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Summary

With the rise of modern wind turbines, wind energy has grown to become a major source
of generated electricity, alongside other renewable and conventional energy sources. The
geographical and time dependent nature of wind warrants detailed assessments to judge the
feasibility of power projects. Pre-feasibility studies play crucial roles in this assessment process and
include the performing of large area screening of feasible wind power project sites, designing of
effective mast measurement campaigns and feasibility assessments of projects. A source of data
for such assessments that has increasingly become popular over the years, is downscaled
meteorological datasets which are sometimes produced with Numerical Weather Prediction
(NWP) models. Due to uncertainties (from several sources) associated with the outputs of NWP
models, their validation is an important step towards their optimization and application for desired
purposes. Wind varies geographically. Therefore, the validation of NWP models is an important
step towards their application for wind data downscaling for a geographic location.

Though studies have suggested that wind projects are feasible in Ghana, development of
the resource still suffers from several challenges, including inadequate resource assessments. This
thesis focuses on the application-oriented use of the Mesoscale Weather Research and Forecasting
(WRF) model for wind prediction applications in the coast of Ghana and neighboring countries in
the West African sub-region.

A local sensitivity assessment of selected numerical options (simulation length or run time
and methods of applying the WREF model’s Four-Dimensional Data Assimilation (FDDA) nudging
technique), as well as selected terrestrial and meteorological datasets on downscaled wind data for
coastal Ghana were conducted. Validation of the simulations was done with statistical error metrics
from prediction-observation comparisons. The error metrics were compared with performance
benchmarks for wind prediction by NWP models that have been reported in scientific literature.
In addition, Weibull distribution parameters, as well as probability and cumulative density functions
of measured and predicted data were also compared.

Results of this thesis were communicated in four Papers. Paper I sought to deepen the
understanding of the impacts of combining varying simulation run time and selected options in
the method of applying the WRF model’s FDDA nudging technique for wind simulations. It was
found that the method of applying nudging above levels automatically determined by the WRF
model has a more consistent impact on model predictions. Paper II and Paper III assessed the
impacts of Planetary Boundary Layer (PBL) and Surface Layer (SL) parameterization schemes on
predictions from the model. It was concluded that the Turbulent Kinetic Energy (TKE) Mellor—
Yamada Nakanishi Niino Level 3 (MYNN3) PBL scheme often had relatively better impact on
downscaled data, when paired with the Eta SL scheme for simulations. On the terrestrial datasets,

it was found that the two global Land Use and Land Cover (LULC) datasets available in the WRF
- vii -



Geographical Data did not differ significantly in their impact on downscaled data. In addition,
among the Gridded Binary (GRIB) meteorological datasets available in the National Center for
Atmospheric Research Data Archives, it was realized that the data assimilation systems used in
producing these datasets is probably a good criterion for their selection for downscaling for the
study area. The findings of this study were teported in Paper IV.

Results of a simulation covering a year with a model configuration based on the findings
of the four papers showed that the model is capable of downscaling wind data with error metrics
that can meet most of the performance benchmarks that have been reported in literature. The
results from this final evaluation also suggest that the configuration established from the studies is

probably suitable for offshore assessments in the area but will require further verification.
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INTRODUCTION
This chapter introduces wind and how wind characteristics affect power production from
the resource. The need for wind resource assessment and the role that Numerical Weather
Prediction models play in this process is briefly explained. This is followed by the motivation, aim

and objectives of the thesis. Thereafter the structure of the rest of the thesis is presented.

1.1 Background

Global enetrgy consumption has been on the rise over the years. This has been in response
to factors such as increasing population and industrialization, and better living standards. The
increase in energy consumption, coupled with concerns about the greenhouse gases emissions
from the utilization of fossil fuels for energy generation, in addition to other reasons, has also
increased the global demand for renewable energy over the years. Wind, or the kinetic energy of
air flow, has been used in transport, industry and agriculture for thousands of years, and has
become one of the three major renewable energy resources that is exploited on a large scale for
global power generation [1]. The other two are hydro power, which uses potential energy of flowing
river or stored water to generate electricity and solar Photovoltaic (PV) that converts solar radiation
directly to electricity. The tise of modern wind turbines, which harness this energy and turn it into
electricity has placed the resource as a major power source alongside other renewables and
conventional energy sources. As of 2018, global installations of wind power stood at 591 GW,
having quadrupled in the past decade [2].

Extractable wind energy depends on wind characteristics such as its speed, density, and
prevailing directions. These characteristics play important roles in several aspects of wind energy
exploitation (such as the prediction of the economic viability of projects). Wind speed, in particular,
is of key interest, as wind power depends on the cube of this characteristic. However, like most
renewable energy resources, wind characteristics that can support economical wind energy
exploitation exhibit spatial and temporal dependencies. Therefore, understanding the
characteristics of the resource in an area is an important step towards the exploitation of the
resource. This requires good quality data on wind characteristics, which are best acquired through
actual ground-based measurement campaigns. However, owing to the costly nature of these
measurement campaigns, data from other soutrces have increasingly been used in resource
assessments activities such as site selection, prefeasibility studies of projects and designing of
measurement campaigns.

This thesis focuses on the application-oriented use of the meteorological Mesoscale
Numerical Weather Prediction (NWP) Weather Research and Forecasting (WRF) model, as a tool

for generating such alternative data by the dynamical downscaling of meteorological datasets.
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1.2 Nature of Wind

Wind is the movement of latge volumes of air masses. It is generated by pressure
differences arising from unequal heating of the earth’s surface and are driven by several forces
(such as pressure gradient, Coriolis, and turbulent drag among others) which are also sources of
variabilities in the wind [3]. As a result of these variations, like other atmospheric phenomena, wind
occurs on a wide range of atmospheric scales, as illustrated in Figure 1. Global winds are primarily
due to pressure gradients from unequal heating of the earth’s surface and the influence of the
Coriolis force and exhibit relatively less variation. However, within lowest 1 to 2 km of the earth’s
atmosphere, referred to as the atmosphetic ot planetary boundaty layer (PBL), factors such as
friction at the ground, the orography and the vertical distribution of temperature and pressure give
rise to local winds and other wind phenomena (such as turbulence), which vary more significantly,
on smaller scales (see Figure 1). Pressure and temperature differences interact with variations in
local topography and surface conditions to create circulation systems such as land-sea, cross-valley
and along-valley circulations. These result in local winds, common examples of which are land, sea
and mountain valley breezes [4, 5]. In addition, synoptically windy conditions can result in winds
being modified by mountains producing gap winds, mountain waves, among others [4]. These

phenomena are well explained in several textbooks [3-6].

1 decade

Time Scale (h)

turbulence
cascade

108 102 10! 100 10' 102 10% 104 105
Horizontal Scale (km)

Figure 1: Typical time and spatial scales of meteorological phenomena [3]. The phenomena can be
classified according to hotizontal scale as; Macroscale (700 — 40000 km), Mesoscale (3 — 700 km),
microscale (3 mm- 3 km) [3].

Vertically, wind also varies in the PBL. Wind turbines operate at heights within the PBL,
which makes the understanding of vertical variation of wind characteristics within the layer

important. A key determinant of the vertical wind speed profile (in addition to terrain, surface
_2.



roughness, and topogtraphy) is the stability of the atmospheric boundary layer. Atmospheric
stability can be defined as the tendency to remain in hydrostatic equilibrium with respect to vertical
displacements [7]. It is usually explained by the air parcel concept [7] and expressed in terms of
the rates at which the temperature of the environment and a parcel of air decrease with increasing
height (the environmental and adiabatic lapse rates respectively). In terms of the environmental
lapse rate, the atmosphere can be unstable, stable, or neutral. These are well explained in textbooks

such as [3, 4, 6, 8, 9]. The vertical wind profile under the three stability conditions is shown in

Figure 2.
: 1 N
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Figure 2: Typical wind speed profiles in the Surface Layer (bottom 5% of the ABL) [3]

1.3 The Role of Numerical Weather Prediction in Wind Resource Assessments

The speed characteristic of wind is of key interest in Wind Resource Assessments (WRA)
as the amount of wind energy that can be generated depends on the cube of this characteristic.
Due to this relationship, variabilities, uncertainties and errors in wind speeds tend to be amplified,
with implications for wind power generation. Therefore, the optimal design of wind projects
depends on an accurate and detailed understanding of the distribution of the wind speeds and
other characteristics in the project area. This helps in a robust estimation of the energy production
over the lifetime of a wind project. WRA involves the use of both existing measurements and
modeling approaches to identify potential wind farm sites and determine the optimum siting of
wind turbines (micro-siting) in wind farms to estimate the long-term energy production of a
project. Though this can be done with relatively easy to acquire data from sources such as nearby
meteorological stations, the best source of data for these purposes is measurements of the wind
characteristics. However, owing to the expensive and time-consuming nature of wind mast
measurement campaigns, it has increasingly become popular over the years to perform preliminary
resource assessments with wind data that is downscaled from meteorological datasets.

Mesoscale Numerical Weather Prediction (NWP) models are popular dynamical
downscaling tools in this regard. They belong to a category of meteorological models that are used
for process studies and weather predictions [10]. They have increasingly been adapted for wind

flow prediction over limited ateas over the years. They make predictions of the wind speed for
_3-



locations (that correspond to the model grid) in an area by numerically downscaling meteorological
datasets and can be coupled to microscale models for these purposes. They have traditionally been
applied in the generation of wind maps for large area screening of feasible wind power project
sites. However, in recent times, downscaled data are also being used in the design of mast
measurement campaigns and to conduct pre-feasibility assessments of wind power projects.

Model validation (or reliability assessments) assesses uncertainties in the predictions of
NWP models. The process plays a key role in the optimization of these models for desired
purposes. Uncertainties (, as explained by [10]) are primarily due to;

(a) an imperfect understanding of atmospheric processes, especially at the sub-grid scale,
(b) insufficient simulation of these processes because of the models’ grid resolutions, and
(c) errors associated with the numerical assumptions.

The validation process of NWP models involves several techniques (as described by [10]),
which may be applied separately to address specific needs. Sensitivity analyses are one such
validation techniques. The Sensitivity analyses of NWP models involves verifications of model
predictions made with different model options or inputs to establish the extent to which an option
performs better than another, and the possible explanations for the difference in performance [10].
Wind sensitivity studies that have been reported in scientific literature have been found to adopt
the local approach, which, as explained by [10], examines the impact of a limited range of inputs
and options on the estimation of specific events or output parameters by NWP models. A challenge
with sensitivity analyses for wind prediction applications is that, due to the influence of local factors
(such as terrain features and atmospheric conditions which vary geographically) on the
performance of some of the options (such as parameterization schemes) in NWP models [1, 2], it

is often difficult to generalize the results of such studies for different geographic areas.

1.4 Motivation

With an Energy use per capita that is equivalent to one-third that of the world, the problem
of low and unreliable access to electricity is one of Sub-Saharan Africa’s greatest obstacles to social
and economic development [11]. Power crises stemming from low and unreliable access to
electricity is an issue all over the region.

Ghana has experienced not less than four of such crises since the turn of the century,
costing the nation about US$680 million in 2014 alone [12]. Electricity supply challenges in Ghana
have stemmed from several factors over the years. These include over-dependence on electricity
from thermal and hydro sources (which together constitute over 99% of the country’s electricity
mix). Demand for electricity in Ghana increased by over 50 percent between 2006 and 2016 [12]
and currently, electricity from thermal plants that run on fossil fuels alone constitutes over 60% of
the total generation capacity of the country. Solving the country’s electricity challenges requires

4.



measures that include diversifying the electricity generation mix through the development of other
energy sources, including renewable sources such as wind and solar energy [12]. Several studies
have reported the feasibility of the large-scale generation of electricity from wind in Ghana [13-
19]. And though some efforts (such as a wind mapping activity in 2004, and ground-based mast
measurements in selected areas along the coast) have been made towards the exploitation of the
resource, development of the sector is still facing several challenges. These include limited or non-
availability of reliable data for pre-feasibility or feasibility studies of projects [20].

