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Abstract  
Accurate estimates of tree biomass are necessary in order to realize climate change mitigation 

strategies such as large-scale carbon accounts of sources and sinks through time and biomass 

stocks for bioenergy. Biomass is also an important surrogate to evaluate the status of 

biodiversity, freshwater, and soil resources. Improving the estimation of biomass for each of 

these purposes begins with improving the estimate at the level of the individual tree and ends 

with that estimate scaled-up to the appropriate scale. This thesis sought to address specific 

knowledge gaps related to biomass estimation in Norway by improving individual tree 

biomass estimation through four peer-reviewed papers. In Paper I, single-tree allometric birch 

biomass functions were derived for total aboveground and component biomass. In Paper II, 

single-tree allometric birch biomass functions were derived for belowground and whole tree 

biomass. In Paper III, the uncertainty due to the vertical variation in dry weight to fresh 

weight ratio on the national birch stem biomass stock estimate was estimated for the first 

time. In Paper IV, extracted root system volume and 3D structure was estimated with a 

terrestrial laser scanner and quantitative structure modeling cylinder fitting. The derived 

allometric functions from Papers I and II are the best available for estimating birch biomass 

stock and stock change in Norway. The uncertainty due to the vertical variation in dry weight 

to fresh weight ratio from Paper III had a minimal effect on the national stem biomass 

estimate, but should be considered in future national biomass uncertainty estimates. Scanned 

root systems reconstructed with quantitative structure models provided accurate root volume 

estimates and 3D root system structure. The four papers have effectively improved biomass 

estimation in Norway and could be used to improve biomass estimation elsewhere.     

 

Keywords: aboveground biomass, belowground biomass, allometry, terrestrial laser scanning, 

uncertainty estimation 
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Sammendrag  
Nøyaktige beregninger av biomassen til enkelttrær er nødvendig for å realisere strategier som 

reduserer klimaendringer, for eksempel nasjonale karbonbudsjetter og skogbiomasse 

tilgjengelig for bioenergi. Biomasse er også en viktig variabel for å vurdere status for 

biologisk mangfold, ferskvanns-, og jordressurser. Forbedret biomasseestimering for hvert av 

disse formål begynner med å forbedre estimatet på enkelttrenivå og ender med at anslaget blir 

skalert opp til passende nivå. Denne avhandling behandler spesifikke kunnskapshull knyttet til 

biomasseestimering i Norge gjennom fire vitenskapelige artikler. I artikkel I ble allometriske 

biomassefunksjoner for enkelttrær av bjørk utledet for total overjordisk biomasse samt for 

ulike overjordiske biomassekomponenter. I artikkel II ble biomassefunksjoner for bjørk 

utledet for treets underjordiske dele og totalbiomassen. I artikkel III ble usikkerheten i 

nasjonale biomasseestimater for bjørk som skyldes den vertikale variasjonen av forholdet 

mellom tørrvekt og ferskvekt i stammen estimert. I artikkel IV ble volum og den 

tredimensjonale struktur av hele rotsystemet estimert ved hjelp av data fra en 

bakkelaserskanner gjennom kvantitativ strukturmodellering og sylindertilpasning. De 

utviklede funksjoner fra artiklene I og II er de beste tilgjengelige for beregning av stående 

biomasse og biomasseendringer for bjørk i Norge. Usikkerheten i biomasseestimater som 

skyldes vertikal variasjon i forholdet mellom tørrvekt og ferskvekt i bjørkestammer (artikkel 

III) hadde minimal effekt på nasjonale estimater for stammebiomasse, men bør vurderes i 

fremtidige anslag for usikkerheten i nasjonale biomasseestimater. Rotsystemer rekonstruert 

med kvantitative strukturmodeller fra laserskannerdata ga nøyaktige anslag over rotsystemets 

volum og tredimensjonale struktur. De fire artiklene har forbedret grunnlaget for 

biomasseestimering i Norge, og kan brukes til å forbedre biomasseestimering andre steder. 

 

Nøkkelord: overjordisk biomasse, underjordisk biomasse, allometri, terrestrisk laserskanning, 

usikkerhetsestimering 
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Introduction 
Global importance of tree biomass in a carbon context 
 Forests are vital to life on Earth. The biomass produced by trees and plants are the 

drivers of productivity in forest ecosystems. The forests of the world support the highest 

species diversity on the planet (Gaston 2000), conserve fresh water resources, and reduce soil 

erosion (Calder 2007). They provide renewable sources of timber, wood fiber, and energy that 

are critical to the well-being of humanity. Global forests currently comprise the largest 

terrestrial stock of carbon, which is equivalent to about 97 times the anthropogenic 

greenhouse gas emissions for the decade ending in 2009 (Ciais et al. 2013; Pan et al. 2011) 

while sequestering about 29% of emissions (Ciais et al. 2013). Remarkably, global forests 

have remained a carbon “sink” in spite of reductions to about 54% the original forest area of 

8000 years ago (Bryant et al. 1997) and exponentially increasing atmospheric carbon dioxide 

(CO2) concentrations starting around 1750 CE (Marlon et al. 2008). The reasons for the 

current terrestrial sink are unknown, but contributing factors are thought to be CO2 and 

nitrogen (N) fertilization from increasing atmospheric concentrations, lengthening of growing 

seasons from increasing temperatures, forests recovering from past harvests, and fire 

exclusion (Birdsey et al. 2006). The permanence of terrestrial carbon stocks are uncertain 

because climate change is projected to have unknown effects on global biomass stocks 

(Woodall et al. 2013). Future changes in the underlying mechanisms that affect the production 

of biomass may increase, decrease, or reverse the current terrestrial sink (Houghton 2007). 

 Biomass is identified as an important climate change mitigation tool under the United 

Nations Framework Convention on Climate Change (UNFCCC 2011) and the 

Intergovernmental Panel on Climate Change (IPCC) (IPCC 2006). The two primary 

mitigation measures regarding biomass are: (1) a coordinated global national reporting and 

monitoring of carbon sources and sinks under the Kyoto Protocol, and (2) substituting fossil 

fuels with tree-based and other sources of bioenergy. The effective implementation of each 

measure worldwide and associated offset schemes such as Reducing Emissions from 

Deforestation and Degradation have proven challenging (Baker et al. 2010). The significant 

uncertainties related to global biomass must ultimately be addressed by improving estimates 

at the national level (Baker et al. 2010). Improving national estimates necessitates addressing 

identified critical gaps in biomass estimation relevant to the specific country. In order to 

identify those gaps and to understand how they can be effectively addressed, it is important to 

understand what tree biomass is, its role in forest ecosystems, how it is estimated, the factors 
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that influence its estimation, how biomass is scaled-up to the national level, and the sources 

and magnitude of uncertainties in national biomass estimation. The specific gaps addressed in 

this thesis are particular to the estimation of tree biomass in Norway, but are methodologically 

and conceptually applicable elsewhere. 

 

Ecological role of individual tree biomass 
 Understanding tree biomass at any hierarchical level begins at the individual tree. The 

tree fixes atmospheric carbon (C) in the form of carbon dioxide (CO2) into glucose and 

releases oxygen through photosynthesis along with some CO2 through autotrophic respiration 

in the process of growth. Glucose is used by the tree to construct component biomass (tree 

parts) during growth as the building block of woody, foliar, and fruity tissues as well as 

metabolites. The growing tree also assimilates the growth-limiting nutrients N and 

phosphorus (P) (Chapin 1980) as well as other nutrients (e.g. potassium, calcium, magnesium) 

from the environment. N is fixed by N-fixing and nitrifying bacteria and taken up though 

roots in the form of ammonium or nitrate, while P is weathered from rocks and absorbed from 

the soil. N and P are often assimilated with the aid of symbiotic mycorrhizal fungi (Selosse et 

al. 2006). All the nutrients (most importantly C, N, and P) are allocated to the respective 

biomass components in varying concentrations depending on taxa (Harmon et al. 2013; Wang 

et al. 2000), tree species (e.g. Paré et al. 2013), and environmental conditions (Chapin et al. 

1987) including drought (Bloom et al. 1985). Allocation results in component nutrient 

gradients where, for example, the concentration of C is highest in bark  (Harmon et al. 2013) 

and lowest in foliage and concentrations of  N and P are higher in foliage than woody 

branches and higher in bark than in stemwood (Hingston et al. 1981; Paré et al. 2013). Similar 

gradients are observed in belowground components as well, where concentrations of N and P 

are higher in small roots than in large roots (Gordon and Jackson 2000; Hellsten et al. 2013). 

Coarse roots (usually > 2 mm) are primarily structural and resource-gathering in function and 

are not subject to as frequent and ephemeral turnover as fine roots (usually < 2 mm), which 

opportunistically gather resources and fluctuate throughout the year (Comeau and Kimmins 

1989; Keyes and Grier 1981). The rapid turnover of fine roots constitutes an important source 

of global soil organic carbon (Jackson et al. 1997). 

 Insects, fungi, and bacteria consume live as well as dead biomass and respire CO2 

back to the atmosphere through heterotrophic respiration during the processes of 

decomposition. Mineralized C, N, P, and other nutrients are released back into the 



17 
 

environment and used in primary production. Some of the mineralized nutrients are leached 

from the environment by running water. Decomposition is affected by moisture, temperature, 

C concentration, forest floor contact, and composition of the decomposer fungal community 

(Harmon et al. 2013; Stokland et al. 2012). The decay rate of dead biomass is affected by each 

of these factors, but also varies by taxa, species, size, and concentration of recalcitrant 

components (e.g. lignin) (Harmon et al. 2013; Russell et al. 2014b). Many predictions 

anticipate a global increase in decomposition rates as temperatures increase and existing 

moisture regimes change as a result of climate change (e.g. Russell et al. 2014a). 

 Inputs to the dead organic pool originate from disturbances such as fire, drought, 

blow-down from storms, insects and diseases, human activity, and single-tree mortality. 

Single-trees to entire forested landscapes can be affected by single or multiple disturbance 

agents so the quality of dead organic pool inputs are dependent on the type, severity, and 

frequency of the disturbance. Forests are perpetually in various states of recovery from 

disturbance; be it localized events ranging from single-tree mortality, to catastrophic stand 

replacement. The tree biomass in the recovering younger stand exhibits positive exponential 

growth and vegetative carbon sequestration, which begins to slow down and levels-off as the 

stand ages (Houghton 2005), and finally declines somewhat in the senescent old stand due to 

age-related mortality (Liu et al. 2014). A forested landscape at any given time can, therefore, 

be thought of as a mosaic of stands in various stages and qualities of recovery from the last 

disturbance event. Studies have shown that both the severity and frequency of disturbance 

have been increasing in recent decades due to climate change (Nabuurs et al. 2013; Skog et al. 

2014) and are likely to continue to do so in the future in pace with increasingly susceptible 

forest conditions (Joyce et al. 2014). 

 

Estimating tree biomass 
 Complete measures of aboveground, belowground, and even component tree biomass 

are often impractical (Pretzsch 2006) in all but small trees and sample sizes because they are 

so laborious to do. Therefore, tree component biomass is most often sampled and 

subsequently scaled-up to component estimates for the individual tree. Either the field fresh 

weight (fresh weight) or the volume of the sample is measured and the sample is forced-air 

oven dried (often at 103ºC) to constant mass (dry weight). Component biomass is then 

commonly expressed with the ratio estimator (Cochran 1977) as either a ratio   or as 

density , where Y is the estimated biomass, y is the sample dry weight, x is the sample 
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fresh weight, and v is the water-saturated (basic density) or green (specific gravity) sample 

volume, and X and V are the component total fresh weight and total volume respectively.  

The whole-tree as well as component biomass are most commonly expressed as the 

allometric (Robinson and Hamann 2010) or power (Sit and Poulin-Costello 1994) function. 

The allometric function is expressed as  in the original scale and as  

 in the natural-logarithm linearized form, where Y is biomass, a and b are scaling 

parameters to be estimated, and X is the explanatory variable (usually dbh). The fitted log-

linear equation is retransformed to the original scale by , 

which can introduce some degree of bias in the original scale (Flewelling and Pienaar 1981; 

Taylor 1986; Wirth et al. 2004). Commonly used correction factors in biomass estimation are: 

(1)   where  is the estimated sample variance (Baskerville 1972; Flewelling and 

Pienaar 1981); and (2)  where  is the unbiased estimate of the response, 

 are the estimated residuals, and n is the number of observations (Duan 1983). Component 

biomass is estimated with separate functions which are not truly additive to whole-tree 

biomass (i.e. ) and are contemporaneously correlated 

across models (Parresol 2001). Estimates of added biomass components must either accept 

this error or force additivity of the models through processes such as seemingly unrelated 

regression (Parresol 1999; Parresol 2001). 

Above- and belowground tree allometry is correlated to diameter at breast height 

(commonly 1.3 m) over bark (dbh), and tree height. Tree dbh and height are relatively easily 

obtained and are the most commonly used explanatory variables in allometric biomass 

functions. The most predictive explanatory variable is dbh, commonly explaining more than 

95% of the variation in component biomass and is often considered sufficient at local scales 

(e.g. Ter-Mikaelian and Korzukhin 1997; Zianis et al. 2005) due to the high correlation 

between dbh and height in the same stand or groups of stands. The inclusion of height as an 

explanatory variable in the allometric function, commonly in the form  

(several other forms are also used but not described here), slightly improves many allometric 

fits, has been considered more important at larger scales when biomass is to be estimated 

across a wider range of conditions (Lambert et al. 2005), and to reduce site level differences 

in crown biomass (Bartelink 1996). There is a limitation in dbh in that it cannot be directly 

obtained remotely from the air. Height is limited because alone it explains approximately 80% 

of whole tree and aboveground biomass respectively (Paper II; unpublished from Paper I), can 
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be difficult and time consuming to obtain from the ground, and has proven difficult but is now 

possible to obtain remotely (e.g. Kellndorfer et al. 2010; Lefsky et al. 2005). 

Stem volume is linearly correlated to stem biomass (e.g. Boudewyn et al. 2007) 

because it is an expression of dbh and height. It constitutes proportionally the largest biomass 

component. Importantly, this relationship is exploited to derive biomass expansion factors 

(BEFs), which expand stand volume directly to stand component biomass. For example, this 

relationship can be derived from the BEF , where  is the estimated biomass for 

component i for all the trees on sample plot p,  is the biomass estimate of component i for a 

tree obtained from an allometric biomass function,  are the number of trees measured on 

the sample plot, and  is the stem volume estimate for a tree on the sample plot obtained 

from a volume function (Lehtonen et al. 2004).  

Other predictor variables that explain biomass variation are age, wood density, site 

quality, and crown dimensions, which are used along with dbh and sometimes height. The 

species of the tree is important, but is implicit in species-specific allometric functions. Age 

has been used by a number of authors in allometric functions (Joosten et al. 2004; Marklund 

1987; Marklund 1988; Porté et al. 2002; Skovsgaard et al. 2006; Wirth et al. 2004) and is 

considered an important predictor at the stand level in BEFs (aka age-dependent BEFs) to 

explain variation due to changing biomass partitioning in aging stands (Petersson et al. 2012). 

Wood density significantly improves biomass predictions in the tropics (Chave et al. 2005; 

Ketterings et al. 2001) and is a significant variable in the temperate hardwood zone of North 

America (Ducey 2012; Woodall et al. 2015) in mixed species functions. Site index 

(Skovsgaard et al. 2011; Wirth et al. 2004) and elevation (Wirth et al. 2004) were significant 

variables for Norway spruce (Picea abies (L.) Karst.) biomass across a large region spanning 

from southern to northern central Europe.  

 

Factors that influence tree biomass estimation 
 Since tree biomass is fundamentally estimated with the allometric function , 

it is instructive to discuss the factors that influence the estimate in terms of their effects on the 

model parameters. The estimated parameter a can be roughly considered to be a species 

normalization constant, which can differ significantly between herbaceous and woody plants 

(Pretzsch et al. 2012), but does not differ as much between tree species or within components 

(e.g. Ter-Mikaelian and Korzukhin 1997). The allometric exponent b of the allometric 
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function has a distinct physiological interpretation, which is described by   where y is 

the dimension of the first plant dimension (e.g. tree height) and x is the dimension of the 

second plant dimension (e.g. stem diameter) (Pretzsch 2009; Pretzsch et al. 2012). The 

allometric exponent  is the manner in which resources are distributed relative to the 

proportions of y and x and is therefore a measure of plant’s internal distribution strategy and 

balance (Pretzsch 2009). For example, in an isometric relationship (i.e. a 1:1 relationship) of 

the allometric relationship of height over stem diameter , for every 1% 

stem diameter increased, height would also increase 1%. Values less than one would indicate 

a distribution of resources to diameter at the expense of height and values greater than one 

would indicate a distribution of resources to height at the expense of diameter. The 

interpretation of b in the allometric function is that when X (e.g. dbh) increases by 1%, Y (e.g. 

biomass) increases by b% (Pretzsch 2009). “The values of a and b are reported to vary with 

species, stand age, site quality, climate, and stocking of stands…” (Zianis and Mencuccini 

2004), but the manner in which they do so is an on-going debate in the literature. 

 Two important theories which describe the allocation of biomass in plants are 

Allometric Partitioning Theory (APT) (Enquist and Niklas 2002; Pretzsch et al. 2012) and 

Optimal Partitioning Theory (OPT) (Bloom et al. 1985; Pretzsch et al. 2012). The primary 

observation of APT is that ln-linearized relationships exist for foliage over diameter, leaf over 

root, leaf over stem, and stem over root biomass. Extraordinarily, these relationships are 

found across 10 fold variations in plant sizes, herbaceous plants, woody plants, taxa, species, 

stand age, latitude, elevation, and number of species in the community (Enquist and Niklas 

2002; Niklas 2004). APT asserts that these relationships exist in spite of well documented 

site-specific adaptation to varying environments, which are slight compared to the observed 

invariance. According to APT, any variation in allometric partitioning due to environmental 

factors, resource supply, or growth (i.e. age-related allometric partitioning) occurs in the a 

parameter and b is assumed to be constant and “universal” (Enquist and Niklas 2002; Pretzsch 

et al. 2012).  

In contrast, OPT asserts that plants are allometrically plastic beyond the age-related 

plasticity theorized by APT because plants will invest into improving access to the currently 

limiting resource factor by allocating resources to the plant organ responsible for obtaining 

that resource (Bloom et al. 1985). For example, plant plasticity allows pockets of high 

concentrations of a limiting nutrient in the soil to be exploited by allocating reserves to root 

growth at the expense of shoot growth (Chapin 1980). This is an advantage for a plant 
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growing in an environment where requirements for light, water, and nutrients are relatively 

similar among competitors, but the available resources can be ephemeral and heterogeneously 

distributed at large and fine scales (Bloom et al. 1985). Furthermore, what may be a 

successful strategy in one climate could be disastrous in another so the optimal solution is to 

plan for both more stable long-term and more variable short-term conditions (Bloom et al. 

1985). OPT implies that growth in one organ is possible at the expense of growth in another, 

which has been observed in mature Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco 

(Keyes and Grier 1981), eastern white pine (Pinus strobus L.) (Peichl and Arain 2007), in the 

North American temperate hardwood and American Tropics (Jordan and Herrera 1981), and 

in 4-year-old loblolly pine (Pinus taeda L.) (Retzlaff et al. 2001). OPT predicts that both the a 

and b parameters of the allometric function can be modified by environmental conditions in 

space and time (Pretzsch et al. 2012). 

 APT and OPT appear to be incongruous with each other while simultaneously 

explaining well documented phenomena, but may be explaining concurrent allometric 

partitioning processes occurring at different scales. For example, APT predicts a constant 

b = ¾ for the allometric biomass relationships  and  

(Enquist and Niklas 2002), which seems to be contradictory to many studies who have found 

varying values for b (e.g. Pretzsch and Dieler 2012). However, different combinations of 

scaling exponent values could each result in the same ¾ scaler value and that the covariations 

of the other relationships can cancel, compensate, or enhance the scaling on the tree-level 

actually allowing the tree to approximate the ¾ scaler in changing and variable environmental 

conditions (Pretzsch and Dieler 2012). APT then may be described by long-term acting site 

conditions (Pretzsch et al. 2012) acting at macro scales (Price et al. 2010), but OPT must be 

considered to describe plasticity at the stand-level where localized heterogeneously 

distributed resources are more influential on individual tree allometric partitioning (Pretzsch 

and Dieler 2012).    

 

Tree species 

 Different tree species have evolved different genetically determined (Weiner 2004) 

resource allocation strategies (Müller et al. 2000) through the processes of natural selection. 

These species-specific strategies can be considered as competitive strengths in the 

competition for limited resources, which are so prevalent at the stand-level in a constantly 

changing and variable environment. For example, Norway spruce tends to allocate more 

resources to height growth than to lateral expansion of the crown whereas European beech 
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(Fagus sylvatica) and sessile oak (Quercus petraea) tend to allocate more resources to lateral 

expansion rather than vertical expansion of the crown (Pretzsch and Dieler 2012). Strategies 

such as these, appear to result in species-specific allometric exponent b values for common 

allometric relationships such as  and  while still varying within a range 

as the tree responds to long-term and local changing stand conditions (Pretzsch and Dieler 

2012; Pretzsch et al. 2012).  

 These species-specific allometric relationships are, in turn, responsible for species-

specific biomass allocation patterns, which can be seen in side-by-side comparisons of the 

differing biomass allocation patterns in the same components between species. One good 

example of this comes from the Finnish national biomass functions for Norway spruce, Scots 

pine (Pinus sylvestris), and birch (Betula pendula Roth and Betula pubescens Ehrh.) (Repola 

2008; Repola 2009), which were applied to Finnish National Forest Inventory data. In 

decreasing order: more stem biomass was produced by birch, spruce, and pine; for living 

crown the order was spruce, birch, and pine; and for stump and roots the order was spruce, 

with similar predictions for pine and birch (Repola 2008; Repola 2009). Similar species-

specific biomass allocation can be seen in other boreal hardwood species (Johansson 2007; 

Korsmo 1995) and in temperate hardwood and softwood species mixes (Jenkins et al. 2003).    

 The biomass partitioning observed in different species is a combination of the 

response to local environmental conditions and the particular genetic composition of the tree. 

Genetically controlled differences in biomass partitioning within a species have been 

observed at a variety of hierarchical levels of organization. At the provenance level, 5-6 

month-old open-pollinated maritime pine (Pinus pinaster Ait.) from provenances from 

France, Central Spain, Southern Spain, and Morocco, produced more stem biomass if they 

originated from the two northern provenances and more root biomass if from the two southern 

provenances (Aranda et al. 2010). This was interpreted as largely being the genetically 

controlled expression of biomass partitioning related to the genetic adaptation to the selective 

pressures of the environmental conditions of the originating provenance (Aranda et al. 2010). 

At the family level, a sample of 1-2 year-old hybrid poplar (Populus spp.) genotypes from two 

families produced significantly different total, shoot, and root biomass between the two 

families (Wullschleger et al. 2005). At the clone level, the a and b parameter values of 

allometric aboveground biomass functions of 4-year-old poplar hybrid coppice cuttings, 

varied considerably along with aboveground biomass between the clones (Laureysens et al. 

2004). Similar results were obtained for poplar hybrid clones (Fang et al. 1999) and a mixture 

of willow (Salix spp.) and poplar hybrid clones (Labrecque and Teodorescu 2005). At the 
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level of individual tree genetics, above- and belowground hybrid poplar component biomass 

partitioning was determined by quantitative trait loci analysis to be under genetic control, 

which explained, on average, 11.2% of the phenotypic variation (Wullschleger et al. 2005).  

Wood density varies by species, vertically, and radially within the stem in a pattern 

characteristic of the species (e.g. Repola 2006), but is also affected by yearly weather 

fluctuations, stand characteristics, and genetics (Steffenrem et al. 2014). Wood density is an 

important fundamental property of biomass. The emerging theory of “fast-slow” plant 

economics spectrums suggests that less dense species tend to occupy sites more quickly, have 

less biomass accretion relative to volume, and have higher mortality, whereas, denser species 

occupy sites more slowly due to the higher wood construction costs and have lower mortality 

(Reich 2014; Woodall et al. 2015), which affect tree allometry and are important 

considerations in biomass sequestration longevity.  

   

Stand age 

 As trees age the proportion of biomass that is allocated to different biomass 

components changes thereby changing the allometric relationships in accordance with APT. 

Several generalizations of expected age-related partitioning are available from literature. 

There is a tendency for crown biomass portions to decrease while stem biomass increases 

with age as found in, for example, Scots pine (Helmisaari et al. 2002; Petersson et al. 2012) 

and white pine (Pinus strobus) (Peichl and Arain 2007). Coarse roots tend to decrease slightly 

(Helmisaari et al. 2002; Peichl and Arain 2007) or increase slightly (Petersson et al. 2012). 

Fine roots of boreal Norway spruce and Scots pine increased until about 100 years of age and 

then declined (Yuan and Chen 2010). Studies have also found that the a and b parameters 

values changed in allometric functions fit to the same species at different ages, suggesting 

age-related partitioning. This was observed in 40 and 70 year-old red maple (Acer rubrum) 

(Crow and Erdmann 1983) and in 2, 15, 30, and 65 year-old white pine (Peichl and Arain 

2007). 

 

Site quality 

 Light, water, nutrients and heat are the most limiting resources for tree growth and 

together define the quality of a site. They influence tree biomass alone locally, in 

combination, or expressed as a complex (e.g. the proxy site index) over long time periods. 

OPT states that trees will allocate resources to the organ that is responsible for obtaining the 
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limiting resource, thereby changing its allometry in response to a changing environment 

(Bloom et al. 1985).  

Light is often the most limiting of the three resources for individuals in forests 

(Chapin 1980) explaining 40% of the variation in growth of lodgepole pine (Pinus contorta 

Dougl. ex Loud. var. latifolia), interior spruce (Picea glauca x engelmanii (Moench) Voss), 

and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) saplings (Lilles and Astrup 2012). Trees 

respond to light limitation by investing in shoot growth at the expense of root growth (Bloom 

et al. 1985), however the response may be size dependent in these species and only significant 

above a certain size (Lilles and Astrup 2012).   

Tree growth is inhibited by lack of water leading to lower increment of biomass 

(Comeau and Kimmins 1989), which varies seasonally and among habitats (Bloom et al. 

1985). Trees respond to low water (droughty) environments by investing in root growth to 

obtain more of the limiting resource at the expense of shoot growth (Bloom et al. 1985) to a 

tolerance threshold, below which, both root and shoot partitioning declines (e.g. Tschaplinski 

et al. 1998). Lodgpole pine (Pinus contorta Dougl. ex Loud) responded to a 6 year droughty 

period by allocating more resources to belowground parts compared to the non-droughty 

period (Pretzsch et al. 2012). Another study found that fine and small root biomass (< 5mm) 

represented 4% and 1.5% of total tree biomass on xeric (dry) and mesic (intermediate) sites 

respectively in 70-80 year-old lodgepole pine (Comeau and Kimmins 1989).  

 The primary response of trees to limiting nutrient environments is to allocate resources 

to belowground biomass to obtain those resources as predicted by OPT. Nutrient and water 

stressed plants show the greatest fine root growth in zones of localized nutrient and water 

abundance  and reduced fine root growth in localized zones of low nutrient and water 

availability (Bloom et al. 1985). Fine root biomass also decreases significantly in 

environments that are rich in N and P (Yuan and Chen 2010) because the nutrients are no 

longer limiting, however, responses may be species-specific (Müller et al. 2000).  

 Plants that are characteristic of rich and poor sites have different adaptation strategies 

to deal with limited resources. Plants that are characteristic of resource-rich environments are 

generally highly plastic in their allometric response to environmental stress, which allows 

them to take full advantage of heterogeneously dispersed resources (Bloom et al. 1985). 

Resource rich sites do not limit trees as much as on poor sites even in adverse periods 

(Pretzsch et al. 2012). In contrast, plants that are characteristic of resource-poor environments 

are generally less plastic in their allocation pattern because they experience a chronic lack of 

resources, have fixed high root-to-shoot ratios that change relatively little in response to 
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changing environmental conditions, and low growth rates (Bloom et al. 1985). Maritime pine 

seedlings from poor sites exhibited less responsiveness to drought than did seedlings from 

better sites (Aranda et al. 2010). Pretzsch et al. (2012) found that lodgepole pine of a given 

dbh and height had much more belowground biomass on poor sites than trees of the same size 

on rich sites.  

 The ln-linearized allometric relationship  describes the partitioning of 

biomass in the whole tree and has different values depending on the site index. Poorer site 

indices had a higher values (steeper slopes) than resource-rich site indices, indicating 

proportionally more biomass allocated belowground on poorer sites (Pretzsch et al. 2012). 

Forty year-old Douglas-fir growing on good sites had more aboveground (13.7 tons/ha), less 

coarse roots (4.1 tons/ha), and less fine roots (8% of total dry matter), whereas poor sites had 

less aboveground (7.3 tons/ha), more coarse roots (8.1 tons/ha), and more fine roots (36% of 

total dry matter) (Keyes and Grier 1981). 

