., 2014). The shy–bold 

continuum is one of the most studied personality axes in animals and characterizes inherent 

tendencies in how an individual responds to novelty, innovation and risk-taking (Quinn & 

Cresswell, 2005; Wolf & Weissing, 2012). Nevertheless, there has been less focus on 

individual differences in behaviour and trade-offs in situations where humans are the predator 

(Ciuti et al., 2012; Madden & Whiteside, 2014).  

Risk varies in space and time, and studies should ideally incorporate both elements 

(Creel, Winnie Jr, Christianson, & Liley, 2008; Latombe, Fortin, & Parrott, 2014). Prey 

responses can be constant (also called ‘chronic’ (Latombe et al., 2014); e.g. as assumed in 

Laundré, Hernández, and Ripple (2010)), or temporary, varying at characteristic spatio-

temporal scales in response to cues (Latombe et al., 2014; Valeix et al., 2009). North 

American wapiti, Cervus elaphus canadensis, respond to wolf, Canis lupus, predation by a 

combination of constant and temporary responses at different scales (Latombe et al., 2014). 

Whether animals tend to respond constantly or temporarily, and at what temporal and spatial 

scales, depends on the context, with the costs and benefits of alternative strategies varying 

with factors such as predator mobility, resource needs, risk patterns and the ability of prey to 

assess risk reliably (Brilot, Bateson, Nettle, Whittingham, & Read, 2012; Lima & Bednekoff, 

1999; Lone et al., 2014). A constant response could be favoured if prey have incomplete 

knowledge of the whereabouts of predators or if switching between behaviours is costly or 
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simply not feasible. Conversely, if risk varies strongly at certain time scales (such as between 

seasons or between day and night), temporary behavioural responses during high-risk periods 

could be favoured. Human hunting is often strongly structured temporally (Cromsigt et al., 

2013), and can elicit behavioural shifts in game species between the open and closed hunting 

seasons (Proffitt et al., 2010; Tolon et al., 2009). Nevertheless, although hunting is an ideal 

and controlled way to test for dynamic responses, few studies have examined immediate 

responses to the onset of the hunting season (Ciuti et al., 2012; Ordiz et al., 2012). 

By definition, anti-predator behaviour should be effective in reducing mortality, but 

few empirical studies have explicitly linked individual behaviour with survival (DeCesare et 

al., 2014; Leclerc, Dussault, & St-Laurent, 2014; Van Moorter et al., 2009). Previous studies 

have found that higher hunting pressure and hunter accessibility negatively affect wapiti 

survival at the scale of seasonal home ranges, but that there are no significant associations 

between cover and survival at this scale (McCorquodale, Wiseman, & Marcum, 2003; 

Unsworth, Kuck, Scott, & Garton, 1993). Nor are there significant associations between 

wapiti survival and the amount of cover at the scale of weekly home ranges (Webb et al., 

2011). In contrast, a finer-scale analysis has revealed that bold wapiti individuals, with higher 

rates of movement, weaker response to human activity and greater use of open terrain, are 

more likely to be harvested than shy individuals (Ciuti et al., 2012).  

To determine if and how behaviour influences hunting-season survival, and to identify 

potential trade-offs, we investigated habitat use by European red deer, Cervus elaphus 

elaphus, at spatial and temporal scales likely to shape their responses to hunting. Red deer 

populations in central Norway occur at high densities and are heavily hunted by humans; 

there are no other major predators present (Langvatn & Loison, 1999). We compared the use 

of fine-scale cover and forage habitat between ten surviving and ten shot deer of each sex 

shortly before and soon after the onset of the hunting season. We tested four competing 
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hypotheses (Table 1) to identify whether individual differences in habitat use affects survival 

(H2, H3 or H4); whether deer respond dynamically to the onset of the hunting season (H1, H3 

or H4); and whether the strength of these dynamic responses influences survival (H4). We 

expected differences in the use of cover because it presents a gradient of risk, and differences 

in the use of forage habitat as this would arise from spatial behaviour that traded off the risk 

of mortality against access to food. 

 

 

Table 1: Null and alternative hypotheses relating the fate of red deer during the hunting season to their 
risk-avoidance behaviour, along with associated predictions about the individuals’ habitat use with 
respect to sighting distance (and the inverse pattern expected for concealment cover) and forage 
availability (forage opportunities forgone, a potential cost of responding spatially to predation). 

Alternative hypotheses Temporal pattern Pattern of 
survivors vs shot 
individuals 

Model structure 

H0: No response to onset of the 
hunting season and survivors and 
shot individuals use habitat with the 
same characteristics 

No No ~1 (intercept only) 

H1: Dynamic response to onset of the 
hunting season that either is 
exhibited by all animals equally, or 
does not affect survival 

Yes, decreasing No Period 

H2: No dynamic response to onset of 
the hunting season, but individual 
differences in habitat use affect 
survival 

No Survivors have 
lower mean values 
than shot animals 

Fate 

H3: All individuals respond 
dynamically to the onset of hunting, 
but survival is determined by pre-
existing and ongoing individual 
differences 

Yes, decreasing 
by similar 
amounts for both 
groups 

Survivors have 
lower mean values 
than shot animals 

Period + Fate 

H4: Individuals differ in their 
dynamic response to the onset of 
hunting, and the strength of this 
response influences survival 

Yes, decreasing 
by different 
amounts 

Survivors 
respond more 
strongly than  
shot animals 

Period × Fate 

Note: The males in our study were found to conform to the model in bold and the females to the model 

in italics. 
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METHODS 

Ethical Note 

Permits to capture and mark animals were granted by the Norwegian Animal Research 

Authority (NARA) (ref no. s-2006/28799; permit no. FOTS ID 4863), and the Norwegian 

Environment Agency (ref no. 2006/5393). Three veterinarians, assisted by eight other field 

personnel approved by NARA, marked the animals. Animals were captured under cover of 

darkness using spot lights at feeding sites from January to early April each year. Deer were 

immobilized by dart injection of xylazine-tiletamine-zolazepam from a distance of 10–30 m, 

in accordance with standard procedures (Sente et al., 2014). When animals were recumbent, 

they were approached slowly, blindfolded and kept lying down. The main physiological side 

effects of immobilization were mild hypoxemia and hypercapnia. Animals were closely 

monitored during immobilization and through recovery (12 ± 7 min) after drug reversal with 

atipamezole (Sente et al., 2014). Out of the 132 captures, there were two capture-related 

mortalities. One female died within a few days of marking and one male became asphyxiated 

during weighing, after which safer specialized weighing equipment was developed and used 

to avoid a recurrence. All animals were marked with ear tags (Allflex Super Maxi Tag, 75 x 

97 mm, Allflex, Denmark) in one of the ears, and were fitted with GPS collars suitable for red 

deer females and males, respectively (Tellus from Followit, Sweden, and GPS ProLite from 

Vectronic, Germany; collar weight: ca. 850 g, 0.5–1.0% of animal body weight). Collars were 

set to provide one location every hour for up to two years and most collars supported wireless 

download of data over the GSM telecommunications network, thus not requiring collar 

recovery. Nonetheless, many collars had the capacity to drop off when data collection ended. 

Two collars malfunctioned at the time of deployment, and some others stopped collecting data 

prematurely. Animals whose collars were not designed to drop off, or which malfunctioned or 

stopped working, were recaptured whenever possible to remove the collars. These animals 
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were either shot as normal during the hunting season, shot during winter (under special permit 

from municipalities), or recaptured by darting at a feeding site during winter. This collar-

retrieval could take between one and four years, and some collared deer were never 

recovered. The collars caused minor hair loss or slight chafing around the neck in some deer, 

but no severe adverse effects of the tags or collars were observed during the study. 

 

Study Area 

The study was carried out on a partially migratory population of red deer in central Norway 

(62° 36 –63° 30 N; 8° 48 –10° 6  E). The study area was approximately 6000 km2 and 

included coastal to inland areas with diverse topography, land use and cover (Fig. 1). The 

  

 
Figure 1: Study area and spatial distribution of studied red deer (centroid position of the 12 
field plots for each individual). Black lines connect the centroids of the field plots with the 
location where each individual was shot. In some cases, deer were shot close to the areas used 
at the onset of hunting; in other cases they were shot some distance away. 
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landscape included agricultural areas in the valleys, but was dominated by forested and 

montane areas. Natural forests that were not intensively managed, but where some harvesting 

occurred, were dominated either by deciduous species (mainly Betula pubescens, Betula 

pendula, Salix caprea, Alnus incana, Alnus glutina and Sorbus aucuparia) or by Scots pine, 

Pinus sylvestris. Dense plantations of Norway spruce, Picea abies, were scattered across the 

study area. The patchy mixtures of dense spruce plantations and other forest types of varying 

age and density of understory created strong heterogeneity in sighting distance within the 

forests.  

 

Red Deer Population 

Absolute density estimates were not available, but from hunting statistics we know that, on 

average across the study area, 6.2 deer were harvested annually per 10 km2 during the study 

period (Statistics Norway, 2014). Red deer are the dominant large mammal in the region. 

Their primary habitat is forest, but they also use agricultural areas intensively for foraging, 

mainly during the night (Godvik et al., 2009). Red deer associate in small matrilineal family 

groups (2–7 individuals) during most of the year, whereas juvenile and older males are 

generally solitary (Bonenfant et al., 2004). During the rutting season, however, animals form 

mixed-sex groups and males compete for the right to defend a harem of females. Males 

defend a group of females and not a territory. Young or otherwise subordinate males are 

typically found nearby the harems and are, on occasion, able to secure a mating undetected by 

the dominant male (Clutton-Brock, Guinness, & Albon, 1982). In winter, deer occur in larger 

groups because they congregate at food sources. The hunting season coincides with the rutting 

season, which peaks in early- to mid-October (Loe et al., 2005). The rutting season begins 

gradually. The sexes generally start associating around 19 September (95% CI: 14–23 

September), with the earliest roaring male being heard on 17 September (305 instances of 
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roaring males across 16 years (Loe et al., 2005)). Females that are two years or older typically 

reproduce every year (Langvatn, Bakke, & Engen, 1994; Langvatn, Mysterud, Stenseth, & 

Yoccoz, 2004). The migratory segment of the population move between their summer and 

winter ranges at some point during the hunting season, usually in September (Meisingset et al. 

in prep).  

  

Hunting Regime 

Hunters hunt for meat and recreation rather than for trophies (Milner et al., 2006); offtake is 

limited by locally-set age- and sex-specific quotas (Andersen, Lund, Solberg, & Saether, 

2010). Harvest mortality has been strongly male biased for many years (1977–1995), with the 

risk of mortality to males increasing slightly during the 1980s, before stabilizing in the 1990s 

(Langvatn & Loison, 1999). Recent cohort modelling of data from three areas in Norway (one 

of them within our study area) confirmed this pattern and quantified the annual mortality risk 

from harvesting to be around 45% for adult males (  2 years old) and around 15% for adult 

females (Veiberg, Nilsen, & Ueno, 2010).  The strong male bias contrasts with harvesting 

practices in the rest of Europe, where there is generally low or no sex bias, and if anything, a 

slight female bias (Milner et al., 2006). Note, however, that females typically have a calf at 

heel, and calves are also targeted by hunters (annual mortality risk around 15%: (Veiberg et 

al., 2010)). For several decades up until 2011, the hunting season started on 10 September, but 

in 2012 it was advanced to 1 September. During our study (2007-2012, Table A1), the 

hunting season was open until 23 December. Deer are harvested throughout, but there is a 

strong burst of hunting activity when the season opens, with around 27% of all animals being 

shot during the first week (www.hjorteviltregisteret.no). Both adult males and females are 

targeted with similar proportions of the total harvest for each sex, 23% and 26% respectively, 

being taken during the first week. Hunters access all parts of the red deer’s habitat and use a 
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variety of hunting methods (stand hunting, still hunting, call hunting and drive hunting with 

and without dogs) to target all ages and sexes, although call hunting is used mainly for males 

during the rutting season and comprises a small percentage of the total harvest. Although open 

agricultural land makes up only a small proportion of the landscape, it is the riskiest per unit 

area, with around 50% of all hunting mortality occurring there (Rivrud, 2013). Hunting occurs 

around the clock, with distinct peaks during twilight hours at dusk and dawn. Night hunting is 

only undertaken during strong moonlight. All hunting is done with rifles, requiring a free line 

of sight between the hunter and the animal. The spatial distribution of risk should thus be 

directly related to vegetation density and sighting distance.  