Numerical Weather Prediction (NWP) models have increasingly been adapted for limited
area mesoscale (and even microscale) downscaling of wind data from meteorological datasets for
the purpose of mapping wind resources and providing data for pre-feasibility studies. Indeed, the
wind mapping (at 50 m) for Ghana was conducted with one such Mesoscale-Microscale coupled
models; the MESOMAP system from AWS Truepower (which comprises the Mesoscale
Atmospheric Simulation System (MASS) and WindMap Microscale models). However, in addition
to being a propriety model, limited verifications and adjustments were done during that exercise,
due to a lack of adequate mast measurements at the time [21]. In addition, with the increasing hub
heights of modern wind turbines, assessments at higher heights (other than the 50 m of the 2004
mapping), and the availability of time-series to enable the effective designing of mast measurements
and pre-feasibility studies on power projects, ate increasingly warranted. Furthermore, due to
climate change and change in land use in Ghana over the past years, there is the need to update
wind maps for Ghana using reliable and easily accessible tools.

The NWP Weather Research and Forecasting (WRF) model [22] is a widely used
operational and research mesoscale model. Owing to diverse physics and dynamics options, several
model-validation studies towards the application of the model for different purposes have been
reported in the literature. However, no known studies have been reported on the validation of the
model towards wind resource assessments in Ghana and the West African sub-region.
Furthermore, sensitivity tests (of the WRIE model for wind energy applications) in the international
literature, have often been limited to high wind speed periods. In addition, they have often not
considered all PBL schemes (which have been found to significantly affect model wind outputs)
with all compatible surface layer physics options, and have often used decision making criteria that

in our opinion, leaves room for potentially misleading conclusions to be drawn from these studies.

1.5 Aim and Objectives

Against this background, this thesis sought to verify the capability of the WREF model to
dynamically downscale wind data from large-scale global meteorological datasets for resource
assessments in Coastal Ghana. The aim was to identify and suggest possible ways of optimization
of the WRF model (in terms of selected options) for applications such as wind mapping and

_5_



generation of time series data for pre-feasibility wind assessments primarily along the coast of
Ghana.

The thesis involved a local sensitivity study (as explained earlier) of selected numerical and
input data options of the model, to wind predictions at three heights. The options, (which are
explained in Chapter two of this thesis) are;

i. Simulation length and options in the WRI’s Analysis Nudging technique (Paper I,
ii. Planetary Boundary and surface layer Parameterization options (Paper II and Paper III), and
iii. Input Land Use and Land Cover (LULC) and meteorological Gridded Binary (GRIB) datasets

(Paper 1V).

In achieving the aim of this thesis, insights, other than what had been reported in the literature,
were offered into optimum combinations of the simulation run time and nudging options for wind
simulations (Paper I). An alternative experimental approach in sensitivity studies of PBL schemes
that deviates from a common practice in past studies in that, it considers high and low wind periods
(as against the common practice of considering only high wind periods), is explored in Paper II.
In addition, another limitation in the scope of several sensitivity studies in the tropics (in not
exploring all SL schemes that can be used with a PBL scheme) is explored in Paper III. Factors
that should be considered in selecting meteorological datasets from the NCAR’s RDA archive for
dynamical downloading to generate time series data for coastal Ghana were explored (Paper IV).
The consistency in performance of the options, irrespective of evaluation criteria is used as a

decision-making criterion to reduce the potential of drawing incidental test conclusions.

1.6 Thesis outline

Following this chapter, Chapter 2 of this thesis presents the verification data and criteria.
The chapter begins with a brief description of the key features and options of the WRE model,
with emphasis on the model options that were tested in this thesis. Details of the data that are used
for the validation of model outputs are also presented in this chapter. The evaluation criteria on
which the tested model options were inter-compared are also introduced.

The main findings from the tests are summarized and briefly discussed in Chapter 3. The
main conclusions of each test and their possible implications for model performance in predicting
wind speeds for resource assessment purposes are also discussed. The overall conclusion drawn
from the thesis is presented in chapter 4, with recommendations for future researches.

An Appendix of Supplementary test results, as well as the 4 papers that were produced

from the thesis follow the four chapters of this thesis.



DATA AND METHODOLOGY
This chapter presents brief overview of the WRF model. The overview covers descriptions
of key model components, and the options that were the focus of this study. This is followed by
the general framework of the thesis, and brief descriptions of verification criteria and the

verification (or reference) data. The postprocessing method for model output is also presented

2.1 A Brief Overview of the Weather Research and Forecasting Model (WRF)

The WRF model is the product of a multi-organizational effort to build a mesoscale forecast
and assimilation system that would be accurate, efficient, scalable to small atmospheric scales —
primarily 1 to 10 km — and capable of operating on workstation-computer platforms [10]. As was
the case in this thesis, all the simulations for this thesis were run on a wotkstation laptop with a
quad-core (Xeon E3-1505M v06) processor. The model comprises the following principal
programs, illustrated in Figure 3;

a. The WRF Preprocessing System (WPS) which creates inputs for the ARW pre-processor (real)
program for real-data simulations by using meteorological and terrestrial data

b. the WRF software infrastructure (WSI) which accommodates key program components that
includes the WRF the dynamics solvers; the Non-hydrostatic Mesoscale Model (NMM) core,
and Advanced Research WRF (ARW) core, physics schemes and interface to interact with the
dynamics, among other key programs.

c. Postprocessors for analysis and verification of predictions.

WRF Software Infrastructure

Preprt’:vczzsing Digttal
System Filter

Post Processor
Verification

WREF-Var Data
Analyses / Assimilation
Forecasts

Observations Physics Interface
Physics Packages

WRF-
Chem

Figure 3: A Schematic of the main components of the WRF model [22]

2.1.1 The WRF Software Infrastructure
2.1.1.1 The ARW Dynamics and Numerics
The Governing Equations
The ARW core of the WRF model was used in this thesis. It incorporates fully

compressible, non-hydrostatic Euler equations (with a run-time hydrostatic option available).
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Descriptions of how the Euler equations are derived and other details are provide by [22].
Simplified versions of these governing equations (neglecting the Coriolis effect) as presented by
[10] in cartesian coordinates comprise;
The equation of steady state given as;

p=pR,T )
The conservation law of mass;

67'0 + @ + ﬂ + % =0

Conservation law of momentum;

U, odr_ dUu_vu_owu

P A X
a U x Xy a o)
N, oln_ A oW
ow o ouw ovw  oWw
7+Cp®7+ gp=—"7"-——"7"-—"—"+ Fz
ot oz OX ay oz (33)

Conservation law of energy;

a oy a D @

In the above equations, U =pU, V =pv, W=pW, @=pf. T is the absolute temperature,

c, =1004.5JK kg™ and R, =(2/7)c, is the heat capacity and the gas constant for dry air

respectively, Fy, F and F, are friction terms. 7 denotes the Exner function which is given as

( p/ po)A(Rd /Cp) , where P, is the reference pressure.

In formulating these equations, the Earth’s atmosphere over a geographic region is
represented in the model by a three-dimensional (x, y, z) grid. The x and y dimensions are in equally
spaced Cartesian coordinates, while the z dimension is over vertical levels in a terrain-following
sigma or mass vertical coordinate system. For the flat (x, y) projection of the earth’s spherical
surface, map projections are used. Several map projection schemes are supported by the solver.
However, specific projections are recommended to keep the map-scale factor (a measure of
distance distortions from the transformation) close to 1 for numerical stability [23]. The map scale
factor is defined as the ratio of the distance in computational space (Ax, Ay) to the corresponding
distance on the earth’s surface [22].

Denoted by 77, the vertical coordinate varies in spacing and ranges in value from one at
the surface of the earth to a value of zero at the top of the atmosphere in the model (defined as

constant pressure surface). The ,, coordinate at each level is calculates as;
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U:(p—pt)/(ps—pt) (5)

where |, is the pressure at a particular level in the atmosphere, p_is the surface pressure, and p,

is the pressure at the top of the atmosphere.

Model discretization and other issues for Numerical stability

Numerical solutions to the governing equations are solved using finite-difference
approximations which requires the simulation domains to be discretized and the equations reduced
to their finite difference equivalents [3]. For temporal discretization, the ARW solver uses the third
order Runge-Kutta (RK3) time-split integration scheme [24]. An explanation of the scheme and
how the ARW solver uses the scheme to advance a solution for prognostic equations at model
time steps is provided by [10]. The model time step is limited by the advective Courant number,
with implications for numerical stability, as explained by [10]. To ensure numerical stability in the
WRF model, it is recommended that its value (in seconds) is maximum six times the hotizontal
grid distance in kilometers [22, 25].

The spatial discretization is performed on the staggered Arakawa C-grid, which allows for
resolving gravity waves more accurately [7]. On the staggered C-grid the westerly (U) wind
component is evaluated at the centres of the left and right grid faces and the southerly (1) and
vertically () wind components at the centres of the upper and lower grid faces as illustrated in
Figure 4. Further details of the grid system are provided by [7, 10].

Other numerical issues as well representation of sub-grid scale processes such as turbulence
mixing, that cannot be solved on the simulation grid are addressed by filter and damping options
as well as other formulations in the ARW solver [7]. Detailed descriptions of these are provided by
[10, 22]. Vertical mixing filtering is disabled when a PBL parameterization is applied in simulations,
as it is parametrized within the PBL physics [10]. Selection of filter and damping options in this

thesis followed recommendations from [25].

Y zA
Wi, k+172

Vi, j+1i2
[ W

Uitz 6ij Uitz j Uiz k. Bik Uir1i2, &

Wi

Vi j-112 i k142
e N
X X

Ax Ax

(a.) Horizontal grid (b.) Vertical grid

Figure 4: (a) Horizontal and (b) vertical grids of the ARW solver [7].
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2.1.1.2 The ARW Physics Parameterization Options

Unresolved physical processes are approximated by physics parameterization schemes in
the ARW solver. The physics parameterization schemes in WRF are divided into the following
categories; Long-wave and Short-wave Radiation, Microphysics, Cumulus, Planetary Boundary
Layer (PBL), and Surface (which comprises the Surface Layer (SL) as well as Land Surface Model
(LSM) schemes) categories. A schematic of the interactions of the parameterization scheme
categoties is illustrated in Figure 5. Atmospheric temperature tendencies and surface radiative
(downward longwave and shortwave) fluxes for the surface heat budget are provided by the
radiation schemes [7]. Cumulus schemes parameterize vertical convective motions at sub-grid
scales and provide atmospheric heat and moisture vertical profiles and sometimes cloud and rainfall
tendency profiles in the atmospheric column [7]. The PBL and Surface (LSM and SL) schemes
interact directly to parameterize the vertical sub-grid scale transport processes in the atmosphere.

Turbulence (which produces vertical mixing) plays a key role in these processes and acts as
a feedback mechanism in wind circulation [5, 29, 30]. In addition, several studies have reported
significant impacts of the choice of PBL schemes in wind energy applications of the WRE model.
Therefore Papers 1 and 2 examined the impacts of these options on the wind prediction capability
of the WRF model. The choice of all the other parameterization options were based on practices
from past studies (mostly in the tropics) [26-30] and recommendations from [25]. A more detailed
overview of PBL and SL parameterization in WRF is provided in Paper III. Details and
descriptions of the PBL, SL and LSM schemes available in the WRF model are available in several
papers and textbooks [7, 8, 10, 31-33].