 Temperature is the major determinant of the seasonal processes which regulate 

biomass in the boreal and temperate forest, whereas in the tropics seasonality is minimal so 

the effects of temperature are less pronounced (Malhi et al. 1999) and in tropical and arid 

regions the availability of water is more important (Wang et al. 2006). Temperature affects 

large-scale processes that are important for biomass including: (1) the length of the growing 

season; (2) the length of the period of snow cover; (3) the amount of cloud cover in the 

growing season; and (4) the occurrence of drought in the late summer (Malhi et al. 1999). 

Increasing temperatures led to higher stand biomass in six major broadleaf and conifer forest 

types in an elevational gradient of northeast China (Wang et al. 2006). Increasing mean 

annual temperature and precipitation increases fine root biomass, production, and turnover 

rate in the boreal zone (Yuan and Chen 2010). Decreasing temperatures result in less soil 

biological activity, suppressed nutrient mineralization, nutrient poor environments, and less 

aboveground biomass production (Oleksyn et al. 1999; Ward et al. 2014). Consistent with 

these observations, 4 month-old Scots pine from 24 European countries allocated 

proportionally more biomass to roots with increasing latitude from the originating seed source 

(Oleksyn et al. 1992). The pattern of increased allocation to belowground biomass could be 

one of the contributing factors for the observed slower aboveground growth because of its 

impact on the whole tree growth rate (Oleksyn et al. 1999). 
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Stand stocking 

 It is in the context of the stand that inter-tree competition for available light, water, 

and nutrients takes place as trees compete for these resources and space (Pretzsch and Dieler 

2012). Significant deviations from long term site-level factors predicted by APT become more 

pronounced with increasing stand density as processes predicted by OPT become increasingly 

apparent. The majority of studies have identified a relationship between stand density and its 

effect on component biomass partitioning. One exception to this is that stem weight, crown 

weight, and weight of branches were independent of stand density in balsam fir 

(Abies balsamea L.) (Baskerville 1965). Several studies have found that individual tree 

biomass decreases in response to increasing stand density. In an extensive meta-analysis of 

conifer and angiosperm biomass datasets form around the world, the total plant biomass 

(above- + belowground biomass) decreased with increasing number of plants per hectare 

(Enquist and Niklas 2002). The same relationship was found in Aspen 

(Populus tremuloides Michx.), which showed decreasing aboveground biomass per tree with 

increasing stand density (Lieffers and Campbell 1984). The same relationship was found for 

mature common beech (Fagus sylvatica), Norway spruce, Scots pine, and sessile oak, where 

biomass per tree decreased with increasing stand density (Pretzsch 2006).  

When stand biomass density (biomass mass/ha) is examined, the relationship changes 

and more dense stands carry more biomass on an area basis. In a trial of 12 year-old silver and 

downy birch, increasing stand density increased total biomass per hectare (Johansson 2007). 

There appears to be more stand biomass stock in unmanaged compared to managed forest 

stands (Lindner et al. 2008). In a study of three clones over six years, hybrid Poplar 

aboveground productivity was affected considerably by planting density, with the highest 

productivity occurring in the highest stocked stand (Fang et al. 1999).  

 In a closing stand canopy the inter-tree competition for available light becomes more 

intense. Diameter growth is reduced due to the competition, tree stems become more slender, 

and height growth becomes reduced under very strong competition (Brunner and Nigh 2000). 

Conversely, trees in a more open stand tend to allocate more resources to diameter growth 

with reduced competition (Pretzsch 2009). The effect of the slenderizing stem due to 

competition can be directly demonstrated in the change of the allometric relationship of 

 between two points in time 1994-2005. For a sample of 107 mixed maturity 

European beech, the allometric relationship  =  was b = 0.85 with a 

range = 0.1-3.5. This means that for every 1% the diameter increased, the height increased by 
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0.85% on average. For the smaller understory trees, the slope of b was higher (steeper) for a 

given diameter indicating that the tree had allocated resources to height growth at the expense 

of diameter growth over the eleven year period, whereas for dominant trees, the height growth 

was less corresponding to a shallower slope for b and more resources allocated to diameter 

growth (Pretzsch 2009). Slenderizing stems at the expense of lateral stem growth is more 

prominent in shade intolerant species (Bloom et al. 1985) such as birch and poplar. Several 

studies have found similar results. Proportionally, more stem biomass was observed in 

suppressed European beech trees compared to dominant trees (Bartelink 1997). Suppressed 

10-48 year-old loblolly pine (Pinus taeda L.), which partitioned approximately 75% of whole 

tree biomass to the stem compared to dominant trees which partitioned approximately 60% 

(Naidu et al. 1998). Suppressed trees had proportionally more stem biomass than dominant 

individuals in 9-39 year-old Douglas-fir (Bartelink 1996). In 5-220 year-old Antarctic Beech 

(Nothofagus antarctica), suppressed trees had less leaf, stem, and root biomass than did co-

dominant and dominant trees across a diameter range of 2-30 mm and three site classes 

(Verónica et al. 2010). 

Crowns of trees respond strongly to stand density and crown position in relation to 

other individuals in both angiosperms and gymnosperms in an attempt to maximize light 

capture (Purves et al. 2007). In 30-year-old silver birch, crown length decreased with 

increasing stand density (Ilomäki et al. 2003). In Douglas-fir 9-39 years-old, suppressed trees 

had relatively much less crown biomass than dominant individuals, which was attributed to a 

lower growth rate and associated stem growth.  

 The relationship between stand density and root biomass is less clear, but the 

proportion of coarse root biomass significantly declines with increasing sample plot basal area 

in birch (Paper II). Mature Norway spruce and Scots pine had increasing fine root biomass per 

tree with increasing basal area per tree (Helmisaari et al. 2007). Overtopped shade-intolerant 

species exhibit a disproportionate reduction in growth of lateral fine roots (Bloom et al. 1985). 

 

Scaling-up individual tree biomass 
The variability sampled in the individual trees from the stand is used to represent stand 

biomass in allometric functions. Stand-level estimates of above- and belowground biomass 

have been produced since the beginning of tree biomass estimation (e.g. Baskerville 1965; 

Bunce 1968; Weetman and Harland 1964). The plot- and site-level data remain the key to 

understanding the underlying processes of carbon sequestration, emissions, and the varied 
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effects of natural and management-induced disturbance (Lindner et al. 2008). Stand-level 

allometric biomass functions were traditionally developed for production studies (e.g. 

Baskerville 1965), ecosystem function studies related to nutrient cycling (e.g. MacLean and 

Wein 1976), tree-based bioenergy studies (e.g. Bridge 1979), and sustainable planning studies 

(Zianis and Mencuccini 2004). Landscape and larger scale estimates became increasingly 

necessary for the same purposes, but often functions were not available for the desired site 

and could not be derived. When forest carbon accounting became important, there was a big 

push for regional and national-level biomass estimation studies. Extensive function reviews 

were conducted for North America (Ter-Mikaelian and Korzukhin 1997) and Europe (Zianis 

et al. 2005), which consisted of many of the existing site-level studies for many species from 

the respective continents. A fundamental problem of large area biomass estimation is how to 

use the available site-level functions to estimate biomass of a large area when functions 

designed specifically for that larger area do not exist. Some of the recommendations are: (1) 

find the geographically closest site (Ter-Mikaelian and Korzukhin 1997); (2) use several 

functions to estimate a range of biomass (Ter-Mikaelian and Korzukhin 1997); (3) generate 

biomass data using various published functions and fit new functions to the generated data, 

sometimes called generalized regression (Pastor et al. 1984), which has been used for 

landscape (Zianis and Mencuccini 2003) and national biomass estimation (Jenkins et al. 2003; 

Jenkins et al. 2004; Muukkonen 2007); and (4) sample trees of different sizes from a 

representative sample of species, regions, and sites across the area of interest (Muukkonen 

2007; Paper I). 

There are several available methods to obtain national biomass stock and stock change 

estimates. The most accurate estimates are based on sample-based national forest or biomass 

inventory data where allometric variables for plot trees (e.g. dbh and height) are utilized 

directly. Species-specific allometric functions derived from a representative sample of the 

inventoried population are then applied to obtain aboveground, belowground, and component 

tree biomass. The estimated plot biomass is representative of a given area of the forested 

landscape, which is then scaled-up to a national biomass estimate. Such estimates are direct, 

fairly precise, are technologically simple, and allow for reliable monitoring of biomass stock 

over large areas and long time periods (Malhi et al. 1999). However, they are invariably 

incomplete (i.e. not all C pools are represented), they are labor intensive, not spatially explicit 

for areas smaller than the sampled area, and provide only intermittent records of C stock, 

which may not capture seasonal and inter-annual changes (Malhi et al. 1999). 
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Belowground tree biomass is the most difficult component to estimate accurately 

because of the labor and cost required to obtain nationally representative belowground 

biomass functions and the ephemeral nature of fine roots, which vary significantly throughout 

the year and in response to local environmental conditions (e.g. Keyes and Grier 1981). 

Fennoscandia remains one of the few regions of the world where nationally representative 

belowground functions are available for the three most prominent species Norway spruce 

(Marklund 1988; Petersson and Ståhl 2006; Repola 2009), Scots pine (Marklund 1988; 

Petersson and Ståhl 2006; Repola 2009), and birch (Petersson and Ståhl 2006; Repola 2008; 

Paper II). Such functions are not available for many species or even entire regions of the 

world and so alternative methodologies have been developed to obtain belowground estimates 

with the available data. Because forest biomass density (tonnes/ha) obtained through forest 

inventories or by remote sensing are available for most areas of the world, the IPCC good 

practice guidance (IPCC 2006) has recommended using root-to-shoot ratios for aboveground 

biomass density by ecological zone (e.g. tropical rainforest and Boreal coniferous forest) 

using allometric functions based on the relationship between aboveground biomass density 

and belowground biomass density (Li et al. 2003; Mokany et al. 2006) or root-to-shoot ratios 

alone (Fittkau and Klinge 1973; Singh et al. 1994). 

The United States and Canada use two different methods based on expanding stem 

volume to component biomass with an allometric biomass function. The USA has adopted the 

component ratio method (CRM) (Woodall et al. 2011) which is a multistage process. Regional 

volume models are used to estimate gross volume, subtract rotten volume from it, to obtain 

sound stem volume (volume of sound not rotten wood in the central stem) with dbh, height (or 

surrogate), and sometimes basal area from national inventory data. Sound volume is 

multiplied by wood and bark specific gravity along with the percentage of bark volume and 

added together to obtain merchantable bole biomass. An adjustment factor is calculated 

(because the CRM and Jenkins bole biomass estimates are calculated differently) by dividing 

the CRM merchantable bole biomass by Jenkins et al. (2004) allometric merchantable bole 

estimate. This is then multiplied by the Jenkins component biomass estimates to estimate tree 

component biomass values for the CRM (Domke et al. 2012). Full detailed methods are 

available in Woodall et al. (2011).   

In Canada, forests cover 40 percent of the land area that is difficult to access from the 

ground (Beaudoin et al. 2014); not unlike many tropical regions. This makes a traditional 

probability design sample from plot-based forest inventory cost prohibitive (Boudewyn et al. 

2007). The solution has been a systematic sample of photo plots, which are 2 x 2 km square 
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sampling units centered on the intersection of a grid of a nominal 20 x 20 km format that 

covers all of Canada. The photo plots are augmented by a random sub-sample of field plots 

near the center of the photo plot within selected ecozones. Stand volume is calculated from 

plot data (Boudewyn et al. 2007) and converted to stand component biomass (aboveground 

biomass, tonnes per hectare) with national allometric functions (Lambert et al. 2005) or other 

appropriate local allometric functions estimates and expansion factors (see Boudewyn et al. 

2007 for details). The plot-based aboveground biomass estimate is applied to the photo plot, 

then its photo-interpreted forest polygons, and mapped. Averaged biomass values are assigned 

to over-layed 250 m TERRA MODIS satellite images and are interpolated to wall-to-wall 

MODIS imagery across Canada to obtain national biomass maps and estimates (see Beaudoin 

et al. 2014 for details). 

In the absence of systematic large area surveys, plot-level measurements of biomass 

density are interpolated, extrapolated, or mapped over large areas by one of three approaches 

(Houghton et al. 2009): (1) land covers can be classified with satellite data (DeFries et al. 

2002) or geographic information system (GIS) (Brown and Lugo 1992) data and assigned an 

average biomass density value based on available plot and literature values; (2) environmental 

parameters can be mapped over large areas and regression biomass density values can be 

assigned to specific parameter values (Brown et al. 1993); (3) The relationships between in-

situ biomass density and remote sensing characteristics (Goetz et al. 2009) such as vegetation 

types, topographic information, and climate variables can be made that can be mapped over 

large regions (Baccini et al. 2004; Blackard et al. 2008; Houghton et al. 2007; Myneni et al. 

2001; Saatchi et al. 2007). It is also possible to validate remotely sensed data with aerial lidar 

data (e.g. Baccini et al. 2008). The advantage of remotely sensed surveys is that they are non-

destructive, time series are possible for monitoring purposes, they are spatially explicit, and 

3D data is increasingly becoming available, which allows the incorporation of height (e.g. 

Kellndorfer et al. 2010). 

One of the barriers to implementing global and national biomass monitoring programs 

is that remotely sensed data will always require ground validation (Goetz et al. 2009). 

Terrestrial laser scanning (TLS) applied to trees is an emerging technology that has the 

potential to ameliorate ground sampling costs by reducing field time, creating a permanent 

digital dataset for plot- and tree-level change detection, and introducing more objective 

measurements. There has been much development work done to apply TLS technology to 

forest environments. The first tasks have been to extract individual tree measurements from 

point clouds which have been done with reliable accuracy for dbh, height, stem volume, and 
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crown dimensions (Astrup et al. 2014; Fernández-Sarría et al. 2013; Liang et al. 2014; Moskal 

and Zheng 2012). TLS has also allowed for the introduction of new tree data such as stem 

curve (Liang et al. 2014) and buttress volume (Nölke et al. 2015). Tree reconstructions for 

stem (Aschoff et al. 2004), crown (Bucksch and Fleck 2011; Gorte and Pfeifer 2004), and 

complete aboveground tree architecture (Hackenberg et al. 2014; Raumonen et al. 2013) have 

become increasingly more common. Tree biomass stock estimates have been possible for 

aboveground biomass (Hackenberg et al. 2015; Kankare et al. 2013), crown biomass 

(Fernández-Sarría et al. 2013; Hauglin et al. 2013; Hauglin et al. 2014), and for biomass 

change detection (Kaasalainen et al. 2014; Srinivasan et al. 2014), which is essential for forest 

carbon monitoring implementation. Individual tree TLS data has also been expanded to the 

plot level for digital terrain models (Aschoff et al. 2004), basal area (Moskal and Zheng 

2012), tree structure (Henning and Radtke 2006), stem maps (Hopkinson et al. 2004), and plot 

biomass of coppice for bioenergy (Seidel et al. 2012). One key aspect to large-scale 

implementation of TLS in forests is the requirement that the digital data processing is 

automated, which has been successfully implemented for individual tree reconstruction 

(Aschoff et al. 2004; Raumonen et al. 2013) and plot reconstruction for some forest types 

(Raumonen et al. 2015). 

One of the largest uncertainties in the terrestrial carbon cycle is the global quantity of 

belowground biomass (Robinson 2007) because belowground biomass is so difficult to obtain 

especially for large datasets. TLS has potential to make more approachable the critical step of 

acquiring accurate volume estimates and 3D architecture of extracted root systems in large 

datasets. Early work has represented 3D structure (Gärtner and Denier 2006; Gärtner et al. 

2009; Teobaldelli et al. 2007) and whole stump volume (Gärtner and Denier 2006; Gärtner et 

al. 2009; Wagner et al. 2010; Wagner et al. 2011). Potential sources of error associated with 

materials, scanners, and point cloud post-processing techniques have also been assessed 

(Gärtner et al. 2009; Wagner and Gärtner 2009a; Wagner and Gärtner 2009b). The volume of 

a root segment has been estimated from a triangulated root surface generated from a point 

cloud accurate to within 50 μm as well as the feasibility of incorporating root growth ring data 

into the root reconstruction by reconstructing successive year growth surfaces (Wagner et al. 

2010). The volume of a whole complex root system and successive year growth surfaces and 

root volumes were modeled utilizing the method (Wagner et al. 2011). Recently, six Norway 

spruce stumps were mechanically pulled from the soil, scanned in the field, and the 

architecture was recreated with a combination of a polyhedral grid for the stump and fit 
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cylinders for the root portions of the root system (Liski et al. 2013) following the Quantitative 

Structure Model (QSM) methodology from Raumonen et al. (2013). 

 

Uncertainty in biomass estimates 
Quantifying the uncertainty of a national biomass estimate is critical for national 

accounting and to understand the quality of the data input to national accounts of sinks and 

sources and their changes through time. The four main types of recognized error in biomass 

estimation are: sampling, modeling, model selection, and measurement error. “Error” here 

refers to the uncertainty or variance of the sample following the convention used in previous 

groundbreaking work (e.g. Cunia 1965; Cunia and Michelakackis 1983) and not necessarily 

mistakes made in its collection or derivation. These errors occur in different stages of surveys. 

In the sampling stage, a large sample of auxiliary variables is obtained in a national forest 

inventory (for example) such as dbh and height. In the modeling stage, typically an 

independent sample of auxiliary variables and tree biomass are measured on a smaller sample 

of trees. An allometric biomass function is derived from the modeling stage data to estimate 

biomass with the auxiliary variables (Cunia and Michelakackis 1983).   

As has been discussed, the most accurate method to obtain a large-scale biomass 

estimate is to apply region appropriate species-specific allometric functions derived in the 

modeling stage to statistically valid inventory data collected in the sampling stage. In this 

biomass estimation scheme, sampling error refers to the magnitude of the error (standard 

error) of the inventory sample itself and occurs in the sampling stage. The modeling error 

refers to the uncertainties in the estimates of the model coefficients and the residual error of 

the biomass model and occurs in the modeling stage. Model selection error refers to the error 

associated with applying a particular biomass function to the population and how well it 

represents that population (Melson et al. 2011) and occurs in the modeling stage. 

Measurement error can refer to the error associated with the measurement of the auxiliary 

variables in the sampling stage or to the estimate (read “measurement”) of individual tree 

sampled biomass in the modeling stage. In the case of biomass measurement error in the 

modeling stage, biomass is the response variable of the model, so the measurement error in 

biomass entails an increase in the uncertainty of the model coefficient estimates in the 

biomass function (Paper III). The size of each source of error contributes to the overall error 

of the obtained biomass estimate. 
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Previous work has found that sampling error accounts for about 75-91% and modeling 

error for about 9-26% of the error in national aboveground biomass stock estimates from 

Fennoscandia (Breidenbach et al. 2014; Ståhl et al. 2014). Model selection error has the 

potential to introduce an additional 20-40% or more uncertainty into live-tree carbon stock 

estimates in the temperate zone (Melson et al. 2011) and 10-60% uncertainty into biomass 

estimates in the central Amazon (Nelson et al. 1999). To the author’s knowledge, 

measurement error in the response in the modeling stage has not previously been described 

for biomass, but the measurement error effect of height in the sampling stage on national 

timber volume estimates is about 0.01-0.1% (Gertner and Köhl 1992; Phillips et al. 2000).  

Biomass measurement errors may be more variable than height measurements, which could 

suggest that the effect of biomass measurement error in the modeling stage may be greater 

than what has been seen for height in the sampling stage.  

Sampling error is estimated with standard methods used for sampling variance (e.g. 

Gregoire and Valentine 2008). Modeling error is calculated from the coefficient uncertainties 

using a Taylor series expansion (Berger et al. 2014; Ståhl et al. 2014) or Monte Carlo 

simulation (e.g. Berger et al. 2014; Holdaway et al. 2014; McRoberts and Westfall 2014). 

Model selection error is determined by either subtracting predicted biomass from sampled 

observed biomass from different available models (Nelson et al. 1999; Paper II; Paper I) or by 

generating prediction envelopes from a range of predictions from available models (Melson et 

al. 2011; Tritton and Hornbeck 1982). Measurement error for a particular variable can be 

estimated through a Taylor series expansion (Gertner and Köhl 1992; Phillips et al. 2000) or 

Monte Carlo simulation (Berger et al. 2014). 

Uncertainties for forest carbon stock estimates based on NFI data in the United States 

range between 9-11% in national projections to the year 2040 (Heath and Smith 2000), 

between 2-6% in forest regional stock estimates, and between 8-25% for stock estimates on 

smaller individual national forests (Heath et al. 2011). As forest inventory estimates are not 

available for many forested regions in the world, biomass estimates must rely more on 

available plot data which is tied to remotely sensed spatially-explicit covers. These types of 

assessments have different errors associated with them, but are very important for the 

understanding of global terrestrial carbon stocks and changes in shorter time intervals and in a 

spatially explicit way (Houghton 2005). It is proposed that if remote multi-resource biomass 

assessments can produce spatially explicit biomass stock and flux maps on the continental and 

smaller scale to within 10-25% error, significant progress could be made to understand the 

global carbon balance (Houghton 2005). Considerable progress toward this end has been 
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made in the United States (e.g. Blackard et al. 2008) and across the tropics (e.g. Saatchi et al. 

2011). In a first of its kind mission, the European Space Agency is scheduled to launch the 

BIOMASS satellite around 2020, which has the goal of mapping the global distribution of 

aboveground biomass wall-to-wall with an error of ±20% and forest height with an error of 

±4 m (Le Toan et al. 2011). 

 

Knowledge gaps in tree biomass estimation in Norway 
Aboveground Norway spruce, Scots pine, and birch component biomass are currently 

estimated in Norway using the species-specific Swedish national functions from Marklund 

(1988) applied to Norwegian National Forest Inventory (NNFI) data. All of these functions 

are based on a large number of sampled trees and are the best available allometric functions 

for Swedish biomass estimation. It is assumed that the resultant model selection error for 

Norway spruce and Scots pine is marginal in Norway due to the relative similarity in 

environmental conditions for the two species in the respective countries. Birch, however, is 

comparatively a more widely distributed species occurring in disparate environmental 

conditions from the coast to tree line throughout Norway, often in environmental conditions 

quite unlike those found in Sweden. It would be expected that such a broad and 

environmentally variable distribution would have an effect on birch allometric biomass in 

Norway that is in some way different to the pattern of birch allometric partitioning found in 

Sweden. Further, that birch biomass functions derived from a Swedish population would 

introduce some unknown model selection error in a national birch biomass estimate when 

applied to NNFI data. 

Belowground biomass for Norway spruce and Scots pine are also estimated with the 

Marklund (1988) functions in Norway, but birch is estimated from Swedish functions derived 

from 13 trees down to a 2 mm end diameter (Petersson and Ståhl 2006). The effect of 

geographically extrapolating belowground functions for birch in Norway is not known and 

little understood in other locations and species as well. In summary, no aboveground, 

belowground, or whole tree allometric biomass functions existed for birch that are 

representative of the birch condition throughout Norway and the model selection error caused 

from using Swedish functions had never been evaluated before this thesis (Paper II; Paper I).       

The effect of measurement error in the sampling stage due to measurement errors in 

dbh and height have been described for national volume estimates. In those studies, dbh was 

found to have no influence and the influence of height was less than a tenth of a percent 
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(Gertner and Köhl 1992; Phillips et al. 2000). It is expected that the measured variation for the 

response variable biomass would be higher; therefore, the effect of the greater variation in the 

modeling stage would be larger on a national biomass estimate. The effect of uncertainty in 

the response during the modeling stage on the national estimate has never been tested, but the 

variation in vertical dry weight to fresh weight ratio (DFR) inherent in the stem biomass 

estimates and total stem function derived for Paper I provided an opportunity to explore this 

question. The first quantification of this effect is presented in this thesis (Paper III).  

Knowledge of belowground biomass suffers from a lack of data almost everywhere in 

the world, with most of the available studies consisting of relatively low numbers of sampled 

root systems. This is primarily due to the difficulty and labor associated with extracting and 

accurately measuring large root systems in particular. TLS has potential to ameliorate the 

accurate measurement of root system volume and architecture relatively rapidly and 

objectively, while creating permanent digital data of the sampled root systems. The next 

critical step in the process is the modeling of the root systems, which is only now becoming 

increasingly more automated through QSM (Raumonen et al. 2013; Paper IV). Although in its 

infancy, TLS combined with QSM applied to root systems, offers a means of significantly 

increasing the sample size of belowground data provided that enough root systems can be 

extracted, which remains as the primary limiting factor. A partial solution to the root 

extraction problem is mechanically pulling them from the ground, which will represent a large 

portion of the root systems, but undoubtedly does not represent the whole root system. A 

small number of whole and partial root systems have been scanned elsewhere (Gärtner and 

Denier 2006; Gärtner et al. 2009; Liski et al. 2013; Teobaldelli et al. 2007; Wagner and 

Gärtner 2009a; Wagner and Gärtner 2009b; Wagner et al. 2010; Wagner et al. 2011), but no 

root systems had ever been scanned with TLS and modelled with QSM in Norway before this 

thesis (Paper IV). 
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Research objectives 
The overall objective of this thesis was to improve the estimation of above- and 

belowground tree biomass in Norway. This was accomplished through four peer-reviewed 

publications. 

The objectives of Paper I were: (1) Derive regional allometric aboveground biomass 

functions for birch in Norway. (2) Compare the derived functions by applying them to two 

existing birch biomass datasets. (3) Use NNFI data to compare the birch biomass stock and 

stock change estimates from existing local southern Norwegian mountain birch functions and 

the regional Swedish functions currently used to obtain birch biomass stock and stock change 

estimates for Norway.  

The objectives of Paper II were: (1) Derive regional allometric belowground and 

whole tree biomass functions for birch in Norway. (2) Investigate how biomass partitioning 

changes with tree size. (3) Use NNFI data to compare the belowground birch biomass stock 

estimates obtained with the derived function with estimates from the national functions from 

Sweden and Finland and an existing local western Norwegian mountain birch function. 

The objectives of Paper III were: (1) Analyze the effect of uncertainty in the response 

during the modeling stage on the national estimate. This was achieved through a case study in 

which the vertical variation in DFR was propagated through Monte Carlo simulation and its 

effect on the national stem biomass estimate of birch in Norway was analyzed. (2) Compare 

the part of the modeling error due to DFR variation with the modeling error including all 

sources of variation influencing the biomass model parameter estimates. (3) Compare the 

modeling error with the sampling error.  

The objectives of Paper IV were: (1) Evaluate how well coarse root system 

architecture and volume can be estimated by applying 3D QSM to terrestrial laser point cloud 

data. (2) Utilize the 3D QSM to derive key architectural and volumetric characteristics of 

mature Norway spruce tree root systems.  
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Data and analysis 
Papers I, II, and III: birch biomass data  

The dataset consisted of 67 destructively sampled birch (Betula pubescens Ehrh. and 

Betula pendula Roth) trees. A brief description is presented here; please see Paper I for 

aboveground and Paper II for belowground details. The trees were selected to represent the 

range of conditions in which birch occurs in Norway. 17 sample sites from southeastern (five 

sites), western (four sites), central (four sites), and northern (four sites) Norway were each 

sampled with four trees across the diameter range present at each site. For each sample tree, a 

250 m2 (r = 8.92 m) plot was established with the sample tree as plot center. Species and dbh 

were recorded for all trees (other than birch) on the plot with a total height in excess of 50% 

of the dominant tree height in young stands and with a dbh > 5 cm in older stands. The trees 

were felled with a winch, simultaneously partially extracting the root systems. Five to nine 

live branches were sampled during the delimbing of the crown along with a sample of dead 

branches (if present) and dbh and stem length was recorded. Randomly sampled stem disks 

were cut from along the length of the stem and from dbh, their height in the tree was recorded, 

and the stem was cross-cut at the stump (mean = 1.3% tree height). The root system was 

completely extracted and cleaned of dirt. A stump sample consisting of about 20% of the total 

root system was cut from the residual stump. The breakpoint diameters of all broken roots 

from the stump sample and the residual stump were recorded. A large, medium, and small 

sample root (relative to roots present), along with up to three attached side roots was 

completely excavated to a minimum end diameter of two mm. The fresh weights of the live 

sample branches (with leaves and catkins), dead branches, stem disks (with bark), stump 

sample, and sample roots were recorded along with the rest of the delimbed crown, stem, and 

residual stump. Live sample branches and sample roots were broken down to component parts 

and the stemwood and outer bark diameter of the disks were measured. The dry weight of all 

sampled material was measured after drying at 103ºC in a forced-air oven until minimal daily 

relative mass loss was achieved for each sample. The age at breast height was determined 

from a stem disk sampled at 1.3 m by counting the rings under a stereo microscope and the 

basal area of the plot around each tree was calculated.  

Sampled component biomass was scaled-up to the component estimates for each 

sample tree based on the DFR of the sample. The volume-weighted total stem (total stem = 

stemwood + stem bark) biomass was estimated by multiplying the volume-weighted DFR 

from the stem disks by the total FW of the stem (used in Paper III). Stemwood biomass was 
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estimated by multiplying the volume-weighted proportion of stemwood by the volume-

weighted total stem biomass. Stem bark biomass was estimated by calculating the volume-

weighted proportion of stem bark by the volume-weighted total stem biomass. Live crown 

biomass was estimated by multiplying the DFR of the live sample branches by the total FW of 

the live crown. Live branch biomass was estimated from the DW proportion of woody 

material multiplied by the live crown biomass. Leaf biomass was estimated from the DW 

proportion of leaves and catkins (if present) multiplied by the live crown biomass. Dead 

branch biomass was estimated from the DFR of the sampled dead branches multiplied by the 

total FW of dead branches in the crown. Total aboveground biomass was calculated by adding 

total stem, live crown, and dead branch biomass (Details available in Paper I, Appendix B). 

