
Master’s Thesis 2020 30 ECTS
Faculty of Science and Technology

Utilizing embedded machine 
learning as a conversion 
algorithm for converting sensor 
readings into sensor values on a 
bare metal embedded device

Balder Grenness Klanderud
Machine, Process and Product development





PREFACE
This thesis concludes my master study in Machine, Process and Product-development at Norwegian 
University of Life Sciences (NMBU). During my time as a student, I’ve been fortunate to have been a 
part of Eik Ideverksted. They have helped me learn beyond the curriculum offered by NMBU, and 
introduced me to Disruptive Engineering. 

I am thankful to Disruptive Engineering, both for hiring me as an embedded systems engineer before 
the completion of my degree, and for being flexible during the writing of this thesis. I look forward to 
continue working with them and my colleagues. I would like to thank Ola and Kristian Omberg, along 
with Odd Ivar Lekang for feedback and guidance with this thesis. 

Finally I would like to give a special thanks to my girlfriend, friends and roommates, for all the love and
support. They have all been an instrumental part of my student experience, and I am grateful for all 
the good memories.

i



ABSTRACT
Even though artificial intelligence (AI) has been frequently used for decades, the number of 
applications utilizing AI are rapidly increasing. The technology is advancing fast, and its use is 
spreading to different and new fields. In this thesis, the goal is to further expand the use and value of 
AI, by utilizing machine learning (ML) as a conversion algorithm for converting raw sensor readings, 
into the intended measured component (e.g. CO concentrations from a gas sensor). Using machine 
learning for this purpose is not new, however previous research on this topic have not produced 
machine learning models designed for use on the edge where the sensor resides. Thus, in this thesis, 
the main focus is placed on developing a model that can be implemented on a bare metal embedded 
device.

In order to produce this machine learning model, a dataset containing sensor readings from a metal 
oxide (MOX) gas sensor, paired with reference gas measurements were used. The Keras framework 
was used for designing the machine learning model, then by using the X-Cube-AI tool by ST 
Microelectronics, the model was implemented in the firmware of a STM32F767zi high-performance 
microcontroller. This allows the microcontroller to use the machine learning model for sensor 
conversion. The sensor readings were stored in flash, along with the reference gas concentration, 
which allowed to simulate the sensor by reading values from flash, and compare the values converted 
by the machine learning model with the reference value from the dataset.

The results from this thesis shows that the developed machine learning model is able to convert the 
sensor readings into the reference values from the dataset with an average R2 score of 0.975. This 
score is the highest score achieved on the dataset used in this thesis, and if this score is representable 
of the expected performance of the MOX gas sensor, this performance would place it among top two 
gas sensors tested by South Coast Air Quality Management District (AQ-SPEC, 2019). When the model 
were used by the microcontroller, the conversion process took about 5ms to compute, without a loss 
in performance. By sacrificing the accuracy of the model, lower compute-time was obtained. The 
methods used in this paper can easily be adjusted in order to convert sensor readings from other 
types of sensors, given that a suitable dataset is available.

Keywords: Embedded machine learning; Edge computing; Artificial Intelligence

ii



SAMMENDRAG
Selv om kunstig intelligens (AI) har blitt mye brukt i flere tiår, øker antallet applikasjoner som bruker AI
raskt. Teknologien går fort fremover, og bruken sprer seg stadig til forskjellige og nye felt. I denne 
oppgaven er målet å utvide bruken og verdien av AI ytterligere, ved å benytte maskinlæring (ML) som 
en konverteringsalgoritme for å konvertere ubehandlet sensoravlesninger, til den tiltenkte målte 
komponenten (for eksempel CO-konsentrasjoner fra en gassensor). Å bruke maskinlæring for dette 
formålet er ikke nytt, men tidligere forskning på dette emnet har ikke produsert maskinlærings-
modeller designet for bruk ytters i nettverket, der sensoren befinner seg. Dermed er hovedfokuset i 
denne oppgaven å utvikle en maskinlæringsmodell som kan implementeres på en mikrokontroller.

For å produsere denne maskinlæringsmodellen ble et datasett som inneholder sensoravlesninger fra 
en metalloksyd (MOX) gassensor sammen med referansemålinger av gasskonsentrasjoner benyttet. 
Keras rammeverket ble brukt til å designe maskinlæringsmodellen, deretter ved å bruke X-Cube-AI-
verktøyet av ST Microelectronics, ble modellen implementert i firmware til en STM32F767zi 
mikrokontroller. Dette lar mikrokontrolleren bruke maskinlæringsmodellen for sensorkonvertering. 
Sensormålingene ble lagret i flash minnet til mikrokontrolleren, sammen med referansemålingene av 
gasskonsentrasjonen. Dette gjorde det mulig å simulere sensoren ved å lese verdier fra flash, og 
sammenligne verdiene fra maskinlæringsmodellen med referanseverdiene fra datasettet.

Resultatene fra denne oppgaven viser at den utviklede maskinlæringsmodellen er i stand til å 
konvertere sensoravlesningene fra datasettet med en gjennomsnittlig R2-score på 0,975. Denne 
poengsummen er den høyeste poengsum oppnådd på dette datasettet som vi vet om, og hvis denne 
poengsummen er representativ for den forventede ytelsen til MOX-gassensoren, vil denne ytelsen 
plassere den blant de to beste gasssensorene som er testet av South Coast Air Quality Management 
District (AQ-SPEC, 2019). Da maskinlæringsmodellen ble benyttet av mikrokontrolleren, tok 
konverteringsprosessen omtrent 5ms å beregne, uten tap i nøyaktighet. Ved å ofre modellens 
nøyaktighet ble det oppnådd lavere beregningstid. Metodene som brukes i denne oppgaven kan 
enkelt justeres for å konvertere sensoravlesninger fra andre typer sensorer, gitt at et passende 
datasett er tilgjengelig.

Keywords: Embedded machine learning; Edge computing; Artificial Intelligence

iii



TABLE OF CONTENTS
Preface ____________________________________________________________________________________________________ i

Abstract ___________________________________________________________________________________________________ ii

Sammendrag _____________________________________________________________________________________________ iii

Table of Figures __________________________________________________________________________________________ vi

Index of Tables __________________________________________________________________________________________ vii

Abbreviations and Glossary _____________________________________________________________________________ viii

 1  Introduction ___________________________________________________________________________________________ 1
 1.1  Earlier work ............................................................................................................................................  1
 1.2  Project details ........................................................................................................................................  1
 1.3  Goals and objectives .............................................................................................................................  2
 1.4  Limitations .............................................................................................................................................  3

 2  Theory and key concepts ______________________________________________________________________________ 4
 2.1  MOX Gas sensor ....................................................................................................................................  4
 2.2  Machine learning ..................................................................................................................................  5

 2.2.1  What is it? ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 5
 2.2.2  How does it work? ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 5
 2.2.3  Groups of machine learning algorithms ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 6
 2.2.4  Cost functions ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 7
 2.2.5  Training and testing ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 7
 2.2.6  Pre-processing ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 7
 2.2.7  The Neural network ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 7

 2.3  Embedded systems ...............................................................................................................................  8
 2.3.1  Microcontroller (MCU) ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 8
 2.3.2  Single board computers ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 9

 2.4  Cloud, Fog and Edge computing .........................................................................................................  9
 2.4.1  Cloud Computing ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 10
 2.4.2  Fog Computing ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 10
 2.4.3  Edge Computing ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 10

 2.5  Programming toolchains ...................................................................................................................  10
 2.5.1  Embedded programming ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 10
 2.5.2  Machine learning model development ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 11

 2.6  Embedded machine learning tools ...................................................................................................  12
 2.6.1  CMSIS NN ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 12
 2.6.2  X-Cube-AI ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 12

 3  Method _______________________________________________________________________________________________ 13
 3.1  Air quality dataset evaluation ............................................................................................................  13
 3.2  Software tools used for development ..............................................................................................  14
 3.3  Performance analysis .........................................................................................................................  14

 3.3.1  Machine learning model performance analysis ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 14
 3.3.2  Embedded system performance analysis ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 15

 3.4  Machine Learning Model Structure ..................................................................................................  16

iv



 3.4.1  Preprocessing stage ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 16
 3.4.2  Neural network stage ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 16
 3.4.3  Evaluation stage ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 16
 3.4.4  Regularization ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 17

 3.5  Embedded machine learning model ................................................................................................  17

 4  Presentation of the Final code _______________________________________________________________________ 19
 4.1.1  Importing the training data ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 19
 4.1.2  Creating the neural network ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 20
 4.1.3  Training the model ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 21
 4.1.4  Saving the model ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 23
 4.1.5  Creating the Embedded system template project ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 23
 4.1.6  Developing the embedded system code from the template project ․․․․․․․․․․․․․․․․․․․ 24
 4.1.7  Measuring compute time on the embedded system ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 27

 5  Evaluation and Results _______________________________________________________________________________ 29
 5.1  Comparing the machine learning models .......................................................................................  29
 5.2  Selecting models for further evaluation ..........................................................................................  31

 5.2.1  Model performance ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 31
 5.2.2  Summary of model performance ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 33

 5.3  Results from other work ....................................................................................................................  33
 5.4  Evaluating embedded systems performance ..................................................................................  34

 5.4.1  System requirements ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 34
 5.4.2  On device testing ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 34

 6  Discussion ____________________________________________________________________________________________ 37
 6.1  The commercial viability of the model .............................................................................................  37
 6.2  Machine learning model performance .............................................................................................  38
 6.3  Generalization of the model ..............................................................................................................  38
 6.4  Tuning the model ................................................................................................................................  38
 6.5  Embedded performance ....................................................................................................................  39
 6.6  The value of using machine learning ...............................................................................................  39
 6.7  Limitations ...........................................................................................................................................  39

 7  Conclusion ___________________________________________________________________________________________ 41
 7.1  Summary ..............................................................................................................................................  41
 7.2  Recommendations and further work ...............................................................................................  41

 7.2.1  Create a new dataset ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 41
 7.2.2  Network tuning ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 41
 7.2.3  Focusing on complex systems ․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․ 42

 8  Bibliography __________________________________________________________________________________________ 43

 9  Appendix A ___________________________________________________________________________________________ 45

v



Table of Figures

 Figure 1: Basic working principle of a MOX gas sensor. Image is gathered from (Sensirion, 2019).........4

 Figure 2: Rendered image of a MOX gas sensor produced by Sensirion. Image is gathered from 
(Sensirion, 2019).............................................................................................................................................. 4

 Figure 3: The different stages of a machine learning model. Made by the author.....................................5

 Figure 4: Different types of machine learning. Made by the author.............................................................6

 Figure 5: The Raspberry Pi 4 is a popular and modern high performance SBC capable of running a 
normal operations system. Image is gathered from (Pi Raspberry, 2019)...............................................9

 Figure 6: Difference between the Edge, Fog and Cloud. Made by the author.............................................9

 Figure 7: Graphical view of missing values in the dataset. This visualization was created by using the 
missingno python library and is useful for deciding how to treat missing values. The white lines 
represent missing data. Made by the author............................................................................................13

 Figure 8: Example of R2 scores with accompanying plots showing the predicted vs true gas 
concentration. As can be seen on the plots, the model is much better at predicting C6H6 than NO2. 
Made by the author...................................................................................................................................... 15

 Figure 9: Model structure overview. Made by the author.............................................................................16

 Figure 10: Neural network visualization. Each line represent a calculation, and each dot represents an 
intermediate stored value. Made by the author........................................................................................17

 Figure 11: Illustration showing difference between overfitting and underfitting (Shubman, 2018).......17

 Figure 12: Embedded machine learning workflow (ST Microelectronics Inc., 2019).................................18

 Figure 13: Example machine learning model containing three hidden layers. Made by the author......21

 Figure 14: Graph that shows the loss in mean absolute percentage error (MAPE) during the different 
iterations. As can be seen from around iteration 90 000, which is where the learning-rate is 
reduced, the loss goes more steadily down. Made by the author..........................................................22

 Figure 15: Example of using STM32CubeMX for configuring the UART peripheral on the STM32F767zi. 
Made by the author...................................................................................................................................... 23

