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Spectral quality control is an important step in the analysis of infrared spectral data, however, often 

neglected in scientific literature. A frequently used quality test that was originally developed for infrared 

spectra of bacteria is provided by OPUS software from Bruker Optik GmbH. In this study the OPUS 

quality test is applied to a large number of spectra of bacteria, yeasts and moulds and hyperspectral 

images of microorganisms. It is shown that the use of strict thresholds for parameters of the OPUS quality 

test leads to discarding too many spectra. A strategy for optimizing parameters thresholds of the OPUS 

quality test is provided and a novel approach for spectral quality testing based on Extended Multiplicative 

Signal Correction (EMSC) is suggested. For all the data sets considered in our study, the EMSC quality 

test is shown to be the best among different alternatives of OPUS quality test provided.  

1. Introduction 

Fourier-transform infrared (FTIR) spectroscopy has been successfully used for characterisation and 

classification of microorganisms for several decades. [1-7] FTIR spectroscopy is nowadays used on 

different scales allowing a high-throughput characterization of different microorganisms and other cell 

types and exploring biochemical composition of cells at a high spatial resolution by a broad range of 

infrared microscopic imaging techniques. [8, 9] An FTIR spectrum represents a high-dimensional and 

reproducible molecular “fingerprint” of the chemical composition of biological cells and tissues 

containing characteristic signals from cell lipids, proteins, nucleic acids and carbohydrates. [10, 11] FTIR 
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spectral fingerprints combined with multivariate spectral analysis is therefore used frequently for the 

characterisation and identification of microbial cells and tissues. [[6, 12-18] 

The multivariate data analysis of infrared spectra of cells and tissues consist typically of several steps: (i) 

a quality test of the spectra, (ii) pre-processing of the spectra to normalize and remove scatter and other 

unwanted instrumental effects [19-25], (iii) model establishment for, e.g., clustering, calibration or 

classification. [6, 15, 26] Little attention is often paid to the first step, namely the quality test of the data. 

The spectral quality test (QT) approaches and results are often reported very briefly or even neglected in 

the scientific studies. This may be due to the fact that there are no standardized routines for a quality test 

of FTIR spectra. The approaches to quality test FTIR spectral data and FTIR imaging data could be 

separated into three main groups, based on the following parameters: 1) signal-to-noise ratio; 2) peak 

intensity; 3) noise. [27-31] Spectra with low signal-to-noise and high noise are usually discarded. QT 

based on a peak intensity could be split into two different approaches: i) identifying spectra with low 

intensity of a relevant peak, for example amide I peak, and ii) identifying spectra with high intensity of an 

unwanted or irrelevant peak(s) such as water vapour in samples. Those spectra are discarded by the QT. 

QT of FTIR imaging data has been extended to a couple more parameters related to FTIR imaging, 

namely 1) “test for an additional band” corresponding to tissue embedding medium and 2) “bad pixel” 

test to remove spectra corresponding to dead pixels of a detector. [31] However, the choice of the selected 

parameters (for example, signal-to-noise, peak intensity, or noise) and their thresholds have to be defined 

for every data set at hand separately. Thus, there is no standard QT which can be used for a particular 

type of microorganism or tissue. 

OPUS software provided by Bruker Optik GmbH [32] is the only standard QT and the most commonly 

used software for FTIR spectral quality testing. [11, 26, 33-35] When the OPUS QT is applied to infrared 

spectral data, parameters are calculated for each spectrum. If one of the parameters exceeds the threshold 

set up by the QT, the spectrum is identified as of poor quality and discarded. The most important 

parameters of the OPUS QT are Absorbance (Abs), Noise, Signal-to-Noise (S/N) ratio and Signal-to-
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Water (S/W) ratio. Abs is calculated in a range 2100 – 1600 cm
-1

, Noise is calculated in a range 2000 – 

2100 cm
-1

 which is chemically inactive. Two absorbance signals are used for the QT: the so-called S1, 

which is calculated in a range 1700 – 1600 cm
-1

,
 
and S2, which is calculated in a range 960 – 1200 cm

-1
. 

The first signal represents the amide I peak at 1650 cm
-1

 referring to proteins, and the second represents 

polysaccharide ring vibrations at 1080 cm
-1

. The choice of the ranges for the OPUS QT parameters are 

justified by the representative peaks of an infrared spectrum of microbial cells. However, a great 

importance is given to the amide I peak since the Abs parameter is calculated using exclusively this area 

of the spectrum (2100 – 1600 cm
-1

). The importance given to the amide I band derives from the fact that 

the OPUS QT was originally established for infrared spectra of bacterial cells exhibiting strong amide I 

bands. However, infrared spectra of other microbial cells such as yeasts and filamentous fungi display 

quite different spectral bands. While the amide I and II bands from proteins dominate the infrared spectra 

of bacterial cells, carbohydrates and lipids are present in high concentrations in yeasts and fungi. For 

example, spectra from oleaginous fungi reveal bands of lipids that are much stronger than bands from 

proteins. [6, 14] Fungi (filamentous fungi and yeasts) have in general different morphologies and 

therefore different spectral characteristics influencing the quality of the spectra. Therefore, different QT 

strategies and parameter thresholds may be needed for a QT of infrared spectra of such cells. The same 

holds for imaging data: if the same threshold values that were developed for the analysis of infrared 

spectra of populations of bacterial data were applied for example for microspectroscopic imaging data, 

the major part or even all of the spectra would not pass the QT. 

In this study we consider the OPUS QT for spectra of three types of microorganisms, namely filamentous 

fungi [11, 12], yeasts [3] and bacteria. [18] We investigate the OPUS quality parameters for a large 

number of spectra and compare the distributions of the parameters for filamentous fungi, yeasts and 

bacteria. We investigate how the quality parameters influence the classification modelling and suggest 

strategies for optimizing the thresholds of the parameters for a given type of microbial cell. To assess the 

performance of the QT two classification analysis methods were used: Partial Least Squares Regression 
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[36] and Random Forest. [37] Random Forest has during recent years proven to be one of the most 

powerful methods for classification based on infrared spectra of cells and tissues. [12, 38-40] Success rate 

(accuracy) of classification was used to select the best QT approach. 

Further, we introduce an additional approach for quality testing of spectral data based on Extended 

Multiplicative Scatter Correction (EMSC). [19, 41] EMSC is a model-based pre-processing tool that 

allows estimating parameters related to physical, chemical and instrumental effects. [23, 42, 43] The 

EMSC parameters can be used to characterize morphological and chemical properties of samples. [42, 44] 

Among other parameters, the EMSC model estimates a parameter, commonly referred to as b, that refers 

to the effective optical thickness and morphology of samples, which can provide important physical 

sample information as previously shown. [42, 45] Since the parameter b of the EMSC model captures 

important information about sample morphology, we investigate further if this parameter can be used for 

establishing binary segmentation of FTIR images or masks. We show that background information can 

easily be separated from the foreground or sample regions in infrared images using such masks.  

