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Sammendrag 

Den menneskelige mage-tarmkanalen rommer et sammensatt og mangfoldig økologisk 

felleskap av kommensal tarmflora tett tilknyttet verten. Fra dyrestudier er det bevist at 

tarmfloraens komponenter og metabolitter er essensielle for korrekt modulering og modning av 

vertens immunsystem, særlig i spedbarnsalder, da perturbasjon av tarmflora tidlig i livet kan 

forstyrre utviklingen av immunforsvaret og senere medføre immunrelaterte sykdommer. 

Fremskritt i metagenomiske analyser tillater nå en mer dyptgående undersøkelse av 

sammenhengene også mellom menneskelig immunitet og tarmflora. Dette prosjektet tok 

dermed i sikte på å bestemme tarmfloraens relative taksonomiske og utledete metabolske 

sammensetning det første leveåret for å undersøke mulige assosiasjoner til den relative 

immuncellesammensetningen ved 12 måneders alder. 

Studien inkluderte deler av biologiske prøver samlet i Prevent Atopic Dermatitis and ALLergies 

kohortstudien. Tarmfloraens taksonomiske og utledete metabolske sammensetning ble bestemt 

fra langsgående fekale prøver ved henholdsvis Redusert Metagenomisk Sekvensering med 

Kraken2 HumGut- og Virtual Metabolic Human-databasen. De fekale prøvene fordeler seg over 

følgende tidspunkt: 60 prøver fra spedbarnets første avføring (mekonium) og deres gravide 

mødre, 59 prøver fra 3 og 6 måneder og 180 prøver fra 12 måneder. Korrelasjonsanalyser med 

korreksjon for multippel testing ble deretter utført på disse tarmflora sammensetningene til den 

tilgjengelige immuncellesammensetning for 67 av barna ved 12 måneders alder. 

Resultatene viste negative korrelasjoner mellom relativ forekomst av multiple slekter, arter og 

utledede metabolitter i prøver fra mødre, mekonium og 12 måneder, til relativ forekomst av 

klassiske, ikke-klassiske og proinflammatoriske monocytter ved 12 måneder. Et annet funn var 

den positive korrelasjonen mellom den relative forekomsten av fire arter ved 3 og 6 måneder 

til den relative forekomsten av naive CD8+ T-celler ved 12 måneder. Den relative forekomsten 

av to slekter ved 3 måneder var positivt korrelert til den relative forekomsten av T-

hukommelsesceller ved 12 måneder, mens den relative forekomsten av utledet smørsyre var 

negativt korrelert til den relative forekomsten av CD56bright NK-celler, begge ved 12 måneder. 

Oppsummert indikerer funnene at den relative forekomsten av flere mikrobielle taksonomiske 

og utledete metabolske egenskaper i tarmen er assosiert med den relative forekomsten av flere 

immunceller. Av immuncellene viser monocytter den sterkeste assosiasjonen til tarmflora. 

Imidlertid trengs det ytterligere forskning for å utforske de biologiske implikasjonene til de 

identifiserte korrelasjonene.  
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Abstract 

The human gastrointestinal tract harbors a complex and diverse ecological community of 

commensal gut microbes closely connected to the host. Animal-based studies have found that 

gut microbial components and metabolites are essential for correct modulation and maturation 

of the host’s immune system, especially during infancy. An early-life perturbation in the gut 

microbial community can disrupt the immune system development and lead to later immune-

related diseases. Recent advancement in metagenomic analysis enables now a more in-depth 

exploration of human immunity and gut microbiota connections. Thus, did this project aim to 

determine the gut microbiota’s relative taxonomic and inferred metabolic composition in the 

first year of life to investigate possible associations to the relative immune cell composition at 

12 months of age. 

The study included a subset of biological samples from the Prevent Atopic Dermatitis and 

ALLergies cohort study. The gut microbiota’s taxonomic and inferred metabolic composition 

was determined from longitudinal fecal samples by Reduced Metagenome Sequencing with the 

Kraken2 HumGut and the Virtual Metabolic Human database, respectively. The following time 

points distribute the fecal samples: 60 samples from the infants’ first feces (meconium) and 

corresponding pregnant mother, 59 samples from 3 and 6 months, and 180 samples from 12 

months. Correlation analysis with correction for multiple testing was conducted on these gut 

microbial compositions to the available immune cell composition for 67 of the children at 12 

months of age. 

The analysis identified negative correlations of the relative abundance of multiple gut microbial 

species, genera, and inferred metabolites in mother, meconium, and 12 months samples to the 

relative abundance of classical, nonclassical, and proinflammatory monocytes at 12 months. 

Another finding was the positive correlation in the relative abundance of four species at 3 and 

6 months to the relative abundance of naïve CD8+ T cells at 12 months. The relative abundance 

of two genera at 3 months were positively correlated to the relative abundance of memory T 

cells at 12 months, while the inferred relative abundance of butyric acid at 12 months was 

negatively correlated to the relative abundance of CD56 bright NK cells at 12 months. These 

findings indicate that the relative abundance of several gut microbial taxonomic and inferred 

metabolic characteristics is associated with the relative abundance of several immune cells. Of 

the immune cells, monocytes show the strongest connection to the gut microbiota. However, 

further research is necessary to explore the biological implications of the identified correlations. 
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1. Introduction 

1.1 The human gut microbiota 

1.1.1 The human gastrointestinal tract 

The human gastrointestinal (GI) tract is a continuous channel through the body composed of a 

series of hollow organs. It starts with the oral cavity, following the pharynx, esophagus, 

stomach, small intestine, large intestine, rectum, and anal canal, ending with the anus. The 

tongue, salivary glands, liver, pancreas, and gallbladder serve as accessory organs. This 

complex organ system serves essential functions that are crucial for maintaining human health. 

Firstly, it is responsible for digesting and absorbing food and drinks. The nutrients and water 

are taken up in the blood and lymph vessels via transcellular transport through the epithelial 

lining and then transported to the different body sites for energy and macromolecule extraction 

(Liao, Zhao, & Gregersen, 2009). Lastly, it is responsible for expelling undigested food and 

waste products that the body does not need through feces (Liao et al., 2009).  

Crypts, villi, and microvilli compose the intestinal wall in the GI tract, which enlarges the 

luminal surface (Walton, Freddo, Wang, & Gumucio, 2016). The large surface area leads to 

more efficient absorption. However, it also makes the human body more vulnerable to potential 

dangers in the luminal content. Thus, the mucosal membranes serve as a physical, chemical, 

and immunological barrier to protect the body against dangerous luminal content (Okumura & 

Takeda, 2018). The most crucial physical barrier is the lining of the mucosal membrane by 

several kinds of specialized and polarized epithelial cells bound together by tight junctions in a 

monolayer. Additionally, epithelial goblet cells secrete glycosylated proteins called mucins 

forming mucus that reside outside the epithelial layer in the lumen (Okumura & Takeda, 2018). 

Chemical barriers include antimicrobial peptides secreted by epithelial paneth cells. 

Immunological barriers consist of intraepithelial immune cells and different immune cells and 

effector proteins that reside in lamina propria, the connective tissue underneath the epithelial 

layer (Okumura & Takeda, 2016).  

1.1.2 The composition and function of the gut microbiota 

The human body’s internal and external surfaces, including the skin and mucosal surfaces 

(vagina, oral cavity, nasal cavity, and GI tract), respectively, are habitats for numerous 

microorganisms called the human microbiota (Kumar & Chordia, 2017). The species of the 

human microbiota belong predominantly to bacteria (Lloyd-Price, Abu-Ali, & Huttenhower, 
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2016), but also archaea (Horz, 2015), virus (Cadwell, 2015), protists, and fungi (Parfrey, 

Walters, & Knight, 2011) are present. Since bacteria are the main microorganism inhabiting all 

different niches in the body, they are also more extensively studied. The number of bacterial 

cells inhabiting an average human body is estimated to 4 x 1013, making bacterial cells to human 

cells’ ratio 1,3 (Sender, Fuchs, & Milo, 2016).  

The most substantial part of the human microbiota is the gut microbiota, which is the collection 

of microorganisms that inhabit the intestines (Ursell, Metcalf, Parfrey, & Knight, 2012). The 

microbial density and diversity increase both across the length of the GI tract and from the 

epithelial layer to the intestinal lumen (Sekirov, Russell, Antunes, & Finlay, 2010). The site 

with the highest microbial density and richness of microbes is consequently the lumen in the 

large intestine. This distribution is due to the low cell turnover rate, low redox potential, and 

long transit time in the colon lumen (Hillman, Lu, Yao, & Nakatsu, 2017).  

Analysis of the gut content indicates that around 160 bacterial species reside at any given time 

and that the specie composition varies with around 1150 different bacterial species (Qin et al., 

2010). The species belong mainly to the phyla Firmicutes and Bacteroidetes, with a smaller 

percentage to the phyla Actinobacteria, Proteobacteria, and Verrumicrobia (Tap et al., 2009). 

Taxonomic diversity is associated with health and disease. A rich and diverse gut microbiota 

will better withstand external threats, while a microbiota with a lack of diversity is associated 

with different immune-related noncommunicable diseases (NCDs) such as asthma and allergies 

(West et al., 2015). Aside from the taxonomical composition, the functional composition is also 

variable. The human gut microbiome is the collection of genes from the genomes of all species 

in the microbiota (Lozupone, Stombaugh, Gordon, Jansson, & Knight, 2012). The genes 

function as predictions for the functionalities of the gut microbiota, and this functional aspect 

is essential for the interaction between the gut microbiota and the human host.  

The relationship between the gut microbes and their respective host are pathogenic, commensal, 

or symbiotic. Pathogenic microorganisms cause damage to the host, while the two latter 

conceptions are grouped under mutualism and do not cause damage to the host (Hooper & 

Gordon, 2001). Commensalism is the collective term for the host-microbe interaction in a 

healthy individual, but the bacteria have a stronger relationship with the host than the term 

suggests (Haque & Haque, 2017). According to Haque & Haque in 2017, commensalism is a 

form of symbiosis whereby one organism gains from its association with another organism, 

whereas the other is affected in neither a positive nor a deleterious manner. 



 

 

3 

 

There are several examples of the strong symbiotic relationship and interplay between the 

human host and its commensal gut microbiota. The mucus covering the epithelial surface is 

distributed with an impermeable inner layer to protect the host against the invasion of 

pathogenic microbes. The outer layer is more permeable than the inner layer and works as both 

a substrate and a habitat for the commensal microbes (Sicard, Le Bihan, Vogeleer, Jacques, & 

Harel, 2017). Myolytic bacteria possess the enzymatic activity and collaborate in a community 

to degrade the mucins. They utilize these endogenous glycans as a source of nutrient and carbon 

source (Koropatkin, Cameron, & Martens, 2012). Because of the high number of microbes in 

the large intestine, there is also a higher number of goblet cells producing mucins, making the 

mucus layer very thick in that part of the gut (Okumura & Takeda, 2017). The commensal 

bacteria return the favor and use both direct and indirect pathways that protect the host against 

pathogens. Directly, the commensal bacteria perform colonization resistance by inhibiting 

pathogen growth due to secreting inhibitory antimicrobial substances and competing for 

nutrients (Sorbara & Pamer, 2019). Indirectly, they stimulate the intestinal barrier’s strength 

and maintenance of the intestinal tight junctions between the epithelial cells (Hiippala et al., 

2018). 

The gut commensal bacteria utilize exogenous nutrients from the diet in addition to the 

endogenously secreted mucins. Parts of the gut microbiota can degrade undigestible, dietary 

fiber by saccharolytic fermentation in the colon. Some of the fermentative bacteria produce 

intermediate products such as fumarate, succinate, and lactate that other bacteria can convert 

further to the final products called short-chain fatty acids (SCFAs) (Rowland et al., 2018). This 

kind of process, where one organism utilizes the end product of the metabolic pathway of 

another organism, is called cross-feeding interactions and is famous for the gut microbes (Ríos-

Covián et al., 2016). The main SCFAs are acetate, propionate, and butyrate. The primary 

producers of acetate and propionate are species in the Bacteroidetes phylum, while the primary 

producers of butyrate are species in the Firmicutes phylum (Rowland et al., 2018). The acids 

have several beneficial effects for both colonic and overall human health. SCFAs serve as an 

energy source for the colonocytes and resident bacteria, enhance mineral absorption, reduce 

luminal pH, and consequently limit pathogen growth (Alexander, Swanson, Fahey, & Garleb, 

2019). Other exogenous nutrients that commensal bacteria provide the host are essential 

vitamins (K and B) and amino acids (Rowland et al., 2018).  



 

 

4 

 

1.1.3 The development of the infant gut microbiota 

When the colonization of the gut starts is a debated subject. For a long time, the accepted central 

dogma was that the fetus is sterile in utero and that the microbial colonization starts during and 

after birth (Rodriguez et al., 2015). A considerable number of studies have however challenged 

this assumption as bacterial genomes have been detected in the placenta (Aagaard et al., 2014), 

umbilical cord (Jimenez et al., 2005), amniotic fluid (Bearfield, Davenport, 

Sivapathasundaram, & Allaker, 2002), and in the infant’s first feces (meconium) (Jimenez et 

al., 2008).  On the contrary, recent studies argue against that colonization begins in utero 

because there were not any detectable microbial community in the placenta  (Leiby et al., 2018), 

nor the amniotic fluid in healthy term pregnancies (Lim, Rodriguez, & Holtz, 2018). Perez-

Muñoz et al. conclude in their review that current scientific evidence does not support the 

existence of microbiomes within the healthy fetal milieu (Perez-Munoz, Arrieta, Ramer-Tait, 

& Walter, 2017). In compliance with the latest findings, the correct time for the initial 

colonization of gut microbiota for healthy children is likely after the rupture of the amniotic 

membrane during birth (R. E. Moore & Townsend, 2019). 

Several factors contribute to shaping the composition of gut microbiota early in life. As 

previously addressed, the first inoculum of the infant takes place during birth, and the mode of 

delivery strongly influences the early gut microbial composition (Munyaka, Khafipour, & Ghia, 

2014). Vaginally born children are primarily colonized by bacteria from the birth canal and the 

mother’s gut, while cesarean born children are primarily colonized by bacteria from the skin 

and the environment (Dominguez-Bello et al., 2010). Whether the child is born preterm or at 

term will affect the development of the early gut microbiota. The gut of preterm infants have 

delayed colonization and decreased diversity (Henderickx, Zwittink, van Lingen, Knol, & 

Belzer, 2019). Correlating factors that affect the gut microbiota of preterm infants include that 

they are more frequently born by cesarean section, are hospitalized more extended period, and 

are more frequently treated with antibiotics (Milani et al., 2017). Antibiotics during pregnancy 

and in infancy disrupt the development of the gut microbiota by decreasing bacterial diversity, 

delay colonization, and increasing antibiotic resistance genes and species (Henderickx et al., 

2019). 