 Figure 16: Example of using the X-CUBE-AI tool with three different models. Made by the author.......24

 Figure 17: Overview over the embedded program flow. Made by the author...........................................25

 Figure 18: Serial output from the embedded systems showing evaluation from both the test and train 
dataset with true and predicted gas concentrations. Made by the author............................................27

 Figure 19: The overall highest performing model. Made by the author.....................................................31

 Figure 20: The best performing model with 256 neurons in the first layer. Made by the author............32

 Figure 21: The best performing model with 64 neurons in the first layer. Made by the author..............32

 Figure 22: Compute time overview. Image is captured from the waveforms logic analyzer software, 
with small modifications for displaying pulse width time. Made by the author....................................35

vi



Index of Tables

Table 1: Table containing the average performance across the different gas concentrations sorted by 
the R2 score................................................................................................................................................... 29

Table 2: Table containing the average performance across the different gas concentrations sorted by 
the mape mean metric................................................................................................................................. 30

Table 3: Detailed summary of the model performance. This is useful when comparing with other 
research......................................................................................................................................................... 33

Table 4: Copy of the results achieved by Førde in her master thesis. The original table is located on 
page 65 in her thesis (Førde, 2019).............................................................................................................33

Table 5: Summary of the highest performance achieved in the paper. (De Vito, Piga, Martinotto, & Di 
Francia, 2009)................................................................................................................................................ 34

Table 6: Model information with microcontroller requirements. Table is gathered from the X-Cube-AI 
tool with minor modifications. Multiply-Accumulate operation (MACC) is a metric used for 
describing and comparing model complexity, and is an implication of compute time.......................34

Table 7: Summary of different gas sensor performance (AQ-SPEC, 2019)..................................................45

vii



ABBREVIATIONS AND GLOSSARY
MOX - Metal Oxide Semiconductor

ML - Machine Learning

DL - Deep Learning

NN - Neural Network

MCU - Microcontroller, often the computing component of a 
embedded system

Bare metal device - A device where program runs directly on machine 
hardware, without intermediary an operating system. 

Edge - The edge is a term used for describing the very end points 
of a network. A sensor node is a typical edge devise.

Cloud - The could is a term used for describing computational 
resources located on the internet, often in the form of a 
data-center.

Embedded system - A small computational system designed to solve a specific 
problem. See chapter 2.3 for more information.

MHz - Megahertz, used to describe the clock speed of a computer
system

GHz - Gigahertz, 1 GHz = 1000 MHz

Byte - A byte is a word that describes a group of eight bits. 
Computer memory is grouped in bytes.

Bit - The smallest chunk of information/memory, can either be 
0 or 1. A bit represents a digit in the binary number 
system.

KByte - Kilo byte. 1KByte = 1000 Bytes

MByte - 1 MByte = 1000 KByte = 1 000 000 Byte

GC - Gas chromatography

HAL - Hardware abstraction layer, a set of library functions that 
simplifies hardware specific operations such as controlling 
pins. 

viii



 1  INTRODUCTION
Traditionally, the process of developing a conversion algorithms for converting sensor readings into 
the desired sensor values (e.g. CO concentrations from a gas sensor), consists of creating a 
mathematical model describing the sensor and the way it interacts with its environment is developed. 
This model is then used to find a mathematical relationship between the sensor reading with the 
desired component. This process requires profound physical and chemical knowledge of the aspects 
surrounding the sensor.

The metal oxide gas sensor have proven itself to be a low cost gas sensor with capability of detecting 
multiple gasses depending on the coated oxidized layer. The sensor readings taken from a MOX gas 
sensor corresponds to the electrical current that flows through a metal oxide element, which can be 
challenging to convert into gas concentrations (Burgués & Marco, 2018). 

Machine learning is a tool that can be utilized for developing a conversion algorithm for converting 
between sensor readings and gas concentrations. For a machine learning algorithm to be able to 
compete with a regular conversion algorithm, it must be able to implement at the edge, close to the 
sensor. Thus this thesis will focus on the development of an machine learning algorithm for converting
between the MOX gas sensor readings and gas concentration, and implementing this algorithm on a 
edge devise. 

 1.1  EARLIER WORK
There have been written two masters from NMBU which covers some of the same topics as this thesis:

In spring 2019 Julia Førde wrote her master thesis “Development of algorithm for pre-processing and 
prediction in Capacitive Micromachined Ultrasonic Transducers”. The thesis used a dataset containing 
sensor values from a MOX gas sensor to automate the development of a machine learning algorithm 
for prediction of gas concentrations. The MOX gas sensor was used due to the similarities to the CMUT
gas sensor, and the lack of an existing dataset for the CMUT gas sensor. The same dataset will be used
in this thesis.

In spring 2019 Jon Nordby wrote his master thesis “Environmental Sound Classification on 
Microcontrollers using Convolutional Neural Networks”. This thesis focused on the use of a 
microcontroller for embedded machine learning for sound classification. Some of the tools used in his 
thesis will also be used here.

 1.2  PROJECT DETAILS
This thesis will build on the work done by Førde, but the focus is on implementing the machine 
learning algorithm on a embedded device. By implementing the machine learning on an embedded 
device, the sensor readings can be calculated on the edge, thus reducing the computation time 
needed in a data center and potentially save time, power, and infrastructure cost, as well as reducing 
the overall complexity of the system. 



 1.3  GOALS AND OBJECTIVES
The purpose of this project is to reduce the complexity and workload needed for creating specialized 
algorithms, that convert raw sensor readings into the intended sensor value in modern sensor 
technology. 

The main goal in this report is to develop a machine learning model which can be implemented on a 
bare metal device. The model is to take readings from a MOX gas sensor, and convert them into gas 
concentrations of different gas compounds. In order to achieve this, the following objectives will be 
performed.

  Literature review

 1. Conduct a theoretical study for identifying and defining key concepts which forms the basis for
further developed work. These concepts include: 

 a) Machine learning

 b) Embedded systems

 c) Embedded machine learning

 d) Cloud, fog and edge computing

 2. Get an overview over available tools for aid in development of the following:

 a) Machine learning model

 b) Embedded system firmware

  Method

1. Development of machine learning model for converting sensor readings into gas 
concentrations. This development process consists of the following steps:

a) Data processing

b) Model design

c) Model tuning

2. Implement the machine learning model on an embedded device 

3. Present a overview of system functionalities. 

  Evaluation

1. System description

2. Test plan

3. Benchmarking

a) Machine learning performance

b) Embedded systems resource usage

2



  Recommendations and suggestions for further work

Based on work done, suggestions will be put fourth for improving the product.

 1.4  LIMITATIONS
Due to the size and time constraints, some limitations have been set:

• The main focus of this thesis will be on implementation on a embedded device

• An exhaustive evaluation of different machine learning models will not be performed, as this 
was nicely done by Julia Førde in her thesis.

• Only microcontrollers from ARM will be considered

3



 2  THEORY AND KEY CONCEPTS
This section aims to present the relevant theory needed to understand the methods and techniques 
used in this thesis in order to develop, test and evaluate both the machine learning model and the 
embedded systems performance. 

The literature used in this chapter consists of books and articles found using scientific databases such 
as Google Scholar and Oria. When possible, peer reviewed papers were used, and newer papers were 
preferred. Some inspiration have been taken from other similar master’s theses. Since embedded 
machine learning is still new, some litterateur comes from code repositories, and documentation 
produced by companies such as ST and ARM.

 2.1  MOX GAS SENSOR
The MOX gas sensor consists of a semiconductor and metal oxides as selectivity layer, where different 
oxides have different selectivity against different gas compounds. Depending on the gas mixture in 
the air, the conductivity of the semiconductor changes. The sensor reading is thus either a 
measurement of the resistance over or the electrical current through the semiconductor. However, the
conductivity is also dependent on environmental factors such as temperature, humidity and pressure 
(Burgués & Marco, 2018). Since the resistance can vary based on multiple factors, combining multiple 
MOX sensor elements and a temperature and humidity sensor is common, as well as a heating 
element to regulate the temperature of the sensor. 

Figure 1: Basic working principle of 
a MOX gas sensor. Image is 
gathered from (Sensirion, 2019).

Figure 2: Rendered image of a MOX gas sensor 
produced by Sensirion. Image is gathered from 
(Sensirion, 2019).

Figure 1 illustrates the workings of a MOX gas sensor, a hot plate is covered with a metal oxide layer. 
This metal oxide reacts with the sounding air, and by doing so changes the resistance. It is this 
resistance that is measured in a MOX sensor.

4



 2.2  MACHINE LEARNING
Artificial intelligence is a subfield of computer science that focuses on mimicking (human) intelligence 
in a computer program. Machine learning is a broad field within artificial intelligence which have been 
popular recently (Bainbridge, 2012). 

 2.2.1  WHAT IS IT?

A machine learning model is a program which learns from data, generally the more data it is given, the
better the model performs. A machine learning model is used in two stages, training and predicting. 
The training stage is where the model is fed data to train on, and the prediction stage is the stage 
where the model predicts based on the data. Once a machine learning model have yielded sufficient 
performance, it is said that the model have fitted the data, and can be used in the field (Joshi, 2016).

Prediction stageTraining stage

Labeled data

ML model Weights

Unlabeled data 
(Real world data)

ML model

Weights Prediction

Figure 3: The different stages of a machine learning model.
Made by the author.

 2.2.2  HOW DOES IT WORK?

When the machine learning algorithm is in the training stage, it uses the labeled data to generate a 
set of rules. These rules are often called weights, and are used in the predicting stage.

Many different algorithms within machine learning exists, and more are being developed. Perhaps the
simplest example of a machine learning algorithm is linear regression. Linear regression can be 
expressed by the following equation:

(Equation 2.1)

Here y is the response, f is the predicting model, a and b are the rules or weights calculated by the 
algorithm. 

In the training stage, the model is given pairs of x and y data points that belong together (labeled 
dataset). The model calculates its predicted y, often labeled ŷ, this process is called forward 
propagation. Based on the values calculated the error e = y – ŷ is calculated. Calculus is then used 

5



combined with the error, to calculate how much a and b are to be changed by to reduce e. This process
is called backward propagation. Properly training a machine learning model is a iterative process, and 
the training often takes over 100 000 iterations.

An example of use case is to use the square footage of an apartment to predict the sell price of that 
apartment. Here x is the square footage and y is the sell price, a and b are the weights created by the 
machine learning model. This type of model is quite restricting, and can only model simple linear 
connections, but in many cases yield a good enough result. 

 2.2.3  GROUPS OF MACHINE LEARNING ALGORITHMS

Machine learning can be grouped into different groups depending on the task at hand. These groups 
are: supervised-, unsupervised- and reinforcement learning. 

Supervised learning are used for classification and regression problems, and they require labeled 
training data. The labels is often called features and targets, in this thesis features is the raw sensor 
values, and the targets are the gas concentrations. Generating a high-quality data-set can be costly, 
and may require a lot of manual labor. Classification is when the model predicts a class (true, false, cat,
dog, cancer, not cancer etc.). Regression on the other hand is when a continuous value is to be 
predicted (price of a house, concentration of a gas etc.) (Gibson, Rogers, & Zhu, 2013). 

Unsupervised learning are when non labeled data is given to the model. This type of learning are most
used for grouping (e.g. type of movie, book, customer etc.) (Hahn, 2019).

Reinforcement learning are often used for training of robots that are to perform a task (e.g. walk 
through a maze). This is done by rewarding the model when it does something correct (solves the 
maze), or punishing the model when it does something wrong (crashes into a wall, is to slow, etc.).

 

Machine learning

Supervised Unsupervised Reinforcement

Classification Regression Clustering

Figure 4: Different types of machine learning. Made by the author.

6



 2.2.4  COST FUNCTIONS

Machine learning models may have different cost functions. A cost function is a function, which based 
on the output from a machine learning model, calculates a number that represents the performance 
of the model. In a regression problem, the cost function usually is mean squared error (MSE), or mean 
absolute error (MAE), but other cost functions are also used, such as mean absolute relative error 
(MAPE). In a classification problem, the cost functions above does not work, and functions such as 
binary cross entropy is used (E Silva, Jino, & De Abreu, 2010).