During the study, hunters and local residents were informed that there were no 

restrictions on harvesting marked deer. In other populations, harvest rates of radio-collared 

deer were found to be representative of the population, despite differing hunter attitudes 

towards shooting radio-collared animals (Buderman, Diefenbach, Rosenberry, Wallingford, & 

Long, 2014). We therefore assume that marked deer were subject to a similar pattern of risk 

as unmarked deer, and because we compared across marked animals, any slight bias would 

likely be similar among them. Nevertheless, any discrimination against marked animals 

should favour the survival of marked deer in open areas, where they can be observed for 

longer and the collar noticed. A tendency to move in groups could cause the same pattern, 

because marked deer could be spared at the expense of another group member in open 

environments, whereas in denser forest a hunter might not even realize that the deer is 

member of a group. Neither of the two potential sources of bias would predict a lower 

probability of an individual being shot when using denser habitat. On the contrary, both these 

relationships could be expected to weaken (or reverse) the predicted relationship between 

sighting distance and survival hypothesized in Table 1. Because we predict the opposite 

patterns to those expected from hunter bias, our analysis is therefore a conservative test of the 
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hypotheses about how individual behaviour influences survival. Furthermore, it is difficult to 

see how this potential hunting bias could account for the predicted shift to using habitat with 

denser cover once hunting begins. 

 

GPS-tracking Data and Selection of Animals 

This study is based on an existing dataset of 130 GPS-collared red deer (82 females, 48 

males) marked and monitored during 2007–2012 in Møre-og Romsdal and Sør-Trøndelag 

counties in central Norway (Bischof et al., 2012, unpubl.; Mysterud et al., 2011). Hourly GPS 

position data were screened for outliers visually and with an automated technique based on 

movement characteristics (Bjørneraas, Moorter, Rolandsen, & Herfindal, 2010), removing 

less than 0.05% of the locations. Median location error had earlier been calculated to be 12 m 

(Godvik et al., 2009). Limited by logistics and time, we restricted field investigations to 

locations from 40 adult deer (  2.5 years old) with sufficiently complete track logs during the 

period of interest and known either to have been shot by hunters or to have survived the entire 

hunting season. We chose 10 animals of each sex and fate because a balanced sampling 

design maximises the statistical power for a given sample size. Further details of how these 

animals were selected and what efforts were taken to avoid biases in this are given in 

Appendix 1. The estimated ages of shot and surviving deer were similar (female means 6.8 

and 5.2 years, respectively, unpaired t test: t18 = 1.43, P = 0.17; male means 4.2 and 4.9 years, 

respectively, unpaired t test: t18 = 0.66, P = 0.52). Age is closely connected to social status in 

males, thus there is no indication of any systematic differences in social status between shot 

and surviving males. Shooting dates for the females ranged from 24 September – 11 

December with a mean date of 8 November; shooting dates for the males ranged from 25 

September – 15 November (mean date: 15 October). 
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Study Design 

This field study compares habitat use between 10 surviving and 10 shot deer of each sex in a 

short period around the start of the hunting season. For each individual, we surveyed the 

habitat at six locations it had visited before, and six locations it had visited after the onset of 

the hunting season. The twelve locations for each animal were selected as follows. We 

sampled the last Monday–Wednesday (3 days) before the hunt started (‘before onset’, 1–9 

days before the onset, depending on the year concerned), and the first Monday–Wednesday 

after the first weekend of the hunting season (‘after onset’, 2–8 days after onset), so we could 

expect some hunting to have taken place in all hunting areas. The sample periods were 

selected to be as close together in time as possible (consecutive weeks for two-thirds of the 

animals) to identify immediate responses and to minimize any confounding effect of season 

on our results. Importantly, all points were sampled before the rutting season so any change in 

habitat use could not be attributable to rutting activities rather than behavioural responses to 

hunters. 

Within each sampled day two positions were selected: the first position after sunrise 

and the first position before sunset, times when deer are expected to be active and the light 

levels are sufficient for hunting. The motivation for restricting the locations to two times of 

day was to ensure that the deer had moved some distance between the positions and to avoid 

diurnal patterns in habitat use inflating the variance when comparing shot and surviving 

animals. Our data do not show habitat use throughout the 3-month long hunting season, but 

are a snapshot of what happens at the start of the hunting season in early- to mid-September. 

Locations on pastures were excluded so as to focus on within-forest variation in habitat use. 

The use of different habitat types by red deer has been contrasted in other studies (Godvik et 

al., 2009). Gaps in the GPS track logs and the exclusion of pasture locations (initially thought 

to be in forest, based on GIS maps) caused some individuals to be represented by fewer than 
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12 but never less than 10 locations. The final dataset consisted of 458 surveyed deer locations. 

Only two of the females and five of the males in our study were shot in forest; the remaining 

eight females and five males were shot on agricultural land (based on locations reported by 

hunters and GIS maps). 

 

Habitat Surveys 

To characterize the habitats used by deer before and after the onset of hunting, we surveyed 

habitat cover and forage availability at the deer locations between 18 June and 20 August 

2013. An individual had used a given location up to six years prior to the habitat survey, but 

the habitats were likely to have remained similar throughout this period. In the field we 

evaluated whether any changes in habitat state had occurred since the year when the animal 

used that location – tree harvests, avalanches, recent drought, or successional stages or young 

plantations likely to have grown radically in few years – but did not find grounds for 

excluding any plots. We measured the distance at which a 30 cm wide, 80 cm high cover 

board could be sighted in all four cardinal directions at a single point at the GPS location; the 

mean value reflected the visual screening provided by cover at the plot as a function of 

topography and vegetation (Lone et al., 2014). A concave densiometer was used to estimate 

the proportional canopy cover directly above the plot, as an average of four measurements in 

the cardinal directions. Available forage was characterised in three 2 x 2 m quadrats located 

10 m apart. Percentage ground cover was calculated as the mean of the three quadrats for each 

of three functional groups, the three potentially important forage resources for red deer in 

September: grasses, herbs, and the ericoid species bilberry, Vaccinium myrtillus. Of these, 

bilberry has the highest quality this late in the growing season (Albon & Langvatn, 1992).  
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Statistical Analysis 

We modelled these field-measured habitat characteristics as responses to the crossed effects 

of fate (shot or surviving) and period (before or after the onset of hunting) in a linear mixed 

model with a random intercept for animal identity. This was to identify the relationship 

between survival and habitat use, and to test for expected differences between deer that were 

shot and those that survived, including different temporal patterns (Table 1). Separate mixed 

models were constructed for each sex for each of the response variables: (1) sighting distance 

of cover board; (2) canopy cover; and forage availability measured as percent cumulative 

cover of (3) grasses, herbs and bilberry, (4) grasses and herbs, or (5) bilberry alone. Because 

preliminary data analysis showed that males and females differed in their responses, we chose 

to analyse male and female data separately so the alternative scenarios could be tested for 

each sex. All proportions were arcsine-square root transformed and sighting distance was log 

transformed to meet the assumption of a homogeneous and normal error structure when 

modelled using the function lme from the package nlme (Pinheiro, 2014) in the software R 

2.14.1 (R Development Core Team, 2011). For each response variable, the five candidate 

models corresponding to the alternative scenarios in Table 1 were compared on the basis of 

AIC (Burnham & Anderson, 2002). All models with AIC  2 and lower AIC than simpler 

nested models (thereby avoiding uninformative parameters), were considered to have some 

support (Arnold, 2010). We report 2 and 0
2 as measures of explained variation by the fixed 

effects and fixed and random effects, respectively (Xu, 2003). They give the proportional 

reduction in residual sum of squares of the model compared with the residual sum of squares 

of a null model that included only random effects ( 2) or a fixed intercept ( 0
2). 
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RESULTS 

The best models, based on AIC, differed for males and females (Table 2). With respect to 

habitat openness and forage availability, the contrast between survivors and shot individuals 

was in line with H4 for males (Table 1). Hypothesis H4 states that there are individual  

differences in the dynamic response to onset of hunting, and the strength of this response 

influences survival. The males that ultimately survived the hunting season had shifted to using 

areas with 29% shorter sighting distances after the onset of hunting compared with those used 

before the hunt, whereas the males that ended up being shot during the hunting season did not 

change their use of concealing cover (Table 3, Fig. 2a). The male patterns were also similar 

when the analysis was run using only individuals shot in forests or on agricultural land, and 

were actually stronger when considering only the males shot on agricultural land. In males, 

there was support for the hypothesis of a trade-off between forage availability and survival 

(Table 2). In line with H4, surviving males switched to areas with an average 68% less 

bilberry cover after the onset of the hunting season compared with the pre-hunting season, and 

in contrast to shot males (Fig. 2b). Lower bilberry cover was the main contributor to the  

 

Table 2: Summary of AIC values for the candidate models fitted to male and female data.  
Model DF Sighting 

distance 
Canopy 
cover 

Grasses 
and herbs 

Grasses, herbs, 
and bilberry 

Bilberry 

Males       
 ~1 3 12.6 1.9 0.2 2.3 9.3 
 Period 4 6.0 0.0 0.0 4.0 3.5 
 Fate 4 12.5 3.9 2.2 4.1 10.4 
 Period + Fate 5 5.9 2.0 2.0 5.8 4.5 
 Period × Fate 6 0.0 1.8 1.2 0.0 0.0 
Females       
 ~1 3 0.2 0.4 0.0 0.0 0.0 
 Period 4 2.2 2.8 2.0 2.0 1.4 
 Fate 4 0.0 0.0 2.0 1.8 2.0 
 Period + Fate 5 1.9 2.0 3.9 3.8 3.3 
 Period × Fate 6 3.4 3.3 3.3 4.5 5.3 
Note: Models with AIC  2 without uninformative parameters are shown in bold. 
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reduced cover of grasses, herbs and bilberry combined in habitats used by surviving males 

(Table 3, Fig. A2). Neither canopy cover nor the cover of grasses and herbs alone differed 

statistically between sites used by shot and surviving deer (Table 2). The patterns identified 

are also visible in the raw data despite wide variation in habitat used by different individuals 

as well as large heterogeneity between sites used by the same individual (Fig. A2). 