The infant’s GI tract is exposed to numerous microbes with the ingested food in addition to 

microbes in the environment. Bifidobacterium species enrich the gut microbiota of breastfed 

infants (Turroni et al., 2012). This colonization occurs because breastmilk contains species 
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belonging to this genus (Soto et al., 2014). Additionally, human milk oligosaccharides (HMOs) 

shape breastfed infant’s gut composition by selectively colonization of species belonging to 

Bifidobacterium and Bacteroides that have enzymes to ferment these, (Marcobal & Sonnenburg, 

2012). HMOs are prebiotic, which is defined by Gibson et al. in 2004 to be a selectively 

fermented ingredient that allows specific changes, both in the composition and activity in the 

gut microbiota, that confer benefits upon host well-being and health (Gibson, Probert, Loo, 

Rastall, & Roberfroid, 2004). The breast milk microbiota and HMO composition are important 

determinants of the infant gut microbiota (Ho et al., 2018), and the effects are dose-dependent 

(Pannaraj et al., 2017). Children that are fed formula will contrary possess a higher bacterial 

diversity resembling that of an adult, including fewer Bifidobacterium (Ho et al., 2018). When 

weaning occurs, and the introduction of solid foods starts, the composition starts resembling 

the gut microbiota of an adult.  

The infant gut microbiota is less diverse, more unstable, and dynamic than the adult microbiota. 

The shift towards the “adult-like” gut microbiota can be observed from around 12 months of 

age and will be complete within the first three years of life (Arrieta, Stiemsma, Amenyogbe, 

Brown, & Finlay, 2014). The gut lumen is an aerobic environment following birth. In parallel 

with the rapid colonization, the gut gradually becomes anaerobic, and aerobic bacteria such as 

Enterobacteriaceae are replaced with anaerobic bacteria such as Bifidobacterium, Clostridium, 

and Bacteroides (Arrieta et al., 2014). A common understanding formulated by Matamoros et 

al. in 2013 is that it is becoming evident that initial microbial colonization and the resulting 

immune and metabolic programming have a long-lasting influence on the risk for diseases 

(Matamoros, Gras-Leguen, Le Vacon, Potel, & de La Cochetiere, 2013). With that in mind, 

numerous researchers are aiming to figure out which interventions can modulate the infant 

microbiota, such as probiotics, prebiotics, antibiotics, and most invasively, fecal 

transplantation, giving the infant and later adult the best possible health outcome.  
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1.2 The human immune system  

1.2.1 The innate and adaptive immune system 

The immune system divides into the innate and the adaptive one and consists of both immune 

cells and effector molecules (Nicholson, 2016). The immediate innate immune system includes 

physical and chemical barriers as the epithelial surface lining the mucosal tissue in the gut and 

antimicrobial peptides, respectively. It also includes the complement system and unspecific 

phagocytosis by phagocytes (Nicholson, 2016). The induced innate immune system involves 

recognition of the pathogen by binding to specific receptors followed by the recruitment of 

effector molecules called cytokines and interferons. The adaptive immune system involves 

humoral and cellular responses based on binding of specific receptors to antigens, carried out 

by B cells and T cells, respectively (Nicholson, 2016).   

1.2.2 The development of the immune system 

The immune system is relatively immature at birth and evolves throughout all life stages 

(Simon, Hollander, & McMichael, 2015). Neonatal immunity is dominated by the naïve 

phenotypes, with impairment of both the innate and adaptive immune system. The innate 

immune cells have non-optimal functions, and serum concentrations of complement 

components are considerably lower (Simon et al., 2015). There is reduced efficiency of the 

adaptive immune system, with weak Th1 and antibody responses (Simon et al., 2015).  This 

composition will shift to more mature phenotypes in parallel to exposure to the environment, 

such as vaccines, commensal, and infectious microbes (Brodin & Davis, 2017). Immunity at 

the mucosal surfaces such as the intestines, urogenital tract, and respiratory system are 

establishing by three months of age. However, maturation varies from 1 to 6 months (Gleeson 

& Cripps, 2004).  

Each immune profile remains stable over time and will return quickly and recover to baseline 

after perturbation, such as vaccination or infection (Tsang et al., 2014). There is a distinct inter-

individual variation in both composition and function that can be many orders of magnitude in 

healthy individuals (Brodin & Davis, 2017). Both heritable and non-heritable factors contribute 

to the function and composition of the immune system, but the extent remains unclear. The 

heritable factors involve genetics of immune cell frequencies, genetics of serum protein 

concentrations, and gene expression leading to different functional immune responses (Brodin 

& Davis, 2017). The non-heritable factors are environmental factors such as vaccines, 

infectious pathogens, and commensal microbiota. Symbiotic and pathogenic microbes 
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seemingly explain most of the functional and compositional variation in the immune system 

(Brodin & Davis, 2017).  

1.2.3 The gut mucosal immunity  

Immune responses in the gut differ from immune responses in the skin. The inflammatory 

response following a wound in the skin surface is necessary to recruit immune cells since they 

do not typically reside in the dermis. The damaged tissue can be repaired and restored after 

inflammation without much risk and problems. On the contrary, inflammation in the gut is very 

dangerous, and a typical symptom of intestinal diseases. To prevent inflammation, a continuous 

layer of gut-associated lymphoid tissue (GALT) lines the gut (Randall & Mebius, 2014). Both 

innate and adaptive immune cells reside in the GALT and will monitor and thereby detect and 

fight intruders or possible threats very effectively. Additionally, the components of the gut 

immune system have effective strategies to tolerate commensal bacteria and harmless food 

antigens (Randall & Mebius, 2014). 

Two continuous strategies exist to prevent inflammation and keep the GI tract healthy and free 

from invading pathogens. The first strategy is called immune suppression and is administrated 

by the subpopulation of T cells called regulatory T cells (Tregs) that mediates immune tolerance 

and limits inflammatory response (Lazar et al., 2018). Furthermore, antigen-presenting cells 

(APCs) induce immunoglobulin A (IgA) class switching in naïve B-cells, an immunoglobulin 

isotype that does not promote inflammation (Okumura & Takeda, 2016). Immune exclusion is 

the second strategy, which works to keep the pathogens from entering the body. This strategy 

involves neutralizing of the pathogens by binding to secretory IgA and thereby anchoring and 

entrapping them to mucins in the mucus (Mantis, Rol, & Corthesy, 2011).  

1.2.4 The effects of gut microbiota on the immune system 

Germ-free (GF) animal studies have provided insight into how the gut microbiota influences 

the host. In comparison to animals colonized by microbiota, GF animals appear to have 

physiological and functional differences in the gut. The differences include enlargement of the 

cecum due to accumulation of undegraded mucus, reduced gastrointestinal motility as a 

consequence to loss of critical digestive functions usually done by the microbiota, as well as 

aberrant morphology of the epithelial cells, with longer villi and shorter crypts, and reduced 

amount of antimicrobial peptides (Gensollen, Iyer, Kasper, & Blumberg, 2016). Studies using 

GF animals have also shown that the microbiota affects the maturation and function of the gut 

mucosal immune system structurally and functionally. The gut-associated lymphoid follicles 
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are absent, and the Peyer’s patches and mesenteric lymph nodes are smaller in the colon of GF 

animals (Gensollen et al., 2016). The influence that gut microbiota has on the gut mucosal 

immune system extends beyond the GI tract and affect the systemic immune system (Kabat, 

Srinivasan, & Maloy, 2014). Colonization of commensal microbes is especially crucial at 

infancy to ensure a correct maturation of the immune system (Zheng, Liwinski, & Elinav, 

2020). Early life perturbation of gut microbiota can potentially result in disrupted development 

of the immune system and lead to immune-related diseases later in life (Gensollen et al., 2016).  

The gut microbiota influences the immune system in several ways. Animal-based studies have 

detected that both microbial components and metabolites are mediators of the interplay between 

the gut microbiota and the immune system. Microbial components from commensal microbiota 

induce, directly and indirectly, the secretion of antimicrobial peptides from epithelial Paneth 

cells that ultimately prevents the colonization of new and harmful microbes. This occurs 

directly by the recognition of lipopolysaccharides by intestinal epithelial cells (Kabat et al., 

2014). Indirectly, this occurs by recognition of flagellin by dendritic cells resident in the lamina 

propria that leads to the activation of innate lymphoid cells (Kabat et al., 2014). The microbial 

metabolites, SCFAs, promote gut homeostasis by enhancing the epithelial barrier function and 

promoting immune tolerance. Specifically, microbial production of SCFA leads to increased 

mucin production, increased secretion of secretory IgA, increased number and function of 

Tregs, and reduced expression of T-cell activating molecules in APCs (Rooks & Garrett, 2016). 
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1.3 Methods to study gut microbiota-host interactions 

The gut microbial research field was until the late 20th century, dominated by culture-dependent 

approaches. The conditions and growth medium must replicate the native physiological niche 

in the gut lumen to successfully cultivate a specie that is normally present in the gut (Hiergeist, 

Gläsner, Reischl, & Gessner, 2015). Consequently, this way of studying the composition favors 

species with effective cultivation protocol and limits the species that resist cultivation, giving 

biased results. An example is that E.coli was former wrongly believed to be a highly prevalent 

member of the human gut microbiota (Lloyd-Price et al., 2016). The first cultivation techniques 

managed to cultivate less than 20% of the gut microbiota, but the development of strict 

anaerobic cultivating methods in the late 1960s provided a more representative insight to gut 

microbiota. The cultural counts increased to 93% of the total microscopic counts in 1974, but 

the method fails to classify below the genus level for hundreds of the isolates (W. E. Moore & 

Holdeman, 1974). A fecal sample contains hundreds of different isolates, and a full description 

of the morphologic, biochemical, and physiologic characters of every isolate in several samples 

are physically impossible (Rajilić-Stojanović & de Vos, 2014). 

The technical limitations of culture-dependent approaches prompted the development of 

reliable culture-independent techniques (Suau et al., 1999) (Nichols et al., 2010). A culture-

independent analysis permits detection of species that resist cultivation or is not discovered yet 

(Milani et al., 2017). Metagenomic has become an established culture-independent approach 

that studies metagenomes by high throughput sequencing directly from a complex 

environmental sample. The metagenomic sequences are used to determine the taxonomic 

composition, and the microbiotas possible activities and functional roles in the gut are deduced 

indirectly and directly from the taxonomic composition, and the gene sequences, respectively. 

Metagenomic sequencing for microbial identification is possible by different approaches. The 

16S ribosomal RNA (rRNA) marker gene technique is a commonly used variant that sequence 

parts of the prokaryotic 16S rRNA gene and uses the variable regions for taxonomic 

identification and functional imputation (Rausch et al., 2019). The 16S rRNA technique holds 

limitations regarding resolution, as it is problematic to separate microbes that are closely 

related, and reliable classification will only be on the family- or genus level (Earl et al., 2018). 

Another commonly used technique is the whole genome shotgun approach, which works by 

sequencing a fragmented metagenome and reconstructing it to complete genomes that allow for 

both taxonomic and functional identification on the strain level (Rausch et al., 2019). However, 
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the shotgun method is of high cost and holds challenges by producing massive and complex 

data that causes bioinformatical challenges (Sharpton, 2014). The novel technique called 

Reduced Metagenome Sequencing (RMS) is an alternative to the mentioned microbial 

identification methods that sequence a reduced part of the metagenome after enzymatic 

restriction cutting. Following any of the mentioned techniques, the determination of the base 

sequences is done by sequencing technologies separated into three generations. Subsequent 

sequencing, the sequences are aligned to sequences in a reference database, and the taxonomic 

and functional information can thereby be determined. 

1.3.1 Reduced metagenome technique 

RMS is a novel throughput metagenomic method for microbial profiling of the gut. This 

technique fragments genomic DNA using two restriction enzymes, MseI, that cuts frequently, 

and EcoRI that cuts infrequently, due to restriction sites of four (5’ T|TTAA 3’) and six (5’ 

G|GAATTC 3’) base pairs, respectively. Adaptors are then ligated to the fragments using ligase. 

Adaptor ligation creates a universal primer binding site flanking all fragments, making 

amplification possible. The adaptors contain a core sequence and enzyme-specific sequence. A 

selective amplification proceeds with polymerase chain reaction (PCR) for the adaptor-ligated 

sequences cut by both restriction enzymes. Fragments cut by only one of the restriction enzymes 

will create hairpin loops that terminate the amplification. Figure 1.1, at the end of this 

subchapter, illustrates the principle for sample preparation in the RMS technique. The 

illustration is modified and redrawn from Ravi et al. (Ravi et al., 2018).  

The fragments make up around 10% of the metagenome in the sample, resulting in manageable 

amounts of data. The method provides high taxonomic resolution and potential genomic and 

functional assignment of the gut microbiota similar to what the whole genome shotgun 

technique does while being as effective and low-cost as the 16S rRNA marker gene technique 

for large sample sets (Ravi et al., 2018). Unlike the 16S rRNA method, the RMS method is not 

limited to detecting organisms holding a specific gene and is, therefore, able to capture a wider 

variety of organisms, e.g., viruses and fungi (Hess et al., 2020). RMS is an alternative to the 

double digest Restriction Site Associated DNA method that uses the enzyme combination 

N1aIII and HpyCH4IV (Peterson, Weber, Kay, Fisher, & Hoekstra, 2012) (Liu et al., 2017) and 

Restriction Enzyme-Reduced Representation method that uses the enzyme ApeKI or PstI (Hess 

et al., 2020). The principle of RMS and the two mentioned methods all originate from a 

technique called Amplification Fragment Length Polymorphism (AFLP). This method 
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similarly treats genomic DNA with restriction enzymes, but unlike the sequencing methods, the 

AFLP technique only analyses the amplified restricted fragments on a gel (Vos et al., 1995).  

 

Figure 1.1. Illustration of the preparation in Reduced Metagenome Sequencing. Panel A) shows 

sample preparation where two restriction enzymes cut the genomic DNA, MseI (orange) that cuts a 

frequent cutting site (orange) and EcoRI (blue) that cuts an infrequent cutting site (blue). B) shows PCR 

amplification for fragments flanking both cutting sites. These fragments are ready for sequencing. 

Fragments flanked by the same cutting sites create hairpin loops and are consequently not amplified and 

sequenced. The illustration is modified and redrawn from Ravi et al. (Ravi et al., 2018).  

1.3.2 Three generations of sequencing technologies 

Accurate and efficient sequencing technology is necessary to determine the nucleic acid 

sequences when selecting any of the three described metagenome techniques. DNA sequencing 

technology emerged with first-generation sequencing developed by Dr. Frederik Sanger in 

1977. The Sanger sequencing method of single-stranded DNA uses the chain termination 
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dideoxynucleotide triphosphate method (Sanger, Nicklen, & Coulson, 1977). The sequencing 

technique is still used due to its high accuracy and long read length (Kircher & Kelso, 2010). 

However, the method is time-consuming, costly, and low throughput, and is consequently not 

favorable for large-scale applications (Churko, Mantalas, Snyder, & Wu, 2013).  

Second-generation sequencing, commonly called next-generation sequencing (NGS), has 

revolutionized the world of sequencing since it emerged in the first decade of the twenty-first 

century. The different technologies all have in common that they are high-throughput, fast, 

inexpensive, and perform massive parallel sequencing that produces millions to billions of short 

DNA reads (Levy & Myers, 2016). Several different sequencing platforms exist using different 

techniques, such as Ion Torrent, SOLiD, Roche 454, and Illumina.  