 2.2.5  TRAINING AND TESTING

When a machine learning model is evaluated, it predicts the targets from the features of the dataset. 
Then based on the predicted targets, and actual targets, a cost is calculated using the cost function. 
Initially, when the machine learning model is new, the cost will be high, and the goal of the training 
process is to minimize the cost. This means that by changing the cost function, the model can be 
optimized for different performance metrics (e.g. optimize the relative error instead of error). 

While training machine learning models, it is common to divide the dataset into a test set and training 
set. The training set is used for training the model, and the test set is used for testing the performance
of the model (E Silva et al., 2010). 

 2.2.6  PRE-PROCESSING

Before data can be fed into a machine learning algorithm, it needs to be pre-processed. The pre-
processing part of a machine learning model can vary in complexity, and when done right, it can 
improve both accuracy and compute time. 

The most common way to pre-process data is to standardize it, this transforms the data such that the 
mean is zero, and standard deviation is one. This is important since most machine learning algorithms
are optimized to work with data in this range, and if the data is not standardized, the model may take 
more iterations to train, and yield worse results (Joshi, 2016).

Other useful methods are feature extraction and feature augmentation. Feature extraction is the 
process of selecting some of the features of the data. It is useful if some features contains little or no 
information, or when there are too many features to efficiently process. Feature augmentation is when
new features are created from the old features. There are many different methods for feature 
augmentation, and one common method is to use principal component analysis (PCA). By using PCA, 
the number of features can be reduced by orders of magnitude, without loosing significant 
information in the data. Another method is to simply manually create new features (e.g. x3 = x1 / x2), 
however, this often requires knowledge about the data, and can be time consuming (Sun, Lu, Pang, & 
Sun, 2019).

 2.2.7  THE NEURAL NETWORK

A neural network (NN) is a machine learning model that have been the key component in a new 
subfield of machine learning called deep learning (DL) (Moons, Bankman, & Verhelst, 2019). The 
design and structure of a neural network was inspired by the way neurons inside the brain work. Each 

7



neuron takes multiple inputs, and produces an output, which can then given to other neurons. This 
structure is then used to build a network of neurons. Neural networks have shown to produce high 
performing machine learning models. Another benefit is that neural networks can be altered by 
changing the number and layout of the neurons, this changes the complexity of the network and 
allows for high flexibility when using neural networks.

 2.3  EMBEDDED SYSTEMS
An embedded system is a small computer system designed to solve a specific problem, and that 
interacts with its environment, often through an electrical, chemical, or mechanical interface. They can
vary a lot in size, price, and functionality, from controlling the windows in a car, to a fully fledge 
computer (Valvano, 2017). 

In this thesis the focus on embedded systems will be limited to ARM processors due to their 
widespread use in the industry.

Embedded systems often comes in the form of a system on chip (SOC), which are either based on a 
microcontroller (MCU) (bare metal) or a microprocessor (MPU) (single board computer (SBC)). Both 
types of embedded systems are widely used, and are useful for different applications.

 2.3.1  MICROCONTROLLER (MCU)

Microcontrollers are small chips focused on power-consumption and size, they have integrated CPU, 
memory and input/output (IO) on the silicon die (ARM, 2019b). Because of this, they often only require 
power in order to be integrated into a circuit board. This makes them cheap to use, however, much of 
the internal silicon real estate is taken up by components that normally is located on external 
components (memory, input/output etc.). This mean they have fewer functionalities and worse 
performance characteristics when compared to microprocessors (lower clock speed, less RAM etc.). 
The microcontrollers produced by ARM is known as the cortex-m family and are ideal for deeply 
embedded applications (ARM, 2019b).

There are very limited resources on a microcontroller, typically there is between 128-512kB of RAM 
(volatile storage) and 512-2048kB of flash (non volatile storage) on a high-end microcontroller. For 
context, a typical low-end modern laptop have a minimum of 4 GB of RAM and 128 GB of storage. This 
constraint mean that typically, microcontroller applications are written in a low-level programming 
language such as C, C++ or assembly, then compiled to machine specific instructions.

8



 2.3.2  SINGLE BOARD COMPUTERS

A single board computer (SBC) is a complete computer built on a
single circuit board. They usually have a separate microprocessors
(MPU), memory, input/output, and other components required to
operate. This means that they have more available resources than
a microcontrollers, both in term of computational power and
available memory. This gives them the performance needed to
run an operating system.

Most single board computers are based on a micro processor unit
(MPU) designed by ARM. These processors uses one of ARM’s
instruction sets (ARMv7, ARMv8 etc.) and does not understand the
x86 instruction set used by Intel and AMD (x86 is the proprietary
instruction set used by Intel and AMD, which combined had nearly
100% computer market share in 2017 (Aram, 2017)). This means
that programs running on a SBC either have to be compiled for
that specific architecture, or written in a interpreted language
such as Python or Java (Indiana University, 2018). 

 2.4  CLOUD, FOG AND EDGE COMPUTING
When designing a system that requires computations (e.g. processing sensor data) there are multiple 
infrastructures that can be utilized. These infrastructures can be grouped into cloud, fog and edge 
computing. The different infrastructures carries both pros and cons when it comes to cost, complexity,
and latency. 

Local network

Cloud 
(servers)

Edge device 
(sensors)

Fog device 
(Computer)

Edge device 
(sensors)

Edge device 
(sensors)

Edge device 
(sensors)

Fog device 
(Computer)

Figure 6: Difference between the Edge, Fog and Cloud. Made by 
the author.

9

Figure 5: The Raspberry Pi 4 is 
a popular and modern high 
performance SBC capable of 
running a normal operations 
system. Image is gathered from
(Pi Raspberry, 2019).

drawings/cloud%20fog%20and%20edge%20computing.svg


 2.4.1  CLOUD COMPUTING

The cloud is essentially a big computer (server) placed somewhere on the internet. It is commonly 
used for storage, hosting websites, and performing computations. The benefit to utilizing the cloud is 
that it is always available (with an internet connection), and have seemingly unlimited of resources. 
When utilizing the cloud for computation and processing of sensor data, the sensor data needs to be 
transmitted over the internet. In some cases, this requires transmission of sensitive data and thus 
security may be of concern. Data bandwidth and latency should also be considered, as some types of 
sensor devices generate large amount of data, and transmitting them could be expensive and time 
consuming (Das, Barik, Dubey, & Roy, 2018).

 2.4.2  FOG COMPUTING

The fog is a group of devices located within the local network of a sensor device, and usually have the 
computation power similar to a regular computer or greater. Benefits of using a fog device, is that 
data does not need to be transmitted over the internet, and both security and bandwidth is thus less 
of a concern. However, a local device needs to be installed, and for small installations (e.g. one single 
sensor in one house), this may not be cost effective. However, in some cases it may be ideal, such as 
places with large networks of sensors (e.g. temperature and humidity monitoring different places in a 
warehouse) (Das et al., 2018). 

 2.4.3  EDGE COMPUTING

Edge computing is when the computations is performed locally where the data is produced, instead of
transmitting the data for remote computations. In a sensor application, this means to process and 
analyze the sensor data at the sensing device. This removes the security, bandwidth and latency 
concerns that may arise with cloud computing. However, edge devices have far fewer computational 
resources compared to the cloud and fog, and upgrading a edge device is also harder. This makes it 
not always computational feasible to utilize edge computing (Bhat & Goh, 2017).

 2.5  PROGRAMMING TOOLCHAINS
There are many different toolchains to choose from when it comes to both embedded programming, 
and machine learning. In this subchapter a few options will be presented.

 2.5.1  EMBEDDED PROGRAMMING

When programming embedded systems, the companies that produce the microcontroller (MCU) often 
have their own recommended tools to use for programming. Since programming microcontrollers and
single board computers (SBC) are programmed differently, the focus will be on microcontrollers.

Microcontrollers have to be programmed in a compiled language (in most cases), and not all compiled 
languages are designed for low level programming. C, C++ and Rust are three compiled programming 
languages frequently used in embedded programming. 

10



  C programming for embedded systems

The C programming language is the most used programming language for programming embedded 
systems. It was originally designed at Bell Labs by Dennis Ritchie as a system level programming 
language, and originally created for writing the UNIX operating system. The C programming language 
provides low level memory access, and is designed for having virtually no overhead (Chantelle, 2017).

  C++ programming for embedded systems

C++ were developed as a response of the lack of objects/classes in the C programming language, and 
was originally designed as an extension of C (originally named C plus classes). However, it have been 
continually developed, and have become its own language since then. It keeps a lot of similarities with 
C, and most C programs can be compiled with a C++ compiler. C++ can be used for programming 
embedded systems, although C is more popular, many new projects decide on using C++ instead of C, 
but this is usually done with a syntax similar to C (Chantelle, 2017). 

  Rust for programming embedded systems

Rust is a relatively new programming language created to be a modern alternative to C and C++. The 
main focus of Rust is to guarantee a fast and memory safe language. Although it is possible to use 
Rust and there are benefits of doing so, it have still not reached a widespread use, and the 
development tools are in its infancy (Chantelle, 2017). 

  CMSIS

The CMSIS (Compliant ARM Cortex Microcontroller Software Interface Standard) is a vendor-
independent hardware abstraction layer for Arm Cortex processors (ARM, 2019a). It contains different 
components/libraries that can be included into a project. 

  STM32CubeMX

ST is a manufacturer of ARM Cortex-M microcontrollers, which also produces accompanying software 
tools, one of which is STM32CubeMX. This tool lets developers configure a microcontroller in a 
graphical user interface (GUI). When the desired configurations are made, it produces source code 
with correct configurations (clock, pin configurations, etc.) and accompanying hardware abstraction 
layers (HAL). These HALs can be used for communicating with peripheral such as USB, I2C and SPI etc 
(ST Microelectronics Inc., 2020). Some code generated by STM32CubeMX uses the CMSIS. 

 2.5.2  MACHINE LEARNING MODEL DEVELOPMENT

When creating machine learning models and applications, there are multiple programming languages,
tools and libraries to choose from. All tools have their pros and cons, and are designed for different 
applications and use. Python is currently the programming language of choice when it comes to 
developing of machine learning models. The reason Python is well suited for machine learning 
applications, is because of the abundance of libraries written for it. When it comes to computation 
however, Python is slow, so many of the libraries are optimized with faster languages such as C and 
C++ (Joshi, 2016).

  Sci-kit learn

The sci-kit learn library is a large library containing many different machine learning tools, and contain
all the tools needed for most types of machine learning problem. It contains tools for splitting and pre-

11



processing data, as well as machine learning models for both regression, classification and clustering 
(Joshi, 2016).

  TensorFlow

TensorFlow is a toolchain created by Google Brain, optimized for parallel computation. It have support 
for utilizing a GPU for computation (which Sci-kit learn does not). In recent years, the machine learning
library Keras have been integrated into TensorFlow. This makes TensorFlow a good choice for creating 
neural networks. The networks within the Keras library is well written and optimized, and thus easy to 
use when creating neural networks (Joshi, 2016).

 2.6  EMBEDDED MACHINE LEARNING TOOLS
There are a number of different tool developed for aiding in the development and deployment of 
embedded machine learning. In this chapter some of thees tools will be presented.

 2.6.1  CMSIS NN

The CMSIS NN component contains a software library for neural network development on ARM 
microcontrollers. It is designed and highly optimized for high performance and low memory footprint 
on ARM devices. It utilizes the Single Instruction Multiple Data (SIMD) instruction set, which can yield 
up to 4x improvement in computational performance (Lai, Suda, & Chandra, 2018).

 2.6.2  X-CUBE-AI

X-Cube-AI is a extension to the STM32CubeMX tool, and is used for implementing pre-trained neural 
networks on a microcontroller. This tool can import pre-trained models from different machine 
learning toolchains (Keras, Caffe, etc.) and convert them into C code which can be run on a 
microcontroller. X-Cube-AI utilizes the CMSIS DSP (Digital Signal Processing) component and the SIMD 
instruction set, but in a compiled binary object, and is thus not open source, in contrary to the other 
HALs produced by STM32CubeMX (ST Microelectronics Inc., 2019).