 

Table 3: Parameter estimates from the best models relating red deer use of cover and forage (cover of 
grasses (G), herbs (H), and/or bilberry (B)) to hunting-season fate and time period (before and after the 
onset of hunting).  
Sex Response Fixed effect Estimate SE 2 0

2 Random 
intercept 
SD 

Residual 
SD 

Male Sighting distance (Intercept) 0.19 0.20 0.07 0.36 0.51 0.83 
  Survive vs. Shot –0.04 0.28     
  After vs. Before –0.02 0.16     
  Survive vs. shot : 

After vs. Before 
–0.62 0.22     

Male Canopy covera (Intercept) –0.11 0.15 0.02 0.39 0.58 0.81 
  After vs. Before 0.21 0.11     
Male G+Ha (Intercept) –0.08 0.15 0.01 0.36 0.56 0.83 
  After vs. Before 0.16 0.11     
Male G+H+B (Intercept) –0.11 0.17 0.04 0.19 0.36 0.93 
  Survive vs. Shot 0.28 0.24     
  After vs. Before 0.28 0.18     
  Survive vs. shot : 

After vs. Before 
–0.69 0.25     

Male Bilberry (Intercept) 0.13 0.19 0.07 0.31 0.47 0.86 
  Survive vs. Shot 0.08 0.27     
  After vs. Before –0.03 0.16     
  Survive vs. shot : 

After vs. Before 
–0.59 0.23     

Female Sighting distancea (Intercept) –0.21 0.20 0.000 0.38 0.57 0.81 
  Survive vs. Shot 0.40 0.28     
Female Canopy covera (Intercept) –0.19 0.18 0.000 0.32 0.51 0.85 
    Survive vs. Shot 0.39 0.26     
Notes: Response variables were arcsine transformed (except sighting distance, which was log-
transformed) and standardized for each analysis. In cases where null models (intercept only) were 
selected as the best model, parameter estimates are not shown (female forage models).  
a Best models with only limited support as they were within 2 AIC units of the null model 
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Figure 2: Red deer use of (a) cover and (b) forage habitat depending on sex, individual fate at 
the end of the hunting season (shot vs. surviving) and time (immediately before and/or after 
the onset of the hunting season). Fitted estimates of cover-board sighting distance ( ± SE) and 
field-layer cover of bilberry ( ± SE) from the best models for males and females as identified 
by AIC.  

 

There was no support for the hypotheses that females responded to the onset of 

hunting or that differences among individual females influenced their survival (H1–4) relative 

to the null hypothesis (H0, Table 1, Table 2). Indeed, the degree of habitat cover was similar 

in shot and surviving females and was not affected by onset of hunting (Table 2). Note that 

females used habitat with 21% shorter sighting distance (more cover) than males before the 

onset of the hunting season (linear mixed model: t38 = 2.05, P = 0.047; Fig A2). There was no 
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correlation between bilberry availability and survival that could indicate a similar trade-off in 

females as seen in males (Table 2). 

Overall, at the plot level, horizontal and vertical measures of cover were themselves 

only weakly correlated (canopy cover: range 0–96%; sighting distance: range 6–144 m; 

Pearson correlation coefficient  = –0.28). Second-order linear models relating forage 

availability with measures of cover revealed only weak correlations, the strongest being a 

humped relationship between bilberry cover (range 0–73%) and canopy cover, which 

nevertheless explained only 9% of the variation in bilberry cover (other correlation statistics 

are reported in Appendix 2).  

There was no support for using Julian date in addition to or instead of the onset of 

hunting as a predictor variable for either sex. In the best models, replacing the time period 

contrast with the linear effect of Julian date always resulted in AIC > 2. Including the Julian 

date did not alter the parameter estimates of the other predictor variables. Thus, the data 

support the notion that the changes at the onset of the hunting season are abrupt rather than 

gradual. 

 

DISCUSSION 

Hunting is the main cause of mortality in many managed ungulate populations (Langvatn & 

Loison, 1999). Deer should therefore avoid humans in space and time, in line with general 

predator-prey theory. Previous studies have shown that individual deer using open habitat 

have a higher risk of mortality from hunting (Ciuti et al., 2012). But our study is the first to 

show that deer that survived and those that were shot during the hunting season differed in 

their immediate response to the onset of hunting, and that this survival strategy involved a 

trade-off with access to a key forage plant species. Our results show that managed ungulate 

populations in human-dominated landscapes, such as red deer in Norway, potentially 
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experience strong selection pressure for the ability respond to the risk of mortality associated 

with human presence in space and time. 

We have linked a plastic response in behaviour at the onset of the hunting season to 

reduced hunting mortality in wild red deer. Surviving males shifted from using habitat with 

longer sight lines to habitat with 29% shorter sight lines within days of the start of the hunting 

season. Because it was a dynamic response to the hunting season we identify it as a 

deliberately employed spatial strategy in response to hunting, and from the differences 

between surviving and shot individuals, we infer that it successfully managed risk. That such 

an immediate response correlated with overall hunting-season survival suggests that we 

measured a general response that is sustained by the individuals in question throughout the 

hunting season.  

There are several plausible mechanisms for how the red deer in our study were able to 

perceive the onset of hunting season. Deer likely assess predation risk using a variety of 

sensory cues, and presumably detect people and dogs using a combination of auditory, visual 

and olfactory inputs (Kluever, Howery, Breck, & Bergman, 2009; Kuijper et al., 2014; Lynch 

et al., 2014). Deer could be alerted by the heightened off-track human activity and the first 

gunshots. Ravens, Corvus corax, are known to react to gunshots (White, 2005), showing the 

potential for animals to react to such cues. The time of year could also play a role, as the 

timing of the hunt has been relatively fixed for several decades. The behavioural plasticity of 

responding to cues about hunting by adopting safer behaviour is central to explaining the 

pattern we documented in males. Whereas the deer’s use of more open forests does not 

necessarily mean they are more likely to be shot in a forest, it does mean they are more likely 

to be shot in general (indeed most individuals were shot on agricultural pasture in our study). 

This dynamic spatial response to the onset of hunting could correlate with other risk-

management behaviours such as increased vigilance (Bonnot et al., 2014) or the tendency to 
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hide rather than run when encountering humans (Ciuti et al., 2012). In contrast to our study, 

Ciuti et al. (2012) found that individual differences in behaviour existed before the hunting 

season started, and highlighted that this reflected personality traits. Personality traits have 

been found to be moderately heritable (Wolf & Weissing, 2012). Behavioural plasticity can 

also have a hereditary basis (Snell-Rood, 2013). The behavioural shift by males at the start of 

the hunting season appears to be adaptive, indicating that selection for risk-avoidance 

behaviour probably also operates in our system. 

Linking individual survival with field-measured sighting distance corroborates earlier 

findings relating habitat selection to habitat visibility in coarse GIS-based land-use classes 

(Ciuti et al., 2012; Godvik et al., 2009), and extends them to fine-scale variability in 

horizontal visibility within a forested environment. Our results contrast with those of Kuijper 

et al. (2014) who found no link between risk-reducing behaviour by either deer or wild boar, 

Sus scrofa, and fine scale horizontal visibility. They attributed the lack of response to 

visibility being relatively homogenous in a dense forest, and a poor indicator of predation risk 

by wolves in that environment. Moreover, their study area had other predators, with deer 

being subjected also to predation by lynx, an ambush predator that hunts most efficiently in 

dense cover (Lone et al., 2014). Visibility is more variable in our study area, and the risk is 

undoubtedly biased towards open areas (Rivrud et al., in press) because humans are the only 

significant predator (Langvatn & Loison, 1999). Indeed, horizontal visibility and other 

characteristics of the habitats used by our deer differed substantially within and between 

individuals (Fig. A2), a typical feature of such small-scale habitat measures. Nevertheless, the 

mixed modelling framework allowed us to account for these inter- and intra-individual 

differences and extract the maximum information possible on the overall differences between 

shot and surviving deer, thereby providing clear support for some of our hypotheses about the 

associations between habitat use and survival. 
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The decreased use by survivors of habitats with substantial bilberry cover is indirect 

evidence of a cost associated with a successful spatial strategy for avoiding risk. Bilberry is 

probably the most important forage species during autumn. Herbs and grasses are higher 

quality and preferred forage during summer, but their crude protein content decreases 

exponentially through summer (outside of agricultural fields), and deer switch to bilberry 

from the end of July onwards (Albon & Langvatn, 1992). Surviving males that decreased their 

use of bilberry-dominated sites were consequently trading off higher survival against the use 

of the best forage resources. It is not clear if the associated cost comes from moving into 

denser vegetation, as the correlation between sighting distance and bilberry cover was weak at 

our measurement scale, or is incurred due to another underlying spatial strategy, (e.g. 

avoiding bilberry-dominated communities because hunters prefer such sites). The magnitude 

of the cost to the surviving animals of using less profitable habitats is also not clear, nor the 

degree to which they can compensate by increasing foraging time or being more selective in 

these other vegetation communities. Nonetheless, finding the same pattern of decline in 

forage quality and sighting distance (Fig. 2) strengthens the overall conclusion that some 

males survive because they respond dynamically to hunting cues, even at the expense of 

foraging opportunities. 

Whereas individual male survival depended on the strength of a dynamic response to 

the risk of predation through habitat use, females did not show the same response, nor did 

their survival depend on persistent individual differences in habitat use. The sex difference in 

response to the onset of hunting that we observed could be explained by females with calves 

already being more cautious prior to the start of the hunting season. Indeed, females used 

denser cover then than males. Previous studies have shown that female red deer with offspring 

segregate from males, and also use denser habitat prior to the hunting season (Bonenfant et 

al., 2004), a common phenomenon in ungulates (Ruckstuhl & Neuhaus, 2005). That females 

22



apparently use persistent risk avoidance in a setting in which risk varies temporally suggests 

that it could be a strategy adapted to past patterns of predation rather than current human 

hunting ones. In the adult female red deer of our study population there is a strong tendency to 

reproduce every year (Langvatn et al., 2004). Their response to the onset of hunting might be 

small because the reproductive females have already exhausted much of their potential to shift 

habitats earlier in the summer. 

 

Conclusions and Perspectives 

We have found that survival of male red deer was related to responding dynamically to the 

risk of predation by shifting habitats at the onset of the hunting season, showing that hunters 

can influence wildlife behaviour directly in ecological processes. These results also highlight 

the hunters’ potential role in selecting for risk-avoidance behaviour. Other recent research has 

also shed light on how harvesting can unintentionally target ‘bold’ over ‘shy’ individuals 

(Ciuti et al., 2012; Madden & Whiteside, 2014). Nevertheless, even important fitness 

components such as adult survival might not always relate well to overall fitness (Lind & 

Cresswell, 2005). For example, are more risky adult males gaining access to more females 

during the coming rutting season, thus enhancing their reproduction? A priority for the future 

should be to relate behaviour with measures of overall fitness. Such an integrative endeavour 

could provide a better understanding of the ecological and evolutionary mechanisms of risk 

avoidance interacting with other aspects of animal ecology. 
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Appendix 1: Further details on the selection of shot and surviving animals 

For the sake of analysis, we chose to have a balanced number of individuals and observations 

per individual. We selected 10 surviving and 10 shot deer of each sex, disregarding three shot 

males and seven surviving females that we could have potentially surveyed. Which of the 

candidate deer to leave out at this stage were chosen so as to have as even as possible 

geographical spread between categories. Where there were several candidate deer in one 

municipality, of which we were to retain one or two, these were chosen randomly. We always 

used data from the first year of monitoring, except in six cases in which deer were monitored 

for two years and shot in the second year. These three female and three male deer were thus 

classified as ‘shot’ and we used the GPS data from the year in which they were shot, rather 

than classifying them as ‘surviving’ and using data from the first year. This could influence 

the results by reducing differences between shot and surviving deer, but excluding these 

animals did not notably alter parameter estimates. 