2. Materials and Methods 

2.1. Data 

2.1.1. FTIR spectra of filamentous fungi 

A set of 59 well-characterized filamentous fungi strains from 10 different genera and 19 species obtained 

from the mycological strain collection of the Norwegian Veterinary Institute (Oslo, Norway) were 

previously measured and analyzed by FTIR spectroscopy in a study performed by Shapaval et al. [11] 

The filamentous fungi set was organized in a taxonomic tree with five levels of phylogenetic hierarchy 

(phylum, class, family, genus, and species). It is important to note that the consensus of the taxonomic 

tree has changed since it was published by Tafintseva et al. [12] The updated taxonomic tree is provided 

in Supplementary materials (Figure S1). The classification problem considered in this paper is the 

classification into groups of species using FTIR spectra.  

The experimental design, used for preparing fungal spectra, was the following: growth experiments were 

performed in six runs - six independent experiments each performed on a separate day and for each run, 
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all strains were cultivated twice resulting in 12 biological replicates. For each biological replicate two 

technical replicates were measured by the high-throughput screening eXTension unit coupled to a Tensor 

27 FTIR spectrometer (both Bruker Optik GmbH, Germany).  

The complete data set (1029 FTIR spectra) was used to evaluate the quality of the data, to obtain ranges 

of OPUS QT parameters, and to find optimal parameter thresholds. For building classifiers on species 

level, five species groups (Eurotium herbariorum, Mucor circinelloides, Mucor hiemalis, Mucor 

plumbeus, Paecilomyces varioti) were removed due a low number of spectra in each group. The removal 

of species groups with low number of spectra was necessary since in some situations a certain QT 

discarded almost all spectra for these species. In this situation it was hard to compare different QT 

approaches against each other. Thus, the reduced set used for the classification contained 14 species, 

corresponding to 913 spectra. This set was split: four runs were used as a calibration set, the other two 

runs were used as an independent validation set. The sets contained 573 and 340 spectra, respectively, 

before any QT was applied. 

Spectra were pre-processed by (1) taking the first derivative by the Savitzky-Golay [20] algorithm with 

third order polynomial and a window size 9; (2) selection of the ranges [3050; 2800] & [1800; 900] cm
−1

 

as informative for the analysis; (3) extended multiplicative signal correction (EMSC) [19] with linear and 

quadratic terms. The pre-processing was done separately for the calibration and the validation sets. The 

EMSC model established for the calibration set was applied to correct the spectra of the validation set – 

as it is supposed to be done in real case scenario.  

The quality of spectra in the calibration set was evaluated using standard OPUS test, optimized versions 

of OPUS QT, and proposed EMSC QT. Spectra of the calibration set that did not pass the respective QT 

were discarded from the analysis. The standard OPUS QT was applied to the validation set in order to be 

able to compare different QT approaches. Thus, the validation was done on exactly the same data set. 

This allowed us testing the hypothesis that an optimized QT for the calibration data can improve the 

classification model.  

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



2.1.2. FTIR spectra of yeasts 

A set of 91 yeast strains from 13 different genera obtained from international yeasts collections were 

measured and analyzed by FTIR spectroscopy in a study performed by Shapaval et al. [3] The yeasts data 

set was organized in a taxonomic tree with 4 levels of phylogenetic hierarchy (phylum, class, family, and 

genus). The details about the taxonomic tree are provided in Supplementary materials (Figure S2). The 

classification problem for the yeasts data set was to identify genera. 

The experimental design used for preparing yeasts spectra was the following: all strains were grown on 

five different growth media in six independent cultivation runs in a Bioscreen C cultivation system (Oy 

Growth Curves AB, Helsinki, Finland). In each run two micro-cultivations were performed in the 

Bioscreen C system. From each micro-cultivation, two technical replicates were obtained by FTIR 

spectroscopy. For the purposes of this study, the data corresponding to the growth medium Sabouraud 

broth (SAB) were selected. Sabouraud broth (SAB) is a standard growth medium used for detection, 

enumeration and identification of yeasts.  

The whole data set (1943 spectra) was used to evaluate the quality of the data, to obtain OPUS parameter 

ranges, and to find optimal parameter thresholds. The data set was split into a calibration and a validation 

set: four runs were used for calibration, the other two runs were used for validation. The calibration and 

validation sets contained 1305 and 638 spectra, respectively, before any spectral QT was applied. The 

same spectral pre-processing was done as for the filamentous fungi spectra and the same procedure was 

used to compare QT results as described above. 

2.1.3. FTIR spectra of bacteria 

A set of 45 strains of Antarctic bacteria from 9 genera and 19 species was measured by FTIR 

spectroscopy in a study by M. Smirnova et al.[18] Bacteria data were organized in a taxonomic tree with 

5 levels of phylogenetic hierarchy (phylum, class, family, genus, and species). The details about the 

taxonomic tree are provided in Supplementary materials (Figure S3). The classification problem for this 

data set was to identify species.  
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The experimental design, used for preparing bacteria spectra, was the following: all bacteria strains were 

cultivated on brain heart infusion (BHI) agar medium in three biological replicates – each performed on a 

separate day.  

The whole data set (398 spectra) was used to evaluate the quality of data, to obtain OPUS parameter 

ranges, and to find optimal parameter thresholds. For the classification analysis, six species had to be 

removed (Arthrobacter oryzae, Leifsonia kafniensis, Polaromonas glacialis, Pseudomonas 

extremaustralis, Pseudomonas weihenstephanensis, Psychrobacter glaciei) due to the insufficient number 

of spectra to perform the analysis. Thus, the remaining data set contained 344 spectra of 8 genera and 13 

species. The data set was split: two runs were used as a calibration set, one run was used as a validation 

set. The sets contained 228 and 116 spectra, respectively, before any QT was applied. The pre-processing 

was applied in the same manner with only one difference: the second derivative was calculated using 

Savitzky-Golay with second order polynomial and a window size 5. It is known that different parameters 

of Savitzky-Golay algorithm may be required to pre-process spectra. [46] These selected parameters of 

Savitzky-Golay algorithm have shown to be optimal for the classification results among other 

combinations tested (results not shown). The same procedure is used to compare QT results as suggested 

for other data sets. 

2.1.4. FTIR images of filamentous fungal hyphae 

5 pairs of microscopy images and FTIR images of filamentous fungal hyphae were analyzed in this study. 