12



 3  METHOD
In order to develop and test the embedded machine learning firmware, a microcontroller is needed. 
The microcontroller used is the STM32F767zi which is a ARM Cortex-M7F based microcontroller with 
512kiB of RAM, 2MiB of flash, and a dedicated floating point unit (FPU) (ST Microelectronics Inc., 2017).

The source code for the firmware and machine learning models produced in this thesis is hosted on 
GitHub, this makes it easy to view the development process, and iterative design of the embedded 
system firmware. The machine learning models were developed using python and the Keras library.

All the code developed and used can be found here: https://github.com/balderk/embedded_ml , and 
all the tools used are free to download and install.

 3.1  AIR QUALITY DATASET EVALUATION
Development of a machine learning algorithm require a good labeled dataset. In this thesis, the same 
dataset as used by Julia Førde in her thesis will be used. This dataset contains raw sensor readings 
from a MOX gas sensor, combined with reference measurements from a gas spectrometer. The MOX 
gas sensor have 5 sensing elements in addition to a temperature sensor, relative humidity, and 
absolute humidity. The reference measurements have measurements for 5 compounds: Carbon 
monoxide (CO),  Non Methane Hydro Carbons (NMHC), Benzene (C6H6), Nitrogen oxides (NOx) and 
Nitrogen dioxide (NO2) (UCI, 2016). The full and original dataset can be gathered from 
https://archive.ics.uci.edu/ml/datasets/Air+Quality.

Figure 7: Graphical view of missing values in the dataset. This visualization was created by
using the missingno python library and is useful for deciding how to treat missing values.
The white lines represent missing data. Made by the author.

The sensor measurements were taken at hourly intervals between 10. March 2004 and 4. April 2005 
with a total of 9357 readings. As can be seen in figure 7, there are many missing values, especially in 
the Non Methane Hydro Carbons (NMCH) column. After removing the NMHC column and all the rows 
with missing data, 6941 samples remain.

13

https://archive.ics.uci.edu/ml/datasets/Air+Quality
https://github.com/balderk/embedded_ml


Something worth noting is that often where there are missing values in one of the reference 
measurements, the values is also lacking for all the other reference measurements. The same is true 
for the sensor readings. This makes it easy to justify the removal of these samples, as they contain no 
useful data for the machine learning model. 

 3.2  SOFTWARE TOOLS USED FOR DEVELOPMENT
For developing the machine learning model, the programming language Python was used, combined 
with the library TensorFlow and Keras. To aid in data management, the Pandas and Numpy libraries 
were used, and for visualizations the Matplotlib and Seaborn library were used.

The embedded code developed in this project was written in the C programming language, and the 
STM32CubeMX tool was used to generate template code for using the peripheral, and the X-Cube-AI 
extension was used for converting the machine learning model to embedded C. 

 3.3  PERFORMANCE ANALYSIS
To assess the different models, the performance of the system must be measured. The overall 
performance of the system developed can be divided into machine learning model performance and 
embedded systems performance. Since there is no single metric for analyzing the performance of 
these two parts together, they will be analyzed separate. 

 3.3.1  MACHINE LEARNING MODEL PERFORMANCE ANALYSIS

To analyze the performance of a machine learning model, the predicted values from the model must 
be compared with the actual values. This can be done by using multiple different metrics, but in this 
thesis three metrics have been chosen: Mean Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), and R2 score.

Mean absolute error tells us the expected deviance in the measurement, and is a much used metric for
regression problems. In this case, the MAE tells us the expected error of the prediction in term of ppb  
NOx.

There is a major limitation with using MAE, this is because the MAE score of different gasses have 
different units, and cannot be directly compared. This limitation is removed when using the mean 
absolute percentage error (MAPE) metric, as this measures how many percent the measurement will 
be off (e.i. independent of the gas component). When it comes to gas sensors, vendors such as UST 
also uses the MAPE metric to describe the accuracy of their gas sensor (UST, 2017).

14



Figure 8: Example of R2 scores with accompanying plots showing the predicted vs true gas
concentration. As can be seen on the plots, the model is much better at predicting C6H6 
than NO2. Made by the author.

The R2 score gives a value between -1 and 1, and tells the linearity between the predicted value, and 
actual value. A R2 value of 1 means perfect prediction, and is the measurement used by AQ-SPEC in 
their independent testing of different gas sensors (AQ-SPEC, 2019), and by Julia Førde in her master 
thesis. 

 3.3.2  EMBEDDED SYSTEM PERFORMANCE ANALYSIS

On an embedded device, performance can be measured by two metrics: compute time and memory 
usage. As they both have different impact on the system. 

Compute time is the time needed to perform the conversion computation on the embedded device 
(lower is better). On a real-time system, this is especially important since they have timing 
requirements that can be broken if the computation takes to long. Not all embedded systems are real-
time systems, and thus may not be of concern. Another consequence of high compute time is the 
power consumption. If the compute time is low, battery powered devices can go to an idle state 
between conversions. The more time needed for computation, the longer the microcontroller is in a 
high energy state, and the more power is drained. However, since the power usage of embedded 
devices is often low (a power consumption around 0.1W is common), this is only applicable for battery 
powered devices (Ŝimunić, Benini, & De Micheli, 2001).

Memory usage is important as it greatly affects the price of the microcontroller needed to run the 
computation, since both flash and ram directly affects the price of the device. Flash is needed for 
storing the model and weights, and RAM is needed to store intermediate values. Ram usage is usually 
much lower than flash usage, as there are fewer intermediate values than weights. Both flash and ram
usage can be reduced by compression of the weights, but this may affect the performance of the 
machine learning models.

To measure compute time on an embedded device, multiple techniques can be used. One common 
method is to use the built in clock to measure the timestamp before and after the calculation, another 
is to use external pins on the microcontroller. When using external pins, one pin is set to a high 
voltage state before the calculation, then low after the calculation, this signal can then be monitored 

15



by an external device. In this assignment the latter method will be used, as this yield the highest 
accuracy as the process of toggling pins is fast, and carries little overhead (Valvano, 2017). 

 3.4  MACHINE LEARNING MODEL STRUCTURE
The machine learning model structure is divided into tree parts: Preprocessing, Network, and 
Evaluation. The final goal with the development of the different parts, is that the final model can be 
implemented on a microcontroller. The X-Cube-AI tool was used for implementing the resulting Keras 
model on a microcontroller, thus the focus will be on only using Keras modules that is supported by 
the X-Cube-AI tool. This have the benefit of making the conversion process easy and reproducible.

Sensor data Preprocessing Network Evaluate Gas concentrationSensor data

Figure 9: Model structure overview. Made by the author.

 3.4.1  PREPROCESSING STAGE

In the preprocessing stage the data is standardized. This makes the average value of each sensor  
zero, with a standard deviation of one. The formula for performing this conversion is presented in 
equation 3.1, where  is the average of the data, and  is the standard deviation of the data.

(Equation 3.1)

This usually makes the training process run faster, and makes the models perform better. It is easy to 
implement this calculation with programming, however, for ease of portability this step is done as a 
layer in the Keras model.

 3.4.2  NEURAL NETWORK STAGE

For prediction on the sensor data a fully connected neural network was used. When adding a fully 
connected layer to a Keras model, the two most important parameters is the activation function, and 
the number of neurons. The best activation function varies based on the data. A high number of 
neurons in each layer gives the ability to explain complex behavior, at the cost of increased compute 
time, memory usage, and higher probability of overfitting.

 3.4.3  EVALUATION STAGE

To evaluate the result from the neural network and get the gas concentrations from the model, a fully 
connected layer is used. The layer have the same amount of neurons as the number of gas 
components in the dataset, this way each neuron gives the gas concentration of one component. This 
method is common to use when working with multi-class problems (i.e. multiple different gas 
components). This layer also require an activation function, since this is a regression problem, a linear 
activation function is used. In classification problems it is common to use the sigmoid or softmax 
activation function.

16



Input layer /  
Sensor readings

Hidden network Output / 
Gas concentration 

Figure 10: Neural network visualization. Each line represent a calculation, and 
each dot represents an intermediate stored value. Made by the author.

 3.4.4  REGULARIZATION

When training the machine learning model overfitting of the training data may occur, regularization is 
a tool to prevent this from happening. Various different regularization methods were used in this 
thesis. One of these methods consist of adding random Gaussian noise to the sensor values, this can 
simulate inconsistent sensor readings, and work by artificially producing more (lower quality) data 
samples. L2 regularization for the kernel and activation of the network were also used, which 
encourages the neurons to use more of the input it is given (use values from multiple sensors). 

Figure 11: Illustration showing difference between overfitting and underfitting  (Shubman, 
2018).

 3.5  EMBEDDED MACHINE LEARNING MODEL
After the machine learning model was created, it was imported into the X-Cube-AI tool in order to 
convert it into embedded code. Due to the memory constraints of the embedded device a maximum 
of 3 models could be implemented on the microcontroller at the same time, however, for real world 
applications one model would be sufficient. The X-Cube-AI tool informs if the model and modules used

17



by the model can be converted to embedded code. It also informs if there is a reduction in accuracy by
converting the model. 

Since the MOX gas sensor used to create the dataset is not available, sensor readings from the dataset
have been stored on the flash. This gives the possibility to simulate the gas sensor, while also knowing 
the actual gas concentrations. In the microcontroller firmware, the microcontroller reads raw sensor 
readings from flash, then converts them into gas concentration by using the machine learning models.
After converting the sensor readings the predicted values are printed, along with the true gas 
concentration.

Figure 12: Embedded machine learning workflow (ST Microelectronics Inc., 2019)

Figure 12 illustrates the workflow of creating a embedded machine learning model using the X-Cube-
AI tool. The first step is to create a regular machine learning model using one of the possible 
frameworks. Then the X-Cube-AI tool is used to convert this machine learning model into embedded 
code. This significantly simplifying the process, and reduces the development time.

18



 4  PRESENTATION OF THE FINAL CODE
After some initial testing and tuning, a set of machine learning models were implemented on the 
embedded device. In this chapter some of the code will be presented and explained. Due to limitations
to this thesis syntax of the programming languages, or how the libraries are to be used will not be 
explained. However, when necessary, an explanation of what the code does will be provided. The code 
presented in this chapter is only a small subset of the code produced in this thesis, and the code 
sections may have been slightly altered to improve the readability of the code. The original code can 
be found in the GitHub repository here: https://github.com/balderk/embedded_ml.

 4.1.1  IMPORTING THE TRAINING DATA

The dataset is provided as an excel file, and must be imported into Python in order to use it to train the
machine learning model. To make this process easier, a set of functions were created to perform this 
function. 

def get_data() -> pd.DataFrame:
    # target_keys = ['CO(GT)', 'NMHC(GT)', 'C6H6(GT)', 'NOx(GT)', 'NO2(GT)']
    df = pd.read_excel(get_filename())

    for key in df.columns:
        df[key].replace(-200, np.NaN, inplace=True)

    return df

def get_feature_targets(dropna=False, feature_keys=None, target_keys=None 
          ) -> (pd.DataFrame, pd.DataFrame):

    if feature_keys is None:
        feature_keys = ['PT08.S1(CO)', 'PT08.S2(NMHC)', 'PT08.S3(NOx)', 'PT08.S4(NO2)', 

    'PT08.S5(O3)', 'T', 'RH', 'AH']
    if target_keys is None:
        target_keys = ['CO(GT)', 'NMHC(GT)', 'C6H6(GT)', 'NOx(GT)', 'NO2(GT)']

    data = get_data()[feature_keys + target_keys]
    if dropna:
        data = data.dropna()
        data.reset_index(drop=True, inplace=True)
        
    features = data[sorted(feature_keys)]
    targets = data[sorted(target_keys)]

    return features, targets

The code presented above is the function definitions for importing the targets (gas concentrations) 
and features (raw sensor readings) of the dataset. The ability to filter out rows containing missing 
values have been added, as well as the ability to select which columns to import from the dataset.

all_target_keys = ['CO(GT)', 'NMHC(GT)', 'C6H6(GT)', 'NOx(GT)', 'NO2(GT)']
drop_target = {'NMHC(GT)'}

f, t = get_feature_targets(
    dropna=True,
    target_keys=list(set(all_target_keys) - drop_target),
    drop_outliers=True

19

https://github.com/balderk/embedded_ml


)

train_f_df, test_f_df, train_t_df, test_t_df = train_test_split(f, t, test_size=0.3,
                                                                random_state=1203)
train_f, test_f, train_t, test_t = train_f_df.values, test_f_df.values,
                                   train_t_df.values, test_t_df.values

When importing the data, it is split into features and targets, then it is separated into a train and test 
set. The train set is used when training the model, and test set is used to test the performance of the 
model, this is useful when comparing different models. The column containing NMHC data was 
dropped, due to the high number of missing values in this column.

