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Abstract

Purpose
The deoxys framework, developed by Huynh and is available at https://github.
com/huynhngoc/deoxys/, has the final goal of creating a user-friendly software that
helps radiologists with tumor delineation problems. Currently, users of this frame-
work can create and run any deep learning experiments using this framework. To
increase the transparency and interpretability of the deep learning model, there is
a need for adding model visualization methods into the deoxys framework. There-
fore, in this thesis, several model visualization methods were implemented and
integrated into the deoxys framework. In addition, this thesis also demonstrated
the benefits of model visualization for users of the deoxys framework, including
radiologists and data scientists.

Methods
Model visualization methods such as activation maps, activation maximization,
saliency maps, deconvnet, and guided backpropagation were implemented in this
Master’s thesis. The implementation of these visualization methods was assessed
by comparing the results provided by the deoxys framework to previously published
results.

The implemented visualization methods were applied to a deep learning model,
which was trained on the head and neck cancer data of PET/CT scans for auto-
matic tumor cancer delineation. The model visualization results were interpreted
to demonstrate their benefits for model understanding.

Results
The implementation of the model visualization methods reproduced similar results
with previous studies, thus passed the quality control assessment and ensured the
reliability of the implemented visualization methods.

When interpreting the visualization results, the pretrained model was found to
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extract the tongues, bones, muscles and glands from the CT scans and the lymph
nodes from the PET scans. In addition, the pretrained model had a high chance
of marking a pixel as cancer tumors if that pixel belonged to the bright lymph
nodes in the PET scan. Moreover, the weakness of the pretrained model such as
the lack of data augmentation was found during the interpretation.

Conclusions
The model visualization methods were demonstrated to benefits both radiologists
and data scientists. Radiologists can have internal insights of the deep learning
model, while data scientists can find existing problems to improve the deep learning
model performance.

Despite the existing limitations, the developed deoxys framework has the poten-
tial for improvement. This includes enhancement of the implemented visualization
methods, and the addition of other model visualization methods. Ideally, an in-
teractive user interface should be developed to satisfy the user-friendly goal of the
deoxys framework.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Deep learning and automatic delineation of cancers
tumors

Radiotherapy1 is the most common treatment for cancer, a deadly disease which
caused the death of over 9 million people in 2018 [1]. In radiotherapy, cancer
cells are killed by high-energy radiation, such as X-rays, or gamma-rays. However,
in the irradiation process, not only are cancer cells killed, but the neighboring
healthy tissues can also be affected. For that reason, accuracy in cancer tumor
delineation is essential in this kind of treatment [2][3]. Furthermore, because of the
inter-observer variability, when different radiologists delineate the same cases, the
variation of gravity centers of cancer tumors can be larger than patient positioning
and organ motion [4][5]. Therefore, having more than one radiologist for each case
can help to increase the accuracy in delineation. However, this method is almost
impossible due to the long waiting time to delineate one case [6] and the lack of
human resources [7].

With the innovation of technology in recent years, deep learning has been ap-
plied to cancer detection, classification and tumor delineation and has obtained
high accuracy2 [8]. Many deep learning models for tumor delineation have been

1In some other publications, this term is referred as Radiation therapy.
2The accuracy is calculated by using human-based results as the ground truth.
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2 CHAPTER 1. INTRODUCTION

proposed for head and neck cancer [9][10][11], rectal cancer [12], lung cancer [13]
and anal cancer [14]. Thus, the delineation results from deep learning can act
as an independent observer to help radiologists to delineate cancer tumors faster,
consistently and with higher accuracy.

1.1.2 Visualization of deep learning model

The main stakeholders of the deep learning model for auto-delineation of cancer
tumors are radiologists, who use the delineation results from deep learning as
references, and data scientists, who propose and build the deep learning model.
When radiologists use the delineation results as references, it would be more helpful
if they can see how the machine “sees” and “interprets” the medical images. Also,
not all deep learning models are perfect, and data scientists always want to improve
the proposed models as much as possible. This lead to the need for visualizing the
deep learning model3.

Model visualization can be used to see how the images transform in the deep
learning model. From there, the radiologist can see which parts of the images
are extracted during each step in the model, as well as how the model makes the
decision. In addition, parts of the images that have large effects on the results of the
deep learning model can be found using other visualization methods. This benefits
both radiologists, who can see an interpretation of the model, and data scientists,
who can find the weakness of the proposed model. Therefore, visualization of the
deep learning model would be helpful for both radiologists and data scientists, as
it eases interpretation and makes the approach more useful for medical specialists.

Nowadays, many methods of visualization have been proposed. For example, the
method named activation maximization [15] visualizes the features of the images
that the models extract. This method can be improved by adding regularization
[16] and priors [17]. Saliency maps [18], Deconvnet [19] and Guided Backpropaga-
tion [20] are visualization methods to find parts of the images that are important
for the prediction of the model. Based on these methods, Class Activation Maps
(CAM) [21] and Grad-CAM [22] are proposed with similar goals.

3The term visualization of deep learning model used in this thesis refers to visualization
methods that explain the deep learning models, mainly focusing on the data flow in the model,
as well as the aspects that influence the results of the models. This does not include visualization
of the structure of the model, or the performance of the model.
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1.2 Aims of this Master’s thesis

In preparation for this Master’s thesis, the author developed a Keras-based [23]
deep learning framework with the ability to create and train different deep learn-
ing models, including models for automatic delineation of cancer tumors (see Ap-
pendix A on page 107). One of the goals of this Master’s thesis is to update this
framework with model visualization features, including the options to choose from
several methods such as activation maps [24], activation maximization [15], sali-
ency maps [18], deconvnet [19] and guided backpropagation [20]. The other goal
of this thesis is to demonstrate the benefit of model visualization, by interpreting
the visualization of a deep learning model which was trained on head and neck
cancer data.

In this thesis, firstly, Chapter 2 provides a fundamental context of deep learning.
This includes deep learning on image data, as well as explanations of several model
visualization methods. Then, Chapter 3 introduces an overview of the developed
deep learning framework. This chapter also provides the proposed updates relat-
ing to model visualization, along with other extensions of the framework. The
quality controls to assess the updates are also explained in this chapter. There-
after, Chapter 4 describes the trained model to be interpreted, together with the
head and neck cancer dataset. This chapter also describes the visualization meth-
ods that are used on the pre-trained model. Chapter 5 shows the results of the
proposed updates of the framework. In addition, the results of the visualization
process can also be found in this chapter. The interpretation of the visualization
results, the benefits of model visualization, and the potential of the developed
framework, are discussed in Chapter 6. Finally, Chapter 7 states the conclusions
of this thesis.
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Chapter 2

Visualization of Deep Learning

The term Machine Learning, which is a sub-field of Artificial Intelligence, refers
to the actions of finding rules from existing data in order to make predictions
[25] [24]. These rules, called the machine learning model, or in short, model, is
the function mapping the input data with the output answers. Thus, a machine
learning system makes predictions by transforming the input data through the
machine learning model. Also, a machine learning system learns from existing
data by using these data as feedback signals to modify the model so that the
prediction outputs are as close to the actual outputs as possible. In other words,
the goal of the learning algorithm in a machine learning system is to achieve a
model with the best performance.

The term Deep Learning refers to an approach in Machine Learning, in which the
machine learning model is in the form of a Neural Network with a number of layers
[25] [24]. The number of layers in the Neural Network determines the depth of the
Neural Network, which explains the “deep” part in the term Deep Learning [24].

This chapter provides the fundamental context of Deep Learning. This includes the
structure of a general network and its learning algorithm, as well as the components
of the convolutional neural network (CNN) for using deep learning on image data.
In addition, this chapter also explains different visualization methods based on the
components of the neural network.

5
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2.1 Deep Learning

2.1.1 Neural Networks

Figure 2.1 illustrates the data flow in a simple neural network with three layers:
the Input Layer, the Output Layer, and one Hidden Layer in between. This neural
network predicts two types of output, y1 and y2, from the initial input of two
features1 x1 and x2. The circles in each layer represent the nodes in that layer, while
the arrows represent the data flow. Each node performs a data transformation
from the outputs of the previous layers. Data transformation starts by first going
through the Input Layer. This layer does not make any changes to the data. Thus,
the number of nodes in this layer depends on the number of features of the initial
input. After that, the outputs of the Input Layer, with the addition of the bias
node, act as inputs for the next layer, the Hidden Layer. Finally, the Hidden
Layer’s outputs, together with a bias node, act as inputs to the Output Layer for
predictions.

To understand each node’s data transformation, we can take a closer look at the red
part of Figure 2.1, which is illustrated in Figure 2.2. First, the linear combination
of the previous layer’s outputs, together with the bias node, is calculated. This
can be denoted as:

Σ = w0 · 1 + w1l1 + w2l2

= w0l0 + w1l1 + w2l2 (denote bias node’s value as l0)

= wTL

where the weights w =

w0

w1

w2

 , and the layer’s input L =

l0l1
l2


After that, an activation function2, denoted as a = φ(x), is applied to the resulting
linear combination Σ, called the weighted sum, to calculate the output of the node.
Because of that, the nodes in each layer in the neural network are called activation
units. Since w, called the weights, directly affect the transformation of data in the
neural network, the goal of training the neural network is to find the weights that
give the model the best performance.

1This term is sometimes referred as variables or columns.
2Activation function will be introduced in Section 2.1.2 on page 9.
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Figure 2.1: Illustration of a three-layer neural network. This neural network predicts
two types of output, y1 and y2, from the initial input of two features x1 and x2. The
circles in each layer represent the nodes in that layer, while the arrows represent the
data flow. Each node performs a data transformation from nodes of the previous layers.
The detailed information in red parts is illustrated in Figure 2.2.
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Figure 2.2: Illustration of data transformation of a node in the neural network. The
red part is also associated with the red part in Figure 2.1. First, the linear combination
of the inputs is calculated. After that, an activation function is applied to calculate the
output of the node.
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Generally, a neural network contains an Input Layer, an Output Layer, and a
number of Hidden Layers in between (Figure 2.3). In the artificial neural network,
data is transformed as it goes through each layer, which contains a number of
nodes. Each node is calculated by first obtaining the linear combination of the
outputs of the nodes from the previous layer, then applying the activation function
on the value obtained. These nodes are called activation units. Thus, the data
flow is similar to a network in which the outputs of all nodes from the previous
layer are the inputs of each node in the next layer. In short, in a neural network,
the output of the previous layer is the input of the next layer, and the output of
the final layer is the prediction of the input data. The final goal of the learning
algorithm in the neural network is to find all weight matrices so that the final
outputs are as close to the expected results as possible.

2.1.2 Activation function

The activation function is a continuous function applying to any layer in the neural
network [24][26][27]. This function can be linear, in the form of φ(x) = cx, or non-
linear [27]. However, a layer with a linear activation function (layer La) is the same
as a layer without activation functions (layer Lb). This is because both resulting
outputs of these two layers are still linear combinations of the inputs, and the
weights wa of layer La is c times smaller than the weights wb of layer Lb. Further-
more, when a neural network only contains linear activation functions, the “deep”
part of the neural network is meaningless since the neural network’s final outputs
are just the linear combinations of the initial inputs regardless of the number of
hidden layers in the neural network. Thus, the non-linear activation function plays
an important role in the neural network. Thanks to the non-linearity properties,
this kind of activation function helps to increase the important information and
suppress the noise from the layer’s inputs [27][28]. Besides, in classification prob-
lems, where the final outputs must be in a limited range, applying a non-linear
activation function to the last layer of the neural network can solve these kinds of
problems [25][26].

Since the types of activation functions used in the neural network have an impact
on the neural network’s performance and outputs [26][27], different problems re-
quire different kinds of activation functions. In this part, we will go through some
frequently used activation functions in the neural network and when they are used.
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ReLu

φReLu(x) = max(0, x)

The rectified linear unit (ReLu) function [29] silences all negative values in the
outputs of the layers. It has been a popular activation function in neural networks
due to its dominant performance over the softmax [30] and the tanh [31] activation
function [28]. The ReLu function is usually applied to the neural network’s hidden
layers in most classification and regression problems [26][28].

Sigmoid

φsigmoid(x) =
ex

ex + 1

The outputs of the sigmoid function [30] are always between 0 and 1. Thus, the
sigmoid function is usually applied to the last layer of the neural network for binary
classification problems (with only positive or negative values).

Softmax

φsoftmax(xi) =
exi∑
j e

xj

The outputs of the softmax function [30] are the set of probabilities, all of which
sum up to 100%. Hence, it is usually applied to the last layer of the neural network
for multi-label classification problems. In these problems, the number of nodes in
the output layer is the same as the number of labels. Each node in the layer output
associates with the probability that the input item belongs to one label. Thus, the
predictions of these models are based on the node with the highest probability in
the output layer. For example, a neural network predicting if an input is a “cat”,
“dog” or “cow”, with the associated outputs y1, y2 and y3. If the outputs of the
neural network are y1 = 0.1, y2 = 0.75 and y3 = 0.15, the input item belongs to
the “dog” label.
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2.1.3 Loss function

As stated at the beginning of this chapter, the machine learning model is modified
based on existing data as feedback. The loss function acts as the feedback signal
by calculating the loss score, which can be understood as the distance between the
prediction outputs and the actual outputs [24][31][32]. When training the model,
the weights of the neural network are adjusted to minimize the loss score.

There are several types of loss functions. The Adaline model, the early form
of the deep neural network but without the hidden layer, has the squared error
function as the loss function [25][24]. Thus, it is the most well-known loss function
used in deep neural networks for regression problems [25][31]. Besides the squared
error loss function, there are other loss functions such as maximum likelihood
for regression problems, and hinge and cross-entropy for classification problems
[31][33]. Similar to the activation function, different problems also require different
types of loss function as the choice of the loss function has significant impacts on
the performance of the neural network [33].

2.1.4 Forward and backward propagation

The process of training a neural network contains forward and backward propaga-
tion (Figure 2.4). When training the model, the train data are transformed as
they go through each layer. This process is called forward propagation [24]. After
data transformation finishes in the last layer, the loss score is calculated based on
the final outputs. Then, the weights of the neural network are modified based on
the loss score calculated. The process of adjusting the weights based on the loss
score is called backward propagation, or in short, backpropagation [24]. These two
processes are repeated several times until the loss score is minimized.

The relationship between the weights matrix and the loss score can be denoted as:

outputs = f(weights, inputs)

loss = g(outputs, targets) = g(f(weights, inputs), targets)

where f is the model while g is the loss function.

Because (1) the weights act as coefficient values in the loss function, and (2) the loss
function is differentiable, we can decrease the loss score by moving the coefficient
values, or the weights, in the opposite direction of the gradient of the loss score
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with regard to the weights [25][24][32].

Most visualization methods for the model explanation, especially the one that will
be introduced in Section 2.3, are based on forward and backward propagation [34].



2.1. DEEP LEARNING 13

Predicted
y'

Input Layer

Hidden Layer

Hidden Layer

Output Layer

Target y

Update weights

Update weights

Update weights

Loss score

Weights

Weights

Weights

Forward propagation

Backward propagation

Calculate gradients between 
loss score and layer's outputs

Figure 2.4: Illustration of forward and backward propagation in the neural network.
The process of data transformation from the input layer to the output layer is called
forward propagation. On the other hand, the process of updating the weights matrices
based on the loss score is called backward propagation.
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2.2 Convolutional Neural Network

The auto-delineation of cancer tumors is an image-based problem. Since the in-
formation extracted from the image data involves the spatial relationship between
neighboring pixels, convolutional layers [32] are essential in the neural networks
that work with image data. A neural network containing convolution operations
is called a convolutional neural network (CNN) [24][32].

2.2.1 Images and Tensors

The term Image in this thesis refers to Digital Image, which is composed of picture
elements, called pixels. Each pixel contains a numerical value representing the
gray intensity at the specific position of the image. For some images, there can
be multiple values to represent the intensity at the particular pixel. These sets of
values are called channels of the images.

When working with image data, we work with the pixel values across the width,
height and channels of the images. For 3D images, this data can be more com-
plicated with width, height, depth and channels. In this case, pixels are known as
voxels (volume elements) [35].

Since the image-based data always contains data across multiple dimensions, the
term tensor, which is a multi-dimensional vector space, is usually used when refer-
ring to the image data. A tensor is defined by its rank and shape [24]. The rank
of a tensor is the number of dimensions of the tensor. For example, a tensor with
the rank of three, or a 3D tensor, can represent a 2D image with height, width and
channels. The shape of a tensor is the size of its dimensions. For an image with a
height of 30 pixels, a width of 40 pixels and three channels, it will be represented
by a tensor with the shape of (30, 40, 3).

2.2.2 Filter operations

Before defining convolutional layers, we introduce the filter operations [35] in di-
gital image processing. Filter operations are usually used for image smoothing,
image sharpening, edge and object detection, etc [35]. Filter operations take an
image as the input then generate a new image. Each pixel in the new image is
calculated individually using the following process. First, based on the coordin-
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ates i, j of the new pixel Outi,j, a region from the original image Im, denoted as
Ri,j, is taken out using a function r(Im, i, j). This region is called the filter region
[35]. After that, the value of new pixel Outi,j is calculated by applying the filter
function f on the set of pixels in the filter region. Since the filter region is selected
based on the newly created pixel’s geometric properties, we can say that the new
image is generated while sliding the filter across the original image’s width and
height.

The relationship between the input image Im and the output image Out can be
denoted as:

Out = filter operaion(Im)[
Outi,j

]
m′×n′

=
[
f(Ri,j)

]
m×n

=
[
f(r(Im, i, j))

]
m×n

where Im and Out are the original and output images,

Outi,j is the pixel at coordinate i, j of the output image,

Ri,j is the filter region of the associated pixels Outi,j,

r is the function of selecting the filter region,

f is the filter function.