— Cloud =>1 physi
Detrainment Micte cs

Convective

Cloud Fraction Soud Efec

\

Convectlve Non-convective
Rain
Radiation
Surface Downward
T, Qv, Wund SW/LW
Surface Surface Surface
(LH/SH) ﬂuxes . emission/albedo

Figure 5: Interaction of parameterization schemes in WRF [34]

2.1.1.3 WRF Nudging
Nudging is a technique in the Four-Dimensional Assimilation (FDDA) [35-39] system of

the WRF model, that helps keep the simulations close to the analyses or/and obsetvations over a
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simulation period (Skamarock et al., 2008). The available nudging techniques in the WRF model
can be used for dynamical initialization, to create four-dimensional meteorological datasets and to
improve the boundary conditions for the solver. However, the analysis or grid nudging technique
attempts to bridge the gap between predictions of physical variables and time-interpolated large-
scale meteorological conditions from the input data [7] by adding an additional tendency term to
the nudged variable’s equation, as explained by [40]. The technique has been used in several studies
[20, 51, 52] on wind downscaling. Options in using the technique include; a choice of variables to
nudge, the nudging strength or co-efficient, and the choice of whether to nudge variables in the
PBL or not. Disabling nudging in the PBL is a common practice in simulations, followed with the
aim of allowing mesoscale processes to freely develop (within the PBL) [29, 41, 42]. To achieve
this in WRF, one can choose to apply nudging to variables above a fixed vertical level, or apply it
to levels above a model-determined level (that corresponds to PBL height predictions) during the
simulations [43, 44]. It has been reported that the two methods have different impacts on wind
simulations [44]. Paper I investigated the impacts of combining these methods (in addition to a
third method) of applying nudging with varying simulation lengths (run times) on model

predictions of wind.

2.1.2 Input Data and the WRF Preprocessing System (WPS)

Input data for WRF model comprises terrestrial or static data (land-use, terrain, soil types)
and time-vatying meteorological fields (from forecast, analysis/te-analysis and climate model data)
of different origins and different horizontal resolutions and projections. The program real in the
ARW prepares the initial and lateral boundary conditions for the WRFE solver with these datasets
after they have been interpolated onto the projected simulation domains by the WRF
Preprocessing System (WPS). The program components and data flow in and out of the WPS is
shown in Figure 6. The model comes with several LULC datasets and two terrain datasets the
USGS GTOPO30 [45], and the GMTED2010 [46]. It is possible to run the model with datasets

apart from these.

STATIC »| GEOGRID
DATA
REAL DATA
ARW
GRIE = UNGRIB REAL SYSTEM
DATA /
v v / v
WRF METGRID 4 WRF
PREPROCESSING
SYSTEM

Figure 6: Schematic of the program components and data flow in and out of the WPS [22]
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The impacts of selected input datasets on data downscaled with the WRF model were
examined in Paper IV. The input datasets comprised the two global LULC datasets that are
available on the WRF version 3 Geographical Static Data Downloads Page [47], as well as selected
Gridded Binary (GRIB) datasets from the National Centre of Atmospheric Research (NCAR)
Research Data Archive (RDA) [48]. Descriptions and characteristics of the datasets are
summarized in Paper IV. Terrain datasets were not tested as we found little difference between the

two global datasets that cover coastal Ghana in the results of a comparison presented by [49].

2.2 Methodology
2.2.1 Study Framework

The general framework for the thesis (illustrated in Figure 7) is based on a proposed
framework by [50] for exploring optimal model configurations of NWP models for different

purposes. The reference data, evaluation criteria, and model options that were selected for testing

Purpose/ Ap_p]i-c.a_tiodn/ >

A

Verification Evaluation

Data Criteria

are elaborated on in the sections that follow.

\ 4

[¢ Evaluation(s) )
C()ptimal Model ConﬁguratioD

Figure 7: Study Framework.

2.2.2 Evaluation Criteria and Observational Data
Several verification criteria can be used in sensitivity studies [10]. In this thesis, statistical
vetifications of the model predictions were done by prediction-observation compatisons, in which
the following statistical error metrics (which were selected based on their use in similar wind
sensitivity studies [30, 41, 51-53]) were calculated,;
i, Mean Error or Mean Bias (ME) which was used as a measure of the tendency of the options
to underpredict or overpredict wind speeds,

i.  Root Mean Squared Etror, which was used as a measure of accuracy,
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iii.  Standard Deviation of the Error (STDE) which was used as a measure of error dispersion
and consistency [41, 52], and
iv.  Correlation Coefficient (CC).

The error metrics were calculated according to formulations (which are provided in the
appendix) taken from past WRF wind sensitivity studies such as [30, 41, 51-53]. They were
combined into a Skill Score which was calculated with the formulation from [54]. The skill score
was used to rank the options. In addition, error metric benchmarks (RMSE < 2 m/s, ME < +0.5
m/s, CC > 0.7) asused by [28, 55]) were also used to evaluate the impacts of the options on model
performance.

The Weibull distribution is widely used in many fields of the wind energy industry for modelling
wind speed data [56]. Therefore, the model predictions were also verified in comparisons of the
Weibull probability and cumulative density plots generated from predicted and observational data.
Quantitative compatisons of the Weibull cumulative densities etrors as well as mean wind power
densities estimated from predictions and observations were also compared. Formulations of the
Weibull parameter estimations and the functions of the distributions were as has been used in
several past studies [14, 40].

The observational data for evaluations were derived from mast measurements of wind data
that were conducted by the Energy Commission of Ghana, in the year 2013. Selected details of the
data and instrumentation are summarized in Table 1. In addition to these data, monthly average

wind speeds of measurements at 60 m from [57] were also used for verification.

Table 1: Selected Details of Observational data and instrumentation.

Period 12 months (January - December 2013)
Data time step 10 minutes
Mast location 5.7861 °N and 0.9188 °E
Mast type NRG 60m XHD
Measurement heights 40 m, 50 m, 60 m
Anemometer type NRG #40C

2.2.3 Postprocessing of Model Outputs

As the WRF model predicts wind speed components on vertical levels, (not heights in
meters at which observational data were measured), and given the staggered nature of the wind
components, postprocessing of model outputs were necessary to determine actual wind speeds at
the heights (in m) at which observational data were measured and at the mast location for direct
comparison. In this thesis, all such postprocessing calculations were done with a script written in
the R programming software. The script generally followed the steps outlined in the flowchart

shown in Figure 8.
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Figure 8: Flowchart for postprocessing of model outputs. Conversion of the vertical levels to heights in
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with Pythagoras theorem.
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END

meters used formulations from [58, 59], and rotation of winds was according to [60].
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SUMMARY OF MAIN FINDINGS
Results and findings were communicated in four papers, which are summarized and
discussed here. In addition, supplementary results from an evaluation run of the model with a

configuration based on the finding of the four papers is also discussed.

3.1 Overview

In achieving the aim of this thesis, the relative impacts on wind predictions of the choices
of model simulation run times, vertical levels above which predictions should be nudged, planetary
boundary and surface layer parameterization schemes, as well as input (terrestrial and GRIB
meteorological) datasets were investigated.

NWP models diverge and accumulate approximation errors with increasing simulation run
times [30, 52]. Carvalho et al. [52] reported that, relatively short run times of 2 days, combined with
grid nudging reduces this error. Ohsawa et al. [1] reported that, applying nudging above PBL
heights predicted by the Mellor-Yamada-Janjic (MY]) PBL scheme produces better results as
compared to disabling it below a fixed height. Paper I was aimed at deepening the understanding
of the impact of several combinations of these two options on wind simulations. It combined five
run times that had commonly been used in other studies [29, 30, 32, 33, 41, 52, 61-63], with three
methods of applying nudging. On the choice of PBL schemes to use in simulations, it was also
realized from studies in the literature that most sensitivity studies on wind predictions do not test
PBL schemes with all their compatible SI. schemes. These issues (comparative performance of
different PBL schemes, and they affected when paired with different SL schemes) were investigated
in Paper II and Paper III. A potentially more effective (and more novice friendly) approach to
sensitivity studies of PBL options (and possibly othet options) was used in Paper II. Paper IV
explored impacts of selected terrestrial datasets from [47], and available Gridded Binary (GriB)
datasets available from [48] on model performance. The main findings from the four papers are

summatized in the sections that follow.

3.2 Impact of Simulation Run times and vertical levels for nudging.

Graphical comparisons of the error metrics of the options tested in Paper I are presented
in Figure 9. As can be seen, a combination of simulations of shorter runs with the grid nudging
technique did improve most of the speed prediction error metrics from the WRE model as reported
by [52]. However, it was found that the margin varied with choice of method of applying (disabling)
nudging. In short simulations (lasting 1 or 2 days at a time), nudging above the default 10 vertical
levels (N-10-L) resulted in predictions with relatively better bias (lower ME) and accuracy (lower
RMSE), but relatively worse consistency (higher STDE) and prediction-observation correlation

(CC). However, with increasing run times, all error metrics detetiorated at a relatively faster rate,
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as compared to an alternative approach of nudging (above a model determined level (N-PBLH).
In addition, the latter approach exhibited relatively bettet consistency (lower STDE) and acceptable
prediction-observation correlation (CC > 0.7), irrespective of the run times it was tested with.
Results of the third method and the first (N-10-L) were very similar, so they are not presented

here.

2,0 /‘/o—o 20 20 20
1.0 1.0 1.0 1.0

’0_0\._’/0 /z
0.0 0.0 0.0 0.0
1 2 7 14 31 1 2 7 14 31 1 2 7 14 31 1 2 7 14 31
(@) (b) © (@
—— N-10] N-PBLH

Figure 9: Comparative performance (at 60 m) of two methods of applying nudging in terms of;
(a) RMSE (b) STDE (c) CC (d) Absolute ME

Based on results on speed prediction from Paper I, it was concluded that, consistent with
the findings of [52], running simulations of relatively shorter run times does reduce prediction
error metrics in wind data that that is downscaled with the WRF model. The analysis nudging
option of disabling nudging variables above a model determined vertical level offers more
consistent and better observation-correlated predictions. Furthermore, consistent with the reports
of [44], with relatively longer run times it was also more accurate, as compared to its alternative
option (of nudging above the default 10 levels). Based on these, it was concluded that it is probably
the more reliable method for applying nudging during downscaling of wind data with the WRF

model.

3.3 Impact of PBL and SL parameterization schemes on predictions.

Given the importance of PBL-SL pairs in modelling wind flow in the PBL, their impact
was also examined in Paper II and Paper III. A limitation that was realized in several of the past
studies in the tropics [26-30] that were consulted during this study was that, they often did not test
PBL schemes with multiple compatible SL. schemes. In addition, it was realized it is common
practice in studies for studies to be conducted in periods with high wind speed conditions only.
Furthermore, few studies have examined the relative performance of all the available PBL schemes
in WRF over a period comprising a wide range of wind conditions. In Paper II, a preliminary
assessment of almost all the PBL schemes with their most commonly paired SL schemes (in the
literature) was conducted. This preliminary assessment aimed at reducing the number of PBL
schemes to be examined with all their compatible SL schemes. A second aim was to see how the
results of a novel approach for conducting these sensitivity tests (illustrated in Figure 10) would
compare with findings that have been reported in the literature. The approach differs from what

has been used in previous published studies in that, it relies on the criterion of consistency in
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performance (in terms of several error metrics) of assessing the relative performance of the PBL
schemes being tested. In addition, it considers a wider range of wind conditions (high and low
wind speed conditions as against the common practice of only high wind conditions for tests as
observed in the literature) and uses fewer simulations to draw a conclusion on the relative
performance of the schemes. Based on the results of this preliminary assessment (which was found
to be largely consistent with what had been reported in other studies in the tropics), five PBL
schemes were selected for further testing with all their compatible SL schemes. Findings of this

second test are reported in Paper II1.