 4.1.2  CREATING THE NEURAL NETWORK

In order to quickly train multiple different models for evaluation and comparison, a function for 
training the models was created. This function took a model definition and a set of parameters, then 
trained the model and returned a fitted Keras model, which was saved to file. A typical model 
definition is presented below. 

input_layer = layers.Input(shape=(f.shape[1],), dtype='float', name='Sensor_data')
first_layer = layers.BatchNormalization(name='Preproprocessing')
last_layer = layers.Dense(t.shape[1], 'linear', name='Output_layer')
model = [
first_layer,
layers.Dense(
    64,
    activation='relu',
    name='Layer_1',
    kernel_regularizer=regularizers.l2(0.01),
    activity_regularizer=regularizers.l2(0.01)
),
layers.Dense(
    32,
    activation='relu',
    name='Layer_2',
    kernel_regularizer=regularizers.l2(0.01),
    activity_regularizer=regularizers.l2(0.01)
),
layers.Dense(
    32,
    activation='relu',
    name='Layer_3',
    kernel_regularizer=regularizers.l2(0.01),
    activity_regularizer=regularizers.l2(0.01)
),
last_layer
]

20



Size of sensor reading, 5 MOX 
elements, 1 temperature and 2 
humidity measurements.

Preprocessing by standardization 
of sensor reading.

Regularization layer.

Network for extracting information 
from data.

Prediction layer. Predicts 4 gas 
concentration values.

Figure 13: Example machine learning model containing three hidden layers. Made by the 
author.

Figure 13 shows the layout of one of the machine learning models. A short explanation of what the 
different parts of the model does is provided. As can be seen by looking at the upper most block, this 
model expects eight (sensor) values, and from the last block, the model outputs four gas 
concentration values.

 4.1.3  TRAINING THE MODEL

For training the mode, the model definition is used to create a Keras model object as shown in the 
code section below. In order to use the model, the model definition have to be compiled with a loss 
function and optimizer. In this example, the mean absolute percentage error (MAPE) was chosen as 
loss function, and the Adam optimizer was chosen as optimizer. 

opt = config.get('optimizer', optimizers.Adam(lr=1e-3))

model = Sequential(model_definition)  # creating the Keras model object
model.compile(

21



    optimizer=opt,
    loss=mean_absolute_percentage_error,
    metrics=['mean_absolute_error', mean_absolute_percentage_error]
)

The training process is the most time-consuming part of creating a machine learning model, this part 
however, can be accelerated by utilizing a graphics processing unit (GPU) or a tensor processing unit 
(TPU). Depending on the hardware of the computer and what software version of TensorFlow is used, 
GPU acceleration can be enabled by default. The model is first trained up to 100 000 iterations, then 
the learning-rate is reduced before it is trained for another 100 000 iterations. This is to ensure that 
the model properly converges to a optimal point.

hist = model.fit(
    train_f,
    train_t,
    initial_epoch=ini_epoch,
    epochs=epoch,
    batch_size=len(train_t),
    validation_data=(test_f, test_t),
    validation_freq=val_freq,
    verbose=False,
)

The model is trained on the train set and tested using the test set, this is to help detect when 
overfitting is occurring. The hist object that is returned can be used to view the progress during 
training.

Figure 14: Graph that shows the loss in mean absolute percentage error 
(MAPE) during the different iterations. As can be seen from around 
iteration 90 000, which is where the learning-rate is reduced, the loss goes
more steadily down. Made by the author.

22



Figure 14 shows a visualization of how the loss value changes over the number of iterations. This is 
mainly useful for two things: checking if something is wrong (e.g. the model performance does not 
improve) and evaluating if the model have converged to a optimum. Here we can see that the loss 
have stopped decreasing, and the model have converged.

 4.1.4  SAVING THE MODEL

In order to use the model at a later stage, it have to be saved as a file. This makes it easy to import the 
model at a later stage. The Keras model object in Python have a built in function for saving the model 
as a file, this file contains both the model definition and the weights calculated in the training stage.

model.save(f'{name}.h5')

 4.1.5  CREATING THE EMBEDDED SYSTEM TEMPLATE PROJECT

In order to create the embedded firmware, a template project was first created using the 
STM32CubeMX program. The firmware is using the UART module to transmit the predicted gas 
concentrations, as well as GPIO for use in performance measuring and controlling status LEDs. There 
is also configurations made to configure the clock layout and frequency, instruction and data cache, 
and interrupt vector table. An example of configuring the UART module is presented in figure 15.

Figure 15: Example of using STM32CubeMX for configuring the UART 
peripheral on the STM32F767zi. Made by the author.

After the peripheral have been configured, the machine learning model can be imported using the X-
Cube-AI add-on tool. When importing machine learning models into this tool, information regarding 
the memory usage, and model complexity is shown.

23



Figure 16: Example of using the X-CUBE-AI tool with three different models. 
Made by the author.

Figure 16 shows an example of three machine learning models imported into X-Cube-AI. For 
convenience, the models are named nn1, nn2, and nn3. From the table in figure 16, we know that the 
models require a total of 1.07MBytes flash, and the total amount of flash available on STM32F767zi is 
2MBytes. This means that there is enough flash on the device to store all the models.

 4.1.6  DEVELOPING THE EMBEDDED SYSTEM CODE FROM THE 
TEMPLATE PROJECT

After the template project is generated by STM32CubeMX, project specific code must be added. The 
embedded code is written in C, using the library functions provided by ST Microelectronics. Since the 
same calculations and initiations needs to be done on all the different models, there is a lot of 
repetition in the code. The example code shown in this subchapter have been simplified to remove 
thees repetitions. A flowchart of the program is shown in figure 17.

24



Allocating and initialization

Reading from MOX gas-sensor

Use machine learning model for 
converting sensor readings into  

gas concentrations

Transmitting result via UART

Figure 17: Overview over the embedded program 
flow. Made by the author.

The first step of the program is to allocate the memory needed and initialize the models. This process 
takes many lines of code, and is the same for all models, thus only code for allocating and initializing 
one network is shown. The original code is located in the main.c file in the GitHub repository. 

/// allocate the data types
/// NN1
AI_ALIGNED(4)
static ai_u8 nn1_activations[AI_NN1_DATA_ACTIVATIONS_SIZE];
static ai_handle nn1_handle = AI_HANDLE_NULL;
const ai_network_params nn1_params = {
 AI_NN1_DATA_WEIGHTS(ai_nn1_data_weights_get()),
 AI_NN1_DATA_ACTIVATIONS(nn1_activations)};

/// Create the networks
err = ai_nn1_create(&nn1_handle, AI_NN1_DATA_CONFIG);
handle_ai_err(err);

/// Initialize the networks
if (!ai_nn1_init(nn1_handle, &nn1_params)) {
 err = ai_nn1_get_error(nn1_handle);
 ai_nn1_destroy(nn1_handle);
 nn1_handle = AI_HANDLE_NULL;
 handle_ai_err(err);
}

/// Preparing the data in an out
AI_ALIGNED(4)
float target_data[AI_NN1_OUT_1_SIZE];

AI_ALIGNED(4)
static ai_i8 in_data[AI_NN1_IN_1_SIZE_BYTES];

AI_ALIGNED(4)
static ai_i8 out_data_nn1[AI_NN1_OUT_1_SIZE_BYTES];

25



static float *output_data_nn1 = (float *) out_data_nn1;

static float *input_data = (float *) in_data;

ai_buffer inputs[] = AI_NN1_IN;
ai_buffer outputs_nn1[] = AI_NN1_OUT;

ai_buffer *input = &inputs[0];
ai_buffer *output_nn1 = &outputs_nn1[0];

input->data = input_data;
output_nn1->data = output_data_nn1;

After the machine learning models and accompanying data-structures have been allocated and 
initialized, they are ready to be used. In this example, different pointers have been used to make the 
input and output values easier to access. By using pointers this way, it is easy to analyze the values 
given to the machine learning model.

new_sensor_reading(type); // Get new reading
get_sensor_reading(input_data); // Copy the raw sensor values
get_sensor_values(target_data); // Copy the gas concentrations

n_batch = ai_nn1_run(nn1_handle, input, output_nn1);

The new_sensor_reading function reads sensor values from the test or train set, depending on the 
argument given. The functions get_sensor_reading and get_sensor_values then copies the sensor 
values into memory. The ai_nn1_run performs the conversion process, and the predicted gas 
concentrations are stored in the output_nn1 variable. Because of how the data structures was 
initialized earlier, the gas concentrations are located and correctly encoded in the output_data_nn1 
variable, this makes it easy to access the predictions.

When transmitting the data, it is first converted into an ASCII (American Standard Code or Information
Interchange) encoded string before it is transmitted through the UART interface. This encoding is the 
standard encoding for the characters commonly used in the American language. This makes it easy to 
read the result on a separate computer. 

custom_print("\n%14s:\t", "output NN1");
for (int i = 0; i < AI_NN1_OUT_1_SIZE; i++) {
    custom_print("%6d.%.2d ", (int) output_data_nn1[i],
                 abs(((int) (output_data_nn1[i] * 100)) - 
                 ((int) output_data_nn1[i]) * 100));
}

The custom_print function works as the regular printf function commonly used in C, but the 
formatting option for floating point numbers is not implemented, and the data is transmitted via the 
UART interface. By using this function, the process of printing formatted text is simplified, and 
removes a lot of repetitive code. The function definition is presented below. 

void custom_print(const char *format, ...) {
    va_list arg;
    va_start(arg, format);
    int len = vsnprintf((char *) _str_buff, sizeof(_str_buff), format, arg);
    va_end(arg);
    if (len > 0 && len < sizeof(_str_buff)) {

26



        HAL_UART_Transmit(&huart3, _str_buff, len, 100);
    }
}

The transmitted data can be read by using a serial reading program, such as PUTTY or Arduino IDE, 
the output then looks as the shown in figure 18.

Figure 18: Serial output from the embedded systems showing evaluation from both the 
test and train dataset with true and predicted gas concentrations. Made by the author.

As can be seen from figure 18, the text is formatted in a human readable format, both in term of text 
encoding and text placement.

 4.1.7  MEASURING COMPUTE TIME ON THE EMBEDDED SYSTEM

As mentioned earlier, in order to measure the compute time of the different machine learning models,
the microcontroller would set a pin value high before performing a computation, and low after the 
computation. In order to make this process easier to perform, some macro functions were created 
that modified the desired pin. The functions were written as a macro, this is to make the overhead of 
changing the pin value as small as possible. By using the macro instead of a standard function, the 
function call is computed at compile time instead of runtime. This reduces the overhead, while also 
having a function that is easy to use when programming. 

#define SET_DEBUG_PIN(x)                                                       \
  ({ HAL_GPIO_WritePin(DEBUG_##x##_GPIO_Port, DEBUG_##x##_Pin, GPIO_PIN_SET); })

27



#define RESET_DEBUG_PIN(x)                                                     \
  ({ HAL_GPIO_WritePin(DEBUG_##x##_GPIO_Port, DEBUG_##x##_Pin, GPIO_PIN_RESET); })

Below is an example of using this macro for setting pin values high and low before and after 
performing conversion using one of the machine learning models. 

SET_DEBUG_PIN(1);
n_batch = ai_nn1_run(nn1_handle, input, output_nn1);
RESET_DEBUG_PIN(1);

A logic analyzer can then be used for measuring the voltage of the pins on the microcontroller. On 
slow systems, a logic analyzer can be replaced with an LED, and the compute time can be visually 
evaluated. However, to achieve high accuracy measurements a logic analyzer is used. Output from the 
usage of a logic analyzer is presented later in this paper.