Illumina MiSeq and HisSeq are two popular NGS sequencing platforms. In preparation for 

sequencing, Illumina adaptors must flank the DNA fragments (Kchouk, Gibrat, & Elloumi, 

2017). The adaptors contain complementary sequences to the oligonucleotides on the flow cell 

were sequencing occurs, and the fragments will be attached to these in the following clonal 

PCR bridge amplification. This amplification creates around one million identical copies of 

each fragment, forming a cluster. Sequencing occurs by synthesis when primers, fluorescently 

modified dNTPs, and DNA polymerase adds to the mix (Kchouk et al., 2017). The nucleotides 

work as reversible terminators with a fluorophore that occupies the 3’ -OH group that must be 

enzymatically cleaved. The fluorophore assures that the synthesis occurs in a synchronous 

manner (Heather & Chain, 2016). The clusters emit identical signals that are detected and 

computationally translated to determine the sequence. The fragments can be read from both 

ends and produce paired-end sequences (Heather & Chain, 2016). The different platforms differ 

in output range, run time, reads per run, maximum read length, and price. Illumina sequencing 

produces high output data, is done at low cost, but give shorter read lengths that can increase 

errors in assembly (Oulas et al., 2015). 

Third-generation sequencing (TGS) is an emerging technology that solves some of the problems 

of NSG. TGS produces longer read length that simplifies assembly, reduces the price of 

sequencing, reduces time, and simplifies the preparations by, e.g., excluding the need for PCR 

amplification (Kchouk et al., 2017). However, TGS have much higher error rates than NGS 

technologies (Alvarez, Skachkov, Massey, Kalitsov, & Velev, 2015). Oxford Nanopore 

MinION sequencer and Pacific Biosciences are the two commonly used TGS platforms. In the 

MinION sequencer, the DNA fragment passes a protein nanopore and generates an ionic current 
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that translates to the sequence (Kchouk et al., 2017). Pacific Biosciences, conversely, utilizes 

fluorescent labeling like the NSGs but do not involve amplification and detects in real-time 

(Kchouk et al., 2017).  

1.3.3 Bioinformatic tools for taxonomic and functional classification  

The output after metagenomic sequencing is thousands of unclassified sequences that must be 

taxonomically classified to provide any useful information from the metagenomic sample. Two 

classification tools used for doing this are the Basic Local Alignment Search Tool (BLAST) 

(Altschul, Gish, Miller, Myers, & Lipman, 1990) and Kraken tool (Wood & Salzberg, 2014). 

BLAST assign taxonomy to unknown sequences by finding the best alignment to an extensive 

database of genomic sequences. BLAST is the most popular program but is not initially 

intended for metagenomic sequences. On the contrary, Kraken is as accurate as BLAST and 

other equivalent programs, but are made for metagenomic sequencing data and outcompete 

them in speed (Wood & Salzberg, 2014).  

Kraken is an efficient tool in the taxonomic classification of metagenomic output due to the 

utilization of K-mers. The standard Kraken database contains k-mers containing 31 bases 

(K=31) and the Lowest Common Ancestor (LCA) of all organisms with the k-mer in their 

genomes (Wood & Salzberg, 2014). Kraken approaches the metagenomic sequence by 

matching all possible k-mers in the metagenomic sequence to k-mers in the database and 

assigning the taxa by use of LCA belonging to the specific k-mer (Wood & Salzberg, 2014). 

Metagenomic sequences that do not contain k-mers in the database remain unclassified. It is 

possible to develop a database with the Kraken tool. Kraken2 HumGut_05 database is an 

example of this, described in a manuscript by Hiseni et al. (Hiseni, Rudi, Wilson, Hegge, & 

Snipen, 2020). The HumGut database contains k-mers with K=35 from bacterial genomes that 

are generally present in a healthy human gut. The collection comprises more than 4779 

genomes, representing 1201 unique taxonomy IDs. These genomes are either fully or 95% 

contained in 2311 healthy human gut metagenomes coming from all around the world.  

Metagenomic sequencing provides an exploration of functional information aside from the 

taxonomical information. The genes present in the metagenome indicates the potential 

functional properties, and this functional information is useful in studying environmental 

samples, such as the gut lumen. Functional analysis of metagenomic data encounters several 

challenges due to the computational problems because of the vast amount of data and short 

read-lengths during sequencing (Prakash & Taylor, 2012). However, the functional information 
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can also be inferred by the taxonomical information. The Virtual Metabolic Human (VMH) 

database is a sequence database that encapsulates the current knowledge of human metabolism 

in five interconnected resources (Noronha et al., 2019). The gut microbiome is one of these 

resources, and the database has captured 818 microbes and 632 685 microbial genes (Prakash 

& Taylor, 2012). With the use of VMH, it is possible to reconstruct the inferred metabolic 

potential to the gut microbes. The database can consequently be a useful tool in studying the 

functionalities of the gut microbiota. 

1.3.4 Methods to study immune cell composition 

A functional immune system is critical to maintaining human health, and the need to understand 

it makes it a relevant study field. Although blood is not an immunological organ, it holds most 

of the immune cells circulating the body. Analysis of immune cells in blood samples is 

consequently a reliable proxy for the human immune system in a non-invasive way (Brodin & 

Davis, 2017). Reliable methods are necessary to study the immune cells, and the development 

of those is making substantial progress in immunology (Simoni, Chng, Li, Fehlings, & Newell, 

2018).  

Single-cell analysis platforms are the current method of choice in immunologic research, and 

flow cytometry has been the cornerstone technology for decades. The technique enables single-

cell analysis by using fluorescently labeled antibodies to measure up to 15 simultaneous 

parameters (Brodin & Davis, 2017). However, there was an increasing need for a high 

throughput technique that enables single-cell resolution with high parameterization (Spitzer & 

Nolan, 2016). This need inspired the fusion of the two technologies flow cytometry and mass 

spectrometry, creating mass cytometry (Bandura et al., 2009). The technique bases on 

inductively coupled plasma mass spectrometry and time of flight mass spectrometry. The 

single-cell suspension is first incubated with antibodies conjugated to a polymer chain of 

chelating groups bound to stable heavy metal isotopes (Spitzer & Nolan, 2016). The cells are 

then nebulized into droplets and sent through inductively coupled argon plasma, leading to 

ionization of the metal-conjugated antibodies (Spitzer & Nolan, 2016). The mass spectrometer 

analyses signals from the ionized metals. Cytometry time of flight (CyTOFTM) is the current 

instrument for mass cytometry, and the technique allows for the quantification of approximately 

45 simultaneous cellular parameters that enable the assessment of phenotypes and functions 

(Brodin & Davis, 2017).  
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1.4 The cohort study: PreventADALL 

The increasing numbers of allergic and immune-related NCDs in the Western world are 

particularly alarming for human health. These diseases are connected to changes in lifestyle and 

environment, with microbial exposure, diet, physical activity, and antibiotic treatment being 

some of them (von Hertzen et al., 2015). The Preventing Atopic Dermatitis and ALLergies in 

children (PreventADALL) cohort study uses allergic diseases as model diseases for 

understanding NCDs, as allergies develop early in life. The study aims to collect knowledge to 

prevent the development of NCDs later in life.  

Firstly, the main objective is to determine whether primary prevention of allergic diseases is 

possible through simple and low-cost strategies. Secondly, it is to assess early life factors and 

exposures, including intrauterine environment, microbiota, and xenobiotics, involved in the 

development of asthma and allergic diseases or other NCDs, including cardiovascular diseases, 

obesity, and diabetes (Lodrup Carlsen et al., 2018). Hopefully, the findings will make it possible 

to identify personalized novel preventative strategies to related microbial diversity, diet, 

lifestyle, and gene-environment influence on allergic and other NCD development from fetal 

life (Lodrup Carlsen et al., 2018). 

The study is a general mother-child population-based cohort. It includes a healthy population 

in Norway and Sweden and aims to be representative of this entire population. Information 

about health and disease in the mother, child, and family and biological samplings such as 

blood, skin swabs, urine, and feces are collected from mothers and their children in a time 

period from 18 weeks pregnant to 4 years onward (Lodrup Carlsen et al., 2018).  
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1.5 Aim of the thesis 

Several animal studies have shown that the gut microbiota is essential for modulating and 

maturing the immune system. However, these associations have not been studied widely in 

human infants, limiting the complete understanding of gut microbiota and human immunity 

connections. Thus, did we want to investigate this connection and hypothesize that differences 

in immune cell composition are associated with the gut microbiota’s taxonomic and metabolic 

composition.  

This thesis aimed to determine the relative taxonomic and inferred metabolic composition of 

the gut microbiota in the first year of life to investigate possible associations of these gut 

microbial characteristics to the relative immune cell composition at 12 months by an explorative 

nature. Several sub-goals were included to achieve this. 

• Perform Reduced Metagenome Sequencing on fecal samples collected in the 

PreventADALL cohort study from meconium, 3, 6, and 12 months of age as well as 

their respective 18-week pregnant mothers to determine the gut microbiotas 

composition at specie and genus level using the Kraken2 HumGut database. 

• Infer the gut microbiotas metabolic potential the first year of life from the taxonomic 

composition at the species level using the Virtual Metabolic Human database. 

• Correlate the gut microbiota’s relative inferred metabolic composition and taxonomic 

composition at the species and genus level the first year of life to immune cell 

composition at 12 months. The immune cell composition is determined using mass 

cytometry by group members of the PreventADALL cohort study. 
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2. Materials and methods 

2.1 Clinical samples 

In total, 418 fecal samples from mothers at 18 weeks pregnant, and their children sampled from 

birth to 12 months collected by PreventADALL were analyzed for this study. Fecal samples 

from 180 participating children at 12 months were initially chosen based on the knowledge that 

group members of PreventADALL in Stockholm were analyzing blood samples to determine 

immune cell composition by CyTOF2 Mass Cytometry for the same children. However, results 

for only 67 of the children were obtainable for analysis in this master thesis. Thus, we chose to 

include longitudinal samples for the 67 children and their mothers. Because of missing samples 

at several time points, the number of samples that were analyzed is distributed in the following 

matter; 60 fecal samples from the infants’ first feces (meconium) and corresponding pregnant 

mother at 18 weeks, 59 fecal samples from 3 and 6 months and 180 fecal samples from 12 

months.  

Immune cell analysis was conducted by staff at the Brodin lab in Stockholm, Sweden. Brodin, 

P., and Tadepally, L. handed a manuscript for the protocol of immune cell phenotyping by Mass 

Cytometry/CYTOFTM and the antibodies and reagents that were used. This manuscript is 

presented in Appendix A. 

The fecal material was suspended in DNA shield buffer (1:10) to prevent DNA degradation, 

before it was stored in a freezer at -80°C in Oslo, Norway. The fecal samples were transported 

in a cooler box with cooling elements to Norwegian University of Life Sciences in Ås, Norway, 

and analyzed there by the master student. The gut microbiota was analyzed by extracting gene 

sequences cut by the restriction enzymes EcoRI and MseI, according to the RMS protocol (Ravi 

et al., 2018) on all fecal samples. The sequencing of the metagenomes was done by the 

Norwegian sequencing center (NSC) using Illumina HiSeq 3000. The flowchart in Figure 2.1 

illustrates the work that has been done in this master thesis. 
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Figure 2.1. Flowchart. The flowchart illustrates the workflow of this master thesis. Green boxes have 

been conducted by group members of PreventADALL, yellow box by the NSC, and orange boxes by 

the master student, guided by supervisors and laboratory engineers at the Norwegian University of Life 

Science. 
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2.2 Sample preparation 

All fecal samples were thawed on ice and vortexed for 20 seconds to homogenize the fecal 

material before any further treatment. Following this step, the samples were pulse centrifuged 

at 1200 rpm for 8 seconds to separate the homogenized sample from any larger insoluble fecal 

particles. 

2.3 Initial DNA purification 

2.3.1 Microbial lysis 

The microbial cells in the fecal samples were lysed using a combination of mechanical and 

chemical stress. The mechanical lysis was done by mixing 200 µl of the homogenized fecal 

sample in a fast prep tube with 0,2 g acid-washed glass beads (<106 µm Sigma-Aldrich, 

Germany), 0,2 g acid-washed glass beads (425-600 µm Sigma-Aldrich, Germany) and two large 

acid-washed beads (2,5-3,5 mm Sigma-Aldrich, Germany). The combination of different bead 

sizes leads to lysis of both the fragile and more robust cell types present in the sample. 

Consequently, the combination results in a more representative result after extraction, with 

higher diversity and less bias (Bakken, 2006). The tubes containing the fecal material and beads 

were processed twice in FastPrep 96 (MP Biomedicals, USA) at 1800 rpm for 40 sec, followed 

by centrifugation at 13000 rpm for 5 min. The last centrifugation step aggregates the glass beads 

and bigger particles, facilitating further purification. 

The chemical lysis was done by mixing the supernatant after centrifugation with lysis buffer 

(Thermo Fisher, USA) and Proteinase K (Thermo Fisher, USA) with the ratio 1:1:0,1, 

respectively. The samples were placed in the KingFisher Flex robot using 

“ProteinaseLGCmini” procedure incubating the samples at 55 ⁰C for 10 min. Proteinase K is an 

endolytic serine protease that degrades contaminating proteins such as nucleases in the sample, 

making later PCR amplification more efficient (Crowe et al., 1991). 

2.3.2 DNA Extraction 

DNA extraction of the stool samples was done using the MagMidi LGC kit (LGC Biosearch 

Technologies, UK) on a KingFisher Flex Robot (Thermo Fisher Scientific, USA) following the 

manufacturer’s recommendations. This kit uses paramagnetic particles that reversibly bind to 

DNA via a salt bridge at high salt concentrations (Boom et al., 1990). The samples were mixed 

with 96 % Ethanol and Mag Particles, followed by three wash steps with buffers containing 
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salts. DNA from the samples was conclusively eluted with nuclease-free water (VWR, USA), 

breaking the salt bridges between the Mag Particles and the DNA.  

2.4 Library preparation of RMS amplicons 

Preparation of the RMS library was done by cutting genomic DNA with the restriction enzymes 

EcoRI and MseI, ligating adaptors to the fragments, followed by two PCRs and a clean-up using 

Sera mag beads after both reactions. 

2.4.1 Restriction Cutting  

The restriction enzymes EcoRI and MseI recognize cutting sites on the genome that occur 

seldom (5’ G|GAATTC) and often (5’ T|TTAA), respectively. The restriction mix contained 

8U EcoRI (New England Biolabs, USA), 4U MseI (New England Biolabs, USA), 1x Cut Smart 

buffer (New England Biolabs, USA), ~1 ng of extracted gDNA template (10 µL for all 

samples), and nuclease-free water with a total volume of 20 µL. The restriction mix was 

incubated at 37 ⁰C for 1 hour, allowing the enzymes to cut the genomic DNA into fragments. 

The fragments will either be flanked by EcoRI/EcoRI, EcoRI/MseI, MseI/EcoRI or MseI/MseI 

cutting sites. 

2.4.2 Ligating of Adapter 

Following the restriction cutting, there was done an adaptor ligation to make PCR amplification 

possible. The adaptor sequences contain a core sequence that is identical in the different 

adaptors, and a sequence-specific to four different flanked cutting sites, forward and reverse for 

both enzymes. The core sequence works as a common binding site for primers for all fragments. 

The genomic DNA product after cutting was mixed 1:5 with a ligation mix consisting of 0,5 

µM EcoRI adapter mix (Invitrogen, USA), 5 µM MseI adapter mix (Invitrogen, USA), 400U 

T4 DNA ligase (New England Biolabs, USA), and 1x T4 DNA ligase reaction buffer (New 

England Biolabs, USA). The mix was made with equal volumes of forward                                                                                            

(EcoRI; 5’- CTCGTAGACTGCGTACC-3’, MseI; 5’-GACGATGAGTCCTGAG-3’) and 

reverse (EcoRI; 5’AATTGGTACGCAGTCTAC-3’, MseI; 5’-TACTCAGGACTCAT-3’) 

adaptors. The ligation mixture was incubated at 37 ⁰C for 3 hours. 