FTIR images of hyphae were obtained from oleaginous filamentous fungus Mucor circinelloides, grown 

under lipid accumulation conditions – access of glucose and nitrogen limitation. Data matrix 

(128x128x765) contained 16384 spectra in total.  

2.2. Classification methods 

Multivariate classification analysis was used to assess the QTs performance. In order to compare the 

different QT approaches, we applied two methods that are frequently used to establish classifiers based on 

infrared spectra of biological materials, namely partial least squares regression (PLSR) [36] and Random 
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Forest (RF). [37] PLSR is a chemometric method based on latent variables [47], while RF is a tree-based 

method, both are widely used for classification of infrared spectra. 

To establish a PLSR classifier, we apply a taxonomic PLSR where a PLSR classifier is established at 

each node of the taxonomic tree using only samples of the calibration set that are relevant for a given 

node. [12, 13] A PLSR classifier is established by regressing the matrix of indicator variables Y onto the 

matrix of FTIR spectra X, the method is also known as Partial Least Squares Discriminant Analysis 

(PLSDA). [48] Similar to Principal Component Analysis (PCA), the PLS algorithm finds new 

components represented by so-called PLS components for X and Y. For each component, the PLS model 

maximizes the residual co-variance matrix of X and Y. [49] An important parameter to be optimized in 

PLS modelling is the number of PLS components in X and Y. This is done by leave-one-run-out cross-

validation. The optimal number of PLS components is determined as the smallest number which does not 

yield a significantly higher misclassification rate (MCR) than the number of PLS components 

corresponding to the minimum MCR, while the statistical significance of this difference was evaluated. 

To predict classes, every sample follows the tree from top to bottom (see Supplementary materials for 

trees specifications Figure S1, S2 and S3) being classified by the corresponding classifiers. For more 

details on the method’s set-up see Tafintseva et al. [12] 

RF is a versatile tool used widely in classification analysis. It works well on a big number of classes 

without any need for hierarchical separation of classes. The method is very robust due to its nature: it 

builds-up an ensemble of trees with low correlations to each other and thus avoiding over-fitting of the 

model. Each tree is built up by using a random selection of samples from the original data set using 

bootstrapping (random sampling with replacement) where about two-third of all samples, the so-called  

“bootstrap” set, are selected for training and the remaining one-third, the so-called “out-of-bag” (OOB) 

set, is used for testing.  Each node in a tree is optimized using a random subset of variables. A Gini 

impurity is used to define a variable used for splitting in each node, which is defined as follows: i( )  

  ∑   ( )
  

   , where   ( ) is the fraction of samples belonging to the     group out of the total 
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number of samples at node   and K is the total number of groups considered. [50] To avoid overfitting the 

models, pruning of the trees or merging of leaves are common measures. To validate the model’s 

performance, samples of the OOB test set are run through every tree and the majority voting defines the 

class’ belongingness.  

The number of trees in RF was optimized for each set between 100 and 500. The optimal number of trees 

for the filamentous fungi, yeasts and bacteria data was found to be 300, 300, and 250 trees, respectively. 

In total, 35, 35 and 25 variables (the square root of the total number of variables: √    , √    , and 

√   ) were  randomly selected for the optimization of nodes in each tree of the RF for filamentous fungi, 

yeasts and bacteria, respectively. Since pruning of the trees and leaves merging is not recommended for 

bagged trees, neither of the two was performed. 

Data analyses were performed by standard algorithms, algorithms developed in-house, and open-source 

algorithms in Matlab, R2018a (The Mathworks Inc., Natick, USA). 

2.3. Quality tests 

2.3.1. Standard OPUS QT 

The OPUS QT is a frequently used QT for infrared spectra. [11, 15, 26, 35, 51, 52] It assesses the quality 

of infrared spectra with regard to absorbance values, signal-to-noise ratio and intensity of the water vapor 

lines. Spectra that do not pass the test are considered to be of poor quality and usually discarded from 

analysis. [32, 34] 

The parameters of standard OPUS QT are described in Table 1. Parameters of the QT are written in italic 

throughout the paper.  

Table 1. OPUS quality test parameters as provided by Bruker. 

Quality test parameters min max 

Abs (X-range 1: 2100 – 1600 cm
-1

) 0.345000 1.245000 

Noise (X-range 4: 2100 – 2000 cm
-1

) 0.000000 0.000150 

S1/N (X-range 2: 1700 – 1600 cm
-1

) 200.000000 0.000000 

S2/N (X-range 3: 1200 – 960 cm
-1

) 40.000000 0.000000 

Water vapor (X-range 5: 1847 – 1837 cm
-1

) 0.000000 0.000300 

S1/W (X-range 2: 1700 – 1600 cm
-1

) 100.000000 0.000000 

S2/W (X-range 3: 1200 – 960 cm
-1

) 20.000000 0.000000 
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X-Range 1: 2100 – 1600 cm
-1

. This range determines Abs parameter by calculating the difference 

between the maximum and minimum absorbance values of the original spectrum. For the spectra of 

satisfactory quality, the Abs parameter has to be higher than the min and lower than the max entry field 

corresponding to 0.345 to 1.245, respectively. 

X-Range 2: 1700 – 1600 cm
-1

. The range represents one of the characteristic spectral regions, namely an 

amide I, with the peak at 1650 cm
-1

. The maximum and minimum values of the first derivative are 

calculated and the difference between these two values results in S1.  

The signal-to-noise ratio, S1/N, is calculated dividing S1 by the noise determined as explained in the X-

Range 4. The minimum S1/N value is equal to 200.0.  

S1 is also divided by the water vapor signal determined in the X-Range 5. The minimum S1/W equals to 

100.0. 

X-Range 3: 1200– 960cm
-1

. The range represents another characteristic spectral region related to 

polysaccharide ring vibrations. The maximum and minimum values of the first derivative is calculated 

and the difference between these two values results in S2.  

The signal-to-noise ratio, S2/N, is calculated dividing S2 by the noise determined as explained in the X-

Range 4. The minimum S2/N value is equal to 40.0. 

S2 is also divided by the water vapor signal determined in the X-Range 5. The minimum S2/W equals to 

20.0. 

X-Range 4: 2100 – 2000 cm
-1

. The range shows no absorbance bands and can therefore be used to 

estimate Noise parameter. The difference between the maximum and minimum values of the first 

derivative is calculated and is limited to Noise equal to 1.5 x 10
-4

. 

X-Range 5: 1847 – 1837 cm
-1

. The range indicates strong water vapor absorbance but no sample 

absorbance and is therefore used to calculate water vapor. The difference between the maximum and 

minimum values of the first derivative is calculated and is limited by max water equal to 3 x 10
-4

. 
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Spectral quality of each data set was assessed using quality analysis based on the standard OPUS QT. To 

do so, each full data set was quality analyzed by the OPUS QT. Relevant parameters and their ranges 

were obtained by calculating OPUS QT parameters for each spectrum of the considered data set. By 

screening through the parameter values, parameter ranges were identified and used for optimization of the 

thresholds of OPUS test parameters for each data set separately.  