28



 5  EVALUATION AND RESULTS
In this chapter, the results from both the machine learning model and the embedded system will be 
presented. Since the results from the machine learning model and embedded systems are not 
comparable, they will be presented and discussed separate. 

 5.1  COMPARING THE MACHINE LEARNING MODELS
For evaluating the machine learning models, the parameters mentioned earlier will be calculated on 
the test part of the data-set. This gives key metrics that represent the expected real life performance 
of the machine learning model. A total of 173 different models with different parameters were 
created, and to ease the process of comparing these models against each other, a simple naming 
system were created. 

To explain this naming system, an example name will be used: the model named 
“relu_256_kareg_mare_GN0.05_lr0.001” uses the relu activation function. The first hidden layer have 
256 nodes, a Gaussian noise with standard deviation of 0.05 is used. MARE tells that the optimizer 
tried to reduce the mean absolute relative error, and lr0.001 says that the learning rate of the 
optimizer is set to 0.001. The name kareg tells that both the kernel and the layer activity are 
regularized, areg would mean that only the layer activity is regularized, and kreg would mean that 
only the kernel is regularized. In order to get all the details about the model, the .h5 model file must 
be imported and analyzed using the Keras library. The model files are located in the “model/results” 
directory in the GitHub repository.

After evaluating a model, we are left with one score for each gas and each metric (which gives a total 
of 12 values for each model). In order to compare the models and pick out the overall best model, the 
average score across the different gas component is used, this gives us the average performance for 
each metric. Table 1 contains subset of the different models sorted by the average R2 score on the test
set.

Table 1: Table containing the average performance across the different gas concentrations
sorted by the R2 score.

idx name mape mean mae mean R2 mean
140 relu_512_areg_mare_GN0.1_lr0.001 4.153 5.100 0.975
132 relu_512_areg_mare_GN0.05_lr0.001 4.488 5.500 0.972
124 relu_512_areg_mare_GN0.01_lr0.001 4.513 5.484 0.971
137 relu_512_kareg_mare_GN0.1_lr0.001 4.562 4.944 0.970
129 relu_512_kareg_mare_GN0.05_lr0.001 4.937 5.080 0.967
116 relu_512_areg_mare_GN0.005_lr0.001 4.998 5.501 0.964
138 relu_512_mare_GN0.1_lr0.001 5.229 5.348 0.964
109 relu_256_areg_mare_GN0.1_lr0.001 5.697 7.416 0.963
113 relu_512_kareg_mare_GN0.005_lr0.001 5.774 5.350 0.963
121 relu_512_kareg_mare_GN0.01_lr0.001 5.033 5.083 0.963

29



131 relu_512_kreg_mare_GN0.05_lr0.001 5.349 5.383 0.962
103 relu_256_areg_mare_GN0.05_lr0.001 5.792 7.672 0.961
107 relu_256_kareg_mare_GN0.1_lr0.001 5.791 7.060 0.961
139 relu_512_kreg_mare_GN0.1_lr0.001 5.498 5.254 0.961
130 relu_512_mare_GN0.05_lr0.001 5.436 5.184 0.960

55 relu_256_areg_GN0.5_lr0.001 8.840 7.660 0.960
136 relu_512_areg_mare_GN0.05_lr0.0001 5.795 5.271 0.959

63 relu_256_areg_GN0.5_lr0.0005 9.308 7.404 0.958
39 relu_256_areg_GN0.05_lr0.0005 9.182 8.194 0.956
31 relu_256_areg_GN0.05_lr0.001 8.985 8.387 0.954

Table 1 shows that the performance is really good based on the R2 score (the theoretical highest R2 
score is 1). A more detailed view of the performance of the best model is presented later in this 
chapter. Table 2 is a summary of the best models based on the mape score.

Table 2: Table containing the average performance across the different gas concentrations
sorted by the mape mean metric.
idx name mape mean mae mean R2 mean

140 relu_512_areg_mare_GN0.1_lr0.001 4.153 5.100 0.975
132 relu_512_areg_mare_GN0.05_lr0.001 4.488 5.500 0.972
124 relu_512_areg_mare_GN0.01_lr0.001 4.513 5.484 0.971
137 relu_512_kareg_mare_GN0.1_lr0.001 4.562 4.944 0.970
129 relu_512_kareg_mare_GN0.05_lr0.001 4.937 5.080 0.967
116 relu_512_areg_mare_GN0.005_lr0.001 4.998 5.501 0.964
121 relu_512_kareg_mare_GN0.01_lr0.001 5.033 5.083 0.963
138 relu_512_mare_GN0.1_lr0.001 5.229 5.348 0.964
131 relu_512_kreg_mare_GN0.05_lr0.001 5.349 5.383 0.962
130 relu_512_mare_GN0.05_lr0.001 5.436 5.184 0.960
139 relu_512_kreg_mare_GN0.1_lr0.001 5.498 5.254 0.961
109 relu_256_areg_mare_GN0.1_lr0.001 5.697 7.416 0.963
113 relu_512_kareg_mare_GN0.005_lr0.001 5.774 5.350 0.963
107 relu_256_kareg_mare_GN0.1_lr0.001 5.791 7.060 0.961
103 relu_256_areg_mare_GN0.05_lr0.001 5.792 7.672 0.961
136 relu_512_areg_mare_GN0.05_lr0.0001 5.795 5.271 0.959
114 relu_512_mare_GN0.005_lr0.001 5.822 5.355 0.954
122 relu_512_mare_GN0.01_lr0.001 6.061 5.452 0.953
115 relu_512_kreg_mare_GN0.005_lr0.001 6.088 4.953 0.951
128 relu_512_areg_mare_GN0.01_lr0.0001 6.243 5.488 0.954

As can be seen from table 2, the best model in this table is the same as in table 1. The large networks 
performs overall better than the smaller ones, the network parameters such as learning rate and 
Gaussian noise also affects performance. This implies that better performance can be achieved, both 
by further tuning of the network and by increasing the network size.

30



 5.2  SELECTING MODELS FOR FURTHER EVALUATION
Evaluating the models on a embedded system is a manual and slow process. Therefore only three 
models were selected for further evaluation and testing. The chosen models were: the model with the 
overall best performance, the best model with 256 nodes in the first layer, and the best model with 64 
nodes in the first layer. The results of these models are presented in chapter 5.2.1. The images were 
created using the Seaborn and Matplotlib libraries in Python. The code for creating these images is 
located in the assess_model.py file in the GitHub repository.

 5.2.1  MODEL PERFORMANCE

For a more detailed evaluation and visualization of the models performance, two plots were created. 
One to show the distribution of the PAE score, in the form of a box plot, and one to show the R2 score 
from the different gas components.

The box-plot is a convenient way of showing how big the percentage error usually is. The black line 
within the colored box represents the average error, the box represents the 25% to 75% range, and the
whiskers represent the 5% to 95% range. For a better understanding of the distribution of the 
predictions, a distribution plot can be created. 

Figure 19: The overall highest performing model. Made by the author.

31



Figure 20: The best performing model with 256 neurons in the first layer. Made by the 
author.

Figure 21: The best performing model with 64 neurons in the first layer. Made by the 
author.

What stands out in figures 19 – 21 is that C6H6 is easy to predict, giving a R2 score of 1.000 on all the 
models, but as can be seen on the APE plot, it have some variation. However, the other gas 
components are more difficult to predict. Something else that stands out, is that in all the models 
above, the same components have the same order in term of which gas components that are easy to 
predict (when looking at the R2 score).

When comparing the APE plot with the R2 plot, it stands out that the two metrics does not agree on 
the order of which component is easiest to predict. This is especially visible when looking at the results
for the NOx concentration. On the APE plot the NOx is the hardest to predict, but on the R2 score plot it 
is the 2nd easiest to predict. This means that it have a high linearity between the predicted value and 
actual value, although the error may be significant. 

32



 5.2.2  SUMMARY OF MODEL PERFORMANCE

Table 3 contains detailed information about the performance of the best model obtained in this thesis.
This is necessary in order to properly compare the performance with the performances achieved by 
other people on the same dataset. The table is created with the assess_model.py file in the GitHub 
repository, the file is located in the summary folder.

Table 3: Detailed summary of the model performance. This is useful when comparing with 
other research.

relu_512_areg_mare_GN0.1_lr0.001 R2 score MAPE score

C6H6(GT) 0.9997 0.9549
CO(GT) 0.9732 5.8761
NO2(GT) 0.9486 4.3219
NOx(GT) 0.9804 5.4595

 5.3  RESULTS FROM OTHER WORK
Earlier work for creating a machine learning model for converting the sensor readings into gas 
concentrations exists. In this subchapter, some of these results will be presented. Not all of the 
research have used the same metrics to measure the performance of their models, and some only 
used a subset of the gas components available in the reference gas measurements. The results from 
these studies are presented below.

  Development of algorithm for preprocessing and prediction in Capacitive Micromachined
Ultrasonic Transducers by J. Førde

This thesis developed a similar machine learning model, but only two of the gasses were used: NO2 
and CO. The only comparable metric between this thesis and her thesis is the R2 score. A copy of her 
results is provided in table 4.

Table 4: Copy of the results achieved by Førde in her master thesis. The original table is 
located on page 65 in her thesis (Førde, 2019).

R2 score NO2 R2 score CO Average R2 score
0.80 0.43 0.62

  CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by 
automatic bayesian regularization by De Vito, Piga, Martinotto and Di Francia

This paper created a machine learning model much like what was developed in this thesis. The main 
difference is that this paper was written 11 years ago. This means that both the computational 
capabilities of the hardware, and the machine learning tools were not as developed and refined than 
what was available in the writing of this thesis. In their paper, the authors calculated the Mean 
Absolute Relative Error (MARE), which can be converted to MAPE by multiplying with 100.

33



Table 5: Summary of the highest performance achieved in the paper. (De Vito, Piga, 
Martinotto, & Di Francia, 2009).

MAPE C6H6 MAPE CO MAPE NO2 MAPE NOx

2.0 24.6 22.0 42.0

  Summary table by AQ-SPEC

The South Coast Air Quality Management District (AQ-SPEC) have tested the performance of different 
gas sensors, and created a summary table containing this information (AQ-SPEC, 2019). Although this 
is not directly comparable with the model performance achieved on the test set, it gives an indication 
of the expected performance and value of a final product containing the MOX sensor from the dataset,
and the machine learning model from this thesis. Due to the size of the table, it is attached in 
appendix A.

 5.4  EVALUATING EMBEDDED SYSTEMS PERFORMANCE
In order to assess the viability of using a machine learning model on an embedded system for real 
time conversion of raw sensor readings into gas concentrations, the model must be evaluated on the 
device. The three models selected in chapter 5.2.1 were imported into the X-Cube-AI tool and installed 
on the microcontroller.

 5.4.1  SYSTEM REQUIREMENTS

Table 6: Model information with microcontroller requirements. Table is gathered from the 
X-Cube-AI tool with minor modifications. Multiply-Accumulate operation (MACC) is a metric
used for describing and comparing model complexity, and is an implication of compute 
time. 

Name on MCU Model name Required 
RAM

Required 
Flash Complexity

nn1 relu_64_areg_mare_GN0.1_lr0.001 384 Bytes 15.44 KBytes 3856 MACC
nn2 relu_256_areg_mare_GN0.1_lr0.001 1.54 KBytes 174.93 KBytes 43782 MACC
nn3 relu_512_areg_mare_GN0.1_lr0.001 3.07 KBytes 709.46 KBytes 177360 MACC

Table 6 shows the microcontroller requirements and the complexity of the different models. As can be 
seen from the RAM, flash, and complexity column, the larger models have higher requirements  than 
the smaller models. The most restrictive number from the table is the flash requirements, as many 
microcontrollers have less than 64 KBytes of flash. However, there are methods that can be used both 
for reducing the required flash, and increase the available flash.

 5.4.2  ON DEVICE TESTING

For testing the machine learning model on the microcontroller, the microcontroller transmits the data 
over serial. The resulting serial output can be seen from the section below, taken from a random 
sample. As can be seen from this example, the larger models performed better than the smaller 
models. This can be seen from the MAE and MSE score of the different models (lower is better).