2.4.3 Polymerase chain reactions 

The ligated fragments were then amplified in a qualitative PCR reaction with EcoRI forward 

and MseI reverse primer complementary to the adaptor and cutting sequence, allowing only the 

fragment cut by both enzymes (EcoRI/MseI) to be ligated. PCR amplification of the cut and 
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ligated fragments were done with mixing it 1:5 with 1x HotFirePol® DNA polymerase RTL 

(Solis BioDyne, Estonia), 0,2 µM EcoRI forward primer (5’-GACTGCGTACCAATTC-3’), 

0,2 µM MseI reverse primer (5’GATGAGTCCTGAGTAA-3’) and nuclease-free water. The 

PCR program consisted of a heating step at 95 ⁰C for 15 minutes followed by 25 cycles with 

denaturation at 95 ⁰C for 30 seconds, hybridization at 56 ⁰C for 1 minute, and elongation at 

72⁰C for 1 minute. 

Index PCR was then done in order to later sequence the fragments on Illumina Hiseq 3000. The 

index primers have a complementary sequence at the 3’ end to the adaptor and restriction cutting 

sequence of each fragment, a complementary sequence at the 5’ end to the Illumina flow cell 

oligonucleotides, and an index sequence that provides traceability to all fragments originating 

from the same sample. 20 forward and 12 reverse primers were used in the Illumina HiSeq run. 

Appendix B gives an overview of the primers. The reaction mix contained 1x FirePol Master 

Mix Ready to Load (Solis BioDyne, Estonia), 0,2 µM EcoRI forward index primer (Invitrogen, 

USA), 0,2 µM MseI reverse index primer (Invitrogen, USA), with a unique combination for 

each sample, nuclease-free water, with 2 µL cleaned PCR product making the total volume 25 

µL. The PCR program consisted of a heating step at 95 ⁰C for 5 minutes followed by 25 cycles 

with denaturation at 95 ⁰C for 30 seconds, hybridization at 56 ⁰C for 1 minute, and elongation 

at 72 ⁰C for 1 minute. 

Both PCRs were done on a 2720 Thermal Cycler (Applied Biosystems, USA). Each 96-well 

plate had a PCR negative control with nuclease-free water, and positive control with extracted 

DNA from a culture of Pseudomonas aeruginosa, prepared by laboratory engineers at 

Norwegian University of Life Sciences. 

2.4.4 Clean-up of PCR Product 

The PCR products after both PCR reactions and the pooled library were cleaned for 

contaminates such as polymerases, primer dimers, and nucleotides by using SeraMag beads 

(Thermo Fisher Scientific, USA). The beads work paramagnetically and are suspended in a 

buffer containing salt. DNA binds to the beads and can, in this way, be separated from the 

mentioned contaminants. Each sample and pooled library were mixed thoroughly 1,5X with 

0,1% SeraMag beads and after that placed on a magnetic rack. The supernatant was then 

removed, and the beads were washed twice with freshly made 80% ethanol (Antibac, Norway). 

Finally, the cleaned PCR product was eluted with water.  
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2.4.5 Normalization and pooling of RMS library 

All samples were pooled together in a single library for both sequencing runs. DNA 

concentrations of each sample were used to determine the amount of each sample in the pooled 

sample, and the cut-off value for the libraries was 48,5 and 48,6 ng/µl. The maximum volume 

of each sample was 10 µL, while the minimum volume was 2 µL. Pooling of the libraries was 

conducted using a Biomek® 3000 robot (Beckman Coulter, USA). 

2.5 DNA quantity and quality control 

2.5.1  Qubit and Cambrex for quantification 

The DNA was quantified using Qubit® dsDNA HS Assay Kit (Invitrogen, USA) on a Qubit™ 

fluorometer (Life Technologies, USA) and a Cambrex – FLX800 CSE machine (Thermo 

Fisher, USA) following the manufacture’s recommendation. Quant-iT™ working solution was 

prepared by mixing Quant-iT™ reagent and Quant-iT™ buffer 1:200. The dye in the working 

solution emits fluorescence when bound to DNA. 2 µL of the sample were then added to 198µL 

working solution when measuring on the fluorometer, while 2 µL of the sample was added to 

70 µL working solution in each well of a Nunc 96 well Nontreated Black Microwell plate 

(Thermo Fisher, USA) when measuring on the Cambrex machine. Quantification with Cambrex 

was done by measuring the fluorescence of each sample. DNA concentration from all samples 

was calculated by making a standard curve based on fluorescence data from ten samples with 

values ranging from the lowest to the highest and their corresponding DNA concentrations 

measured with the fluorometer. This Qubit-Cambrex coupled quantification was done after 

DNA extraction and index PCR, while the pooled libraries were only quantified with the 

fluorometer. 

2.5.2  qPCR for quantification 

Quantitative PCR (qPCR) was done after DNA extraction. For each reaction, 1x HOT 

FIREPol® EvaGreen® qPCR Supermix (Solis BioDyne, Estonia), 0,2 μM of forward (341F) 

and reverse (806R) primer (Yu, Lee, Kim, & Hwang, 2005), 1 μl extracted genomic DNA, and 

nuclease-free water was mixed in a total volume of 20 μl. qPCR was executed in LightCycler® 

480 II (Roche, Germany) with the following program: Denaturation at 95 °C for 15 minutes 

followed by 40 cycles of denaturation at 95 °C for 30 seconds, annealing at 60 °C for 30 seconds 

and elongation at 72 °C for 45 seconds.  
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2.5.3  Agarose gel electrophoresis for qualification 

Agarose gel electrophoresis was done as a qualitative checkpoint after RMS cutting and 

ligation, PCR reactions, and every clean-up step. The agarose network and electric voltage 

allow the separation of DNA fragments by size. DNA molecules have a negative charge, and 

the smallest molecules travel furthest to the positive pole. 1,5 % agarose gel was prepared by 

dissolving 1,5 % agarose (Invitrogen, USA) with 1x tris-acetate EDTA (TAE) buffer in a 

microwave. After cooling, 2 µL PeqGreen (PeqLab, Germany) per 50 µL agarose solution was 

added. PeqGreen is a fluorescent dye that binds to DNA and makes the DNA fragment 

detectable under UV light. The samples and positive controls were controlled for their expected 

size and the negative control for any contaminations. A 100 base pair (bp) DNA ladder (Soils 

BioDyne, Estonia) was used to determine the fragment size of all samples and controls. The gel 

ran for 35 min with a voltage of 80 V and ampere of 400 amp. The bands were visualized using 

Molecular Imager® Gel Doc™ XR Imaging Systems with Quantity One 1-D analysis software 

version 4.6.7 (BioRad, USA). 

After PCR reactions, the samples contained a ready to load dye that simplifies application and 

visualizes the movement of fragments in the gel. The cleaned samples did not, and Loading 

Dye (Biolabs, Estonia) was mixed 1:5 with these samples. After every PCR reactions, all 

samples were checked on the gel. After every PCR clean-up, only 12 samples, including 

positive and negative controls, were checked on the gel. 

2.6 Illumina sequencing 

Illumina sequencing was done at NSC in Oslo, Norway. Two RMS libraries were submitted to 

NSC. The first contained 12 months samples, and the second contained samples from the 

remaining time points, mother, meconium, 3, and 6 months. Both libraries were sequenced on 

an Illumina HiSeq 3000 platform. NSC preformed quantification, sequencing, and quality 

control, before delivering FASTQ files and quality control report for each reverse primer.  

2.7 Data analysis 

2.7.1 Processing of sequence data in Kraken2 

Taxonomic classification was done through a developing RMS Kraken2 pipeline made by 

Snipen, L.G., and described by Lokmic, A, in her unpublished master thesis. (Lokmic, 2019). 

The first step of the pipeline involves demultiplexing, which utilizes the barcodes in the index 

sequences to separate the sequences from different samples into separate files. Demultiplexing 



 

 

24 

 

produces a FASTQ file pair for each sample. The file pair was then run through the Kraken2 

HumGut_05 database for taxonomic classification (Hiseni et al., 2020), both at species and 

genus level. The HumGut_05 database allows a 95% identity level between reference k-mers 

and k-mers in the sequences from a sample.  

The next step of the pipeline is a correction step. All fragments originating from the same specie 

and genus were normalized to the total number of available restriction-cut fragments in the 

genomes of members to that specie and genus. The correction is necessary because every unique 

genome has a specific amount of possible RMS fragments due to the genome length and number 

of cutting sites. The signal can be either over- or underestimated if this difference is not 

considered. 

2.7.2 Inferring the metabolic potential by the VMH database 

The taxonomic composition at the species level for all time points (meconium, 3, 6, and 12 

months and mothers) was matched to the VMH database by Professor Knut Rudi. Each sample 

was scored based on the inferred metabolic potential of all species in that sample. 

2.7.3 Normalization 

Normalization in every sample was done to the taxonomic data by dividing the number of 

sequences for every specie and genus in one sample on the complete number sequences in the 

sample. The same normalization was done to the inferred metabolic data, namely by dividing 

the metabolite scores present in one sample on the complete metabolite score in that sample. 

This number was multiplied by 100%. The specie, genus, and inferred metabolite was removed 

if its relative abundance summed to zero for all samples. 

2.7.4 Paired T-test 

The relative longitudinal taxonomic and inferred metabolic development were studied by 

calculating the average relative percentage of each genus and metabolite, respectively. A paired 

T-test was used to evaluate significant changes in the relative composition of genus or 

metabolite between age groups with a relative abundance of ≥5% in at least one age group. The 

level of significance was set to 5%. The script was made by master student Unni Lise 

Albertsdóttir Jonsmoen and PhD student Morten Nilsen and was performed by in R studio 

version 3.5.2 and package stats by the master student.  
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2.7.5 Spearman correlation 

Spearman correlation tests (Spearman, 1904) were used to investigate possible associations 

between infant and mother gut’s relative specie, genus, and inferred metabolite composition the 

first year of life to immune cell composition at 12 months. The Spearman correlation test 

produces a rho value ranging from -1 to 1 for each correlation. A positive rho value means a 

positive correlation, while a negative rho value means a negative correlation between the 

variables. A positive correlation means that the variables move in tandem, one variable decrease 

if the other variable decrease or one variable increase if the other variable increase. On the 

contrary, a negative correlation means that one variable decrease if the other variable increase, 

and vice versa. An adjustment for the false discovery rate was done using the Benjamini-

Hochberg method (Benjamini & Hochberg, 1995) for each immune cell, and the level of 

significance was set to 5%. The script was made by PhD Student Morten Nilsen and performed 

in R studio version 3.5.2 and package stats by the master student. 
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3. Results 

3.1 RMS library preparation and sequencing 

3.1.1 RMS library preparation 

Quantification by qPCR after DNA extraction on all samples resulted in Cq values ranging from 

13-32. The positive and negative controls had an average Cq value of 15 and 36, respectively. 

One mother sample seemingly did not contain fecal material, as the original sample was white, 

and the extracted sample produced no detectable signal in qPCR.  DNA concentrations for all 

samples were measured to ⁓ 0,1 ng/μl. 

The result after two qualitatively checkpoints with agarose gel electrophoresis for 14 

representative samples from 3 months is visualized in Figure 3.1. Gel picture A) is after cutting, 

ligating, and the first PCR, and gel picture B) is after index PCR. The gel result after cutting, 

ligating, and the first PCR A) shows that most of the bands vary in fragment size from 100-500 

bp for all samples and positive control, while the negative control shows no visual bands. 38 of 

the 60 meconium samples (63%) did not give visual bands on the gel after cutting, ligating, and 

the first PCR. The initial PCR reaction was increased with five cycles to a total of 30 cycles for 

these samples. This adjustment gave clear bands on the gel on all samples, like panel A) in the 

figure. 

The gel result after index PCR B) shows that most of the bands vary in fragments size from 

300-500 bp for all samples and positive control, while the negative control does not have 

fragments in this size area. The range of fragments is reduced after index PCR compared to the 

first PCR. All samples and both controls have DNA fragments with a size ⁓ 100 bp, indicating 

index primer dimer formation.  
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Figure 3.1. Qualitative check by agarose gel electrophoresis. The figure shows gel images of PCR 

products from 14 samples at 3 months (1-14), P. aeruginosa as the positive control (P), and nuclease-

free water as the negative control (N). The 100 bp ladder (L) was used to determine band size for all 

fragments. Panel A) is after cutting, ligating, and first PCR amplification, while panel B) is after Index 

PCR. Primer dimer is observed in B) at 100 bp. The PCR fragments were smeared, and the majority 

fragment size is 100bp-500 bp in A) and 300-500 bp in B). 

3.1.2 RMS sequencing 

The first Illumina HiSeq 3000 sequencing run (2x150 bp) of 180 12 months samples produced 

a total of 234 823 012 sequences for the reverse primers. The read count number in each sample 

varied from 39-150 012 at the genus level and 51-222 199 at the specie level. The second 

Illumina HiSeq 3000 sequencing run (2x150 bp) with 59 mothers, 60 meconium, 59 3 months, 

and 59 6 months samples produced a total of 356 882 086 sequences for the reverse primers. 

The read count number in each sample varied from 36-12 347 at the genus level and 58-8 878 

at the specie level. One reverse file was corrupt and could not be read. The file issue resulted in 

a reduction to 51 3- and 6-month samples. NSC provided a quality report of the sequences for 

the reverse primers in each run, and appendix C shows two representatives per base sequence 

quality plots for all reverse primers. Panel A is for reverse 7 in the sequencing run with samples 

from 12 months, and panel B is from reverse 2 at the sequence run with samples from mothers, 
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meconium, 3, and 6 months in Figure C.1 (Appendix C). Both plots display decreasing quality 

scores in bases from position 60-70 and further towards the end of the read. 

3.2 Longitudinal development of the gut microbiota 

Determination of the gut microbiota’s relative longitudinal taxonomic and inferred metabolic 

development was done by calculating the average of each genus and metabolite in all samples 

at each time point. The mother group was set as an adult reference group for both relative 

taxonomic and inferred metabolic composition. The longitudinal taxonomic development was 

not analyzed at the species level due to the high total number of 996 species for all time points 

and because the inferred metabolic composition is based on this species composition. 

Paired t-test conducted determination of significant differences in averages of the relative 

taxonomic and inferred metabolic composition from meconium to 3 months, 3 to 6 months, 6 

to 12 months, and 12 months to mothers. Only genera and metabolites with relative abundance 

≥5% for at least one time point were checked for significant change, and the level of 

significance was set to 5%. 

3.2.1 Longitudinal taxonomic development at the genus level  

The gut microbiotas longitudinal relative taxonomic development at the genus level in the first 

year of life is illustrated in the bar graph in Figure 3.2 and listed more in detail in Table D.1 

(appendix D). All age groups had a total of 65 bacterial genera in common. Nine genera showed 

≥5% relative abundance in at least one of the time points and are listed in the figure. The 

remaining 56 genera are summed and visualized as other genera in the figure. The statistically 

significant changes in relative abundance between the time points are marked with * in the 

figure, and the exact p values are listed in Table D.2 (appendix D).  