2.3.2. Alternative OPUS QT 

We optimized thresholds of the OPUS QT for each microorganism individually. First, relevant QT 

parameters for each data set were selected. Second, optimal thresholds were obtained for each parameter. 

To find an optimal threshold for an OPUS test parameter, a simple grid search through wider parameter’s 

ranges was performed according to the following procedure: 1) update the threshold of an OPUS QT 

parameter; 2) apply OPUS QT with the updated parameter to the calibration set; 2) establish a new 

calibration model using the spectra that passed the updated QT; 3) use the model to obtain predictions for 

spectra of the validation set that were quality tested according to the standard OPUS QT; 4) compare 

success rates for the validation (SRval) with SRval of the previous model. Each time a parameter was 

optimized, other OPUS QT parameters were kept equal to their thresholds of the original standard OPUS 

QT. Since for each data set there were only few parameters which had to be optimized, there was no need 

for cross-optimization of the parameters. 

2.3.3. EMSC QT 

Let us briefly remind the idea underlying EMSC method. An EMSC model is described by 

    ( ̃)         ( ̃)    ̃    ̃
    

where      is a measured spectrum,      is a reference spectrum, b is a multiplicative parameter, c, d, e 

are constant, linear and quadratic parameters, respectively,   is a residual term,  ̃  are spectral 

wavenumbers. The reference spectrum in the EMSC model is usually calculated as the average spectrum 

of the calibration set. 

In order to set up an EMSC QT, we established an EMSC model for a data set and used the multiplicative 

parameter b of the model. The parameter b of the EMSC model correlates with the effective optical path 
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length and is scaled by the total absorbance of the reference spectrum in the EMSC model. In order to 

make the multiplicative parameter b independent of the scaling of the reference spectrum and other 

effects such as the baseline variations in the reference spectrum, we performed baseline correction of the 

original spectra and normalized the reference spectrum. The normalization was done by the highest 

absorption peak in the data set at hand since different types of microorganisms exhibit different maximum 

absorption bands (Figure 5). We used the 1036 cm
-1

 band for filamentous fungi, and the 1650 cm
-1

 band 

for yeasts and bacteria. The corrected reference spectrum was then used to establish an EMSC model and 

spectra that had lower or higher b than the corresponding thresholds, minb and maxb, were removed as 

poor quality spectra. 

2.4. EMSC binary segmentation (masks) 

To obtain optimal EMSC binary segmentation or a mask we had to compare it to a binary segmentation of 

microscopy image. Since the microscopy image and the FTIR images are acquired simultaneously and 

therefore aligned, there was no need for any image registration. To obtain a binary segmentation of the 

microscopy image, manual annotation was done. To construct binary segmentation for FTIR images the 

following steps were done: 1) important spectral regions were selected [3900; 2600] & [2000; 900] cm
-1

, 

2) an EMSC model with linear and quadratic terms was established using spectra of all pixels with the 

selected spectral regions, 3) the b parameter of the EMSC model was used to establish masks: spectra 

with b values below a certain threshold were assigned to background pixels of the image. A threshold for 

b in a mask was defined in optimization, maximizing the Dice-Sørensen similarity coefficient [53, 54] 

known also as F1 score between the EMSC mask and the annotated microscopy image mask. The 

coefficient allows estimating similarity between segmented objects in binary images. A similarity 

coefficient equal to 1 means a perfect match between two images.  

3. Results  

3.1. FTIR spectra of filamentous fungi 

The standard OPUS QT was applied to the whole data set (1029 spectra). In total 463 spectra (45%) were 

identified as poor quality: 260 spectra (25.3%) had low Abs, 200 spectra (19.4%) had low S1/N, 107 
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spectra (10.4%) had high Noise, 29 spectra (2.8%) had high Abs, 25 spectra (2.4%) had low S1/W, and 1 

(0.1%) spectrum had high Water. No spectra were identified as of low S2/N. Among these poor quality 

spectra we could see that only 56 were both low Abs (out of 260) and low S1/N (out of 200), and only 61 

spectra were both low in S1/N (out of 200) and high in Noise (out of 107). Most of the spectra (21 out of 

29) with high Abs were also high in Noise. Further, 13 out of 25 spectra with low S1/W were also low in 

Abs. Based on these observations, the following parameters were selected as the most relevant for OPUS 

QT optimization: minAbs, S1/N, and Noise. The results of OPUS QT applied to the entire data set are 

summarized in Table 2 and spectra are presented in Figure S4 in Supplementary materials. 

 

Figure 1. Distribution of Absorbance (Abs) parameter (upper panel) and S1/N (lower panel) from OPUS 

quality test (QT) applied to the filamentous fungi (first column, A, D), yeasts (second column, B, E) and 

bacteria (third column, C, F) data sets. Red lines correspond to standard OPUS QT parameter thresholds 

for Abs: minAbs = 0.345, maxAbs = 1.245 and for S1/N: S1/N = 200.0. Spectra that are to the left of the 

minAbs and to the right of maxAbs in the upper panel and to the left of the minS1/N in the lower panel are 

to be discarded by OPUS QT. 
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Table 2. Selected as relevant OPUS quality test (QT) parameters of fungi, yeasts and bacteria data sets. 

Each data set is OPUS quality tested and the number of spectra that are identified as poor is provided 

together with the percent of total. Each data set size is provided in the first column.  

Type 

(Total 

spectra) 

Low 

Abs, 

<0.345 

High Abs, 

>1.245 

High Noise, 

>1.5x10
-4

 

Low S1/N, 

<50 

Low S1/W, 

<100 

High 

Water, 

> 3x10
-4

 

Low S2/N, 

<40 

Fungi 

(1029) 

260 

25.3% 

29 

2.8% 

107 

10.4% 

200 

19.4% 

25 

2.4% 

1 

0.1% 

0 

Yeasts 

(1943) 

18 

0.9% 

518 

26.7% 

127 

6.5% 

27 

1.4% 

0 0 0 

Bacteria 

(398) 

10 

2.5% 

138 

34.7% 

193 

48.5% 

23 

5.8% 

0 1 

0.3% 

5 

1.3% 

In order to compare classification results after different alternatives of OPUS QT were applied to the 

calibration data, the same standard OPUS quality test was applied to the validation set. For the 

filamentous fungi, 230 spectra out of 340 of the validation set passed the OPUS QT and were used for the 

validation. The classification results are summarized in Table 3 in the form of SR and presented 

graphically in Figure 2 as MCR (MCR=100-SR, %). When applying the standard OPUS QT to the 

calibration set (573 spectra), only 304 spectra passed the test, i.e. almost half of the spectra were 

discarded because of poor quality. The corresponding PLSR and RF models yielded success rates of 

validation SRval=67.0% and 79.6%, respectively. For the same data set without any QT we established 

and obtained PLSR and RF models with success rates of validation SRval=75.2% and SRval=83.5%, 

respectively. These results indicate that the OPUS QT removes a lot of spectra that could potentially 

improve the predictive performance of the classification models. In order to investigate this further, we 

systematically changed the thresholds of selected parameters of the OPUS QT in order to optimize them. 