Depending on the mathematical properties of the function f , filters operations are
classified into linear and non-linear filter operations [35]. While non-linear filter
operations are mostly used for noise removal, linear filter operations are usually
used for feature enhancement and feature extraction [32][35], which is exactly what
we need when working with image data in the neural network.

2.2.3 The convolutional layer

In mathematical terms, the linear filter operation is the convolution operation
[24][35]. Data transformation in the convolutional layers is based on convolution
operations. Figure 2.5 illustrates the convolutional layer on a 2D image tensor,
which uses the convolution operation. In this convolution operation, the filter
region is a square of size 3x3, or a 2D tensor of size 3x3. The filter function f uses
a filter (aka kernel) of size 3x3 to calculate the linear combination of the pixels in
the filter region, then generates the pixel values at the associated positions.

Generally, convolutional layers take a tensor as input and output another tensor.
The output tensor of the convolutional layers contains the output images of mul-
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tiple convolution operations from different filters, followed by an activation func-
tion. Each output image is generated by sliding a k × k filter along the input
tensor’s width and height. As the filter moves, the filter function f calculates the
linear combination between the pixels in the filter region using the k × k filter,
which results in the associated pixel in the output image. Since different filters can
be used to extract different features of the input image [24][35], the output tensors
of the convolutional layer are the set of different features which are extracted from
different filters in the convolution operations. In the case of an input tensor with
the rank of n, the same process is applied using filters with the same rank.

Besides, data transformation in the convolutional layers is still a linear combina-
tion of nodes (pixels) from the inputs. However, at each node, only a few nodes,
which are neighboring pixels of the original image, are used in the linear combin-
ation while other nodes, which are unrelated pixels, are silenced. As the filters’
values directly affect the convolutional layer’s outputs, the weights to be trained
in convolutional layers are the values of the filters.

An extension of the convolutional layer is the transposed convolutional layer [36].
This kind of layer is the same as convolutional layers, with the convolution op-
eration and the trainable filters’ values. While convolutional layers decrease the
sizes of the input tensors, transposed convolutional layers increase their sizes. The
differences between these two types of layers involve the different ways of adding
zeros padding at the edges of the input tensors, or adding strides of zeros between
pixels in the input tensors [24][36].

Another type of layer that uses filter operations in CNNs is the pooling layer
[36]. While being called “layer” in the neural network, this type of layer is simply
applying filter operations to the input tensors with no trainable weights. This is
because this type of layer either uses (1) non-linear filter function or (2) linear
filter function with constant filter. One good example of the first case is the max
pooling layer [32], where the filter function finds the maximum pixel value in the
filter region. In the second case, we can look at the average pooling layer [32],
whose filter function calculates the average value of pixels in the filter region. This
function is linear, but the filter value cannot be used as weights. This is because
the filter values must be constant. For example, the filter values of the 3x3 filter

used in average pooling layers must always be
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2.3 Visualization

Until now, we have gone through the fundamental context of deep learning and
components of the neural network, as well as the convolutional neural network
when working with image data. These are the keys knowledge of visualizing the
CNN model for model explanation. In this part, we will introduce several meth-
ods of model visualization, all of which are based on the forward and backward
propagation through convolutional layers.

2.3.1 Activation Map

As explained in Section 2.2.3, the outputs of the convolutional layers contain differ-
ent features extracted from the layer’s input. Since each convolutional operation in
these layers is followed by an activation function, the outputs of the convolutional
layers are called activation maps [24]. The activation maps show how the original
input images transform as they go through each layer in the convolutional neural
network. From the activation maps, we can see which features of the images each
layer extracts during the data transformation process.

Figure 2.6 explains how activation maps are generated from a trained neural net-
work. As the process only involves data transformation in the neural network,
generating activation maps is the same as the forward propagation of an image
through the convolutional layers. Examples of activation maps from the VGG16
model on the ImageNet dataset3 are showed in Figure 2.7. From an image of a
cat, the activation maps show features extracted from the image, such as the fore-
ground (the whole cat), the background, grasses, soils, cat’s eyes and ears, and
even its edge, etc.

3VGG16 model is a convolutional neural network with 16 trainable layers proposed by Si-
monyan and Zisserman [37], and has high performance on the ImageNet dataset [38]. The
detailed information about this model can be found in Appendix B.
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Convolutional Layer conv_2
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Figure 2.6: Illustration of the process of generating activation maps. From the trained
convolutional neural network, the outputs of the convolutional layers are called activ-
ation maps, which show the extracted features from the layers’ inputs. The process of
generating the activation maps is the process of forward propagating an image through
the convolutional layers.
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Input Layer

Layer block1_conv2

Layer block3_conv3

Remaining layers and
outputs of CNN

Some hidden layers

Some hidden layers

Figure 2.7: Illustration of an example of activation maps from the VGG16 model.
From an image of a cat, features in that images are extracted in the layers of the CNN.
The features extracted include the background and foreground of the image, parts of
the cat such as eyes and ears etc. Images generated by the framework introduced in
Chapter 3 on page 29.
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2.3.2 Activation Maximization

Erhan et al. [15] introduced a method of creating an image that maximizes one
or more activation units at specific layers in the convolutional neural networks,
called activation maximization [15]. Figure 2.8 explains the process of activation
maximization. First, from a trained convolutional neural network, the activation
maps at a specific layer of an image with random noise IR is generated. Then, de-
pending on the group of activation units to be maximized, a loss score is calculated
based on the generated activation maps. In this case, the loss score represents the
magnitude of the required activation units. After that, the gradients between the
loss score and the initial image IR are calculated. Since the goal of this process
is to create an image that maximizes the activation maps, the image IR now acts
as the coefficient value in the loss function. Thus, IR is updated by moving it in
the same direction as the calculated gradients. This process is repeated until an
image which maximized the required activation units is eventually generated. The
resulting image contains the features that each filter in that layer extracts.

From Figure 2.8, we can see that this visualization method is similar to the process
of training a neural network, which contains the repetition of forward and backward
propagation (see Figure 2.4). The main differences are because of the different
goals, leading to the change of loss function, along with the way the coefficients of
the loss function are updated in activation maximization.

Example results of activation maximization for filters in the block5 conv1 layer
of the VGG16 model (Table B.1) are shown in Figure 2.9. As the process of
forward and backward propagation is repeated several times, the initial image has
transformed into some interesting patterns, either eye-like, feather-like, scale-like
or even bell-like. From the results, we can conclude that these filters are looking
for similar patterns from the input images.
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Figure 2.8: Illustration of the process of activation maximization. From the trained
convolutional neural network, an image that maximizes that activation maps at a specific
layer is generated by repeatedly forward propagating an image (initially with random
noise) in the neural network, then use backpropagation to update that image in the
direction that will maximize the activation maps.
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(a) After 5 iterations

(b) After 10 iterations

(c) After 20 iterations

(d) After 50 iterations

Figure 2.9: Example of activation maximization of the VGG16 model. How the initial
images with random noise change after 5, 10, 20, 50 iterations (a-d) are shown. Even-
tually, the images that maximize filters in the block5 conv1 layer are generated. Images
generated by the framework introduced in Chapter 3 on page 29.
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2.3.3 Saliency Map, Deconvnet and Guided Backpropaga-
tion

Saliency Map [18], Deconvnet [19] and Guided Backpropagation [20] are the visu-
alization methods with the goal of finding parts of the input image which are the
most important for the output of the convolutional neural network. Because the
CNN model’s output is the result of a differentiable function on the input image
and the weights in that CNN model, the gradients of the model’s output with
respect to the input image show which pixels of the input image have the most
impacts on the prediction of the CNN model. The three visualization methods are
proposed based on this idea. Although the initial proposals of these methods are
used on class probability results in the CNN model, we can also apply these three
methods on any layers in the convolutional neural network.

Figure 2.10 explains how these three methods are applied to a specific layer in the
convolutional neural network. First, an input image is propagated forward in a
trained CNN. After that, a backpropagation step is performed. From the activation
maps, a loss score, depending on the goal of the process, is calculated. For a
classification model, the loss score is the class probability of the image predicted
by the model. In a more general case, the loss score is the value calculated from
the nodes we want to analyze in the neural network. From the calculated loss
score, its gradients with respect to the input are calculated, resulting in an image
acting as a heatmap of the importance of each pixel to the output of the model
(or layers).

The only difference between these three methods is the way the gradients are
calculated, which will be explained in the following parts.

Saliency Map

The saliency map [18], or the gradient map, was first introduced by Simonyan
et al. in 2013 [18]. In this method, the resulting image is generated by directly
differentiating the loss score with respect to the input image. Since this result
is the actual gradients between the loss score and the input image, the resulting
image is quite noisy (Figure 2.11).

The process of calculating the saliency map at the ith layer f i
saliency can be denoted
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Figure 2.10: Illustration of the process of generating saliency maps, deconvnet and
guided backpropagation. From the trained convolutional neural network, an image is
propagated forwardly. After that, a loss score is calculated. The pixels that have the
most impacts on the loss score are calculated using the gradients of the loss score with
respect to the input image.

as:

f i
saliency =

∂Iout
∂Iin

=
∂Li

out

∂Li
in

· ∂L
i−1
out

∂Li−1
in

· ... · ∂L
1
out

∂L1
in

for Iout = loss fn((f i ◦ f i−1 ◦ ... ◦ f 1)(Iin)) and

F i
out = f i(F i

in)

where Iout is the loss score, Iin is the input image, loss fn is the loss function and
f i is the function mapping the input F i

in and output F i
out of the ith layer.
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Deconvnet

The deconvnet method, which was introduced by Zeiler and Fergus, also calcu-
lated the gradients of the loss score with the input image. However, this method
is slightly different from the saliency map of Simonyan et al. [18] as the gradi-
ents when backpropagating through the ReLu activation function are calculated
differently. When backpropagating the gradients using the chain rule, instead of
calculating the actual gradient of the ReLu function, the deconvnet method applies
the ReLu function on the gradients being backpropagating. This means that the
deconvnet results only focus on pixels that have positive impacts on the output.

The following denotes how saliency maps and deconvnet are different when hand-
ling the ReLu function in backpropagation:

For F i
out = f i(F i

in) = φrelu(conv(F i
in)) = φrelu(Ci) and Ri+1 =

∂Li+1
out

∂Li+1
in

,

Ri
saliency = (Ci > 0) ·Ri+1

Ri
deconvnet = (Ri+1 > 0) ·Ri+1

Due to the change of gradient calculation, the deconvnet method gives a less noisy
result than the saliency methods [20] (Figure 2.11). However, in deeper layers
in the CNN, the deconvnet method is unable to give a sharp and recognizable
image [20], which leads to the proposal of Springenberg et al. [20], the guided
backpropagation method.

Guided Back-propagation

Springenberg et al. [20] proposed a visualization method that combines both the
saliency map and the deconvnet method. In guided backpropagation, when back-
propagating through the ReLu activation function, the gradient of the ReLu func-
tion are still calculated. However, the ReLu function is still applied tp the gradients
being backpropagating. Therefore, the negative signals in both forward and back-
ward propagation are zeroed out, resulting in an image with sharper lines and
features (Figure 2.11).

The following shows how the gradients through the ReLu function are calculated
in guided backpropagation.

Ri
guided backpropagation = (Ci > 0) · (Ri+1 > 0) ·Ri+1
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Original Input Image

Saliency Map Deconvnet Guided Backpropagation

Figure 2.11: Example results of saliency map, deconvnet and guided backpropagation.
The results of saliency map, deconvnet and guided backpropagation are generated by
Springenberg et al. [20] using a model trained on the ImageNet dataset [38]. In these
results, parts of the input image that influence most to the results of the model are
highlighted. Unlike the saliency map with a noisy image, deconvnet gives a clearer
image with less noise while guided backpropagation generates an image with sharper
lines and colors.
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Chapter 3

Code

This chapter provides an overview of the deep learning framework developed in
conjunction with this Master’s thesis and the possible updates implemented to
support model visualization. This chapter also describes the quality control of the
implemented code.

3.1 Deoxys Framework

3.1.1 Introduction and usage

As a preparation for this Master’s thesis, the author developed a framework to ap-
ply deep learning for tumor segmentation in medical images as part of the course-
work in DAT390 Data Science Seminar. This framework, called deoxys, allows
users to create and train a convolutional neural network on a set of images, as well
as visualize the performance of the training process and view the prediction of the
trained model (Figure 3.1).

The deoxys framework is generalized to work with different forms of image data
and CNN architectures. Users can define their CNN using configurable JSON
files, which allow them to choose the layers, loss functions, activation functions,
performance metrics and other components in neural networks.

Moreover, the deoxys framework is also modular so that it is easy to maintain,
extend, and update. Its high flexibility allows users with advanced programming
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background to define their customized components easily. An example of this
flexibility property can be found at https://github.com/yngvem/ntnu-analysis/
blob/master/experiment.py, where the user was able to define his customized loss
functions and performance metrics.

The developed framework is available at https://github.com/huynhngoc/deoxys.
In addition, the detailed information about the deoxys framework can be found in
Appendix A on page 107

3.1.2 Structures

The deoxys framework was developed using Keras [23] as the base library. The
Keras library provides many implemented CNNs’ layers, loss functions, activation
functions, etc. The Keras library [23] works as the top-level interface to com-
municate with other deep learning backends1 such as Tensorflow [39] and Theano
[40].

The minimum software requirement for the deoxys framework to work properly is
Python 3.7 and Keras 2.3.0.

The main components of the framework illustrated in Figure 3.2 are: (1) the data-
reader, which reads the image data then feeds them to the model for training and
testing; (2) the Keras model [23] wrapper, which is the deep learning model to
be trained; (3) loader modules, which are used for loading the configuration file
to build the model wrapper; (4) experiments modules, which are used for train-
ing models with different hyper-parameters and for visualizing the performance
(Figure 3.2).

The data-reader has three usages. The first usage is to read the image data from
disk. The second usage is to split the data in training, validation and test set.
This makes k-fold cross-validation [41] possible2. The final usage is to feed the
model with small batches of processed data while training, validating and testing.

The Keras model wrapper contains methods for training and testing the model,

1These refer to deep learning frameworks which allow efficient data computation in deep
learning model by managing memory usages, utilizing the CPU and the GPU of the computing
environment.

2Splitting up data into different sets for cross-validation is a technique used when training a
deep learning model (see Raschka and Mirjalili [25] for details). As these terms are not related
to the main goals of this Master’s thesis, they will no longer be discussed in this thesis.

https://github.com/yngvem/ntnu-analysis/blob/master/experiment.py
https://github.com/yngvem/ntnu-analysis/blob/master/experiment.py
https://github.com/huynhngoc/deoxys
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and methods for model serialization such as saving and loading a model to and
from disks (see Model part in Figure 3.2).

The loader modules, as illustrated in architecture loader part and model objects
parts in Figure 3.2, create components of the model from configuration JSON files.
These components are either Keras implemented objects (loss functions, activation
functions, metrics) or user-defined objects. These modules also contain predefined
architectures such as the Sequential architecture [24], which is the simple form
of CNNs with a stack of layers, and U-net architecture [42], which is a more
complicated architecture used for segmentation problems.

Experiment modules allow users to train different CNNs with different components
and architectures, where the performance logging and the model serialization are
applied in every iteration (see single and multiple experiment parts in Figure 3.2).
Thus, other usages of these modules are to visualize the performance of an exper-
iment, and to visualize the predictions of some samples in the validation and test
set of the dataset.
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Figure 3.1: Use case diagram of the deoxys framework developed by the author as part
of the coursework in DAT390 Data Science Seminar (details in Appendix A). This figure
shows how the users interact with the deoxys framework. Use cases marked with the
“new” label are the newly added use cases in this Master’s thesis.
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Figure 3.2: Structure of the deoxys framework developed by the author as part of
the coursework in DAT390 Data Science Seminar (details in Appendix A). This figure
shows the components of the framework, as well as the available groups of functions.
Parts marked with the “new” label are updates of the deoxys framework in this Master’s
thesis.
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3.2 Updates

One of the goals of this Master’s thesis was to implement supports for visualiz-
ation of the model features in the deoxys framework. This section describes the
updates added to this framework. These updates include the implementations of
several visualization methods, as well as the management of training models using
a database. Figures 3.1 and 3.2 show the new software features developed in this
Master’s thesis.

3.2.1 New APIs for model visualization

The main focus of these updates is the integration of model visualization methods
discussed in Section 2.3 on page 18 into the Keras model wrapper. These methods
include activation maps [24], activation maximization [15], saliency maps [18],
deconvnet [19] and guided backpropagation [20].

Users of the deoxys framework should be able to visualize the deep learning model
by using the following APIs.

deoxys.model.Model.activation map

This function should take a layer name and a list of images as input arguments,
then generate the associated activation maps at that layer of these images. Users
can use this function to see how the input images changes in the intermediate
layers in the convolutional neural network.

deoxys.model.Model.activation maximization

Users can easily find the patterns, or features that a specific layer in the convolu-
tional neural network extracts using this function. In addition, users should have
the option to choose the initial image and the loss score function, as well as the
number of steps to repeat the process in Figure 2.8 on page 22.
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deoxys.model.Model.backprop

Users can view the influence of each part of the image on the prediction of the model
using this function, which implements the saliency maps method. For complex
deep learning problems, users should have the option to define their customized
loss function in Figure 2.10 on page 25.

deoxys.model.Model.deconv

Similar to the previous function, aspects that affect the decision of the model can
be found using this function, which gives the implementation of the deconvnet
method.

deoxys.model.Model.guided backprop

This function is similar to the two previous functions, but guided backpropagation
method is implemented in this function.