The results from this study found that Bifidobacterium was the only genus that showed a 

significant change in all time point transitions, an increase from meconium to 3 months, and a 

decrease in relative abundance from 3 to 6 months, 6 to 12 months and 12 months to mothers. 

Of the remaining eight genera, Prevotella, Allistipes, Faecalibacterium, and Bacteroides all 

significantly decreased in relative abundance from meconium to 3 months. Sutterella, 

Veillonella, and Bacteroides significantly increased, while Streptococcus significantly 

decreased in relative abundance from 3 to 6 months. Prevotella, Allistipes, Faecalibacterium, 

Sutterella, and Bacteroides all significantly increased in relative abundance from 6 to 12 

months. Allistipes, Faecalibacterium, and Clostridium significantly increased, while 
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Veillonella, Sutterella, and Streptococcus significantly decreased in relative abundance from 

12 months to mothers. 

 

Figure 3.2. The longitudinal taxonomic development. The bar graph shows the relative longitudinal 

taxonomic development for the infants’ dominant genera in the first year of life and their mothers. The 

complete relative abundance data for all genera at all time points are listed in Table D.1 (appendix D). 

Paired T-tests were done to determine significant differences in relative genus abundance from 

meconium to 3 months, 3 to 6 months, 6 to 12 months, and 12 months to mothers. Significant changes 

with a 5% level in the relative abundance of a genus are marked with *, and the exact p-values are listed 

in Table D.2 (appendix D). 

3.2.2 Inferred longitudinal metabolic development from the species level 

The gut microbiota’s inferred longitudinal metabolic development the first year of life is 

illustrated in the bar graph in Figure 3.3 and listed in Table E.1 (appendix E). Samples from all 

age groups were scored to a total of 17 metabolic compounds using VMH on the specie 

composition data. Nine metabolites showed ≥5% relative abundance in at least one time point 

and are listed in the figure. The remaining seven metabolites are summed and visualized as 

other metabolites in the figure. A statistically significant change in relative abundance between 

two time points is marked with * in the figure, while the exact p-values are listed in Table E.2 

(appendix E). 

The results from this study find acetic acid as the only metabolite with no significant change in 

inferred relative abundance in any time point transition. Only formic acid showed significant 
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changes in the inferred relative abundance in all time point transitions, an increase from 

meconium to 3 months and 12 months to mother, and a decrease from 3 to 6 months. Of the 

remaining seven metabolites, succinic acid, and ethanol significantly increased while D-lactic 

acid and butyric acid significantly decreased in inferred relative abundance from meconium to 

3 months. Propionic acid significantly increased, while formic acid, ethanol, and L-lactic acid 

significantly decreased in inferred relative abundance from 3 to 6 months. Propionic acid, D-

lactic acid, butyric acid, and H2 significantly increased, while formic acid, succinic acid, 

ethanol, and L-lactic acid significantly decreased in inferred relative abundance from 6 to 12 

months. Formic acid, D-lactic acid, and butyric acid significantly increased, while propionic 

acid, succinic acid, ethanol, H2, and L-lactic acid significantly decreased in inferred relative 

abundance from 12 months to mothers.  

 

Figure 3.3. The inferred longitudinal metabolic development. The bar graph shows the relative 

inferred longitudinal metabolic development for the infants’ dominant metabolites in the first year of 

life and their mothers. The complete relative abundance data for all metabolites at all time points are 

listed in Table E.1 (appendix E). Paired T-tests were done to determine the significant difference in 

relative inferred metabolic abundance from meconium to 3 months, 3 to 6 months, 6 to 12 months, and 

12 months to mothers. Significant changes with a 5% level in the relative abundance of a metabolite are 

marked with *, and the exact p-values are listed in Table E.2 (appendix E).  
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3.3 Correlation of gut microbial characteristics and immune cells 

Correlation between relative immune cell abundance at 12 months to the relative taxonomic 

abundance at the genus and species level as well as the relative inferred metabolic abundance 

for at children the first year of life and their mothers was done using the Spearman method. 

Adjustment for false discovery rate was conducted by the Benjamini-Hochberg procedure. 

Correlation tests were done for individuals with relative immune cell composition at 12 months 

and their corresponding mother. The total number of correlation tests were distributed in the 

following matter: 60 for meconium to 12 months, 51 for 3 to 12 months, 51 for 6 to 12 months, 

67 for 12 to 12 months, and 59 for mothers to 12 months. Table F.1 (appendix F) gives an 

overview of the relative abundance of the 28 different immune cells detected in the 67 children’s 

blood samples at 12 months. 

3.3.1 Correlation in relative taxonomic and immune cell abundance 

After adjusting for false discovery in this study, the relative abundance of ten species was 

significantly correlated to the relative abundance of five immune cells. Figure 3.4 visualizes the 

correlation analysis results, while Figure G.1 (appendix G) lists the associated P and Rho 

values. Correlating species to immune cells at 12 months originate from all time points except 

meconium. In the mother group, the relative abundance of Bifidobacteriaceae bacterium 

NR020, Emergencia timonesis, and Clostridium sp. CAG 508 correlated negatively to the 

relative abundance of classical monocytes at 12 months. The relative abundance of 

Ruminococcaceae bacterium UBA2 in the mother group correlated negatively to the relative 

abundance of double-positive T cells, while the relative abundance of Corpococcus sp AF21 

14LB in the mother group correlated negatively to the relative abundance of translational B 

cells. The relative abundance of Streptococcus mutans at 12 months correlated negatively to 

the relative abundance of proinflammatory monocytes at 12 months. The relative abundance of 

Lactobacillus gasseri and uncultured Synergistaceae bacterium at 6 and 3 months positively 

correlated to the relative abundance of naïve CD8+ T cells at 12 months. Additionally, the 

relative abundance of Firmicutes bacterium CAG 176 and Clostridium sp. CAG 226 at 6 

months also correlated positively to the relative abundance of naïve CD8 T cells at 12 months.  
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Figure 3.4. Significant correlation of relative specie and immune cell abundance. The network plot 

visualizes the significant correlations between the relative specie and immune cell abundance in this 

study. Green circles represent the immune cells at 12 months, while blue squares represent the specie 

and associated time point. Green lines illustrate a positive correlation, while red lines illustrate a negative 

correlation. Figure G.1 (appendix G) lists the associated P and Rho values to each correlation. 

After adjusting for false discovery in this study, the relative abundance of 13 genera was 

significantly correlated to the relative abundance of three immune cells. Figure 3.5 visualizes 

the correlation analysis results, while Figure G.2 (appendix G) lists the associated P and Rho 

values. Correlating genera to immune cells at 12 months are from samples at meconium and 3 

months. The relative abundance of Eggerthella and Phascolarctobacterium at 3 months 

correlated positively to the relative abundance of central memory CD8+ and CD4+ T cells, 

respectively. The relative abundance of the two same genera correlated negatively to the relative 

abundance of nonclassical monocytes at 12 months, as compared to the relative abundance of 

11 remaining genera; Flaconifractor, Parasutterella, Oscillibacter, Gemminger, Dorea, 

Holdemania, Eubacterium, Lactobacillus, Clostridium, Ruminococcus, and Acidaminococcus.  
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Figure 3.5. Significant correlation of relative genus and immune cell abundance. The network plot 

visualizes the significant correlations between the relative genus and immune cell abundance in this 

study. Green circles represent the immune cells at 12 months, while blue squares represent the genus 

and associated time point. Green lines illustrate a positive correlation, while red lines illustrate a negative 

correlation. Figure G.2 (appendix G) lists the associated P and Rho values to each correlation. 

3.3.2 Correlation in relative inferred metabolic and immune cell abundance  

After adjusting for false discovery in this study, the relative abundance of seven inferred 

metabolites was significantly correlated to the relative abundance of four immune cells. Figure 

3.6 visualizes the correlation analysis results, while Figure G.3 (appendix G) lists the associated 

P and Rho values. Correlating metabolites are from mothers, 3, and 12 months samples. In the 

mother samples, the relative inferred abundance of indole, isovaleric acid, isobutyric acid, and 

phenylacetic acid negatively correlated to the relative abundance of proinflammatory 

monocytes at 12 months. The relative inferred abundance of (2R,3R)-2,3-Butanediol from the 

mother group correlated negatively to the relative abundance of naive CD8 T cells. The relative 

inferred abundance of butyrate at 12 months correlated negatively to the relative abundance of 

CD56bright Natural Killer (NK) cells at 12 months, while the relative inferred abundance of CH4 
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at 3 months correlated positively to the relative abundance of mucosal-associated invariant T 

cells at 12 months.  

 

Figure 3.6. Significant correlation of relative inferred metabolites and immune cell abundance. 

The network plot visualizes the significant correlations between the relative inferred metabolite and 

immune cell abundance in this study. Green circles represent the immune cells at 12 months, while 

orange squares represent the inferred metabolite and associated time point. Green lines illustrate a 

positive correlation, while red lines illustrate a negative correlation. Figure G.3 (appendix G) lists the 

associated P and Rho values to each correlation. 
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4. Discussion 

4.1 Correlation in gut microbial characteristics to immune cells 

This study found several associations between the relative abundance of gut microbial 

taxonomic and inferred metabolic characteristics in the first year of life and the relative 

abundance of immune cells at 12 months. Most interestingly, the relative abundance of three 

different subtypes of monocytes showed a strong negative association with both the gut 

microbiota’s relative taxonomic and inferred metabolic composition. These negative 

correlations and other intriguing findings of the current study are discussed in the following 

subchapters. In contrast, immune cell correlations to species that are not yet described in the 

literature and inferred metabolites with no previous association to the immune system are not 

discussed. 

4.1.1 Negative correlation of gut microbial characteristics to monocyte subsets 

Monocytes are innate immune cells circulating in the blood and tissue before they differentiate 

to tissue-resident macrophages or dendritic cells. Monocytes are APCs that can phagocytize 

and present foreign antigens to adaptive immune cells, secrete chemokines, and proliferate in 

response to infection and injury (Chiu & Bharat, 2016). Monocytosis is the state of elevated 

monocyte level and is a result of acute and chronic inflammation (Dutta & Nahrendorf, 2014) 

that may originate from a viral, bacterial, or parasitic infection. Monocytes divide into different 

subsets based on the expression of different surface molecules.  

A striking observation in the results of the current study is the negative correlation of the relative 

abundance of 13 different genera in meconium samples to the relative abundance of 

nonclassical monocytes at 12 months (Figure 3.5). Nonclassical monocytes are a monocyte 

subtype that is widely accepted as anti-inflammatory because they maintain vascular 

homeostasis and provide the first line of defense in recognition and clearance of pathogens and 

cancer cells (Narasimhan, Marcovecchio, Hamers, & Hedrick, 2019). However, several studies 

reveal that the nonclassical monocyte subtype contributes to the disease pathogenesis by also 

possessing proinflammatory characteristics, which challenge the prior agreement (Narasimhan 

et al., 2019). The high number of negative correlating genera in meconium samples may 

indicate that the relative abundance of these genera similarly affects the relative abundance of 

nonclassical monocytes. However, the genera are not known to have a common gut microbe-

host association. Specific species belonging to the genera Eggerthella (Gardiner et al., 2015) 

and Ruminococcus (Henke et al., 2019) have adverse effects on their host. On the contrary, 
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specific species belonging to the genera Phascolarctobacterium (F. Wu et al., 2017), 

Eubacterium (Engels, Ruscheweyh, Beerenwinkel, Lacroix, & Schwab, 2016), Parasutterella 

(Ju, Kong, Stothard, & Willing, 2019), Oscillibacter (Gophna, Konikoff, & Nielsen, 2017), 

Lactobacillus (Walter, 2008), and Clostridium (Lopetuso, Scaldaferri, Petito, & Gasbarrini, 

2013) have positive effects on their host. The genera Flavonifractor, Acidaminococcus, 

Gemmiger, Dorea, and Holdemania, are, on the contrary, not entirely determined in terms of 

their relationship to their host. Furthermore, species belonging to the same genus can differ 

hugely in their associations to the human host. Very little was found in the literature on the 

question of the association between gut microbes and nonclassical monocytes in general. 

Regardless, the combination of findings is highly exciting.  

Another interesting finding in the present study is the negative correlation between the relative 

abundance of S. mutans at 12 months and the relative abundance of proinflammatory monocytes 

at 12 months (Figure 3.4). Proinflammatory monocytes are another monocyte subtype, which, 

as the name suggests, has proinflammatory properties. Levels of proinflammatory monocytes 

elevate during pathologic conditions, such as inflammatory and infectious diseases, but the 

mechanism of the increase is still unclear (Jeng et al., 2017) (Ritz et al., 2011) (Koch, 

Kucharzik, Heidemann, Nusrat, & Luegering, 2010). S. mutans is a member of the oral 

microbiota known to cause dental plaque formation. The oral cavity is an entry site to the GI 

tract, and studies indicate that oral bacteria possibly translocate to the gut, change the gut 

microbiota, and thereby affect the immune system in humans (Atarashi et al., 2017). In a murine 

model, intravenous administration of specific strains of S. mutans caused aggravation of 

ulcerative colitis (Kojima et al., 2012). However, a positive correlation is expected if this 

relationship is transferrable to humans rather than the observed negative correlation. 

Furthermore, it is challenging to determine if this finding applies to humans with the current 

study results, considering that the abundance of S. mutans was detected from tissue samples 

and not fecal samples.   

The relative abundance of proinflammatory monocytes at 12 months is also negatively 

correlated to the relative abundance of four inferred metabolites in mother samples in the 

current study, namely indole, isovaleric, isobutyric, and phenylacetic acid (Figure 3.6). The 

mother’s metabolic composition of the gut microbiota may influence the child’s immune cell 

composition at 12 months of age through that the mother’s gut microbiota initially shapes the 

mother’s immune system. Antibodies from the mother are then transferred to the fetus through 

the placenta and to the infant through breast milk and can consequently affect the immune 
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system (W. Zheng et al., 2020) (Fouda, Martinez, Swamy, & Permar, 2018). Indole derivatives 

of tryptophan catabolism by bacterial species act directly on cells of the immune system and 

demonstrate beneficial effects by protecting against liver disease development in humans 

(Hendrikx & Schnabl, 2019). Phenylacetic acid is an antibiotic product of phenylalanine 

metabolism that is experimentally showed to have immunostimulatory properties by inducing 

expression of immune-related genes (Z.-F. Wu et al., 2012). In contrast, an association with the 

immune system is not found for isovaleric and isobutyric acid in earlier studies. A possible 

explanation for the negative correlation is that an increased relative abundance of the inferred 

metabolites in the mother’s gut might induce anti-inflammatory changes in the mother’s 

immune system that are transferred to the infant. Ultimately, this leads to a reduction of the 

relative abundance of proinflammatory monocytes in the infant. 

The relative abundance of three species from mother samples, Bifidobacteriacea bacterium 

NR020, Emergencia timonensis, Clostridium sp. CAG 508, was intriguingly found negatively 

correlated to the relative abundance of classical monocytes at 12 months (Figure 3.4). Classical 

monocytes are the third type of monocyte, which are the most prevalently abundant and hold 

the highest phagocytic capacity among all three subtypes. As the two others, classical 

monocytes similarly exhibit proinflammatory properties (Sampath, Moideen, Ranganathan, & 

Bethunaickan, 2018). The species have not yet shown an association with the immune system. 