We searched for optimal thresholds of the three parameters, minAbs, S1/N, and Noise, that had shown to 

be responsible for discarding the lion’s share of the spectra (see Figure 1A, D, and Figure S10, S11 in 

Supplementary materials). The minAbs parameter was optimized in the range [0.1; 0.345] (see Figure 1A), 

while maxAbs was kept equal to the standard OPUS QT value maxAbs=1.245. The optimal values 

identified for PLSR and RF were minAbsopt=0.2 with SRval=81.3% and minAbsopt=0.3 with SRval=84.8%, 

respectively. When tuning the Noise parameter in the range [1.5x10
-4

; 2.2x10
-4

] (see Figure S10) we 
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observed that optimal threshold values Noiseopt=1.8x10
-4 

with a success rate of SRval=73.9% and 

Noiseopt=1.7x10
-4

 with SRval=80.4% for PLSR and RF, respectively. The search for optimal S1/N in the 

range [50; 200] (see Figure 1D) showed different results for PLSR and RF models: S1/Nopt=150 with 

SRval=71.3% for PLSR and S1/Nopt=50 with SRval=80.9% for RF. Thus, we observe that tuning OPUS QT 

parameters can improve classification models considerably.  

In the following we present the results of an alternative approach for spectral QT based on EMSC using 

the multiplicative parameter b as a QT parameter. The thresholds corresponding to the OPUS standard 

Abs parameter could also be considered as standard for parameter b: minb=0.345, maxb=1.245. These 

thresholds in EMSC QT applied to the whole data set resulted in 121 spectra (11.8%) with low b and 100 

spectra (9.7%) with high b to be discarded. The results of EMSC QT are presented in Figure S5 in 

Supplementary materials. When applying this QT to the calibration data we obtained models with 

SRval=71.7% for PLSR and SRval=80.9% for RF. Further, the threshold of b parameter was optimized in a 

range [0.1; 2] since the spectra at hand had b parameter in the range (see Figure S12). The optimal results 

were obtained for minbopt=0.2, maxbopt=1.5 with SR=82.6% for PLSR and minbopt=0.1, maxbopt=1.7 with 

SRval=84.3% for RF. We see that optimizing the thresholds for the parameter b resulted clearly in the best 

classification result for both methods. However, we can see that the optimal parameter values vary a bit in 

both cases. The misclassification rate of validation MCRval for PLSR and RF applying all considered 

quality tests are presented together in Figure 2A. 

It is obvious that we can expect correlations between the quality parameters Abs, S1/N, Noise and the 

EMSC parameter b. The results of cross-correlation analysis are presented in Table S1 in Supplementary 

materials. We can see that there is a correlation between Abs and b parameters R
2
(Abs, b) = 0.81 and a 

slight correlation between Abs and Noise parameters R
2
(Abs, Noise) = 0.50, and otherwise there is no 

correlation between other parameters. Comparing the spectra removed by QTs (see Figure S4, S5), we 

can see that in total 126 spectra were identified as poor quality by EMSC QT with standard thresholds for 

b parameter and 269 spectra by OPUS QT. Almost all spectra (114 out of 126) removed by EMSC QT 
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were also identified by standard OPUS QT as poor quality spectra. A lot more spectra (155 spectra) were 

identified as poor quality by OPUS and not by EMSC QT. Comparing classification results using the 

quality tested data we can conclude that EMSC QT performs better quality control of the data. EMSC QT 

discards all poor quality spectra which hinder establishing good prediction models, whereas OPUS QT 

tends to discard many more spectra, part of which contribute to establishing good models. 

 

Table 3. Validation results of different QT approaches applied to filamentous fungi data set when using 

PLSR and RF classification methods.  

Spectral quality test PLSR RF 

Parameters Spectra
1 

SRval
2
, % Parameters Spectra SRval, % 

No quality test - 573 75.2 - 573 83.5 

Standard OPUS QT See Table 1 304 67.0 See Table 1 304 79.6 

Alternative OPUS QT 

Opt minAbs 

minAbs=0.2 

maxAbs=1.245 

420 81.3 minAbs=0.3 

maxAbs=1.2

45 

335 84.8 

Alternative OPUS QT 

Opt Noise 

Noise=1.8x10
-4

 313 73.9 Noise=1.7x1

0
-4

 

310 80.4 

Alternative OPUS QT 

Opt S1/N 

S1/N=150 337 71.3 S1/N=50 341 80.9 

Standard EMSC QT minb=0.345 

maxb=1.245 

447 71.7 minb=0.345 

maxb=1.245 

447 80.9 

Opt EMSC QT minb=0.2 

maxb=1.5 

541 82.6 minb=0.1 

maxb=1.7 

556 84.3 

1 
Number of spectra left after QT applied to a calibration set. The total number of spectra in the original 

calibration set was 573. 
2 

Success rate of classification on the external validation set. The same QT was applied to the validation 

set for easier comparison of the results. 
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Figure 2. Misclassification (error) rate (MCR, %) of validation on an independent test set for filamentous 

fungi (A), yeasts (B) and bacteria (C). Standard OPUS QT was applied to the validation set while 

different QTs were applied to the calibration set: standard OPUS QT (in red) and different alternatives of 

OPUS QT, optimizing minAbs, maxAbs, Noise, and S1/N, EMSC QT was applied with standard b 

parameter range [0.345; 1.245] and optimized b corresponding to EMSC bopt. The result of classification 

when no quality test is applied is presented in blue. 

3.2. FTIR spectra of yeasts 

The whole data set (1943 spectra) was quality tested by the standard OPUS QT. In total 571 spectra 

(29.4%) were identified as poor quality spectra. The majority of them, 518 spectra (26.7%) had high Abs, 

127 spectra (6.5%) had high Noise, 27 spectra (1.4%) had low S1/N, and only 18 spectra (0.9%) had low 

Abs. No spectra were identified as of low S1/W, low S2/N or high Water. Among these poor quality spectra 

we could see that almost all high Noise spectra (111 out of 127) were also high Abs. This allowed us to 

conclude that yeasts spectra were generally high in Abs and therefore maxAbs parameter was selected as 

the only relevant for OPUS QT optimization. The results of the OPUS QT are summarized in Table 2 and 

spectra are presented in Figure S6 in Supplementary materials. 