Select first d test days

v
| Sensitivity test for D ]. | Select d extra days

Consistent

!
No trend in option
sensitivities from
D/d tests?*
Yes
v
Conclude based on Conclude based on trends
sensitivity analysis for P from D/d sensitivity tests

Figure 10: Flowchart of test approach used in Paper II.
(d = number of test days for each sensitivity test (2 was used in Paper II); D = Total number of test days;
P = total number of days in entire test period; ¥*Larger D/d means more points to assess trend.)

Based on results of the two tests, it was concluded that the second order Mellor—Yamada
Nakanishi Niino Level 3 (MYNN3) Turbulent Kinetic Energy (TKE) PBL scheme is probably
best for wind predictions at this site and perhaps coastal Ghana. The MYNNS3 often predicted
wind speeds with the best, (or one of the best) combination of error metrics when it was paired
with the Eta SL scheme. In addition, Wind Power Densities (WPD) and cumulative probability
estimates of the scheme often compared relatively better to estimates from the mast data.
Furthermore, predictions of the MYNN3-Eta PBL-SL pair for 4 other locations in the regions
were mostly found to be within the benchmarks for error metrics. Based on these, it was concluded
that the MYNN3-Eta PBL-SL pair is probably good for wind speed downscaling with the WRF

model for coastal Ghana and perhaps other coastal areas in the West-African sub-region.

3.4 Possible impact of different Input Datasets.
The possible impact of five Gridded Binary (GriB) datasets available from [48] and the two
LULC datasets available for version of the WRF model from [47] were investigated in Paper IV.

Available static terrain datasets (, also from [47]) were not included in this study as, based on
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results of a comparison from [49], it was concluded that concluded there is little difference between
them for coastal Ghana. Results suggested that the Moderate Resolution Imaging
Spectroradiometer (MODIS) LULC generally produced downscaled data with better error metrics
and more accurate Mean Wind Power Densities (WPD), probably because it is telatively newer
than the United States Geological Survey (USGS) LULC. However, the difference between the
error metrics and Mean WPD of the two were not so large. On the Gridded Binary (GRIB)
meteorological datasets that were tested, it was realized that data assimilation techniques that were
used during the analysis/reanalysis process of preparing these datasets often correlated well with
how well they performed in terms of verification. It was therefore concluded that this characteristic
of the datasets could probably be a good criterion for selection of datasets for downscaling wind
data. The Japan Meteorological Agency Reanalysis (JRA-55) and the National Centre for
Environmental Prediction Final Operational Global Analysis (NCEP GFS-FNL) performed

relatively better than the 3 other datasets that were tested in this study.

3.5 Performance assessment of based on the sensitivity tests.

Following the findings reported above, a configuration based on the findings of the four
papers was tested in an evaluation run spanning the entire year of 2013. This configuration is
presented in Table A1l in the Appendix. Results for the site at which we had full data, (presented
in Table A2 in the Appendix) indicate that the proposed configuration could predict annual wind
speeds for coastal Ghana, with most error metrics within the benchmarks. However, the
predictions for the two locations further inland (i.e., SEG, and DEN) exhibited larger bias
compared to the two locations nearer to the coast (See Table A3 in the Appendix). This suggests
that predictions of the configuration tend deteriorate further inland, when the annual mean
prevailing wind direction in the area (shown in Figure A1 in the appendix) is considered in addition
to this trend. They also suggest that the configuration is probably good for downscaling data for

offshore areas near Ghana.
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CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

4.1 Conclusions

The focus of this thesis was on the sensitivity analyses of the Weather Research and

Forecasting (WRF) model towards its application for the dynamical downscaling of wind data for

wind resource assessment in Coastal Ghana. Wind data that were downscaled with selected

numerical options and input data options were compared with observations to assess the relative

capabilities and limitations of the options, so that informed decisions can be made on how to apply

them for wind resource assessment purposes in coastal Ghana. It is concluded from the results of

the study that;

>

The method of disabling analysis nudging below a model-determined level is probably more
reliable for wind predictions, especially in simulations with relatively longer run times (more
than 2 days in our tests). And the choosing of simulation run times should for wind data
downscaling should probably be done taking nudging options into consideration.
A test approach that considers the consistency in petformance of candidate model options
when assessed with several criteria, is worth considering as a decision-making criterion in
sensitivity tests, especially by novices and people without the requisite background in
Meteorology who want to apply the WRF model. In addition, future sensitivity tests (for wind
energy applications) should be over a wider range of wind conditions and should consider PBL
schemes with all their compatible SL schemes.
The Higher order TKE closure Mellor—Yamada Nakanishi Niino Level 3 (MYNN3) Planetary
Boundary Layer (PBL) scheme is probably better for wind simulations at this site (and probably
Coastal Ghana and perhaps west Africa, given the similarity in climate), when combined with
the Eta Surface Layer scheme. The prevailing annual mean wind directions and the mast
locations suggest that, these schemes are probably also good for predicting offshore wind in
Ghana. However, verification is needed on this. Other PBL schemes that show promise include
the University of Washington-TKE (UW-TKE), and the Yonsei University (YSU) schemes.
The two global Land Use Land Cover datasets from WREF Geographical Static Data probably
do not differ significantly, in their impacts on wind data that is downscaled for Coastal Ghana
with the WRF model. The impacts of different Gridded Binary (GRIB) meteorological datasets
vary more significantly. And the data assimilations techniques that are used in the
reanalysis/analysis process of prepating these datasets is worth considering as a criterion for
their selection for downscaling with the WREF model.
When correctly configured, the WRE model is capable of downscaling time series wind data
that can meet the benchmarks used in this study for this site (and probably other ateas in coastal
Ghana, and the West African sub-region).
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4.2 Recommendations for Future Work
The following are recommended for consideration in future works;

» Given the limited amount of mast measurement data that was used in this study, future studies
should focus on the verification of the promising configurations with data from other locations
and preferably at greater heights and over longer study periods. Verifications of the offshore
wind prediction capability of the model along the Ghanaian and West-African Coast should
also investigated.

» TFuture tests of the input meteorological datasets at better temporal resolutions. In addition,
given the nature of the local wind, the test of different Sea Surface Temperature (SST) data is
also recommended.

» Ensemble prediction systems incorporating multiple relatively good options to reduce

uncertainty should also be investigated.
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APPENDIX

Configuration and results of evaluation run.

Table Al: Configuration for one-year evaluation test

Initial and boundary conditions
Land Use data
Topographical data
Map Projection
Vertical Resolution
Horizontal resolution (km)
Domain size (grid points)
Model timestep (seconds)
Simulation length and Nudging options
Parameterization Schemes:
Cloud Microphysics (MP)
Long-wave Radiation (LW-Rad)
Short-wave Radiation (SW-Rad)
Surface Layer (SL)

Land Surface Model (LSM)
Planetary Boundary Layer (PBL)
Cumulus

NCEDP Final Analysis (GFS-FNL): 1© x 1© and 6 hts resolution.
MODIS (with lakes) + WREF defaults (Paper IV)
30-arc-second USGS GMTED2010

Mercator
45 terrain following eta levels (automatically set)
25 5 1
121 x 120 141 x 186 181 x 121
120

Monthly runs with Nudging above model determined levels (Paper I)

Eta microphysics (ETA) [64]
Rapid Radiative Transfer Model (RRTMG) [65]
Dudhia [66]
Eta Similarity (Eta) [67-69] (Paper III)
Unified Noah [70]
MYNN?3 (Paper IT and Paper III)
Kain-Fritsch [71] (for domain 3 only [22, 52])

Table A2: Wind speed comparisons at 60 m for mast and WRF downscaled data at site ANL

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
Mast Mean  5.14 633 657 542 468 679 695 710 743 635 598 592 6.21
WRF Mean 528 667 741 611 551 787 718 726 7.04 623 606 554 6.51
Mean Error 014 033 084 070 084 108 024 017 -039 -0.12 0.08 -0.37 0.29
RMSE 1.67 142 171 196 225 278 155 153 120 122 121 1.38 1.72
STDE 166 138 148 183 208 257 153 152 114 121 121 133 1.69
CC 0.63 076 055 056 042 027 050 042 073 073 069 0.74 0.61

Table A3: Comparisons of error metrics (from monthly averages of data) for three other sites.

ME RMSE STDE CC
SEG (5.872° N, 0.345° E ) -0.80 1.00 0.60 0.73
DEN (6.112° N, 1.141° E) -1.19 1.31 0.56 0.66
DZI (5.774° N, 0.714° E) -0.20 0.53 0.50 0.84
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Selected Formulas that were applied in the evaluation of options

» Root Mean Squared Error

1y 2 o
RMSE :[NZ(VS"“ Vs ]

N — number of data points, 2, — downscaled wind speed, 2, — observed wind speed

» Mean Error (Mean Bias)

ME = NZ(Vsim ~Vaps )
> Standard Deviation of the Etrot
STDE = (RMSE? - ME?) "
> Cotrelation Coefficient
Y (X=X)(Y-Y)
(S -X)3(r-v)

where X and Y are the simulated and observed wind speeds respectively

CC=

» Combined Error Metrics (Skill Score)

Skill Score = (1_ RMSENORMALIZED ) + (1_ ‘ ME‘ 1- STDENORMALIZED ) + CCNORMALIZED

NORMALIZED ) + (

» Empirical method of calculating dimensionless Weibull parametets

o -1.086
e
Vv

v

1
r(1+4)
k — shape parameter, ¢ — scale parameter, » — average wind speed, I — gamma.function

»  Weibull Cumulative Distribution Function
v k
F(v) =1—exp {—(C) }

»  Maximum absolute Cumulative Density Function Error

Max CDF Error = max|F (V;)g, — F (V;)

obs sim ‘

» Mean Wind Power Density
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Mean WPD = B pCT [14—5}}

¢ - density.
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Abstract

Over the years, the Weather Research and Forecasting Model (WRF) has been
gaining popularity as a low-cost alternative source of data for wind resource
assessments. This paper investigates the impact of selected time control, and
nudging options on wind simulations in WRF. We conducted 15 numerical
experiments, combining 5 simulation run-times and 3 options for disabling
nudging in the Planetary Boundary Layer (PBL) in WRF. Hourly wind speed
and direction predictions were compared with actual measurements at 40 m, 50
m and 60 m a.gl From our results, we recommend that, for optimum
performance, the method of disabling nudging in the PBL should be chosen with
simulation run times in mind. For wind simulations in our study area, up to 2
days run-times with nudging disabled below 1600 m in model configurations
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gives the best wind speed predictions. However, disabling nudging below the
model-calculated PBL height offers more consistent results and produces

relatively less prediction error with longer run times.

Keywords: Atmospheric science, Environmental science

1. Introduction

Assessments of wind resources is key to the successful development of wind power
on a commercial scale. Data for such assessments have traditionally been from mast-
mounted instruments. However, in recent times, Numerical Weather Prediction
Models (NWPs) such as the Weather Research and Forecasting Model (WRF)
have been gaining popularity as low-cost alternative sources of data for these assess-
ments. Like most numerical models, WRF offers a wide range of options that must
be put together to form model configurations with which the model can be run.

Model configurations are key contributors to model performance.

Among the options that have been found to significantly affect model performance in
wind simulations with WRF; are the Time Control and Nudging options [1, 2]. The
Time Control options are used to specify among other things, the simulation integra-
tion time or run time (which is basically the length of the period that is simulated by
the model), as well as time intervals between the lateral boundary condition inputs
and simulation output files. Nudging (Newtonian relaxation) is one of the options in
the Four-Dimensional Data Assimilation (FDDA) system of WRF. The FDDA sys-
tem comprises options for keeping simulations close to gridded analyses values and/
or observed values (actual measurements) over the simulation run time. The former
is often referred to as grid or analyses nudging, while the latter is termed observa-
tional nudging. Analysis nudging options in WRF include the nudging coefficients
for the variables to be nudged, whether nudging should be applied for all vertical
levels in the simulation domain, and if not, which levels it should be disabled for,
and how. In this paper, we focus on the options of integration or run time, and
the vertical levels for which nudging should be disabled. The combined effect of
these two parameters has been found to improve model performance in wind simu-
lations by reducing model divergence and error accumulation [2].