3.2.2 Quality Control

The implementations of activation maps and activation maximization using Keras
were based on example codes [24] which have been used across numerous examples
in the GitHub community3. Therefore, the implementations of these two methods
have a high level of reliability. On the other hand, visualization methods that de-
pend on the modification of gradient calculation in backpropagation did not have
Keras-based examples. If examples were available, there were based on an old
version of Keras. Therefore, to ensure that the implementation of these methods
in deoxys was reliable, we needed to compare the results provided by the deoxys
framework to previously published results. The visualization results by Springen-
berg et al. [20] (see Figure 2.11 on page 27) using the VGG16 model on ImageNet
data (Appendix B) were chosen as a comparison for saliency maps, deconvnet and
guided backpropagation visualization given by deoxys.

3GitHub (github.com) is one of the places where software developers share their ideas and
codes for solving different problems.

github.com
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3.2.3 Others extension

Another update of the deoxys framework (Figures 3.1 and 3.2) was the integration
of a database to manage the experiments. When searching for the best CNN
model, users have to run different experiments multiple times to get enough data
to analyze the performance logs. Analyzing different log data requires time and
skills to combine these data as they stay at different locations in the computers.
Therefore, users need a system to centralize and organize the data, which leads to
the need for a database management system (DBMS).

Database integration allowed the deoxys framework to communicate with a DBMS
to manage the results from multiple experiments. The DBMS manages these
following five types of objects: (1) the experiments, (2) the sessions, (3) the saved
models, (4) the saved predictions and (5) the performance logs. The relationship
between these types of objects is illustrated in Figure 3.3.

Each type of object in the DBMS is called a table, where the name of the table is
the type name. In a table, each type of information about the objects is called a
column or a field. In the DBMS, objects of one type are distinguished using an id.
Thus, each table contains an id column (Figure 3.3).

The DBMS manages different experiments, each of which contains the user-defined
name and description, as well as the configuration information which defines the
architecture and hyper-parameters used in this experiment (see the experiment
table in Figure 3.3).

Each run of an experiment is called a session. Each session contains the informa-
tion about the experiment it belongs to, when it is created and last modified, how
many epochs it has run, and its status (whether it just created, is running or has
finished) (session table in Figure 3.3). In each session, there are different models
and different predictions saved at some epochs. These objects are also managed
by the DBMS (see models and predictions table in Figure 3.3). In addition, the
performance results at every epoch of a session are also stored in the DBMS in the
perf log table. Apart from the information about the session and epoch number
each performance result belongs to, other fields in this table are indeterminate.
Because users can define different performance metrics in different experiments,
sessions from different experiments have different performance results, resulting in
different fields in the perf log table.

Because of the indeterminacy in the fields in the perf log table, MongoDB4, a

4Official website at https://www.mongodb.com/.

https://www.mongodb.com/
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Figure 3.3: The relationship between different types of objects in the database. Each
box represents a table in the DBMS. The tables’ names and fields are separated by
horizontal lines in these boxes. In this figure, each experiment contains many sessions.
Each session contains different performance results, saved models and saved predictions
at different epochs (iteration).
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Name Description

DBMS-UI The database management system’s user
interface. Users can view the data stored in
the DBMS using this interface. Usually, the
DBMS is provided together with a user
interface.

The sample config The JSON file containing the configuration
of a sequential CNN model to classify
images of hand-written digits into digits.

Table 3.1: Materials for test cases.

Test case Step Description Expected Results Results

Add an
experiment

1 Clear all data in the
DBMS

In the DBMS-UI, the
experiment table has
a new item with the
name of “Test 01”.

Passed/
Failed

2 Create an experiment
from the sample
config with name
“Test 01” and empty
description

3 Check the DBMS-UI

Table 3.2: Example of a test case in database integration.

database management system with high performance on dynamic data [43][44], was
chosen to be integrated into the deoxys framework. Nevertheless, for flexibility,
maintainability and updateability of the deoxys framework, the integration was
designed to make it possible to interact with any other types of DBMSs in the
future.

To ensure the reliability when integrating the database into the deoxys framework,
seven manual test cases were written and tested using the materials defined in
Table 3.1. An example of a test case can be found in Table 3.2. All test cases are
available at the full test report in Appendix C on page 123.



Chapter 4

Experimental setup

Model visualization methods implemented in this thesis were tested on a pre-
trained deep learning model for segmentation of head and neck cancer tumors.
This chapter describes the trained model and dataset that were used in this thesis.
In addition, this chapter also describes how the visualization methods were applied
to this model for interpretation.

4.1 The dataset and the pretrained model

The dataset and the pretrained model used in this Master’s thesis replicated the
segmentation model with the highest performance developed in ‘Deep learning for
automatic delineation of tumours from PET/CT images’ by Moe [11]. This model
was implemented and trained in the newly developed deoxys framework using the
same layers and hyper-parameters.

Note that the replication was only limited to the model and the dataset for re-
producibility, while the deoxys framework is a newly developed framework. This
framework contains several modules for defining and customizing deep learning
models, visualizing the performance, automatically finding the best model within
an experiment or among several experiments, supporting K-fold cross-validation
[41], which were not included in [11]. Note also that deoxys is a complete frame-
work encompassing all elements required for deep learning model development (see
Figure 3.2 on page 33). The framework is general and not limited to tumor seg-
mentation and enables the use of a range of different deep learning architectures,
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Dataset No. patients

train 142

val 15

test 40

Table 4.1: The number of patients in each of the datasets. See [11] for details

loss functions, activation functions, performance metrics, etc.

4.1.1 Head and neck cancer dataset

3D PET/CT images and delineation masks from 197 patients with head and neck
cancer at the Oslo University Hospital, the Radium Hospital, were used for train-
ing. The manual delineation masks provided by the clinicians included pathologic
lymph nodes and the gross tumor volume (GTV). When multiple manual de-
lineations existed, the union of these delineations was used as the ground truth
(model’s true target). 2D slices with two channels, CT and PET of the 3D image
of the patients, were used as one item in the dataset. As the dataset was the
replication of Moe’s thesis [11], this dataset was split as described in Table 4.1,
and was stratified by tumor stage. In addition, the Hounsfield windowing prepro-
cessing [11] was performed on the dataset. The detailed description of the dataset
can be found in Moe’s work [11].

In this Master’s thesis, the model visualization methods was applied to the CT/-
PET images in the test dataset.

4.1.2 The Model

Unet architecture

The model used to train on the head and neck cancer dataset in Section 4.1.1 had
the Unet architecture [45], which is illustrated in Figure 4.1. This architecture
contains a down-sampling path using Max Pooling layers to decrease the spatial
dimension of the layers’ outputs and an up-sampling path using Transposed Con-
volutional layers to increase the spatial dimension of the layers’ outputs. These
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two paths are connected by a bottle neck path at the bottom of the U-shape of
the architecture.

This model was trained for 14 epochs, with a low learning rate1 of 10−4 using the
Adam optimizer2 [46].

Detailed information about layers in this model and their relationship can be found
in Tables D.1 to D.4.

Model performance

Since the cancer tumor delineation is a segmentation problem, the Dice score3

[47] was used as a metric for analyzing the performance. This type of metric is
calculated based on the number of true positive (“tumor” pixels predicted as “tu-
mor”), false positive (“non-tumor” pixels predicted as “tumor”) and false negative
(“tumor” pixels predicted as “non-tumor”) in the predicted images.

With true positive denoted as TP , false positive denoted as FP , and false negative
denoted as FN , the Dice score is calculated based on the following equation:

dice =
2TP

2TP + FN + FP

When evaluating the trained model on the test dataset, we got the result of 0.646
for the average Dice score over the entire dataset. The median of these Dice scores
was 0.779. When merging all slices of each patient then calculating the Dice score
on all pixels in the resulting 3D images, we got an average Dice score of 0.733 per
patient and the median of 0.775. These results concur with the results obtained
by Moe [11] of an average Dice score of 0.66 with the median Dice score of 0.75
and a per-patient Dice score of 0.65 with the median Dice score of 0.67. Thus, the
deoxys framework was capable of replicating the results of Moe [11].

1In Section 2.1.4, the weights of the neural network are modified based on the gradients of
the loss score with respect to the weights. Learning rate is the magnitude of the changed values
when adjusting the weights.

2An optimizer is an algorithm for minimizing the loss score defined in Section 2.1.3 on page 11
in the backpropagation process (Figure 2.4 on page 13).

3Binary F-beta with β = 1 and f1 score refer to the same term with Dice score.
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Figure 4.1: Illustration of the Unet architecture of the model used in this Master’s
thesis. Convolutional layers are marked with name and number of filters used in these
layers. The down-sampling path lies between the input layer and the conv2d 8 layer.
The path from conv2d 8 to conv2d 9 is the bottleneck path. Finally, the remaining path,
from the conv2d 9 layer to the output layer is the up-sampling path. The layers marked
with the red asterix (*) were used for model interpretation as listed in Table 4.5.
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Patient idx Slice idx Dice score

91 86 0.94

148 11 0.94

209 14 0.95

217 20 0.96

233 48 0.96

249 55 0.95

Table 4.2: Information of images with high Dice score for interpretation.

Patient idx Slice idx Dice score

60 49 0.52

191 62 0.53

194 71 0.52

217 54 0.53

233 16 0.52

Table 4.3: Information of images with Dice score of 0.5 (intermediate performance) for
interpretation.

4.2 Visualization

The images used for model visualization were from the patients in the test set of
the head and neck cancer dataset. We focused on three groups of image data based
on the Dice score in this set. The first group comprised six images with high Dice
score, as listed in Table 4.2. The second group comprised five images with Dice
score of 0.5, as listed in Table 4.3. The final group comprised five images with low
Dice score (Dice score of 0, i.e. completely wrong delineation, no overlap between
the clinicians and model’s delineation), as listed in Table 4.4.

Since the pretrained model was deep and complex, we also focused on some specific
layers, which are the convolutional layers immediately before the max pooling
layers, convolutional layers before transposed convolutional layers and the layer
before the output layer in Figure 4.1. These layers’ names and number of filters
can be found in Table 4.5.
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Patient idx Slice idx Dice score

8 155 0.00

16 35 0.00

110 1 0.00

148 76 0.00

249 19 0.00

Table 4.4: Information of images with Dice score of 0.0 for interpretation, indicating
that the model delineations for these slices did not overlap with the ground truth.

Layer name No. Filters

conv2d 1 64

conv2d 3 128

conv2d 5 256

conv2d 7 512

conv2d 9 1024

conv2d 11 512

conv2d 13 256

conv2d 15 128

conv2d 17 64

Table 4.5: Layers in the Unet architecture (Figure 4.1) used for model interpretation.
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4.2.1 Activation maps

Because deep learning models are often compared to indecipherable black-boxes,
activation maps of image slices with high Dice scores as listed in Table 4.2 were
generated to see what occurs in the intermediate layers of the model. Due to
the complexity of the pretrained Unet model (Figure 4.1), we only generated the
activation maps of these images at the layers listed in Table 4.5.

4.2.2 Activation Maximization

To obtain a deeper understanding of features that layers in Table 4.5 extracted,
the activation maximization method was applied on these layers to generate the
patterns that these layers search for (this process is explained in Section 2.3 on
page 18). Note that the activation maximization method used in this section did
not involve or depend on any images from the head and neck dataset, as this
process starts from an image with random noise (see Figure 2.8 on page 22).

4.2.3 Gradient-based visualization

To find which pixels in the input images influenced the prediction of the model,
saliency maps, deconvnet and guided backpropagation were applied to three groups
of data listed in Tables 4.2 to 4.4. In addition, the author defined two different
loss functions and used them in the process illustrated in Figure 2.10.

The first loss function was the total confident values4 of pixels predicted as “cancer
tumor”. Hereafter, this loss function will be referred as the positive prediction
loss function. The images generated using this positive prediction loss function
showed the pixel importance for the segmentation results. If the output tensor is
denoted as Ŷ , and each value in this tensor is denoted as ŷij where i and j are

the coordinates of this value, this loss function Jpositive prediction(Ŷ ) in this case is
calculated based on the following equation:

Jpositive prediction(Ŷ ) =
∑

(ŷij · fthreshold(ŷij))

where fthreshold(x) =

{
0, if a < 0.5

1, otherwise

4Each pixel in the outputs of the described Unet model had a value between 0 and 1 inclusively,
which is the probability of being the cancer tumor with a threshold at 0.5.
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The other loss function was the total confident values of pixels which were “cancer
tumor” in the ground truth. For slices with Dice score larger than 0, this implied
the true positive values. For slices with incorrect segmentation (Dice score of 0),
the images generated by this loss function would show which pixels should change
positively or negatively so that the model could make the right prediction. This
loss function will be referred as the true positive loss function for later discussion.
By using the previously defined notations, in addition to denoting the ground truth
tensor as Y , and each value in this tensor is denoted as yij, the following equation
gives this true positive loss function.

Jtrue positive(Ŷ ) =
∑

(ŷij · fthreshold(yij))

Note that these loss functions are not the loss functions used for training the model
as described in Section 2.1.3 on page 11. Instead, these loss functions are defined
depending on the goal of the visualization process (see Figure 2.10 on page 25). In
this case, the goals are finding the pixels that contribute to the segmentation result
for the positive prediction loss function, and finding the pixels that contribute to
the correct delineation for the true positive loss function.



Chapter 5

Results

This chapter shows how the updates of the deoxys framework proposed in Chapter 3
have been implemented, and specifies the results of quality control of the frame-
work. In addition, this chapter also provides the results obtained using the visual-
ization methods for interpretation of the auto-delineation model of the head and
neck cancer dataset, as described in Chapter 4.

5.1 Implemented updates of deoxys

5.1.1 Visualization

The APIs proposed in Chapter 3 are currently available and accessible in the latest
version of the deoxys framework.

For activation maps and activation maximization, the implementation using Keras
[23] followed the instruction provided by Chollet [24]. In addition, the imple-
mentation of the activation maximization method used L2 regularization [48] to
normalize the gradients calculated.

Figure 5.1 shows the results of generating the activation maximization of several
layers in the VGG16 model trained on the ImageNet dataset [37] using the deoxys
framework. After 50 iterations, we can see that the filters in the first convo-
lutional layer (the block1 conv1 layer in Figure 5.1a) extracts colors and edges.
The filters in block2 conv1 and block3 conv1 layer in Figure 5.1b and c extracts
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some combination of colors and patterns (stripes and dots). Filters in higher lay-
ers (block4 conv1 and block5 conv1 layers in Figure 5.1d and e) extracts textures
that can be found in the real world, such as feathers, eyes, nets, scales, etc. Note
that only a few lines of code are needed to generate the images in the activation
maximization process (see below lines 11 to 15).

1 # Import necessary libraries
2 from deoxys.model import Model
3 from tensorflow.Keras.applications import vgg16
4

5 # Load the pre-trained VGG16 model
6 vgg = vgg16.VGG16(weights='imagenet ', include_top=True)
7 # Put the pre-trained model into deoxys 's Model
8 deo = Model(vgg)
9

10 # Generate image that maximizes first filter of block5_conv1 layer
11 max_filter = deo.activation_maximization(
12 'block5_conv1 ', # Layer 's name
13 epochs = 50, # Number of iterations
14 filter_index = 0 # Filter 's index (starts from 0)
15 )

For gradient-based visualization methods, modification of the technique to calcu-
late the gradient was implemented by registering a “new” ReLu function with a
different approach to calculate the gradients. This new function then replaced the
original ReLu function in a duplicated version of the model, which maintained the
consistency of the original model.

The results of quality control of these gradient-based methods can be found in
Figure 5.2, which shows gradient-based visualization of a kitten image by Sprin-
genberg et al. [20] (Figure 5.2b) and the deoxys framework (Figure 5.2c). While
both models were trained on the ImageNet dataset, the architectures of the VGG16
model and the model used by Springenberg et al. [20] are different (see Tables B.1
and B.2 in Appendix B). This caused some discrepancy between the two results.
Moreover, because the resulting images of these gradient-based methods contained
pixels with the values outside the range of the Red-Green-Blue images (between 0
and 255), a normalization step (i.e., scaling the pixel values to be within the range
of 0 and 255) had to apply to the three color channels. Since Springenberg et al.
[20] did not describe the normalization function used in their results, the normal-
ization step used in the deoxys framework may not be the same. This different
step also contributed to the slight variations in results.

However, the similarity in the results between the two models was sufficient to
let these implementations pass the quality control test. The similarity can be



5.1. IMPLEMENTED UPDATES OF DEOXYS 49

(a) block1 conv1

(b) block2 conv1

(c) block3 conv1

(d) block4 conv1

(e) block5 conv1

Figure 5.1: Illustration of VGG16 activation maximization results. Example results
of activation maximization generated by the deoxys framework for five layers (a) to (e)
of the VGG16 model trained on the ImageNet dataset (Appendix B). The final results
were generated after 50 iterations in activation maximization.
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Original Input Image

(a) Original Image

Saliency Map Deconvnet Guided Backpropagation

(b) Results from Springenberg et al. [20].

Guided BackpropagationDeconvnetSaliency Map

(c) Results from deoxys framework.

Figure 5.2: Quality control results on saliency maps, deconvnet and guided back-
propagation. From the original images (a) the saliency maps, deconvnet and guided
backpropagation are generated by Springenberg et al. [20] (b) and the deoxys framework
(c).
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seen in the similar locations of important pixels in the saliency maps, together
with the eyes and the noisiness in the deconvnet results, as well as the smooth
and sharp highlights of the cat’s eyes, ears and nose, and its edges in the guided
backpropagation results. Generating these images was also easy using the APIs
proposed in Section 3.2.1 on page 34 (see below lines 8 to 24).