Belowground biomass was estimated for each tree through a stepwise procedure by scaling-up 

sampled root biomass components to the estimated two mm end diameter sampled and 

modelled root portion biomass and then adding the root portion to the stump portion biomass 

(Paper II, Figure 3). Whole tree biomass was calculated by adding the total aboveground 

biomass (Paper I) and the belowground biomass (Paper II). 

 

Paper IV: Norway spruce root system data  

The dataset consisted of 13 mechanically extracted Norway spruce root systems with 

stump diameters from 19-47 cm. The root systems were cleaned of dirt and the individual root 

system volumes were measured by displacement following a variation of Archimedes’ 

principle whereby volume is the submerged mass subtracted from the mass in the air and 

divided by the density of the water. The root systems were suspended and scanned with a 

terrestrial laser scanner from three different angles about 120º apart and within 6 m of the 

center of each root system. The three resultant point clouds were co-registered into one point 

cloud for each root system using reference targets.    

 

Papers I and II: analysis 

For Papers I and II, single- and two-variable nonlinear mixed-effects (NLME) 

(Pinheiro and Bates 2000) functions were fit to the birch component biomass data with an 

allometric function form. Sample site-wise random effects were only assigned to the 

allometric exponent b for dbh for all functions. A “power of covariate” variance function was 

used to model the variance structure of the within-site errors for all functions (Pinheiro and 

Bates 2000). Model fits were evaluated with diagnostic plots (Pinheiro and Bates 2000; 

Robinson and Hamann 2010), lowest AIC, and RMSE. Single-variable functions with dbh as 
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the sole predictor were derived for whole tree, total aboveground, belowground, total stem, 

stemwood, stem bark, live crown, live branch, leaf, and dead branch biomass. Two-variable 

functions were derived with dbh and height as predictors for whole tree, total aboveground, 

total stem, stemwood, stem bark, live crown, and live branch biomass.  

For Paper I, different total aboveground function combinations (predicted) were 

applied to  aboveground Norwegian mountain birch (Bollandsås et al. 2009) and Swedish 

birch (Marklund 1988) biomass data (observed) and prediction errors (observed – predicted) 

were calculated for aboveground component biomass. The prediction errors were plotted 

against dbh for the Norwegian mountain birch data and dbh, age, site index, and elevation for 

the Swedish data. Three function evaluation metrics were calculated: (1) RMSE for the 

prediction errors; (2) t-test of the mean of the prediction errors; and (3) linear function fit of 

the prediction errors over predictor variables to check for trends.  

For Paper II, Swedish (Petersson and Ståhl 2006), Finnish (Repola 2008), and 

Norwegian (Kjelvik 1974) belowground functions (predicted) were applied to the birch 

biomass data (observed). Prediction errors (observed – predicted) were evaluated with the 

same three function evaluation metrics as in Paper I with linear function fits of prediction 

errors over dbh. Root-to-shoot ratios were calculated and linear function fits of root-to-shoot-

ratio over tree height, age at breast height, total aboveground biomass, and plot basal area 

were checked for trends. The proportion of the biomass components were calculated as the 

percent of whole tree biomass they represent. Linear function fits of percentage of 

belowground, total stem, live crown, and dead branch biomass over dbh and age at breast 

height were checked for trends. 

A derived total aboveground function combination (Paper I) and the derived 

belowground function (Paper II) were applied to NNFI birch data from the 8th inventory 

NNFI8 (2000-2004) and NNFI9 (2005-2009) to obtain stock and stock change estimates 

across different Norwegian regions, site productivity, and forest type. Paper I compared total 

aboveground birch stock and stock change estimates from the derived functions with Swedish 

functions (Marklund 1988) and the Norwegian mountain birch functions (Bollandsås et al. 

2009). Paper II compared belowground birch stock and stock change estimates from the 

derived function with Swedish (Petersson and Ståhl 2006), Finnish (Repola 2008), and 

western Norwegian mountain birch functions (Kjelvik 1974).  
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Paper III: analysis 

Paper III utilized the vertical variability in the DFR (i.e. wood density proxy) of the 

sample disks from each sample tree and the derived total stem function fit with dbh and height 

(TSdh) from Paper I. The analysis is described here briefly; please see Paper III for more 

details. The analysis consisted of calculating the sampling error for birch in Norway, 

simulating the modeling error due to measurement error of the variability in vertical DFR, and 

simulating the total modeling error from TSdh. First, Norwegian national birch stem biomass 

stock was estimated and the sample error was calculated with standard methods form birch 

sampled in the NNFI9 (2005-2009) from a total of 16,632 plots, from which 7,489 had birch, 

for a total of 83,905 sampled birch trees. Second, the modeling error due to DFR variation 

was estimated with a Monte Carlo simulation performed 20,000 times with each iteration 

consisting of: (1) simulating the weighted-mean DFR stem biomass of each stem; (2) refitting 

TSdh with the simulated stem biomass; and (3) applying the refit TSdh to NNFI birch data to 

obtain a national estimate of total stem birch biomass stock. Thirdly, the total modeling error 

was estimated with a Monte Carlo simulation performed 20,000 times with each iteration 

consisting of: (1) replacing the uncertainties in the estimated model coefficients  and 

estimated model coefficients vector  by a random sample from the distribution ; (2) 

replacing the estimated random effect α on the NNFI plot level with a random sample from 

the distribution  where  is the variance of the random effect; (3) replacing the 

residual e with a randomly sampled value from the distribution  where  is 

the residual variance, l is the NNFI plot, m is a birch stem on plot l, and δ is a variance 

parameter. The new parameters values for  and  were applied to the biomass 

function TSdh, which was applied to NNFI data to obtain a national estimate of total stem 

birch biomass stock. 

 

Paper IV: analysis 

The root system volume and 3D architecture of each sampled root system was 

estimated by reconstructing the sampled surface from the TLS point cloud using the QSM 

developed by Raumonen et al. (2013) for aboveground tree parts. The QSM is briefly outlined 

here, but many more details are available in Paper IV for the root systems and in Raumonen et 

al. (2013) for root portion (i.e. branch) modeling. For root system modeling, the QSM models 

the stump and root portions separately and then assembles them together in the final root 

system QSM. The point cloud for each root system was first filtered of erroneous points that 
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were determined through a procedure to not be associated with the sampled root system 

surface. The portion of the point cloud associated with the stump and the portion of the point 

cloud associated with the roots were separated through a procedure. The stump portion 

surface was then modeled with a cylindrical triangulation procedure. The root portion was 

separated into individual roots with a segmentation procedure. The segmented individual root 

surfaces were then fit with cylinders following a procedure. The stump and root portions were 

assembled, producing the finished QSM for each root system. The variables total root system 

volume, stump and root diameters, breakpoint diameters (cylinder diameters of the broken 

root ends) frequency, linear root length (total summed length of all the cylinders fit to all the 

roots in the root system), and a close approximation of the 3D architecture of the sampled root 

system were derived for each QSM. Slight variations occur in the final estimated QSM across 

multiple QSM fits depending on the particular points selected to be used in each fit to 

represent the root system surface. QSMs were, therefore, refit 15 times for each root system 

by repeating the modeling procedure to obtain a range of values for each derived variable. 

Comparisons were made for estimated and observed volume as well as estimated and 

observed stump diameter. Linear regressions were fit for estimated volume and estimated 

stump diameter as well as estimated linear root length and estimated stump diameter with 

estimated stump diameter as the single predictor. Frequency of the number of root breakpoint 

diameters in 1 cm diameter classes were quantified and graphed for each root system. 

Sensitivity analyses were performed to determine the effects of: (1) refitting a large number of 

QSMs on the estimated total root system volume and estimated stump diameter; and (2) the 

manipulation of QSM model parameters d and l values on stump portion volume, root portion 

volume, and linear root length. Parameter d is the minimum distance between the centers of 

balls (with radius r), which are evenly distributed throughout the point cloud and used to 

generate “patches” of neighboring points. Changing the value of d increases or decreases the 

size of the patches, which taken together, define the sampled root system surface. Parameter l 

is the relative cylinder length (fit cylinder length/cylinder radius). Changing the value of l 

increases or decreases the size of the cylinders fit to the root portion.  
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Main results 
Papers I and II: results 

In Paper I, national allometric aboveground birch biomass functions were derived. 

Single-variable functions fit with dbh as the sole predictor were derived for total 

aboveground, total stem, stemwood, stem bark, live crown, live branch, leaf, and dead branch 

biomass. Two-variable functions fit with dbh and height were derived for total aboveground, 

total stem, stemwood, stem bark, live crown, and live branch biomass. Including height in the 

functions decreased RMSE from the single-variable function for total aboveground (18.0%), 

total stem (55.4%), stemwood (66.4%), live crown (12.2%), and live branch (16.4%) birch 

biomass.  

In the prediction error analysis, the derived functions underestimated total 

aboveground by 5.3 kg (p-value = 0.0083) and total stem by 3.8 kg (p-value < 0.0001) 

biomass and overestimated complete crown by 9.7 kg (p-value = 0.0036) mountain birch 

biomass from southern Norway (Bollandsås et al. 2009). The derived functions 

underestimated stemwood  (9.6 kg), stem bark (5.9 kg), live branch (11.4 kg), and dead 

branch (1.3 kg) Swedish biomass (Marklund 1988). When applied to NNFI9 (2005-2009) 

data, the derived aboveground functions estimated 2.2% higher total aboveground biomass 

stock nationally compared to the Swedish functions and higher biomass where conditions are 

least like those found in Sweden such as in the west (5.0%), central (3.4%), and the north 

(3.3%), and the same where conditions are similar such as in southeastern (0.2%) Norway. 

The Swedish functions mostly underestimated total aboveground birch biomass between 0.2% 

– 10.4% compared to the derived functions throughout Norway and across conditions, 

producing one overestimate of 3.1% on high productive plots. The Norwegian mountain birch 

functions (Bollandsås et al. 2009) mostly underestimated total aboveground birch biomass 

between 6.9% – 31.8% compared to the derived functions throughout Norway and across 

conditions, producing one overestimate of 6.0% on unproductive plots. 

In Paper II, national allometric belowground birch biomass functions were derived. 

Single-variable functions fit with dbh as the sole predictor were derived for whole tree and 

belowground (to a 2 mm end diameter) biomass. A two-variable function fit with dbh and 

height as predictors was derived for whole tree biomass. Including height in the single-

variable whole tree function decreased RMSE by 13.0%. Root-to-shoot ratios ranged from 

0.88 – 0.21 with a mean of 0.42 with decreasing trends with increasing dbh (p-value = 

0.0004), tree height (p-value < 0.0001), age at breast height (p-value = 0.0005), total 
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aboveground biomass (p-value = 0.0039), and plot basal area (p-value < 0.0001). Mean 

biomass partitioning across all sample trees was 29.2% belowground, 52.2 % total stem, 

18.1% live crown, and 0.5% dead branch as a percentage of whole tree biomass. The 

percentage of belowground biomass significantly decreased (p-value < 0.0006), stem biomass 

increased (p-value < 0.05), and live crown and dead branch biomass remained constant with 

increasing dbh and age at breast height (data not shown).  

In the prediction error analysis, the Swedish (Petersson and Ståhl 2006) and local 

Norwegian functions’ (Kjelvik 1974) prediction errors showed significant trends (p-values < 

0.0001) and overestimated belowground biomass for larger trees. The Finnish function 

(Repola 2008) also showed a strong significant trend in the prediction errors (p-value < 

0.0001), but in this case the belowground biomass of the larger trees were underestimated. 

Mean prediction errors revealed that the Swedish and Norwegian functions significantly 

overestimated belowground biomass by 16.6 kg (p-value = 0.0097) and 73.1 kg (p-value = 

0.0014) respectively, while the Finnish function significantly underestimated belowground 

biomass by 33.2 kg (p-value < 0.0001) across the range of sampled dbh.  

When applied to NNFI9 (2005-2009) data, the derived belowground function 

estimated 7.1% lower belowground biomass stock nationally compared to the Swedish 

function (Petersson and Ståhl 2006), 44.8% higher than the Finnish function (Repola 2008), 

and 15.6% lower than the Norwegian mountain birch function (Kjelvik 1974). The Swedish 

function overestimates ranged from 6.3% – 8.1% and were uniform across Norwegian 

regions, site productivities, and forest types. The Finnish function underestimates ranged 

between 31.9% – 53.8% and were mostly uniform throughout Norway. The Norwegian 

mountain birch function overestimated between 4.0% – 39.2% and produced one 

underestimate of 14.7% on unproductive plots.  

 

Paper III: results 

The Norwegian birch stem biomass stock estimate was 66,243·103 Mg as calculated 

from birch sampled in the NNFI9 from 7489 plots. Sampling and modeling error combined 

accounted for 2.8% of the birch stem biomass stock estimate in Norway. The sampling error 

for birch in Norway was 1,036·103 Mg or 1.6% of the birch stem stock estimate. The 

modelling error due to the DFR variation was 344·103 Mg or 0.5% of the birch stem stock 

estimate. The total modeling error was 1,568·103 Mg or 2.4% of birch stem stock estimate. 

The DFR variation was responsible for 1,568·103– 1,529·103 = 39·103 Mg or 2.5% of the 

modeling error.  
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Paper IV: results 

Visual inspection of photographed and scanned root systems revealed that TLS 

combined with QSM accurately represented the 3D structure of the sample root systems. 

QSM underestimated observed root system volume by 4.4% with the largest underestimates 

occurring in the largest root systems and the largest overestimates occurring in the smallest 

root systems. The sampled root systems had varying biomass partitioning of root dimensions 

as indicated by differing number of root break point diameters observed among the sampled 

root systems. Differences were particularly evident in the smaller diameter classes. On 

average, the root system volume was comprised of 55% stump, 43% ≤ 15 cm, 34% ≤ 10 cm, 

and 16% ≤ 5 cm. Estimated stump diameter was found to explain 86.6% of variation in 

estimated root system volume and 72.1% of variation in estimated linear root length in linear 

regressions. A sensitivity analysis of the QSM indicated that QSM estimates did not change 

much when the values for the modeling parameters d and l were manipulated. The complete 

processing time from a cleaned root system to a finished QSM was approximately two hours 

per root system. 
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Discussion 
This thesis addressed specific knowledge gaps for biomass estimation in Norway and 

contributed to the larger body of literature that endeavors to improve the estimation of above- 

and belowground tree biomass. The thesis developed national allometric functions for above- 

and belowground birch biomass estimation in Norway where no nationally representative 

functions were previously available (Paper II; Paper I). The thesis estimated the effect of 

uncertainties in stem biomass measurements due to DFR variability on the national stem 

biomass stock estimate based on NNFI data (Paper III), which had not previously been done 

in Norway or elsewhere. The thesis demonstrated the feasibility of TLS combined with QSM 

to accurately and rapidly reproduce large root system volume and 3D architecture, which had 

never before been tested against measured root system volume (Paper IV).  

Birch is a widely distributed species across Fennoscandia and Norway, occurring in 

from the coast to the tree line throughout the country. The varied environmental conditions in 

which birch occurs throughout Fennoscandia have pronounced effects on its allometry and 

therefore the pattern of biomass allocation that occurs in different conditions. The most 

striking allometric differences in birch occur across elevational and latitudinal gradients, 

where trees toward tree line and in northern latitudes are stunted in habit compared to their 

lowland and southern counterparts.  

In Papers I and II, the derived total aboveground and belowground birch functions 

were applied to NNFI birch data and their birch stock estimates were calculated by 

Norwegian regions, site productivity, and forest type. The derived stock estimates were 

compared with stock estimates from local Norwegian mountain birch functions (Bollandsås et 

al. 2009; Kjelvik 1974), Swedish functions (Marklund 1988; Petersson and Ståhl 2006), and a 

Finnish function (Repola 2008) (Paper 1, Figure 5; Paper II, Figure 7). A striking result from 

these analyses is that the stock estimates from both the aboveground (Bollandsås et al. 2009) 

and belowground (Kjelvik 1974) Norwegian mountain birch functions (both sampled near tree 

line in southern Norway) were quite different from the derived function estimates, ranging 

6.0% – 31.8% different for aboveground and 4.0% – 39.2% different for belowground. The 

Swedish functions were 0.2% – 10.4% different for aboveground (Marklund 1988) and 6.3% 

– 8.1% different for belowground (Petersson and Ståhl 2006). The Finnish belowground 

function (Repola 2008) estimated most differently from the derived function with differences 

between 31.9% – 53.8%. Applying these existing functions to NNFI data is a geographical 

extrapolation of the functions outside their designed geographic range and is a good 
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illustration of the magnitude of model selection error that can occur for total aboveground and 

belowground birch biomass estimation in Fennoscandia. 

The prediction error analyses performed in Paper I provide good examples of the 

effect of geographical extrapolation on aboveground component biomass where the derived 

functions were applied to Norwegian mountain birch (Bollandsås et al. 2009) and Swedish 

(Marklund 1988) birch biomass datasets (Paper I, Figures 3 and 4). Applied to the Norwegian 

mountain birch data, the derived functions underestimated total stem biomass (3.8 kg) but 

overestimated crown biomass (9.7 kg). This result is consistent with shorter fatter stem 

allometry and the thinner crowns found in Norwegian mountain birch in comparison with 

their lowland counterparts of which the derived data comprised more of. When applied to the 

Swedish data, the derived functions underestimated stemwood (9.6 kg), stem bark (5.9 kg), 

live branch (11.4 kg), and dead branch (1.3 kg) biomass. This is consistent with the 

prevalence of better growing conditions for birch found in Sweden, which account for the 

higher biomass production in the Swedish sample.   

Another interesting effect of geographical extrapolation was observed in Papers I and 

II. Swedish birch biomass functions were found to nearly consistently produce an 

aboveground underestimate (Marklund 1988) and consistently produce a belowground 

overestimate (Petersson and Ståhl 2006) compared to the derived functions and when applied 

to NNFI data. One likely interpretation of this result is that the better growing conditions in 

Sweden produce more above- and belowground biomass than birch in Norway. The higher 

amount of biomass is inherent in the Swedish biomass sample and, as a result, the 

belowground estimate is higher from the Swedish function. The aboveground underestimate 

has been attributed to the much higher proportion of unproductive and low site productivity 

NNFI birch plots in Norway, where the Swedish functions produce the largest underestimate 

(Paper I). Another possibility is that the observed Swedish biomass allocation pattern is a 

genetic adaptation resulting from selection pressures of the environmental conditions in which 

birch occur in Sweden (Aranda et al. 2010), but this possibility has not been explored.  

Several results from Paper II were consistent with predictions from APT. Paper II 

showed that the percentage of stump and coarse root biomass decreased, the percent stem 

biomass increased, and root-to-shoot ratios significantly decreased with increasing tree size. 

These results are consistent with age-related biomass partitioning predicted by APT and 

corroborated by other studies (Helmisaari et al. 2002; Peichl and Arain 2007; Petersson et al. 

2012).  
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Several results in the thesis are consistent with predictions of OPT. In Paper II, the 

root-to-shoot ratios significantly decreased with increasing plot basal area. This could be 

interpreted as reducing the allocation of available resources belowground as the plot level 

basal area increases so that available resources can be allocated aboveground in the 

competition for resources there. OPT predicts that trees growing on sites with poor growth 

conditions and low mean temperatures allocate proportionally more biomass belowground 

than aboveground (Oleksyn et al. 1992; Oleksyn et al. 1999). In Paper I, the aboveground 

mountain birch functions (Bollandsås et al. 2009) applied to NNFI data, underestimated 

aboveground biomass indicating reduced aboveground allocation in the mountain birch 

sample trees. In Paper II, the belowground mountain birch function (Kjelvik 1974) 

overestimated belowground biomass indicating increased belowground allocation in the 

mountain birch sample trees. Interpreted in this way, the results are consistent with OPT 

predictions. However, applying the above- and belowground functions to NNFI data 

constitutes diameter extrapolations outside the intended range for which the functions were 

designed, which where for trees up to 21.5 cm for the aboveground functions (Bollandsås et 

al. 2009) and for trees up to 12.3 cm for the belowground function (Kjelvik 1974). Another 

observation consistent with OPT is the number of breakpoints on the broken root systems 

from Paper II and Paper IV, which were considerably variable between sampled birch (data 

not presented) and Norway spruce (Paper IV, Figure 8) respectively. This was particularly the 

case among smaller diameter roots. One interpretation of this observation is that individual 

sample trees allocated belowground resources differently and in response to a limiting 

resource, but the detail of the data was not sufficient to make conclusions. Generally, the 

birch dataset did not contain enough observations within each growth condition to elucidate 

biomass partitioning patterns consistent with OPT predictions.  

 Uncertainty is inherent in any national biomass stock estimate, but it is minimized at 

the national level when a two stage survey design is followed. In the first sampling stage, a 

plot-based statistically valid national forest inventory is taken and in the second modelling 

stage, an independent smaller nationally representative sample of trees sampled for biomass is 

used to fit species-specific allometric biomass functions, which are then applied to national 

forest inventory data to obtain the national biomass estimate for that species. This biomass 

estimation scheme represents the most accurate biomass estimation method available for 

national level biomass estimation and can be considered a “best case scenario”. Paper III 

utilized the best case scenario and Monte Carlo simulations to estimate birch total stem 

biomass at the national level in Norway. The combined standard error (sampling error + total 
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modelling error) was 2.8% of the national birch total stem biomass stock estimate. Total stem 

biomass comprised 52.2% of whole tree biomass on average in the sampled birch trees. While 

this estimate only quantifies the uncertainty for about half of the birch biomass, it does 

provide some indication of the uncertainty estimates that are currently possible for birch 

biomass estimation at the national level in Norway.   

 Results from Papers I and II indicate that the largest biomass uncertainties in national 

above- and belowground birch biomass estimation in Norway are from model selection error 

when applying the best case scenario (Paper I, Figure 5; Paper II, Figure 7). From the national 

level, the Norwegian, Swedish, and Finnish function estimates become much more variable, 

overestimating in some conditions, underestimating in others, and only estimating very close 

to the derived functions (if at all) in special conditions that are themselves not representative 

of the national condition. First and foremost, this effect highlights the importance of 

nationally representative allometric biomass functions as they produce the best results across 

the widest set of conditions effectively reducing large model selection errors that are possible 

in some conditions. It also suggests a spatially explicit aspect to biomass estimation that is 

likely important for more accurate biomass estimation at scales smaller than the national 

level. 

 The most difficult biomass component to estimate accurately is belowground biomass. 

This is primarily due to a lack of belowground data generally. Existing datasets are often 

characterized by low sample numbers and a lack of data on large trees (Santantonio et al. 

1977). The datasets have most often been sampled using different methodologies, making 

comparisons between functions derived from them problematic (Mokany et al. 2006). These 

problems are mostly related to the excessive labor required to extract and sample 

belowground biomass. The excessive labor problem remains unsolved, but the TLS and QSM 

procedure presented in Paper IV provides a new methodology that can objectively and 

accurately estimate belowground volume and quantify root dimensions. Converting root 

system volume to biomass is easily done by multiplying root system volume by sampled or 

published species-specific belowground basic density values. The digital data from TLS and 

QSM is permanent and complete in its original 3D form making the sampling transparent to 

other researchers and replication of results possible. Obtained datasets could then be 

assembled more effectively and used in future analyses.  
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Conclusions 
It is important to continue to develop biomass estimation methods that will provide 

increasingly more accurate estimates from the component biomass of the individual tree to the 

global scale. Species-specific allometric biomass functions derived from a sample of trees that 

is representative of the environmental conditions where the functions will be applied are 

fundamental to this work. Accurate descriptions of the errors associated with biomass 

estimates at different scales are equally important so the reliability of the obtained estimates 

can be assessed. The heterogeneous and continually changing character of tree biomass makes 

the necessary estimations impractical with traditional methods and limited resources. New 

remote sensing technologies, including TLS that allow for non-destructive, repeatable, and 

accurate sampling at a lower cost should be developed to meet this challenge. The existing 

knowledge gaps are often country-specific and must necessarily be addressed for each 

country. 

  This thesis has contributed to improving tree biomass estimation in Norway. The 

derived above- and belowground allometric biomass functions from Papers I and II are the 

best available for national birch biomass stock and stock change estimation in Norway. The 

newly described error due to vertical variation in DFR elucidated in Paper III, has a relatively 

small effect on the Norwegian birch stem biomass estimate, but should be considered in 

national biomass uncertainty estimates. The proof-of-concept study in Paper IV demonstrated 

the ability of TLS and QSM to accurately characterize root system volume and the three 

dimensional structure of large, complex, and irregular tree structures.  
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A suite of regional allometric aboveground biomass functions were derived for Betula pubescens and Betula pendula for
Norwegian conditions. The data consisted of 67 trees sampled throughout Norway. A total of 14 component functions
were developed for total aboveground, total stem, stemwood, stem bark, live crown, live branch, leaf, and dead branch
biomass using combinations of diameter at breast height and height as predictor variables. Application of the derived
functions to existing local southern Norwegian mountain birch and regional Swedish biomass datasets indicated an
overall good predictive ability of the developed functions. However, the functions produced slight underestimates,
suggesting that the respective birch populations had differing biomass allocation patterns. When the developed functions
were applied to Norwegian National Forest Inventory data, they produced slightly higher biomass stock and stock
change estimates than what is obtained using existing Swedish functions. The higher estimates were evident in the north,
central, and western part of Norway, while estimates were similar in southeastern Norway where growing conditions are
most similar to Swedish conditions. The analysis indicates that the derived functions are the best available for regional
birch biomass stock and stock change estimation in Norway.

Keywords: national biomass; biomass functions; allometry; birch; Kyoto Protocol; mixed-effects

Introduction

Tree biomass stock and stock change estimation are
central for forest-based bioenergy feedstock assessments,
in studies of the terrestrial carbon cycle, and for reporting
under the United Nations Framework Convention on
Climate Change (UNFCCC) and the Kyoto Protocol.
Currently, Norway uses the regional Swedish functions
developed by Marklund (1987, 1988) for reporting Picea
abies (L.) Karst (Norway spruce), Pinus sylvestris L.
(Scots pine), Betula pubescens Ehrh. (downy birch), and
Betula pendula Roth (silver birch) biomass. The practice
of geographically extrapolating the functions to Norway
likely leads to some unknown error in the biomass
estimate resulting from the potentially differing biomass
allocation patterns of the same tree species growing in
different conditions.

B. pendula and B. pubescens with its high elevation
subspecies B. pubescens Ehrh. ssp. czerepanóvii (N.I.
Orlova) Hämet-Ahti (mountain birch) are the two main
birch species in Norway. Downy birch is the most common
of the two birch species, comprising over 95% of total
birch volume and occurring throughout the country (Nor-
wegian National Forest Inventory [NNFI] 2009). Silver
birch occurs at lower elevations and has a more southerly
distribution, although the species is also locally present in
parts of northern Norway up to a latitude of 66°N and in

eastern parts of Finnmark county (NNFI 2009). Birch is the
third most common tree genus in Norway, representing
16% of the standing tree volume behind Scots pine (30%)
and Norway spruce (45%) (Granhus et al. 2012).

Several local biomass functions have been derived for
both birch species in Norway, but they are limited in their
applicable geographic range. Functions for southeastern
silver birch were developed for stem, branch, and leaf
biomass by Korsmo (1995). Mountain birch functions
have been derived from birch sampled from the southwest
(Kjelvik 1974; Bollandsås et al. 2009) and the southeast
(Opdahl 1987; Bollandsås et al. 2009) for various biomass
components including aboveground, stem, stemwood,
stem bark, total crown, branches, and leaves. The existing
local functions do not cover large areas of the birch zone
in Norway including low elevation coastal western, mid-
elevation southeastern, central, or northern Norway.

Birch is one of the most common trees by growing
stock throughout Scandinavia, the Baltic nations, Russia,
and locally in northern North America (Global Forest
Resources Assessment [GFRA] 2010). Regional allometric
birch biomass functions have been developed for Iceland
(Snorrason & Einarsson 2006), Sweden (Marklund 1987,
1988), and Finland (Repola 2008). Regional generalized
regression (Pastor et al. 1984) functions have been
developed for birch from meta-analyses of existing local
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functions for Canada (Lambert et al. 2005; Ung et al. 2008)
and the USA (Jenkins et al. 2003). To the authors’
knowledge, no regional birch functions currently exist for
the Baltic nations or Russia.

The objectives of this study were to: (1) derive
regional allometric aboveground biomass functions for
birch in Norway; (2) compare the derived functions by
applying them to two existing birch biomass datasets;
and (3) use NNFI data to compare the birch biomass
stock and stock change estimates obtained with the
derived functions with estimates from existing local
southern Norwegian mountain birch functions and the
regional Swedish functions currently used to obtain birch
biomass stock and stock change estimates for Norway.