 

Table A1: Distribution of the data from the study animals across years 
 Males Females 
Year Shot Surviving Shot Surviving
2007 0 4 1 1 
2008 4 0 4 1 
2009 2 3 2 2 
2010 3 1 2 3 
2011 1 1 1 3 
2012 0 1 0 0 
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 Appendix 2: Correlations between horizontal and vertical cover and forage measures 

 

Table A2: First- and second-order relationships between forage availability (cover of grasses 
(G), herbs (H), and/or bilberry (B)), and horizontal and vertical measures of cover. 

  Estimate SE t-val P-val 
Adjusted 
R2 

Variation 
explained (%) 

Bilberry 
 Intercept –0.45 0.31 –1.44 0.151 0.009 0.9 
 Sighting distance 0.51 0.20 2.49 0.013
 Sighting distance2 –0.08 0.03 –2.48 0.014
G+H 
 Intercept 1.03 0.29 3.54 0.000 0.002 0.2 
 Sighting distance –0.33 0.19 –1.74 0.083
 Sighting distance2 0.05 0.03 1.75 0.081
G+H+B 
 Intercept 0.74 0.27 2.74 0.006 –0.004 –0.4 
 Sighting distance –0.01 0.17 –0.05 0.960
 Sighting distance2 0.00 0.03 0.01 0.991
Bilberry 
 Intercept 0.13 0.04 3.24 0.001 0.091 9.1 
 Canopy cover 0.84 0.13 6.64 0.000
 Canopy cover2 –0.64 0.09 –6.90 0.000
G+H 
 Intercept 0.61 0.04 15.79 0.000 0.009 0.9 
 Canopy cover –0.30 0.12 –2.44 0.015
 Canopy cover2 0.21 0.09 2.40 0.017
G+H+B 
 Intercept 0.65 0.04 18.19 0.000 0.011 1.1 
 Canopy cover 0.29 0.11 2.55 0.011
 Canopy cover2 –0.22 0.08 –2.67 0.008
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Figure A1: Correlations (only first order linear effects considered) between measures of 
sighting distance (Lcovgone), canopy cover (Acanopy) and forage measures 
(Aforage=grasses and herbs, Aforage2=grasses, herbs and bilberry, Ablue=bilberry).  
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Figure A2: Raw data showing intra- and interindividual variation and group differences in 
habitat characteristics. Vertical scatterplots (n=10–12) represent each individual deer (n=40, 
balanced across each combination of sex and fate). Locations visited before the onset of the 
hunting season (+), their mean for each individual (filled triangle) and the mean of the 
individual means for each combination of sex and fate (line) are shown in black. Locations 
visited after the onset of hunting (×), their mean for each individual filled circle) and overall 
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mean of individual means (line) are shown in red. Original data were in m (sighting distance) 
and proportions. 
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Abstract. Determining the spatial distribution of large herbivores is a key challenge in ecology and

management. However, our ability to accurately predict this is often hampered by inadequate data on

available forage and structural cover. Airborne laser scanning (ALS) can give direct and detailed

measurements of vegetation structure. We assessed the effectiveness of ALS data to predict (1) the distribution

of browse forage resources and (2) moose (Alces alces) habitat selection in southern Norway. Using ground

reference data from 153 sampled forest stands, we predicted available browse biomass with predictor

variables from ALS and/or forest inventory. Browse models based on both ALS and forest inventory variables

performed better than either alone. Dominant tree species and development class of the forest stand remained

important predictor variables and were not replaced by the ALS variables. The increased explanatory power

from including ALS came from detection of canopy cover (negatively correlated with forage biomass) and

understory density (positively correlated with forage biomass). Improved forage estimates resulted in

improved predictive ability of moose resource selection functions (RSFs) at the landscape scale, but not at the

home range scale. However, when also including ALS cover variables (understory cover density and canopy

cover density) directly into the RSFs, we obtained the highest predictive ability, at both the landscape and

home range scales. Generally, moose selected for high browse biomass, low amount of understory vegetation

and for low or intermediate canopy cover depending on the time of day, season and scale of analyses. The

auxiliary information on vegetation structure from ALS improved the prediction of browse moderately, but

greatly improved the analysis of habitat selection, as it captured important functional gradients in the habitat

apart from forage. We conclude that ALS is an effective and valuable tool for wildlife managers and ecologists

to estimate the distribution of large herbivores.
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INTRODUCTION

Among ungulates, density-dependent food
limitation is a main limiting factor in population
dynamics (Bonenfant et al. 2009). Forage quality
and quantity are therefore important determi-
nants of foraging and habitat selection patterns of
large herbivores (Fryxell 1991, Hanley 1997).
Despite the strong influence of food resources on
both habitat selection and population dynamics,
quantification of food availability at large spatial
scales remains challenging. Most studies rely on
environmental proxies of forage availability and
cover, such as NDVI (Mueller et al. 2008), land
cover classes (Uzal et al. 2013), or forest stand
characteristics like productivity (Godvik et al.
2009), dominant tree species (Dussault et al.
2005a) and age class (Mabille et al. 2012). Often,
such proxies are used without quantifying levels
of food and cover, though exceptions occur (van
Beest et al. 2010b, Avgar et al. 2013, Blix et al.
2014). It is well known that the physical structure
of the habitat is also important for habitat
selection as cover is used for concealment and
thermal shelter (Mysterud and Østbye 1999,
DePerno et al. 2003).

Scale matters greatly in the study of ecological
phenomena (Wiens 1989). Habitat selection
patterns often differ between scales, reflecting
processes and behavioral decisions operating at
different scales (Boyce et al. 2003, DeCesare et al.
2012). The scale of the study should reflect the
question at hand. The concept of scale involves
both extent of the study area, the resolution of the
data, and in some cases, the range over which the
environmental context is considered (De Knegt et
al. 2011). In wildlife management, important
questions on a broad scale include identifying a
population’s seasonal range use or what land-
scape elements are important within an animal’s
home range. GPS tracking collars for wildlife
have enabled researchers to collect large quanti-
ties of precise location data covering large areas.
On the other hand, environmental data covering
the same broad scales often have low resolution
and precision (such as GIS-based land use
classes). This discrepancy frequently results in
poor predictive ability of habitat selection models
(Loe et al. 2012). New methods for monitoring
forage resources and physical habitat structure
with fine resolution at broad scales are therefore

of considerable interest for both basic and
applied ecological research.

Airborne laser scanning (ALS) is a promising
remote sensing technique for obtaining habitat
information across large spatial scales. Besides
providing detailed elevation models, these data
hold three-dimensional information on the dis-
tribution of vegetation biomass. Forest parame-
ters such as timber volume and stem density can
be estimated with high precision, and these
procedures have been operational in the Scandi-
navian countries for more than ten years
(Holmgren 2004, Næsset 2004). ALS data are
also increasingly applied in large-scale ecosystem
studies (Lefsky et al. 2002), to estimate carbon
storage (Stephens et al. 2007), biodiversity
(Müller and Vierling 2014), to map standing
dead wood (Pesonen et al. 2008) and to model
habitat for various wildlife species (Hill et al.
2014), including birds (Hinsley et al. 2002) and
ungulates (Coops et al. 2010, Melin et al. 2013,
Lone et al. 2014). In these studies, laser data have
been used directly to interpret the physical
structure of the habitat relevant to each species
or species assemblages. Despite the fundamental
importance of forage and cover in understanding
animal ecology, there has been no formal analysis
linking structural information of habitat to forage
resources, and few relating ALS derived cover
variables to habitat selection (Graf et al. 2009,
Melin et al. 2014).

The aim of this study was twofold: (1) to
evaluate the use of ALS data in quantifying and
predicting biomass of browse species common in
the diet of Norwegian moose (Alces alces), and (2)
to determine whether ALS-derived measures of
forage and physical habitat structure (cover) are
effective in predicting habitat selection of moose
at multiple spatial and temporal scales. Moose in
Scandinavia are partially migratory and typically
migrate from high elevation summer habitats to
low elevation winter habitats that have high
availability of browse (commonly young pine
stands) and more favorable snow conditions
(Ball et al. 2001, Nikula et al. 2004). Moose
habitat selection is related to forage availability
and cover, both at the landscape and home-range
scales (Dussault et al. 2005b, Månsson et al. 2007,
Herfindal et al. 2009, van Beest et al. 2010b). At a
landscape scale, moose select home ranges with
large volumes of biomass, while they tend to
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select for forage quality within home ranges (van
Beest et al. 2010b). The moose represents an ideal
model species to test the applicability of ALS
because its food (mainly browse) is found in the
bush and tree strata (Mysterud 2000), which can
potentially be quantified with ALS data. Here,
we build upon the study by van Beest et al.
(2010b), in which forage distribution was mod-
eled using forest stand-based inventory and
terrain data. Using that dataset in combination
with existing ALS data, we tested whether the
predictive forage models were improved by
including ALS-derived variables, and whether
ALS data could predict browse biomass well on
its own. Finally, we evaluated the usefulness of
the spatial predictions of browse biomass and
selected ALS variables in resource selection
functions (RSFs) for GPS-marked moose in
southern Norway.

METHODS

Study area and the study species
The study was conducted in an 1100-km2 area

within Telemark and Vestfold counties in south-
ern Norway (Appendix: Fig. A1). The area is
within the southern boreal to boreonemoral
zones. Land cover is dominated by commercially
managed forests of Norway spruce (Picea abies)
and Scots pine (Pinus sylvestris). Some mixed
deciduous stands of birch species (Betula pubes-
cens and B. pendula), rowan (Sorbus aucuparia),
willow (Salix spp.) and aspen (Populus tremula)
occur throughout the area. The mean monthly
temperatures in June and January are 15 and
�58C, respectively (Siljan weather station at 100
m above sea level [asl], The Norwegian Meteo-
rological Institute; http:// www.met.no). Snow
depths (mean 6 SD) at a 430 m asl location
during January–April 2007 and 2008 were 42 6
29 cm and 73 6 21 cm (Mykle weather station,
The Norwegian Meteorological Institute). Moose
densities in the area were estimated at 1.3
individuals/km2 (Milner et al. 2012), but per
capita available browse is low relative to its peak
in the 1960s (Milner et al. 2013).

Field measured browse biomass
Field estimates of browse forage biomass were

made for six tree species: pine, silver birch,
downy birch, rowan, aspen, and goat willow

(Salix caprea). These species represent the most
preferred species and, together with the erica-
ceous shrub bilberry (Vaccinium myrtillus), the
bulk of what moose feed on in both summer and
winter. In the original field-study 189 forest
stands were sampled using a random stratified
sampling design (van Beest et al. 2010b). Because
the ALS data did not cover the entire original
study area, data from only 153 forest stands were
used here, but these were well spread among the
originally chosen strata: development class (5
class factor: 1 ¼ forest under regeneration, 2 ¼
regenerated areas and young forest, 3 ¼ young
thinning stands, 4 ¼ advanced thinning stands,
and 5 ¼ mature forest), dominant tree species (3
class factor: Scots pine, Norway spruce and
mixed deciduous), and aspect (4 class factor:
north, east, south and west). Each forest stand
was sampled with five 50-m2 circular subplots,
and the center coordinates of the central subplot
were recorded with a handheld GPS obtaining an
average location over 10 min or more. Based on
experience from GPS measurements of almost
1000 plots in similar forest areas we expect a
mean location error from the true position of less
than 3.5 m with a standard deviation of less than
3 m (O. M. Bollandsås, E. Næsset, and T.
Gobakken, unpublished data). The four remaining
subplots were placed 25 m away from the center
subplot in each of the four cardinal directions,
and were at least 15 m from the edge of the forest
stand. Within each subplot, the canopy volume
and stem diameter of individual trees of the
target species were measured in order to predict
the leaf (summer) or twig (winter) biomass
accessible to moose (,3.0 m height, and account-
ing for snow cover in winter) using allometric
models. The R2 of the allometric models of
available browse ranged from 0.63 to 0.92 (see
van Beest et al. 2010b for more details on the
allometric models). Rowan, aspen and willows
are high quality but relatively less common
browse species that were considered together as
one category of browse (abbreviated as RAW).
Total forage biomass in winter (twigs) included
all six browse species while summer forage
biomass (leaves) included all species except pine
as moose do not forage on it during summer. The
average biomass of the five 50-m2 subplots was
considered as the ground reference biomass for
2500-m2 circular plots that encompassed the
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subplots (Table 1). We chose to model biomass at
this scale (2500 m2) because it gave the best
spatial match between the ground reference data
and the ALS data, given the georeferencing
inaccuracies of the field data material. There
was considerable variability in the response
variables between subplots within each plot,
and although the between-plot variability was
greater, the subsampling procedure likely intro-
duced some noise in the response variable on the
2500-m2 plot (Table 1).