1 # After importing all necessary libraries and
2 # load the vgg16 into deoxys model
3

4 # deo: the Deoxys Model containing the pre-train VGG16 model
5 # imgs: list of images for generating saliency maps ,
6 # deconvnet and guided backpropagation
7

8 saliency_maps = deo.backprop(
9 'block5_conv3 ', # Layer 's name
10 imgs , # List of images for calculation
11 mode='mean', # Mode for loss function
12 )
13

14 deconvnet = deo.deconv(
15 'block5_conv3 ', # Layer 's name
16 imgs , # List of images for calculation
17 mode='mean', # Mode for loss function
18 )
19

20 guided_backpropagation = deo.guided_backprop(
21 'block5_conv3 ', # Layer 's name
22 imgs , # List of images for calculation
23 mode='mean', # Mode for loss function
24 )

5.1.2 Database Integration

To manage training experiments, a database management system (DBMS) is es-
sential. With database integration, managing the results of different runs from the
same experiments is easier. This is because results from different experiments, as
well as information about the locations of log-files, predictions, and saved mod-
els, are centralized and accessible. The performance analysis can be done directly
thanks to the database, without manually putting everything into the same Excel
file.

Manual tests were performed to ensure the reliability of database integration. The
results of these tests are available in the full test report in Appendix C on page 123.
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User's Input

User's Input

User's Input

(a) The average performance of an experiment.

User's Input

User's Input

User's Input

Wrong input, was ignored by system

(b) The performance of a session of an experiment.

Figure 5.3: Screenshots from the example terminal application integrated with data-
base. In these screenshots, users can choose from lists of actions to interact with the
deoxys framework, including viewing the average performance of an experiment (a) and
viewing the performance of a single session of an experiment (b).
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From the report, all defined test cases satisfied the expected results when the deoxys
framework interacted with the DBMS.

An example usage of the database integration is available at https://github.com/
huynhngoc/deoxys/blob/master/examples/terminal-app-hn-example.py. This
example is a terminal application derived from the deoxys framework, where users
can interactively (1) configure a new experiment, (2) run one or more experiments,
(3) continue one or more experiments, (4) view the performance of one experiment,
and (5) view the overall performance of a group of experiments. Screenshots of this
terminal application can be found in Figure 5.3. In this figure, after choosing from
lists of actions, a user can see the average performance of all runs of an experiment
(Figure 5.3a), or just view one session of that experiment (Figure 5.3b). Other
options to choose from this terminal application can be found in Figure 5.3.

5.2 Visualization Results

This section provides the results obtained from the visualization methods, as de-
scribed in Chapter 4, applied to the Unet model (see Figure 4.1 on page 42) and
trained on the head and neck cancer dataset consisting of PET/CT images.

5.2.1 Patterns extracted from the Unet model

Activation Map

Activation maps for the head and neck cancer dataset generated according to
Section 4.2.1 on page 45 were analyzed. Figures 5.4 to 5.9 show examples of
patterns extracted by some filters for six patients (as listed in Table 4.2 on page 43).
In addition, the full activation maps of all convolutional layers can be found in
Appendix E on page 131.

When looking at the activation maps, we can see that the first few layers extracted
areas with similar intensity values, which formed into parts of the head (or neck).
The tongues, bones (jaws and spine), muscles, glands, etc. from the CT channel,
as well as the lymph nodes in the PET channel can be found separately or together
in each filter in the activation maps of these layers. For example, when considering
slice 86 of patient 91, at the conv2d 1 layer (Figure 5.4b), filter 5 extracted the
capitis muscles and healthy parts of the sublingual and submandibular spaces (the

https://github.com/huynhngoc/deoxys/blob/master/examples/terminal-app-hn-example.py
https://github.com/huynhngoc/deoxys/blob/master/examples/terminal-app-hn-example.py
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Figure 5.4: Activation Maps for patient 91, slice 86, with a Dice score of 0.94. From
the original images (a) with CT and PET channel, each filter in each layer of the CNN
model extracted different parts of the image. Examples of patterns extracted by some
filters are showed in b-j. Layers in b to d are in the down-sampling path; layers e to
g are layers at the bottom of the Unet; and layers h to j are in the up-sampling path.
The color bars in (a) show the Hounsfield Units (HU) [49] of the CT scan and the
Standardized Uptake Value (SUV) [50] of the PET scan, in which high values result in
whiter colors. In b-j, the color bars show the intensity values of images in activation
maps, where higher values result in more reddish colors. (Continued on next page.)
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Figure 5.4: Continued.
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Figure 5.5: Activation Maps for patient 148, slice 11, with a Dice score of 0.94. From
the original images (a) with CT and PET channel, each filter in each layer of the CNN
model extracted different parts of the image. Examples of patterns extracted by some
filters are showed in b-j. Layers in b to d are in the down-sampling path; layers e to g
are layers at the bottom of the Unet; and layers h to j are in the up-sampling path. The
color bars in (a) show the HU of the CT scan and the SUV of the PET scan, in which
higher values result in whiter colors. The color bars in b-j show the intensity values of
images in activation maps, where higher values result in more reddish colors. (Continued
on next page.)
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Figure 5.5: Continued.
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Figure 5.6: Activation Maps for patient 209, slice 14, with a Dice score of 0.94. From
the original images (a) with CT and PET channel, each filter in each layer of the CNN
model extracted different parts of the image. Examples of patterns extracted by some
filters are showed in b-j. Layers in b to d are in the down-sampling path; layers e to g
are layers at the bottom of the Unet; and layers h to j are in the up-sampling path. The
color bars in (a) show the HU of the CT scan and the SUV of the PET scan, in which
higher values result in whiter colors. The color bars in b-j show the intensity values of
images in activation maps, where higher values result in more reddish colors. (Continued
on next page.)
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Figure 5.6: Continued.
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Figure 5.7: Activation Maps for patient 217, slice 20, with a Dice score of 0.95. From
the original images (a) with CT and PET channel, each filter in each layer of the CNN
model extracted different parts of the image. Examples of patterns extracted by some
filters are showed in b-j. Layers in b to d are in the down-sampling path; layers e to g
are layers at the bottom of the Unet; and layers h to j are in the up-sampling path. The
color bars in (a) show the HU of the CT scan and the SUV of the PET scan, in which
higher values result in whiter colors. The color bars in b-j show the intensity values of
images in activation maps, where higher values result in more reddish colors. (Continued
on next page.)
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Figure 5.7: Continued.
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Figure 5.8: Activation Maps for patient 233, slice 48, with a Dice score of 0.95. From
the original images (a) with CT and PET channel, each filter in each layer of the CNN
model extracted different parts of the image. Examples of patterns extracted by some
filters are showed in b-j. Layers in b to d are in the down-sampling path; layers e to g
are layers at the bottom of the Unet; and layers h to j are in the up-sampling path. The
color bars in (a) show the HU of the CT scan and the SUV of the PET scan, in which
higher values result in whiter colors. The color bars in b-j show the intensity values of
images in activation maps, where higher values result in more reddish colors. (Continued
on next page.)
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Figure 5.8: Continued.
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Figure 5.9: Activation Maps for patient 249, slice 55, with a Dice score of 0.95. From
the original images (a) with CT and PET channel, each filter in each layer of the CNN
model extracted different parts of the image. Examples of patterns extracted by some
filters are showed in b-j. Layers in b to d are in the down-sampling path; layers e to g
are layers at the bottom of the Unet; and layers h to j are in the up-sampling path. The
color bars in (a) show the HU of the CT scan and the SUV of the PET scan, in which
higher values result in whiter colors. The color bars in b-j show the intensity values of
images in activation maps, where higher values result in more reddish colors. (Continued
on next page.)
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Figure 5.9: Continued.
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Figure 5.10: Features extracted from different input images using the same filter. The
first column contains the patient index and slice index of the input images, together
with the Dice scores of the segmentation results. The CT and PET channels of the
input images are in the next two columns. The remaining columns show the features
extracted from these images, at specific layers of the Unet model Figure 4.1.
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tongues together with the muscles and glands around it), while filter 20 extracted
the bones from the CT channel and the lymph nodes from the PET channel. Filter
48 extracted most parts from the CT channel while filter 58 extracted only the
bones. Filter 61 was similar to filter 20, except that the lymph nodes were more
noticeable. In the next few layers, for example the conv2d 3 and conv2d 5 layers
(Figure 5.4c and d), the features extracted from conv2d 1 layer were continued to
be extracted, with smaller details or with some combinations. Nevertheless, the
extracted features are still human readable.

Similar results can be found in slice 14 of patient 209 (Figure 5.6b to d) and slice
48 of patient 233 (Figure 5.8b to d), where the CT channel had similar structures
while the lymph nodes’ locations were in different locations in the sublingual and
submandibular spaces. We can also see the full sublingual and submandibular
spaces extracted from filter 5 of conv2d 1 layer in the case of patient 249, slice 55
(Figure 5.9b) as the lymph nodes were outside those spaces. For slices at different
locations, where the jaws and tongues were not visible, in the case of PET/CT
scans at the neck (slice 11 of patient 148 in Figure 5.5 and slice 20 of patient 217 in
Figure 5.7), these non-existent parts were not included in the extracted features,
but similar areas such as bones and lymph nodes were still extracted using the
same filters.

Features extracted from layers at the bottom of the Unet architecture (Figure 4.1)
were smaller and more abstract (Figures (e) to (g) of Figures 5.4 to 5.9), which
made it difficult to make any conclusions. For layers in the up-sampling path, the
features extracted were either similar to the segmentation results, or contained
some information from the original input images (Figures (h) to (j) of Figures 5.4
to 5.9).

The same filter at a specific layer extracted the same information from different
input images (see Figure 5.10). These features included parts with low intensity
values in the original images, which were enhanced significantly using the activa-
tion maps. Therefore, if we know the layers’ names and filters’ indices that extract
some specific parts or patterns of the input images, we can look at that filter dir-
ectly using the activation maps when we want to check on those features.

In the same layer of the activation maps, many filters extracted similar features.
Although the outputs of these filters were not exactly the same, they provided the
same information, as similar features were “highlighted”, but with different levels
of intensity. For example, over 20 out of 127 filters in conv2d 3 layer extracted
the jaws and spiral bone in the CT channel, and over 25 out of 127 filter in that
same layer extracted the lymph nodes in the PET channel. This may be because
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CT Filter 1/128 CT Filter 3/128 CT Filter 9/128 CT Filter 13/128 CT Filter 16/128

PET Filter 1/128 PET Filter 3/128 PET Filter 9/128 PET Filter 13/128PET Filter 16/128

Figure 5.11: Activation maximization results at filters in the conv2d 3 layer, which
belongs to the downsampling path of the Unet model. The resulting images consisted
of the CT channel and the PET channel, which maximized filters in the conv2d 3 layer
after applying 20 iterations of activation maximization to the initial images with random
noise (see Figure 2.8 for details).

the model was too complex, which caused redundancy in some of the filters, or the
model did not learn enough to utilize all of its filters.

Activation Maximization

To check the patterns and features that filters in the convolutional layers searched
for, we can use the results from activation maximization. However, the images
generated by using activation maximization methods according to Section 4.2.2 on
page 45 did not provide enough information. Most of the generated images were
noisy and abstract, as the initial image with random noise did not transform in
the activation maximization process (Figure 2.8 on page 22). Only a few images
generated from some specific filters contained the PET channels with blob-like
patterns, while the CT channel remained noisy. The example results after 20
iterations can be found in Figures 5.11 and 5.12. The results after continuing the
activation maximization process with more iterations remained unchanged.
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Figure 5.12: Activation maximization results at filters in the conv2d 17 layer, which
belongs to the upsampling path of the Unet model. The resulting images consisted of
the CT channel and the PET channel, which maximized filters in the conv2d 17 layer
after applying 20 iterations of activation maximization to the initial images with random
noise (see Figure 2.8 for details).

5.2.2 Pixel contributions to the delineation

This section provides the results of pixel importance generated using the gradient-
based visualization methods (the saliency map, the deconvnet and guided back-
propagation methods) according to Section 4.2.3 on page 45. In Figures 5.13
to 5.23, the importance of pixels in each image channel (PET or CT) were plotted
separately. Since the resulting images were the gradients of the calculated loss
score, which was either the result of the positive prediction or true positive loss
function, with respect to the original images, three aspects of the gradients were
considered: the positive gradients (positively correlated with the loss score), the
negative gradients (negatively correlated with the loss score) and the total mag-
nitude of the gradients (both positive and negative gradients). Pixels with zero
gradients had no impacts on the loss score.

Images with high Dice scores

For images with high Dice scores, the gradient-based visualization results of the
same image using the two different loss functions (positive prediction and true
positive) were similar. This is explainable as these loss functions will yield similar
results when the output tensor Ŷ and the ground truth tensor Y are similar (see
the below equations).
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Given that

Jpositive prediction(Ŷ ) =
∑

(ŷij · fthreshold(ŷij))

Jtrue positive(Ŷ ) =
∑

(ŷij · fthreshold(yij))

When Ŷ ≈ Y , Jpositive prediction(Ŷ ) ≈ Jtrue positive(Ŷ ).

Therefore, in this subsection, only the gradient-based visualization results of im-
ages with high Dice scores using the positive prediction loss function were con-
sidered, which can be found in Figures 5.13 to 5.15.

From the visualization results, the first thing we noticed is that the gradients values
of PET channel were usually ten times larger than the ones in the CT channel (for
example Figure 5.13). However, this is understandable as the intensity values of
the CT channel were between −100 and 100 Hounsfield Units (HU) [49] while the
PET channel contains pixels with values between 0 and 20 of Standardized Uptake
Value (SUV) [50]. Another difference between the CT and the PET channel is
that the areas that were important for the outputs of the Unet in the CT channel
were noisier, more “scattered” and not as clear as the ones in the PET channel,
even in the guided backpropagation results, which should, in theory, provide sharp
and clear results (Figure 5.15).

In both the CT channel and the PET channel, pixels at the edges of the tumors
were more important for the predictions than pixels at the inner parts of the
tumors as shown in Figures 5.13 to 5.15. In both saliency maps and guided back-
propagation results shown in Figures 5.13 and 5.15, pixels with high correlation
to the prediction were the ones at the edge of the lymph nodes, while pixels in
the inner parts of the lymph nodes were not as important. Some pixels around
the tumor and in the center of the tumor had small negative impacts. How-
ever, in guided backpropagation, the negative gradients are the negative gradients
when propagating from the first convolutional layer to the input layers. Therefore,
negative gradients in guided backpropagation results did not have any significant
impacts on the predictions of the model.

The deconvnet results, on the other hand, had opposite results relative to the sa-
liency maps and guided backpropagation results in Figure 5.14. Pixels at the edge
of the lymph nodes were still important, but had negative gradients. Nevertheless,
the deconvnet did not calculate the true gradients, but the imputed version of the
gradients. Negative gradients in deconvnet did not mean negatively correlation
with the loss score.

Since the saliency maps showed both positive and negative correlation of pixel
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importance and guided backpropagation gave sharper results, our interpretation
hereafter will focus on these two methods. Deconvnet will not be discussed further.
Nevertheless, results from all three visualization methods associated with the two
loss functions (positive prediction and true positive) defined in Section 4.2.3 on
page 45 can be found in Appendix F.

Images with Dice scores of 0.5

The pixel contribution to the delineation predictions, which were the gradient-
based visualization results using the positive prediction loss function, for slices
with a Dice score of about 0.5 were similar to the results of images with high Dice
scores. The similarity was noticeable as the most important pixels were at the edge
of the predicted tumor (Figures 5.16 and 5.17). In the saliency maps (Figure 5.16),
pixels that contributed to the predictions scattered over both the predicted tumors
and the ground truth area. One odd thing is that some pixels with high contri-
bution were located at the background of the images, which contained no useful
information. On the other hand, in the guided backpropagation visualization res-
ults, pixels having high impact on the outputs formed a clear ring-shape around
the predicted tumors in the PET channel (Figure 5.17).

In the saliency maps using the true positive loss function (Figure 5.18), pixels in
the false positive areas had significant negative correlation to the loss score, which
means decreasing the intensity values at these areas may improve the accuracy of
the predictions. In contrast, pixels in false negative areas had positive gradients,
which means increasing the intensity of these pixels may result in more accurate
predictions. The guided backpropagation results using the true positive function
(Figure 5.19) were similar to the saliency maps, but sharper and less noisy than
the saliency maps.

Images with low Dice scores

The results of gradient-based visualization for images with low Dice scores were in
two extreme categories. For visualization results using the positive prediction loss
function, the parts with high influence on the prediction were the same with the
tumor predictions (Figures 5.20 and 5.21). On the other hand, in the visualization
results using the true positive loss function, the parts which should be the ground
truth had small contribution, which resulted in the inaccuracy in the predictions
of the model (Figures 5.22 and 5.23).
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Chapter 6

Discussion

The developed deoxys framework contains the modules to perform deep learning
experiments for solving different classification and segmentation problems. This
framework covers all steps needed when searching for the best deep learning model.
In this Master’s thesis, the framework was updated to support different model
visualization methods and integrate a database for managing the experiments.

The deoxys framework has a high level of reliability, as the process of running
a deep learning experiment, as well as the newly integration of a DBMS, was
tested manually and automatically. In addition, this framework was assessed by
reproducing the results from previous studies about delineating tumor using deep
learning model and visualizing the model.

This chapter discusses the visualization results of the Unet model (Figure 4.1) used
for head and neck cancer tumor segmentation. From the interpretation results,
the benefits of the model visualization for radiologists and data scientists can be
demonstrated. Moreover, limitations of the deoxys framework will be discussed in
this chapter, as well as the potential improvement for further development of this
framework.

6.1 The Unet model

This section proposes possible solutions to improve the performance of the trained
Unet model (Figure 4.1) based on the model visualization results.