NWP models tend to diverge and accumulate approximation errors after running for
some time. These situations get worse with increasing simulation run times [2, 3].
With the Time Control options alone, these errors can be reduced for simulations
covering long periods. This can be achieved by performing relatively shorter
segmented simulations, that together cover the desired (longer) period. However, us-
ing this option (of shorter segmented runs) requires more time and computing re-
sources for simulations. This is because, in line with best practices, simulations

run times in WRF must incorporate a model “spin-up” time (the average time it takes
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for the model to adequately develop mesoscale processes). However, model outputs
from this spin-up time are not considered as true representations of the state of the
atmosphere and so, are often discarded [3, 4, 5, 6, 7, 8, 9]. Using shorter run times
for simulations in studies covering longer periods, requires more of such model spin-
up times, which in turn requires that, extra time and computing resources be spent on
running simulations. For example, for a study that covers a period of one year, and
uses 12 hours spin-up time per simulation, the total number of extra days that must
be run and discarded as model spin-up are presented in Table 1. Therefore, though
using shorter run times might improve wind predictions by WREF, it also increases
the time and computational needs for studies and assessments. In addition, for study
designs that are computationally expensive and span long study periods, the use of a
short run times might not necessarily be worth the improvements in model perfor-
mance. Nonetheless, the option has been used, often in combination with grid
nudging in model configurations for sensitivity studies and model performance as-
sessments of WRF for wind simulations [1, 2, 3, 4, 5,6, 7,8, 9, 10, 11, 12, 13].
Some of the run times (excluding model spin-up times) that have been used in
wind simulation studies include, 12 hours [11], 1 day [3, 14], 2 days [2, 8], 7
days [7], 9 days [6], and 30 or 31 days [5, 12].

It is common practice in sensitivity studies of WRF for wind simulations, to apply
nudging at heights above the Planetary Boundary Layer (PBL) only (in other words,
disable nudging within the PBL). This is done with the intention of allowing meso-
scale processes in the PBL to develop freely [11, 12, 13]. There are 3 ways by which
analyses nudging within the PBL can be disabled in WRF [1, 15];

i. by specifying the height (in model vertical levels) above which nudging should
be applied (or below which nudging should be disabled).

ii. by letting the model apply nudging above the model-calculated height of the
PBL (The accuracy of this model-calculated PBL height depends on the PBL

parameterisation scheme used in the model configuration).

Table 1. Effect of different run times on a study covering 1 year (assuming 12

hours model spin up time).

Run time (excluding Number of simulations Total number of Extra time required
model spin-up time) required to cover extra days required for simulations
study period as spin up time
1 day 365 182.5 days 50%
2 days 183 91.5 days 25%
7 days 53 26.5 days 8%
31 days 12 6 days 2%
https://doi.org/10.1016/j.heliyon.2019.e01385
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iii. by letting the model choose the higher of a specified height, and the model-
calculated PBL height, and applying Nudging above whichever is chosen
(i.e. the highest).

The diversity in options available in the WRF model has always presented the chal-
lenge of identifying an optimum configuration for simulations, as model perfor-
mance has been found to depend on many factors including, availability of
computing resources, variables of interest, model configuration and prevailing cli-
matic conditions. In addition, interaction between different options in WRF can
sometimes be non-linear, and this calls for different possible combinations of options
to be tested to determine an optimum configuration. It has been the practice to deter-
mine the optimum configuration for a variable of interest with sensitivity studies,
which assess comparatively, the effects of different model configurations on model
performance.

Carvalho et al. [2] found that, wind speed predictions by WRF are better, with a
model configuration that includes the grid nudging option combined, with a run
time of 2 days instead of 30 days. However, this study did not examine the possible
effects of other integration times, nor the different methods of applying nudging or
the possible interaction of the two options, on model performance. Ohsawa et al. [1]
found that, applying nudging above PBL heights calculated by the Mellor-Yamada-
Janjic (MYJ) PBL scheme produces better results as compared to applying nudging
above a fixed height (of 1000 m) for offshore wind simulations in Japan. However,
these options were not tested with different run times, nor the third option of
disabling nudging in the PBL, tested. In addition, given the strong sensitivity PBL
schemes often exhibit to different climatic conditions that pertain in different seasons
and at different locations, the generalisability of the findings of Ohsawa et al., might

be limited.

Against this background, in this study, we investigate sensitivity of winds (in an area
of good wind energy potential in Ghana [16]), to different combinations of five simu-
lation run times and three methods of disabling nudging in WRF. The accuracies of
these different combinations are compared with actual field (ground) measurements
at a selected location in the south-eastern part of Ghana (Section 2.1). The aim of this
study is to recommend combinations of run time and nudging options that are suit-
able for model configurations for wind simulations with WRF in Ghana.

2. Methods
2.1. Study area and measured data

The study area, as depicted in Fig. 1, stretches approximately between longitudes
0° and 1° East, and latitudes 4.5° and 6° North, and covers the eastern coastal plains
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Anloga;

Google Earth

Fig. 1. Map of Ghana showing its international borders and the study area (in yellow and red

respectively).

of Ghana. This area was identified to have some of the best wind energy potential in
Ghana in a study conducted in 2002 [16]. The Energy Commission of Ghana (EC)
has conducted mast measurement exercises at selected sites in the area in the past.
The observational (measured) data for this study, is from one of the masts in one
such measurement exercise, at Anloga (Lat 5.79 °N and Long. 0.91 °E), a town
along the coast in the study area. The data comprises hourly averages of wind speeds
for December 2013, measured at heights of 40, 50, and 60 m above ground level, and

wind directions, measured at 50 and 60 m.

2.2. Model and domain configuration

The simulation domains comprised three (3) one-way nested domains of resolutions
27 km, 9 km, and 3 km. The horizontal resolutions were chosen to achieve a recom-
mended nesting ratio of 3 [17, 18]. The final horizontal resolution of 3 km was cho-
sen because it has been found to be optimum for wind simulations in WRF.
Increasing the final resolution beyond this value was found not to significantly
improve model performance, despite being more computationally expensive [2,
5]. The outermost domain covers Ghana and its neighbouring countries as well as
parts of the Sahel deserts to the north and the sea to the south of the country. Domain
2 covers the lower half of the country, and parts of its neighbouring countries to the
east. Domain 3 covers the high wind energy potential coastal plains of South-East
Ghana. Most of the EC’s wind energy measurement masts as well as the sites of
some planned wind farms in Ghana, are located in this domain (Domain 3). These
domains are depicted in Fig. 2.
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Fig. 2. Simulation domains.

The model configuration is summarised in Table 2. The Mercator Geographical Pro-
jection scheme was used as recommended by Wei Wang et al. [19]. The Mellor-
Yamada Nakanishi and Nino Level 3 (MYNN3) PBL scheme was chosen for this
study based on results of a preliminary evaluation of PBL parameterisation schemes
for this area. Following recommendations on vertical level references for tests [19],
and nested simulations in WRF [20], 40 vertical levels, (automatically set for a pres-
sure of 5000 Pa at the top of the model) were chosen for all domains. Cumulus pa-

rameterisation was turned off for domain 3 as the horizontal resolution in this domain
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Table 2. Model configuration for all experiments.

Model version Advanced research WRF v3.8.1

Driving data NCEP ENL Operational Model Global Tropospheric
Analyses at 1-degree spatial, 26 pressure levels, and 6
hourly temporal resolutions

Land use data 24-category USGS

Geographical projection scheme Mercator

Vertical resolution 40 levels

Horizontal resolution (km) 27 9 3
Domain size (grid points) 91 x 103 82 x 94 64 x 55

Parameterization schemes:

Cloud microphysics (MP) Eta microphysics (ETA) scheme

Long-wave radiation (LW-Rad) Rapid Radiative Transfer Model scheme (RRTMG
version)

Short-wave radiation (SW-Rad) Dudhia scheme

Surface layer (SL) Nakanishi and Nino PBL’s surface layer scheme
(MYNN)

Land surface model (LSM) Noah Land Surface Model

Planetary boundary layer (PBL) The Mellor Yamada Nakanishi Nino Level 3
(MYNN3.)

Cumulus Kain-Fritsch scheme (turned off for domain 3)

is considered fine enough for adequate resolving of cumulus processes [2, 21]. All
simulations were initialised with the NCEP FNL Operational Model Global Tropo-
spheric Analyses (NCEP GFS-FNL) dataset at 1° horizontal, 26 mandatory pressure
levels, and 6-hours temporal resolutions [22]. The same dataset was used for the

analysis nudging.

2.3. Experimental design

Fifteen (15) numerical experiments were performed, testing all possible combina-
tions of the five selected run times (1 day, 2 days, 7 days, 14 days, 31 days) and
all the three methods of disabling nudging in the PBL. Except for 14 days integration
time, all the other integration times tested in this study have been used in previous
sensitivity studies on wind simulations in WRF; 1 day [3, 14], 2 days [2, 8], 7 days
[7],9 days [6], and 30 or 31 days [5, 12]. Each experiment involved the simulation of
the entire month of December, 2013. For the five experiments in which the height
below which nudging must be disabled had to be specified, 10 model vertical levels
(corresponding to approximately 1600 m above sea level (asl) in our vertical grid
configuration, which has lowest level at approximately 56 m asl) was specified.
This number of levels is specified in model configurations similar to the one used
in this study (i.e. pressure at the top of the model = 5000 Pa, vertical levels
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automatically set) [15, 19]. The number of simulations and other details of each
experiment are presented in Table 3. All simulations were run with a spin-up time
of 12 hours.

2.4. Post-processing of wind data from WRF output files

A position (specified as latitude (i), longitude (j), and vertical level(k)) on the WRF
grid corresponds to a cell [23]. Surface wind speeds and directions for a position in
WREF were calculated from the U (x-component) and V (y-component) winds. As
illustrated in Fig. 3, U winds are on at the centres of the left and right faces of the
cell, while the V winds are on the middles of the front and back faces [23]. The
observation data for verification comprises only surface winds (winds in the horizon-
tal plane). Therefore, hourly simulated surface winds for a cell were calculated (for

every hour) as:

0.5
Ui+ Ui\, (Viar+ Vi
WS = ( ik + +1,].,k) +< Jk T ‘/+l,k) (1)

2 2

Table 3. Experimental Design (the run times specified exclude the spin-up time).

No. Experiment Simulation Levels above which grid Number of
designation run time dging should be applied simulations

(or below which nudging
should be disabled)

1 1 day_N-101 1 day 10 model vertical levels 31

2 2 days_N-101 2 days 10 model vertical levels 16

3 7 days_N-101 7 days 10 model vertical levels 5

4 14 days_N-101 14 days 10 model vertical levels 3

5 31 days_N-101 31 days 10 model vertical levels 1

6 1 day_N-pblh 1 day Model-calculated PBL height 31

7 2 days_N-pblh 2 days Model-calculated PBL height 16

8 7 days_N-pblh 7 days Model-calculated PBL height 5

9 14 days_N-pblh 14 days Model-calculated PBL height 3

10 31 days_N-pblh 31 days Model-calculated PBL height 1

11 1 day_N-a 1 day The higher of 10 model vertical levels 31
and PBL height

12 2 days_N-a 2 days The higher of 10 model vertical levels 16
and PBL height

13 7 days_N-a 7 days The higher of 10 model vertical levels 5
and PBL height

14 14 days_N-a 14 days The higher of 10 model vertical levels 3
and PBL height

15 31 days_N-a 31 days The higher of 10 model vertical levels and 1
PBL height
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Fig. 3. Grid cell in WRF.