Materials and methods

Site and sample tree selection

In order to obtain empirical allometric functions
for biomass estimation, individual birch trees were

destructively sampled. Sample site locations were
subjectively selected to represent (to the extent pos-
sible) the range of conditions in which birch occurs in
Norway. Sample site selection was initially made by
dividing Norway into four regions: southeastern,
western, central, and northern. For each region, four
to five sites were located (Figure 1) and within each
site, four trees were sampled with adequate spacing
from each other, resulting in a total of 67 sampled
trees on 17 sites (one small tree was lost during
processing). Within each region, the sample sites were
located to represent the regional variability in site,
stand, and tree variables (Table 1). The sample trees
were selected from vigorous rot-free trees to reflect the
full diameter at breast height at 1.3 m (dbh) range
present on the site. For each sample tree, a 250 m2

(r = 8.92 m) plot was established with the sample tree
as plot center. Species and dbh were recorded for all
trees (other than birch) on the plot with a total height
in excess of 50% of the dominant tree height in young

Figure 1. Birch biomass sampling site locations. Seventeen total sites were selected with five located in the southeast, four in the
west, four in central, and four in northern Norway.
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Table 1. Descriptive data for the current study, 9th NNFI, Marklund (1987, 1988), and Bollandsås et al. (2009) datasets.

Variable Mean Minimum Maximum Standard deviation

Number of treest,
sitess,

or areasa

Data for deriving functions
TAG biomass (kg) 116.3 2.9 1101.0 178.9 67t

dbh (cm) 15.3 4.0 45.5 8.4 67t

Height (m) 12.0 5.8 29.6 5.2 67t

Crown height (m) 3.9 0.1 15.2 3.2 67t

Age (years at breast height) 50 6 144 36 67t

Basal area (m2 ha−1) 16.0 3.0 41.8 11.7 17s

Stems (number ha−1) 1449 370 2770 632 17s

Birch site index 13.9 8.4 23.7 5.1 17s

Elevation (m.a.s.l.) 202 23 547 185 17s

Plot proportion birch (%) 84.6 13.6 100.0 21.1 67t

Diameter-to-height-ratio 1.2 0.6 2.3 0.4 67t

Mean annual temperature (°C) 3.4 −0.1 6.9 2.1 17s

Minimum monthly mean temperature (°C) −5.8 −10.0 1.0 3.4 17s

Maximum monthly mean temperature (°C) 13.2 11.0 16.0 1.6 17s

Mean annual precipitation (mm) 1155.2 583.4 2282.8 650.4 17s

Latitude – 59°36′N 69°09′N – –

9th Norwegian National Forest Inventory (2005–2009)
dbh (cm) 9.7 5.0 69.1 4.6 104,012t

Height (m) 7.8 1.7 30.8 3.4 37,323t

Crown height (m) 3.8 1.0 17.4 2.2 5,779t

NNFI birch site index 8.1 Unprod.u 23.0 4.9 104,012t

Elevation (m.a.s.l) 411 1.0 1130 286 104,012t

Latitude – 57°59′N 70°46′N –

Marklund (1987, 1988)
TAG biomass (kg) 75.0 1.4 783.0 113.0 207t

dbh (cm) 12.7 3.2 36.8 6.7 207t

Height (m) 11.2 4.0 24.8 4.4 207t

Crown height (m) 4.1 0.1 14.5 2.7 207t

Age (years at breast height) 46 9 128 28 207t

Basal area (m2 ha−1) 19.0 2.4 43.0 10.0 90s

Elevation (m.a.s.l.) 233 35 570 121 90s

Diameter-to-height-ratio 1.1 0.5 1.9 0.3 207t

Mean annual temperature (°C) 3.0 −1.9 6.5 2.6 90s

Minimum monthly mean temperature (°C) −7.8 −16.0 −2.0 4.3 90s

Maximum monthly mean temperature (°C) 14.3 11.0 16.0 1.3 90s

Mean annual precipitation (mm) 640.3 472.7 1021.4 95.3 90s

Latitude – 56°21′N 67°35′N – –

Bollandsås et al. (2009)
TAG biomass (kg) 16.8 2.0 116.7 17.2 80t

dbh (cm) 7.8 2.8 21.5 3.3 80t

Height (m) 5.8 1.8 11.5 2.1 80t

Elevation (m.a.s.l.) 840 750 950 75 16s

Diameter-to-height-ratio 1.3 0.8 2.3 0.3 80t

Mean annual temperature (°C) −0.8 −1.4 −0.1 0.7 3a

Minimum monthly mean temperature (°C) −9.7 −12.0 −5.0 4.0 3a

Maximum monthly mean temperature (°C) 8.7 7.0 10.0 1.5 3a

Mean annual precipitation (mm) 769.1 489.7 1239.2 409.6 3a

Latitude – 60°29′N 62°08′N – –

Note: TAG, total aboveground biomass; dbh, diameter at breast height (1.3 m); crown height = distance from the ground to the base of the live crown
(ignoring one time a single live branch if separated by more than two whorls from the next live branch); basal area = stand basal area; birch site index
= the dominant height of the largest tree by dbh at the reference age of 40 years at breast height (Strand 1967); elevation = meters above sea level; plot
proportion birch (%) = percentage of birch stems within sample tree plot (r = 8.92 m); diameter-to-height-ratio = dbh (cm)/height (m). Temperature
(Tveito et al. 2000) and precipitation (Tveito et al. 1997) data are derived from climate data for all of Norway; normal from 1961 to 1990. NNFI birch
site index = the mean height of the 100 largest trees by dbh at the reference age of 40 years at breast height per hectare.
aArea comprised of several sample sites. uAbbreviation for unproductive forest.
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stands or with a dbh > 5 cm in older stands
(Supplementary material, Appendix A). No differenti-
ation between downy and silver birch species was
made for the sample trees due to the phenotypic
plasticity of identifying traits between the two species
that vary with growing conditions and age (Atkinson
1992; Atkinson et al. 1997). All sampled trees were
growing on mineral soils with depth between 15 cm
and greater than 70 cm.

Destructive sampling

The sample trees were felled and cross-cut at stump
height after measuring the total tree height and height-to-
live crown (Supplementary material, Appendix A) from
the stump surface. Branch sampling was then carried out
mostly following the methodology of Marklund (1987,
1988) and all weighing was done with tripod-suspended
field scales (OCS™, 500 kg, ±0.1 kg for large pieces or
UWE™, HS-15K, ±0.01 kg for smaller pieces). First, an
estimate of the total number of live branches in the live
crown was obtained by: (1) dividing the live crown into
three equal lengths, (2) counting the number of live
branches present in a centered 1.3 m subsection for each
crown part, and (3) summing the branch counts from
each section. Second, live sample branches were ran-
domly sampled by delimbing the crown starting from the
base of the live crown according to: live sample branch
= (estimate of the total number of live branches / 5) ×
(random number between 0 and 1). After each sampled
branch was cut and set aside for further processing, the
formula was applied again until between five and nine
live sample branches were sampled per tree depending
on the results of iteratively applying the formula.

The fresh weight (FW) of live sample branches was
recorded with leaves and catkins (if present) attached using
a portable table-top scale (UWE™, SHC-6C, ±0.2 g).
Then, woody branch material, leaves, and catkins (if
present) of the live sample branches were separated and
packaged for storage. The FW of the live crown was
obtained by summing the FW of all live sample branches
and remaining live branches with leaves and catkins (if
present) attached. All dead branches (if present) were also
weighed to obtain the total FW of dead branches and a
subjectively selected sample (ca. 500 g) was brought to the
lab after FW determination in the field. On the delimbed
stem, distance from marked dbh to stump height, and stem
diameter starting from 0.5 m below dbh to a 5 cm top was
recorded in 0.5 m intervals.

Stem disk sampling was performed by dividing the
stem into eight (if dbh ≥ 7 cm) or four (if dbh < 7 cm)
sections of equal length from the stump surface to the
tip. Disk locations were randomly selected within each
stem section. A disk was taken at each location and an
additional disk was taken at breast height (1.3 m above
mean ground level). The disks were approximately

2–4 cm thick when the stem diameter was greater than
7 cm and 20–40 cm when the stem diameter was smaller
than 7 cm. The distance from the stem disk to the stump
height was measured. Stem disk FW was taken with bark
intact and cross-sectional over-bark and under-bark
diameters were recorded in two perpendicular directions.
Total stem FW was determined by cutting up the
remaining stem into sections and weighing them with a
field scale (OCS™) attached to a portable tripod and
adding the total sample disk FW to the obtained weight.

All sampled materials were placed in paper bags and
as soon as logistically possible (typically 0–2 days),
placed either in a dry ventilated room (ca. 20°C) or cold
dry storage (<0°C) (depending on availability) before
being sent to the lab for further processing.

Lab work and data compilation

In order to obtain dry weight (DW) of the samples, all
sample materials were divided into smaller pieces (except
stem disks which were left intact) and placed in paper
bags. All samples were placed in a forced-air oven at
103°C for 2–11 days depending on sample size, and dried
until minimal daily relative mass loss was achieved. The
bark was removed from the stem disks after drying and
weighed separately.

Age at breast height was determined from the dbh
disk by counting the year rings under a stereo micro-
scope. The site index was calculated for each sample site
from using the height of the tree with the biggest dbh
and its age (Strand 1967). Sample site values for mean
annual temperature (Tveito et al. 2000), minimum and
maximum monthly mean temperature (Tveito et al.
2000), and mean annual precipitation (Tveito et al.
1997) were projected into a Geographic Information
System (Quantum GIS 1.8.0-Lisboa) and obtained for
the current study, Marklund (1987, 1988) and Bollandsås
et al. (2009) datasets.

Aboveground biomass dataset

The sampled field and lab data were combined to
construct estimates for the following eight biomass
components for each tree: total stem, stemwood, stem
bark, live crown (live branches, leaves, and catkins if
present), live branch, leaf, dead branch, and total above-
ground biomass. Various methodologies used in the field
and lab phases of the project made it necessary to employ
a specific multistage process in order to construct the
component biomass estimates for each tree. The important
steps of the process are outlined here; a more detailed
description is available in Appendix B along with other
Supplementary material.

Total stem biomass was determined by calculating:
(1) the DW to FW ratio for each stem disk and assigning
each disk to the appropriate stem section; (2) the volumes
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of each stem section using Smalian’s formula; (3) the total
stem volume as the sum of the stem section volumes, with
forked tree volumes being calculated in the same way for
each forked and single stem; (4) the volume-weighted
DW to FW ratio of the stem; and (5) the volume-weighted
total stem biomass (Supplementary material, Appendices
A and B).

Stemwood biomass was determined by calculating:
(6) the cross-sectional area of the over-bark and stem-
wood portions of each sample disk; (7) the proportion of
stemwood cross-sectional area of each disk assigned to
the corresponding stem section; (8) the proportion of the
total stem volume that the stem section represents; (9)
the proportion of the stemwood in each stem section;
(10) the volume-weighted proportion of stemwood in the
stem; and (11) the volume-weighted stemwood biomass
(Supplementary material, Appendix B).

Stem bark biomass was determined by calculating:
(12) the proportion of stem bark for each sample disk
assigned to the corresponding section; (13) the propor-
tion of the stem bark in the section; (14) the volume-
weighted proportion of stem bark in the tree; and (15)
the volume-weighted stem bark biomass. Live crown
biomass was determined by calculating: (16) the sum of
the DWs of woody branches, leaves, and catkins for each
sample branch; (17) the sum of the FWs of the sample
branches; (18) the DW to FW ratio of the live sample
branches; and (19) the biomass of the live crown. Live
branch biomass (woody branch material) was deter-
mined by calculating: (20) the sum of the DW of the
woody portion of the live sample branches; (21) the sum
of the DW of the live sample branches; and (22) the live
branch biomass. Leaf biomass was calculated as: (23) the
sum of the DW of leaves of the live sample branches;
(24) the addition of the DW of leaves and catkins for
each sample tree; and (25) the leaf biomass. Dead
branch biomass was determined by calculating: (26)
the DW to FW ratio of sampled dead branches and (27)
the biomass of dead branches. Total aboveground
biomass (28) was calculated by adding together the total
stem (5); live crown (19); and dead branch biomass (27)
(Supplementary material, Appendix B).

Function development

Single- and two-variable nonlinear mixed-effects (NLME)
functions were fit to the component biomass data in order
to account for the data’s inherent hierarchical, nonlinear,
and heteroscedastic structure (Parresol 1999, 2001).
Linearizing log transformations (Baskerville 1972) of the
response and/or predictor variables were not performed in
order to avoid potential bias problems associated with
back transformation to the original scale from linearized
function fits (Flewelling & Pienaar 1981; Duan 1983;
Taylor 1986; Wirth et al. 2004; Wutzler et al. 2008). All
functions were fit and evaluated following the NLME

procedures outlined in Pinheiro and Bates (2000) and
Robinson and Hamann (2010) with the NLME package
(Pinheiro et al. 2012) available in R statistical software
(R Core Team 2012). All fixed and random effects
function assumptions and best fits were evaluated at
each function development stage with a combination of
diagnostic plots and lowest Akaike information criterion
(AIC) value. The best function across all single- and
two-variable functions was selected by the lowest root-
mean-square error (RMSE).

Single-variable functions with dbh as the sole predictor
were derived for total aboveground (TAGd), total stem
(TSd), stemwood (SWd), stem bark (SBd), live crown
(LCd), live branch (LBd), leaf (LFd), and dead branch
(DBd) biomass. The best function form was initially
determined by visually fitting scatterplots (Bates & Watts
1988; Sit & Costello 1994) of each of the biomass
components against dbh as a predictor. As previously
found by many authors (Parresol 1999; Lambert et al.
2005; Johansson 2007; Wutzler et al. 2008), the power
function (Sit & Costello 1994) best represented all
component biomass data (Equations (1) and (3)):

Yjs ¼ boX
bd þ ads
jds þ ejs, ð1Þ

where Yjs is the observed biomass of tree j at site s,
Xjds is the observed value for tree j of explanatory
variable d (dbh) at site s, βo and βd are parameters to be
estimated for the fixed effects, αds represents the random
effects for the variable d on site s, and εjs are the
residuals. Sample site-wise random effects αds were only
assigned to the βd parameter for all functions.

A “power of covariate” variance function (Equation
(2)) was used to model the variance structure of the within-
site errors for all functions (Pinheiro & Bates 2000).

var ðejsÞ ¼ gðnjs, dÞ ¼ njs
�
�

�
�
d
, ð2Þ

where njs
�
�

�
�is the absolute value of the variance

covariate and δ is an unrestricted parameter allowing
for cases where variance increases or decreases with njs

�
�

�
�

(Pinheiro & Bates 2000). For all component biomass
fractions, functions were fit using Equations (1) and (2)
with equal variance weights of 1 and a variance
covariate given by the fitted values (default value)
except in the stem bark function (SBd) where a fixed
value of δ = 0.9 was used because the NLME with the
default value would not converge (i.e. could not be fit).
The random effects and variance function (Equation (2))
are implicitly part of, but are not explicitly stated in, the
final single-variable function as they only reflect site-
level deviations from the fixed effects.

Two-variable functions were derived with dbh and
height as predictors for total aboveground (TAGdh), total
stem (TSdh), stemwood (SWdh), stem bark (SBdh), live
crown (LCdh), and live branch (LBdh) biomass. Prior to
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the choice of including height as a second variable, nine
other candidate predictor variables were evaluated for
inclusion in the single-variable component biomass
functions including: age at dbh, crown length (data not
shown), average crown width (data not shown), crown
height, site index, plot basal area around the sample tree
(data not shown), stems per hectare, elevation, and
region (data not shown) (Table 1). The candidate
variables were assessed by a series of tests: (1) visual
assessment of scatterplots of the standardized residuals
of the single-variable biomass component functions
against predictor values (Bates & Watts 1988); (2)
statistical assessment using a Bonferroni corrected two-
sided t-test of function standardized residuals strati-
fied into subjective low, medium, and high categories
(α = 0.05); (3) statistical test for a significant (α = 0.05)
trend of linear function fits of the function residuals
against predictor variable values. Based on these evalua-
tions, height was the preferred second variable.

The form of the function for the two-variable functions
was determined in the same way as the single-variable
functions except that both dbh and height were used in
conjunction as the predictors. The inclusion of height
additively, multiplicatively, and with different curve forms
(Sit & Costello 1994) was evaluated. NLME function fits
were attempted for all tested function forms. The best
function form for all two-variable functions is as follows:

boX
bd þ ads
jds X bh

jhs þ ejs, ð3Þ

where Xjhs is the observed value of explanatory
variable h (height) for tree j at site s and βh is a
parameter to be estimated for the fixed effects. As in the
single-variable functions, sample site-wise random
effects were only assigned to βd and the variance
structure of the within-site errors was modeled with
Equation (2) using the default values. The final two-
variable function (Equation (3)) does not explicitly state
the random effects or the variance function as in the
single-variable function.

The possibility of developing a set of three-variable
functions with each of the remaining nine predictor
variables was evaluated, but upon careful consideration
of the variable selection tests, the relative importance of
the variables to improve individual tree biomass estima-
tion, and the general availability of the variables in
inventory data, no such functions were derived.

In order to keep the modeling approach as simple as
possible, the nonlinear seemingly unrelated regression
process (Parresol 2001) used to force the true additivety
of component functions for total aboveground biomass
was not performed. Therefore, no across-model contem-
poraneous correlations (Parresol 2001) are accounted for
in any total aboveground estimation presented here.
The derived total aboveground biomass combinations
(TAGdh, TAGcombination1 = TSdh + LCdh + DBd, and

TAGcombination2 = SWdh + SBd + LBdh + LFd + DBd) had
mean predicted differences of 0.9%, 0.6%, and 0.1%,
respectively, compared to the same data used to derive
the functions.

Comparing the functions with existing data

In order to test if the derived functions were correctly
specified, they were applied to two existing datasets.
The first was a local southern Norwegian mountain birch
dataset (Bollandsås et al. 2009) and the second a
regional Swedish birch dataset inventoried in the mid-
1980s (Marklund 1987, 1988). Three function evaluation
metrics were calculated: (1) RMSE for the prediction
errors; (2) t-test of the mean of the prediction errors; and
(3) linear function fit of the prediction errors over
predictor variables to check for trends. For the Norwe-
gian function comparison, observed biomass values for
total aboveground (stem + total crown) (Supplementary
material, Appendix A), stem, and total crown were used;
predicted values were calculated using the derived
functions for total aboveground (TAGdh), total stem
(TSdh), and complete crown (live crown (LCdh) + dead
branches (DBd)) (Supplementary material, Appendix A).
Prediction errors were plotted against dbh. For the
function comparison against Swedish data, observed
stemwood, stem bark, live branch, and dead branch
biomass values were compared with the predictions of
the derived functions for stemwood (SWdh), stem bark
(SBd), live branch (LBdh), and dead branch (DBd)
biomass. Prediction errors were plotted against dbh,
height, age, site index, and elevation (Marklund 1987,
1988). Leaf biomass was not included in the Swedish
function comparison as no birch leaf biomass was
available from Marklund (1987, 1988).

Norwegian birch biomass stock and stock change
estimates

To explore whether the new and existing birch biomass
functions differ markedly with respect to their predic-
tions of birch biomass stock and stock change from
NNFI data in Norway, estimates were calculated with the
following function combinations: (1) total aboveground
birch biomass (TAGS) = SWdh + SBd + LBdh + DBd +
LFd (Tables 2 and 3) (current study); (2) TAGM =
stemwood (B-5) + stem bark (B-8) + live branch
(B-11) + dead branch (B-16) (Marklund 1987, 1988) +
leaves (where leaf biomass = B-5 × (0.011a/0.52b)
(afactor currently applied by NNFI for UNFCCC report-
ing; bde Wit et al. 2006); (3) TAGB = total
stem (“Stem”) + total crown (“Tree crown”) biomass
(Bollandsås et al. 2009). Marklund’s (1987, 1988)
function combination used here is currently used for
regional birch biomass estimation in Norway. Calcula-
tions were made on data from two consecutive 5-year
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inventory cycles of the NNFI, restricted to: (1) undivided
plots on forestry land with birch present and (2) plots
that were inventoried during 2000–2004 (NNFI8) and
available for re-measurement during 2005–2009
(NNFI9) (N = 6353 plots, plot radii = 8.92 m). All birch
used in the calculation had measured dbh. On plots with
10 trees or less, all the heights were measured, while for
plots with more than 10 trees, a relascope-selected
subsample with a target of 10 trees per plot was
measured. The remaining tree heights on the plot were
modeled following the standard tariff approach applied
by NNFI (see Antón-Fernández & Astrup 2012 and
references therein). It can be expected that stock and
stock change estimates using modeled heights are less
variable compared to those using measured heights;
however, since the same trees were used for all
estimates, all comparisons were equivalent.

The regional biomass estimates were further grouped
into Norwegian regions by Norwegian county groups
according to: southeast = Oppland, Buskerud, Vestfold,
Hedmark, Oslo, Akershus, Østfold, Telemark, Aust-
Agder, and Vest-Agder; west = Møre og Romsdal,
Sogn og Fjordane, Hordaland, and Rogaland; central =
Nord-Trøndelag and Sør Trøndelag; and north = Finn-
mark, Troms, and Nordland counties. Calculated esti-
mates were also grouped by site productivity classes
which are grouped Norwegian site indices for birch
according to: unproductive = potential yield < 1 m3 ha−1

yr−1; low = height at 40 years of age (H40) 6–8 m;
medium = H40 11–14 m; high = H40 17–23 m (Strand
1967). Calculated estimates were finally grouped by
forest types which were defined as: birch dominant =
plots with ≥ 70% composition of birch; other deciduous
= plots with ≥ 70% composition of deciduous trees in
total (birch < 70%); mixed forest = other mixed stand
types; conifer dominant = plots with ≥ 70% composition
of pine or spruce or mixed conifer stands with <10%
birch or other deciduous trees; poor stocked = poorly
stocked stands under regeneration or mature stands with
a basal area of maximally 3–5 m2 ha−1 depending on site
index class. Tree composition percentages are based on
crown cover for sapling to commercial size trees
(Supplementary material, Appendix A) and on volume
in commercial sized trees.

Results

Component birch biomass functions

A summary of selected sample tree, stand, site char-
acteristics, and climate data is presented in Table 1. The
sampled trees in the current study were representative of
the dbh and height ranges of the birch trees recorded in
the 9th NNFI (2005–2009) in Norway. The sampled dbh
range was 4.0–45.5 cm and the NNFI range was 5.0–
69.1 cm with only 38 trees with diameters larger than the
largest tree in the study. The sampled height range was

5.8–29.6 m and the NNFI range was 1.7–30.8 m with
only one tree taller than the tallest tree in the study.

Separate functions were derived using the predictors
dbh and height for total aboveground (TAGd, TAGdh),
total stem (TSd, TSdh), stemwood (SWd, SWdh), stem
bark (SBd, SBdh), live crown (LCd, LCdh), live branch
(LBd, LBdh), leaf (LFd), and dead branch (DBd) birch
biomass (Tables 2 and 3). There were no trends in the
Pearson residuals across the range of the predicted
response for any of the functions (including those not
shown), with the possible exception of DBd (Figure 2H),
indicating that the individual function fits were good
(Figure 2).

Incorporating height into the single-variable func-
tions reduced function error (RMSE) markedly for TAG
(18.0%), TS (55.4%), SW (66.4%), LC (12.2%), and LB
(16.4%) biomass, but did not improve SB (−44.9%)
biomass (Tables 2 and 3). No convergent functions were
found by including height with the LFd and DBd

biomass functions. The best suite of aboveground birch
biomass component functions in the current study by
RMSE was: TAGdh, TSdh, SWdh, SBd, LCdh, LBdh, LFd,
and DBd (Tables 2 and 3; Figure 2).

Comparing the functions with existing data

Applying the derived total aboveground function
(TAGdh) to Norwegian total aboveground mountain
birch data inventoried by Bollandsås et al. (2009),
resulted in an underestimation of the measured biomass
by 5.3 kg (p = 0.0083). The derived total aboveground
biomass function also showed a trend to especially
underestimate trees with a small dbh (Figure 3A). A
weak trend (p = 0.0072) to overestimate biomass by
increasing dbh was indicated; however, this trend was
solely due to two large influential observations (Figure
3A). The total stem biomass function was also found to
underestimate by 3.8 kg (p < 0.0001) across the range of
dbh (data not shown). A trend was found to overestimate
total crown biomass in trees with dbh greater than 6 cm
(p = 0.0001) (Figure 3B). The derived complete crown
(LCdh + DBd) biomass functions were also found to
overestimate by 9.7 kg (p = 0.0036) across the range
of dbh.

The derived functions were also applied to a regional
dataset inventoried in Sweden (Marklund 1987, 1988).
The derived functions for different aboveground compo-
nents significantly underestimated the measured biomass
by: SWdh (9.6 kg), SBd (5.9 kg), LBdh (11.4 kg), and
DBd (1.3 kg). For each of the functions (SBd, LBdh, and
DBd) except SWdh, a weak but significant trend to
underestimate by increasing dbh was found (Figure 4).
When the prediction errors were fit with height as the
independent variable, the derived functions showed a
significant trend to underestimate Swedish birch biomass
for SWdh, SBd, LBdh, and DBd (data not shown) with
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increasing dbh. With crown height as the independent
variable, the prediction errors showed a similar signific-
ant trend for the functions SWdh and SBd (data not
shown). No trends were found with respect to age at
breast height, site index, or elevation.

Norwegian birch biomass stock and stock change
estimates

The derived functions predicted 2.2% and 14.3% higher
total birch biomass stock estimates (86.3 million tons)

for NNFI9 than when using the Marklund (1987, 1988)
and Bollandsås et al. (2009) functions, respectively
(Figure 5A). The derived functions also predicted 0.53
and 2.04 million tons higher biomass stock change (6.6
million tons) than when using the corresponding func-
tions (Figure 5A). The stock estimate was more sensitive
to biomass function errors than the stock change
estimates. The relative differences between the stock
and stock change predictions were similar and consistent
for most comparisons (Figure 5), so further descriptions
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Figure 2. Pearson residuals for the best models by RMSE: total aboveground (TAGdh) (A), total stem (TSdh) (B), stemwood (SWdh)
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of the comparisons will be in terms of the stock
estimates alone.

When the different function estimates were stratified
by region, site productivity, and forest type, several
trends became evident. The derived function predictions
differed markedly compared to those obtained with
the functions of Bollandsås across all stratifications
(Figure 5A–C). Regional trends revealed that the derived
function predictions were higher than those obtained
with the functions of Marklund in the west (5.0%), less
so in central and northern Norway, and nearly the same
in the southeast (0.2%) (Figure 5A). The derived

functions predicted much higher in the southeast and
west and less so in central and northern Norway
compared to Bollandsås (Figure 5A). Compared to
Marklund, the derived functions predicted higher on
unproductive sites (10.4%), less so on low productive
sites, nearly the same on medium sites, and lower
(−3.1%) on highly productive sites (Figure 5B). Con-
versely, the derived functions predicted lower than
Bollandsås on unproductive sites (−6.0%), but increas-
ingly higher on low, medium, and high site productivity
classes (Figure 5B). Grouping by forest type showed that
the derived functions predicted higher (ca. 3.5%) than
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Figure 3. Prediction errors (observed – predicted) for total aboveground (A) and total crown biomass (B) of mountain birch in
Norway over observed dbh. Observed values are measured total aboveground and total crown biomass of mountain birch (Bollandsås
et al. 2009), respectively. Predicted values are calculated from the total aboveground biomass (TAGdh) and complete crown biomass =
live crown (LCdh) + dead branches (DBd) biomass functions from the current study, respectively.
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Figure 4. Prediction errors (observed – predicted) for stemwood (A), stem bark (B), live branch (C), and dead branch (D) biomass of
birch in Sweden over observed dbh. Observed values are measured stemwood, stem bark, live branch, and dead branch biomass of
birch in Sweden (Marklund 1987, 1988). Predicted values are calculated from stemwood (SWdh), stem bark (SBd), live branch
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Marklund in birch dominant, other deciduous, and poor
stocked forest types, but nearly the same in mixed and
conifer dominant types (Figure 5C). Compared to

Bollandsås, the derived functions predicted 11.2–21.8%
higher depending on the forest type, with the least
difference in the birch dominant type (Figure 5C).
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Figure 5. Estimations of birch stock and stock change in Norway based on data from the NNFI8 (2000–2004) and NNFI9 (2005–
2009) and grouped by: Norwegian regions (A); site productivity (B); and forest type (C). The zero line represents the total
aboveground birch biomass estimate of the current study (TAGS) for all graphs. Bars for the stock estimates (left side) depict the
percent difference of the current study estimates from those of Marklund (1987, 1988) or Bollandsås et al. (2009), respectively. Bars
for the stock change estimates (right side) depict the difference in stock change estimates expressed in million tons biomass (m.t.b.) of
the current study from those of Marklund (1987, 1988) or Bollandsås et al. (2009), respectively. Values above or below the bars are
the percent difference values (left side) and the values of the difference in the stock change estimates (right side). Values above the
subheadings are the estimations of the current study for NNFI9 (2005–2009) stock (left side) and NNFI8 (2000–2004) to NNFI9
(2005–2009) stock change (right side) expressed in million tons biomass.
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Discussion

The presented results suggest that the derived functions
are the best available for regional birch biomass stock
and stock change estimation in Norway. The derived
functions provide a good fit to the data with no visible
trends in the residuals for the most important above-
ground biomass components (Figure 2). Predictions
obtained with the new functions showed good predictive
ability for Norwegian mountain birch and regional
Swedish birch biomass data. However, the observed
underestimation patterns suggest that the biomass alloca-
tion pattern of the respective birch populations were
different (Figures 3 and 4). The derived functions mostly
estimated higher birch biomass stock and stock change
throughout Norway, across different regions, site pro-
ductivities, and forest types (Figure 5) than did existing
Norwegian mountain birch or Swedish functions.