83
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6.1.1 Unet Model performance

The segmentation results of the Unet model (Figure 4.1) had an average Dice
score of 0.638 and a median Dice score of 0.779, which may not good enough for
use in the clinic. However, when comparing with other studies, we can see that
this result did not significantly underperform as shown in Table 6.1. Because of
the limited number of studies involving in deep learning for head and neck cancer
tumor segmentation, similar studies using deep learning for tumor segmentation
in other sites were also considered in this section.

In Table 6.1, we can see that the results of the Unet model trained using the
deoxys framework were similar with other models trained on PET/CT images for
head and neck cancer segmentation. Other models, except for the DeepMedic
model proposed by Kamnitsas et al. [51], outperformed the Unet model used by
the deoxys framework. However, these models were either segmentation of one
specific type of head and cancer tumor, such as Nasopharynx cancer [52][53] or
Oropharyngeal cancer [54], or segmentation of brain tumors. Therefore, the Unet
model used in this Master’s thesis had an acceptable performance relative to other
studies.
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Name Description Avg.
DS/slice

Median
DS/slice

Avg.
DS/
patient

Median
DS/
patient

deoxys 2D Unet on
PET/CT scan

0.638 0.779 0.733 0.775

Huang et al.
[10]

2D Modified
UNet on
PET/CT scan

N/A N/A 0.720 N/A

Guo et al.
[55]

3D Dense-Net [55]
on PET/CT scan

N/A N/A 0.71 0.73

Guo et al.
[55]

3D Unet on
PET/CT scan

N/A N/A 0.69 0.71

Lin et al. [52] 3D VoxResNet
[56] on MRI scan
(Nasopharynx
cancer)

N/A N/A N/A 0.79

Cardenas et
al. [54]

3D Unet on CT
scan
(Oropharyngeal
cancer)

N/A N/A 0.815 0.817

Men et al.
[53]

Deep
deconvolutional
neural network
[53] on CT scan
(Nasopharynx
cancer)

N/A N/A 0.809 N/A

Kamnitsas et
al. [51]

DeepMedic [51]
on MRI scan

N/A N/A 0.630 N/A

Natekar et al.
[57]

2D DenseUnet
[57] on MRI scan

N/A N/A 0.830 N/A

Natekar et al.
[57]

2D ResUnet [57]
on MRI scan

N/A N/A 0.788 N/A

Natekar et al.
[57]

2D SimUnet [57]
on MRI scan

N/A N/A 0.743 N/A

Table 6.1: Comparison of the results of tumor segmentation between the deoxys frame-
work and other studies using the Dice score (DS). The first group contains the results
of the head and neck cancer tumor segmentation. The second group contains the results
of specific types of head and neck cancer tumor segmentation. The final group contains
the results of brain tumor segmentation.



86 CHAPTER 6. DISCUSSION

6.1.2 Model visualization results

Activation maps

It is difficult to evaluate the activation maps results of the Unet model trained on
the head and neck cancer dataset used in this Master’s thesis as there are no deep
learning studies using this visualization method on the head and neck cancer data.
However, interpreting the Unet model using activation maps is still possible with
the existing results.

When visualizing the activation maps in Section 5.2.1 on page 53, there were a
high rate of similarity between the features extracted by different filters in the
same layer. This may be because of (1) the complexity of the Unet model, which
caused redundancy in some of the filters, or (2) the insufficiency of model training
to utilize all of the filters in the model.

For the first case, decreasing the complexity of the model by having fewer filters
in each layer may provide a simpler model, which can reach the same performance
as in Table 6.1. In addition, this modified simple model would occupy less space
in the memory of the computing environment. Moreover, the training process
using a simpler model would also be faster due to the decreasing number of data
computations. Another way to improve the model is to add Dropout layers [58],
which zero out some of the nodes in CNN to prevent overfitting.

For the second case, continuing to train the model may increase the performance
of the model. In addition, training the model with more diverse images created by
data augmentation [59][60] could enable the model to utilize more of the filters.

Data augmentation is a deep learning technique to generate different forms of
the input data to prevent overfitting [60]. Data augmentation involving in image
data is transforming the input images into multiple versions of these images. This
process includes scaling, rotating, flipping, adding noises and jitters, blurring, etc,
to the images [61].

To assess the proposed solutions, we can look at the changes in activation maps
to check for the increment of features extracted in the newly trained model.
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Activation maximization

The results of the activation maximization method provided limited information,
as most of the generated images were noisy and abstract (Figures 5.11 and 5.12).
This may be because (1) most filters in the activation maps searched for the
lymph nodes in the PET channel and other filters extracted parts with similar
intensity values in the CT channel. Thus, these filters may mostly be frequency
passing filters, which search for some specific ranges of intensity values and may
not looking for any kinds of patterns. This can be resolved by continuing training
the original model.

Another reason may be because (2) the input images lacked data augmentation,
such as rotations, blurriness. Since all images were trained in the same direc-
tion, the layers were not forced to search for specific shapes or patterns in the
images. Thus, after training the Unet model with data augmentation, there could
potentially be more meaningful patterns that the filters in the Unet model search
for.

One final reason, which is unrelated to the performance of the Unet model, may
be because (3) the implementation of the activation maximization method needs
some advanced techniques so that this method can yield more meaningful res-
ults. Natekar et al. [57] successfully generated less noisy images using activation
maximization in a Unet-based model by applying regularization, jitters and total
variance to the process of visualization using the activation maximization meth-
ods. Therefore, applying these techniques in the deoxys framework may improve
the results of the activation maximization method.

Gradient-based visualization

In the results of the Unet model’s gradient-based visualization (saliency maps, de-
convnet, guided backpropagation), the areas with high contribution to the model
predictions in the PET channel were clearer than in the CT channel (Figures 5.13
to 5.23). Note that this does not referred to the difference in intensity values
between the CT channel and the PET channel, but rather how much the areas
with high impact stood out from the background of the gradient-based visualiz-
ation results. Thus, we can say that the PET channel had higher impact on the
segmentation results than the CT channel (1).

In the gradient-based visualization results of the images with high Dice score, the
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pixels at the edge of the lymph nodes are more important for the predictions (Fig-
ures 5.13 and 5.15). This shows that the model searched for significant difference
between neighboring pixel values when making a prediction (2).

Points (1) and (2) above lead to a hypothesis that the Unet model (Figure 4.1)
learned that when “bright dots” existed in the PET channel, there is a high chance
that these bright areas in the PET channel are cancerous. Note that this hypothesis
does not deny the contribution of the CT channel, as the CT channel still had some
impacts on the model outputs, but not as much as the PET channel.

This hypothesis is supported by the fact that most of the images with high Dice
score had PET channels with clear and bright lymph nodes while the images with
intermediate and low Dice scores had PET channels with low intensity values and
unclear lymph nodes (Figures 5.13 to 5.23). In addition, from the gradient-based
visualization results of images with intermediate and low Dice score, pixels that
contributed to the false positive areas also had high intensity values in the PET
channel (Figures 5.16, 5.17, 5.20 and 5.21), which also strengthens the stated
hypothesis. However, the predictions of the model did not completely depended
on the lymph nodes in the PET channel, as the PET scan at slice 11 of patient
148 did not contain any areas with high intensity values but the prediction got a
high Dice score (Figure 5.13).

As the gradient-based visualization methods were proposed for classification prob-
lems [18][19][20], there is lack of studies about deep learning in head and neck
cancer segmentation using these methods to support the above hypothesis. How-
ever, a study in colorectal cancer used a modified guided backpropagation method
to visualize the important pixels when delineating colorectal polyps [62]. This
study shows that the pixels at the edge of the polyps had high impact on the
predictions of the model, which is the same as the importance of the edge of the
lymph nodes for the prediction of the Unet model (Figure 4.1) in this thesis.

For the images with intermediate and low Dice scores, the gradient-based visual-
ization results, especially the saliency maps, shows that the model was confused
when delineating cancer tumors from these images. This is evident in the high
contribution of the pixels scattered in the true positive and false positive areas,
and in the unrelated parts of the images (the background) (Figures 5.16, 5.18, 5.20
and 5.22). Thus, the noisiness and uncertainty in the Unet model’s gradient-based
visualization results indicated that this Unet model still has potential for improve,
as the gradient-based visualization results were not good enough. This is because
the parts in the saliency maps indicating the important pixels should be clearer
comparing to the background when the model’s performance is optimal, as shown
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in [63].

As the model predictions heavily depended on the PET channel, one approach
to improve the performance of the Unet model is to increase the contribution of
the CT channel by blurring the PET channel in the data augmentation process.
Another data augmentation technique that is applicable in this approach is to
increase the contrast of the CT channel. We can look at the saliency maps or
the guided backpropagation results of the newly trained model to check for the
improvement of the performance.

6.2 Benefits of model visualization

This section explains how model visualization of deep learning increases the trans-
parency and interpretability of the CNN, which benefits both radiologists and data
scientists.

6.2.1 For radiologists

Thanks to the results of activation maps of the Unet model (Figure 4.1) in Sec-
tion 5.2 on page 53, the segmentation results from deep learning are no longer
black-boxes to radiologists. With the activation maps, the deep learning model can
provide insights for its decisions. These insights contain human-understandable in-
formation illustrated in the filters of the activation maps.

As the same filter at a specific layer extracted the same features and patterns from
different input images (see Figure 5.10), the activation maps can also be used
as “feature extractors”. When a deep learning model has been sufficiently well
trained that each filter in the convolutional layers is specialized to one or more
parts of the image data, radiologists can search for abnormalities in the images
by directly looking at the results of one or more filters. These types of feature
extractors are especially useful for features with low intensity values or that are
blended in perfectly in some area of the images with only small intensity values.

With the explanation from gradient-based visualization results, radiologists can
look at the pixels in the original images that influence the predictions of the deep
learning model. These visualization results also show the reliability of the model
predictions as robust models give gradient-based visualization results with high
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interpretability [64][65]. This property can be seen in the Unet model from the
unreasonable gradient-based visualization results when incorrect delineation res-
ults occurred as shown in Figures 5.16 to 5.23 and as discussed in Section 6.1.2.
Based on the suggestions and explanations of the deep learning model, radiolo-
gists can decide whether to approve, discard, or modify the results from the deep
learning model.

6.2.2 For data scientists

Many solutions were proposed to improve the Unet model based on the model
visualization results in Section 6.1.2. Therefore, in addition to the performance
analysis of the CNN, data scientists can use the model visualization results to ex-
plain the behavior of the proposed model, as well as proposing possible approaches
to improve the performance of that model.

To be specific, with the use of activation maps and activation maximization, data
scientists can understand how the deep learning model processes the data, together
with the patterns the convolutional layers extract [66]. From the interpretation
of this information, data scientists can find weakness of the model, and can thus
easily resolve the problems. In addition, with the help of model visualization, data
scientists can monitor the improvement of the model when applying their solutions
to improve the model.

The results from gradient-based visualization, which show the important part of
the input images, also help data scientists to understand which parts of the images
have high impacts on the prediction of the deep learning model. In addition, the
results of these methods provide the robustness of the proposed model, as Zheng
et al. [63] used the saliency maps to check for the effectiveness of their proposed
model. Moreover, based on the gradient-based visualization results, data scientists
can find approaches to preprocess the input data so that the deep learning model
has a higher probability of making the right predictions.

6.3 Application to other cancers

The deoxys framework was designed to solve any deep learning problems. Thus, as
the Unet model (Figure 4.1) trained by the deoxys framework reached an accept-
able performance as shown in Table 6.1, the deoxys framework should be applicable
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for tumor segmentation in other types of cancers.

The benefits of model visualization discussed in Section 6.2 are not limited to
the Unet model trained on the head and neck cancer dataset. In other words,
these model visualization methods are applicable for any other CNNs. Apart from
Natekar et al. [57] and Wickstrøm et al. [62] who used visualization methods to
explain, interpret and evaluate their models in tumor segmentation problems, there
is a lack of studies using model visualization methods in segmentation problems.
Nevertheless, CNNs in classification problems were able to be assessed using model
visualization results [63][64][65][66]. Therefore, radiologists and data scientists
working on other types of cancers can also benefit from applying deep learning
model visualization on their works.

6.4 Difficulty in the implementation process

Implementation of gradient-based visualization methods, especially the deconvnet
method and the guided backpropagation method faced some difficulty. In the
deconvnet and the guided backpropagation method, the imputed versions of the
gradients of the ReLu function were calculated (see the equations in Section 2.3.3).
However, it was impossible to change the algorithm for calculating the gradients
directly in Keras [23]. This is because Keras only works as the top-level inter-
face of neural network components while this kind of algorithm belongs to the
Keras’s deep learning backends, which contain different algorithms for efficient
data computation in the computing environment. Therefore, the Keras’s backend,
Tensorflow [39], was used in this implementation. The Tensorflow backend enabled
registering new algorithms for calculating the gradients of the ReLu function.

Because of the shifting of the Tensorflow backend from 1.x version to 2.x version
since last year (2019) [67], the implementation for registering the new gradient-
calculating algorithms was forced to be compatible with both versions of Tensor-
flow. This required further research as Tensorflow 2.x was just released a few
months ago with huge updates in comparison with Tensorflow 1.x.

Another difficulty was that saliency maps, deconvnet and guided backpropagation
were original proposed for classification problems. Although these methods can be
generalized into segmentation problems, or other deep learning problems, by using
the right loss function in Figure 2.10, there were not any good examples of these
methods in deep learning problems other than classifications. This slowed down
the implementation process as researches and tests were performed in this thesis
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to ensure the reliability of these visualization methods in the deoxys framework.

6.5 Potential for improving the deoxys frame-

work

6.5.1 Improvement of existing visualization methods

Medical images data do not have clear patterns for a neural network to learn
[57]. As a result, it is difficult to generate the patterns the filters search for by
using the activation maximization method with the basic implementation. With
the addition of jitters [68], the total variation regularizer [69], and learned priors
[17], the activation maximization method has a better opportunity to generate
meaningful images.

Jitters [68] happen before the adjustment of the initial image with random noise
in Figure 2.8 in every iteration. When applying jitters, that image is cropped by
randomly cropping by a specific size, then is upscaled back to its original size. This
process results in an image with random noise that correlates with the neighboring
pixels.

The total variation regularizer also happens before the image with random noise
in Figure 2.8 is updated in every iteration. Unlike jitters, the total variation
regularizer [69] smooths the image while maintaining the edges of the objects in
that image. This process results in a blurrier image with sharp edges.

A more complicated technique that can be used in the activation maximization
method is to apply constraints, which is called learned priors [17], when normaliz-
ing the gradients to adjust the image in Figure 2.8 in every iteration. One example
of these constraints is that the resulting image should have similar properties with
a natural image, i.e., the neighboring pixels are correlated.

When implementing the gradient-based visualization methods, modification of
gradient calculation was applied to the ReLu function. However, the ReLu func-
tion is not the only option for the activation function for hidden convolutional
layers. The LeakyReLu function [70] is a modified version of the ReLu function
where the negative linear combination values of the nodes in the neural networks
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were downscaled instead of silenced (see the below equation).

φLeakyReLu(x) =

{
α · x if x < 0,

x otherwise
for 0 < α < 1

This type of activation function was proposed to solve the problem of the “dead”
ReLu activation units, when there are no weight adjustments because of the high
occurrence of negative nodes before the ReLu function [70]. Models using the Leak-
yReLu activation function sometimes yield better results than the ReLu function
[71].

The current implementation of deconvnet and guided backpropagation in the
deoxys framework involved registering a “new” ReLu function with a different
approach to calculate the gradients. This new function then replaced the original
ReLu function in the model so that the gradients were calculated using the equa-
tions described in Section 2.3.3, which explains the gradient-based visualization
methods.

When the model contains the LeakyReLu activation function, it should replaced
this function with the “new” ReLu function above when applying gradient-based
visualization methods1. Unfortunately, the deoxys framework did not support
gradient-based model visualization for models using other activation functions than
the ReLu function2. Therefore, making deconvnet and guided backpropagation to
support model using activation functions derived from the ReLu function was also
necessary in the deoxys framework.

6.5.2 Addition of visualization methods

Saliency maps, deconvnet and guided backpropagation are not the only methods
for determining the pixel importance of the input images. Other methods such
as Class Activation Maps (CAM) [21] and Gradient-weighted Class Activation
Mapping (Grad-CAM) [22] were proposed with similar goal.

Each filter of the activation maps of the last convolutional layer Lconv before the
output layer contribute differently to the model prediction Lout. These contribu-
tions are in the form of the weight vector of the output layer Wout. Therefore,

1Springenberg et al. [20], who first proposed the guided backpropagation method, trained a
model with the LeakyRelu activation function in [20], but then used the ReLu function when
visualizing that model using gradient-based method.

2The activation function of the last layer was not include in this case, as the gradient-based
visualization methods involve the activation functions of the hidden layers.
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combining all filters in Lconv using the weights Wout, i.e calculating Lconv ·Wout,
generates a heatmap representing the important areas of the input image to the
model predictions. The process of creating this heatmap explains the CAM and
Grad-CAM methods. Although the CAM was limited to CNNs with a global av-
erage pooling layer preceding the output layer, Grad-CAM was generalized for use
on any type of CNNs.

Unlike the saliency maps, deconvnet and guided backpropagation visualization
methods, which highlight the important pixels and generated images with sharp
lines from important features, the CAM and Grad-CAM results provide zones that
contributes to the outputs of the model. Because the convolution layer Lconv does
not always have the same size as the original input image, scaling the resulting
heatmap to overlay on the input image can create important regions that spread
over the input image. Thus, the main difference between these two groups of
visualization are that one group looks for clear and sharp patterns, while the other
group searches for a region.

When the deoxys framework support the CAM and Grad-CAM methods, users
will have a wider range of visualization options to choose between depending on
the goal.