Direction was determined from the same U and V averages for each timestep using
the four-quadrant inverse tangent function. Winds were not rotated in this study as
with the Mercator projection (which was used in this study), the model grid aligns
with earth coordinates and so rotation of the winds is not needed [24].

The wind speeds at heights of analysis (40 m, 50 m, and 60 m) were linearly inter-
polated from wind speeds for the levels immediately below and above them. While
linear interpolation might not be the best approach to obtain the wind speeds for the
heights of analysis, we believe this should not significantly affect the relative perfor-
mance of the options being tested, once the same approach is used in processing the
data for all the options tested in the study.

For the interpolation, the vertical levels in WRF were converted to height above
ground level (in m) as [19];

Height(a.g.l) =

((PH +PHB),;, + (PH + PHB),.JJ(H) HGT 2)
2g

where PH is the perturbation geopotential height (m*/s%), PHB is the base-state geo-

potential height (m?/s°), g is acceleration due to gravity (m/s®), and HGT represents

the terrain height (m) [19]. Values for PH, PHB and HGT were all WRF simulation

outputs.

9
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2.5. Statistical metrics for validation

Hourly predictions of wind speeds and directions were compared with ground data
measured hourly, at heights of 40, 50, and 60 m above ground level. The relative
performances of the configuration options were evaluated using the comparative Pre-
diction Skill Score measure [25], calculated from the sum of scaled (unity normal-
ised) values of the following statistical metrics of simulated wind speeds and
directions:

i. the Root Mean Square Error (RMSE),

ii. the Mean Error (ME),
iii. Standard Error (STDE) and the
iv. Correlation Coefficient (CC) between simulated and measured data.

The RMSE is a measure of the difference between simulated and measured values

and is calculated as:
Lo 05
2
RMSE = <N Z (A) ) (3)
where A = WS;,, — WS,ps and N is the number of data points.

The ME, like the RMSE, is a measure of error, but most importantly, helps determine
whether the model was over-predicting or under-predicting winds. It was calculated

as:

ME=13"(8) )

The STDE gives an indication of how spread out predictions are from the predicted
mean. A smaller standard error is preferred. STDE is calculated from the RMSE and
ME as:

STDE = (RMSE* — ME?)™’ (5)

The linear dependence of simulated and measured wind speeds was assessed with
the Pearson Correlation Coefficient (CC). It was calculated as [26].

oo XX-X)(r-7)
VEE-X) S ()

where X and Y are the simulated and observed wind speeds respectively.

For angles, A was calculated as [11];

10
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Osim — O s when |0, — O, < 180

360

A=
(051',” — 00;”) <l — m) when |0.vim - 0ahx| > 1800

(7)

Angular mean was calculated according the circular statistics principles [27], and
correlation between simulated and measured angles was determined with a Circular
Correlation Coefficient [27].

Metrics were scaled (normalised) according to [25] as:

i min
X, — K~ Xuin_ 10
SCALED Xmax Xmin ( )

where Xmax and Xmin refer to maximum and minimum values of the Metric
(RMSE, STDE, ME, or CC) being scaled. Scaling is such that 0 < Xgc4rep < 1.

The Prediction Skill Score was then calculated as:

Skill Score = (1 - RMSESCALED) + (1 - |ME|SCALED) + (1 - STDESCALED)
+ CCscarep ©)

Such that 0 < Skill Score < 4.

The scheme with the highest Skill Score was ranked as the best scheme and vice

versa.

The fitted Weibull probability curves for measured and predicted data from the tested
configurations were also compared. The Weibull distribution is widely used to repre-
sent wind speed distributions for wind energy applications, primarily because it

accurately fits wind data well. Its probability function is [28];

- ()5 |- (2]

where f{WS) is the probability of observing wind speed (WS), k is dimensionless
Weibull shape parameter, and c is the Weibull scale parameter. The two parameters

can be determined as follows [28];

k= (ng) o (12)

Wsmk2.6674
€7 0.184 + 0.816k27%5

(13)

where ¢ and WS,,(m/s), are the standard deviation and the average respectively, of

the wind speed data.
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Effects of the tested model configurations on wind power estimation were evaluated
by comparing the Average Wind Power Flux, estimated with measured and pre-
dicted data. The Average Wind Power Flux, assuming a rotor swept area of unity
was estimated as [12].

1 ¢ R
WPy = ;0.5 X p X WS: (14)

where WS; is the wind speed, and p, the air density. Due to a lack of access to local
air density measurements, a value of 1.156 kg m >, based on findings of a study in
the Caribbean was assumed [29] (based on the assumption that the Caribbean
should have a similar climate as Ghana). In addition, estimates of local air density
with data (Average Temperature, Relative Humidity and Pressure) from selected
online sources [30, 31, 32], was found to average approximately 1.160 kg m~>, pro-
ducing less than 1% difference in the Average Power Flux estimated with the air

density value from the Caribbean study.

3. Results and discussion

Fig. 4 shows the observed and predicted average wind speeds at 60 m for December
2013. It can be observed from the figure that, generally, the shorter run times gave
better predictions, with 1 day runs giving the best predictions. We also see that,
average wind speed predictions for experiments that were conducted with Nudging
above 10 model vertical levels (the N-101 group) and those conducted with Nudging
above the higher of 10 vertical levels or the model-calculated PBL height (the N-a
group) are approximately the same. However, in contrast to the trend in the N-101
and N-a groups of experiments; average wind speed predictions for experiments
from the N-pblh group, (in which nudging was below the model-calculated height
of the PBL), though better with 1 day and 2 days run times, become almost constant
with run times of 7 days or more. The better performance of this approach of
disabling nudging (disabling it below the model calculated PBL height) for longer

run times (7 days or more in this case) can also be seen from the figure.

:HHHH-HHHm-HHHHH

Observe Vday | 2days | 7days 14days|31dxys Vday | 2days | 7days |l4days|31days Vday | 2days | 7days | 14days | 31 days.
N-101 N-a N-pblh

6.0

5.0

Average Wind Speed (m/s)

4.0

Fig. 4. Average wind speeds at 60 m a.g.l from experiments grouped by Nudging options tested.
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The better predictions with the smaller run times can be attributed to the relatively
lower model divergence and error accumulation that shorter run times achieve [2].
We observe this in Fig. 5, which shows the plots of daily average wind speeds (in
December, 2013) for the 5 run times tested. We also observe that, the deviations
of the predicted wind speeds from the observed wind speeds appear to be more pro-
nounced in the plots for run times of 7, 14, and 31 days in Fig. 5(c), (d), and (e)
respectively, pointing to relatively larger model divergence and error accumulation
by experiments with these run times.

The similarity in results between the N-101 and N-a groups of experiments
mentioned earlier, can again be seen in the plots in Fig. 5. There is little deviation
between the lines for the daily average wind speeds plots for experiments from
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Fig. 5. Average wind speeds at 60 m a.g.1 from experiments conducted with run times of; (a) 1 day, (b) 2
days, (c) 7 days, (d) 14 days, (e) 31 days.
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the two groups, irrespective of simulation run time. This similarity suggests that, the
calculated PBL height was either often close to, or less than the height at vertical
level 10 (approximately 1600 m for our experimental setup). From Fig. 6, which de-
picts a plot of the daily maximum PBL heights at the location where our observa-
tional data was taken, we find this to be the latter. This means that, in the N-a
group experiments, nudging was basically being disabled in the same manner as

in the N-101 experiments; for the lower 10 vertical levels.

The more or less constant predictions of average wind speeds in experiments with 7,
14 and 31 days run times from the N-pblh group, can be explained by the relatively
little deviation between the predicted wind speeds from the 3 experiments. This can
be seen in Fig. 7(b). This result can also be taken as an indication of the consistency
of this method of disabling nudging in the PBL in simulations with run times of 7
days or more. A possible contributing factor to the better performance of the exper-
iments from the (N-pblh) group, might be the ability of that method (of disabling
nudging) to determine more appropriately, the levels to nudge. With the N-101 ex-
periments, levels above an assumed constant PBL height (of 1600 m) are nudged.
However, this might not be best as, the PBL height tends to vary (as can be seen
in Fig. 6), falling within the lowest 1000 m—3000 m of the atmosphere depending
on the amount of ground friction and turbulent mixing present [14, 33].

3.1. Statistical metrics and prediction skill

The trends observed above are confirmed by the statistical metrics presented in Table
4. Generally, experiments with shorter run times had better RMSE, ME, and STDE
than those with longer run times from the same experimental groups. The better con-
sistency of disabling nudging below the model-calculated PBL height is seen in the
fact that, there is comparatively less variation in RMSEs and MEs, for experiments
from the N-pblh group. In addition, experiments from this group record some of the
lowest STDEs. Low STDEs can be taken as an indication of consistency in model
performance [2, 12]. The greater model divergence and error accumulation associ-
ated with longer run times is also seen in the greater RMSEs and MEs for experi-
ments with run times of 7 days or more.
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1100

—o— 7days N-pblh —&— 14days N-pblh —a— 31days_N-pblh

N ©
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Fig. 6. Daily average PBL heights from N-pblh group of experiments.
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Fig. 7. Average wind speeds at 60 m a.g.l from experiments conducted with Nudging disabled; (a) below
10 vertical levels, (b) below the model-calculated PBL height, (c) below the higher of 10 vertical levels
or PBL height.

Table 4. Statistical metrics for wind speed predictions at 60 m.

Average RMSE ME STDE CC Prediction

wind speeds (m/s) (m/s) (m/s) skill score

(m/s)
Observation 59
1 day_N-101 5.7 1.23 —0.22 1.21 0.7 35
1 day_N-pblh 53 1.25 —0.61 1.10 0.8 3.4
1 day_N-a 57 1.25 —0.25 1.22 0.7 3.4
2 days_N-101 5.4 1.40 —0.52 1.30 0.7 2.8
2 days_N-pblh 52 1.30 —0.67 1.12 0.8 33
2 days_N-a 5.4 1.40 —0.55 1.29 0.7 2.8
7 days_N-101 4.8 1.86 —1.10 1.49 0.6 1.2
7 days_N-pblh 5.1 1.38 —0.76 1.15 0.8 3.0
7 days_N-a 4.8 1.89 —1.16 1.49 0.6 1.1
14 days_N-101 4.6 1.98 —-1.29 1.50 0.6 0.8
14 days_N-pblh 5.1 1.42 —0.82 1.16 0.8 29
14 days_N-a 4.6 2.01 —1.31 1.52 0.6 0.7
31 days_N-101 45 1.98 —1.44 1.37 0.7 1.1
31 days_N-pblh 5.1 1.48 —0.81 1.24 0.7 2.6
31 days_N-a 4.5 2.04 —1.45 1.43 0.6 0.8

15 https://doi.org/10.1016/j.heliyon.2019.e01385
2405-8440/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).



Heliyon
Article No~e01385

o 4.0

g X 35 X 34 X 34y 33

2 30 X 30% 29

3 X 28 X 28 -

“ .6

4§ 2.0

iy

8

b X 12 X 11 X 11

g 1.0 .

& X 038 X 07X 0.8

3

S 00 + t

% 1 day | 2 days | 7 days |14 days|31 days| 1day I 2 days | 7 days |14 days|31 days| 1 day I 2 days | 7 days |14 days|31 days|
N-101 N-pblh

N-a
Configuration Options

Fig. 8. Speed prediction skill scores at 60 m for configurations tested.