Applying the EMSC QT to the whole data set with the thresholds for b: minb=0.345 and maxb=1.245, 

resulted in 14 (0.7%) spectra with low b parameter and 447 (23%) spectra with high b parameter to be 

discarded (see Figure S7 in Supplementary materials). 

For classification analysis, 463 spectra out of 638 of the validation set that passed the OPUS QT were 

used for the validation. The results of the validation when different spectral QTs were applied to the 

calibration set are summarized in Table 4. Applying standard OPUS QT to the calibration set left us with 

only 909 spectra out of the 1305 from the original set. After applying the OPUS QT, PLSR and RF 

models were established with SRval=79.0% and 92.4% for the validation, respectively. In the case when 

not applying any QT, slightly better models were obtained with both methods: SRval=79.3% for PLSR and 

SRval=94.0% for RF.  
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Since maxAbs was almost the only major filter in the OPUS QT for the yeasts data set (see Figure 1B, E, 

and Figure S13, S14 in Supplementary materials), we optimized it in a range [1.3; 2.5] (see Figure 1B), 

while minAbs was kept equal to the standard OPUS value minAbs=0.345. The best models were obtained 

with the same parameter value maxAbsopt=2.2 and SRval=81.9% for PLSR and SRval=93.7% for RF. 

An EMSC QT with thresholds minb=0.345 and maxb=1.245 for b parameter was applied to the 

calibration data set and the following results were obtained: SRval=77.8% for PLSR and SRval=92.4% for 

RF. This rather weak classification results suggests that the selected parameter range is not optimal for the 

given yeasts data set. Further the parameter of EMSC QT were optimized in a range [0.3; 2.2] (see Figure 

S15) and the best models were obtained for PLSR with minbopt=0.4, maxbopt=1.8 and SRval=81.9% and for 

RF with minbopt=0.4 and maxbopt=2.2 and SRval=94.4%. The summary of the results but in a form of error 

MCRval (%) are presented in Figure 2B. 

The results of cross-correlation showed that Abs and b parameters are correlated, R
2
(Abs, b) = 0.88 (see 

Table S2 in Supplementary materials). Closer look at the spectra (see Figure S6, S7) shows that in total 

326 spectra were identified as poor quality by EMSC QT with standard threshold values for b parameter 

against 396 identified by OPUS QT. Of these 298 spectra were identified as poor quality spectra by both 

QTs. Classification results suggest that the performance of the two QTs are similar, however OPUS QT 

discarded more spectra. 

Table 4. Validation results of different QT approaches applied to yeasts data set when using PLSR and 

RF classification methods.  

Quality test PLSR RF 

Parameters Spectra
1 

SRval
2
, % Parameters Spectra SRval, % 

No quality test - 1305 79.3 - 1305 94.0 

Standard OPUS QT See Table 1 909 79.0 See Table 1 909 92.4 

Alternative OPUS QT 

Opt maxAbs 

minAbs=0.345 

maxAbs=2.2 

1188 81.9 minAbs=0.34

5 

maxAbs=2.2 

1188 93.7 

Standard EMSC QT minb=0.345 

maxb=1.245 

979 77.8 minb=0.345 

maxb=1.245 

979 92.4 

Opt EMSC QT minb=0.4 1196 81.9 minb=0.4 1251 94.4 
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maxb=1.8 maxb=2.2 
1 

Number of spectra left after QT applied to a calibration set. The total number of spectra in the original 

calibration set is 1305. 
2 

Success rate of classification on the external validation set. The same QT was applied to the validation 

set for easier comparison of the results. 

 

3.3. FTIR spectra of bacteria 

The whole data set (398 spectra) was quality tested by standard OPUS QT. More than half of the spectra, 

in total 227 spectra (57%), were identified as poor quality spectra. The majority of them, 193 spectra 

(48.5%), had high Noise, 138 spectra (34.7%) had high Abs, 23 spectra (5.8%) had low S1/N, only 10 

spectra (2.5%) had low Abs, 5 (1.3%) had low S2/N, and 1 (0.3%) had high Water value. Among these 

poor quality spectra almost all high Abs spectra (115 out of 138) were also high in Noise. Almost all low 

S1/N spectra (22 out of 23) were high in Noise. These observations allowed us to conclude that the spectra 

of bacteria were high in Abs and Noise. Therefore maxAbs and Noise parameter were selected as the most 

relevant for OPUS QT optimization (see Figure 1C, F, and Figure S16, S17 in Supplementary materials). 

A summary of OPUS QT results is provided in Table 2 while spectra are presented in Figure S8 in 

Supplementary materials. 

Applying EMSC QT to the entire data set with the standard parameter range b in [0.345; 1.245] had low b 

for 14 (3.5%) and high b parameter for 144 (36.2%) spectra (see Figure S9).  

For classification analysis, the validation set was OPUS quality tested and 46 spectra out of 116 that 

passed the quality test were used further in validation. The results of the validation when the different 

quality tests were applied to the calibration set are summarized in Table 5. Applying the standard OPUS 

QT to the calibration set left us with only 110 spectra out of the 228 from the original set. Using this 

quality tested calibration set, PLSR and RF models were established with SRval=73.9% and 82.6% for the 

validation, respectively. In the case of not applying any QT, much better models were obtained with both 

classification methods: SRval=89.1% for PLSR and SRval=93.5% for RF. This is most likely due to the 

amount of the spectra used to establish calibration models: more than half of the spectra of the calibration 

set are discarded by the OPUS QT. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



To improve OPUS QT performance, parameter maxAbs was optimized in a range [1.2; 2.4] (see Figure 

1C), while minAbs was kept equal to the standard OPUS value minAbs=0.345. The best models were 

obtained with maxAbsopt=1.8 and SRval=87.0% for PLSR and maxAbsopt=2.1 and SRval=91.3% for RF. 

Noise was optimized in a range [1.5; 4.5] x10
-4

 (see Figure S16). The best models were obtained with 

Noiseopt=2 x10
-4

 and SRval=82.6% for PLSR and Noiseopt=3.5 x10
-4

 SRval=87.0% for RF.  

The EMSC QT with the threshold minb=0.345 and maxb=1.245 for the b parameter was applied and the 

following results were obtained: SRval=87% for PLSR and SRval=89.1% for RF. Furthermore, the 

parameter of the EMSC QT was optimized in the range [0.3; 3] (see Figure S18) and the best models 

were obtained with the same success rate SRval=97.8% with minbopt=0.4, maxbopt=2.1 for PLSR and 

minbopt=0.5, maxbopt=3 for RF. The summary of the results in a form of MCRval (%) are presented 

together in Figure 2C. 