However, a similar route from mother to infant, as earlier proposed, may explain this observed 

negative correlation. In this case, however, both microbial derivatives from the species and their 

metabolites may impact the mother’s and, ultimately, the infant’s immune system in an anti-

inflammatory manner. 

4.1.2 Positive correlation of species to naïve CD8+ T cells 

An interesting finding in the present study was the positive correlation between the relative 

abundance of L. gasseri at 3 and 6 months to the relative abundance of naïve CD8+ T cells at 

12 months (Figure 3.4). Naïve CD8+ T cells are immune cells that have undergone the positive 

and negative central selection in the thymus. They circulate the lymph until they are driven to 

proliferate and differentiate to effector T cells that are able to recognize and eliminate cancerous 

cells and intracellular pathogens (Pennock et al., 2013). L. gasseri is a commensal lactic acid-

producing bacterium that occupies mucosal niches of humans. The specie is known to be among 

the first colonizers of the GI tract and stay persistent throughout adulthood as it tolerates the 

low pH and bile salts and can successfully adhere to the host epithelium cells (Wall et al., 2007). 
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L. gasseri obtains probiotic properties in humans due to its antimicrobial activity, bacteriocin 

production, and the ability to modulate immune responses (Selle & Klaenhammer, 2013). 

Immunomodulation by probiotic microorganisms occurs through the interaction of 

microorganism-associated molecular patterns with pattern recognition receptors on APCs and 

regulates both systemic and mucosal immunity (Lebeer, Vanderleyden, & De Keersmaecker, 

2010). The molecular patterns of L. gasseri include lipoteichoic acids, glycolipids, and 

peptidoglycan (Selle & Klaenhammer, 2013) that interact and primarily activate toll-like 

receptor 2/6 (Stoeker et al., 2011). Murine models have investigated the immune response for 

the OLL2809 strains of L. gasseri, showing that both the bacterium and its microbial RNA had 

suppressive effects on inflammatory responses by suppressing CD4+ T cell proliferation 

(Yoshida et al., 2011).   

The increased colonization of pathogens might explain the detected positive correlation in 

infants with a low relative abundance of the commensal bacterium L. gasseri. The mucosal 

immune system detects pathogenic colonization in the gut lumen and induces proliferation and 

differentiation from naïve cell types to mature effector cell types. The relative abundance of 

naïve CD8+ T cells may consequently decrease. Conversely, infants with a high relative 

abundance of L. gasseri may have lower levels of pathogenic colonization. The naïve immune 

cells do not proliferate and differentiate in the same degree, and the relative abundance of naïve 

CD8+ T cells is consequently high. That a previous study discovered that T cells in pathogen-

free mice remain in their naïve state despite colonization by commensal microbes in the GI tract 

(Belkaid, Bouladoux, & Hand, 2013) strengthens this hypothesis. 

The relative abundance of Uncultured S. bacterium showed identical correlation patterns at the 

same time points to the relative abundance of naïve CD8+ T cells at 12 months as L. gasseri in 

the current study (Figure 3.4). This bacterium belongs to the newly proposed phylum 

Synergistetes (Jumas-Bilak, Roudière, & Marchandin, 2009) and is a part of the human gut 

microbiota (Duysburgh, Van den Abbeele, Krishnan, Bayne, & Marzorati, 2019). The specie is 

not intensively studied, and very little was found in the literature on the question of the 

relationship to its human host. C. sp. CAG 176 and F. bacterium CAG 176 also show the same 

positive correlation to naïve CD8+ T cells as the two mentioned species, but only at 3 months. 

These Co-Abundant Gene groups are assembled as individual genomes based on the clustering 

of co-abundant genes. Little previous research is consequently available on these species, and 

no previous association is discovered to the immune system. The possible relationship between 
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uncultured S. bacterium, C. sp. CAG 176, and F. bacterium CAG 176 to naïve CD8+ T cells 

may correspond to what is proposed for L. gasseri. If this assumption is correct, these species 

possibly hold similar probiotic properties to what L. gasseri has. To validate this hypothesis, a 

better understanding of the species as members of the gut microbiota is most importantly 

needed. 

4.1.3 Positive correlation of genera to central memory T cells 

Interestingly, this study found the relative abundance of Eggerthella at 3 months to positively 

correlate to the relative abundance of central memory CD8+ T cells at 12 months. Furthermore, 

the study also found the relative abundance of Phascolarctobacterium at 3 months to positively 

correlate to the relative abundance of central memory CD4+ T cells at 12 months (Figure 3.5). 

Activation by antigen stimulation causes both some CD8+ and CD4+ T cells to develop into 

memory cells. Central memory T cells, a subtype of the memory T cells, mediates the adaptive 

immune system’s reactive memory. Compared with naïve T cells, the central memory T cells 

have a higher sensitivity to antigenic stimulation and provide more effective stimulatory 

feedback to other immune cells and differentiate to effector cells (McKinstry, Strutt, & Swain, 

2010) (Martin & Badovinac, 2018).  

Species of the genus Eggerthella are commonly known members of healthy gut microbiota 

(Cho et al., 2016). However, members of the genus are not profoundly characterized except 

Eggerthella lenta, due to its pathogenicity (Gardiner et al., 2015) and its ability to inactivate 

cardiac drug digoxin (Haiser et al., 2013). Moreover, E. lenta is not one of the detected species 

from Eggerthella in the current study, and very little was found in the literature of the detected 

species. A prior study by Tanoue et al. noted that the development of memory CD8+ T cells is 

associated with gut microbiota. The researchers colonized mice with 11 bacterial strains 

isolated from healthy human donor feces and detected induction of colonic IFNγ+ CD8+ T cells 

to memory CD8+ T cells (Tanoue et al., 2019). None of the 11 strains belonged to Eggerthella, 

and no relationship between Eggerthella and central memory CD8+ T cells are reported 

otherwhere in the literature. Supposing that species of Eggerthella affects the levels of memory 

CD8+ T cells correspondingly as the 11 strains, the positive correlation may be explained by 

that an increase in the relative abundance of members of the genus leads to an increase in the 

relative abundance of the memory CD8+ T cells and vice versa.  

Species belonging to Phascolarctobacterium are abundant gut bacteria that utilize succinate to 

produce SCFAs acetate and propionate (F. Wu et al., 2017). A direct association between 
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Phascolarctobacterium and central memory CD4+ T cells is not yet reported in the literature. 

However, an earlier study has discovered a reduced abundance of Phascolarctobacterium in 

patients with immune-related inflammatory bowel diseases (Morgan et al., 2012), indicating 

that the absence of species from the genus negatively affects the immune system. The presence 

of species from the genus may conversely have a positive effect on the immune system. The 

same relationship may exist and explain the detected correlation in the current study. The high 

relative abundance of Phascolarctobacterium affects the immune system in an anti-

inflammatory way, ultimately leading to a high relative abundance of central memory CD4+ T 

cells. 

4.1.4 Negative correlation of inferred butyric acid to CD56bright NK cells 

A surprising finding of the current study is the negative correlation between the inferred relative 

abundance of butyric acid at 12 months and the relative abundance of CD56bright NK cells at 12 

months (Figure 3.6). NK cells are involved in both innate and adaptive immunity and contribute 

to both maintenances of immune homeostasis and the development of efficient immune 

responses (Poggi et al., 2019). The subtype CD56bright NK cell type is immunoregulatory and 

less cytotoxic than the CD56dim NK cell type (Cooper, Fehniger, & Caligiuri, 2001). The SCFA 

butyric acid is known to modulate human immunity, and the mechanism of immune modulation 

is widely studied for macrophages (Schulthess et al., 2019), Treg cells (Arpaia et al., 2013), and 

neutrophils (Vinolo et al., 2011). No association is earlier reported in the literature for butyric 

acid and CD56bright NK cells. However, a high abundance of butyric acid has been associated 

with decreased inflammation (Segain et al., 2000), while NK cells are stimulated and induced 

to proliferate by monocyte-derived cytokines upon infection (Assarsson et al., 2004) (Cooper, 

Fehniger, Turner, et al., 2001). That high levels relative abundance of butyric acid is 

confounding with low levels of CD56bright NK cells, and vice versa may be explained by butyric 

acid’s ability to regulate bacterial pathogenesis as reviewed in Sun and O’Riordan in 2013 (Sun 

& O'Riordan, 2013).  

4.2 General aspects related to gut microbiota development in infants 

Determining the longitudinal relative taxonomic and inferred metabolic development was two 

of the sub-goals conducted to explore the main goal of this study. Most of the observed patterns 

confirmed that of previous findings. The present study also revealed newer patterns concerning 

the clear taxonomic and minor metabolic development and transmission of genera from mother 

to infant. These exciting findings are discussed in the following subchapters. 
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4.2.1 The clear taxonomic and minor metabolic development 

A clear taxonomic and minor metabolic development in the gut microbiota, the first year of life, 

appears when comparing the taxonomic composition with the inferred metabolic composition 

in the current study. The significant change in the relative abundance of genera such as 

Bifidobacterium, Bacteroides, Faecalibacterium, Alistipes, and Veillonella at different time 

points causes a visible shift in the total relative taxonomic composition (Figure 3.2). This 

finding broadly supports the work of other studies in this area, linking a change in the taxonomic 

composition of the gut microbiota with age (Odamaki et al., 2016) (Tsuji et al., 2012). 

Even though several inferred metabolites significantly differ in relative abundance between the 

age points, the inferred longitudinal metabolic development is visually more uniform in every 

time point than the longitudinal taxonomic development in the current study (Figure 3.3) . The 

abundance of species with inferred metabolic potential to produce the metabolites is somewhat 

consistent over time. These findings correspond to the conclusions of other studies investigating 

the microbiome on a functional level using metabolic reconstruction. The studies have detected 

that gut microbes share the genes of the common pool and thereby yield a core microbiome at 

a functional level rather than the organismal level in adults of different ages (Turnbaugh et al., 

2009) (Qin et al., 2010). The significant changes in relative abundance found in this study can 

be explained by the sampling period. The gut develops from an aerobic to an anaerobic 

environment (Friedman et al., 2018), and the infant diet change from exclusively being breast- 

or formula-fed to be partly fed solid foods (Pannaraj et al., 2017). Some change in metabolic 

potential is consequently required. 

4.2.2 Transmission of genera from mother to infant 

The genera Bacteroides, Prevotella, Alistipes, and Faecalibacterium all exhibit a higher relative 

abundance in the meconium, 12 months, and mothers samples, compared to the relative 

abundance in 3 and 6 months samples in this study (Figure 3.2). Microbes detected from the 

first fecal samples reflect the first colonizers of the gut. Maternal transmission might explain 

the resemblance in the relative abundance of bacteria in meconium and the mother’s fecal 

samples. Several studies demonstrate that microbial strains from multiple maternal body sites 

transfer to the infant microbiome and that the maternal gut strains are more persistent in the 

infant’s gut than those from other sources (Ferretti et al., 2018) (Makino et al., 2011). Members 

of Bacteroides (Bjerke et al., 2011), Prevotella (Könönen et al., 1994), and Alistipes (Ferretti 

et al., 2018), have been demonstrated to be mother-child transmitted by analysis on the strain 
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and species level. Faecalibacterium prausnitzii, the sole bacteria within the Faecalibacterium 

genus, has not demonstrated mother-child transmission in previous studies. However, a study 

interestingly proposed that colonization by Faecalibacterium is accelerated through transfer 

between siblings (Laursen et al., 2017) Analysis of the species found in the same mothers-

children pairs would confirm that the results demonstrate a maternal transfer of bacterial species 

to children. Due to the time limitations of the current study, this was not conducted. 

4.3 Methodological considerations 

4.3.1 Fecal sample as a proxy for analyzing gut content in human 

Throughout time and using different approaches, fecal material has been the most prevalent 

sampling method for analyzing the gut content in humans due to the non-invasiveness and 

convenience of fecal sampling.  Prior animal-based studies have investigated samples directly 

from the GI tract and found that the fecal microbial community is a good proxy for identifying 

most taxa present in the gut (Yasuda et al., 2015). However, the studies detected phyla bias and 

inter-individual effects and suggested that determination of gut microbial community from fecal 

samples should be interpreted with caution (Yan et al., 2019). Several studies have investigated 

the effects of duration time of storage and temperature of fecal samples used for a culture-

independent analysis of gut microbiota. These variables have shown inconsistent results, with 

both significant and minimal differences in the composition of gut microbiota from the same 

fecal sample with different handling (Robinson, Brotman, & Ravel, 2016). Minimizing the 

amount of frozen-thaw cycles and suspending the fecal material with DNA stabilizing buffer, 

like done in the current study, reduces the variation (W. K. Wu et al., 2019).  

4.3.2 RMS library preparation and sequencing 

The reduction of short DNA fragments after the index PCR compared to the first PCR is 

assumedly explained by the Sera Mag clean-up, which was performed between the two gel 

electrophoresis quality checkpoints (Figure 3.1). The clean-up removes PCR byproducts such 

as nucleotides, polymerases, primers, and primer dimers and is a crucial part of the Illumina 

library preparations. An insufficient clean up may conversely lead to sequencing errors 

downstream. However, a dominating part of PCR fragments ranging from 100-300 bp was 

presumably also removed. This reduction can introduce bias if the discarded fragments 

originate from species that are not evenly distributed in size but mainly represented with short 

fragments after restriction cutting. The ratio of Sera Mag beads to amplified DNA can purposely 

change from 1,5:1 to 2:1 in future research using the RMS protocol to minimize this bias. 
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That 63% of the meconium samples did not show visual bands after the first 25 cycle PCR are 

presumably due to the meconium samples’ low biomass microbiome, tar-like texture that 

complicates the DNA extractions, and high concentrations of PCR inhibitors such as bile salts 

and acids, glycolipids, and urea (Stinson, Keelan, & Payne, 2018). Stinson, Keelan, and Payne 

conclude in their study from 2018 that the choice of extraction kit dramatically impacts the 

ability to extract and detect bacterial DNA in meconium samples and found the MoBio 

MagAttract PowerMicrobiome kit to yield the highest average total DNA yield. In the present 

study, the same DNA extraction method was used for samples at all time points, to ensure that 

the treatment of all samples was as equal as possible. Treating all samples identical is 

reasonable, but the MagMidi LGC kit used in the current may not be the most efficient for 

meconium samples. Increasing the first PCR to 30 cycles made the DNA fragment visible on 

the gel for all meconium samples but may have introduced PCR-induced sequence artifacts and 

bias (Acinas, Sarma-Rupavtarm, Klepac-Ceraj, & Polz, 2005).  

Quality control results after the two Illumina HiSeq 3000 runs were satisfactory. The sequence 

Q-score was ≥30 for the first 60-70 bases and ≥20 for the first 140 bases, meaning that the 

inferred base call accuracy was ≥99,9% and ≥99%, respectively (Figure C1, Appendix C).  The 

decrease in per base sequence quality over the read in Illumina HiSeq 3000 run detected in the 

current study is a normal and well-known phenomenon due to the phasing issues in the 

sequencing by synthesis technology. Pre-phasing occurs by incorporating two or more 

nucleotides in one cycle, while post-phasing occurs when blockers are not correctly removed, 

leading to detection of the old nucleotide a second time (Pfeiffer et al., 2018). With increasing 

read length, more errors occur and add up to decrease the quality score. 