6.5.3 User interaction

With the use of a database for management and visualization methods for model
explanation, an interactive user interface is essential so that non-tech people are
able to use the deoxys framework easily. The user interface can be a web-based
management application to manage the training experiments. In addition, a “click
and play” user experience would be better for the users of the deoxys framework.
This kind of user experiment allows the deoxys framework’s users to interact with
the framework just by clicking in the computer to choose from various options.

Supporting an interactive user interface with “click and play” experience benefits
the radiologists as they can use the framework directly without actually learning
programming skills. In the case of data scientists, having the knowledge about deep
learning model and the visualization methods is enough to use the framework.
This would save them much time reading the documentations and instructions,
especially data scientists with a lack of programming skills.

Ideally, when interacting with the deoxys user interface, it would useful for radi-
ologists to have the following options when delineating cancer tumors.
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1. Choose the medical image.

2. Check the segmentation results of the model.

3. Choose to view one or more filters from activation maps from a list of names
and numbers. It would even better if they can have their “favorite” filters
marked and ready to view for any images.

4. View the auto-generated performance analysis reports from the experiment.

5. Choose one or more visualization methods to view the explanation of the
model for making that prediction. For radiologists, the default loss function
is the “positive prediction” loss function.

6. Approve, discard or modify the prediction directly on the predicted image.

For data scientists with novice programming skills, the ideal user interface should
allow them to handle the following processes by using the mouse and a few key-
board inputs.

1. “Drag and drop” from a list of components to configure a CNN model.

2. Run the experiments by just clicking “Run” and wait for the results. If
possible, the data scientist can view the performance of the current training
experiment while waiting for the results.

3. Choose to view one or more filters from activation maps and activation max-
imization from a list of names and numbers.

4. Choose to view one or more results from the gradient-based visualization
methods from a list of predefined loss functions.
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Chapter 7

Conclusion

The final goal of the deep learning framework, named deoxys, is to create a user-
friendly software that can help radiologists with tumor delineation problems. To
achieve this goal, the deoxys framework was designed and developed to perform
deep learning experiments for automatic tumor cancer segmentation. This frame-
work was generalized to work with different forms of image data and CNN archi-
tectures. In addition, this framework was designed to cover the steps of performing
machine learning experiments to define, customize and find the best deep learning
approach for different problems.

In this Master’s thesis, model visualization for explaining the deep learning model
was added into the deoxys framework. These included feature extraction methods
such as activation maps and activation maximization, and gradient-based methods
for finding the input part that has high influence on the model predictions and
interpretation of model behavior such as saliency maps, deconvnet, and guided
backpropagation. In addition, management of experiments using a database also
integrated into the deoxys framework. These updates were assessed by the abil-
ity to reproduce results from previous studies for the case of model visualization
supports and manual tests for the database integration.

The implemented visualization methods were applied to a convolutional neural
network trained on head and neck cancer data of PET/CT images for cancer
segmentation. By interpreting the model visualization results, we found interesting
behavior of the pretrained model. From the activation maps, we found that many
filters in the layers of the pretrained model extracted the tongue, bones (jaws and
spine), muscles and glands from the CT scans and the lymph nodes from the PET
scan. From gradient-based visualization results, we found that the model learned
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that there was a high probability of cancer tumors when bright lymph nodes in
the PET scan existed. In addition, weaknesses of the pretrained model such as
lack of data augmentation was found when interpreting the visualization results.

From the interpretation of visualization results of the pretrained model, we demon-
strated how radiologists and data scientist could benefit from using model visu-
alization for interpreting the deep learning model. From the interpretation, ra-
diologists have some understanding of how the deep learning model makes the
predictions, while data scientists can find the existing problems in the deep learn-
ing model to improve its performance.

Although having some limitations, the deoxys framework still has the potential of
improvement and extension. This includes implementing advanced techniques into
the existing visualization methods and adding other model visualization methods
into the framework. Ideally, to utilize all modules implemented in the deoxys
framework, an interactive user interface should be developed so that radiologists
and data scientists can use the deoxys framework effectively and effortlessly.
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Appendix A

DAT390 Data Science Seminar
report

This is the report for the coursework DAT390 Data Science Seminar in NMBU1.
This report describes the Software Requirement Specification and Software Design
Document of the deoxys framework, which was a preparation of this Master’s
thesis.

1The course information is available at https://www.nmbu.no/course/DAT390?studieaar=
2019.
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Abstract

This is the report for the project in DAT390 course in NMBU. This report provides the results of the
development of Keras-based framework for automatic tumor delineation. It contains the Software Require-
ment Specification, as well as the Design Document for the resulting framework. A resulting framework
has been successfully developed with the minimum requirement to run an experiment after configuring a
convolutional neural network. The neural network created from the experiment can automatically delineate
cancer tumors from medical images. The delineation can be used as an external opinion to help radiologists
in the process of radiotherapy for cancer treatment.

1 Introduction

Cancer is a deadly disease, which is responsible for
over nine million death in 2018 [9]. Therefore, it
is crucial to find effective and efficient treatments.
One of the most effective cancer treatments is radio-
therapy, where cancer cells are killed using doses
of radiation. However, the irradiation process not
only kills cancer tumors but also affects healthy tis-
sues surrounding the cancer tumor. Thus, accuracy
in radiotherapy has to be increased to minimize the
radiation dose delivered to healthy cells and max-
imize the dose to cancer tumors. If all of the ra-
diotherapy steps are linked in a chain, tumor delin-
eation is the weakest link, and its accuracy signifi-
cantly impacts radiotherapy accuracy [2][5]. There-
fore, increasing the accuracy of tumor delineation
is one of the challenges of radiotherapy treatment.
Furthermore, a study conducted by Weiss and Hess
[8] shows that due to interobserver variability, when
different radiologists delineate the same case, the
variation of gravity centers of these tumors is up
to 0.6-0.7cm. When analyzing the result of interob-
server, the uncertainty in delineation is even larger
than patient positioning and organ motion [7][8].
Therefore, one method of improving the radiother-
apy accuracy is having more than one radiologist
in one case. However, the long waiting time to de-
lineate tumor (4 hours for a trained radiologist) [3]
makes this method almost impossible.

However, with the increasing of technology, tumor
delineation can now be done automatically using
deep learning, to be specific, using a convolutional
neural network (CNN). The automatic delineation
results can be used as one “observer” in radiother-
apy.

In order to delineate tumor like a radiologist, a deep
learning model has to be created. This process con-
tains repeating a group of actions such as model
training (learning from radiologists), model testing,
and model modification until the best model, which
performs most similar to the radiologist, is found.
The author calls this group of actions an experi-
ment. Currently, there are many software libraries
that help to create a deep learning model. However,
these libraries are not specialized for CNN in med-
ical images. Besides, creating and running experi-
ments have to be done manually, which consumes
time and effort.

The goal of this project in DAT390 course is to cre-
ate a Software Requirement Specification and a Soft-
ware Design to develop a framework which auto-
matically delineates cancer tumor as well as resolve
the disadvantage of the existing deep learning li-
braries. The developed framework should satisfy
the minimum requirements, in which users can use
the resulted framework to perform a single experi-
ment to delineate cancer tumors automatically.

This report will define a software requirement spec-
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ification (SRS) and Design Document of a Keras-
based framework for the automatic delineation of
cancer tumors. Moreover, this report also includes
the progress of the development based on the SRS
and Design and the current results.

2 Theory and Definition

2.1 Convolutional Neural Network

Artificial Intelligence (AI) refers to the term of giving
the machines human “brain” so that it can “think”
as well as “act” like a human. Machine learning
(ML), a subfield of AI, focuses on making predic-
tions based on existing data. Deep learning is one
of an approach in machine learning where the data
is learned through layers of a neural network. In the
context of automatic tumour delineation, AI means
making a computer program to perform radiolo-
gists’ jobs. In contrast, ML means analyzing each
pixel in medical images and deciding if it belongs to
a cancer tumor. Deep learning refers to one of the ap-
proaches of predicting cancer tumors by transform-
ing the image data through a number of layers in a
neural network.

Figure 1 illustrates how a neural network learns. If
we apply this figure to the current context, Input X
refers to the set of medical images to be delineated.
True targets Y refers to the delineation by a real radi-
ologist. Predictions Y’ refers to the delineation made
by the neural network. The images data (Input X) go
through each layer and transform by applying some
weights in that layer. The outputs of each layer may
be used as the inputs of another layer. This creates a
network of layers. In many cases, an activation func-
tion is applied to the output of the layer. The output
of the final layers is the Predictions Y’. By using the
Loss score calculated by applying a Loss function on
Predictions Y’ and True targets Y, the Optimizer up-
dates the weights. The goal of this learning process
is to find the weights that minimize the Loss score so
that the neural network can make predictions closest
to the radiologist.

Convolutional Neural Network (CNN) is the type
of neural network containing layers using a con-
volution filter to transform the images data. There
are many types of convolution filters with different
effects on the image data, either dilation, erosion,
shrinkage, expansion, etc.

2.2 Sequential Architecture

Architecture refers to the structure of the layers in
the CNN. It determines how the layers are connected
in the neural network. In the CNN with sequential
architecture, the layers are connected sequentially.
That means there are only one input and one output
for each layer, and the output of the preceding layer
is the input of the next layer. We can imagine the se-
quential CNN as a stack of layers, where the input
will penetrate through all these layers in a straight
line.

2.3 U-Net Architecture

In the U-net Architecture, the image data go through
two paths: the downsampling (contraction) path
and the upsampling (expansion) path. In the orig-
inal paper, the U-net architecture is defined in figure
2

2.4 Deep Learning Experiment

Experiments of deep learning to find a good enough
model for automatic delineation should follow these
steps:

Step 1. Choose the metrics. This is the criteria to
determine if a CNN has been trained well enough to
use as an “observer”.

Step 2. Prepare the input data. The input data here
means the medical images to be delineated. Typi-
cally, the data is split into three sets:

• Training data. This set of data is used for train-
ing the CNN.

• Validation data. This set is used for evaluating
the performance of the CNN and tuning hyper-
parameters.

• Test data. This set should be isolated from the
other two sets. The performance the CNN is de-
cided by evaluating this set, not the validation
data set.

Step 3. Define architecture to use in the CNN.

Step 4. Choose hyper-parameters. The hyper-
parameters are any mutable object in the CNN. This
includes the loss function, optimizer, the type of con-
volution layer, the activation, etc.
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Figure 1: The Learning Process of a Neural Network. The Input X goes through some data transformation
layers by applying some weights in each layers. After going through all layers, the final transformed data,
called Predictions Y’, combines with the True targets Y in a loss function to calculate the loss score. The
optimizer uses this score to update the weights until the neural network finds the weights that minimises
the Loss score. Orignated from F. Chollet. Deep learning with Python [1]

Figure 2: U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds
to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is
provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote
the different operations [6]. Originate from Olaf Ronneberger et al [6]
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Step 5. Train the model on the training data with the
selected hyper-parameters.

Step 6. Evaluate the performance of the model on
the validation data with the metric chosen in step 1.

Step 7. Repeat step 4 until the combination of hyper-
parameters with the chosen architecture that makes
the best model based on the chosen metric is found.

Step 8. Repeat step 3 until an architecture, together
with a combination of hyper-parameters that create
the best model is found.

Step 9. Use the best model to check the performance
on test data.

An experiment refers to the process from step 1 to
step 6.

3 The Framework

The development of the resulted framework, named
deoxys, has the goal of providing the users the abil-
ity to run multiple experiments of different CNN
models and then choose the best model for final
prediction. This framework should be specialized
in deep-learning in medical images, especially in
auto-delineation of cancer tumor. Because of that, it
should integrate u-net architecture and image pre-
processing modules, as well as logging tools and
performance visualization tools when running ex-
periments. These are the minimum requirements
of the framework. It can be later extended with
other types of architectures, preprocessors, automa-
tion, interactive verbose configuration, and visual-
ization.

The development time, as well as maintenance time,
will range from October 1st, 2019 until May 1st, 2020.
The first milestone is on January 6th, 2020, with the
goal of creating a framework that satisfies the min-
imum requirements, which will be defined in detail
in the software requirement specification (see 3.1).

3.1 Software Requirement Specification

This part defines the requirement specification of the
developing framework. Because of that, terms indi-
cating future-tense such as “should”, “shall”, “will”
as well as terms indicating ability such as “can”,
“may” will be used when describing framework.

In order to reach the goal of the development, the de-
oxys framework should satisfy all the requirements
defined in User Requirement Specification (see 3.1.1)
and System Requirement Specification (see 3.1.3)

3.1.1 User Requirement Specification

Users are referring to master students, Ph.D. can-
didates, researchers, and anyone who wants to use
deep-learning on the automatic delineation of cancer
tumors. This framework is targeted to the users with
basic programming knowledge, including the us-
age of JSON data structure, and with the knowledge
of deep learning, especially in convolutional neural
network. Basic programming knowledge is includ-
ing but not limited to object-oriented programming
in python, other python libraries such as matplotlib,
Keras, h5py.

With the help of deoxys, users shall have the ability
to perform multiple CNN experiments by creating
configurable JSON files. Users can define their own
sequential or u-net model with the choices of layers,
loss functions, optimizers, metrics and many other
hyper-parameters. In addition, users can choose
how to split the data for training, validation and test-
ing. Each experiment should include training the
data, logging the performance and evaluation of the
trained model on test data. All trained models can
be saved to disk and loaded back for the continua-
tion of training or any other purposes.

As a follow-up after running an experiment, users
can also check the predicted outputs as delineated
images in comparison with the original image and
view the performance graphs of the trained model.

Users with advanced programming knowledge can
also customize and create their custom model archi-
tecture, layers, activation functions, loss functions,
optimizers, metrics, etc. . .

3.1.2 Use cases

From the user requirement specification, the deoxys
framework should support the following six use
cases:

1. Create a model
2. Train a model
3. Save a trained model
4. Load a model from file(s)
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5. Set up an experiment
6. Create and apply customized model objects to

the model

Use case diagram Figure 3 shows all the use cases
and their interaction inside the framework. There
are three main flows of the use cases:

• Setting up an experiment using configurations
to run and evaluate that experiment. This starts
with creating a model from the configuration,
then setting up an experiment by training and
evaluating the configured model.

• Loading and saving trained model from and to
disk.

• Creating customize objects / elements for the
experiment. This includes: Layers, Activation
functions, Loss functions, Optimizers, Call-
backs.

Use case 1: Create a model Every action of the user
involves the use of the model. The model term in the
deoxys framework refers to a group of three compo-
nents. The first component is a convolutional neu-
ral network, which can be a sequential CNN or an
U-net CNN, or even a customized CNN defined by
the users. This CNN contains input shapes, layers,
activation functions. We call this component the ar-
chitecture of the model. The second component is
the set of hyper-parameters of the neural network,
which includes the optimizers, loss function, and
metrics. The last component, called Data Reader,
acts as a data provider, which feeds the data, medi-
cal images with delineation contour, into the neural
network for training and evaluation. This involves
splitting up the data into training data, validation
data, and test data, as well as preprocessing the data
to make sure the data is suitable for training in the
CNN.

Use case 2: Train a model Since a model contains
all the components needed for training, the training
process can be performed directly after a model is
created.

Use case 3: Save a trained model After the model
is trained, it is necessary to save that model for later
use, either to bring the saved model to another lo-
cation to perform automatic tumor delineation, or to
continue training.

Use case 4: Load a model from file(s) Because a
model can be saved to files, users should be able to
load it back to use it later.

Use case 5: Set up an experiment Instead of train-
ing a model directly, users can set up an experiment
from a created model, or a saved model. This in-
cludes training the model while logging the perfor-
mance of the models on the training data and the
validation data using the predefined metrics. Be-
sides, users can configure checkpoints for saving
models and making predictions on validation data
while training. Visualization of performance and
predictions on test data can also be performed when
after running an experiment.

Use case 6: Create and apply customized model ob-
jects to the model Model objects refer to the layers
in the neural network, the activation functions, the
optimizers, the loss functions, metrics, and any other
components existing in a model. Since not all types
of objects can be predefined, users with advanced
programming knowledge should be able to define
customized objects and apply it to their models.

3.1.3 System Requirement Specification

The deoxys framework should have the following
attributes: usability, reliability, flexibility, maintain-
ability and portability.

Usability The deoxys framework should be easy to
install, learn and use. The expected training and
learning time for a user to use this framework effec-
tively should not take more than 40 hours. For this
reason, this framework should have detailed docu-
mentation of the installation guide and usage of each
class, function and property. It should also provide
sample code snippets which can be applied to the
defined use cases.

Reliability The output generated when running
code from deoxys framework should have the behav-
iors as documented. In addition, the unexpected er-
ror rate should be under 5% and at least 80% of code
lines should have been tested before release.
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Figure 3: Use Case Diagram

Flexibility Users should be able to customize and
create new components to integrate with deoxys
framework.

Maintainability The deoxys framework should be
easy to maintain. Therefore, it should be divided
into separated modules. Moreover, all of the source
code should follow the PEP8 coding convention.
Also, this framework should log all actions in dif-
ferent versions and issues from the users.

Maintaining the framework includes fixing bugs,
handling issues, updating and adding new features.
The maintenance activities should last at least until
May 2020.

Portability The deoxys framework should work
properly when the following hardware require-
ments and environment are satisfied:

• System memory: at least 8GB with GPU or
13GB without GPU

• Python version: at least 3.7

3.2 Designs

3.2.1 Overview

Before development, the designs of the framework
have to be considered.

The first things to concern are the usability and
maintainability of the framework. As stated, in the
previous sessions, all source code shall follow PEP8
coding convention. Sphinx will be used as the tool
of documentation. In addition, git is used as a tool
to handle logging and version management. All
source code should be available in http://github.

com/huynhngoc/deoxys.