Combining the metrics into prediction skill scores, we find that configurations with
the shorter run times generally record the highest skill scores as depicted in Fig. 8. In
addition, disabling nudging below 1600 m (model vertical level 10), is best for 1 day
and 2 days runs only. For the other run times tested, disabling nudging below the
model-calculated PBL height offers better performance. Generally, nudging below
the model-calculated PBL height offers the most consistent performance. Full results

on the metrics and Skill Scores are presented in Annex-I.

3.2. Effect on wind power estimates

Fig. 9 depicts the Weibull probability distribution plots for observed data and data
predicted with seven of the configuration options tested. Plots for the N-a group
of experiments are not included because they are very similar to those of the N-
101 group of experiments. Moreover, for the 7, 14, and 31 days run times, only ex-
periments from the N-pblh group are plotted because they ranked better than those
from the other groups. It can be seen from the figure that, apart from the 1day_N-101

configuration, all the other configurations overestimate and underestimate lower and

03 T
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—— 1day_N-101
- - -~ 1day_N-pblh
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Fig. 9. Weibull P.D.F plots for data at 60 m from observations and seven of the options tested.
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Fig. 10. Wind power estimates from observed and predicted data at 60 m.
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higher speeds respectively; with deviation for lower speeds greatest for configura-

tions with higher run times. Therefore, as can be observed in Fig. 10, the shorter

run times generally gave better estimations of the power flux. Though there are de-

viations with the 1day_N-10I configuration as well, they are relatively less, and this

configuration predicts the higher speeds better. The more accurate estimations by the

1day_N-101 resulted in a relatively better average wind speed prediction error of 4%,

and a wind power estimation error of 16%, as can be seen from Table 5.

For the nudging options tested, disabling nudging below the model-calculated PBL

height (experiments from the N-pblh group), produced more consistent results, pro-

ducing errors ranging from approximately 10 to 13.7% of observed average wind

Table 5. Percentage error of estimated average wind speed and energy estimates at 60 m.

Average wind Wind speed Shape Scale Estimated power Power flux
speeds (m/s) prediction factor, k factor, ¢ flux (W/m?) estimation
error (%) error (%)

Observation 5.9 3.68 6.56 152
1 day_N-101 5.7 3.7 4.50 6.25 127 16
1 day_N-pblh 5.3 10.3 4.15 5.85 105 31
1 day_N-a 5.7 43 4.39 6.22 125 17
2 days_N-101 5.4 8.9 4.09 5.95 111 27
2 days_N-pblh 5.2 11.3 4.07 5.79 102 33
2 days_N-a 54 9.3 3.98 5.93 110 27
7 days_N-101 4.8 18.6 3.78 5.33 81 46
7 days_N-pblh 5.1 12.9 3.80 5.70 99 35
7 days_N-a 4.8 19.6 3.62 5.28 80 48
14 days_N-101 4.6 21.9 3.45 5.14 74 51
14 days_N-pblh 5.1 13.8 3.67 5.66 97 36
14 days_N-a 4.6 222 3.42 5.13 74 51
31 days_N-101 4.5 243 3.30 4.99 69 54
31 days_N-pblh 5.1 13.7 345 5.68 100 34
31 days_N-a 4.5 24.5 3.20 4.99 70 54
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speeds, and 31—34% of power flux estimates from observed data (See Table 5). In
contrast, though disabling nudging below 1600 m (model vertical level 10) gave the
best result with the 1 day run time, it produced a wider error range when the run time
is increased to 30 days; from approximately 4 to 24% of observed average wind
speeds, and 16—54% of energy estimates from observed data. The same trend is

found for experiments from the N-a group.

The trends discussed above are also observed in the shape and scale parameters for
the fitted data, also presented in Table 5.

3.3. Wind direction predictions

We found no significant difference in the direction predictions of the various config-
uration options tested. Observed wind directions for this period was mostly from the
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Fig. 11. Wind roses of observation data and scheme predictions at a height of 60 m.
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North-East and the East. All the model configurations tested predicted the dominant
direction to North-East. This can be seen in Fig. 11, which shows wind roses for
observed and predicted wind directions at a height of 60 m. From the statistical met-
rics for direction prediction at 60 m, presented in Table 6, our analysis suggests the
1day_N-pblh as the best ranked configuration. We also observe some of the trends in
speed predictions being repeated in the direction predictions as well; the shorter run
time options generally give better direction prediction skill scores. In addition, the N-
pblh group of experiments exhibit the most consistent performance as compared to
other groups. This can be explained by the fact that wind directions were calculated
from the wind speed predictions. However, all the options tested predict the same
direction (North-East), as the dominant wind direction for this site in December
2013.

3.4. Effect of elevation (height) on findings

We found no significant changes in ranking of the configurations tested in this study
when the analysis was repeated for the other heights at which we had observational
data (i.e. 50 m and 40 m). Configuration rankings remained the same, albeit with
marginal drops in prediction skill sores for direction prediction, as can be seen
from Fig. 12(b).

Table 6. Statistical metrics for wind speed predictions at 60 m.

Average wind direction RMSE ME STDE CireC Prediction skill

(degrees) (degrees) (degrees) (degrees) score
Observation 55.8
1 day_N-101 39.6 47.3 —25.9 39.6 0.4 2.6
1 day_N-pblh 37.5 46.7 -27.6 37.7 0.5 32
1 day_N-a 39.4 472 —26.9 38.8 0.4 2.9
2 days_N-101 377 47.6 —25.1 40.5 0.5 2.4
2 days_N-pblh 39.7 48.9 —27.0 40.7 0.4 2.6
2 days_N-a 38.9 47.1 —25.5 39.6 0.5 2.6
7 days_N-101 41.0 56.6 —26.9 49.8 0.5 1.7
7 days_N-pblh 42.7 47.8 —26.0 40.1 0.4 2.5
7 days_N-a 38.7 56.2 —27.4 49.1 0.5 1.9
14 days_N-101 40.4 61.0 —27.5 54.4 0.5 1.2
14 days_N-pblh 42.8 48.1 —25.6 40.8 0.4 2.3
14 days_N-a 37.0 59.8 —28.0 52.9 0.5 1.5
31 days_N-101 44.2 62.0 -29.0 54.8 0.5 1.5
31 days_N-pblh 433 47.8 —249 40.8 0.4 2.3
31 days_N-a 50.5 59.0 —24.6 53.6 0.4 0.7
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Fig. 12. Skill scores for; (a) Speed prediction (b) Direction prediction (Values are scores at 60 m height).

We also found no changes in the trends that were observed in the estimated power
with data from the configurations. There were drops in estimated power at the lower
heights, due to lower wind speeds at these heights. Full results on the estimated po-

wer for the lower heights can be found in the Annex-I.

4. Conclusion

This study investigated the effects of combining simulation run times of varying
lengths with 3 different methods of disabling nudging in the PBL, on wind speed
and direction predictions by WRF model. Effects of the configuration options on po-
wer estimated from the data they predicted was also examined. Five selected run
times were each combined with three methods of disabling grid nudging within
the PBL in WRF simulations.

We found that, shorter simulation run times generally offer better model perfor-
mance over longer simulation run times. Consistent with findings of Carvalho
etal. [2], 2 day runs offered better model performance over 30 day runs, when com-
bined with an appropriate method of disabling grid nudging in the PBL. In this study,
it was found that the 2 days runs reduced the average wind speed prediction error for
the study area from 24% of observed wind speeds, to less than 10%. The error in
wind power flux estimated with predicted data, reduced from 54% of estimates
with observed data, to 27%. The simulated results were found to further improve,
when simulation run time was reduced to 1 day; average wind speed prediction error
dropped to less than 4% of the observed average, and error in power estimated with
predicted data dropped to 16% of estimates from observed data. Furthermore, results
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suggest that, where longer run times must be used for simulations (due to time
constraint or computing constraints that the shorter run times require), the error
from predictions can be reduced by choosing an appropriate method of applying
grid nudging. In line with the findings of Ohsawa et al. [ 1], when nudging is disabled
below the model-calculated PBL height instead of a fixed height, average prediction
error is reduced, possibly because of the ability this approach of disabling nudging to
better determine the appropriate levels at which winds should be nudged. In this
study, this approach reduced speed prediction error from 24% to 14%. The error
in power flux estimated with the predicted data also reduced from 54% to 34%. It
must be noted that performance margins for this approach (disabling below
model-calculated PBL height) might differ with different PBL schemes, as model
estimation of the PBL height depends on the PBL scheme used for the simulations
[14, 33]. In addition, this study does not examine the sensitivity of the options to sea-

sonal variations conditions, which often affects model performance.

Based on our results, we recommend that, for optimum model performance, grid
nudging options should be chosen with run times in mind. For our study area
(and perhaps other areas with similar terrain and climatic conditions in Ghana and
the West African sub-region), model configurations with shorter run times of 1 or
2 days, combined with grid nudging above a height of 1600 m give the best average
wind speed predictions, and are therefore recommended for wind simulations. How-
ever, for longer run times (of 7 days or more), the more consistently performing
approach of disabling nudging below the model-calculated PBL height, gives better
results and is therefore recommended.
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There is growing interest in the use of Weather Researching and Forecasting (WRF) model for assessment
of wind energy potential. The influence of parameterisation schemes in these models depends on
meteorological processes, which tend to differ with geographic regions. In this paper, we test the
sensitivity of surface winds in an area in Ghana, to 11 of the Planetary Boundary Layer schemes available
in WRE. Thirty-six days were simulated with the schemes. Hourly simulated wind speeds and directions
were compared with measurements taken at 40, 50, and 60m above ground level, and the schemes
ranked according to a prediction skill score calculated according to how well their predictions compared
to observations. The local closure MYNN schemes offered consistently good performance; often pre-
dicting the average wind speed with a Root Mean Square Error of less than <2 m/s, indicating good
performance. However, the GBM and UW schemes produced relatively better results for days selected
from a period in which monthly average winds at this location are highest. Based on our results, we
recommend the MYNN3 (and the GBM, depending on the season of the year) for wind simulations in this

area, and areas with similar topography and climate in Ghana.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Background

research and operational regional wind resource assessment over
the years [3,4].

NWP models rely on parameterisation schemes to adequately
represent processes that cannot be explicitly resolved by the

Ranking of potential wind farm sites based on wind energy
potential is an important step toward the development of the wind
resources on a national scale. This involves the assessment of the
wind energy potential at the candidate sites, with local wind speed
and direction measurements, often taken over at least, one year, so
that the local wind climatology can be realistically represented
[1,2]. However, mast measurements can be expensive and time-
consuming. As a result, there is growing interest in wind simula-
tions with Numerical Weather Prediction (NWP) models, which
offer a relatively low-cost alternative source of data for assessments
of wind resources. The Weather Research and Forecasting Model
(WREF), is one such model which has proven to be a reference in

* Corresponding author.

models. In WREF, these schemes fall into the Microphysics (MP),
Cumulus, Long-wave Radiation (Rad-L), Short-wave Radiation
(Rad-S), Land Surface Model (LSM), Surface Layer (SL), and Plane-
tary Boundary Layer (PBL) categories [3]. Studies have reported
significant sensitivities of WRF surface wind simulations, to PBL
schemes in particular [1,2,4—13].

1.2. Turbulence parameterisation

The influence of the earth's surface is transferred to the free
atmosphere through several processes that take place in the lower
atmosphere (turbulent or boundary layer). Atmospheric

E-mail addresses: dekdzebre.coe@knust.edu.gh (D.E.K. Dzebre), muyiwa.adaramola@nmbu.no (M.S. Adaramola).
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0960-1481/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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turbulence, caused by irregular swirls of fluids and heat energy in
the atmosphere, is responsible for the vertical and horizontal
dispersion of substances such as water vapour, smoke and energy
in the atmosphere, and plays a very important role in these pro-
cesses occurring in the turbulent layer. Atmospheric turbulence is a
mix of mechanical and thermal turbulence. Mechanical turbulence
comes mainly from wind shear, which is caused mainly by frictional
drag from the earth's surface, resulting in slower winds near the
surface than aloft. It can also be caused by wind swirls behind
obstacles such as trees, buildings and islands (wake turbulence).
Thermal or convective turbulence on the other hand, results from
plumes of warm, more buoyant air rising and cold, denser air
descending to replace it when solar radiation heats the earth's
surface. When the vertical movement of air, combines with flow
disturbances due to mechanical turbulence, surface wind flow be-
comes irregular, deviating from mean flow [14].