34



TRAIN:
 label:          AH    S1(CO)  S2(NMHC)   S3(NOx)   S4(NO2)    S5(O3)     RH      T
 input data:   1.60    953.25    734.25    861.00   1400.50    825.25  81.02  17.44
 label:       C6H6(GT)    CO(GT)   NO2(GT)   Nox(GT)
 target:          4.40      0.80     61.00     94.00
 output NN1:      4.50      0.81     60.93    125.73
 output NN2:      4.43      0.80     62.12     93.97
 output NN3:      4.45      0.80     60.29     93.13
 mae NN1:      7.97
 mae NN2:      0.29
 mae NN3:      0.40
 mse NN1:    251.78
 mse NN2:      0.31
 mse NN3:      0.31

TEST:
 label:          AH    S1(CO)  S2(NMHC)   S3(NOx)   S4(NO2)    S5(O3)     RH      T
 input data:   0.84   1042.25    813.75    746.25   1167.25   1035.75  75.92   8.42
 label:       C6H6(GT)    CO(GT)   NO2(GT)   Nox(GT)
 target:          6.03      1.70    104.80    286.70
 output NN1:      6.04      1.31     89.88    232.79
 output NN2:      6.12      1.35    103.01    275.48
 output NN3:      6.05      1.69    104.58    284.02
 mae NN1:     17.30
 mae NN2:      3.35
 mae NN3:      0.73
 mse NN1:    782.03
 mse NN2:     32.27
 mse NN3:      1.80

For measuring the compute time, a logic analyzer is attached to the debug pins on the microcontroller.
A output from this logic analyzer is shown in figure 22.

Figure 22: Compute time overview. Image is captured from the waveforms logic analyzer 
software, with small modifications for displaying pulse width time. Made by the author.

35



As can be seen from figure 22, the size and complexity of the model directly affects the compute time. 
The largest model took about 5 ms to compute, and the smallest network only took about 0.13 ms. 
Keep in mind that this is on a high end microcontroller running at its highest rated clock frequency, 
with data cache, instruction cache, and FPU enabled, which all reduces the compute time. A budget or 
low power microcontroller usually runs at a lower clock frequency, and does not have access to either 
a FPU or cache, which means that the compute time will increase. 

There are techniques that can be used for reducing the compute time that are not used in this thesis, 
such as pruning the network or changing from floating point weights to fixed point weights. These 
alterations to the machine learning model may negatively affect the performance of the model, as well
as require more development time to implement and test.

36



 6  DISCUSSION
During this thesis, a machine learning model for converting raw sensor readings into sensor values 
have been created and implemented on a microcontroller. This was done by using a dataset 
containing sensor readings from a MOX gas sensor, and reference gas concentration measurements. 
Due to the lack of availability of an actual gas sensor, the sensor was simulated on the microcontroller.
In this chapter, the commercial viability and performance of the model in comparison with other 
models will also be discussed. The value of using machine learning for developing a conversion 
algorithm will also be discussed, as well as limitations in this thesis.

 6.1  THE COMMERCIAL VIABILITY OF THE MODEL
To assess the commercial viability of the model, a theoretical gas sensor containing a MOX gas sensor 
combined with the machine learning model will be used. The performance of this theoretical gas 
sensor is assumed to be equal to the performance presented in table 3. 

The performance is compared with the gas sensors in the summary table from AQ-SPEC, a copy of this 
table is available in appendix A. When only looking at the R2 score of the model developed in this 
thesis, its performance is comparable with the most expensive gas sensors in the list, and also 
outperforms most of them, while also covering more gasses. The model is well within the top 10 gas 
sensors in the list, both when looking at each individual gas component and the average R2 score. This
shows that this product would not only be commercial viable, but be among the highest performing 
gas sensors.

However, there are limitations with comparing this theoretical product with the gas sensors in the 
summary table. The main limitation is that the performance achieved in this thesis is completely based
on the dataset produced from one gas sensor, whereas the sensors in the summary table are 
commercial available sensors tested in the field by a independent third party. This makes the results 
from the summary table more trustworthy and true to reality.

Another limitation is that the gas components measured are different, both in term of number of gas 
components, and which gas components that are being measured. As an example, the “2B 
Technologies POM” sensor in the summary table cost $4,500, measures only O3 and have a field R2 
score of 1.00, but the model in this thesis does not measure O3 and can therefore not be compared 
with this sensor. 

Out of the gas components measured by the theoretical gas sensor in this thesis, only NO2 and CO 
exists in the summary table by AQ-SPEC. If focusing on only these two gas components, the highest R2
score for NO2 is 0.77 in the field, and 0.98 in the lab, and for CO the highest R2 score is 0.84 – 0.90. The 
NO2 score of our best model is 0.949 and for CO it is 0.973. This shows that based on the results from 
training and testing the machine learning model, the performance is as good, or better than the best 
sensors in the summary.

37



 6.2  MACHINE LEARNING MODEL PERFORMANCE
As this thesis is uses machine learning on a dataset, it is useful to compare the results from this thesis,
with the results from previous work. Unfortunately, only two papers were found that utilized the same 
dataset as used in this thesis: Førde’s master thesis, and a research paper by De Vito et al. 

The R2 score achieved by Førde in her thesis is lower than the R2 score achieved in this thesis. She got 
an R2 score of 0.80 for NO2 and 0.43 for CO, and this paper got a R2 score of 0.95 for NO2 and 0.97 for 
CO. This is probably due to different approaches taken. She treated each of the MOX sensor elements 
as a single sensor, and tried to predict one gas component (Førde, 2019). This thesis used all the MOX 
sensor elements as one unified sensor, and used that to predict all the gas components. She also used
different libraries, and tested different models than was done in this thesis.

The research paper by De Vito et al used some of the same techniques as was used in this paper, 
however, the networks used were smaller. This may be because of limited computing resources and 
development tools. The MAPE score achieved by De Vito was 2.0, 24.6, 22.0, and 42.0 and this thesis 
achieved a MAPE score of 0.95, 5.88, 4.32, and 5.46 for C6H6, CO, NO2, and NOx respectively. As can be 
seen from the numbers listed, the results in this thesis yielded overall a lower MAPE score.

This shows that the machine learning performance achieved in this thesis is the highest performance 
achieved on this dataset, and is not negatively affected by being developed for implementation on a 
embedded system.

 6.3  GENERALIZATION OF THE MODEL
The model developed in this thesis is specialized and will only be able to convert gas sensor readings 
into gas concentrations on the sensor used to create the dataset. However, the techniques used, and 
the neural networks developed in this thesis can be used on other similar datasets with only minor 
alterations. The only assumptions taken in the development of the model is that the sensor readings 
are continual and not categorical, thus to use this model for predicting concentration of other gas 
components or use other sensors, all that needs to be done is to create a new dataset and re-train the 
models.

 6.4  TUNING THE MODEL
When creating neural networks for converting the type of sensor data used in this thesis, there are 
two major parameters that can be tuned: the number of layers and the number of nodes in each layer.
In this thesis the majority of tuning revolved around varying the number of neurons in each layer, and 
keeping the number of layers small, as well as tuning regularization parameters. The reason for this 
was to make the training process manageable, and keep the network size small, as it took about an 
hour to train each model. With more time and better hardware, it is feasible to do further tuning and 
achieve even greater performance.

The number of different activation functions could also have been increased. Only the tanh and relu 
activation function were evaluated, but the relu activation function yielded far superior performance 
over tanh. Thus the majority of tuning was done using the relu activation function.

38



 6.5  EMBEDDED PERFORMANCE
There are multiple tools and methods that can be used for reducing the compute time and memory 
usage of the machine learning model on the embedded system. This was not done since the these 
metrics was acceptable for many different applications. By using these tools, the evaluation and 
testing part of this thesis would be more complex and time-consuming, as well as taking away time 
that was used on developing and tuning the machine learning model.

Depending on the final application that is to use the machine learning model, these tools and 
methods may be needed, as optimizing the model can greatly affect the price of the microcontroller, 
and battery life of the system. 

 6.6  THE VALUE OF USING MACHINE LEARNING
In this thesis, the goal was to use machine learning to create a conversion algorithm on raw sensor 
values. Through this thesis it have been showed that this is possible, and that high accuracy can be 
achieved. Now the question is if machine learning is beneficial to use over other traditional methods 
for conversion.

Traditional methods yields simpler, and thus faster algorithms than machine learning (usually) 
achieves. However, the machine learning models were fast enough for the real time requirements of 
most gas sensing applications, and thus this is not an issue. One exception is for battery powered 
devices, as the increased compute time will affect battery life. Another exception is for high frequency 
real time systems, where the increased compute time may interfere with the real time requirements.

There are MOX gas sensors in the AQ-SPEC summary table, and the performance achieved in this 
paper is higher than the performance of the gas sensors in the summary table. This may imply that 
generally higher performance can be achieved by using machine learning than by traditional methods.
This also reduces the required sensor specific knowledge to create the conversion algorithm, and may 
reduce the development cost. 

Although higher performance can be achieved by using machine learning, this also requires a large 
high quality dataset. The process of generating such a dataset may not always be feasible or cost 
effective. If the either the size or quality of the dataset is not sufficient, machine learning may not 
produce a model that is good enough for the intended application. 

 6.7  LIMITATIONS
Although the results showed great commercial potential, there is many limiting factors to the value of 
the product that have been developed in this thesis. The biggest limitation is the lack of testing on an 
actual sensor. All the work is based on a dataset produced from one sensor, and all the readings are 
the hourly average sensor reading. This makes it impossible to know the accuracy the sensor have in a
shorter time span. The lack of a sensor also limits the ways in which it can be tested in different 
environments.

39



All the performance metrics used for comparing the model developed in this thesis with the sensors in
the AQ-SPEC summary table, are based on the test set and may therefore not be representative of the 
actual performance. 

Calibration of the sensor is also not taken into account, and is something that probably needs to be 
adjusted for in a final model or product. It was not possible to adjust for calibration in this thesis due 
to the fact that all the readings are from the same sensor.

40



 7  CONCLUSION

 7.1  SUMMARY
The goal of this thesis was to develop and use embedded machine learning for converting raw sensor 
readings into sensor values. The results from this thesis clearly shows embedded machine learning 
can be used for this purpose, and that this can be done with great performance.

To achieve this, a dataset containing sensor readings from a MOX gas sensor paired with reference gas
concentration values have been used. The machine learning model consists of a neural network 
developed using the Keras framework. The model was then ported over to embedded firmware by 
using the X-Cube-AI tool by ST Microelectronics. 

Based on the work that have been done, the value of utilizing embedded machine learning have been 
presented. The techniques used in this thesis can with small modifications be used for creating other 
embedded machine learning products. The performance obtained during this thesis is as good or 
better than the best gas sensors in the AQ-SPEC summary table, with an average R2 score of 0.975 
across the four different gas compounds predicted by the machine learning model. The machine 
learning performance is also the highest achieved performance on the dataset that were used, based 
on the research that have been found.

 7.2  RECOMMENDATIONS AND FURTHER WORK

 7.2.1  CREATE A NEW DATASET

The dataset used in this thesis is small and based on a unknown MOX sensor. Thus creating a new 
larger and higher quality dataset is preferred. The new dataset should contain sensor readings from 
an available gas sensor, combined with reference measurements from multiple different gas 
components, and at a higher sampling frequency. This allows more flexibility regarding the machine 
learning algorithm, and the capabilities of the sensor can be better analyzed.

If multiple identical sensors are used in parallel for creating the dataset, the possibility of creating an 
calibration process is made possible. This will also reduce the time needed for creating the dataset, as 
values can be measured in parallel.

 7.2.2  NETWORK TUNING

Quantization and pruning of the neural network are also worth exploring, as this may both reduce the 
compute time, and memory requirements. Before this work is done, it should be evaluated if the 
increased performance is required for a given task. The sensor values used in this thesis are based on 
the hourly average of the sensor readings, which may imply that a compute time of 5ms is acceptable.