Forest inventory data
We had access to the stand-based forest

inventory for operational forest management
for a large (40–80%) and fairly contiguous
portion of the forested area in the municipalities
we considered. Maps were available in Geo-
graphic Information System software and includ-
ed information on stand delineations (polygons)
and associated stand-level attributes: dominant
tree species (deciduous, spruce, pine), develop-
ment class (1–5) and h40 site index (SI) of
productivity (defined in Tveite 1977). Productiv-
ity was reclassified as a two-level factor: ‘‘high’’
where SI . 14 and ‘‘low’’ where SI � 14. Field
assessment confirmed that the accuracy of the
maps was high (van Beest et al. 2010a).

ALS data
Laser scanning systems developed for airborne

platforms are used to survey large areas in great
detail. A laser beam with a small footprint is
directed towards the ground in pulses, and
scanned across the landscape perpendicular to
the flight direction. Each flight line thus covers a
strip of land, and the flight pattern can be

planned so each strip overlaps with the next to
give continuous cover over the entire study area,
as in this study. For each laser pulse, the ALS
instrument registers one or more peaks in the
return signal. From the position of the aircraft,
the speed of light and the reflection time of each
registered peak in the return signal, the system
calculates the location where the beam was
reflected from (see Wehr and Lohr 1999 for a
technically detailed description). This yields a
data set of ‘echoes’ from ground, vegetation or
man-made structures with accurate X, Y, and Z
coordinates, out of which the ground echoes are
classified by standard algorithms (Axelsson
2000). Commercial providers of laser data would
normally process the data to this stage where
they are accessible to researchers in a specialized
GIS environment, but do not require expertise in
geomatics.

The laser data were collected for other pur-
poses and as four separate projects in the period
2008–2010 (Appendix: Table A1). Project param-
eters were similar for the three projects with
relatively low pulse density (1–2 m�2), while the
fourth had a higher pulse density (12 m�2) due to
a lower flying altitude, smaller scan angle, and
higher pulse frequency than the other three
projects. As the higher quality data in one region
could potentially have affected results, we tested
this possibility in the final models and found that
none were significantly improved by including
interactions between the ALS variables and
region/laser project. Each project was delivered
from the contractor as a point cloud with UTM
coordinates and ellipsoidal height, with ground
echoes classified. A triangular irregular network
(TIN) representing the ground surface was made
from the ground echoes and subtracted from the
Z coordinates of the point cloud, to give height
above ground (dz) for each echo. From the
ground surface TIN, we derived a digital terrain
model (DTM) with a 10-m cell size, and used it to
calculate slope, aspect and hill shade. For each
field plot, the corresponding ALS echoes were
extracted from circular plots of 2500 m2 centered
on the ground reference field plots, thus encom-
passing the five subplots. Variables describing
the vertical distribution of the echoes were
calculated for each plot. These were summary
statistics of the height values: the 10th, 20th, 30th,
. . . , 90th percentiles, mean, max, standard

Table 1. Summary statistics for the response variable

browse biomass (g/m2) at the 2500-m2 plot level and

the mean standard deviation (SD) of the five

subplots.

Variable Mean Min Max SD
Within-plot

SD

RAW (winter) 39.0 0 419 71.8 33.9
RAW (summer) 83.6 0 1021 152 62.1
Pine (winter) 157 0 2710 383 168
Total biomass (winter) 331 0 3286 524 311
Total biomass (summer) 158 0 1165 215 104

Note: RAWdenotes a group of high quality browse species:
rowan, aspen and goat willow.
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deviation and coefficient of variation of the
height of echoes with dz . 0.5 m. Additionally,
the proportion of echoes within the height
intervals corresponding to ground, understory
and canopy: 0–0.5 m, 0.5–3.0 m, above 3.0 m
(thus a measure of canopy cover), and, lastly, the
ratio of understory echoes (0.5 m , dz � 2.0 m)
to understory and ground echoes (dz � 2.0 m) (a
measure of understory cover). Wing et al. (2012)
also utilized echo intensity to distinguish ground
and vegetation echoes, but as we lacked calibrat-
ed intensity measures our definition of understo-
ry cover relied solely on echo height. Many of the
ALS variables are correlated, and to aid model
interpretation, we pre-screened them to avoid
cross-correlation (r . 0.5), retaining the function-
ally most meaningful variables: canopy cover,
understory cover, 90th percentile of height (h90)
and coefficient of variation of height (hcv). A
single pulse can give several echoes, and we used
all echoes in the calculation of the variables in
order to use all the information and because
initial analyses showed better results than split-
ting into first and last echoes. Terrain variables
were extracted from the cell that each plot center
fell in.

Browse biomass models
We developed models for summer and winter

biomass of RAW, winter biomass of pine, and
total summer biomass and total winter biomass
separately. To fulfill the assumption of homoge-
neity of the variance, we used log-linear regres-
sions to model the available forage biomass. We
used three sets of predictor variables, inventory
variables alone, inventory and ALS variables
together, and ALS variables alone. Terrain
variables (elevation, slope, aspect and hill shade)
were always included as topography influences
growing conditions (Gartlan et al. 1986). We
allowed for an interaction between h90 and
canopy cover. Understory cover was log-trans-
formed. For each of the three sets of candidate
predictor variables, we identified the best model
by backwards selection using F-tests with cutoff
p¼ 0.05 (Murtaugh 2009). We assessed predictive
performance using K-fold cross-validation with
five folds, fitting the model to 80% of the data
and using it to predict observations for the
remaining 20%. From this, we determined the
variation explained by the model using squared

Pearson’s correlation coefficient between log-
transformed responses and predictions on log
scale. We assessed prediction accuracy by calcu-
lating the root-mean-square prediction error
(RMSPE) for predictions, both on the log scale
and back-transformed. We extrapolated our
results to map total available moose forage in
winter and summer across the study area. A grid
with 50 m3 50 m cells was superimposed on the
ALS point cloud and for each cell we calculated
the variables describing the vertical distribution
of echoes using the same definitions as for the
field plots. The resulting ALS raster maps were
used together with the rasterized forest inventory
variables to predict, cell by cell, the available
browse biomass according to the final models for
total winter biomass and total summer biomass.
We applied the bias-correction factor of Snowdon
(1991) to all predictions: after back-transforma-
tion from the log scale, they were multiplied by
the ratio of the average value of response
variables on the original scale to the average
value of the predicted values after back-transfor-
mation. All analyses were done in R 2.14.1 (R
Development Core Team 2011).

Moose data
In total 34 adult female moose were tranquil-

ized by dart gun from a helicopter, using
established techniques (Arnemo et al. 2003),
and fitted with GPS collars (Tellus Remote
GSM, Followit AB, Lindesberg, Sweden) pro-
grammed with a 1 hour relocation schedule. All
animal handling was carried out with permission
from the national management authority, the
Directorate for Nature Management (protocol
number: FOTS ID 1428), and evaluated and
approved in accordance with the ethical guide-
lines and legal requirements set by the Norwe-
gian Institute for Nature Research. Collar data
were collected from January to November 2007
(n¼16) and 2008 (n¼18) but the sample size was
reduced to 31 individuals during winter and to
20 individuals during summer due to collar
malfunctions and exclusion of individuals with
seasonal space use outside the area of ALS
coverage. All GPS locations collected within 24
h of marking were excluded. Winter length was
defined based on snow conditions (period with
�30 cm snow depth). In 2007 winter stretched
from 21 January until 8 April and in 2008 from 4
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January until 30 April. We defined summer as 1
June until 15 September for both years, and
excluded spring and autumn positions altogeth-
er. The average GPS-collar fix rate was 96%
(range 87–99%) during winter and 90% (range
83–97%) during summer. To correct for possible
bias in GPS fix success prior to analyzing habitat
selection, we simulated the missing GPS posi-
tions weighting by the terrain-specific probability
of obtaining a fix (Frair et al. 2004, van Beest et al.
2010b).

Moose habitat selection analysis
To evaluate how effectively the forage maps

and ALS information quantified habitat selection
of moose, we used RSFs and followed procedures
in van Beest et al. (2010b) as closely as possible.
RSFs are defined as any function proportional to
the probability of use of a resource unit by an
animal (Manly et al. 2002). We computed RSFs
for both summer and winter seasons and for two
spatial scales commonly investigated in basic and
applied ecology: where in the landscape seasonal
home ranges are located and where within
seasonal home ranges the animals spend time,
i.e., second and third selection order of Johnson
(1980). As such, habitat availability at the within
home range scale was estimated by drawing a
random sample of point locations from within
each individual’s wintering and summer home

range (delineated by a 95% minimum convex
polygon). Available points were selected in equal
number to the used points for each individual. At
the landscape scale, habitat availability was
defined as a random sample of point locations
from within the study area boundaries and we
considered availability at the within home range
scale as used points (Aebischer et al. 1993). For
each spatiotemporal scale, we compared six
candidate RSFs (Table 2) that had forest inven-
tory data, predicted forage availability, ALS
estimates of canopy and understory cover, or
some combination of these as predictor variables.
The resource (predictor variable) value at a used
or available point location was extracted from the
2500-m2 cell of the resource map that the point
fell within. A preliminary analysis showed a non-
linear relationship with selection so we included
a second order effect of canopy cover. At the
home range scale we included interactions
between all focal predictor variables and light
condition (dark, daylight, twilight) as moose
activity level depended on light conditions
(highest activity levels during twilight; F. M.
van Beest and J. M. Milner, unpublished data) and
this may be related to resource use. Candidate
models were selected a priori to assess whether
the ALS variables improved the predictive ability
of the RSFs, either directly by quantifying cover,
or through better forage estimates.

Table 2. The candidate moose RSF models compared within each combination of season and scale and the

interpretation of specific inter-model comparisons.