The results of cross-correlation between Abs, Noise and b parameters showed that there is a correlation 

between Abs and b parameters, R
2
(Abs, b) = 0.90, but otherwise other parameters are not correlated (see 

Table S3 in Supplementary materials). In total 80 spectra were discarded by EMSC QT with standard b 

parameter thresholds, whereas the standard OPUS QT discarded 118 spectra. All except 4 spectra 

identified by EMSC QT were identified by OPUS QT, 42 spectra were identified as poor quality by 

OPUS QT and not by EMSC. The classification results suggest that the performance of classification 

models is highly dependent on the results of quality analysis and the EMSC QT performs better quality 

control. 

Table 5. Validation results of different QT approaches applied to bacteria data set when using PLSR and 

RF classification methods.  

Quality test PLSR RF 

Parameters Spectra
1 

SRval
2
, % Parameters Spectra SRval, % 

No quality test - 228 89.1 - 228 93.5 

Standard OPUS QT See Table 1 110 73.9 See Table 1 110 82.6 

Alternative OPUS QT 

Opt maxAbs 

minAbs=0.345 

maxAbs=1.8 

117 87.0 minAbs=0.3

45 

119 91.3 
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maxAbs=2.1 

Alternative OPUS QT 

Opt Noise 

Noise=2 x10
-4

 127 82.6 Noise=3.5 

x10
-4

 

142 87.0 

Standard EMSC QT minb=0.345 

maxb=1.245 

148 87.0 minb=0.345 

maxb=1.245 

148 89.1 

Opt EMSC QT minb=0.4 

maxb=2.1 

199 97.8 minb=0.5 

maxb=3 

189 97.8 

1 
Number of spectra left after QT applied to a calibration set. The total number of spectra in the original 

calibration set is 228. 
2 

Success rate of classification on the external validation set. The same QT was applied to the validation 

set for easier comparison of the results. 

 

3.4. FTIR images of filamentous fungal hyphae 

Finally, we investigated if EMSC parameters can also be used for quality control and binary segmentation 

or masking of FTIR images. In Figure 4A microscopy image and in Figure 3A sliced at 3010cm
-1

 FTIR 

image of fungal hyphae under the study are shown. To build a mask, an EMSC model was established 

using spectra of the whole FTIR image with the only spectral region of interest (see Materials and 

Methods). All parameters of the EMSC model are presented in Figure 3B-3E. As it could be seen from 

Figure 3D the multiplicative parameter b of the model is the one which strongly resembles the 

microscopy image. The residual after EMSC correction does not contain almost any information (see 

Figure 3F). Therefore, the b parameter is suggested for differentiating between background and 

foreground spectra. In this study parameter range for b in optimization was chosen to be [0.5; 2.5] based 

on the distribution of EMSC b parameter values of the entire image (see Figure S19).  The manually 

annotated image of the microscopy image is presented in Figure 4B on top of the microscopy image. The 

Dice coefficient between two binary images was used to optimize b parameter for establishing the EMSC 

masks. The best result was obtained for bopt=2.2 with the Dice coefficient equal to 0.89 and the mask is 

shown in Figure 4D on top of the microscopy image. Comparison of two masks is presented in Figure 

4C. We can see that the mask obtained by EMSC segmentation is very similar to the manually annotated 

mask and cover well the sample from the image. 
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Figure 3. FTIR image slice at 3010cm
-1

 (A), parameters of EMSC model established on the whole fungal 

image (B-E), and root-mean-square-error after EMSC correction (F). 
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Figure 4. Microscopy image of fungal hyphae (A) and image segmentation results: by 

manually annotated mask (B) and EMSC mask (D) with b=2.2. Comparison of two masks are 

shown (C) where white is a common area identified as sample by both masks, green is sample 

area identified by EMSC mask but not annotated and pink is annotated as sample but 

identified as background by the EMSC mask. Dice coefficient is equal to 0.89. 

4. Discussion 

OPUS QT was originally developed for spectra of bacteria and was generally accepted and 

used for quality check of spectra of different origin, while our study shows that spectra of 

other microorganisms have different spectral quality properties than bacteria spectra. For 

example, most of poor quality spectra for filamentous fungi were identified due to low Abs 

and low S1/N, many yeast spectra had bad quality due to only high Abs while the OPUS QT 

test discarded many bacteria spectra due to high Abs and Noise. Therefore, one of the 

drawbacks of the standard OPUS QT is that it does not take into account the fact that spectra 

of different microorganisms have different spectral qualities.  

In order to explain the differences in the spectral quality properties of filamentous fungi, 

yeasts and bacteria according to the OPUS QT, spectra of these microorganisms in this study 
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were averaged and plotted together (see Figure 5). The differences in spectra of these 

microorganisms are clearly seen in different spectral regions. The whole fingerprint region 

1500-500 cm
-1

 is quite specific for each type of microorganism. The strongest peak for yeasts 

and bacteria corresponds to amide I peak at 1650 cm
-1

 followed by amide II peak at 1550 cm
-1

 

for bacteria and polysaccharide peak at 1080 cm
-1

 for yeasts. The average spectrum of 

filamentous fungi is very different from the average spectra of bacteria and yeasts with the 

strongest peak in the polysaccharide region at 1036 cm
-1

 followed by amide I peak at 1650 

cm
-1

.  

 

Figure 5. Averaged spectra of filamentous fungi, yeasts and bacteria of the corresponding 

data sets used in the study. 

Thus, it becomes obvious why the majority of the poor quality spectra for filamentous fungi 

were identified based on low Abs values and low S1/N (Table 2). Both of these parameters of 

the OPUS QT are calculated using the region of amide I peak which is not the strongest for 

the filamentous fungi spectra and therefore a large number of spectra was discarded. A 

suggestion for a QT of filamentous fungi spectra would be to lower down the threshold for the 

minAbs to 0.2. The results from the calibration modelling shows that such a change of the 

threshold in the QT allows increasing the amount of spectra that passes the test considerably, 

which had a positive effect on the established prediction models (see Table 3). Since the 
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strongest peaks for filamentous fungi are polysaccharide peaks at 1036 cm
-1

 and 1080 cm
-1

 

covered by S2 of OPUS QT (S2 is calculated on 1200 – 960 cm
-1

), the parameter S2/N is highly 

relevant for spectra of filamentous fungi. However, the threshold suggested in OPUS QT, 

S2/N=40.0, is too low for this type of spectra. In a search for optimal S2/N, the best results 

were obtained for S2/N=220.0 with 278 spectra in the calibration set and SRval=72.6% for the 

PLSR model, S2/N=210.0 with 286 spectra in the calibration set and SRval=81.3% for the RF 

model. Thus, it is suggested to increase the threshold to S2/N=200.0 (see Figure S11 in 

Supplementary materials for the distribution of S2/N parameter for fungi).  