The 67 birch trees were sampled from throughout
much of the birch zone in Norway, covering areas not
previously represented by the existing local Norwegian
birch functions including: low-elevation western coastal,
mid-elevation southeastern, central, and northern Nor-
way (Figure 1). The majority of the most prevalent
conditions in which birch occurs in Norway (Table 1)
were also represented in the sample; however, unpro-
ductive forest, high elevation birch in southern Norway
(>700 meters above sea level), and birch growing on
peatlands were not included. There are considerable land
areas in northern Norway and at high elevations
throughout Norway with unproductive birch forests;
while relatively little birch is found on peatlands (NNFI
2009). Therefore, special care should be taken when
applying the derived functions to these forest types.

Even though the sample did not include unproduct-
ive forests, the sample did include individual trees from
very low productive areas with high similarity to much
of Norway’s unproductive forests. The sample contained
12 trees from >540 m.a.s.l. from the west and southeast
as well as 12 trees from >180 m.a.s.l. in the north.
Environmental conditions on these sample sites are
approximately similar to the conditions found on birch-
dominated unproductive forest in the north and at high
elevations throughout Norway. Some indication of the
expected performance of the derived functions on
unproductive sites is indicated in the stock and stock
change comparison, where the estimate was intermediate
to the Bollandsås et al. (2009) and Marklund (1987,
1988) estimates (Figure 5B). Although it is likely that
the derived functions will underestimate southern moun-
tain birch biomass when applied in those conditions,
they produce less of an underestimate than the Marklund
functions on these sites. It is also important that the data
material used for developing the southern Norwegian
mountain birch functions (Bollandsås et al. 2009) is
limited to three sample areas and does not encompass

unproductive birch elsewhere in Norway (Bollandsås
et al. 2009).

Geographically, extrapolating allometric biomass
functions is common practice in regions where no
functions exist. Available evidence suggests that this
practice can have varying effects on the estimation of
component birch biomass. In a widely distributed genus
such as birch, growing conditions can range from similar
to dissimilar in different regions likely resulting in
increasingly different biomass allocation patterns where
conditions are most dissimilar. This hypothesis has
circumstantial support from comparative Nordic allo-
metric birch biomass studies which have reported both
differing and similar birch biomass component estimates.
Bollandsås et al. (2009) found various significant
differences from measured Norwegian mountain birch
biomass compared with predicted values for stem, total
crown, and total aboveground biomass using a suite of
local and regional birch biomass functions from Norway
(Opdahl 1987; Korsmo 1995) and Sweden (Marklund
1987, 1988; Bylund & Nordell 2001; Claesson et al.
2001; Dahlberg et al. 2004). Bollandsås et al. (2009)
reported no significant difference for total aboveground
or stem biomass compared to the regional Icelandic
functions of Snorrason and Einarsson (2006). Repola
(2008) reported differing biomass predictions for birch
live branch biomass with increasing dbh in a comparison
of his and Marklund’s (1987, 1988) functions applied to
Finnish NFI data, but relatively similar stem biomass
estimates. In the current study, NNFI total above-
ground biomass stock estimates were the same as
Marklund’s (1987, 1988) estimate in southeastern Nor-
way where conditions are most similar to Swedish
conditions, but increasingly different in northern, central,
and western Norway (Figure 5A) where conditions are
most dissimilar. Component birch biomass was also
significantly different than southern Norwegian moun-
tain birch (Figure 3) and Swedish birch (Figure 4).

The derived functions’ underestimate of measured
Swedish biomass, but higher estimate on NNFI data is
likely caused by the large proportion of low and
unproductive birch forests in Norway compared to the
data sampled by Marklund. For forest with relatively
high productivity, the Marklund functions estimate
slightly higher biomass than the derived functions while
the opposite is the case for low and unproductive forests
(Figure 5B).

Conclusions

The results indicate that geographic extrapolation of birch
biomass functions can lead to divergent biomass estimates.
Circumstantial evidence from this and other comparative
birch biomass studies from the Nordic countries suggest
that it is due to differences in biomass allocation patterns in
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trees growing in different conditions. If the estimated
differences presented here are representative of the actual
error that would result, then the continued application of
Marklund’s functions for stock and stock change estimation
for carbon accounting and bioenergy stock predictions may
result in an underestimation of birch biomass throughout
Norway, in the west, in central, and in the north (Figure
5A). The comparison of the derived functions applied to
existing biomass and NNFI data indicates that the functions
are likely the best choice for estimating regional birch
biomass stock and stock change in Norway.
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Appendix A. List of abbreviations and select terms used in the manuscript in 
alphabetical order 

AIC: Akaike Information Criterion 

C: Celsius 

cm: centimeters 

commercial size trees: Development classes 3-5 definition from Norwegian NFI 
(Antόn-Fernández and Astrup 2012). Younger, older, and mature productive forest with 
satisfactory stand density. Species proportions are reported according to volume in these 
harvest classes.  

complete crown: The function biomass combination from the current study of live 
crown (LCdh) and dead branches (DBd).  

DBd: Dead branch biomass single-variable model 

dbh: Diameter at breast height (1.3 m) 

DW: Dry weight 

FW: Fresh weight 

H40: Height of tree at 40 years of age 

ha: hectare 

height-to-live-crown: distance from the ground to the base of the live crown, ignoring 
one time a single live branch if separated by more than two whorls from the next live 
branch. 

kg: kilogram 

LBd: Live branch biomass single-variable model 

LBdh: Live branch biomass two-variable model 

LCd: Live crown biomass single-variable model 

LCdh: Live crown biomass two-variable model 

LFd: Leaf biomass single-variable model 

m: meter 

m.a.s.l.: meters above sea level 

m.t.b.: million tons biomass 
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N: Number 

NFI: National Forest Inventory 

NLME: Nonlinear mixed-effects model 

NNFI: Norwegian National Forest Inventory 

NNFI8: Norwegian National Forest Inventory 8th inventory (2000-2004) 

NNFI9: Norwegian National Forest Inventory 9th inventory (2005-2009) 

older stands: Development classes 4 and 5 definition from Norwegian NFI (Antόn-
Fernández and Astrup 2012). Older and mature productive forest with satisfactory stand 
density. 

p: p-value 

RMSE:  Root Mean Square Error 

sapling size trees: Development classes 1 and 2 definition from Norwegian NFI (Antόn-
Fernández and Astrup 2012). Young newly regenerating to satisfactorily dense forest. 
Species proportions are reported according to crown cover percentage in these harvest 
classes.  

SBd: Stem bark biomass single-variable model 

SBdh: Stem bark biomass two-variable model 

std. error: Standard error 

SWd: Stemwood biomass single-variable model 

SWdh: Stemwood biomass two-variable model 

TAGB: Total aboveground biomass component combination from Bollandsås et al. 
(2009) using:  over-bark (“Stem”) + total crown (“Tree crown”) biomass 

TAGcombination 1 : Total aboveground component combination using: TSdh + LCdh + DBd 

TAGcombination 2 : Total aboveground component combination using: SWdh + SBd + LBdh 
+ LFd + DBd 

TAGd: Total aboveground biomass single-variable model (model fit with the BMts + 
BMlc + BMdb biomass estimates (Appendix B)) 

TAGdh: Total aboveground biomass two-variable model (model fit with the BMts + 
BMlc + BMdb biomass estimates (Appendix B)) 
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TAGM: Total aboveground biomass for Marklund using: stemwood (B-5) + stem bark 
(B-8) + live branch (B-11) + dead branch (B-16) + leaves (where leaf biomass = B-5 * 
(0.011a/0.52b) (a Factor currently applied by NNFI for UNFCCC reporting; b de Wit et 
al. 2006) 

TAGS: Total aboveground biomass component combination of the current study using: 
SWdh + SBd + LBdh + DBd + LFd 

total crown: Observed crown biomass of the mountain birch sample trees including the 
live and dead branches (if present) (Bollandsås et al. 2009). 

TSd: Total stem biomass single-variable model 

TSdh: Total stem biomass two-variable model 

UNFCCC: United Nations Framework Convention on Climate Change 

Unprod.: Unproductive birch forest = potential yield < 1 m3 ha-1 yr-1 

volume-weighted total stem biomass: The average stem biomass weighted by volume of 
the stem section from which the sample disk was taken.  

young stands: Development classes 1 and 2 definition from Norwegian NFI (Antόn-
Fernández and Astrup 2012). Young newly regenerating to satisfactorily dense forest. 

Appendix B.  Detailed methods for the aboveground biomass dataset 

Total stem biomass estimate 
(1) 

(2)  (Smalian’s formula) 
(3) 

(4) 

(5) 
where: 
steps (1), (2), (3), (4), and (5) correspond to the written steps in the manuscript 

= Dry weight to fresh weight ratio of stem disk i with bark
 = Dry weight of stem disk i with bark (g)
 = Fresh weight of stem disk i with bark (g)

 = Volume of stem section i by Smalian’s formula (m3)
 = Length of stem section i (cm)
 = Lower surface’s cross sectional area of an ellipse of section i (mm2)
 = Upper surface’s cross sectional area of an ellipse of section i (mm2)

g = Cross sectional area of an ellipse = 
 = Maximum diameter (mm) 

3



 

 = Minimum diameter (mm) 
 = Total stem volume of tree j (m3)

 = Volume-weighted dry weight fresh weight ratio of the stem of tree j
 = Fresh weight of the stem of tree j (total fresh weight of disks + the rest of the

stem of tree j)(kg) 
 = The volume-weighted total stem biomass of tree j (kg)

Stemwood biomass estimate 
(6)  & 

(7) 

(8) 

(9) 
(10) 
(11) 

where:  
steps (6), (7), (8), (9), (10), and (11) correspond to the written steps in the manuscript 

= Cross sectional elliptical over-bark area of stem disk i (mm2)
 = Cross sectional elliptical stemwood area of stem disk i (mm2)

 = Maximum diameter of stem disk i (mm)
 = Minimum diameter of stem disk i (mm)
 = Proportion of stemwood cross sectional area of stem disk i assigned to its

corresponding stem section 
 = Proportion of the total stem volume that stem section i represents

 = Volume of stem section i by Smalian’s formula (m3)
 = Total stem volume of tree j (m3)

= Proportion of the stemwood in stem section i
 = Volume-weighted proportion of stemwood in the stem of tree j

 = The volume-weighted total stem biomass of tree j (kg)
 = The volume-weighted stemwood biomass of tree j (kg)

Stem bark biomass estimate 
(12) 
(13) 
(14) 
(15) 

where: 
steps (12), (13), (14), and (15) correspond to written steps in the manuscript 

 = Proportion of stem bark of stem disk i
 = Proportion of stemwood cross sectional area of stem disk i assigned to its

corresponding stem section 
 = Proportion of stem bark of section i

 = Proportion of the total stem volume that stem section i represents
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 = Volume-weighted proportion of stem bark of tree j
 = The volume-weighted total stem biomass of tree j (kg)
 = The volume-weighted stem bark biomass of tree j (kg)

Live crown biomass estimate 
(16) 
(17)  

(18) 

(19) 
where:  
steps (16), (17), (18), and (19) correspond to the written steps in the manuscript 

 = Sum of the dry weights of live sample branches of tree j (kg)
 = Dry weight of the woody material of live sample branch i (kg)

 = Dry weight of the leaves of live sample branch i (kg)
 = Dry weight of the catkins of live sample branch i (kg)

 = Sum of the fresh weights of the live sample branches of tree j (kg)
 = Fresh weight of live sample branch i (kg)

 = Dry weight to fresh weight ratio of the live sample branches of tree j
 = Total fresh weight of the live crown of tree j (  + the rest of the live

crown )(kg) 
 = The biomass of the live crown of tree j (kg)

Live branch biomass estimate 
(20)  = 
(21)  

(22) 

where: 
steps (20), (21), and (22) correspond to the written steps in the manuscript 

 = Sum of the dry weight of the woody material of live sample branches of tree j
(kg) 

 = Dry weight of the woody material of live sample branch i (kg)
 = Sum of the dry weight of live sample branches of tree j (kg)
 = Dry weight of the leaves of live sample branch i (kg)

 = Dry weight of the catkins (if present) of live sample branch i (kg)
 = The biomass of the live crown of tree j (kg)
 = The biomass of live branches of tree j (kg)

Leaf biomass estimate 
(23) 
(24) 

(25) 
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where:  
steps (23), (24), and (25) correspond to the written steps in the manuscript 

 = Sum of the dry weight of leaves of the live sample branches of tree j (kg)
 = Dry weight of the leaves of live sample branch i (kg)

 = Dry weight of leaves and catkins (if present) of tree j (kg)
 = Dry weight of the catkins (if present) of tree j (kg)

 = Sum of the dry weight of live sample branches of tree j (kg)
 = The biomass of the live crown of tree j (kg)

 = The biomass of the leaves and catkins (if present) of tree j (kg)

Dead branch biomass estimate 

(26) 

(27) 
where: 
steps (26) and (27) correspond to the written steps in the manuscript 

 = Dry weight to fresh weight ratio of sampled dead branches of tree j
 = Dry weight of sampled dead branches of tree j (kg)
 = Fresh weight of sampled dead branches of tree j (kg)
 = Total fresh weight of all dead branches in the crown of tree j (  + the

rest of the dead branches in the crown of tree j)(kg) 
 = The biomass of dead branches (if present) of tree j (kg)

Total aboveground biomass estimate 
(28) 

where: 
step (28) corresponds to the written step in the manuscript  

 = The volume-weighted total stem biomass of tree j (kg)
 = The biomass of the live crown of tree j (kg)
 = The biomass of the dead branches of tree j (kg)
 = The total aboveground biomass of tree j (kg)

Appendix C. Covariance matrices for single- and two-variable functions 

Table A.C.1. Parameter covariance matrix ( ) of the single-variable biomass

function for total aboveground biomass (TAGd). 

β0 βd 
β0 0.00011 
βd -0.00044 0.00195 
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Table A.C.2. Parameter covariance matrix ( ) of the single-variable biomass

function for total stem biomass (TSd). 

β0 βd 
β0 0.00012 
βd -0.00055 0.00291 

Table A.C.3. Parameter covariance matrix ( ) of the single-variable biomass

function for stemwood biomass (SWd). 

β0 βd 
β0 0.00009 
βd -0.00049 0.00310 

Table A.C.4. Parameter covariance matrix ( ) of the single-variable biomass

function for stem bark biomass (SBd). 

β0 βd 
β0 7.53085 [10-6] 
βd -0.00020 0.00590 

Table A.C.5. Parameter covariance matrix ( ) of the single-variable biomass

function for live crown biomass (LCd). 

β0 βd 
β0 0.00003 
βd -0.00050 0.01042 

Table A.C.6. Parameter covariance matrix ( ) of the single-variable biomass

function for live branch biomass (LBd). 

β0 βd 
β0 7.72835 [10-6] 
βd -0.00026 0.00938 
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Table A.C.7. Parameter covariance matrix ( ) of the single-variable biomass

function for leaf biomass (LFd). 

β0 βd 
β0 5.95136 [10-6] 
βd -0.00030 0.01888 

Table A.C.8. Parameter covariance matrix ( ) of the single-variable biomass

function for dead branch biomass (DBd). 

β0 βd 
β0 5.21287 [10-6] 
βd -0.00063 0.08046 

Table A.C.9. Parameter covariance matrix ( ) of the two-variable biomass

function for total aboveground biomass (TAGdh). 

β0 βd βh 
β0 0.00006 
βd 0.00020 0.00489 
βh -0.00070 -0.00673 0.01279 

Table A.C.10. Parameter covariance matrix ( ) of the two-variable biomass

function for total stem biomass (TSdh). 

β0 βd βh 
β0 7.63909 [10-6] 
βd 0.00005 0.00333 
βh -0.00019 -0.00440 0.00799 

Table A.C.11. Parameter covariance matrix ( ) of the two-variable biomass

function for stemwood biomass (SWdh). 

β0 βd βh 
β0 4.30251 [10-6] 
βd 0.00004 0.00332 
βh -0.00014 -0.00438 0.00782 
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Table A.C.12. Parameter covariance matrix ( ) of the two-variable biomass

function for stem bark biomass (SBdh). 

β0 βd βh 
β0 2.55211 [10-6] 
βd 0.00008 0.01434 
βh -0.00029 -0.02115 0.04571 

Table A.C.13. Parameter covariance matrix ( ) of the two-variable biomass

function for live crown biomass (LCdh). 

β0 βd βh 
β0 0.00049 
βd 0.00148 0.03068 
βh -0.00542 -0.04366 0.08934 

Table A.C.14. Parameter covariance matrix ( ) of the two-variable biomass

function for live branch biomass (LBdh). 

β0 βd βh 
β0 0.00011 
βd 0.00069 0.03005 
βh -0.00237 -0.04188 0.08060 
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Functions for estimating belowground and whole tree biomass of birch in 15 

Norway 16 

Abstract 17 

Obtaining accurate estimates of national belowground and whole tree biomass is 18 

becoming increasingly important in order to better understand the global carbon 19 

cycle and to quantify biomass stocks and changes. For belowground biomass, 20 

the availability of individual tree biomass models is generally low due to the 21 

costly, difficult, and time-consuming extraction and processing of roots. 22 

Allometric birch (Betula pubescens Ehrh. and Betula pendula Roth) biomass 23 

functions were derived from 67 trees for belowground (BGd) and whole tree 24 

(WTd) biomass using diameter at breast height (dbh) and a whole tree (WTdh) 25 

function with dbh and height as the independent variables. The sampled trees 26 

spanned a dbh range from 4.0 to 45.5 cm and were representative of the growing 27 

conditions for birch present in Norway. The belowground and whole tree 28 

biomass functions are the only functions with national coverage in Norway and 29 

represent the largest belowground birch dataset in Fennoscandia. The developed 30 

functions were fitted using nonlinear mixed-effects models and provided a good 31 

fit to the data (RMSE = 14.2 kg BGd, 40.7 kg WTd, and 35.4 kg WTdh). 32 

Belowground, total stem, live crown, and dead branch biomass comprised 33 

29.2%, 52.2%, 18.1%, and 0.5% of the whole tree biomass respectively. The 34 

observed root-to-shoot ratios were between 0.9 – 0.2 with a mean of 0.4, which 35 

is largely in agreement with published values from global meta-analyses of 36 

belowground studies. Comparisons with existing individual belowground 37 

biomass functions from Fennoscandia indicated considerable differences in 38 

estimates between exiting belowground birch biomass functions. The derived 39 
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belowground and whole tree allometric birch biomass functions are likely the 40 

best available for estimating national and regional biomass stock and stock 41 

change in Norway.   42 

Keywords: national biomass; belowground biomass functions; allometry; Kyoto 43 

Protocol; root-to-shoot ratio; model selection error 44 

1. Introduction 45 

Obtaining accurate national estimates of belowground tree biomass is important for 46 

understanding the global carbon cycle (Robinson, 2004; Mokany et al., 2006) and to 47 

increase the accuracy of greenhouse gas inventory reporting (IPCC, 2006). The need for 48 

accurate biomass estimates is highlighted by national climate change mitigation 49 

strategies focusing on the increased utilization of tree biomass.  50 

 Belowground biomass estimates for National Greenhouse Gas Inventory purposes is 51 

currently most widely obtained from published root-to-shoot ratios (IPCC, 2006), which have 52 

been shown to be globally stable across latitudes and a wide range of environmental 53 

conditions (Cairns et al., 1997), but are not available for several important biomes and may 54 

lead to inaccurate estimates in some vegetation types (Mokany et al., 2006). Generic 55 

allometric functions can improve national belowground estimates predicted directly from 56 

aboveground biomass density or combinations of tree diameter, height, and other variables 57 

where local species-specific studies are available as has been done in Canada (Kurz et al., 58 

1996; Li et al., 2003), United States (Jenkins et al., 2003), and central Europe (Wirth et al., 59 

2004; Wutzler et al., 2008). Generally, the most accurate way to estimate belowground 60 

biomass is by using species-specific allometric functions (Vogt et al., 1998; Brown, 2002) 61 

with predictors such as diameter at breast height (dbh, 1.3 m) (e.g. Santantonio et al., 1977) 62 

and tree height (e.g. Repola, 2008), but the difficult and time-consuming extraction of roots is 63 
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often limiting for the availability of such models (Drexhage and Colin, 2001; Mokany et al., 64 

2006). 65 

The proportion of biomass that a tree allocates to belowground, stem, and crown 66 

biomass components is species-specific, changes as the tree ages and increases in size, and as 67 

the tree responds to constantly changing local environmental conditions (e.g. Pretzsch et al., 68 

2012). One of the most commonly occurring and pronounced examples of biomass 69 

partitioning is age-related partitioning, which is often characterized by decreasing 70 

belowground (e.g. Peichl and Arain, 2007), increasing stem (Helmisaari et al., 2002), and 71 

decreasing crown biomass (e.g. Petersson et al., 2012) as the tree ages and increases in size. 72 

Accurately estimating the changing stock proportions of component biomass in accordance 73 

with increasing tree size with allometric functions is important for carbon accounting, 74 

ecosystem function studies, and tree-based bioenergy studies.    75 

Birch is the dominating deciduous tree species in Fennoscandia and national species-76 

specific belowground biomass allometric functions have been developed for silver birch 77 

(Betula pendula Roth) and downy birch (Betula pubescens Ehrh.) in Sweden (Petersson and 78 

Ståhl, 2006) and Finland (Repola, 2008). Local belowground functions have been developed 79 

for paper birch (Betula papyrifera) in British Columbia, Canada (Wang et al., 2000), for silver 80 

birch in Estonia (Uri et al., 2007; Varik et al., 2013) and Poland (Bijak et al., 2013), downy 81 

and silver birch in Sweden (Johansson, 2007), and downy birch in Finland (Finér, 1989). The 82 

only Norwegian functions were developed from mountain birch (Betula pubescens Ehrh. ssp. 83 

czerepanóvii (N.I. Orlova) Hämet-Ahti) in western Norway from 780 meters above sea level 84 

(Kjelvik, 1974).  85 

Norway currently uses Swedish national functions (Petersson and Ståhl, 2006) applied 86 

to Norwegian National Forest Inventory (NNFI) data to estimate belowground birch biomass 87 

at the national level, but the functions were derived from 13 sample trees with dbh from 0.5-88 

4



26.7 cm. The Finnish national functions (Repola, 2008) were based on a larger dataset of 39 89 

sample trees and a dbh range from 5-25 cm. Sample trees from local birch functions from 90 

Canada (Wang et al., 2000) and Europe (Finér, 1989; Johansson, 2007; Uri et al., 2007; Bijak 91 

et al., 2013; Varik et al., 2013) do not exceed 14 cm dbh and are derived from varying birch 92 

species, site, and stand conditions. The Norwegian function for mountain birch is based on 93 

seven sample trees with a dbh range from 3.8-12.3 cm, which predict to a minimum root 94 

diameter of 5 mm (Kjelvik, 1974). Using any of the existing biomass functions for 95 

belowground biomass estimation in Norway involves applying them outside their intended 96 

geographic and diameter ranges. Such extrapolation may lead to significant errors in the 97 

national belowground biomass estimate (e.g. Melson et al., 2011; Smith et al., 2014). 98 

The objectives of this study were to: (1) derive regional allometric belowground and 99 

whole tree biomass functions for birch in Norway; (2) to investigate how biomass partitioning 100 

changes with tree size; and (3) use NNFI data to compare the belowground birch biomass 101 

stock estimates obtained with the derived function with estimates from the national functions 102 

from Sweden and Finland and an existing local western Norwegian mountain birch function.  103 

2. Material and Methods 104 

2.1. Site and sample tree selection 105 

Individual birch trees were destructively sampled in order to obtain empirical allometric 106 

functions for above- and belowground biomass estimation. The field work and procedures for 107 

aboveground birch biomass estimation have been described in detail in Smith et al. (2014). A 108 

total of 17 sample site locations were subjectively selected to represent the regional variability 109 

in site, stand, and tree variables (Smith et al., 2014, Figure 1) in southeastern, western, 110 

central, and northern Norway. Four to five sites were located within each region (Figure 1) 111 

and four trees were sampled from throughout each site, resulting in a total of 67 sampled 112 
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birch trees. Only vigorous rot-free trees representative of the full dbh range present on the site 113 

were selected for sampling. For each sample tree, a 250 m2 (r = 8.92 m) plot was established 114 

with the sample tree as plot center. The dbh and height were recorded for all trees on the plot 115 

with a total height in excess of 50% of the dominant tree height in young stands or with a dbh 116 

> 5 cm in older stands. No distinction between downy and silver birch species was made in 117 

the study due to varying identifying traits between the two species (Atkinson, 1992; Atkinson 118 

et al., 1997). All the sample trees were growing on mineral soils with depths of at least 15 cm.  119 

Figure 1. Sampling site locations. 17 sites were selected with five located in the 120 

southeast, four in the west, four in central, and four in northern Norway. 121 

 122 
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2.2. Destructive sampling 123 

2.2.1. Aboveground biomass 124 

The sample trees were felled intact with a hand winch and cross-cut at the stump height (mean 125 

1.3 % tree height). Aboveground birch component biomass was sampled and estimated for 126 

each tree as detailed in (Smith et al., 2014). 127 

2.2.2. Belowground biomass 128 

The root systems (stump portion and root portion) (complete term definitions are available in 129 

Appendix B) were extracted from the ground with a combination of hand tools, hand winch, 130 

or tractor as necessary. Rocks and dirt were removed with grubbing hand tools and stiff 131 

brushes. A stump sample (stump biomass sample), consisting of ca. 20 % of the total root 132 

system, was cut from the stump with a chain saw (Figure 2) and taken to the lab for drying. 133 

Whole stump samples were taken for 16 small sample trees with a dbh range of 4.0-10.8 cm. 134 

All breakpoint (broken root end) diameters of the residual (remaining stump after sampling) 135 

and stump sample (Figure 2) were measured with callipers along with the fresh weight (FW) 136 

of each stump portion (residual and sample stump) using a tripod-suspended field scale 137 

(OCSTM, 500 kg, ±0.1 kg for large pieces or UWETM, HS-15K, ±0.01 kg for smaller pieces). 138 

The stump sample was cut into smaller manageable pieces by chainsaw or hand tools for 139 

easier handling and weighing as appropriate.  140 

One large, medium, and small (relative to the breakpoint diameters present) sample 141 

root (root biomass sample), was selected for excavation from among the broken-off roots 142 

remaining in the ground from the extracted root system. The sample roots were used to 143 

estimate root portion biomass. Each sample root including up to three attached side roots (0-3 144 

depending on number present), which were completely excavated to the extent possible, to a 145 
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minimum end diameter (smallest sample root end) of two mm (Figure 2). The sample root 146 

was cleaned of dirt with a stiff brush and cut into separate root sample dimensions. Each of 147 

the side sample roots (smallest root biomass sample) were cut from the main sample root 148 

(largest root biomass sample) at their root base (Figure 2, S2-4) and at the 5 mm end diameter 149 

(Figure 2, S1). The remaining attached roots were cut from the main sample root, the root 150 

base start diameters (largest sample root end) of the cut or broken roots were measured with 151 

callipers, and tallied in 1 mm diameter classes as removed roots (cut roots from main sample 152 

root) (Figure 2). The start and end diameter for each main and side sample root (Figure 2) was 153 

measured with callipers and the FW was recorded using a portable table-top scale (UWETM, 154 

SHC-6C, ±0.2 g).  155 

All sampled stump and root material was placed in paper bags and transferred to a dry 156 

ventilated room (ca. 20OC) or cold dry storage (<0OC) (depending on availability) as soon as 157 

logistically possible (typically 0-2 days) before being sent to the lab for further processing. 158 
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Figure 2. Schematic of an extracted root system depicting the stump sample (cut 159 

marked with dotted lines), residual stump, and breakpoints of the stump portion 160 

(left image). Schematic of an excavated sample root depicting the main and side 161 

sample roots (S1-4) to a 2 mm end diameter of the root portion (solid lines). Also 162 

depicted are the root base start diameters of the side sample and removed roots 163 

(dotted lines) and the main sample root cut at a 5 mm end diameter (right image).  164 