Model
no. Data origin

Focal predictor
variables Evaluation and interpretation

1 Forest inventory maps development class,
dominant species

If best model, ALS information doesn’t contribute
anything new to moose selection models and forest
stand classes capture moose selection better than
simple functional gradients of total forage biomass or
total amount of cover

2 Forage maps (inventory) total forage biomass If best model, ALS information doesn’t contribute
anything new to moose selection models and total
forage biomass is the main driver of selection patterns

3 Forage maps (ALS) total forage biomass If nearly as good as model 2, ALS-only forage maps
capture the wildlife-relevant variation in forage as well
as other forage maps

4 Forage maps (inventory &
ALS)

total forage biomass If better than model 2, ALS-improved forage maps lead
to improved predictions of moose space use

5 ALS variables canopy cover, understory
cover

If best model, ALS vegetation structure variables capture
important habitat variation better than the forage
estimates or the inventory categories, by capturing the
same and/or additional information

6 Forage maps (inventory)
and ALS variables

total forage biomass,
canopy cover,
understory cover

If better than model 4, ALS holds information relevant
to moose habitat selection beyond how it relates to
forage
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Coefficients of the exponential RSFs were
estimated from use–availability data in a
mixed-effects logistic regression (design III data;
Thomas and Taylor 2006) with moose ID as a
random intercept (Gillies et al. 2006). Mixed-
effect logistic regressions were fitted using the
library ‘lme4’ (Bates et al. 2012) implemented in
R (R Development Core Team 2011). For each
spatiotemporal scale, we compared the fit (using
AIC) and predictive performance (with K-fold
validation; Boyce et al. 2002) of the six pre-
defined candidate RSFs. For the K-fold cross-
validation procedure, the model was repeatedly
trained withholding 20% of the used locations
every time. The points withheld for validation
were then predicted using that model and their
RSF scores were binned into ten bins that each
represented an equal area, as calculated from the
available locations. We calculated the Spearman-
rank correlation (rs) between the number of
predicted used points in each bin and the bin
rank from low to high RSF score (Boyce et al.
2002). This procedure was repeated 100 times to
determine whether the rs was significantly
different from random.

RESULTS

Estimating biomass of browse forage
The explanatory power (R2) of the best forage

models for each browse category ranged from
0.35 to 0.58, while the K-fold cross-validated
Pearson r2 ranged from 0.28 to 0.50 (Table 3). All
models tended to over-predict at low biomass
and under-predict at higher biomass, so the
estimated quantity is better interpreted as a
relative rather than an absolute measure of
forage biomass (Appendix: Fig. A2). Models
including ALS variables typically had more
predictor variables. To ensure that the improve-
ment was not only due to the increased com-
plexity of the model, we made our comparison
on the basis of the cross-validation Pearson r2

and RMSPE. The models including both ALS and
inventory variables predicted as well or better
than the inventory-only models. By including
ALS variables, we could explain 7 percentage
points and 6 percentage points more of the
variation in total biomass for winter and sum-
mer, respectively, bringing the explained varia-
tion up to 45% and 28% (Table 3). The prediction

Table 3. Predictive ability of the best browse biomass models using inventory (inv), airborne laser scanning

(ALS), or inventory and ALS data; explained variation (R2), cross-validated explained variation (Pearson r2),

root mean square prediction error normalized to the mean value of the response (RMSPE %), and number of

estimated parameters (k).

Data type R2
Cross-validation�

Pearson r2
Cross-validation�

RMSPE (%)
Cross-validation�

RMSPE (%) k

RAW (winter)
inv 0.32 0.26 65.8 158 7
inv þ ALS 0.37 0.29 64.7 151 10
ALS 0.18 0.15 70.5 175 4

RAW (summer)
inv 0.33 0.28 52.9 159 7
inv þ ALS 0.36 0.29 52.6 158 11
ALS 0.10 0.09 59.2 176 1

Pine (winter)
inv 0.56 0.50 68.7 217 7
inv þ ALS 0.58 0.50 68.3 209 8
ALS 0.23 0.18 87.6 248 4

Total biomass (winter)
inv 0.45 0.38 33.5 145 (145) 8
inv þ ALS 0.52 0.45 31.5 151 (144) 11
ALS 0.30 0.24 37.0 176 (178) 5

Total biomass (summer)
inv 0.30 0.22 32.3 121 8
inv þ ALS 0.35 0.28 30.9 117 9
ALS 0.18 0.13 33.8 134 5

Notes: RAW¼rowan, aspen and goat willow. For total biomass winter the RMSPE of the back-transformed predictions with
one influential point removed is shown in parentheses.

� Calculated with log-transformed responses and predictions on log scale.
� Calculated with untransformed responses and back-transformed predictions.
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of biomass was not improved for pine, while it
was slightly improved for the RAW species.
Models that only used ALS variables had
consistently poorer predictive abilities than either
of the models including inventory variables
(Table 3).

ALS variables were generally included in
addition to the other variables, rather than
outperforming them. In particular, ALS variables
never replaced the inventory variables dominant
tree species and development class, which were
kept in nearly all relevant top models (Table 4).
The important ALS variables were canopy cover,
h90 in interaction with canopy cover, and
understory cover. For total biomass in winter
and summer, increasing ALS measured canopy
cover was negatively correlated with forage
availability (Fig. 1). For total biomass in winter,
the steepness of this slope depended on the
general height of the trees (h90), where taller
trees meant a steeper decline in forage availabil-
ity with canopy cover. An increase in understory
cover was related to an increase in available
forage biomass (Fig. 1). This was the case for all
models where understory cover was included
(Table 4).

The final product of browse modeling was
summer and winter forage maps, based on ALS
and/or inventory data. Fig. 2 shows maps based
on the best models using inventory and ALS data.

Habitat selection of moose
Overall, the best performing RSF models were

those containing ALS variables (models 5 and 6),
both in terms of AIC rank and K-fold validation
(Table 5). Although the RSFs based on the forest
inventory maps only (model 1) often had
relatively low AIC values, the K-fold validation
showed that these models had low predictive
power. The RSFs based on forage maps predicted
only by means of ALS (model 3) were never
ranked as the top-model. Moose selected for a
low or intermediate amount of canopy cover
depending on the time of day, season and spatial
scale of analyses, and typically against (and
never for) understory cover (Fig. 3; Tables A2–
A5). At the landscape scale, moose selected for
low canopy cover both during summer and
winter (Fig. 3A, B). At the home range scale,
moose selected for an intermediate optimum of
canopy cover during daytime (Fig. 3C, D). At
twilight and night, moose selected sites with
lower canopy cover as low canopy cover was
monotonically selected (summer: Fig. 3F, H) or
the optimum was shifted to lower canopy cover
relative to the daytime optimum (winter: Fig.
3E, G). Moose selected for sites with increased
forage biomass in all seasons and times of day at
both the landscape scale and the within home
range scale (all b . 0, all p , 0.05; Appendix:
Tables A2–A5).

Table 4. The best models for predicting available forage biomass by browse category.

Predictor variable

RAW Pine Total biomass

Winter Summer Winter Winter Summer

b SE b SE b SE b SE b SE

(Intercept) 3.30 0.97 3.80 1.1 3.09 0.60 6.32 0.94 6.76 0.65
Dominant tree species�

Pine �1.85 0.34 �2.42 0.40 1.93 0.40 0.31 0.35 �1.27 0.32
Spruce �0.96 0.33 �0.69 0.36 �1.25 0.37 �1.28 0.32 �1.11 0.29

Development class�
2 �0.60 0.37 �0.35 0.41 0.43 0.43 0.85 0.36 0.24 0.33
3 �0.78 0.39 �0.65 0.43 �0.98 0.43 �0.40 0.38 �0.52 0.33
4 0.06 0.39 0.57 0.43 �1.25 0.45 �0.05 0.38 0.26 0.34
5 �0.87 0.39 �0.63 0.43 �1.74 0.46 �1.15 0.38 �1.10 0.34

Productivity§
Low . . . . . . 0.71 0.37 1.24 0.36 0.83 0.33 0.91 0.27

h90 0.18 0.08 0.15 0.083 . . . . . . 0.070 0.073 . . . . . .
Canopy cover 4.82 1.92 2.88 2.3 �2.06 0.83 0.88 2.0 �2.61 0.65
h90:canopy cover �0.40 0.13 �0.31 0.15 . . . . . . �0.26 0.13 . . . . . .
log(understory cover) 0.53 0.19 0.43 0.21 . . . . . . 0.51 0.18 0.32 0.15

Note: RAW¼ rowan, aspen and goat willow.
� Reference level ¼mixed deciduous stands.
� Reference level¼ development class 1.
§ Reference level¼ high productivity.
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DISCUSSION

The lack of broad scale information on forage
and cover availability has often hampered
studies of spatial distribution of large herbivores,
as field-based inventories of forage at large
spatial and temporal scales are extremely costly
and rarely available. Remote sensing techniques
have great potential to fill this void as they can
extract detailed information on biotic or abiotic
environmental conditions relevant to ecological
studies (Pettorelli et al. 2014). Here, we presented
a novel use of ALS data to model browse

availability at the landscape scale in a managed
boreal forest. Incorporating ALS data moderately
improved models predicting browse biomass
compared to models only using inventory map
information. A significant challenge in our study
was to fully exploit the potential of ALS
information to estimate forage due to limitations
in matching laser data to field data. This resulted
in only conservative improvements in predictive
ability. Nonetheless, ALS is a promising tool for
quantifying forage for large browsers such as
moose. Our study further showed that the ALS-
based structural information on cover increased

Fig. 1. Predicted effects of airborne laser scanning variables on amount of available forage, from the best

models for total biomass in winter and summer (shown for deciduous stands of development class 2 with high

productivity). Shaded regions are 95% confidence intervals. For total winter biomass, effect of canopy cover is

shown for two values of 90th percentile echo height (h90) to show the interaction of the two variables. In that

panel, black is for h90¼ 11 m, grey is for h90¼ 17 m, this corresponds to the 20th and 80th percentiles of h90 in

the entire dataset. Rugplots along the x-axis show the distribution of the data.
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the predictive performance of moose habitat
selection models. The possibility to obtain de-
tailed and continuous maps of ‘‘new’’ environ-
mental descriptors from ALS data offers great
opportunities across a range of research disci-
plines in ecology, natural resource management
and conservation (Graf et al. 2009, Martinuzzi et
al. 2009, Wing et al. 2012).

The effectiveness of ALS to quantify browse
at broad scales

ALS increased explanatory power in the
browse models by capturing variability in cano-
py cover and density of understory vegetation
within and between forest stands of a given
combination of development class and dominant
tree species. Increasing canopy cover led to lower
available forage biomass. This harmonizes with
the general ecological and silvicultural under-

standing that canopy gaps alter understory
conditions by increasing light levels (Canham
1988) in favor of early colonizing species, such as
the forage species considered here. The interac-
tion between h90 (the 90th percentile height of
non-ground laser echoes) and canopy cover in
some of the models may be an expression of
‘‘effective openness’’ that depends on both the
height of the trees and canopy density. At the
same percentage canopy cover, shorter trees will
shade less than tall trees and therefore be
associated with a greater effective openness. In
contrast to canopy cover, the ALS measured
understory cover also had a strong positive
relationship with forage biomass. This is expect-
ed as understory cover consists of forage tree
species within browsing range of the moose.
Among remote sensing technologies, ALS is
uniquely suited to obtain such information on

Fig. 2. Maps of predicted browse availability in the study area in southern Norway. Areas with no forest

inventory data are shaded black, and include both non-forested land and forests under different ownership.
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the amount of understory, as some of the narrow
laser beams are able to penetrate through small
gaps in the canopy, even when it is relatively
dense.