Implementation of all layers and other components
in convolutional neural networks within a three-
month time is impossible. Therefore, Keras is used
as a based library, as it contains implemented layers,
activation functions, optimizers and other compo-
nents in CNNs. Also, Keras is compatible with Ten-
sorFlow 1.x, 2.x, which is a powerful backend tool
in deep-learning, as well as other backends such as
Theano, etc.
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The author suggests that the framework should have
the following modules:

• Models: contains a wrapper of a Keras model.
Other Keras objects such as optimizers, activa-
tion functions, etc are also included.

• Architecture loader. The loader should be able
to create models from configurable JSON ob-
jects that contain the architecture of the model.

• Data reader: Since the target of this framework
are medical images, the input data often has a
large size and usually cannot fit into the com-
puter memory. In order to avoid out of memory
errors, this module should contain a data gen-
erator that split image data into smaller batches
that can fit into the memory when training the
model.

• Experiment: The deoxys framework should be
able to perform a single experiment and multi-
ple experiments.

Structure diagram Figure 4 illustrates the struc-
ture of the deoxys framework.

3.2.2 Model Objects

These modules are the components creating a
model. They are layers, loss functions, activation
functions, metrics, optimizer and callbacks. Any
customized objects created by the users will be
added to this module at runtime.

3.2.3 Model

Firstly, this module should be a wrapper of a Keras
model. As a result, it should have methods of the
Keras model, such as:

• load: loading models
• save: save models to files
• fit: fit a model with data
• predict: predict the target
• evaluate: evaluate the performance of the cur-

rent state of the model

Secondly, it should have a Data Reader (see 3.2.5)
instance, which provided proper inputs for actions
on the model.

Finally, by performing methods in Keras model us-
ing the inputs from the data reader, the model
should have the following methods:

• fit_train: fit the training data
• predict_val: predict the validation data
• predict_test: predict the test data
• evaluate_test: evaluate the performance of

the current state of the model on the test data

3.2.4 Architecture Loader

This module should have a function to create a
model from one of the predefined architecture. The
predefined architectures are the sequential and the
U-net. In the future, dense model should be imple-
mented to be used as a predefined architecture. This
module should be able to load a configurable JSON
file to create a Keras model based on the configura-
tion.

3.2.5 Data Reader

The data reader module should provide input data
for training and evaluating the model. The data
reader should provide three sets of data: training
data, validation data, test data. These three sets
should be in the form of a python generator, which is
wrapped into a Data Generator. Using a python gen-
erator is essential because medical image data usu-
ally has a large size, and may not be able to fit into
the running environment’s memory. Using a python
generator will feed the model with a small part of the
data and minimize the chance of getting out of mem-
ory error. The list of preprocessors to be applied to
the data should be configurable.

HDF5 Data Reader h5 or hdf5 is a file format that
has the ability to store large dataset with compres-
sion and hierarchy, as well as meta-data. The main
components of an HDF5 file are groups and datasets,
where datasets are pieces of data that is stored in file
while groups are containers of datasets.

The deoxys framework should have a HDF5 Data
Reader, which is a Data Reader that process data
from a hdf5 file. As a result, it should provide the
three datasets: train, validation and test. Also, since
an HDF5 file can be split into groups, the HDF5 Data
Reader should provide an aid for configuring which
groups of data to be in the three basic sets. It should
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Figure 4: Deoxys Structure Diagram

be easy to configure different groups into different
purposes for cross-validation. The suggested struc-
ture of hdf5 file to be used in the HDF5 Data Reader
is to split the data into folds, where the users can
configure which folds to be in the training set, or the
validation set, or the test set.

Here is an example of the structure of a hdf5 file to
be used in the HDF5 Data Reader, \fold_[n] is the
name of the group, and col_[n] are names of the
datasets, each of which is the column data.

\fold_0

col_0

col_1

col_2

\fold_1

col_0

col_1

col_2

\fold_2

col_0

col_1

col_2

\fold_3

col_0

col_1

col_2

\fold_4

col_0

col_1

col_2

With this HDF5 file with the example structure, the
HDF5 Data Reader should allow users to configure
the following five things:

• Path to the HDF5 file
• The column to be used as Input X
• The column to be used as True Target Y
• The maximum number of items provided by

the data generator. We call this number the
batch_size.

• Which folds belong to which set. For exam-
ple, users can configure fold_0 and fold_1 to
be used for training, while fold_2 is for val-
idation and fold_3 and fold_4 are for test-
ing. In another experiment, users can config-
ure fold_1 and fold_2 to be used for train-
ing, while fold_0 is for validation. In this way,
users can use cross-validation in the frame-
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work.

3.2.6 Experiment

Single Experiment The Single Experiment is used
to perform an experiment. With the use of Keras
‘callbacks’, the modules can have the following ac-
tions while training:

• log training performance
• log validation performance
• save a model to disk at a checkpoint
• use the model at the checkpoint to predict vali-

dation data

By using the files created during training, the Sin-
gle Experiment can visualize the training and vali-
dation performance, as well as visualize the predic-
tions. The visualization of predictions can be either
tumor delineation by radiologists and by the model
directly on the original images, or a plot containing
three images: the original images, the ground truth
masks from radiologists, and the predictions of the
model. Moreover, it can find the best model of each
metric based on the log files.

Multiple Experiment The Multiple Experiment
class should be able to run multiple single exper-
iments, either concurrently or not. After finish all
experiments, it should find the best model from all
experiments and use that model to predict and eval-
uate performance on the test set.

4 Results

4.1 Implementation progress

4.1.1 Completed modules

By the time this report is submitted, users can per-
form a single experiment, with saving, loading,
and visualization using the deoxys framework. This
means all parts but “multiple experiments” from the
design diagram in figure 4 have been implemented.

4.1.2 In-progress modules

Modules related to running multiple experiments
are still in development. There are problems involv-
ing the process of combining multiple single experi-
ments into a batch of experiments, as well as the con-
current programming that allows running multiple
experiments in parallel.

Besides, there is still a lack of tests and documenta-
tion that needs to be resolved.

4.2 Run on test data

The data from Oslo University hospital was used for
running a test experiment. It contained the CT and
PET images to detect head and neck cancer. The
model parameters were taken from Yngve Mardal
Moe’s master thesis [4] and run the training set with
only 3000 slices of images and three epochs. A cri-
terion of success is that the trained model has the
performance of f-beta score above 0.5.

The result was amazing as the dice (f-beta score) was
about 0.5 (figure 5) and some samples had nice de-
lineation results (figure 6)

Figure 5: Visualization of performance (binary f-beta
score) of an experiment



Page 10 Bao Ngoc Huynh

Figure 6: Visualization of predictions of a sample in
an experiment

5 Discussions

As there are some meaningful results from the de-
velopment, I can use this framework for running ex-
periments in the Master’s thesis. There is plenty of
space for improvement. Possible improvements are:

• More customized preprocessors and callbacks
should be added to the framework.

• Development of an auto-generated configura-
tion tool, either web-based or verbose terminal
tool.

• Back-propagation implementation based on the
implemented model. This will be developed in
my Master’s thesis.

• Visualize the progress of training/prediction.
• Data generator as a sequential model for multi-

processing

6 Conclusion

By the time of creating this report, the develop-
ment of the deoxys framework has satisfied the mini-
mum requirements for running a single experiment.
Users who are interested in automatic tumor delin-
eation using deep-learning can try to create a model
and run the experiment. The current development
of deoxys can continue with many extensions and
upgrades to create a more user-friendly framework
with more features.
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Appendix B

Models trained on ImageNet
dataset

In this Master’s thesis, two models that trained on the ImageNet dataset were
introduced. This section provides the detailed architectures of these two models.

The VGG16 model [37] contains 16 trainable layers with the structure described
in Table B.1. In this table, the convolutional layer and max pooling layer were
described in Section 2.2.3 on page 15. The Dense layers are simply the hidden
layers in the neural network. The flatten layer transforms tensor data into one-
dimensional data.

The model used by Springenberg et al. [20] is described in Table B.2. In this table,
the Global Average Pooling layer has the same effect as the Flatten layer in the
VGG16 model.
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Layer’s name Layer’s type Filter size Number of filters

input Input Not available Not available

block1 conv1 Convolutional 3x3 64

block1 conv2 Convolutional 3x3 64

block1 pool Max Pooling Not available Not available

block2 conv1 Convolutional 3x3 128

block2 conv2 Convolutional 3x3 128

block2 pool Max Pooling Not available Not available

block3 conv1 Convolutional 3x3 256

block3 conv2 Convolutional 3x3 256

block3 conv2 Convolutional 3x3 256

block3 pool Max Pooling Not available Not available

block4 conv1 Convolutional 3x3 512

block4 conv2 Convolutional 3x3 512

block4 conv2 Convolutional 3x3 512

block4 pool Max Pooling Not available Not available

block5 conv1 Convolutional 3x3 1024

block5 conv2 Convolutional 3x3 1024

block5 conv2 Convolutional 3x3 1024

block5 pool Max Pooling Not available Not available

flatten Flatten Not available Not available

fc1 Dense Not available Not available

fc2 Dense Not available Not available

Prediction Dense (with softmax) Not available Not available

Table B.1: The detailed structure of the VGG16 model [37].
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Layer’s name Layer’s type Filter size Number of filters

input Input Not available Not available

conv1 Convolutional 11x11 96

conv2 Convolutional 1x1 96

conv3 Convolutional 3x3 96

conv4 Convolutional 5x5 256

conv5 Convolutional 1x1 256

conv6 Convolutional 3x3 256

conv7 Convolutional 3x3 384

conv8 Convolutional 1x1 384

conv9 Convolutional 3x3 384

conv10 Convolutional 3x3 1024

conv11 Convolutional 1x1 1024

conv12 Convolutional 1x1 1000

global pool Global average pooling Not available Not available

softmax Activation function Not available Not available

Table B.2: The detailed structure of the model used by Springenberg et al. in [20].
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Appendix C

Database test report

By using the materials defined in Table 3.1 on page 38, the manual tests for
database integration were performed and reported in the following document.
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RESULT TEST REPORTTotal Test Cases: 7
Passed: 7

Fail: 0

ID Test case Step Description Expected Result Results
1 Create an 

experiment in an 
empty database

1 Clear all data in DBMS-
UI.

In the DBMS-UI, the 
experiment table has a new 
item with name of "Test 01".

Passed

2 Create an experiment 
from the sample config 
with the name "Test 01" 
and empty description.

3 Check the DBMS-UI.
2 Run an experiment 

for one epoch
1 Clear all data in DBMS-

UI.
In the DBMS-UI, the 
experiment table has a new 
item with name of "Test 01".
The session table has a new 
item, with the experiment 
field having the same value 
as the id of the newly added 
experiment. The curr_epoch 
field has a value of 1.
The perf_log table has a new 
item, with the session field 
having the same value as 
the id of the newly added 
session.

Passed

2 Create an experiment 
from the sample config 
with the name "Test 01" 
and empty description.

3 Run that experiment for 
one epoch. No 
configuration for saving 
models or predictions 
are set.

4 Check the DBMS-UI.
3 Run an experiment 

for ten epochs
1 Clear all data in DBMS-

UI.
In the DBMS-UI, the 
experiment table has a new 
item with name of "Test 01".
The session table has a new 
item, with the experiment 
field having the same value 
as the id of the newly added 
experiment. The curr_epoch 
field has a value of 1.
The perf_log table has ten 
new items, each of which 
contains the session field 
having the same value as 
the id of the newly added 
session.

Passed

2 Create an experiment 
from the sample config 
with the name "Test 01" 
and empty description.

3 Run that experiment for 
ten epochs. No 
configuration for saving 
models or predictions 
are set.

4 Check the DBMS-UI.
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RESULT TEST REPORTTotal Test Cases: 7
Passed: 7

Fail: 0

ID Test case Step Description Expected Result Results
4 Continue an 

experiment for five 
more epochs

1 Use the results from 
test case 03.

In the DBMS-UI, the 
experiment table has no 
changes.
The session table has no 
new items.  The existing 
session has the curr_epoch 
of 15 .
The perf_log table has five 
new items, each of which 
contains the session field 
having the same value as 
the id of the existing session.

Passed

2 Continue the session 
from test case 03 for 
five more epochs. No 
configuration for saving 
models or predictions 
are set.

3 Check the DBMS-UI.
5 Run a new session 

of an experiment.
1 Use the results from 

test case 04.
In the DBMS-UI, the 
experiment table has no 
changes.
The session table has one 
new item, with the 
experiment field having the 
same value as the id of the 
existing experiment.  This 
new session has the 
curr_epoch of 10.
The perf_log table has ten 
new items, each of which 
contains the session field 
having the same value as 
the id of the newly added 
session.
The models and predictions 
tables both have ten new 
items, each of which 
contains the session field 
having the same value as 
the id of the newly added 
session, as well as the 
location of the saved models 
/ predictions.

Passed

2 Run the experiment 
created from test 02 for 
ten epochs. Set saving 
models and predictions 
in every epoch.

3 Check the DBMS-UI.
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RESULT TEST REPORTTotal Test Cases: 7
Passed: 7

Fail: 0

ID Test case Step Description Expected Result Results
6 Run a new session 

of an experiment 
without continuosly 
saving models and 
predictions

1 Use the results from 
test case 05.

In the DBMS-UI, the 
experiment table has no 
changes.
The session table has one 
new item, with the 
experiment field having the 
same value as the id of the 
existing experiment.  This 
new session has the 
curr_epoch of 10.
The perf_log table has ten 
new items, each of which 
contains the session field 
having the same value as 
the id of the newly added 
session.
The models and predictions 
tables both have five new 
items, each of which 
contains the session field 
having the same value as 
the id of the newly added 
session, as well as the 
location of the saved models 
/ predictions. The newly 
added models and 
predictions are saved at the 
2nd, 4th, 6th, 8th and 10th 
epoch.

Passed

2 Run the experiment 
created from test 02 for 
ten epochs. Set saving 
models and predictions 
in every 2 epochs.

3 Check the DBMS-UI.

7 Create and run a 
new experiment in a 
database with 
existing data

1 Use the results from 
test case 06.

In the DBMS-UI, the 
experiment table has one 
more new item.
The session table has one 
new item, with the 
experiment field having the 
same value as the id of the 
newly added experiment.  
This new session has the 
curr_epoch of 10.
The perf_log table has ten 
new items, each of which 
contains the session field 
having the same value as 
the id of the newly added 
session. These ten new 
items has different metrics 
field than the existing items.

Passed

2 Create an experiment 
from a modified version 
of the sample config 
where different metrics 
were used. This 
experiment has the 
name of "Test 02" and 
the description of 
"Modified Config".
Run that experiment 
created from for ten 
epochs. No 
configuration for saving 
models and predictions 
are set.

3 Check the DBMS-UI.
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The detailed U-net model
structure
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Table D.1: Overview of the architecture used to train on the head and neck cancer
dataset. The downsampling path is given in the table.

Layer (type) Output Shape Params Connected to

input 1 (InputLayer) (191, 265, 2) 0

conv2d (Conv2D) (191, 265, 64) 1216 input 1

batch normalization
(BatchNormalization)

(191, 265, 64) 256 conv2d

conv2d 1 (Conv2D) (191, 265, 64) 36928 batch normalization

batch normalization 1
(BatchNormalization)

(191, 265, 64) 256 conv2d 1

max pooling2d
(MaxPooling2D)

(95, 132, 64) 0 batch normalization 1

conv2d 2 (Conv2D) (95, 132, 128) 73856 max pooling2d

batch normalization 2
(BatchNormalization)

(95, 132, 128) 512 conv2d 2

conv2d 3 (Conv2D) (95, 132, 128) 147584 batch normalization 2

batch normalization 3
(BatchNormalization)

(95, 132, 128) 512 conv2d 3

max pooling2d 1
(MaxPooling2D)

(47, 66, 128) 0 batch normalization 3

conv2d 4 (Conv2D) (47, 66, 256) 295168 max pooling2d 1

batch normalization 4
(BatchNormalization)

(47, 66, 256) 1024 conv2d 4

conv2d 5 (Conv2D) (47, 66, 256) 590080 batch normalization 4

batch normalization 5
(BatchNormalization)

(47, 66, 256) 1024 conv2d 5

max pooling2d 2
(MaxPooling2D)

(23, 33, 256) 0 batch normalization 5

conv2d 6 (Conv2D) (23, 33, 512) 1180160 max pooling2d 2

batch normalization 6
(BatchNormalization)

(23, 33, 512) 2048 conv2d 6

conv2d 7 (Conv2D) (23, 33, 512) 2359808 batch normalization 6

batch normalization 7
(BatchNormalization)

(23, 33, 512) 2048 conv2d 7

max pooling2d 3
(MaxPooling2D)

(11, 16, 512) 0 batch normalization 7

Each convolutional layer is followed by a batch normalization layer.
The max pooling layers reduce the sizes of the image tensor by half.
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Table D.2: Overview of the architecture used to train on the head and neck cancer
dataset. The bottleneck is given in the table.

Layer (type) Output Shape Params Connected to

conv2d 8 (Conv2D) (11, 16, 1024) 4719616 max pooling2d 3

batch normalization 8
(BatchNormalization)

(11, 16, 1024) 4096 conv2d 8

conv2d 9 (Conv2D) (11, 16, 1024) 9438208 batch normalization 8

batch normalization 9
(BatchNormalization)

(11, 16, 1024) 4096 conv2d 9

The bottle neck contains two convolutional layers, each followed by a batch-
normalization layer.

Table D.3: Overview of the architecture used to train on the head and neck cancer
dataset. The upsampling path is given in the table.