 165 

2.3. Lab work and data compilation 166 

Dry weight (DW) was obtained for each sample by cutting sampled stump and root material 167 

into smaller pieces to expedite the drying process, placing them into paper bags, and drying 168 

them in a forced-air oven at 103OC for 2-8 days until minimal daily relative mass loss was 169 

achieved. Age at breast height was determined from a stem disk sampled from 1.3 m by 170 

counting the year rings under a stereo microscope and the basal area of the plot around each 171 

sample tree was calculated (Table 1).  172 

Table 1. Descriptive data for the 67 sampled birch trees 173 

Variable Mean Minimum Maximum Standard deviation 
dbh (cm) 15.3 4.0 45.5 8.4 
Tree height (m) 12.0 5.8 29.6 5.2 
Age (years at breast height) 50 6 144 36 
Plot basal area (m2ha-1) 16.0 2.4 61.2 12.8 
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2.4. Belowground biomass dataset 174 

The belowground biomass of each sample tree was estimated to a two mm end diameter 175 

(Figure A.1) through a stepwise procedure that utilized stump portion FW, sampled stump 176 

and root biomass, measured root diameters, and the application of three derived biomass 177 

functions in a stepwise procedure. An outline of the procedure is described here (Figure 3); 178 

more details about the functions (Table 2) and the respective datasets used to derive them are 179 

available in Appendix A.  180 
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Figure 3. Schematic of the stepwise procedure used to scale-up the sampled stump 181 

(A) and root portions (E) to a belowground biomass estimate for each sample tree 182 

to a 2 mm end diameter. The schematic is displayed sequentially from top left to 183 

bottom right (A-E). Key steps and pathways in the procedure are highlighted in 184 

bold. Abbreviations used in the figure are start diameter (largest sample root end) 185 

in mm (DS), end diameter (smallest sample root end) in mm (DE), and number (N) 186 

of observations.  187 

 188 

Stump portion biomass was estimated by multiplying the ratio of the observed FW and 189 

DW of the stump sample with the FW of the residual stump and summing the DW estimates 190 

of the residual stump and stump sample (Figures 3A). Root portion biomass was estimated by 191 

first deriving three biomass functions (Table 2) from sample root data that were used to 192 

estimate root biomass within a range of start diameters down to a given end diameter with 193 
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start diameter as the predictor (Figure 3 B, C, & D). The natural logarithm (ln) of both the 194 

response and predictor variable was used for all three functions to reduce the 195 

heteroscedasticity of the biomass data and to linearize the relationship. Simple linear 196 

regressions were fit with the linear model (lm) available in R statistical software (R core team 197 

2012) using the model form of Equation 1 for all three functions.  198 

                         (Equation 1) 199 

Where ln Y is the estimated ln biomass, lnXDs is the ln measured value of the predictor 200 

variable Ds (start diameter in mm), and o and Ds are the estimated parameters. Function 1 201 

(Table 2) was derived from the side sample roots and was used to estimate the biomass of 202 

roots with start diameters from 2.0 – 5.0 mm down to a 2.0 mm end diameter (Figure A.1). 203 

Function 2 (Table 2) was derived from the main sample roots and was used to estimate 204 

biomass of roots with start diameters from 5.1 – 69.0 mm down to a 5.0 mm end diameter 205 

(Figure A.2). One observation was removed from the main sample roots before fitting 206 

Function 2 due to three associated removed roots with larger start diameters than the 207 

originating root (Figure A.4 C). Functions 1 and 2 were applied to the side sample, main 208 

sample, and removed roots sample data to generate the side, main, and removed estimated 209 

datasets, which were added together and used to fit Function 3 (Figure 3B, C, & D; Figure 210 

A.3 B). Function 3 (Table 2) was used to estimate root portion biomass with start diameters 211 

from 5.1 – 186.0 mm down to a 2.0 mm end diameter (Figure 3E). The fit of each linear 212 

model was evaluated by a combination of p-value, adjusted R2, diagnostic plots (R core team 213 

2012), and refitting models upon removing potential influential but invalid data points (Figure 214 

A.4 C). The estimated ln biomass from Functions 1, 2, and 3 was retransformed to the original 215 

scale using the Smearing Correction Factor (SCF) (Duan, 1983) (Equation 2) as it involves 216 

the least assumptions of the available retransformation methods (Wirth et al., 2004). 217 

                            (Equation 2) 218 
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Where  is the linear unbiased estimate of the response on the transformed scale,  are the 219 

estimated residuals, and n is the number of observations (Table 2). Root portion biomass was 220 

obtained by applying Function 3 to stump portion breakpoints with starting diameters from 221 

6.0-69.0 mm (i.e. within the designed range) as well as 21 extrapolated diameters from 70.0-222 

186.0 mm (Figure 3E; Figure A.3 B). Function 1 was applied to stump portion breakpoints 223 

with start diameters from 2.0-5.0 mm. The stump portion and root portion biomass estimates 224 

were then added together to obtain the estimated belowground biomass to a 2 mm end 225 

diameter for each sample tree (Figure 3). Whole tree biomass was obtained by adding the total 226 

above ground estimate from (Smith et al., 2014) with the belowground estimate for each 227 

sample tree from the current study.  228 

2.5. Derived biomass function development 229 

A total of three biomass functions were fitted to the belowground and whole tree biomass data 230 

(Functions 4-6 in Table 2). A single-variable nonlinear mixed-effects (NLME) function was 231 

fit to the belowground biomass data (Function 4, Table 2) and a single- and two-variable 232 

NLME (Functions 5 and 6, Table 2) was fit to the whole tree biomass data to account for the 233 

data’s inherent hierarchical, nonlinear, and heteroscedastic structure (Parresol, 1999, 2001). 234 

The ln-linearized form was not utilized in any of the belowground and whole tree biomass 235 

functions because the biomass data was not excessively heteroscedastic (Figure A.4 G-H) and 236 

to avoid potential problems with retransformation bias (Flewelling and Pienaar, 1981; Taylor, 237 

1986). Both functions were fit using the NLME package (Pinheiro et al., 2012) available in R 238 

statistical software (R core team 2012) and evaluated using the procedures presented in 239 

Pinheiro and Bates (2000) and Robinson and Hamann (2010). All fixed and random effects 240 

function assumptions and best fits were evaluated at each function development stage with a 241 

combination of diagnostic plots and lowest Akaike information criterion (AIC) value. 242 
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The single-variable functions 4 and 5 were derived for belowground (BGd) and whole 243 

tree (WTd) biomass with dbh as the sole predictor (Table 2). The ability of dbh to predict 244 

above- and belowground birch biomass has been well established in numerous studies 245 

(Petersson and Ståhl, 2006; Repola, 2008; Smith et al., 2014). The power function (Sit and 246 

Poulin-Costello, 1994) was found to best represent the data for both functions (Equation 3).  247 

   (Equation 3) 248 

Where Yjs is the observed biomass of tree j at site s, Xjds is the observed value for tree j of 249 

explanatory variable d (dbh) at site s, o and d are parameters to be estimated for the fixed 250 

effects, ds represents the random effects for the variable d on site s, and the js are the 251 

residuals. Sample site-wise random effects ds were only assigned to the d parameter for all 252 

functions.  253 

 A “power of covariate” variance function (Equation 4) was used to model the variance 254 

structure of the within-site errors for all functions (Pinheiro and Bates, 2000). 255 

  (Equation 4) 256 

Where  is the absolute value of the variance covariate and  is an unrestricted parameter 257 

allowing for cases where variance increases or decreases with  (Pinheiro and Bates, 258 

2000). Functions 4 and 5 were fit using Equations 3 and 4 with equal variance weights of 1 259 

and a variance covariate given by the fitted values (default value). The random effects and 260 

variance function (Equation 4) are implicitly part of, but are not explicitly stated in, the final 261 

single-variable functions as they only reflect site-level deviations from the fixed effects. 262 

 A two-variable Function 6 was derived for whole tree (WTdh) biomass with dbh and 263 

height as the predictor variables (Table 2). Equation 5 was found to be the best function form 264 

for the two-variable function. 265 

                         (Equation 5) 266 
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Where Xjhs is the observed value of the explanatory variable h (height) for tree j at site s and 267 

h is a parameter to be estimated for the fixed effects. As in the single-variable functions, 268 

sample site-wise random effects were only assigned to d and the variance structure was 269 

modelled with Equation 4 using the default values. The final two-variable function (Equation 270 

5) does not explicitly state the random effects or the variance functions as in the single-271 

variable functions. The possibility of including height along with dbh as a predictor variable 272 

of belowground birch biomass was explored using Equation 5, but was found not to improve 273 

the single-variable function (BGd).   274 

2.6. Biomass partitioning 275 

The belowground (current study) and total aboveground (Smith et al., 2014) biomass 276 

estimates were used to calculate the root-to-shoot ratio (belowground biomass / total 277 

aboveground biomass) for each sample tree. The presence of trends in the root-to-shoot ratio 278 

related to tree height, age at breast height, total aboveground biomass, and plot basal area 279 

were tested by fitting linear models to the data. The proportion of the biomass components of 280 

the sample trees was investigated by calculating the percentage of whole tree biomass they 281 

represent. Trends in component biomass partitioning related to dbh and age at breast height 282 

were tested with linear model fits of the data.  283 

2.7. Belowground birch biomass function comparisons 284 

The belowground birch biomass functions from Sweden (Function for Betula pendula and B. 285 

pubescens, Case B, stump and roots down to 2 mm) (Petersson and Ståhl, 2006), Finland 286 

(Equation 15, stump and roots down to 10 mm) (Repola, 2008), and Norway (Function for 287 

Betula pubescens ssp. czerepanóvii, Ybiomass = 0.566 + 0.135*dbh (cm)2*height (m)/10, stump 288 

and roots down to 5 mm) (Kjelvik, 1974) were applied to the birch biomass data from the 289 

current study. The ln biomass estimates from the Swedish and Finnish functions were 290 
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retransformed to the original scale with exp (ln belowground biomass * RMSE2/2) and exp (ln 291 

belowground biomass) respectively, as recommended in each publication. Prediction errors 292 

(observed – predicted values) were calculated with the belowground biomass from the current 293 

study as observed values and function estimates from the Swedish, Finnish, and Norwegian 294 

functions as predicted values. Three function evaluation metrics were calculated: (1) RMSE 295 

for the prediction errors; (2) t-test of the mean of the prediction errors; and (3) linear function 296 

fit of the prediction errors over dbh to check for trends.  297 

Belowground birch biomass stock and stock change predictions were compared by 298 

applying the derived belowground (BGd), Swedish (Petersson and Ståhl, 2006), Finnish 299 

(Repola, 2008), and Norwegian (Kjelvik, 1974) functions to NNFI data from 2000-2004 300 

(NNFI8) and 2005-2009 (NNFI9). All plots were undivided, on forest lands, and had birch 301 

present (N = 6353 plots, plot radii = 8.92 m). All birch used in the calculation had measured 302 

dbh. On plots with 10 trees or less, all the heights were measured, while for plots with more 303 

than 10 trees, a relescope-selected subsample with a target of 10 trees per plot was measured. 304 

The remaining tree heights on the plot were modelled following the standard tariff approach 305 

applied by NNFI (see Antón-Fernández and Astrup, 2012 and references therein). It can be 306 

expected that stock and stock change estimates using modelled heights are less variable 307 

compared to those using measured heights; however, since the same trees were used for all 308 

estimates, all comparisons were equivalent.  309 

National belowground biomass estimates were further grouped into Norwegian 310 

regions by Norwegian county groups according to: southeast = Oppland, Buskerud, Vestfold, 311 

Hedmark, Oslo, Akershus, Østfold, Telemark, Aust-Agder, and Vest-Agder; west = Møre og 312 

Romsdal, Sogn og Fjordane, Hordaland, and Rogaland; central = Nord-Trøndelag and Sør 313 

Trøndelag; and north = Finnmark, Troms, and Nordland counties. The biomass estimates 314 

were also grouped by site productivity classes which are grouped Norwegian birch site 315 
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indices (Appendix B) according to: unproductive = potential yield < 1 m3 ha-1yr-1; low = 316 

height at 40 years of age (H40) 6-8 m; medium = H40 11-14 m; high = H40 17-23 m (Strand, 317 

1967). The biomass estimates were finally grouped by forest types which were defined as: 318 

birch dominant = plots with  70% composition of birch; other deciduous = plots with  70% 319 

composition of deciduous trees in total (birch < 70%); mixed forest = other mixed stand 320 

types; conifer dominant = plots with  70% composition of Scots pine (Pinus sylvestris) or 321 

Norway spruce (Picea abies [L.] Karst.) or mixed conifer stands with <10% birch or other 322 

deciduous trees; poor stocked = poorly stocked stands under regeneration or mature stands 323 

with a basal area of maximally 3-5 m2 ha-1 depending on  site index class. Tree composition 324 

percentages are based on crown cover for sapling to commercial size trees and on volume in 325 

commercial sized trees (Appendix B).   326 

3. Results 327 

3.1. Derived biomass functions 328 

The study derived single-tree allometric functions to estimate belowground and whole tree 329 

birch biomass with dbh and whole tree birch biomass predicted with dbh and height (Table 2). 330 

Model residuals showed not apparent trends across the range of the response, indicating that 331 

the functions were good fits to the data (Figure 4). The RMSE of the belowground biomass 332 

Function 4 was 14.2 kg, which constituted 34.4% of the mean estimated belowground 333 

biomass. The whole tree Function 5 had an RMSE of 40.7 kg accounting for 25.8% of the 334 

mean estimated whole tree biomass. The RMSE of the whole tree Function 6 was 35.4 kg, 335 

which was 22.5% of the mean estimated whole tree biomass. Including height in the whole 336 

tree Function 6 improved RMSE of Function 5 by 13.0%.  337 
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Figure 4. Pearson residuals for Function 1 (side sample roots) (A), Function 2 349 

(main sample roots) (B), Function 3 (augmented main sample roots) (C), Function 350 

4 (belowground biomass BGd) (D), Function 5 (whole tree biomass WTd) (E), and 351 

Function 6 (whole tree biomass WTdh) (F).  352 

 353 
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3.2. Biomass partitioning 354 

The root-to-shoot ratios for the sample trees ranged from 0.88 – 0.21 with a mean of 0.42 and 355 

significant decreasing trends with increasing dbh (p-value = 0.0004) (Figure 5), tree height (p-356 

value < 0.0001), age at breast height (p-value = 0.0005), total aboveground biomass (p-value 357 

= 0.0039), and plot basal area (p-value < 0.0001) (data not shown).  358 

Figure 5. Birch root-to-shoot ratio over dbh.   359 

 360 

Mean belowground (current study), total stem, live crown, and dead branch biomass 361 

(each from Smith et al., 2014) accounted for 29.2%, 52.2%, 18.1%, and 0.5% of whole-tree 362 

biomass respectively and proportions for all estimated biomass components were calculated 363 

(Table 3). The percentage of belowground biomass significantly decreased (p-value < 364 

0.0006), while stem biomass increased (p-value < 0.05) with increasing dbh and age at breast 365 

height indicating changing biomass allocation in the sample trees (data not shown). The 366 

percentage of live crown and dead branch biomass showed no significant trends across the 367 

sampled range of dbh. 368 

 369 
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Table 3. Component biomass partitioning for the 67 sampled birch trees. 370 

Biomass 
component 

Mean 
(kg) 

Minimum 
(kg) 

Maximum 
(kg) 

Standard 
deviation 

Mean 
percent of 
whole tree 
biomass 

Combined biomass components 
whole tree 157.5 4.3 1473.7 237.2 100 
total 
aboveground* 116.3 2.9 1100.6 178.9 70.8 

belowground 41.2 1.4 373.1 59.8 29.2 
live crown* 28.5 1.0 248.9 45.0 18.1 
total stem* 87.4 1.8 905.6 138.5 52.2 

Individual biomass components 
leaf* 3.5 0.1 23.1 4.4 3.7 
live branch* 25.0 0.6 232.0 40.9 14.5 
dead branch* 0.4 0.0 3.0 0.6 0.5 
stem bark* 11.4 0.2 56.3 13.8 7.6 
stemwood* 76.0 1.6 856.5 126.7 44.5 
stump 31.5 0.4 275.7 48.0 19.9 
roots 9.8 0.4 97.4 13.9 9.3 

Note: Component biomass values are compiled from aboveground (* Smith et al., 2014) and 371 

belowground (current study) biomass and are comprised of: whole tree = total aboveground + 372 

belowground; total aboveground = total stem + live crown + dead branch; belowground = 373 

stump + roots; live crown = woody branch material + leaves + catkins (if present) from the 374 

living crown; total stem = stemwood + stem bark; leaf = leaf + catkins (if present); live 375 

branch = woody material from the living branches; dead branch = dead branches (if present); 376 

stem bark = bark from the stem; stemwood = woody material from the stem; stump = from the 377 

cut stump surface (mean = 1.3 % tree height) to the broken root ends (breakpoints) of the 378 

extracted stump portion; roots = from the stump breakpoints to a 2 mm end diameter (i.e. 379 

remaining root portion left in the ground from the extracted stump portion).   380 

3.3. Belowground birch biomass function comparisons  381 

When compared with the belowground dataset, the Swedish (Petersson and Ståhl, 2006) and 382 

local Norwegian functions’ (Kjelvik, 1974) prediction errors showed significant trends (p-383 
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values < 0.0001) and overestimated belowground biomass for larger trees (Figure 6). The 384 

Finnish function (Repola, 2008) also showed a strong significant trend in the prediction errors 385 

(p-value < 0.0001), but in this case the belowground biomass of the larger trees were 386 

underestimated (Figure 6). Mean prediction errors revealed that the Swedish and Norwegian 387 

functions significantly overestimated belowground biomass by 16.6 kg (p-value = 0.0097) 388 

and 73.1 kg (p-value = 0.0014) respectively, while the Finnish functions significantly 389 

underestimated belowground biomass by 33.2 kg (p-value < 0.0001) across the range of 390 

sampled dbh (Figure 6).  391 

Figure 6. Prediction errors (observed - predicted) for belowground birch biomass 392 

(kg) estimates for the national Swedish (Petersson and Ståhl, 2006) and Finnish 393 

(Repola, 2008) functions, and a western Norwegian mountain birch (Kjelvik, 1974) 394 

function. Observed belowground birch biomass is from 67 trees in the current 395 

study and predicted belowground birch biomass values are from the respective 396 

function estimates. Angled lines are simple linear model fits of the prediction 397 

errors (p-values < 0.0001).  398 

 399 
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 When the different functions were applied to the NNFI data from the 9th inventory 400 

(2005-2009), the belowground biomass function from this study estimated 7.1% and 15.6% 401 

less biomass stock (37.7 million tons) than the Swedish (Petersson and Ståhl, 2006) and 402 

Norwegian  (Kjelvik, 1974) functions and 44.8% more than the Finnish function (Repola, 403 

2008) (Figure 7 A). The deviation between the predicted biomass stocks was found to vary 404 

strongly across geographic regions, site productivities, and forest types (Figure 7). Relative to 405 

the function from this study, the Finnish function (Repola, 2008) produced less of an 406 

underestimate on NNFI plots with better growing conditions as depicted in the estimates 407 

across unproductive to high site productivities (-53.8 – -31.9%) (Figure 7 B). The Norwegian 408 

function (Kjelvik, 1974) produced stock overestimates that were most dissimilar to the 409 

derived function estimate on NNFI plots with better growing conditions such as high site 410 

productivity (39.2%) (Figure 7 B). Overestimates were less in medium (22.4%) and low 411 

(4.0%) site productivities (Figure 7 B). Norwegian function also underestimated biomass 412 

(14.7%) on unproductive sites (Figure 7 B) compared to the derived function. The stock 413 

change estimates between 2000-2004 (NNFI8) and 2005-2009 (NNFI9) were 2.6 (current 414 

study), 2.8 (Swedish), 1.2 (Finnish), and 3.4 (Norwegian) million tons belowground birch 415 

biomass in Norway. The stock change estimated from the respective functions decreased from 416 

southeast to north Norway by 1.4-0.4 (current study), 1.5-0.4 (Swedish), 0.8-0.1 (Finnish), 417 

and 2.2-0.4 (Norwegian) million tons belowground birch biomass (data not shown).  418 

 419 

 420 

 421 

 422 

 423 
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Figure 7. Estimation of belowground birch biomass stock in Norway based on 424 

NNFI9 (2005-2009) and grouped by: Norwegian regions (A); site productivity (B); 425 

and forest type (C). The zero line represents the belowground birch biomass stock 426 

estimate from the current study (BGd) for all graphs. Bars depict the percent 427 

difference of the current study estimates from those of Petersson & Ståhl (2006), 428 

Repola (2008), and Kjelvik (1974) respectively. Values above or below the bars are 429 

the percent difference values. Values above the subheadings are the belowground 430 

birch biomass stock estimates from the current study for NNFI9 (2005-2009) 431 

expressed in million tons biomass.  432 

 433 
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4. Discussion 435 

The study derived single-tree allometric functions to estimate belowground and whole tree 436 

birch biomass with dbh and whole tree birch biomass predicted with dbh and height (Table 2). 437 

Model residuals showed no apparent trends across the range of the response, indicating the 438 

functions were good fits of the data (Figure 4). The belowground birch biomass function 439 

comparisons on the sampled birch data and NNFI9 data indicated that the existing functions 440 

from Sweden, Finland, and Norway produced considerably different estimates than the 441 

derived function (Figures 6 & 7).   442 

The root-to-shoot relationship observed in the sample trees was largely in agreement 443 

with published literature values, but some differences were apparent. In our study, 444 

belowground biomass comprised 29.2 % of whole tree biomass, which is in agreement with 445 

boreal hardwood values from a large meta-analysis of temperate and boreal belowground 446 

biomass studies (Kurz et al., 1996). Our root-to-shoot ratios ranged from 0.88-0.21 and 447 

showed significant trends of decreasing root-to-shoot ratios with increasing dbh (Figure 5), 448 

tree height, age at breast height, total aboveground biomass, and basal area (data not shown). 449 

The similar ranges and trends were also observed for mean dbh, stand height, stand age, stand 450 

shoot biomass, and tree basal area in a recent large global meta-analysis comprised of 301 451 

estimates of root and shoot biomass (Mokany et al., 2006). An earlier global meta-analysis of 452 

belowground biomass found no significant relationship between root-to-shoot ratios and 453 

aboveground biomass density, age, temperature, precipitation, latitude, soil texture or tree 454 

type and advocated estimating belowground biomass directly from aboveground biomass 455 

rather than root-to-shoot ratios (Cairns et al., 1997). The conflicting results of the Mokany et 456 

al. (2006) and Cairns et al. (1997) global meta-analyses may be due to the differing criteria 457 

used to select the included studies, which were more stringent in the Mokany et al. (2006) 458 

study, possibly reflecting more realistic relationships between the biotic and abiotic factors 459 
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affecting root-to-shoot relationships (Mokany et al., 2006). Our mean root-to-shoot ratio was 460 

0.42 for belowground biomass > 2 mm end diameter, in contrast to the 0.21 reported by Varik  461 

et al. (2013) for 13 silver birch with average diameters between 1.3 – 10.8 cm in Estonia. The 462 

reasons for our higher mean root-to-shoot ratio are unclear, but may be related to lower 463 

sample plot densities in our study (240-3040 trees ha-1) compared to Varik et al. (2013) 464 

(3208-100000 trees ha-1). 465 

 The Swedish function (Petersson and Ståhl, 2006) produced belowground birch 466 

estimates that were closest to the current study in both the prediction error analysis (Figure 6) 467 

and when applied to NNFI data (Figure 7). The Swedish function significantly overestimated 468 

belowground biomass in the prediction error analysis, which was also seen in the NNFI 469 

estimates, where it uniformly estimated about 7% higher biomass across Norwegian regions, 470 

site productivities, and forest types. The Swedish function is the most directly comparable 471 

function to the derived function in that the sampling for belowground biomass was similar to 472 

a 5 mm end diameter. Root biomass from 5-2 mm, however, was both modelled from sampled 473 

data and estimated by extrapolating the unknown biomass from the sampled biomass using 474 

the shape of a truncated cone for a portion of the roots (Petersson and Ståhl, 2006). The 5-2 475 

mm portion would have constituted a mean of only 1.0% of belowground biomass in our 476 

sample trees. The similarity of methodology used and the overestimate suggests that more 477 

biomass was allocated belowground in the Swedish sample compared to our sample. The 13 478 

trees in the Swedish sample were sampled from northern, middle, and southern Sweden, but 479 

the degree to which they are representative of the pattern of belowground allocation of 480 

biomass remains uncertain. It is certainly striking that the Swedish overestimate was so 481 

uniform across diverse regions, site productivities, and forest types in Norway, which may be 482 

due to the low sample size in the Swedish study or suggest that the belowground allocation of 483 
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biomass is less variable than the allocation to aboveground biomass overall (Smith et al., 2014 484 

Figure 5). 485 

 The Finnish function (Repola, 2008) underestimated belowground birch biomass in 486 

the prediction error analysis (Figure 6) and when applied to NNFI data (Figure 7). The 487 

underestimate produced on the NNFI data was mostly uniform and quite large averaging 488 

about 45% across Norwegian regions, site productivities, and forest types (Figure 7). The 489 

same Finnish function applied to Finnish NFI data, underestimated birch stump and root 490 

biomass on average 30% compared to the Swedish function (5 mm end diameter) (Petersson 491 

and Ståhl, 2006) applied to the same data (Repola, 2008). The Finnish function sampled 492 

belowground birch biomass to a 50-20 mm end diameter in 39 trees, sampled biomass to a 10 493 

mm end diameter in 6 trees, and modelled biomass to a 10 mm end diameter in the remaining 494 

33 trees (Repola, 2008). In our sample, root biomass from 50-2 mm would have constituted a 495 

mean of 34.2% of belowground biomass, 20-2 mm would have been 17.2%, and 10-2 mm 496 

would have constituted 8.4% of belowground biomass, which may partially explain the 497 

observed underestimate. However, the underestimate from the Finnish function compared to 498 

the Swedish function on both NNFI and Finnish NFI data is more likely influenced by 499 

reduced belowground birch biomass allocation in Finland compared to Sweden and Norway. 500 

It remains uncertain if the different methodology used to derive the Finnish function 501 

influences this result. An important point in this discussion, however, is that such large 502 

underestimates are indicative of the possible magnitude of model selection errors that can 503 

occur in national belowground biomass estimation (e.g. Melson et al., 2011) and highlights 504 

the necessity of national functions in order to achieve more accurate biomass estimates. 505 

 The Norwegian function (Kjelvik, 1974) overestimated belowground birch biomass in 506 

the prediction error analysis (Figure 6) as well as across all Norwegian regions, most site 507 

productivities, and all forest types (Figure 7). The range of the sample trees used to derive the 508 
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function were 3.8-12.3 cm dbh and 3.7-8.4 m height, which means that more than 25% of the 509 

biomass estimates on the NNFI data were based on extrapolated values outside the intended 510 

range of the function. The function is also derived from seven western Norwegian mountain 511 

birch sampled from 780 meters above sea level, which means that applying the function to 512 

NNFI data constitutes considerable geographic extrapolation of the function. The result of the 513 

dimension range and geographic extrapolation of the function are evident in the NNFI 514 

comparison. The mountain birch function estimates most similarly to the derived function on 515 

low site productivities and in central and north Norway (Figure 7 A & B), where conditions 516 

are more similar to the conditions and tree allometries from which the function was derived. 517 

The function estimates much higher biomass than the derived function on high quality sites 518 

and in southeast Norway (Figure 7 A & B) where conditions and tree allometries are most 519 

dissimilar from where the function was derived. The reason for the underestimate on 520 

unproductive sites is unclear because conditions on these sites (Figure 7 B) are likely very 521 

close to the growing conditions from where the function was derived. The derived function 522 

indicated no trend or overestimate within the dbh range of the Norwegian function in a 523 

prediction error analysis indicating the ability of the derived functions to perform well on high 524 

elevation sites in western Norway (data not shown). 525 

Belowground biomass is difficult and expensive to sample (Drexhage and Colin, 526 

2001) and therefore many of the available datasets are relatively small and large diameter 527 

trees are not well represented (e.g. Santantonio et al., 1977). Our belowground birch biomass 528 

function is based on 67 sample trees with a dbh range of 4.0 – 45.5 cm, which is the largest 529 

sampled range of dbh for birch in Europe. The sampled stand and site conditions of the 530 

derived functions are representative of many of the conditions in which birch occurs in 531 

Norway (Smith et al., 2014).  532 
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5. Conclusions 533 

The developed functions represent the largest dataset for belowground birch in Europe and 534 

the only national biomass functions for birch in Norway. The derived belowground and whole 535 

tree allometric birch functions are likely the best available for estimating national and 536 

regional biomass stock and stock change in Norway.  537 
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Appendix A. Detailed methods for the belowground biomass dataset 671 