41



 7.2.3  FOCUSING ON COMPLEX SYSTEMS

The main value of using machine learning for generating conversion algorithms when using it to 
describe complex systems. If a new sensor only produces one sensor value (e.g. a MOX gas sensor 
with only one sensing element), machine learning may not be beneficial. It is when the system 
becomes complex with multiple sensing elements, machine learning becomes valuable. If a new MOX 
sensor containing hundreds of different sensing elements were developed, the accuracy of the model 
may become even higher. Machine learning can also be used for finding which sensing elements are 
useful for predicting which gasses, and smaller specialized sensors can be made. 

42



 8  BIBLIOGRAPHY

Akram, A. (2017). A Study on the Impact of Instruction Set Architectures on Processor’s Performance. 189–
214.

AQ-SPEC. (2019). Air Quality Sensor Performance summary table. Retrieved from 
http://www.aqmd.gov/aq-spec/evaluations/summary-gas

ARM. (2019a). CMSIS Version 5.6.0. Retrieved from 
https://arm-software.github.io/CMSIS_5/General/html/index.html

ARM. (2019b). CPU architecture. Retrieved from https://developer.arm.com/architectures/cpu-
architecture

Bainbridge, W. S. (2012). Artificial Intelligence (pp. 464–471). pp. 464–471.

Bhat, R., & Goh, K. M. (2017). Sonication treatment convalesce the overall quality of hand-pressed 
strawberry juice. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.07.160

Burgués, J., & Marco, S. (2018). Multivariate estimation of the limit of detection by orthogonal partial 
least squares in temperature-modulated MOX sensors. Analytica Chimica Acta, 1019, 49–64. 
https://doi.org/10.1016/j.aca.2018.03.005

Chantelle, D. (2017). Programming Languages for Embedded Systems 101: Background and 
Resources. Retrieved from All About Circuits website: 
https://www.allaboutcircuits.com/news/programming-languages-for-embedded-systems-101-
background-and-resources/

Das, H., Barik, R. K., Dubey, H., & Roy, D. S. (2018). Cloud Computing for Geospatial Big Data Analytics: 
Intelligent Edge, Fog and Mist Computing. Retrieved from https://dl.acm.org/citation.cfm?
id=3350446

De Vito, S., Piga, M., Martinotto, L., & Di Francia, G. (2009). CO, NO2 and NOx urban pollution 
monitoring with on-field calibrated electronic nose by automatic bayesian regularization. 
Sensors and Actuators, B: Chemical, 143(1), 182–191. https://doi.org/10.1016/j.snb.2009.08.041

E Silva, D. G., Jino, M., & De Abreu, B. T. (2010). Machine learning methods and asymmetric cost 
function to estimate execution effort of software testing. ICST 2010 - 3rd International 
Conference on Software Testing, Verification and Validation, 275–284. 
https://doi.org/10.1109/ICST.2010.46

Førde, J. (2019). Development of algorithm for preprocessing and prediction in Capacitive Micromachined 
Ultrasonic Transducers. Norwegian University of Life Sciences.

Gibson, B. R., Rogers, T. T., & Zhu, X. (2013). Human Semi‐Supervised Learning. Topics in Cognitive 
Science, 5(1), 132–172.

Hahn, P. (2019). Artificial intelligence and machine learning. In Handchirurgie Mikrochirurgie Plastische 
Chirurgie (Vol. 51). https://doi.org/10.1055/a-0826-4789

43



Indiana University. (2018). What is the difference between a compiled and interpreted program. 
Retrieved from https://kb.iu.edu/d/agsz

Joshi, P. (2016). Python Machine Learning Cookbook. Retrieved from 
http://proquest.safaribooksonline.com.ezproxy.lib.vt.edu/9781786464477

Lai, L., Suda, N., & Chandra, V. (2018). CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs. 
1–10. Retrieved from http://arxiv.org/abs/1801.06601

Moons, B., Bankman, D., & Verhelst, M. (2019). Embedded Deep Learning. In Embedded Deep Learning. 
https://doi.org/10.1007/978-3-319-99223-5

Pi Raspberry. (2019). Raspberry Pi 4 Computer. ( June).

Sensirion. (2019). Multi pixel gas sensors. Retrieved from 
https://www.sensirion.com/en/environmental-sensors/gas-sensors/multi-pixel-gas-sensors/

Shubman, J. (2018). An Overview of Regularization Techniques in Deep Learning. Retrieved from 
analytics vidhya website: https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-
learning-regularization-techniques/

Ŝimunić, T., Benini, L., & De Micheli, G. (2001). Energy-efficient design of battery-powered embedded 
systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 15–28. 
https://doi.org/10.1109/92.920814

ST Microelectronics Inc. (2017). STM32F765xx, STM32F767xx Datasheet. (May). Retrieved from 
https://pdf1.alldatasheet.com/datasheet-pdf/view/933989/STMICROELECTRONICS/
STM32F767ZI.html

ST Microelectronics Inc. (2019). X-CUBE-AI Data brief Artificial intelligence ( AI ) software expansion for 
STM32Cube X-CUBE-AI. (October).

ST Microelectronics Inc. (2020). STM32CubeMX. Retrieved from https://www.st.com/en/development-
tools/stm32cubemx.html

Sun, J., Lu, S., Pang, W., & Sun, Z. (2019). Deep representation learning with feature augmentation for 
face recognition. 2019 IEEE 4th International Conference on Signal and Image Processing, ICSIP 
2019, 171–175. https://doi.org/10.1109/SIPROCESS.2019.8868386

UCI. (2016). Air Quality Data Set. Retrieved from https://archive.ics.uci.edu/ml/datasets/Air+Quality

UST. (2017). UST Miniaturized VOC sensor. Retrieved from http://www.umweltsensortechnik.de/en/gas-
sensors/vocco2-sensor.html

Valvano, J. W. (2017). Embedded systems: Introduction to ARM cortex-m microcontrollers (5th ed.). Self 
published.

 

44



 9  APPENDIX A
This appendix contain a copy of the table found on the AQ-SPEC website where links do documents 
and images have been removed. The information in the table were collected 2. may 2020, and may 
therefore be outdated at the time of reading. The complete table can be found here: 
http://www.aqmd.gov/aq-spec/evaluations/summary-gas.

Table 7: Summary of different gas sensor performance (AQ-SPEC, 2019).

Make and Model Est. Cost
(USD) Type Measurement Field R2 Lab R2

2B Technologies POM $4,500 UV absorption O3 1.00 0.99

Aeroqual AQY Ver. 0.5 $3,000
Electrochem NO2 0.77 0.98
Metal Oxide O3 0.95 0.98

Aeroqual S-500 $500 Metal Oxide O3 0.85 0.99

Air Quality Egg Ver. 1 $200 Metal Oxide
CO 0.00 -
NO2 0.40 -
O3 0.85 -

Air Quality Egg Ver. 2 $240 Electrochem
CO 0.00 -
NO2 0.00 -

Air Quality Egg Ver. 2 $240 Electrochem
O3 0.00 – 0.20 -

SO2 n/a -

AQMesh Ver. 4.0
(Discontinued) $10,000 Electrochem

CO 0.42 – 0.80 -
NO 0.00 – 0.44 -
NO2 0.00 – 0.46 -
O3 0.46 – 0.83 -

APIS $4,995 Electrochem

CO 0.88 -
NO 0.93 -
NO2 0.37 -
O3 0.77 -

CairPol Cairsens (CO) $1,243 Electrochem CO 0.94 -
CairPol Cairsens (NO2) $1,198 Electrochem NO2 0.00 – 0.12 -

 Kunak Air A10 ~$5,000 Electrochem

CO 0.58 -
NO 0.87 -
NO2 0.29 -
O3 0.87 -

Magnasci SRL
uRADMonitor INDUSTRIAL

HW103
~$1,300 Electrochem

CO 0.03 -
NO2 0.03 -
O3 0.03 -

Perkin Elmer ELM $5,200 Metal Oxide
NO n/a -
NO2 0.00 -
O3 0.89 – 0.96 -

45

http://www.aqmd.gov/aq-spec/evaluations/summary-gas


Smart Citizen Kit $200 Metal Oxide
CO 0.50 – 0.85 -
NO2 0.00 -

Spec Sensors $500 Electrochem
CO 0.84 – 0.90 -
NO2 0.00 – 0.16 -
O3 0.00 – 0.24 -

uHoo $300 Metal Oxide
CO 0.00 -
O3 0.43 – 0.72 -

UNITEC SENS-IT (CO) $2,200 Metal Oxide CO 0.33 – 0.43 0.99
UNITEC SENS-IT (NO2) $2,200 Metal Oxide NO2 0.60 – 0.65 -
UNITEC SENS-IT (O3) $2,200 Metal Oxide O3 0.72 – 0.83 0.82 – 0.90

Vaisala AQT410 
Ver. 1.11 $3,700 Electrochem

CO 0.28 – 0.31 -
NO2 0.00 -
O3 0.40 – 0.58 -

SO2 n/a -

Vaisala AQT410 
Ver. 1.15 $3,700 Electrochem

CO 0.80 – 0.83 -
NO2 0.48 – 0.61 -
O3 0.66 – 0.82 -

SO2 n/a -

46






	Preface
	Abstract
	Sammendrag
	Table of Contents
	Table of Figures
	Index of Tables
	Abbreviations and Glossary
	1 Introduction
	1.1 Earlier work
	1.2 Project details
	1.3 Goals and objectives
	Literature review
	Method
	Evaluation
	Recommendations and suggestions for further work

	1.4 Limitations

	2 Theory and key concepts
	2.1 MOX Gas sensor
	2.2 Machine learning
	2.2.1 What is it?
	2.2.2 How does it work?
	2.2.3 Groups of machine learning algorithms
	2.2.4 Cost functions
	2.2.5 Training and testing
	2.2.6 Pre-processing
	2.2.7 The Neural network

	2.3 Embedded systems
	2.3.1 Microcontroller (MCU)
	2.3.2 Single board computers

	2.4 Cloud, Fog and Edge computing
	2.4.1 Cloud Computing
	2.4.2 Fog Computing
	2.4.3 Edge Computing

	2.5 Programming toolchains
	2.5.1 Embedded programming
	C programming for embedded systems
	C++ programming for embedded systems
	Rust for programming embedded systems
	CMSIS
	STM32CubeMX

	2.5.2 Machine learning model development
	Sci-kit learn
	TensorFlow


	2.6 Embedded machine learning tools
	2.6.1 CMSIS NN
	2.6.2 X-Cube-AI


	3 Method
	3.1 Air quality dataset evaluation
	3.2 Software tools used for development
	3.3 Performance analysis
	3.3.1 Machine learning model performance analysis
	3.3.2 Embedded system performance analysis

	3.4 Machine Learning Model Structure
	3.4.1 Preprocessing stage
	3.4.2 Neural network stage
	3.4.3 Evaluation stage
	3.4.4 Regularization

	3.5 Embedded machine learning model

	4 Presentation of the Final code
	4.1.1 Importing the training data
	4.1.2 Creating the neural network
	4.1.3 Training the model
	4.1.4 Saving the model
	4.1.5 Creating the Embedded system template project
	4.1.6 Developing the embedded system code from the template project
	4.1.7 Measuring compute time on the embedded system

	5 Evaluation and Results
	5.1 Comparing the machine learning models
	5.2 Selecting models for further evaluation
	5.2.1 Model performance
	5.2.2 Summary of model performance

	5.3 Results from other work
	Development of algorithm for preprocessing and prediction in Capacitive Micromachined Ultrasonic Transducers by J. Førde
	CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization by De Vito, Piga, Martinotto and Di Francia
	Summary table by AQ-SPEC

	5.4 Evaluating embedded systems performance
	5.4.1 System requirements
	5.4.2 On device testing


	6 Discussion
	6.1 The commercial viability of the model
	6.2 Machine learning model performance
	6.3 Generalization of the model
	6.4 Tuning the model
	6.5 Embedded performance
	6.6 The value of using machine learning
	6.7 Limitations

	7 Conclusion
	7.1 Summary
	7.2 Recommendations and further work
	7.2.1 Create a new dataset
	7.2.2 Network tuning
	7.2.3 Focusing on complex systems


	8 Bibliography
	9 Appendix A