Layer (type) Output Shape Params Connected to

conv2d transpose
(Conv2DTranspose)

(11, 16, 512) 4719104 batch normalization 9

concatenate
(Concatenate)

(23, 33, 1024) 0 batch normalization 7
conv2d transpose

conv2d 10 (Conv2D) (23, 33, 512) 4719104 concatenate

batch normalization 10
(BatchNormalization)

(23, 33, 512) 2048 conv2d 10

conv2d 11 (Conv2D) (23, 33, 512) 2359808 batch normalization 10

batch normalization 11
(BatchNormalization)

(23, 33, 512) 2048 conv2d 11

conv2d transpose 1
(Conv2DTranspose)

(23, 33, 256) 1179904 batch normalization 11

concatenate 1
(Concatenate)

(47, 66, 512) 0 batch normalization 5
conv2d transpose 1

The transposed convolutional layers double the sizes of the image tensor.
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Table D.4: Overview of the architecture used to train on the head and neck cancer
dataset. Continued from Table D.3

Layer (type) Output Shape Params Connected to

conv2d 12 (Conv2D) (47, 66, 256) 1179904 concatenate 1

batch normalization 12
(BatchNormalization)

(47, 66, 256) 1024 conv2d 12

conv2d 13 (Conv2D) (47, 66, 256) 590080 batch normalization 12

batch normalization 13
(BatchNormalization)

(47, 66, 256) 1024 conv2d 13

conv2d transpose 2
(Conv2DTranspose)

(47, 66, 128) 295040 batch normalization 13

concatenate 2
(Concatenate)

(95, 132, 256) 0 batch normalization 3
conv2d transpose 2

conv2d 14 (Conv2D) (95, 132, 128) 295040 concatenate 2

batch normalization 14
(BatchNormalization)

(95, 132, 128) 512 conv2d 14

conv2d 15 (Conv2D) (95, 132, 128) 147584 batch normalization 14

batch normalization 15
(BatchNormalization)

(95, 132, 128) 512 conv2d 15

conv2d transpose 3
(Conv2DTranspose)

(95, 132, 64) 73792 batch normalization 15

concatenate 3
(Concatenate)

(191, 265, 128) 0 batch normalization 1
conv2d transpose 3

conv2d 16 (Conv2D) (191, 265, 64) 73792 concatenate 3

batch normalization 16
(BatchNornalization)

(191, 265, 64) 256 conv2d 16

conv2d 17 (Conv2D) (191, 265, 64) 36928 batch normalization 16

batch normalization 17
(BatchNormalization)

(191, 265, 64) 256 conv2d 17

conv2d 18 (Conv2D) (191, 265, 1) 577 batch normalization 17

The last layer (conv2d 18) uses the sigmoid activation function to decide if a pixel is
part of the cancer tumors.
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Full activation maps

This part contains the full activation maps of the image slices with high Dice scores
as listed in Table 4.2 on page 43.

E.1 Activation maps patient 91, slice 86
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Figure E.1: Activation maps at conv2d layer (a) and conv2d 1 layer (b) of image from
patient 91, slice 86, with a Dice score of 0.94. Continued on next page.
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Figure E.1: Activation maps at conv2d 2 layer (c) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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Figure E.1: Activation maps at conv2d 3 layer (d) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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(e) Layer conv2d 4

Figure E.1: Activation maps at conv2d 4 layer (e) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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conv2d_5

(f) Layer conv2d 5

Figure E.1: Activation maps at conv2d 5 layer (f) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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(g) Layer conv2d 6

Figure E.1: Activation maps at conv2d 6 layer (g) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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(h) Layer conv2d 7

Figure E.1: Activation maps at conv2d 7 layer (h) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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Figure E.1: Activation maps at conv2d 8 layer (i) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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conv2d_9

(j) Layer conv2d 9

Figure E.1: Activation maps at conv2d 9 layer (j) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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(k) Layer conv2d 10

Figure E.1: Activation maps at conv2d 10 layer (k) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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conv2d_11

(l) Layer conv2d 11

Figure E.1: Activation maps at conv2d 11 layer (l) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page..
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conv2d_12

(m) Layer conv2d 12

Figure E.1: Activation maps at conv2d 12 layer (m) of image from patient 91, slice
86, with a Dice score of 0.94. Continued on next page.
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conv2d_13

(n) Layer conv2d 13

Figure E.1: Activation maps at conv2d 13 layer (n) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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(o) Layer conv2d 14

Figure E.1: Activation maps at conv2d 14 layer (o) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.
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(p) Layer conv2d 15

Figure E.1: Activation maps at conv2d 15 layer (p) of image from patient 91, slice 86,
with a Dice score of 0.94. Continued on next page.



E.1. ACTIVATION MAPS PATIENT 91, SLICE 86 147

1

9

17

25

33

41

49

57

conv2d_16

(q) Layer conv2d 16

1

9

17

25

33

41

49

57

conv2d_17
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Figure E.1: Activation maps at conv2d 16 layer (q) and conv2d 17 layer (r) of image
from patient 91, slice 86, with a Dice score of 0.94.
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E.2 Activation maps patient 148, slice 11
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Figure E.2: Activation maps at conv2d layer (a) and conv2d 1 layer (b) of image from
patient 148, slice 11, with a Dice score of 0.94. Continued on next page.
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(c) Layer conv2d 2

Figure E.2: Activation maps at conv2d 2 layer (c) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page.
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(d) Layer conv2d 3

Figure E.2: Activation maps at conv2d 3 layer (d) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page.
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(e) Layer conv2d 4

Figure E.2: Activation maps at conv2d 4 layer (e) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page.
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conv2d_5

(f) Layer conv2d 5

Figure E.2: Activation maps at conv2d 5 layer (f) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page.
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(g) Layer conv2d 6

Figure E.2: Activation maps at conv2d 6 layer (g) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page.
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conv2d_7

(h) Layer conv2d 7

Figure E.2: Activation maps at conv2d 7 layer (h) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page.
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conv2d_8

(i) Layer conv2d 8

Figure E.2: Activation maps at conv2d 8 layer (i) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page.
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conv2d_9

(j) Layer conv2d 9

Figure E.2: Activation maps at conv2d 9 layer (j) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page.
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(k) Layer conv2d 10

Figure E.2: Activation maps at conv2d 10 layer (k) of image from patient 148, slice
11, with a Dice score of 0.94. Continued on next page.
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conv2d_11

(l) Layer conv2d 11

Figure E.2: Activation maps at conv2d 11 layer (l) of image from patient 148, slice 11,
with a Dice score of 0.94. Continued on next page..
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(m) Layer conv2d 12

Figure E.2: Activation maps at conv2d 12 layer (m) of image from patient 148, slice
11, with a Dice score of 0.94. Continued on next page.
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conv2d_13

(n) Layer conv2d 13

Figure E.2: Activation maps at conv2d 13 layer (n) of image from patient 148, slice
11, with a Dice score of 0.94. Continued on next page.
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(o) Layer conv2d 14

Figure E.2: Activation maps at conv2d 14 layer (o) of image from patient 148, slice
11, with a Dice score of 0.94. Continued on next page.



E.2. ACTIVATION MAPS PATIENT 148, SLICE 11 163

1

11

21

31

41

51

61

71

81

91

101

111

121

conv2d_15

(p) Layer conv2d 15

Figure E.2: Activation maps at conv2d 15 layer (p) of image from patient 148, slice
11, with a Dice score of 0.94. Continued on next page.
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Figure E.2: Activation maps at conv2d 16 layer (q) and conv2d 17 layer (r) of image
from patient 148, slice 11, with a Dice score of 0.94.
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E.3 Activation maps patient 209, slice 14
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Figure E.3: Activation maps at conv2d layer (a) and conv2d 1 layer (b) of image from
patient 209, slice 14, with a Dice score of 0.94. Continued on next page.
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(c) Layer conv2d 2

Figure E.3: Activation maps at conv2d 2 layer (c) of image from patient 209, slice 14,
with a Dice score of 0.94. Continued on next page.
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(d) Layer conv2d 3

Figure E.3: Activation maps at conv2d 3 layer (d) of image from patient 209, slice 14,
with a Dice score of 0.94. Continued on next page.
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(e) Layer conv2d 4

Figure E.3: Activation maps at conv2d 4 layer (e) of image from patient 209, slice 14,
with a Dice score of 0.94. Continued on next page.
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(f) Layer conv2d 5

Figure E.3: Activation maps at conv2d 5 layer (f) of image from patient 209, slice 14,
with a Dice score of 0.94. Continued on next page..
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(g) Layer conv2d 6

Figure E.3: Activation maps at conv2d 6 layer (g) of image from patient 209, slice 14,
with a Dice score of 0.94. Continued on next page.
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(h) Layer conv2d 7

Figure E.3: Activation maps at conv2d 7 layer (h) of image from patient 209, slice 14,
with a Dice score of 0.94. Continued on next page.
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(i) Layer conv2d 8

Figure E.3: Activation maps at conv2d 8 layer (i) of image from patient 209, slice 14,
with a Dice score of 0.94. Continued on next page.
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conv2d_9

(j) Layer conv2d 9

Figure E.3: Activation maps at conv2d 9 layer (j) of image from patient 209, slice 14,
with a Dice score of 0.94. Continued on next page.
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(k) Layer conv2d 10

Figure E.3: Activation maps at conv2d 10 layer (k) of image from patient 209, slice
14, with a Dice score of 0.94. Continued on next page.
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(l) Layer conv2d 11

Figure E.3: Activation maps at layer of image from patient 209, slice 14, with a Dice
score of 0.94. (l) Layer conv2d 14. Continued on next page..
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(m) Layer conv2d 12

Figure E.3: Activation maps at conv2d 12 layer (m) of image from patient 209, slice
14, with a Dice score of 0.94. Continued on next page.
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(n) Layer conv2d 13

Figure E.3: Activation maps at conv2d 13 layer (n) of image from patient 209, slice
14, with a Dice score of 0.94. Continued on next page.
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Figure E.3: Activation maps at conv2d 14 layer (o) of image from patient 209, slice
14, with a Dice score of 0.94. Continued on next page.
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(p) Layer conv2d 15

Figure E.3: Activation maps at layer of image from patient 209, slice 14, with a Dice
score of 0.94. (p) Layer conv2d 14. Continued on next page.
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Figure E.3: Activation maps at conv2d 16 layer (q) and conv2d 17 layer (r) of image
from patient 209, slice 14, with a Dice score of 0.94.
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E.4 Activation maps patient 217, slice 20
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Figure E.4: Activation maps at conv2d layer (a) and conv2d 1 layer (b) of image from
patient 217, slice 20, with a Dice score of 0.95. Continued on next page.
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(c) Layer conv2d 2

Figure E.4: Activation maps at conv2d 2 layer (c) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page.
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(d) Layer conv2d 3

Figure E.4: Activation maps at conv2d 3 layer (d) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page.
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(e) Layer conv2d 4

Figure E.4: Activation maps at conv2d 4 layer (e) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page.
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(f) Layer conv2d 5

Figure E.4: Activation maps at conv2d 5 layer (f) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page.
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(g) Layer conv2d 6

Figure E.4: Activation maps at conv2d 6 layer (g) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page.
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(h) Layer conv2d 7

Figure E.4: Activation maps at conv2d 7 layer (h) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page.
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(i) Layer conv2d 8

Figure E.4: Activation maps at conv2d 8 layer (i) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page.
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conv2d_9

(j) Layer conv2d 9

Figure E.4: Activation maps at conv2d 9 layer (j) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page.
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(k) Layer conv2d 10

Figure E.4: Activation maps at conv2d 10 layer (k) of image from patient 217, slice
20, with a Dice score of 0.95. Continued on next page.
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conv2d_11

(l) Layer conv2d 11

Figure E.4: Activation maps at conv2d 11 layer (l) of image from patient 217, slice 20,
with a Dice score of 0.95. Continued on next page..
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(m) Layer conv2d 12

Figure E.4: Activation maps at conv2d 12 layer (m) of image from patient 217, slice
20, with a Dice score of 0.95. Continued on next page.
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conv2d_13

(n) Layer conv2d 13

Figure E.4: Activation maps at conv2d 13 layer (n) of image from patient 217, slice
20, with a Dice score of 0.95. Continued on next page.
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(o) Layer conv2d 14

Figure E.4: Activation maps at conv2d 14 layer (o) of image from patient 217, slice
20, with a Dice score of 0.95. Continued on next page.
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(p) Layer conv2d 15

Figure E.4: Activation maps at conv2d 15 layer (p) of image from patient 217, slice
20, with a Dice score of 0.95. Continued on next page.
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Figure E.4: Activation maps at conv2d 16 layer (q) and conv2d 17 layer (r) of image
from patient 217, slice 20, with a Dice score of 0.95.
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Figure E.5: Activation maps at conv2d layer (a) and conv2d 1 layer (b) of image from
patient 233, slice 48, with a Dice score of 0.95. Continued on next page.
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(c) Layer conv2d 2

Figure E.5: Activation maps at conv2d 2 layer (c) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page.
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(d) Layer conv2d 3

Figure E.5: Activation maps at conv2d 3 layer (d) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page.
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(e) Layer conv2d 4

Figure E.5: Activation maps at conv2d 4 layer (e) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page.
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conv2d_5

(f) Layer conv2d 5

Figure E.5: Activation maps at conv2d 5 layer (f) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page.
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(g) Layer conv2d 6

Figure E.5: Activation maps at conv2d 6 layer (g) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page.
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conv2d_7

(h) Layer conv2d 7

Figure E.5: Activation maps at conv2d 7 layer (h) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page.



E.5. ACTIVATION MAPS PATIENT 233, SLICE 48 207

1

28

55

82

109

136

163

190

217

244

271

298

325

352

379

406

433

460

487

514

541

568

595

622

649

676

703

730

757

784

811

838

865

892

919

946

973

1000

conv2d_8

(i) Layer conv2d 8

Figure E.5: Activation maps at conv2d 8 layer (i) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page.
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conv2d_9

(j) Layer conv2d 9

Figure E.5: Activation maps at conv2d 9 layer (j) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page.
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conv2d_10

(k) Layer conv2d 10

Figure E.5: Activation maps at conv2d 10 layer (k) of image from patient 233, slice
48, with a Dice score of 0.95. Continued on next page.
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conv2d_11

(l) Layer conv2d 11

Figure E.5: Activation maps at conv2d 11 layer (l) of image from patient 233, slice 48,
with a Dice score of 0.95. Continued on next page..
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conv2d_12

(m) Layer conv2d 12

Figure E.5: Activation maps at conv2d 12 layer (m) of image from patient 233, slice
48, with a Dice score of 0.95. Continued on next page.
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conv2d_13

(n) Layer conv2d 13

Figure E.5: Activation maps at conv2d 13 layer (n) of image from patient 233, slice
48, with a Dice score of 0.95. Continued on next page.
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(o) Layer conv2d 14

Figure E.5: Activation maps at conv2d 14 layer (o) of image from patient 233, slice
48, with a Dice score of 0.95. Continued on next page.
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(p) Layer conv2d 15

Figure E.5: Activation maps at conv2d 15 layer (p) of image from patient 233, slice
48, with a Dice score of 0.95. Continued on next page.
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Figure E.5: Activation maps at conv2d 16 layer (q) and conv2d 17 layer (r) of image
from patient 233, slice 48, with a Dice score of 0.95.



216 APPENDIX E. FULL ACTIVATION MAPS

E.6 Activation maps patient 249, slice 55
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Figure E.6: Activation maps at conv2d layer (a) and conv2d 1 layer (b) of image from
patient 249, slice 55, with a Dice score of 0.95. Continued on next page.
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(c) Layer conv2d 2

Figure E.6: Activation maps at conv2d 2 layer (c) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page.
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(d) Layer conv2d 3

Figure E.6: Activation maps at conv2d 3 layer (d) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page.
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(e) Layer conv2d 4

Figure E.6: Activation maps at conv2d 4 layer (e) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page.
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conv2d_5

(f) Layer conv2d 5

Figure E.6: Activation maps at conv2d 5 layer (f) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page.
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(g) Layer conv2d 6

Figure E.6: Activation maps at conv2d 6 layer (g) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page.
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conv2d_7

(h) Layer conv2d 7

Figure E.6: Activation maps at conv2d 7 layer (h) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page.
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conv2d_8

(i) Layer conv2d 8

Figure E.6: Activation maps at conv2d 8 layer (i) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page.
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conv2d_9

(j) Layer conv2d 9

Figure E.6: Activation maps at conv2d 9 layer (j) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page.
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(k) Layer conv2d 10

Figure E.6: Activation maps at conv2d 10 layer (k) of image from patient 249, slice
55, with a Dice score of 0.95. Continued on next page.
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conv2d_11

(l) Layer conv2d 11

Figure E.6: Activation maps at conv2d 11 layer (l) of image from patient 249, slice 55,
with a Dice score of 0.95. Continued on next page..
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(m) Layer conv2d 12

Figure E.6: Activation maps at conv2d 12 layer (m) of image from patient 249, slice
55, with a Dice score of 0.95. Continued on next page.
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conv2d_13

(n) Layer conv2d 13

Figure E.6: Activation maps at conv2d 13 layer (n) of image from patient 249, slice
55, with a Dice score of 0.95. Continued on next page.
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(o) Layer conv2d 14

Figure E.6: Activation maps at conv2d 14 layer (o) of image from patient 249, slice
55, with a Dice score of 0.95. Continued on next page.
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(p) Layer conv2d 15

Figure E.6: Activation maps at conv2d 15 layer (p) of image from patient 249, slice
55, with a Dice score of 0.95. Continued on next page.
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Figure E.6: Activation maps at conv2d 16 layer (q) and conv2d 17 layer (r) of image
from patient 249, slice 55, with a Dice score of 0.95.
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Gradient-based visualization

All results generated from Section 4.2.3 on page 45 can be found in this part.
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Patient: 60
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Patient: 8
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