 672 

Table A.1. Descriptive data for the stepwise datasets used to create the 673 

belowground estimated biomass data.  674 

Dataset Mean Min. Max.  N Data type 
stump portion 
stump sample FW (kg) 12.2 0.9 75.0 11.4 67 S 
stump sample DW (kg) 6.3 0.4 43.5 6.3 67 S 
residual stump FW (kg) 46.4 2.8 527.4 81.8 51* S 
residual stump DW (kg) 24.8 1.4 267.0 43.5 51* E 
root portion 
side sample roots FW (g) 8.3 0.4 67 7.9 615 S 
side sample roots DW (g)1 3.5 0.1 22.8 3.1 615 S 
side sample roots DS (mm)1 4.7 1.9 9.7 0.7 615 S 
side sample roots DE (mm)1 2.2 1.0 5.2 0.5 615 S 
side data3   67 S/E 
main sample roots FW (g) 472.4 0.6 7909.6 945.0 197 S 
main sample roots DW (g)2 202.6 0.2 3677.6 407.6 197 S 
main sample roots DS (mm)2 18.4 2.1 69.0 12.0 197 S 
main sample roots DE (mm)2 5.1 4.2 17.2 0.9 197 S 
main data3  67 S/E 
removed roots DS (mm) 3.9 2.5 55.0 2.0 4029 S 
removed data3  67 S/E 
stump portion breakpoints (mm) 5.2 2.0 186.0 6.5 18019 S 
breakpoint data  67 S/E 
stump portion (kg) 31.0 0.4 275.7 47.8 67 S/E 
root portion (kg) 9.6 0.1 97.4 13.9 67 S/E 
belowground biomass (kg) 40.6 0.8 373.1 59.6 67 S/E 
Note: Table items: Mean = mean value; Min. = minimum value; Max. = maximum value;  = 675 

standard deviation; N = number of samples; Data type: S = sampled data; E = estimated data. 676 

Abbreviations: FW = fresh weight; DW = oven dry weight; DS = start diameter; DE = end 677 

diameter. Side data, main data, removed data, and breakpoint data are derived and utilized 678 

datasets in the stepwise procedure depicted in Figure 3. The superscript number next to a 679 

dataset name is the function number the data was used to derive (Table 2). * whole stump 680 

samples were taken for 16 sample trees.  681 
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Figure A.1. Frequency distributions for start (DS) (A) and end (DE) (B) diameters 682 

of side sample root data used to fit Function 1.  683 

 684 
 685 

 686 

 687 

 688 
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Figure A.2. Frequency distributions for start (DS) (A) and end (DE) (B) diameters 689 

of main sample root data used to fit Function 2.  690 

 691 

 692 

  693 
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Figure A.3. Frequency distributions for the ranges of start diameters fitted with 694 

Functions 1 and 2 for the removed roots (A) and Functions 1 and 3 for the stump 695 

portion breakpoints (B).  696 

 697 

 698 

 699 
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Figure A.4. Side sample roots (S.S.R.) biomass (g) over start diameter (mm) (A), ln 700 

S.S.R. biomass (g) over ln start diameter (mm) with the fit linear model for 701 

Function 1 (B), main sample roots (M.S.R.) biomass (g) over start diameter (mm) 702 

(C), ln M.S.R. biomass (g) over ln start diameter (mm) with the fit linear model for 703 

Function 2 (D), augmented M.S.R. estimated biomass (g) over start diameter (mm) 704 

(E), ln augmented M.S.R. estimated biomass (g) over ln start diameter (mm) with 705 

the fit linear model for Function 3 (F), belowground estimated biomass (kg) over 706 

dbh (cm) with the fit NLME for Function 4 (BGd) (G), whole tree estimated 707 

biomass (kg) over dbh (cm) with the fit NLME for Function 5 (WTd) (H). Note: the 708 

data used to fit Function 6 (WTdh) is the same as that depicted in (H), but height 709 

was also included in the function and the fit of the NLME plane is not presented.  710 
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Appendix B. Definition of select terms used in the manuscript  715 

Aboveground biomass: Biomass estimate for each sample tree above the cut stump surface. 716 

Described in detail in (Smith et al., 2014a).  717 

Birch site index: the dominant height of the largest tree by dbh at the reference age of 40 years 718 

at breast height (Strand, 1967). 719 

Belowground biomass: The stump and root biomass estimates added together representing 720 

biomass to 2 mm end diameter for each sample tree.  721 

Breakpoint: Broken root end on the extracted stump sample or residual stump.  722 

Commercial size trees: Development classes 3-5 definition from Norwegian NFI (Antón-723 

Fernández and Astrup, 2012). Younger, older, and mature productive forest with satisfactory 724 

stand density. Species proportions are reported according to volume in these harvest classes.  725 

Diameter at breast height (dbh): Tree bole diameter at 1.3 m above mean ground level.  726 

Dry weight (DW): Minimum mass of biomass sample obtained following forced-air oven 727 

drying at 103oC. 728 

End diameter: Smallest diameter end along the root taper of the main and side sample roots. 729 

In the case of main sample roots the term is also used to represent the 5 mm cut end diameter.  730 

Equation: equation form used to fit the respective biomass functions, the variance structure 731 

model, and the smearing correction factor.   732 

Fresh weight (FW): Field mass of root system biomass sample cleaned of dirt.  733 

Function: model used to estimate biomass.  734 

Main sample root: Observed root biomass sample cut from the excavated sample root with all 735 

side sample and removed roots removed and cut at a 5 mm end diameter.  736 

Removed root: Cut or broken root originally attached to the main sample root. 737 

Residual stump: Extracted root system stump portion from which only fresh weight and all 738 

breakpoint diameters were recorded. 739 
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Root portion biomass: Observed and scaled-up modelled biomass estimate of the root portion 740 

to a 2 mm end diameter. 741 

Root portion: Portion of the root system associated with the roots including: sample roots, 742 

main sample roots, side sample roots, removed roots, and breakpoints (i.e. the roots remaining 743 

in the ground after stump extraction). 744 

Root system: Extracted stump portion and three corresponding excavated sample roots from 745 

which the belowground biomass estimate was ultimately derived.  746 

Sapling size trees: Development classes 1 and 2 definition from Norwegian NFI (Antón-747 

Fernández and Astrup, 2012). Young newly regenerating to satisfactorily dense forest. 748 

Species proportions are reported according to crown cover percentage in these harvest classes. 749 

Sample root: One of three associated broken roots remaining in the ground following root 750 

system extraction, which was selected for excavation to a 2 mm end diameter. The main 751 

sample root, side sample roots, and removed root start diameters are all derived from it.  752 

Side sample root: One of up to four observed root biomass samples cut from the main sample 753 

root and excavated to a 2 mm end diameter; consisting of up to three side roots and the 5 mm 754 

diameter tip of the sample root.  755 

Start diameter: Largest diameter end along the root taper of the main and side sample roots. It 756 

also corresponds to the root base diameter of the removed roots as well as the breakpoint 757 

diameters of the stump portion of the root system. It is the predictor variable used to model 758 

root biomass.  759 

Stump biomass estimate: Estimate of the biomass of the stump portion of the extracted root 760 

system. Stump biomass estimate (kg) =   761 

Stump portion: Portion of the root system associated with the stump including both the stump 762 

sample and residual stump.  763 
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Stump sample: Observed stump biomass sample cut from the stump portion of the extracted 764 

root system used to obtain DW:FW of the stump portion. It was selected as structurally 765 

representative of the stump portion of the root system.  766 

Whole tree biomass: The total aboveground biomass (total stem + live crown + dead branch 767 

biomass from (Smith et al., 2014a)) and belowground biomass estimates (current study) added 768 

together for each sample tree.  769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 
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Appendix C. Covariance matrices for the models 785 

 786 

Table C.1. Parameter covariance matrix  of the single-variable biomass 787 

function for belowground biomass (BGd). 788 

 o d 

o 0.0001  

d - 0.0007 0.0052 

Table C.2. Parameter covariance matrix  of the single-variable biomass 789 

function for whole tree biomass (WTd). 790 

 o d 

o 0.0003  

d - 0.0007 0.0020 

Table C.3. Parameter covariance matrix  of the two-variable biomass function 791 

for whole tree biomass (WTdh). 792 

 o d h 

o 0.0003   

d 0.0004 0.0056  

h - 0.0017 - 0.0075 0.0150 

Table C.4. Residual covariance matrix  for the single-variable biomass functions.  793 

 Res. BGd Res. WTd 

Res.BGd 112.2761  

Res. WTd 61.2110 382.2465 
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Table C.5. Residual covariance matrix  for the two-variable biomass function 794 

WTdh.  795 

 Res. WTdh 

Res. WTdh 407.4780 
 796 
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������� ����� ��� 	
� �	������ ������ �� ���� ���=����	� ��	���	�� �������� �7���� �	 �����


���> � .�� �0����� �������� � ����� ����� �������

y = β0 + β1x+ ε, �� 

�
��� y �� 	
� ��������� β ��� ������	��� 	� �� ��	���	��� x �� �� �0����	��� !����������

��� ε �� � �������� < �������	���	�� ����������	 ����� �� � �� �������� 	
� ������� ε����

,���������

�



ε ∼ N(0, σ2), ���

����� σ2 = εtε/(n − 1) �	 
�� ��	���� ������ �� n 
�� ������ �� ��	���
���	� 
�����

��	���� ������ ���� �����	� ��� 
� 
�� ��	������
 �����	 �� 
�� ��	���	�� ��� ������
������

��
���� 
�� ��	���� ������ �� 
�� ������ �� 
�� ����� ��������
 �	
��
�	 �	���

Σ = σ2(XtX)−1, ���

����� Σ �	 
�� ��������������� �
��� �� 
�� ����� ����
�� �	
��
�	 β �� X �	 
�����

��	��� �
���� ���������� 
�� ������ �� 
�� �	
��
�� ����� ��������
	 �	� �����	�	 ������


� 
�� ��	������
 ����� �� 
�� ��	���	�����

���	������ 
� �	
��
��� ����		� 
��	 ���	 
�
 
�� �����
��
� �� 
�� ��	������
���

�� 	
�� ����		 �� 
�� ��������� 	
�� ��	��
	 �� � �����	� �� 
�� ��������� ����� �� 
�����

�
���� �	
��
��  ���	� 
�� 	�� �� 
�� ��	���� ����� �	 ���������� ���	� 
� !��� ������	

������
��� ����		 ��� ��� 
���	 ��"� ��� 
�� ��������� ����� �� �
���� ��� ���� 	������


�	
��
�	 �	 ������ �� 
�� �����
��
� �� 
�� �	
��
�� ����� ��������
	 ��
������� �� Σ����

#���� ��	������
 �����	 �� 
�� 	������ 	
�� ��� �������� ���	������� 

��
���� 
����


�� �
���$	 %��������� 
���� ��� ���� �� 	
����	 
�
 ��� ����	
��
�� 
�� ��&����� �����

�����
��
��	 �� ��	������
	 �� 
�� ��������� 	
������

��� �� �� 
��	 	
��� �	 
� ���!� 
�� �'��
 �� �����
��
� �� 
�� ��	���	� ������ 
�����

��������� 	
�� �� 
�� �
���� �	
��
�� (	  �	� 	
���� �� ���!�� 
�� �����
��� ���	�


�� ���
��� �� 
�� )*+ �� 
�� ��������� 	
�� �� 
�� �
���� 	
�� ����		 �	
��
� ���	�

����� �� ,����� *��	
� �� �	�� -��
� .��� 	����
��� 
� ��
������ 
�� ��������� ����� ���	�


�� )*+ ���
��� ��
��� 	����� 	
��	 �� 
�� ��������� 	
��� /������ �� ������� 
�� ��
�		

�� 
�� ��������� ����� ��� 
� )*+ ���
��� ��
� 
�� ��������� ����� ��������� �� 	�����	 ���	


���
��� ��&������� 
�� ����		 ����� ����
�� �	
��
�	�  ���	� 
�� ��������� ������	�

���� �� ��		 �����	 ��
 ��� �	
��
�	 �� ������ �� ����	 �� �	
��
�	 �� 
�� ����		 	
��%��	�

0� ���
���� 
�� ��������� ����� �	 ������� 
� 
�� 	������ �������	�

�������� ��	 
����	�	�

������� �����	�

��� ����		 ��	������
	 �	�� �� 
��	 	
��� ���� ��	������ �� ��
�� �� /��
� �
 �� ��123���
�

( 
�
� �� 45 ����� ������� ����	
��	 6���� �� ������ ������� +�
�� 	
��	 ���� 25 	
��	�
�

��	
����
�� 
��������
 
�� ����
�� ���� �	�� 
� �����
� 	
�� ����		 �����	� ��� 	
���
�


��� �� ��� 
��� �	 ��	���� �� 71 �� ��������
	 ��������� 71 �� ����� ���	
 �����
�
	

7



���� ��� ���	
� ���� ���� ��������� ���� ��� ���� �� ������ 
������� ���� ���� �����

����� ��� �� ���� �� ���≥� ��� ������� �� ����
 
����� ���� ��� ����	 ������� �� ������

�	� �� �������
 ���� ��� ��� ����� �� ������ ������  � ������ �����! ���	
� ���� �������

����� ���� ���� ���� �� � ���
�"������� �����! ��� �# ���� ���	
�� ��� ����� ������ $�����

����� ����� �� ���� ���	
� ��� ��� ��� ����� ���� ��� ����� � ��� %�
�� $�� ��& ��������

�� ���� ���	
� ��� ��� ��������� � ��� 
�� �& ��&�� ��� ���� �� �'�◦( � � ������"�����

�)�� ���
 ����
 ��
& ��
��)� ���� 
��� ��� ����)��� $�� )�
��� �� ���� ���� ������

��������� �& �		
&�� ���
��*� �����
� �� ��� ��	�� ����������������

 � ����! ��� +,- �� ���	
� ���� ��������� ��� �������� ����� � ��� ���� ��� ����	

�������� 	��	������ �� .�)��
� ���� �/���
�! �011! �0�0�� $��������! � ��� ����&��


��� ���� ������ � �)�� �& ��
�	
&�� ��� �������� )�
���"������� ���� +,- ������

��� ����� ����� �� ��� ����
 ����� $�� +,- ��� �������� ��� %)� �� �������� ���� ������

����������
& ��� ���� +,- �� � ���� ��� �� �������� ��)���� ��+� � �)�� �&���

DFRij =

nij∑
k

wijkDFRijk �#�

������

SD(DFRij) =

√∑nij

k wijk(DFRijk −DFRij)2

1−∑nij

k w2
ijk

, �2�

����� wijk � ��� �����
3�� ��������
 ����� �)�� �& ��� )�
��� 	��	����� �� ��� �������

������ ���� ���� ��� k�� ��� ��� ���	
�� ��� nij � ��� ������ �� ���� ����� �������

��� j�� ���� � ��� i�� ����� �4�
��� �� �
�! 5''0�� $�� ��� �� ��� �����
3�� ��������
���

������ 	�� ���� � ��� �
∑nij

k wijk = 1��  � ����
� �� ����� ���� ��� ��������
 ����� wijk���

� �6����� ���� ��� 	�&���
 ����� ����� �� ��� �������	

$�� ������ �� � ���� � �)�� �&��


yij = FWij ·DFRij , �1�

����� FW � ��� ����� ����� �������� � ��� %�
�����

$�� ������� ���� +,- �)�� ��� ���� ���� ���� ���� ������ ������� '�#� ��� '�1����

��� � ���� �� '�22� $�� �������� ��)���� �� ��� ������� ���� +,- ������ ����������

��'�7 ��� 2�#07 ��� �� �)����� �� ��''7����

����� ���	 
��	��� 	������

8� ��

���� ���� �� �
� �5'�#� ��� ���� � ���
���� ����"�6���� ����
 �� ������� �������

������ ���� ��� ��� ����� �� ��	
������& )����
�����

yij = β0x
β1+αi

1ij xβ2

2ij + εij , ���

1



����� x1 �� ��� 	
 ��� j�� ���� � ��� i�� ����� x2 �� ���� ������� β0 �	 β2 ��� �������

���������� �� α �� � ���	� ��������� �� ��� ���� ������ ��� ���	� ����� �� ����������

�	 �� �������� 	
 ��� ��������� �� 	������ ����������� ���	���� �	 N ∼ (0, σ2
α)� �	���

���	�� 
	� �����	������������� � ������� �	��� ��� �� ��������	���� ���� ��� 	���� �	������

���������� ������� ��� ����������	���

εij ∼ N(0, σ2
ε |ŷij |2δ), ���

����� σε �� ��� �������� �������� ŷ �� ��� ��������� ���� ��	����� �� δ �� � ����������

���������� ��� �	������� ������ 	
 ��� ���� �	��� ���������� ��	��� �	� ������ �����

��	��� Σ� ��� �	��� ��� �� ���� ��� ���� 
����	 �!�����	 �� "����� #$$#� �� ������

� ������ 
	� ����������� �	������ �% &����	���� '	�� ����� #$()� ����� ��� ���� 
	���	

��� ����������


��������	 ��
��	�� ����
 �	��	
������

��� *	������ *���	�� +	���� ,���	�� �*+,� �� � ������� ������ ��	� ����	�� �������

�	���� ��� ��	�� �	���� ��	���� �� ���� #$($- "��������� �� ���� #$()�� .����� 
	� �������

�	���� ����� �� �	�� 	����� ����� 	
 ��� �	����� ��� ������� ������ ��	�� ������

�	����� 	 � 3×3 �� ���� �/�����	����������� #$$��� .���� ����� #$0 	
 ��� ������ ��	�����

��� �������� �������� � ���1���� ��1���������� ������� 2�	� 	���� ����������� ��� �����

���� ������� 	
 ��� ����� ���� ��� 34 �� ��� ���	���� 	 �������� ������ ��	�� ���� � ���������

	
 ��5# � �#4$ �2�� 6 ��	�� ���� ($ ����� 	� 
����� ��� ���� ������� ��� �������� �������

����	������� 6 ��	�� ���� �	�� ��� ($ ������ ������� ��� �������� 
�	� � ������	��1��	

�������� ��������� ���� � ������ ������ ��7� 	
 ($ ����� ��� ��	� �/�����	������������	


#$$��� ��� ������� 	
 ��� ��������� ����� ��� ��������� ���� ����� �	���� ���������� ���	�

��� ��	�1����� ���� ��� ���� 
�	� �������� ������ , 	���� �	 
	��� 	 ��� �8���� 	
 ����	�

��	���� �	���� ��������� ���� ������� ���� �������� �� ����������� ����	�� ���	�� ����	�

�����������	 
���	� r ����	 �	� �� ����� ������ 	� ������	 
���	�� 	
 � 	��������	�	�

� ��� *+, �� ���� �� ������� ��� ��� ���� 	
 *	���� �������� ������ �� ��� ���� 	
 ����	�

������ ��	�� ���������� 	
 ����� ��� �	�����	�

, 	���� �	 �������� ����� ��	���� ��	��� �� ���� ����� ����� ������� � ��� ����	�

����	�� ����� �*+,5�� ��� ������ ��	�� � ��� *+,5 ���� ������� ������ #$$49#$$5� :��	�

����� 	�� ������ �� ��� n = 16, 632 *+, ��	�� 	 ��� 3×3 �� ���� �	����� ��� ��	��������		

�	�1��� 
	����� ��� �����������	 
���	� 	
 ��� �������� ��	�� �� ;<$))�5)� "���� ����� �����



	������� 	 7, 489 ������ ��	�� ���� � �	��� 	
 83, 905 ������ ����� ������ "���� �� ��� �	���
�

������ ���� ������� � *	����� '�������������� 	
 ��� ������� ����� ��� ���� � ����� (��
�

=�2"/. (>�
�

?



�������� 	

�
���

��� �������	�
 �� �� ������
� ����� �� 	�����
� ���� �� �� �����		 	���� 	��������

��	 	������� �� ����	 �
 �� 	�����
� ����� �� ���� �� �� �����		 ������� ���� �����

�����		 ���� ��� ��	 ��
�������

�� 	���� 	����� �� �� �����		 	���� �	 ���
 �� �� ����� 	������� ������	�
����

���� !��		�
 � ���� ��"�����

Ŷ =
N

n

n∑
l=1

yl = r
n∑

l=1

yl = r
n∑

l=1

nl∑
m=1

ylm, �#�

��� N �� ��� ����	
���� ���� n �� ��� ������ �� �
��	� �	��� �� ��� �
��	��� ��
�� r���

�� ��� ���
����� �
���� �� ��� �
��	� �	��� 
�� ylm �� ��� ����
�� ���������� �� ���� m �����

�	�� l� ��� ��������� l �� ���� 
� 
� ����� ��� ��� �
��	� �	��� ���� �
��	� ��
��� �� ��������

�� 
���� ��������� ���� ��� ��
��� ������� i �� ����� ����
�� �
�
 ���� ��		����� �� ������

����		��� ��
������

��� ������������ �� ��� �	���	���	 ����
�� �� ������
� �� �
	��	
�� ��� �
��
��� �� ������

�����
�� ����� ������
����� ��� ����� ��
����� �� ��� �
�� �	�� 
�� ��� ����������� �� �
�����

������ !� �����
�� �� ��� �
��
��� �� ��� ���
	 ����
�� �����
�� �
� ����� � ���

V̂ar(Ŷ ) = N2 s
2

n
, �"#�

�������	

s2 =
1

n− 1

n∑
l=1

(yl − ȳ)2 �""�

�� ��� �
��	� �
��
��� 
�� ȳ �� ��� ��
� �� ��� yl$�� ��� �
��	������	
��� �
��
��	�� ����


����� � ��� �%�
�� ���� �� ��� �����
��� �
��
��� ���
��
�� ����������

��������� �		�	 �
� �� �� ��	���������

&��
��� 
 �
��	� �� ���� ���'� �
� �
'�� �� ��������� ��� (�) �� �
�� ���� �� ��� ����		������

��
�� ��� (�) �
��
���� ����	��� �� ������
��� �� ��� ��
�������� �� ��� ���� ����
������

*� ���������
		 
���� ��� ���� �
��	��� ����� ���� ���� ������ ��� ������
��� �� ��� �����

�
��	��� ���� ���'� ���
��� ��� ���� �
��	��� ����� �� ����	 ���� ��� ���������� ���������

�
��� �� ��� �
��	��� ��
�� 
�� ���	� �
��� ���������� �� ��
� ���� ����
�� �� ��� �����������

�
��
�	� �� ��� ����
�� ����	 ���� ������
��� �� ��� ��
�������� ���
�	� 
� �����
�� �����

��� ������
��� �� ��� ����	 �
�
����� �����
���� ��� ������
��� �� ��� ����	 �
�
�������	

�����
��� �� ���� �
���� ��� ����		��� ����� �� ��� �
����
	 ����
�� ����' �����
�����


��� �
��� 
����
�� ���� �� �� ��������� ��� �
�� �� ��� ����		��� ����� �� ��� �
����
	���

�����
�� �� ����� ���� ����
�� ��
� �� 
 ����	� �� ��� (�) �
��
����� �� ���� ��� 
 +��������

,



����� ���	��
��� �� ���� ��������� � �����
��� ���
�
�� ��� ���������

��� ���
�
�� ������
�� �� 
���� ����� �
�� 
��
 ���� ����
�� B = 20, 000 
����� ������

���	��
��� �� ��� ��� 
�� �� �
��� 	��� 
�� ���! ����	�����
� ��� 
�	� ���	��
�� �������

�
�� �������� ���� ��"#

�� �� 
�� ������� ����� �� ������� 
�� $����	���% ������� �� ����

��� �� �
�� ��
� � ���	��
�� �������� ����� �����
��� �� 
�� ������� ����� ����� �� 
�����

���	��
�� ������� &��	�� 
� 
�� '�( ��
� ��� ��
���
��� �� 
�� 
�
�� �
�� ������� �� ��������

�� '������ )��� ��
���� �� 
�� �
�� ���"����� ���  �&�� ���������

*
� ���� '�� ����&��	�� �
�� ������� $����	�����
�% ����  �����
�� �� ������ �������


�� ��� ��� �
� *���	

ỹbij = FWij · ˜DFRij , �+,�

����� ỹbij �� � ���	��
�� ������� �� 
�� j
� �
�� �� 
�� i
� �
��� �� ���
�
�� �	� b �����


˜DFRij �� ��� �	
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Propagation of uncertainties in stem biomass measurements due to wood density variability in 
the modelling stage to the uncertainty of national biomass estimates – A case study for birch 
in Norway 

 

Line 307: “…the DFR variation is responsible for 1,568 · 103 Mg – 1,529 · 103 Mg = 39 · 103 
Mg or 2.5% of the total modelling error.” 

Line 360: “…and Scots pine…” 

Line 361: “…models for spruce and pine…” 
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Abstract: The accurate characterization of three-dimensional (3D) root architecture, 
volume, and biomass is important for a wide variety of applications in forest ecology and to 
better understand tree and soil stability. Technological advancements have led to 
increasingly more digitized and automated procedures, which have been used to more 
accurately and quickly describe the 3D structure of root systems. Terrestrial laser scanners 
(TLS) have successfully been used to describe aboveground structures of individual trees 
and stand structure, but have only recently been applied to the 3D characterization of whole 
root systems. In this study, 13 recently harvested Norway spruce root systems were 
mechanically pulled from the soil, cleaned, and their volumes were measured by 
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displacement. The root systems were suspended, scanned with TLS from three different 
angles, and the root surfaces from the co-registered point clouds were modeled with the 3D 
Quantitative Structure Model to determine root architecture and volume. The modeling 
procedure facilitated the rapid derivation of root volume, diameters, break point diameters, 
linear root length, cumulative percentages, and root fraction counts. The modeled root 
systems underestimated root system volume by 4.4%. The modeling procedure is widely 
applicable and easily adapted to derive other important topological and volumetric  
root variables. 

Keywords: root biomass; tree root system architecture; terrestrial laser scanning;  
carbon cycle estimation; bioenergy; automatic tree modeling 

 

1. Introduction 

Tree roots are estimated to comprise approximately 19%–28% of the total living tree biomass of 
boreal forests [1,2] and the ability to adequately estimate total root biomass is central to understanding 
the carbon dynamics and storage capacity of these forest ecosystems [3–6]. As illustrated by the reviews 
in Tobin et al. [7], Danjon and Reubens [8], and Danjon et al. [9], knowledge of root system architecture 
is also of large importance in order to understand key ecosystem processes including tree stability, slope 
stabilization, erosion control, water and nutrient uptake through fine roots, and root competition. All of 
these processes affect a tree species’ competitive performance and aid in the understanding of observed 
shifts in intra- and interspecific competition and the resulting forest dynamics across resource  
gradients [10]. Relative to the importance of adequately characterizing root systems, extensive studies 
of mature tree root systems are rare due to their high cost and labor-intensive nature [8]. To the best of 
the authors’ knowledge, the only study that has made a detailed characterization of large root structures 
in the Fennoscandic boreal forests is Kalliokoski et al. [11]. The study sampled three of the most 
prevalent species in Finland—Norway spruce, Scots pine, and silver birch. In that study, 60 whole root 
systems were excavated from the tree bole to the first bifurcation of the root system and one to three 
sample roots were completely excavated to a diameter of 2 mm for each tree. The root diameters and 
lengths, azimuths, inclinations, and depths were manually measured, then the 3D coarse-root architecture 
of the root systems were modeled with software [11]. 

Over time and in pace with technological advances, improved approaches for describing root and 
plant structure have been developed [8,12–14], often with the aim of making full 3D representations of 
root systems. A recent review from Danjon and Reubens [8] outlines the progressive development from 
manual, to semi-automatic, to increasingly automated 3D descriptions. Manual methods have included: 
cross-sectional area descriptions of coarse root systems [15]; the physical measurement of the X, Y, and 
Z coordinates of root surfaces [16]; dimensional measurements of root diameter, length, angle, and  
depth [17]; and non-bulk methods that incorporate manual measurements into graphic depictions of 
simulated root systems [18]. Semi-automatic methods have used digitized manual measurements in order 
to reconstruct whole 3D root systems with software. Digitizing methods have included the use of a digital 
compass, inclinometer, and caliper [19] and a digitizing stylus device which records the X, Y, and Z 
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coordinates of the root surface [20]. Digitized measurements can then be used in software to create 3D 
root system reconstructions [20–22]; in fractal branching modeling, which simulates the growth of root 
systems utilizing statistical relationships among root parts [12]; or for root-density based modeling [23]. 
Automatic methods have focused on in situ methods such as X-ray computed tomography (CT) scanning 
for small root systems [24] and ground-penetrating radar (GPR) for large root systems [25]. 

Recently, terrestrial laser scanning (TLS) systems have emerged as promising tools for a range of 
measurement tasks in forest ecosystems. The use of TLS has been proposed for measuring standard 
forest inventory variables such as stem volume and stem quality [26,27], forest canopy structure [28], 
and aboveground tree biomass [29]. Automated approaches for deriving 3D quantitative structure tree 
models from point cloud data have also emerged as promising approaches for the characterization of the 
aboveground components of individual trees [30]. Other 3D reconstruction methods for deriving the 
aboveground biomass from TLS data include those developed by Bucksch and Fleck [31], and  
Vonderach et al. [32]. The use of TLS to describe 3D root systems is in its infancy, but has been 
identified as the best available technique to describe the architecture of large root systems, although it 
requires further development [8]. Early work has successfully represented the 3D structure of excavated 
individual root systems [33–35], calculated whole stump volume using slices [33,35] or by modeling the 
root surface [36,37], and investigated potential sources of error associated with various scanned 
materials, scanners, and point cloud post-processing techniques [35,38,39]. The volume of a root 
segment has been estimated from a triangulated root surface generated from a point cloud accurate to 
within 50 m as well as the feasibility of incorporating root growth ring data into the root reconstruction 
has also been investigated [36]. Building on this methodology, the volume of a whole complex root 
system and successive year growth surfaces and root volumes have been modeled [37]. Most recently, 
six Norway spruce stumps were mechanically pulled from the soil, scanned in the field, and the root 
architecture was recreated with a combination of a polyhedral grid for the stump and fit cylinders for  
the root portions of the root system [40], following the modeling methodology developed by  
Raumonen et al. [30]. Whole root system and root size distribution volumes were estimated for each 
stump; however, soil was not removed from the root systems, resulting in some problems in the 3D 
reconstruction process. Further, no manual measurements were carried out to evaluate how well the root 
system model characterization actually represented the root systems. 