4.3.3 Taxonomic and inferred metabolic assignment 

Using the Kraken2 HumGut database for taxonomical assignment of sequences from fecal 

samples like in the current study is an excellent alternative to the Kraken 2 Standard database 

because the former one only comprises genomes of gut microbial species, is more specific, and 

reduces the number of unclassified reads drastically from 50,1% to 10% (Hiseni et al., 2020). 

However, species that may be present in the sample go undetected if they are not yet detected 

as members of the human gut microbiota. By time, this limitation will assumedly minimize in 

parallel with updates on the HumGut collection as the list of publicly available genomes and 

metagenomes expand (Hiseni et al., 2020). 
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Determining the accurate metabolic output for species in the gut microbiota is a highly 

challenging task. Estimating the quantitative abundance of metabolites such as SCFAs in a fecal 

sample can typically be done with several approaches, such as gas chromatography, liquid 

chromatography, nuclear magnetic resonance, and capillary electrophoresis (Primec, Micetic-

Turk, & Langerholc, 2017). The quantitative metabolic abundance is thereby inferred to 

resemble the exact content in the gut lumen. Cross-feeding interactions, nutrient uptake by 

intestinal absorptive cells, and the volatile nature of these acids are all variables that 

problematize a correct inference and should be considered. By inferring the metabolic potential 

from species-level composition like in the current study, these variables are removed, which 

may lead to more precise estimation. However, the genomic potential in a species genome is 

not continuously utilized, meaning that all genes are not always transcribed, translated, 

assembled into a functioning protein, and transported to the right place in the cell. Such an 

inference may accordingly lead to an overestimation of the metabolic potential, and the study 

results should thereby be interpreted with caution and need further validation. Validation has 

not been conducted in this study due to time limitations. 

How successful the metabolic assignment using the VMH database is also depends on how well 

all species are evenly represented in the database. Correspondingly as for the Kraken2 HumGut 

database, this limitation will minimize by time, as the database expands to include genomes 

from more species present in the human gut. 

4.4 Study design 

4.4.1 Strengths with the study 

The study’s biggest strengths are the large sample size of the mother-children cohort analyzed 

and the standardized nature of the sample collection in the PreventADALL study. The large 

sample size strengthens the study as the accuracy of the statistical analyzes and power to detect 

associations between the gut microbiota and immune cells increases.  

The longitudinal sample collection with close follow-up visits at 3, 6, and 12 months after birth 

is a valuable feature of the current study, as it is possible to apprehend the development of the 

gut microbiota’s taxonomic and inferred metabolic composition and study the association of 

the gut microbial taxonomic and inferred metabolic characteristics in the first year of life to 

immune cell composition at 12 months.  

Another strength of the current study is that it analyzes infant human immunity to gut 

microbiota connections directly in humans. Although animal-based models have played an 
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essential role in the gut microbiota and immunology research, it is conversely uncertain if the 

detected mechanistic connections to immunity derived from animal-based studies are 

translatable to humans (Nguyen, Vieira-Silva, Liston, & Raes, 2015). 

4.4.2 Weaknesses with the study 

A weakness of the study was that only 67 of the 180 12-month-year-old children’s immune cell 

composition were available. Enlargement of the sample size to 180 would have given more 

power to the correlation analysis and would potentially reveal more associations. 

A second limitation of the study is that all absolute abundances were converted to relative 

abundances. This normalization step is reasoned in that the number of sequences found in a 

sample varied hugely. However, this normalization problematizes the interpretation of the study 

result, as the relative abundance of each specie, genus, inferred metabolite, or immune cell is 

dependent on the relative abundance of all other species, genera, inferred metabolites, or 

immune cells. 

The current study did not include the available information about delivery mode (vaginal or 

cesarean section), gestational age, use of antibiotics, infant diet (breast milk or formula), the 

timing for the cessation of breastmilk and formula, and introduction of solid foods. These 

available variables may impact both the gut microbiota’s longitudinal taxonomic and inferred 

composition, as well as the association between these two gut microbial characteristics and the 

immune cell composition. Further studies that take these variables into account will need to be 

undertaken to get a more comprehensive grasp of the infant’s gut microbiota development and 

its associations with the immune system. 

A limitation of the PreventADALL cohort study is that the participants live only in Norway and 

Sweden. Regional variation of gut microbiota is detected in several studies (Gupta, Paul, & 

Dutta, 2017), limiting the study results’ application to the Scandinavian population. 
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5. Conclusion and further research 

This study has identified several statistically significant correlations in the gut microbiota’s 

relative taxonomic and inferred metabolic abundance in the first year of life to the relative 

immune cell abundance at 12 months. The findings indicate that the gut microbial taxonomic 

and metabolic composition has a definite association with the immune cell composition during 

infancy in humans. 

Most interestingly is the detected negative association between the relative abundance of 

several species, genera, and inferred metabolites to the relative abundance of three monocyte 

subtypes. The associated gut microbial taxonomic and inferred metabolic characteristics may 

induce anti-inflammatory changes to the immune system, as an elevated monocyte level is 

confounding with inflammation. Additionally, the relative abundance of probiotic L. gasseri 

and three species without a complete biological description at 3 and 6 months were found 

positively correlated to the relative abundance of naïve CD8+ T cells. This finding may indicate 

that the presence of these species reduces pathogen colonization in the gut, thereby reducing 

the differentiation of naïve cell types. Another detected positive correlation was between the 

relative abundance of Eggerthella and Phascolarctobacterium at 3 months to the relative 

abundance of memory T cells. This finding suggests that these genera induce T cell 

differentiation. Lastly, the inferred relative abundance of inferred butyric acid at 12 months was 

found negatively correlated to CD56 bright NK cells, which might be due to butyric acid’s ability 

to regulate bacterial pathogenesis.  

In conclusion, the detected connections in gut microbiota and human immunity from this study 

may be a valuable contribution to the multidisciplinary research area of human microbiology 

and immunology. However, further work is highly suggested to explore the biological 

implications of the identified correlations in greater detail, as the study’s scope was limited in 

terms of its explorative nature. 
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Appendix 

Appendix A: Method for Mass Cytometry, Antibodies and reagents 

“Cryopreserved and stabilized whole blood (blood mixed with ‘Stabilizer’ component of Whole blood 

processing kit; Cytodelics AB, Sweden) collected from 67 patients sampled during the study period 

were thawed, and cells were fixed and RBCs lysed using Wash # 1 and # 2 buffers (Whole blood 

processing kit; Cytodelics AB, Sweden) as per the manufacturer’s recommendations. This was 

performed a few days prior to barcoding and staining of cells. Post fix/lysis of cells, ~1x106 cells/sample 

were plated onto a 96 well ‘U’ bottom plate using standard cryoprotective solution (10% DMSO and 

90% FBS) and cryopreserved at -80oC. 

On the day of barcoding and staining of cells, cells were thawed at 37oC using RPMI medium 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin and benzonase (Sigma-

Aldrich, Sweden). Briefly, cells were barcoded using automated liquid handling robotic system (Agilent 

technologies, Santa Clara, CA, USA (REF Mikes et al, Methods Mol Biol, 2019) using the Cell-ID 20-

plex Barcoding kit (Fluidigm Inc.) as per the manufacturer’s recommendations. Following cell pooling 

batch wise (with samples from placebo and treatment groups equally represented in each batch), cells 

were washed, FcR blocked using blocking buffer (in-house developed recipe) for 10 min at room 

temperature, following which cells were incubated for another 30 min at 4°C after addition of a cocktail 

of metal conjugated antibodies targeting the surface antigens. Following two washes with CyFACS 

buffer, cells were fixed overnight using 4% formaldehyde made in PBS (VWR, Sweden). For acquisition 

by CyTOF (within 2 days after staining), cells were stained with DNA intercalator (0.125 μM Iridium-

191/193 or MaxPar® Intercalator-Ir, Fluidigm) in 4% formaldehyde made in PBS for 20 min at room 

temperature. After multiple washes with CyFACS, PBS and milliQ water, cells were filtered through a 

35µm nylon mesh and diluted to 750,000 cells/ml. Cells were acquired at a rate of 300-500 cells/s using 

a super sampler (Victorian Airship, USA) connected to a CyTOF2 (Fluidigm) mass cytometer, CyTOF 

software version 6.0.626 with noise reduction, a lower convolution threshold of 200, event length limits 

of 10-150 pushes and a sigma value of 3 and flow rate of 0.045 ml/min. 

Purified antibodies for mass cytometry were obtained in carrier/protein-free buffer and then coupled to 

lanthanide metals using the MaxPar antibody conjugation kit (Fluidigm Inc.) as per the manufacturer’s 

recommendations. Following the protein concentration determination by measurement of absorbance at 

280 nm on a nanodrop, the metal-labelled antibodies were diluted in Candor PBS Antibody Stabilization 

solution (Candor Bioscience, Germany) for long-term storage at 4°C.” 
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Appendix B: RMS Illumina primer sequences for Index PCR 

EcoRI forward (5’-3’):  

1. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagtcaaGACTGCGTACCAATTC  

2. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagttccGACTGCGTACCAATTC  

3. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgtcaGACTGCGTACCAATTC  

4. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctccgtccGACTGCGTACCAATTC  

5. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtagagGACTGCGTACCAATTC  

6. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtccgcGACTGCGTACCAATTC  

7. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtgaaaGACTGCGTACCAATTC  

8. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtggccGACTGCGTACCAATTC  

9. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtttcgGACTGCGTACCAATTC  

10. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcgtacgGACTGCGTACCAATTC  

11. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgagtggGACTGCGTACCAATTC  

12. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctggtagcGACTGCGTACCAATTC  

13. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctactgatGACTGCGTACCAATTC  

14. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgagcGACTGCGTACCAATTC  

15. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctattcctGACTGCGTACCAATTC  

16. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcaaaagGACTGCGTACCAATTC  
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MseI reverse (5’-3’):  

1. caagcagaagacggcatacgagatCGTGATgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

2. caagcagaagacggcatacgagatACATCGgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

3. caagcagaagacggcatacgagatGCCTAAgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

4. caagcagaagacggcatacgagatTGGTCAgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

5. caagcagaagacggcatacgagatCACTCTgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

6. caagcagaagacggcatacgagatATTGGCgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

7. caagcagaagacggcatacgagatGATCTGgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

8. caagcagaagacggcatacgagatTCAAGTgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

9. caagcagaagacggcatacgagatCTGATCgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

10. caagcagaagacggcatacgagatAAGCTAgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

11. caagcagaagacggcatacgagatGTAGCCgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

12. caagcagaagacggcatacgagatTACAAGgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

13. caagcagaagacggcatacgagatTTGACTgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

14. caagcagaagacggcatacgagatGGAACTgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

15. caagcagaagacggcatacgagatTGACATgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

16.caagcagaagacggcatacgagatGGACGGgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

17. caagcagaagacggcatacgagatCTCTACgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

18.caagcagaagacggcatacgagatGCGGACgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

19. caagcagaagacggcatacgagatTTTCACgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA  

20. caagcagaagacggcatacgagatGGCCACgtgactggagttcagacgtgtgctcttccgatctGATGAGTCCTGAGTAA 
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Appendix C: Illumina HiSeq 3000 sequencing quality results 

 

Figure C.1. Per base sequence quality. The graph shows per base sequence quality for A) reverse 2 

from the sequencing run with mothers, meconium, 3 , and 6 months samples and B) reverse 7 for the 12 

months samples. The red line is the median and the blue line is the mean of the quality values. The 

background of the graph is divided in three colour codes, green, yellow and red, associated with high, 

medium and low quality. 
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Appendix D: The relative longitudinal taxonomic composition at genus level 

Table D.1. The relative longitudinal taxonomic composition at genus level. The table shows the 

average percentage and standard error of each bacterial genus at the time points meconium, 3, 6, and 12 

months and mothers. The data is based on 60, 51, 51, 180 and 59 individual taxonomic profiles on the 

genus level, respectively. The nine first rows marked in bold are the bacterial genus with ≥5% abundance 

in at least one time point. 

 

Meconium  

(N=60) 

3 months    

(N=51) 

6 months  

(N=51) 

12 months  

(N=180) 

Mothers    

 (N=59) 

                                           Average ± SE (%) 

Alistipes 2 ± 2 0,43 ± 0,06 0,17 ± 0,02 2,9 ± 0,5 8,2 ± 0,4 

Faecalibacterium 3 ± 3 0,38 ± 0,05 0,63 ± 0,08 9,2 ± 0,6 14 ± 1 

Sutterella 2 ± 6 1,1 ± 0,1 3,4 ± 0,4 5,1 ± 0,4 3,7 ± 0,7 

Veilonella 2 ± 2 7 ± 1 13 ± 2 4,5 ± 0,4 0,4 ± 0,6 

Bifidobacterium 35 ± 19 55 ± 7 44 ± 6 16 ± 1 6 ± 2 

Clostridium 5 ± 10 10 ± 1 6,5 ± 0,8 5,7 ± 0,4 7,1 ± 0,7 

Streptococcus 6 ± 13 2,6 ± 0,3 1,5 ± 0,2 1,2 ± 0,1 0,7 ± 0,1 

Prevotella 3 ± 3 0,62 ± 0,08 0,38 ± 0,05 4,4 ± 0,8 8,2 ± 0,6 

Bacteroides 24 ± 21 8 ± 1 13 ± 2 25 ± 1 24 ± 3 

Treponema 0,0007 ± 0,0008  9E-05 ± 1 E-05 0,00038 ± 5E-05 0,00075 ± 0,0001 0,0014 ± 0,0001 

Campylobacter 0,02 ± 0,2 0,022 ± 0,003 0,018 ± 0,002 0,007 ± 0,001 0,0143 ± 0,0009 

Neisseria 0,3 ± 0,5 0,027 ± 0,004 0,033 ± 0,004 0,041 ± 0,009 0,886 ± 0,005 

Haemophilus 3 ± 13 0,63 ± 0,08 0,53 ± 0,07 0,8 ± 0,1 0,2 ± 0,1 

Porphyromonas 0,06 ± 0,08 0,018 ± 0,002 0,018 ± 0,002 0,055 ± 0,009 0,078 ± 0,007 

Roseburia 0,8 ± 0,8 1,2 ± 0,2 1,1 ± 0,1 3,5 ± 0,3 3,1 ± 0,4 

Oxalobacter 0,02 ± 0,03 0,0013 ± 0,0002 0,0017 ± 0,0002 0,011 ± 0,001 0,029 ± 0,001 

Fusobacterium 0,1 ± 0,3 0,10 ± 0,01 0,078 ± 0,01 0,063 ± 0,008 0,031 ± 0,008 

Desulfovibrio 0,2 ± 0,3 0,058 ± 0,007 0,033 ± 0,004 0,07 ± 0,01 0,510 ± 0,009 
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Acidaminococcus 0,02 ± 0,03 0,0024 ± 0,003 0,0048 ± 0,0006 0,026 ± 0,009 0,044 ± 0,003 

Megasphaera 0,2 ± 0,2 0,052 ± 0,007 0,27 ± 0,03 0,33 ± 0,03 0,09 ± 0,04 

Peptostreptococcus 0,005 ± 0,01 0,013 ± 0,002 0,0041 ± 0,005 0,00081 ± 9E-05 0,0028 ± 0,0001 