Boreal forest ecosystems are dynamic land-
scapes with successional processes having a
considerable impact on the physical structure
and hence wildlife forage availability, including
browse (Angelstam and Kuuluvainen 2004).
Although natural processes such as fire and
storms can open up forest canopies, Scandina-
vian forest dynamics are largely determined by
silvicultural practices and clear-cutting (Kuulu-
vainen and Aakala 2011). Indeed, the inventory
variables forest development class and tree
species were never replaced by ALS variables in
the best models, which likely reflected the
importance of forestry practices in the dynamics
of wildlife forage availability. Although h90 is a
good overall measure of vegetation height
(Næsset and Bjerknes 2001), and thus the
development from young to old forests, the
categorical representation of stand age and
structure as development class in the inventory
maps performed better in the models. While ALS
can identify vegetation in the understory range,
distinguishing between preferred and non-pre-
ferred species or inedible material is more

difficult. Because of this, the improvement we
found in tree species-specific models was mar-
ginal compared to the improvement on total
browse biomass estimates. That none of the ALS
variables could be interpreted in terms of tree
species composition, was probably the main
reason that the ALS-only model did not perform
satisfactorily. As an alternative to using inventory
data as we did here, information on tree species
could be obtained using other remote sensing
techniques. Although there are no readily avail-
able ALS proxy measures of species composition,
it can be modeled by ALS data if one also
considers echo intensity measures (Brandtberg
2007, Suratno et al. 2009, Ørka et al. 2013).
Unfortunately, our ALS data did not have
calibrated intensity measures. Combining ALS
with multi- or hyperspectral images is another
option for obtaining reliable species classification
(Holmgren et al. 2008, Ørka et al. 2013). In the
Scandinavian forest management context, devel-
opment class, dominant tree species, site produc-
tivity and stand delineations are typically
obtained from stereographic photo interpreta-
tion. As ALS forest inventories commonly rely on
this information (Næsset 2004), development
class and tree species would be readily available
covariates if browse was estimated in conjunction

Table 5. Model fit according to AIC and model predictive performance according to K-fold cross-validation.

Scale Season Model no. k AIC DAIC AIC Wt LL K-fold rs

Landscape Winter 6 6 120887.8 0 1 �60437.88 0.83
5 5 120935.5 47.7 0 �60462.75 0.79
1 8 122320.7 1432.9 0 �61152.33 0.17
2 3 122531.3 1643.5 0 �61262.65 0.67
4 3 122648.8 1761.0 0 �61321.41 0.73
3 3 122721.5 1833.7 0 �61357.77 0.09�

Landscape Summer 6 6 71259.1 0 1 �35623.55 0.99
5 5 71285.9 26.8 0 �35637.92 0.99
1 8 71322.1 63.0 0 �35653.05 0.31
3 3 72830.3 1571.2 0 �36412.14 0.80
4 3 73091.4 1832.3 0 �36542.69 0.57
2 3 73167.4 1908.3 0 �36580.68 0.50

Home range Winter 6 16 124807.0 0 1 �62387.50 1.00
1 22 125766.5 959.5 0 �62861.25 0.59
5 13 126421.6 1614.6 0 �63197.81 1.00
2 7 127510.9 2703.9 0 �63748.47 0.92
4 7 128037.0 3230.0 0 �64011.52 0.78
3 7 129598.6 4791.6 0 �64792.32 0.82

Home range Summer 6 16 88182.2 0 1 �44075.11 0.97
5 13 88423.8 241.4 0 �44198.87 0.98
1 22 88814.0 631.8 0 �44385.01 0.59
4 7 89395.5 1213.3 0 �44690.74 0.71
2 7 89777.6 1595.2 0 �44881.80 0.81
3 7 90279.4 2097.2 0 �45132.69 0.82

Note: The models with the best K-fold values within each spatiotemporal scale are shown in boldface.
� K-fold values that were not better than random (two-sample t-test, p . 0.05).
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with this.

ALS can be a viable stand-alone alternative if it

can predict browse availability without a sub-

stantial drop in performance relative to the

inventory data. The predictive power of the

models based on only ALS was too low to

promote this as based on the current study, yet it

should not be excluded until tested under

optimal field sampling design. Here we aimed

to best exploit existing field data, with the

drawback that survey grade GPS receivers were

not used for plot positioning and only 10% of the

ALS plot area was measured in the field.

Furthermore, the four ALS projects were collect-

ed over a three year time span and were collected

with different acquisition settings. Addressing

Fig. 3. Relative probability of selection of canopy cover by moose in southern Norway by season, scale and

light condition. Panels show landscape scale (A, B) and home range scale during daylight (C, D), twilight (E, F)

and darkness (G, H). Note that y-axis values (relative probability of selection) can be compared within, but not

between models.
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these issues in future studies would reduce the
noise in the data (Gobakken and Næsset 2009)
with the expected consequence that ALS vari-
ables would capture more of the variation and
thus further improve predictions of browse
compared to our findings.

ALS improves understanding of habitat selection
In addition to forage, we framed our habitat

selection analyses specifically around the concept
of cover, which is an important structural
element of the habitat as it modifies interactions
with conspecifics or predators due to reduced
visual detection rates or hindrances in escaping
(Schooley et al. 1996, Heithaus et al. 2009, Camp
et al. 2013). Moreover, cover affects food avail-
ability and abiotic factors such as temperature,
wind speed, humidity, snow depth and precip-
itation (Mysterud and Østbye 1999). Our study
shows that incorporating ALS data improved
habitat selection models of moose. The main
contribution towards this result was through
quantification of cover, rather than the improve-
ment in forage predictions. Direct inclusion of
structural variables is a common approach to
ALS based habitat studies (Graf et al. 2009,
Coops et al. 2010, Melin et al. 2013), but the
ecological links are not always obvious. Habitat
selection studies that lack detailed field data on
forage and cover availability typically character-
ize habitat as ‘‘open’’ or ‘‘dense’’ (Godvik et al.
2009, Ciuti et al. 2012, Tolon et al. 2012) and
assume these are ‘‘forage’’ and ‘‘cover’’ habitat
types respectively. There are clear drawbacks to
this, as we can expect variation in selection
within habitat types (Blix et al. 2014) linked to
variation in one or multiple resources or charac-
teristics within a habitat type. By using ALS
instead of subjective habitat classes, we have
decoupled the physical structure of the habitat
from other resources, and moved towards a
direct investigation of animals’ habitat selection
on a functional gradient in cover that is fully
quantitative. Moose in our study avoided stands
with dense understory vegetation, implying that
they avoid visual shelter at ground level and (at
least weakly) high forage availability. Although
the reason for this finding remains unclear it
could be related to understory vegetation creat-
ing movement obstructions or reducing the
overview of the surroundings (Camp et al.

2013). The selection for open canopy at the
landscape scale likely reflected selection for
young forest stands, which is to be expected as
moose select for forage quantity at this scale (van
Beest et al. 2010b). At the within home range
scale, we observed a diurnal shift in use of cover.
In daytime, selection peaked at an intermediate
level of canopy cover. At intermediate levels,
animals limited their exposure to wind, sun, rain,
and humans, while actively selecting for forage
under these conditions. Moose selected forage
with a similar strength at night, but at the same
time were more willing to leave cover during the
dark or twilight hours, as is a common response
of ungulates subject to human disturbance and
risk in daytime (Crosmary et al. 2012, Bonnot et
al. 2013). Thermoregulatory behavior could also
explain some of the observed patterns and is
increasingly being reported as an important
driver of moose habitat selection across their
distribution (Dussault and Ouellet 2004, Melin et
al. 2014), including our study population (van
Beest et al. 2012). In support, the use of greater
canopy cover we observed in daytime may be
related to more favorable abiotic conditions in
the forest interior. The use of dense forest as
thermal shelter in response to critically high
temperatures, especially during summers, has
been identified as a fine-scale habitat selection
pattern in this population (van Beest et al. 2012),
with likely consequences for individual fitness
(van Beest and Milner 2013).

Conclusions
ALS data improved our ability to predict

browse biomass when used in combination with
traditional forest inventory information, such as
site productivity index, dominant tree species
and forest development class. In boreal forests,
there is also variation in habitat quality within
these habitat classes, and laser data captured
some aspects of this variation. Using ALS
techniques, we generated continuous measures
of ecologically meaningful quantities such as
understory cover density and canopy gaps,
which are related to forage availability, thermal
cover and hiding cover for wildlife. These are
important environmental descriptors that are
otherwise difficult to quantify in great detail
and over large areas. ALS data unfortunately has
a relatively large price tag: we estimate that the
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data used in our study cost around US $200 per
km2 to the initial collectors. But there are several
options for accessing ALS data at lower cost.
Existing data collected for other purposes may in
many regions be cheaply available to researchers
or managers. Costs could also be reduced by
undertaking collaborative data collection for
multiple purposes. In the Scandinavian coun-
tries, mapping of browse and cover could easily
be implemented on a large scale (nearly coun-
trywide) by incorporating it in the ongoing ALS
based forest inventories, as most stand level
forest inventories in Scandinavia now use this
method (Maltamo et al. 2011). This provides a
great opportunity to further integrate forest and
wildlife management (Milner et al. 2013). We
conclude that ALS characterizes functional hab-
itat gradients important to wildlife and has the
potential to bring us one step closer to effectively
quantify the abundance and distribution of large
herbivores at the spatial scale necessary for
sound management and conservation.
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SUPPLEMENTAL MATERIAL

APPENDIX

Table A1. Sensor and flight parameters for the four airborne laser scanning projects.

Parameter Skien Siljan Larvik Lardal

Instrument Optech ALTM Gemini Optech ALTM Gemini Optech ALTM Gemini Optech ALTM Gemini
Aircraft fixed wing fixed wing fixed wing fixed wing
Date of acquisition 5, 26–27 May 2008 2 June 2010 24 May 2010 21–25 May 2009
Average flying altitude 1400–1700 m a.g.l. 1600 m a.g.l. 1275 m a.g.l. 690 m a.g.l.
Flight speed 75 m s�1 75 m s�1 75 m s�1 80 m s�1

Pulse repetition frequency 70 kHz 70 kHz 100 kHz 125 kHz
Scan angle 23.08 19.08 20.08 12.08
Pulse density on ground

Mean 1.0 m�2 1.4 m�2 2.2 m�2 12.5 m�2

Range 0.5–2.8 m�2 0.7–2.6 m�2 0.9–4.4 m�2 7.9–22 m�2
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Table A2. Landscape scale winter exponential RSF coefficient estimates.

Model no. Fixed effect b SE z p

6 log(winter forage inventory) 0.041 0.006 6.63 ,0.001
arcsin(sqrt(canopy cover)) 0.468 0.140 3.33 ,0.001
arcsin(sqrt(canopy cover))2 �0.786 0.103 �7.60 ,0.001
arcsin(sqrt(understory cover)) �2.311 0.072 �32.16 ,0.001

5 arcsin(sqrt(canopy cover)) 0.580 0.140 4.15 ,0.001
arcsin(sqrt(canopy cover))2 �0.942 0.101 �9.33 ,0.001
arcsin(sqrt(understory cover)) �2.296 0.072 �31.98 ,0.001

4 log(winter forage combined) 0.063 0.005 12.96 ,0.001
3 log(winter forage als) �0.062 0.006 �9.79 ,0.001
2 log(winter forage inventory) 0.091 0.005 16.88 ,0.001
1 Development class�

2 0.305 0.045 6.84 ,0.001
3 0.173 0.044 3.89 ,0.001
4 �0.133 0.048 �2.76 0.006
5 0.230 0.046 5.04 ,0.001

Dominant tree species�
Pine 0.342 0.045 7.57 ,0.001
Spruce 0.306 0.043 7.06 ,0.001

� Reference level ¼ development class 1.
� Reference level¼mixed deciduous forest.

Table A3. Landscape scale summer exponential RSF coefficient estimates.