The objectives of this study are twofold. First, we evaluate how well coarse root system architecture 
and volume can be estimated by applying 3D quantitative structure modeling to terrestrial laser point 
cloud data. Secondly, we utilize these 3D quantitative structure models (QSM) to derive key architectural 
and volumetric characteristics of mature Norway spruce tree root systems. 

2. Materials and Methods 

2.1. Root System Acquisition and Preparation 

We obtained 13 Norway spruce root systems from a stump harvesting trial in southeastern Norway near 
the town of Hurum in Vestfold County. The stump harvesting trial was carried out in a 70-year-old spruce 
stand of medium productivity (site index 14 at age 40) with relatively deep (1+ m) heavy moraine till (clay). 
The stand had been harvested some months prior to root system extraction and contained approximately  
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1200 stumps per hectare. The root systems were treated as in a regular stump harvesting operation and were 
pulled from the ground with a CAT 320D L hydraulic excavator (Caterpillar, Peoria,  IL, USA) fitted with a 
PALLARI KH-160 HW multi-purpose stump extraction device. After the root systems were pulled from the 
ground, they were numbered and the stump diameter (19–47 cm) (diameter at the cutting surface) was 
recorded. The root systems were then loaded onto a truck and transported to a workshop where any remaining 
soil was removed using pressurized air. During the handling a few roots were dislocated from the root 
systems. The dislocated roots were kept with the corresponding root system throughout the measurements. 

2.2. Root System Volume Measurement 

The individual root system volumes were measured by means of a buoyancy trial and application of 
Archimedes’ principle. According to Archimedes’ principle, a fluid exerts an upward buoyancy force 
that is equal to the mass of displaced fluid, which in turn is measurable as the difference in the  
free-hanging mass and the submerged mass of an object. The volume of the object can then be calculated 
as the equivalent of the mass and density of the water represented by the buoyancy. 

In this study, each numbered root system was weighed in the air with a scale mounted on a crane 
(Figure 1a) and was subsequently weighed in the water of the Oslofjord, Norway (Figure 1b). In order 
to submerge the root systems, a metal weight had to be attached to each root system and was included 
in both the measurement of free-hanging and submerged mass. The salinity and temperature of the water 
was measured (temperature 6.5 °C, salinity 34%, ~density = 1.02 kg L 1). Total root system volume was 
calculated according to Equation (1):      =  (  ) (   )

 (1) 

where: Tmair = total mass of the root system in the air; MWmair = metal weight mass in the air;  
Tmsubmerged = total mass of the root system submerged in the water; MWmsubmerged = metal weight mass 
submerged in the water; and Dfluid = density of the water. The few dislocated roots were attached to the 
main root system during the root system volume measurement and were consequently included in the 
estimated root system mass. 

Figure 1. Images of the volume estimation method used for the root systems: (a) Weighing 
the root system in the air; (b) Weighing the root system in the water. 
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2.3. TLS 

The intact portions of the root systems were completely suspended indoors and individually scanned 
with a Leica ScanStation 2 terrestrial laser scanner (Leica Geosystems AG, St. Gallen, Switzerland) from 
three lateral locations located at approximately 120° from each other and within 6 m of the center of 
each stump (Figure 2a). Any broken root pieces associated with a root system were placed on the floor 
and included in each scan. Three targets (Leica Geosystems HDS 3” × 3” square Planar Targets, Leica 
Geosystems AG, St. Gallen, Switzerland) were visible in each scan and used to co-register the scans into 
a single 3D point cloud of each root system. All scans encompassed the whole root system with a 
resolution of 2.5 × 2.5 cm at 50 m and a laser beam width of 4 mm (Figure 2b). The co-registered point 
cloud comprised of all three scans was used to fit the 3D QSM models. 

Figure 2. Root system images: (a) Root system 3 suspended at scanning; (b) A 2D 
reprojection of the TLS point cloud data of root system 3, showing the effects of sensor 
obscuration (black shadow); (c) Top view of the QSM of root system 3; (d) Oblique bottom 
view of the QSM of root system 2. 
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2.4. 3D Quantitative Structure Model (QSM) 

2.4.1. Outline of the Method 

In this section we give an outline of the basic steps and modeling philosophy behind the method 
reconstructing the 3D QSMs for the root systems (Figure 2c,d). In the following sections we then 
describe the steps of the method in detail. 

The method is a modified version of the method presented in Raumonen et al. [30] for aboveground 
tree structures. The idea is to model the surface, volume, and structure of the stump and roots with 
suitable geometric primitives approximating the local details. The stump portion (bottom part of the 
primary tree stem) is modeled with a cylindrical triangulation. The root portion (the structures branching 
out from the stump portion) is modeled as a hierarchical collection of cylinders. The result is a mixed 
QSM that uses cylindrical triangulation and cylinders as building blocks, which have been selected as 
the best, simplest, and most robust options for accurately modeling the complex geometry of the root 
system [41]. 

The co-registered point cloud is assumed to be a sample of the root system surface. The geometric 
primitives are used to reconstruct the surface and structure of the root system from the sample.  
Before the primitives can be fit into the suitable subsets of the point cloud, the stump and root portions 
need to be separated. Notice that there is no obvious way to define the boundary of the stump and root 
portions, therefore the stump portion that is modeled with cylindrical triangulation may also contain base 
portions of the roots that are modeled with cylinders (Figure 2c and d). The root portion of the point 
cloud needs to be further segmented into individual roots, i.e. segments that correspond to a root without 
any bifurcations. 

To realize this separation and segmentation automatically and efficiently, we use a cover set 
approach, where the point cloud is partitioned into subsets (cover sets) that correspond to small patches 
along the sampled surface of the root system, similar to the procedure used to segment trees into branches 
presented in Raumonen et al. [30]. The cover sets (patches) are generated as subsets of randomly but 
about evenly distributed balls of radius r. The size of the patches is controlled by the user given 
parameter d which is smaller than r and is (1) the minimum distance between the centers of the balls 
and (2) the maximum distance between any point and its nearest center. The diameters of the patches 
vary randomly between d and 2d. The patches are fast to generate, are intuitive to work with, and have 
a natural neighbor relation and geometric properties facilitating, for example, the easy definition of 
surface normals. The neighbor relation allows us to easily and naturally expand along the object’s surface 
and define separate connected components. The details of how to generate covers (a collection of cover 
sets such that each point in the point cloud belongs to one of the sets), how their neighbor and geometric 
properties are computed, how to expand along the surface, and how to determine connected components, 
are explained in Raumonen et al. [30]. In the cases of the stump and roots, we use two different covers; 
the first has bigger patches for the stump and root separation, and the second has smaller patches for the 
segmentation of the roots. Covers are also used for filtering noise from the point cloud. 

The first major step in the reconstruction method is the filtering of noise from the point cloud.  
The second step is the separation of the stump and root portions. Modeling the stump portion with a 
cylindrical triangulation is the third major step. The fourth step is the segmentation of the root portion 
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into individual roots. The final step is the modeling of the roots with cylinders. More details for most 
these steps and technical features of the reconstruction of QSMs are available in Raumonen et al. [30]. 
The completed QSMs then allow for the derivation of various root system variables such as: root system 
volume (total estimated root system volume), diameters (based on cylindrical triangulations for the cut 
stump surface and cylinder fits for the roots), breakpoint diameters (cylinder diameters of the broken 
root ends), and linear root length (total summed length of all the cylinders fit to all the roots in the root 
system). These variables are used to characterize the architecture and volume of the root systems. 

2.4.2. Filtering 

Co-registered point clouds are first filtered of erroneous points, i.e. points that occupy the empty 
space near the surface of the object, but that are not part of the sampled surface. These points can cause 
errors in both the segmentation process and the volume estimates because the modeled points are 
assumed to represent the surface of the object. Erroneous points are removed by: first, removing low 
point density areas; and second, removing small separate clusters. In the first case, the point cloud is 
covered with balls with equal radii and the balls encapsulating less than a pre-defined threshold number 
of points are removed. In the second case, a new cover with the neighbor relation is generated.  
The clusters or connected components are then determined, and the clusters that have fewer cover sets 
than the defined threshold are removed. 

The radii and threshold numbers are determined by trial-and-error by making iterative changes in 
accordance with rapid visual inspections of the filtered point clouds. Radius and threshold values used 
were 8 mm and six points for the first step and 2 cm and 20 sets in the second. A coordinate point Q was 
then selected close to the cutting surface of the stump in order to be able to find the surface more reliably 
later. The rest of the modeling steps are completely automatic. 

2.4.3. Separation of the Stump and Roots 

After the filtering, the next step is to separate the stump and root portions of the point cloud.  
The separation of the complex shaped stump surface uses cover sets; we use parameters d = 20 mm  
(the minimum distance between the centers of the balls and the maximum distance between any point 
and its nearest center), r = 25 mm (ball radius), and n = 1 (minimum number of points in the ball).  
The neighbors and the surface normals of the sets were also determined. The separation is based on the 
idea of looking at the surface from inside the stump. If we go inside the stump along the normal line at 
the center of the cutting surface of the stump (see Figure 3c), and look into every direction perpendicular 
to the normal line, then the patches that are closest to the line represent the stump surface. These 
horizontal search directions are defined by a cylindrical reference consisting of the cutting surface, its 
normal line at the center, and an arbitrary reference line orthogonal to the normal line. Then the patches 
are divided into layers (horizontally-oriented slices of the stump portion) and sectors (vertically-oriented 
slices of the stump portion) according to their height from the cutting surface and azimuth angle from 
the arbitrary reference line, respectively. The intersection of a layer and a sector then defines a cell in 
one direction. Selecting suitable patches from each cell then defines the stump portion. A similar idea is 
used in the cylindrical triangulation model of the stump surface. The points are divided into similar cells 
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except that patches are not selected; instead, the mean of the cell points in each cell defines a vertex of 
the triangulation. 

To determine the cutting surface of the stump, the previously determined coordinate point Q on the 
cutting surface is now used to restrict the cover sets to those closest to Q. These cover sets are then 
segmented into regions, which are nearly planar (i.e. the angle between normals of the first selected set 
and other sets of the region does not exceed 10°) and only the largest regions are considered  
(Figure 3a). The region closest to point Q is then selected as the first approximation for the  
cutting surface (Figure 3b). A vector is determined that approximates the normal of this region and the 
region is expanded across neighboring cover sets, but now using a relaxed angle of 20° for normals 
(Figure 3c). 

Figure 3. Determination of the cutting surface: (a) Segmentation of the stump portion into 
planar regions (only regions with at least five cover sets are shown); (b) Blue points show 
the initial cutting surface as defined by the selected large region; (c) The final cutting surface 
(blue) and the normal line (red). 

 

The rest of the stump portion is next determined by partitioning the patches into cells by the 
cylindrical reference defined by the center of the cutting surface, the normal line located there  
(Figure 3c), and an arbitrary reference line orthogonal to the normal. We only partition patches located 
in cells that are close to the normal line and located within 3 cm-thick vertically adjacent layers and 12° 
radial sectors. For each of the cells, the patch that is closest to the normal line is selected (Figure 4a). 
These patches are then kept or rejected as part of the stump portion with a process carried out for each 
consecutive layer, which are processed downward starting from the top and ending at the bottom of the 
stump portion. The bottom is reached when one of the patches in the layer is very close to the normal 
line. Within each layer, excluding the first layer, a patch is kept if the patch in the above cell is not much 
closer to the normal line. For example, a patch located along a horizontally extending root surface, which 
is much further from the normal line than the patch in the above cell, is rejected (Figure 4a). To finalize 
the stump portion, the selected cover sets are expanded a few times with their neighbors to make the 
surface complete (Figure 4b). 
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Figure 4. Determination of the stump portion of the point cloud: (a) Different colors  
denote the patches closest to the normal line in their cell; (b) The final stump portion is 
shown in blue. 

 

2.4.4. Modeling the Stump Portion with Cylindrical Triangulation 

The separated stump portion of the point cloud is next modeled as a closed triangulation model.  
The point cloud is partitioned into cells, as in the separation of the stump portion, except we now use  
2 cm-thick layers and 5° sectors to get better resolution (Figure 5a). Then the average of the points in 
each cell forms a vertex of the surface model (Figure 5b). If a cell is empty, the vertex is interpolated 
between nonempty cells. If vertices occur above and below the empty cell in the same sector, then a 
linear interpolation between the vertices is used to fill in the missing vertex. If this is not  
possible, then the missing vertex is interpolated inside the layer between the surface boundary  
vertices: Let rb and re be the distances of the boundary vertices from the center of the layer, then the 
distances ri of the n missing vertices are linearly interpolated: ri = rb + i/n × (re  rb). The interpolated 

vertices are spaced with these distances and equal angles from the center (Figure 5b). All vertices are 
connected horizontally, vertically, and diagonally to form the triangles of the closed cylindrical 
triangulation model (Figure 5c). The volumes and diameters for the stump portion can now be easily 
calculated from this model. 

Figure 5. Construction of the closed surface stump model: (a) Stump portion partitioned into 
cells formed by layers and sectors; (b) Vertices of the triangles from the partition (blue) and 
interpolation (red); (c) Final closed surface of the cylindrical triangulation model. 
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2.4.5. Segmentation of the Roots 

The root portion is next segmented into individual roots using the segmentation process presented in 
Raumonen et al. [30]. First root bases of the main roots originating from the stump are defined by 
expanding out from the stump portion (layer B) into patches adjacent to the stump (Figure 6a). Then a 
new cover with smaller patches (d = 6 mm, r = 8 mm, and n = 5) is defined for the root portion.  
The cover sets located within layer B determine the connected components of B forming the root bases. 
In some instances, these components are very small or are edges of the stump and not root bases. These 
instances are separated out by first sorting the components from the largest to the smallest, and then 
expanding them about 10 cm each so that each expansion does not extend into previously expanded 
regions. Components failing to extend enough are rejected. The accepted components form the final 
bases (see Figure 6b). The next step is to make sure that the rest of the patches covering the root portion 
are connected to these bases. The connected components of these cover sets are determined and separate 
components are connected to the nearest component by modifying the neighbor relation of sets 
accordingly. This process continues as long as all parts of the root portion are connected to some of the 
root bases. 

Figure 6. Determination of bases of the roots originating from the stump: (a) The layer B 
(red) between the stump (blue) and the rest of the roots (green) forms the bases of the roots; 
(b) Different colors show the final determined root bases. Notice that some small parts of 
layer B are not included in the root bases. 

 

Next the root bases are used as the starting points for the automated root segmentation process 
described in more detail in Raumonen et al. [30]. Each segment corresponds to a whole or part of a root 
with no bifurcations. Following the segmentation process, the parent (root stem from which one or more 
child roots originate and branch from) segments are checked to ensure that their children (roots that 
originate and branch from the parent root) cannot be combined with the parent root as a continuation of 
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the parent segment. Small child roots, whose maximum distance from the parent root is comparable to 
the parent’s radius, are removed because it is unclear whether they are part of the parent root. In order 
to prevent fitting cylinders that are too large at the point of origin of child roots, the child roots are 
expanded into the parent root and this expansion is removed from both the parent and child roots. 

2.4.6. Modeling the Root Portion with Cylinders 

The final step is to model the roots with a hierarchical collection of cylinders. Each segment is divided 
into smaller regions that are then approximated with cylinders using a least squares fitting process [30]. 
The length of the regions is approximately the user defined parameter l (relative cylinder  
length = length/radius = 3). After first fitting the regions containing cylinders that are too long,  
the regions are divided into smaller regions and fit with shorter cylinders in order to force the relative 
cylinder length to be approximately the given value. The cylinder model is hierarchical in the sense that 
each cylinder has a root index, order, and parent-child relation. The finished root system QSM consists 
of the stump portion model with the attached cylindrical root portion model (Figure 2c,d). 

3. Results 

Visual inspection of the 3D QSM stump models and visualizations of the TLS point cloud data 
illustrate that the produced models appear to be realistic and complete representations of the coarse root 
systems (Figure 2). 

Our results indicate that root system volume can be estimated with relatively high precision using 
TLS data and the 3D QSMs (Figure 7a). The root system volumes were estimated with a RMSE of  
14.4 L (14.9% of the mean measured volume) and a mean prediction error (measured minus predicted 
values) of 4.3 L (4.4% of the mean measured volume) indicating an underestimation of the volumes 
(Figure 7a). Overestimates ranged from 0.3 to 34.3% and underestimates from 3.9% to 17.6% of  
the measured volume. The two largest overestimates were stumps 12 (30.9%) and 8 (34.3%), which 
where the smallest volume stumps in the study (Figure 7a). The two largest underestimates were  
stumps 1 (11.1%) and 3 (17.6%), which were the two largest volume stumps in the study (Figure 7a). 
Most stump diameters estimated from the stump model showed high correlation to the manual 
measurement (Figure 7b). Stump 9 produced the largest underestimate likely due to a large missing  
L-shaped section from the stump surface, which was more accurately measured during modeling  
(Figure 7b). For the diameter estimates, full correlation was not expected as the TLS-based 
measurements were derived from the average of 27 diameter measurements from the opposite  
vertices taken from the stump model while the manual measurements were based on two perpendicular 
diameter measurements. 

The results illustrate the ability of TLS data, combined with QSM, to estimate important root system 
architectural and volumetric variables. The root diameter distributions derived from the 3D models 
illustrate that an average of 55% of the total volume of the root system is comprised of the stump portion 
(data not shown). On average 16%, 34%, and 43% of the total volume is comprised of roots with a 
diameter of 5, 10, and 15 cm or less, respectively (data not shown). The frequency of breakpoints in a 
given diameter class varied between stumps (Figure 8). All stumps had breakpoints less than 8 cm with 
increasingly more observations in the lower diameter classes (Figure 8). Decreasingly fewer stumps 
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were represented in each of the larger diameter classes by single observations (Figure 8). The largest 
stump in the study (stump 3; Figure 2a–c) also had the most breakpoints and was represented in all 
diameter classes up to 16 cm and as large as 21.5 cm (Figure 8). For most of the sampled root systems, 
the volume of root system left in the soil was likely small in comparison to the extracted root system 
(Figure 8). 

Figure 7. (a) Measured and estimated root system volume and (b) stump diameter.  
Vertical bars are the standard deviations for the predicted values for 15 model fits for each 
root system. 

 

Estimated root system volume and linear root length were found to be correlated to the estimated 
stump diameter (Figure 9) and simple linear regressions illustrate that stump diameter as the single 
predictor variable explained 86.8% of the variation in estimated root system volume and 72.1% of the 
variation in estimated linear root length of the sampled root systems (Figure 9). 

In a sensitivity analysis of the 165 models fitted on the stump portion of root system 2 (Figure 2d), 
the standard deviation of the volume was 1.85 L or 7% of the average (25.9 L) with about 73% and 90% 
of the models between 24–28 L and 23–29 L, respectively (Figure 10a). The standard deviation of the 
stump diameter was 1.3 mm or 0.6% of the average (20.1 cm) (Figure 10b). 

The average root portion volume increased from 22.5 to 27.5 L as d increased with standard 
deviations of about 7%–10% of the average values (Figure 11a), whereas the average linear root length 
decreased from 34 to 22 m with standard deviations of about 2.5%–6% (Figure 11b). The average 
number of roots also decreased from 243 to 98 with increasing values of d (data not shown). The average 
root portion volume was nearly the same for l values between 2 and 6 with standard deviations of about 
6%–9% of the averages (Figure 11c). The average linear root length decreased from 30.5 to 28 m as l 
increased with standard deviations of about 3%–4% of the averages (Figure 11d). 

The overall relationships of increasing root volume with increasing values of the d and l parameters 
(Figure 11a,c, respectively) and decreasing linear root length with increasing values of the d and l 
parameters (Figure 11b,d, respectively) held as root diameter increased (Figure 12a–d). 
 



Fo
re

st
s 2

01
4,

 5
 

32
86

 
  

Fi
gu

re
 8

. F
re

qu
en

cy
 o

f r
oo

t b
re

ak
po

in
t d

ia
m

et
er

s. 
Ea

ch
 c

ol
or

ed
 b

ar
 re

pr
es

en
ts

 th
e 

m
ea

n 
fr

eq
ue

nc
y 

va
lu

es
 in

 e
ac

h 
di

am
et

er
 c

la
ss

 fo
r 1

5 
m

od
el

 
fit

s o
f a

n 
in

di
vi

du
al

 ro
ot

 sy
st

em
. T

he
 sa

m
e 

da
ta

se
t i

s p
re

se
nt

ed
 a

t t
w

o 
di

ff
er

en
t s

ca
le

s t
o 

im
pr

ov
e 

le
gi

bi
lit

y 
w

ith
in

 e
ac

h 
di

am
et

er
 c

la
ss

. 

 
 



Forests 2014, 5 3287 
 

 

Figure 9. Estimated root system volume and linear root length vs. estimated stump diameter. 
The lines illustrate fitted regression lines: (a) Root system volume = 69.5563 + 5.7511 × 
estimated diameter; (b) Linear root length = 35.6380 + 4.6240 × estimated diameter. 

 

Figure 10. (a) Distributions of the estimated stump portion volumes (L) and (b) diameters (cm) 
for 165 model fits of stump 2. 

 

Figure 11. Sensitivity of QSMs for the d (the minimum distance between the centers of  
the balls and the maximum distance between any point and its nearest center) and l  
(relative cylinder length) parameters for the root portion. (a,c) Total root portion volume and 
(b,d) linear root length for different (a,b) d values and (c,d) l values. Blue lines are the 
averages, vertical blue bars are the standard deviations, and red lines are the minimum and 
maximum values for 15 model fits of stump 2. 
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Figure 11. Cont. 

 

Figure 12. Average sensitivity of QSMs for different values of the d (the minimum  
distance between the centers of the balls and the maximum distance between any point and 
its nearest center) and l (relative cylinder length) parameters and root diameters for 15 model 
fits of stump 2. (a,c) Root volume and (b,d) linear root length for different (a,b) d values 
and (c,d) l values. 

 

 

Stump volume, diameter, and height increased with larger cover set patch size d for stump 3  
(Figure 13a–c). Stump volume and height increased (Figure 13a,c) with the use of smaller cells, whereas 
modeled diameter decreased (Figure 13b). 
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Figure 13. Sensitivity of stump portion (a) volume; (b) diameter; and (c) height to different 
cover set patch sizes d and cell sizes for 30 model fits of stump 3. Cell size determines the 
size of the triangles in the cylindrical triangulation model for the stump portion. 

 

4. Discussion 

Our results indicate that our scanning and stump modeling procedure is capable of rapidly and 
adequately representing root system architecture and root fraction volumes of multiple large root systems 
with minimal manual point cloud and modeling post-processing required. Our procedure was able to 
rapidly describe root variables relevant to the characterization of root volume, such as root diameter, 
linear root length, break point diameters, number of roots, root fraction counts, and cumulative 
percentages. Estimated root system volume and estimated linear root length could also be adequately 
predicted with estimated stump diameter. Taken together, the modeled root system characterizations and 
volumetric variables provide a highly detailed description of large root systems that can be readily 
utilized in various applications. 

The sensitivity analysis revealed that the standard deviations for estimated stump volume and 
diameter were in good agreement with the average values (Figure 10). Furthermore, the overall 
performance of the QSM was shown to be quite stable and predictable against small changes  
in the d and l parameter values (Figures 10–12), as well as changes to the patch sizes (Figure 13).  
As expected, as d increased root volume increased (Figures 11a and 12a), while linear root length 
(Figures 11b and 12b) and the average number of roots decreased. This is because smaller cover sets are 
able to separate smaller roots better and bigger roots more accurately. Also as expected, as l increased 
root volume increased (Figures 11c and 12c), linear root lengths shortened (Figures 11d and 12d). The 
linear root lengths shortened because of less accurate curvature approximations. Increasing the patch 
size d caused the point clouds used for cylindrical triangulation of the stump portion to become larger, 
increasing modeled stump portion volume and height (Figure 13a,c). Diameter increased because the 
boundary of the cutting surface became less accurate (Figure 13b). Decreasing the cell size (defining 
smaller triangles) increased the stump volume and height estimate and decreased the diameter estimate 
because small curved details are best modeled with smaller triangles. The effect of varying patch and 
cell size was predictable and relatively small. 
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The QSM root modeling procedure is capable of describing more topological and volumetric 
characteristics of whole large root systems than the few examples presented here. Further post-processing 
of the root models could obtain other root topological and size information previously identified as 
important by various authors for a wide range of applications [42], such as branching angle, segment 
length, number of forks, root depth, horizontal spread, root external surface area, and root taper. 

The modeling procedures presented here further advance the 3D description of large root systems, 
best characterizing larger-diameter root architecture. Many of the root measurements that can be made 
using developed manual analog and digitized measurements can be produced more quickly from TLS 
point cloud data provided the estimated surfaces are within view of the scanner. Manually digitizing root 
systems is still superior to TLS in that it is possible to accurately describe all root surfaces regardless of 
position, but can be much more time consuming. As an example, Danjon and co-workers accurately and 
completely manually digitized structurally complex large pine trees (mean DBH of 38 cm) to a minimum 
diameter of 5 mm, taking as many as 10 days per root system [8,21]. In our procedure, each root system 
was scanned three times within 1.5 h (average 30 min automated scanning and manual scanner set-up 
each). The point cloud co-registration and post-processing work together with the reconstruction of the 
QSMs took about 10–20 min per root system. The total scanning and modeling time was about 2 h per 
root system. 

Other scanning methods have been successfully applied to various systems, but each has limitations 
and presents further challenges. Data acquisition times using CT scanning are very fast and capable of 
describing root architecture down to <0.5 mm in situ, but so far have only been used to describe root 
systems of small plants. GPR can describe large coarse root systems in situ under suitable conditions, 
but reliable accurate reconstructions of root systems in commonly encountered unsuitable conditions are 
still not possible [25]. Highly accurate (± 50 m) laser scanning arms have been used to describe a  
whole root system (pine tree with an 8-cm DBH) down to a diameter of 0.5 mm, but scanning  
must be done by hand and post-processing times can be demanding with the methodology used by  
Wagner et al. [37]. 

Our models underestimated observed root system volume by about 4.4% across all root systems with 
the overestimates ranging from 0.3% to 34.3% and underestimates ranging from 3.9% to 17.6%.  
The magnitude of the prediction error is very similar to tree stem QSMs consisting of cylinders  
(1.36% ± 7.33%) or triangulated meshes ( 4.62% ± 2.32%) found by Åkerblom et al. [41]. The exact 
reasons for the modeled volume underestimate are unclear, but several contributing factors are possible. 
Occlusion occurs when data for the whole or parts of roots are not captured in the point cloud due to 
shadowing from the perspective of the scanner. Other studies have shown that the frequency of occlusion 
can increase with increasing structural root complexity [39] and decreasing number of different scan 
angles used to generate the point cloud [35]. This study only used three scanning positions per root 
system and it is likely that any occlusion problems would have been reduced by introducing more 
scanning positions. However, for most root systems in this study, both structurally simple and complex 
root systems produced good volume estimates (Figure 7a). 

Another contributing factor to the modeled volume underestimate may be that for some root systems, 
broken root pieces that were separated from but scanned with the root system were not included in the 
modeled volume estimates. Based on the relatively small size of these pieces for most of the root systems 
in the study, we do not expect that their inclusion would have drastically reduced the modeled 
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underestimates; however, this could have contributed to the underestimate observed in stumps 1 and 3 
(Figure 2a–c; Figure 7a). The reason for the overestimates observed in the small-volume stumps 8  
and 12 (Figure 7a) is not clear. 

Finally, the question of how well the cylinder model actually fits the roots can be raised. The surface 
of the root is a reflected sampled surface in TLS point cloud data and is therefore subject to errors related 
to accuracy of the scanner, reflective properties of the root surface, and the angle of incidence of the 
laser beam. The modeled cylinder fits of the roots are least squares fits of the sample points closest to 
the sampled surface and the angle of a longitudinally central vector the length of the defined root 
segment. In highly crooked root portions, this procedure can yield a proportion of cylinders that are fit 
incorrectly, that partially overlap, or where “gaps” in portions of roots are not accounted for, leading to 
an overall underestimate. In other less structurally complex root systems, this same fitting procedure 
may lead to an overall overestimate. 

5. Conclusions 

Using TLS to describe and quantify 3D characteristics of whole root systems is in its infancy, but is 
a promising method that warrants further development. In this study we demonstrate the operational 
feasibility of applying our root system modeling procedure to 13 mechanically-extracted root systems. 
Applying our procedure to increasingly larger whole root system data sets would provide new insights 
into the description of the highly variable belowground structures of plants. Increased topographic and 
volumetric descriptions of root systems would have important implications for many applications where 
detailed information on the belowground parts of plants is critical. 
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