Ruminococcus 1 ± 1 2,0 ± 0,3 2,6 ± 0,3 4,4 ± 0,3 3,1 ± 0,6 

Gemella 0,03 ± 0,1 0,009 ± 0,001 0,014 ± 0,002 0,0063 ± 0,0004 0,0021 ± 0,0008 

Atopobium 0,1 ± 0,3 0,043 ± 0,006 0,030 ± 0,004 0,019 ± 0,002 0,020 ± 0,002 

Bacillus 0,3 ± 2 0,0025 ± 0,0003 0,0091 ± 0,001 0,0018 ± 0,001 0,0066 ± 0,0002 

Lactobacillus 0,4 ± 0,5  0,43 ± 0,06 0,17 ± 0,02 0,22 ± 0,05 0,34 ± 0,03 

Actinomyces 0,4 ± 0,8 2,0 ± 0,1 0,36 ± 0,05 0,028 ± 0,002 0,036 ± 0,004 

Corynebacterium 0,3 ± 1,0 0,010 ± 0,001 0,0056 ± 0,0007 0,0033 ± 0,0003 0,0030 ± 0,0004 

Eubacterium 0,6 ± 0,6 0,051 ± 0,007 0,38 ± 0,05 1,6 ± 0,1 2,4 ± 0,2 

Mycoplasma 0,05 ± 0,2 0,0037 ± 0,0005 0,0023 ± 0,0003 0,0049 ± 0,006 0,0700 ± 0,0006 

Phascolarctobacterium 0,04 ± 0,04 0,020 ± 0,002 0,018 ± 0,002 0,03 ± 0,01 0,228 ± 0,004 

Coprococcus 0,2 ± 0,2 0,051 ± 0,007 0,049 ± 0,006 0,16 ± 0,2 1,32 ± 0,02 

Dialister 0,2 ± 0,3 0,029 ± 0,004 0,040 ± 0,005 0,49 ± 0,06 0,89 ± 0,06 

Holdemania 0,004 ± 0,003 0,00014 ± 2E-05 0,00054 ± 7E-05 0,016 ± 0,004 0,025 ± 0,002 

Eggerthella 0,05 ± 0,04 0,030 ± 0,004 0,09 ± 0,01 0,056 ± 0,005 0,260 ± 0,007 

Coprobacillus 0,5 ± 0,6 2,3 ± 0,3 2,4 ± 0,3 1,9 ± 0,2 0,3 ± 0,2 

Collinsella 3 ± 3 3,3 ± 0,4 3,2 ± 0,4 2,8 ± 0,3 2,8 ± 0,4 

Granulicatella 0,02 ± 0,07 0,0056 ± 0,0007 0,023 ± 0,003 0,021 ± 0,002 0,0054 ± 0,003 

Solobacterium 0,8 ± 2 0,18 ± 0,02 0,57 ± 0,07 0,56 ± 0,04 0,79 ± 0,07 

Olsenella 0,5 ± 1,0 0,071 ± 0,009 0,072 ± 0,009 0,17 ± 0,01 0,15 ± 0,02 

Catenibacterium 0,005 ± 0,003 0,0037 ± 0,0005 0,0028 ± 0,0004 0,011 ± 0,002 0,026 ± 0,001 

Finegoldia 0,1 ± 0,4 0,040 ± 0,005 0,012 ± 0,002 0,0057 ± 0,0005 0,0138 ± 0,0007 

Peptoniphilus 0,04 ± 0,07 0,022 ± 0,003 0,015 ± 0,002 0,0063 ± 0,0007 0,0116 ± 0,0008 
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Cetobacterium 0,0003 ± 0,001 2,1-05 ± 3E-06 3,0E-05 ± 4 5E-05 ± 2E-05 4E-05 ± 6E-05 

Dorea 0,3 ± 0,3 0,52 ± 0,07 1,1 ± 0,1 0,70 ± 0,04  1,12 ± 0,09 

Gemmiger 0,09 ± 0,08 0,016 ± 0,002 0,024 ± 0,003 0,30 ± 0,03 0,58 ± 0,04 

Marvinbryantia 0,002 ± 0,002 0,0046 ± 0,0006 0,0028 ± 0,0004 0,0042 ± 0,0004 0,0101 ± 0,0005 

Parabacteroides 1 ± 2 0,30 ± 0,04 0,69 ± 0,09 0,46 ± 0,04 1,24 ± 0,06 

Aggregatibacter 0,05 ± 0,3 0,0018 ± 0,0002 0,0012 ± 0,0002 0,0080 ± 0,001 0,001 ± 0,001 

Adlercreutzia 0,008 ± 0,01 0,00028 ± 4E-05 0,00012 ± 2E-05 0,003 ± 0,002 0,0420 ± 0,0004 

Oscillibacter 0,2 ± 0,2 0,051 ± 0,007 0,061 ± 0,008 0,17 ± 0,01 0,91 ± 0,02 

Parvimonas 0,003 ± 0,1 0,0017 ± 0,0002 0,0019 ± 0,0003 0,0005 ± 0,0001 0,00148 ± 6E-05 

Blautia 1 ± 1 1,1 ± 0,1 1,4 ± 0,2 3,3 ± 0,2 3,3 ± 0,4 

Parasutterella 0,01 ± 0,01 0,00041 ± 5E-05 0,00050 ± 6E-05 0,045 ± 0,006 0,063 ± 0,006 

Butyricicoccus 0,2 ± 0,2 0,056 ± 0,007 0,045 ± 0,006 0,20 ± 0,03 0,53 ± 0,03 

Succinatimonas 0,0253189 0,009 ± 0,001 0,015 ± 0,002 0,012 ± 0,002 0,007 ± 0,002 

Negativicoccus 0,0002 ± 0,0009 0,0011 ± 0,0001 0,00028 ± 4E-05 0,0008 ± 0,0005 7E-05 ± 0,0001 

Flavonifractor 0,2 ± 0,3 0,42 ± 0,06 1,3 ± 0,2 2,9 ± 0,4 0,5 ± 0,4 

Pseudoflavonifractor 0,03 ± 0,03 0,011 ± 0,001 0,013 ± 0,002 0,08192103 0,20 ± 0,01 

Lachnoclostridium 0,03 ± 0,06 0,025 ± 0,003 0,09 ± 0,01 0,25 ± 0,03 0,09 ± 0,03 

Holdemanella 0,02 ± 0,02 0,0021 ± 0,0003 0,0061 ± 0,0008 0,018 ± 0,002 0,064 ± 0,002 

Sanguibacteroides 0,008 ± 0,01 0,0032 ± 0,0004 0,0020 ± 0,0003 0,0015 ± 0,0002 0,0062 ± 0,0002 

Hungatella 0,3 ± 0,5 0,56 ± 0,07 0,22 ± 0,03 0,8 ± 0,1 0,1 ± 0,1 

Anaeromassilibacillus 0,02 ± 0,02 0,0066 ± 0,0009 0,016 ± 0,002 0,046 ± 0,006 0,081 ± 0,006 

Massilimicrobiota 0,003 ± 0,004 0,0015 ± 0,0002 0,0010 ± 0,0001 0,007 ± 0,002 0,0010 ± 0,0009 
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Table D.2. Paired t-test on taxonomic composition. The table shows the p-value results after paired t-

test on the development of the taxonomic composition on the genus level. The data used for this test was 

from meconium 3, 6 and 12 months and mothers, with the sample size 60, 59, 59, 180 and 59, 

respectively. The 9 genera with an average abundance ≥5% are listed in the table. Significant values 

with 5% level of significance are marked with *. 
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Meconium –      

3 months 

3,9E-06* 8,7E-12* 0,14 0,0036* 0,00021* 0,092 0,045* 2,7E-05* 1,2E-06 

3 – 6 months 0,24 0,28 0,024* 0,020* 0,050* 0,32 0,031* 0,31 0,035* 

6 – 12 months 8,4E-09* 6,9E-33* 0,086 1,5E-05* 1,4E-09* 0,63 0,20 4,6E-07* 1,2E-05* 

12 months - 

Mothers 

3,2E-09* 1,6E-05* 0,0033* 3,0E-18* 1,7E-12* 0,018* 0,00052* 0,061 0,77 
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Appendix E: The relative inferred longitudinal metabolic composition 

Table E.1. Relative inferred longitudinal metabolic composition. The table shows the average 

percentage and standard error of each metabolite at the time points meconium, 3, 6, and 12 months and 

mothers. The data is based on 60, 51, 51, 180 and 59 individual metabolic profiles, respectively. The 

nine first rows in the first column are marked in bold and are the metabolites with ≥5% abundance in at 

least one time point. 

 

Meconium 

 (N=60) 

3 months  

(N=51) 

6 months    

(N=51) 

12 months 

(N=180) 

Mothers  

(N=59) 

                                                                                                                                 Average ± SE (%) 

Propionic acid 2,5 ± 0,3 2,2 ± 0,4 3,5 ± 0,3 6,4 ± 0,2 5,7 ± 0,3 

Acetic acid 18,8 ± 0,5 19,0 ± 0,2 19,0 ± 0,4 18,1 ± 0,3 17,9 ± 0,3 

Formic acid 11,2 ± 0,5 15,80 ± 0,5 13,8 ± 0,6 8,9 + 0,3 10,2 ± 0,3 

Succinic acid 12,7 ± 0,6 15,9 ± 0,5 14,61 ± 0,5 12,3 ± 0,2 10,1 ± 0,3 

Ethanol 13.9 ± 0,6 15,5 ± 0,6 13,6 ± 0,6 5,9 ± 0,3 5,7 ± 0,4 

D-Lactic acid 8.7 ± 0,7 3,9 ± 0,5 4,9 ± 0,5 8,9 ± 0,2 10,7 ± 0,4 

Butyric acid 2,8 ± 0,3 1,6 ± 0,4 3,1 ± 0,6 10,1 ± 0,3 15,7 ± 0,6 

H2 4,8 ± 0,7 4,0 ± 0,5 4,8 ± 0,5 6,4 ± 0,2 4,6 ± 0,2 

L-Lactic acid 16,4 ± 0,6 17,5 ± 0,3  15,8 ± 0,6 7,6 ± 0,3 6,8 ± 0,4 

(R)-Acetoin 1,0 ± 0,2 0,8 ± 0,2 0,50 ± 0,09 0,48 ± 0,05 0,33 ± 0,03 

Indole 3,4 ± 0,5 1,7 ± 0,3 1,9 ± 0,3 3,1 ± 0,1 2,5 ± 0,2 

Isovaleric acid 1,5 ± 0,2 0,7 ± 0,1 1,6 ± 0,3 4,9 ± 0,2 3,8 ± 0,2 

Isobutyric acid 1,4 ± 0,2 0,63 ± 0,1 1,5 ± 0,2 4,6 ± 0,2 3,4 ± 0,2 

(2R,3R)-2,3-Butanediol 0,17 ± 0,2 0,5 ± 0,2 0,22 ± 0,05 0,031 ± 0,006 0,05 ± 0,01 

Phenylacetic acid 0,8 ± 0,1 0,39 ± 0,9 1,1 ± 0,2 2,6 ± 0,1 1,7 ± 0,2 

1-Butanol 0,0049 ± 0,0006 0,002 ± 0,001 0,006 ± 0,002 0,022 ± 0,003 0.084 ± 0,006 

Methane 0,05 ± 0,01 0.0014 ± 0,004 0,00012 ± 0,00003 0 0,8 ± 0,3 
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Table E.2. Paired t-test on inferred metabolic composition. The table shows the p-value results after 

paired t-test on the development of the metabolic composition that has been extrapolated from the 

taxonomic composition at the species level by the use of Virtual Metabolic Human database. The data 

used for this test was from meconium 3, 6 and 12 months and mothers, with the sample size 60, 59, 59, 

180 and 59, respectively. The 9 metabolites with an average abundance ≥5% are listed in the table. 

Significant values with 5% level of significance are marked with *. 
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Meconium –        

3 months 

0,54 0,78 3,7E-08* 0,00012* 0,054 1,8E-07* 0,33 0,26 0,16 

3 – 6 months 0,014* 0,97 0,020* 0,12 0,033* 0,16 0,059 0,28 0,023* 

6 – 12 months 1,6E-09* 0,083 5,9E-10* 0,00017* 9,6E-18* 1,0E-11* 2,4E-14* 0,0065* 8,5E-19 

12 months - 

Mothers 

0,035* 0,47 0,0065* 1,3E-09* 0,99 2,0E-7* 4,3E-12* 7,6E-10* 0,060 

 

 

 

 

 

 

 

 

 

 

 



 

 

69 

 

Appendix F: Overview of immune cell composition at 12 months 

Table F.1. Immune cell composition. The table shows the average percentage and standard error of 

each measured immune cell at 12 months of age. The data is based on 67 individual immune cell profiles. 

12 months (N=67) 

                Immune cell                                                                        Average ± SE (%)                 Immune cell                                                                        Average ± SE (%) 

IgD positive memory B cells 0,19 ± 0,02   Naïve CD8 T cells 7,73 ± 0,003  

IgD negative memory B cells 1,00 ± 0,05  Eosinophils 2,37 ± 0,002  

Naïve B cells 12,40 ± 0,04  Mucosal associated invariant T cells 0,2787 ± 0,0002  

Transitional B cells 0,024 ± 0,002  Classical monocytes 6,147 ± 0,002  

Plasmablasts 0,00090 ± 0,00005  Nonclassical monocytes 0,6546 ± 0,0008  

Central memory CD4 T cells 1,00 ± 0,04  Proinflammatory monocytes 0,05209 ± 0,00003  

Effector memory CD4 T cells 2,8 ± 0,1  CD56 bright natural killer cells 0,4713 ± 0,0002  

Naïve CD4 T cells 20,9 ± 0,7  CD56dim natural killer cells 2,20 ± 0,001  

Naïve T regulatory cells 1,6 ± 0,06  Neutrophils 30,79 ± 0,01  

Memory T regulatory cells 0,55 ± 0,02   Others 4,340 ± 0,002  

Activated CD8+ T cells 0,2749 ± 0,0006 Basophils  0,4369 ± 0,0002  

Central memory CD8+ T cells 0,3227 ± 0,0002  CD161 positive gamma delta T cells 0,8590 ± 0,0006  

Double positive T cells 0,0531 ± 0,00003  CD161 negative gamma delta T 

cells 

0,7152 ± 0,0004  

Effector memory CD8 T cells 1,73 ± 0,02  Plasmacytoid dendritic cells 0,16985 ± 0,00009 
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Appendix G: Spearman correlations 

 

Figure G.1. Spearman correlations between relative specie and immune cell composition. The graph 

illustrates the results after spearman correlation between relative specie and immune cell composition, 

their associated time points, adjusted p-value and rho value. A total of 996 species and 28 immune cells 

were tested for correlation. All correlations in the graph are significant with a level of significance of 

5% and are marked with *. 

 

Figure G.2. Spearman correlations between relative genus and immune cell composition. The graph 

illustrates the results after spearman correlation between relative genus and immune cell composition, 

their associated time points, adjusted p-value and rho value. A total of 65 genera and 28 immune cells 

were tested for correlation. All correlations in the graph are significant with a level of significance of 

5% and are marked with *. 
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Figure G.3. Spearman correlations between relative inferred metabolite and immune cell 

composition. The graph illustrates the results after spearman correlation between relative metabolite 

and immune cell composition, their associated time points, adjusted p-value and rho value. A total of 17 

metabolites and 28 immune cells were tested for correlation. All correlations in the graph are significant 

with a level of significance of 5% and are marked with *. 
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