The majority of poor quality spectra for yeasts were selected based only on high Abs. The 

optimization of the OPUS QT showed that an increase of maxAbs to 2.2 yielded better models 

for PLSR and RF classifiers (see Table 4). From Figure 5 we can see that the amide I for 

yeasts is almost as high as for bacteria and polysaccharide peaks are as high as for 

filamentous fungi. Therefore, both S1 and S2 signals are important but need to be optimized. 

Optimizing S1/N, the best results were obtained for S1/N=220.0 with 901 spectra in the 

calibration set and SRval=79.5% for the PLSR model and SRval=93.1% for the RF model. 

Optimizing S2/N, the best results were obtained for S2/N=140.0 with 898 spectra in the 

calibration set and SRval=80.3% for the PLSR model and S2/N=130.0 with 906 spectra in the 

calibration set and SRval=93.1% for the RF model. Therefore, we suggest increasing the 

thresholds of both parameter to S1/N=220.0 and S2/N=150.0 (see Figure 1E, Figure S14 for the 

distributions of the corresponding parameters).  

Poor quality spectra for bacteria were determined by the OPUS QT due to high Noise and 

high Abs. The thresholds for these parameters are quite low for the type of spectra which 

explains why so many spectra are filtered out. An increase of the parameters to maxAbs=2 and 

Noise=4 x10
-4 

would reduce the amount of filtered out spectra and allow establishing better 

classification models (see Table 5 for the results, Figure 1C, and Figure S16 in Supplementary 

materials for the distribution of the parameters). 
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Another drawback of the OPUS QT is that it discards too many spectra. In this study 463 

spectra (45% of the total number) were identified as of poor quality for filamentous fungi, 571 

spectra (29.4%) for yeasts, and 227 (57%) for bacteria. These numbers are too high to be 

satisfied with the quality test. There are two reasons for that: 1) a lot of the discarded spectra 

are of good quality as can be seen from Figs.S4,S6,S8; 2) the results of classification analysis 

based on the OPUS quality tested data are a lot worse than those based on no quality tested 

data. At the same time when alternative optimized ranges of OPUS QT parameters were 

considered and thresholds were optimized, we could see that more spectra passed through the 

test and better classification models were obtained. However, best results of classification 

performance by both PLSR and RF methods were obtained on the data quality tested by 

EMSC QT, except for two cases: 1) two PLSR models with the same success rates SR=81.9% 

were established on the yeasts data that has passed an optimized OPUS QT and EMSC QT 

and 2) RF model was slightly better on the fungi data that has passed optimized OPUS QT 

with SR=84.8% against SR=84.3% for the model established on the data that has passed 

EMSC QT. 

Thus, discarding spectra has to be always done with care since it is undesirable to remove any 

important variation in the data. This study suggests that EMSC QT is the best approach to 

quality test spectra. 

Optimal b ranges to be used for the EMSC QT can be suggested based on results of 

classification analysis and distribution of b parameter for spectral data (Figure S12, S15, S18): 

b = [0.2, 1.5] for filamentous fungi, and b = [0.4, 2] for yeast and bacteria. Here we can 

remind again that the suggested thresholds are data set independent for each data set type 

(fungi, yeasts, bacteria) since normalization of the reference spectrum for each data set type is 

done by the highest peak of the spectra. This implies that in order to apply EMSC QT with the 

thresholds proposed in this study, one needs to normalize the reference spectrum of an 

established EMSC model in exactly same manner as it is done in this study (see Material and 
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Methods). Even though we could not obtain a very general QT approach for all types of 

spectral data in this study, instead we had to find b parameter thresholds for spectra of each 

type of microorganism separately, it is still much more general than the proposed approaches 

available in literature which are mostly based on signal-to-noise ratio in spectra, peak 

intensities and noise. [27-31]  

Another interesting application of the multiplicative parameter b of the EMSC model is 

suggested in this study, namely binary segmentation or construction of masks for FTIR 

images. The idea follows naturally from the fact that b parameter representing the effective 

optical path length, correlates with the sample thickness. [42] This has been shown again in 

this study: the b parameter (Figure 3D) resembles well the morphology represented by the 

sample thickness in the FTIR image of filamentous fungi (Figure 4A) and thus can be used to 

find regions of interest in the image. To construct a mask, a threshold for b needs to be 

assigned such that spectra which are below the threshold are defined as a background and thus 

correspond to the mask. Successful results of the binary segmentation confirm the hypothesis 

that b parameter can be used for this purpose and masks that are close to manually annotated 

images can be obtained. 

5. Conclusion 

Many studies mention that infrared spectra are subjected to a quality test, however details 

about the quality tests are barely discussed in the scientific literature. This study presents a 

thorough evaluation of the commonly used OPUS QT applied to three infrared spectral 

datasets of filamentous fungi, yeasts, and bacteria. When examining the OPUS QT, we found 

that the suggested thresholds for the OPUS QT parameters are very strict. The OPUS QT in 

general removes too many spectra what results in poorer performances of subsequent 

classification analysis.  

Thus, in order to achieve the best possible classification results for a given data set, we 

suggested to optimize the thresholds for the parameters Abs, Noise, S1/N and S2/N to make 
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sure only spectra that weaken a classifier are removed. We show that optimizing ranges of 

OPUS QT can improve classification models results by PLSR and RF methods considerably. 

Further, our paper suggested a new EMSC QT to assess the quality of FTIR spectra, where 

the multiplicative EMSC b parameter was used as a QT parameter. We show that the EMSC 

QT results in the best classification models for all data sets investigated. While the potential 

of the EMSC QT was demonstrated with high-throughput infrared spectral data of 

filamentous fungi, yeasts and bacteria, it is generally applicable to any type of infrared or 

Raman spectral data. We show further that the b parameter of the EMSC model can be used 

for binary segmentation of FTIR images using images of filamentous fungi. 

Supporting Information  

Additional supporting information may be found in the online version of this article at the 

publisher’s website. 

Matlab codes for the quality test and classification routines are available in 

https://gitlab.com/BioSpecNorway/codes-for-emsc-quality-test-paper-by-v.tafintseva. 
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This paper presents a novel approach for quality testing of FTIR spectra of microorganisms 

based on Extended Multiplicative Signal Correction (EMSC). The approach provides better 

quality control compared to the standard quality test provided by OPUS from Bruker Optik 

GmbH. Both methods were tested on a large number of spectra of bacteria, yeasts and moulds 

and hyperspectral images of microorganisms where the EMSC quality test is used for image 

segmentation. 
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