Model no. Fixed effect b SE z p

6 log(summer forage inventory) 0.075 0.014 5.36 ,0.001
arcsin(sqrt(canopy cover)) �0.366 0.175 �2.09 0.037
arcsin(sqrt(canopy cover))2 �0.878 0.131 �6.72 ,0.001
arcsin(sqrt(understory cover)) �2.062 0.098 �21.04 ,0.001

5 arcsin(sqrt(canopy cover)) �0.423 0.175 �2.42 0.016
arcsin(sqrt(canopy cover))2 �0.918 0.131 �7.03 ,0.001
arcsin(sqrt(understory cover)) �1.933 0.095 �20.38 ,0.001

4 log(summer forage combined) 0.193 0.009 21.19 ,0.001
3 log(summer forage als) �0.352 0.013 �26.43 ,0.001
2 log(summer forage inventory) 0.228 0.012 19.35 ,0.001
1 Development class�

2 0.833 0.073 11.43 ,0.001
3 0.551 0.073 7.56 ,0.001
4 �0.074 0.079 �0.94 0.348
5 1.267 0.074 17.18 ,0.001

Dominant tree species�
Pine 0.349 0.076 4.61 ,0.001
Spruce 0.875 0.073 11.93 ,0.001

Note: Symbols are as in Table A2.

Table A4. Home range winter exponential RSF coefficient estimates.

Model no. Fixed effect b SE z p

6 log(winter forage inventory) 0.247 0.009 27.61 ,0.001
arcsin(sqrt(canopy cover)) 4.174 0.232 17.97 ,0.001
arcsin(sqrt(canopy cover))2 �4.195 0.181 �23.12 ,0.001
arcsin(sqrt(understory cover)) �2.758 0.117 �23.64 ,0.001
Light condition§
Daylight �1.857 0.143 �12.94 ,0.001
Twilight �1.344 0.289 �4.64 ,0.001
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Table A4. Continued.

Model no. Fixed effect b SE z p

log(winter forage inventory) 3 Daylight 0.002 0.013 0.18 0.860
log(winter forage inventory) 3 Twilight 0.023 0.026 0.88 0.382
arcsin(sqrt(canopy cover)) 3 Daylight 3.260 0.365 8.94 ,0.001
arcsin(sqrt(canopy cover)) 3 Twilight 2.469 0.732 3.38 ,0.001
arcsin(sqrt(canopy cover))2 3 Daylight �1.154 0.273 �4.23 ,0.001
arcsin(sqrt(canopy cover))2 3 Twilight �1.262 0.557 �2.27 0.023
arcsin(sqrt(understory cover)) 3 Daylight 0.749 0.165 4.54 ,0.001
arcsin(sqrt(understory cover)) 3 Twilight 0.700 0.341 2.05 0.040

5 arcsin(sqrt(canopy cover)) 4.888 0.230 21.30 ,0.001
arcsin(sqrt(canopy cover))2 �5.235 0.177 �29.52 ,0.001
arcsin(sqrt(understory cover)) �2.683 0.116 �23.16 ,0.001
Light condition§
Daylight �1.823 0.125 �14.61 ,0.001
Twilight �1.152 0.246 �4.68 ,0.001

arcsin(sqrt(canopy cover)) 3 Daylight 3.256 0.360 9.04 ,0.001
arcsin(sqrt(canopy cover)) 3 Twilight 2.339 0.722 3.24 0.001
arcsin(sqrt(canopy cover))2 3 Daylight �1.141 0.267 �4.28 ,0.001
arcsin(sqrt(canopy cover))2 3 Twilight �1.226 0.545 �2.25 0.025
arcsin(sqrt(understory cover)) 3 Daylight 0.651 0.164 3.98 ,0.001
arcsin(sqrt(understory cover)) 3 Twilight 0.685 0.338 2.02 0.043

4 log(winter forage combined) 0.323 0.008 43.13 ,0.001
Light condition§
Daylight 0.568 0.055 10.41 ,0.001
Twilight 0.161 0.113 1.43 0.152

log(winter forage combined) 3 Daylight �0.110 0.010 �10.46 ,0.001
log(winter forage combined) 3 Twilight �0.034 0.022 �1.59 0.112

3 log(winter forage als) 0.327 0.011 30.61 ,0.001
Light condition§
Daylight 0.774 0.083 9.39 ,0.001
Twilight 0.184 0.170 1.08 0.279

log(winter forage als) 3 Daylight �0.138 0.015 �9.44 ,0.001
log(winter forage als) 3 Twilight �0.036 0.030 �1.21 0.228

2 log(winter forage inventory) 0.356 0.008 44.51 ,0.001
Light condition§
Daylight 0.423 0.059 7.22 ,0.001
Twilight 0.077 0.122 0.63 0.527

log(winter forage inventory) 3 Daylight �0.082 0.011 �7.28 ,0.001
1 Development class�

2 0.761 0.066 11.57 ,0.001
3 0.279 0.065 4.27 ,0.001
4 0.384 0.073 5.23 ,0.001
5 0.395 0.067 5.86 ,0.001

Dominant tree species�
Pine 0.639 0.070 9.17 ,0.001
Spruce �0.441 0.068 �6.44 ,0.001

Light condition§
Daylight �1.070 0.147 �7.31 ,0.001
Twilight �0.493 0.286 �1.72 0.085

Development class 3 Light condition
2 3 Daylight 0.625 0.110 5.69 ,0.001
3 3 Daylight 0.957 0.109 8.76 ,0.001
4 3 Daylight 0.825 0.119 6.93 ,0.001
5 3 Daylight 0.894 0.111 8.04 ,0.001
2 3 Twilight 0.161 0.204 0.79 0.431
3 3 Twilight 0.331 0.203 1.63 0.103
4 3 Twilight 0.048 0.227 0.21 0.833
5 3 Twilight 0.302 0.208 1.46 0.145

Dominant tree species 3 Light condition
Pine 3 Daylight 0.212 0.102 2.08 0.038
Spruce 3 Daylight 0.331 0.100 3.30 ,0.001
Pine 3 Twilight 0.249 0.211 1.18 0.239
Spruce 3 Twilight 0.258 0.207 1.25 0.213

� Reference level ¼ development class 1.
� Reference level¼mixed deciduous forest.
§ Reference level¼ darkness.
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Table A5. Home range summer exponential RSF coefficient estimates.

Model no. Fixed effect b SE z p

6 log(summer forage inventory) 0.196 0.028 7.12 ,0.001
arcsin(sqrt(canopy cover)) �3.062 0.312 �9.81 ,0.001
arcsin(sqrt(canopy cover))2 0.594 0.263 2.26 0.024
arcsin(sqrt(understory cover)) �1.128 0.210 �5.38 ,0.001
Light condition§
Daylight �2.846 0.189 �15.10 ,0.001
Twilight �0.519 0.284 �1.83 0.068

log(summer forage inventory) 3 Daylight 0.016 0.032 0.52 0.602
log(summer forage inventory) 3 Twilight �0.022 0.048 �0.45 0.652
arcsin(sqrt(canopy cover)) 3 Daylight 5.695 0.367 15.50 ,0.001
arcsin(sqrt(canopy cover)) 3 Twilight 0.380 0.551 0.69 0.490
arcsin(sqrt(canopy cover))2 3 Daylight �2.026 0.300 �6.75 ,0.001
arcsin(sqrt(canopy cover))2 3 Twilight 0.390 0.450 0.87 0.387
arcsin(sqrt(understory cover)) 3 Daylight 0.590 0.238 2.48 0.013
arcsin(sqrt(understory cover)) 3 Twilight 1.183 0.358 3.30 ,0.001

5 arcsin(sqrt(canopy cover)) �3.106 0.316 �9.84 ,0.001
arcsin(sqrt(canopy cover))2 0.377 0.264 1.43 0.154
arcsin(sqrt(understory cover)) �0.715 0.202 �3.54 ,0.001
Light condition§
Daylight �2.723 0.112 �24.36 ,0.001
Twilight �0.614 0.169 �3.64 ,0.001

arcsin(sqrt(canopy cover)) 3 Daylight 5.469 0.369 14.84 ,0.001
arcsin(sqrt(canopy cover)) 3 Twilight 0.343 0.555 0.62 0.537
arcsin(sqrt(canopy cover))2 3 Daylight �1.854 0.301 �6.17 ,0.001
arcsin(sqrt(canopy cover))2 3 Twilight 0.449 0.452 0.99 0.320
arcsin(sqrt(understory cover)) 3 Daylight 0.652 0.228 2.86 0.004
arcsin(sqrt(understory cover)) 3 Twilight 1.150 0.343 3.35 ,0.001

4 log(summer forage combined) 0.498 0.018 28.07 ,0.001
Light condition§
Daylight 2.332 0.096 24.27 ,0.001
Twilight 0.594 0.146 4.07 ,0.001

log(summer forage combined) 3 Daylight �0.501 0.020 �24.80 ,0.001
log(summer forage combined) 3 Twilight �0.123 0.031 �4.02 ,0.001

3 log(summer forage als) 0.283 0.028 10.29 ,0.001
Light condition§
Daylight 1.426 0.149 9.54 ,0.001
Twilight �0.154 0.231 �0.67 0.505

log(summer forage als) 3 Daylight �0.305 0.031 �9.79 ,0.001
log(summer forage als) 3 Twilight 0.030 0.048 0.63 0.528

2 log(summer forage inventory) 0.502 0.023 22.00 ,0.001
Light condition§
Daylight 1.919 0.123 15.62 ,0.001
Twilight 0.525 0.188 2.80 0.005

log(summer forage inventory) 3 Daylight �0.415 0.026 �15.86 ,0.001
1 Development class�

2 �0.263 0.111 �2.37 0.018
3 �1.458 0.114 �12.76 ,0.001
4 �0.831 0.130 �6.40 ,0.001
5 �0.959 0.116 �8.30 ,0.001

Dominant tree species�
Pine �0.762 0.202 �3.78 ,0.001
Spruce �0.122 0.195 �0.62 0.533

Light condition§
Daylight �1.524 0.261 �5.85 ,0.001
Twilight �0.287 0.388 �0.74 0.459

Development class 3 Light condition
2 3 Daylight 0.560 0.136 4.13 ,0.001
3 3 Daylight 1.775 0.139 12.81 ,0.001
4 3 Daylight 1.018 0.156 6.52 ,0.001
5 3 Daylight 1.429 0.140 10.21 ,0.001
2 3 Twilight �0.097 0.212 �0.46 0.645
3 3 Twilight 0.283 0.216 1.31 0.190
4 3 Twilight 0.020 0.244 0.08 0.936
5 3 Twilight 0.087 0.219 0.40 0.693
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Fig. A1. Map of the study area in southern Norway, showing land use, topography and the ground reference

field plots. The four ALS data projects that define the study area are outlined and named.

Table A5. Continued.

Model no. Fixed effect b SE z p

Dominant tree species 3 Light condition
Pine 3 Daylight 0.678 0.231 2.93 0.003
Spruce 3 Daylight 0.442 0.225 1.97 0.049
Pine 3 Twilight 0.377 0.339 1.11 0.266
Spruce 3 Twilight 0.269 0.328 0.82 0.413

Note: Symbols are as in Table A4.
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Fig. A2. K-fold (k¼ 5) cross-validation plots for the best forage biomass models based on forest inventory data

(inv), ALS data (ALS), or forest inventory and ALS data (invþALS). Modeled browse categories are (A, B, C)

RAW winter, (D, E, F) RAW summer, (G, H, I) pine winter, (J, K, L) total biomass winter, and (M, N, O) total

biomass summer. Two trend lines are shown: the ideal 1:1 relationship (black) and the least-squares trend line

(red) between predicted and field measured values. The original biomass data were in g/m2.
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