Turbulence can often not be completely resolved by NWP
models. Therefore, turbulence parameterisation in NWP models,
approximates (parameterizes) unresolved turbulence, so that time
derivatives of variables (such as three-dimensional wind velocity
components; u, v, and w) can be predicted using the models. To
achieve this, finite numbers of (lower order) unknowns in prog-
nostic (prediction) equations are predicted or solved for, while the
remaining (higher order) unknowns are approximated. Closure
orders are named after the highest order unknowns that are pre-
dicted. Therefore, a first order closure for instance, predicts mo-
ments (or means) of up to the first order, and approximates the
second moments (which are covariance terms that are basically
averages of products of two departures (variability due to turbu-
lence) from the mean (e.g., w'v/)). Similarly, second order closure
predicts all moments up to the second moments, and approximates
the third and higher moments, and so on and so forth. Sometimes,
some higher order moments may be predicted while others, of the
same order, are approximated, in which case the order of closure is
a non-integer. For instance, a closure that predicts all first moments
and some second moments, while approximating other second
moments will be a 1.5 order closure [15]. Second-order or higher
order closures of wind components can be used to quantify the
Turbulent Kinetic Energy (TKE) associated with the transfer pro-
cesses that occur the in boundary layer [16,17]. Higher-order clo-
sures have often been found to be more accurate, as they are able
solve for higher moments [16]. However, they are more computa-
tionally expensive.

Regardless of the order of closure, two main approaches are
used for closure approximations; the local and non-local (mixed
layer) approaches. Local closure parameterizes unknown quantities
in terms of values of known quantities, or close vertical derivatives
of these quantities at the same grid point. Non-local closure on the
other hand, parameterizes in terms of quantities at other grid
points in the vertical grid. A common closure approximation
technique is the K-theory or gradient-transport theory, in which
the second moments are approximated in terms of turbulent flux.
With this theory, if the approximation term in the general prog-
nostic equation for a variable ¢ is

%jz_a%(m) (1)

then a closure approximation of the flux, E’iul’ is given by
=) (2)

where K is a scalar associated with the transfer process of the
variable [16]. Its polarity indicates whether the turbulent flux is

down or up the local gradient of £ and it can be expressed in
terms of the TKE and length-scale (mixing length) or specified
from a profile. The different methods for getting K, gives rise to
different TKE closure schemes [9,18]. The schemes can also differ
in how the TKE is obtained, with some schemes solving addi-
tional prognostic equations to predict the TKE [19]. Local closures
work best in stable climatic conditions, where turbulent eddies
(departures from the local variable mean) are small and locally
generated [16].

Non-local closure approaches recognise the presence of non-
localised and large eddies whose vertical dimension is approxi-
mately that of the entire boundary-layer depth, and assume that
these eddies are generated from turbulence that is not localised,
but spans the entire boundary layer [16]. Diagnostic non-local
schemes in WRF account for non-local transport by large eddies
with the inclusion of either a mass-flux profile, MAT, or a non-
gradient term, I, in the prognostic equation of a variable [19].
The closure approximation term in the prognostic equation there-
fore becomes (with the counter gradient term);

and with the mass-flux term;

0 0

% (K&i + MAT) (4)
where AT represents the difference in temperatures at some ver-
tical level in the boundary layer, and at the top of the surface layer,
and M, a function of the surface heat flux [16,19].

Turbulence is parameterised in WRF by PBL parameterisation
schemes with direct inputs from SL and LSM parameterisation
schemes.The twelve (12) PBL parameterisation schemes available
in the Advanced Research WRF (ARW) v3.8.1 are presented in
Table 1. The YSU is an improved version of the MRF scheme [9]. It
can be run with two wind-bias correction methods for terrain
effects. The methods are set with the “topo_wind” option
(topo_wind =1 or 2 in the “bl_pbl_physics” section of the WRF
namelist. input file). All these schemes, except the SH scheme are
recommended for horizontal grid resolutions greater than 1 km.
For horizontal grid resolutions between 200 m and 1 km, the SH
scheme is recommended. And for horizontal grid resolutions less
than 100 m, Large Eddy Simulations (without a PBL parameter-
isation) are recommended [19]. It should be noted that simula-
tions with finer resolutions in WRF are more computationally
expensive, and the improvement in results this achieves in wind
simulations, has not always been found to be worth the extra
computational power [2,5]. Descriptions of the schemes, (their
pros and cons) and appropriate references are available in
number of studies [20, 21] and on the physics section of the WRF
Users page.

Performance of parameterisation schemes often depends
significantly on the meteorological processes that prevail in a
specific geographic region [16]. So, sensitivity studies of parame-
terisation schemes are recommended to determine the optimum
schemes to use in a climatic region. Studies examining the sensi-
tivity of wind simulations by WRF for wind energy assessment
purposes to PBL schemes in the tropics are few. We came across
only one such study for sub-Saharan Africa in open literature. In
that study, which was over a site with complex terrain in East Af-
rica, the YSU scheme was found to be the better scheme, when it
was tested against the ACM2 scheme for wind speeds and di-
rections at heights of 38, 39, and 46 m [8]. In other sensitivity
studies aimed at wind energy assessments in other areas in the
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Table 1

Summary of PBL schemes available in the AR-WRF v3.8.1 [19-23].
Scheme Order Closure Method Year Added
Mellor-Yamada-Janjic (MY]) 1.5 Local 2000
Medium Range Forecast (MRF) 1 Non-local 2000
Yonsei University (YSU) 1 Non-local 2004
Asymmetric Convective Model (ACM2) 1 Local + Non-local 2008
Mellor-Yamada Nakanishi and Niino Level 2.5 (MYNN2) 1.5 Local 2009
Mellor-Yamada Nakanishi and Niino Level 3 (MYNN3) 2 Local 2009
Bougeault-Lacarrere (BL) 1.5 Local 2009
University of Washington - TKE (UW) 1.5 Local 2011
Total Energy - Mass Flux (TEMF) 1.5 Local + Non-local 2011
Quasi-Normal Scale Elimination (QNSE) 1.5 Local 2012
Grenier-Bretherton-McCaa (GBM) 1.5 Local 2013
Shin-Hong (SH) Non-local 2015

tropics, the YSU scheme was again found to produce the best
simulations in a test of six (6) other schemes (MY], ACM2, UW,
TEMF, MYNN2, and QNSE) over Trinidad and Tobago [18]. However,
in simulations of wind speeds and directions at 65 and 90 m over
North-Eastern Thailand, the UW and GBM schemes were found to
produce the best results, while the QNSE, YSU and MYNN3 were the
worst among 9 schemes tested in one study [7]. In addition, in
another study for winds at the same heights (at 65 and 90 m), the
YSU, and MYNNS3 performed well for speeds above 2 m/s, while the
ACM2 and GMB were the worst among the 7 schemes that were
tested [6]. Other studies in other tropical areas for other applica-
tions have tested all the schemes except the sub-grid SH scheme,
with the MY], MYNN, QNSE, YSU and ACM2 schemes being tested
more often. The ACM2, YSU and MYNN2 have often been found to
produce better simulations of wind speeds and directions at 10 m
height, while the MY] and QNSE schemes tended to often produce
the worst results, considerably overestimating wind speeds
[9,13,24—26]. Some studies also found all these schemes to be
sensitive to seasons, with the MYNN2 and ACM2 schemes being
best in the winter and summer periods respectively [26](Gunwani
& Mohan, 2017).

Ghana's Renewable Energy (RE) Policy targets 10% of total
electricity consumption from (non-large hydro) RE sources by
2020. As at the end of 2017, the country's RE electricity genera-
tion is mainly from solar PV generation, and stood at less than
the 10% target [27]. The country has potential for utility wind
power [28], but development is currently faced with various
challenges, including limited data for resource assessments. This
lack of wind data can be mitigated with numerical simulations of
surface winds with NWP models such as WRF. Towards this, this
study investigates the sensitivity of surface winds at a potential
wind farm site in the country to simulations with all applicable
PBL schemes in the AR-WRF. The aim of this study is to determine
comparatively, the performance of the schemes and make rec-
ommendations on which schemes are likely to be suitable for
wind simulations over this area and other areas with similar
climate and topographic conditions in the country.

2. Data and method
2.1. Study area and measured data

The study area covers the eastern coastal plains of Ghana. The
area stretches, approximately, between longitudes 0° and 1°E as
well as latitudes 4.5°N and 6°N. According to a wind map of
Ghana (shown in Fig. 2) that was developed as part of the Solar

and Wind Energy Resource Assessment (SWERA) [29], and based
on measurement campaigns by the Energy Commission of Ghana
(EC), the study area has wind resources good enough to make a
wind power project viable. The Energy Commission of Ghana
(EC), based on this study, has been conducting mast measure-
ments at selected sites, mostly along the coast of the area. The
observational (measured) data for this study, which comprise
hourly averages of wind speeds for 2013, were measured at
heights of 40, 50, and 60 m above ground level, and wind di-
rections, at 50 and 60 m only, are from one of such EC masts,
located at Anloga. Anloga is in the coastal strip between the Keta
Lagoon and the sea, in the Keta Municipality of Volta Region in
Ghana (see Fig. 1(b)). Most of the areas in the study area have
low-lying coastal plains covered in savanna grass vegetation (see
Fig. 1(c)). As can be seen from the terrain map in Fig. 1(a), the
study area generally has a smooth terrain. The highest point in
the Keta municipality is about 53 m above sea level [30].

The southern parts of Ghana experience two main seasons in a
year; a relatively dry Harmattan season and a bimodal Rainy season
that ends in November. The Harmattan season is dominated by dry
and dusty desert winds from the North-East, between December
and March, while Monsoon winds from the south, over the sea,
dominate the Rainy season [31].

2.2. Model and domain configuration

The simulation domain comprised three (3) one-way nested
domains of resolutions 27 km, 9 km, and 3 km. Fig. 3 illustrates the
domains. The horizontal resolutions were chosen to achieve a
recommended nesting ratio of less than 5 [20]. The final horizontal
resolution of 3 km was chosen because it has been found to be
optimum for wind simulations in (earlier versions of) WRE.
Increasing the resolution beyond this was found not to significantly
improve model performance, despite being more computationally
expensive [2,5]. The outermost domain covers Ghana and its im-
mediate neighbouring countries as well as parts of the Sahel de-
serts to the north and the sea to the south of the country. Domain 2
covers the part of the country, and parts of its immediate neigh-
bouring countries to the east. Domain 3 covers the high wind en-
ergy potential coastal plains of Southeast Ghana. Most of the EC's
wind energy measurement masts, as well as the sites of some
planned wind farms in Ghana, are in the area captured by this
domain. Based on recommended vertical level references for tests
[20], a vertical resolution of 40 levels was used for all domains. The
levels were automatically set by the model. The model configura-
tion is summarised in Table 2.
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Fig. 1. (a): Map of Ghana showing study area (in broken red borders).
(b): Study area
(c): Typical vegetation cover in the study; grassland dotted with date palms and trees.
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Fig. 2. Ghana wind power classification map (at 50m) [29].
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2.2.1. Scheme configurations

Eleven (11) scheme configurations, which are presented in
Table 3, were tested. The Shin-Hong (SH) scheme was not tested as
it is not recommended for the final horizontal resolution chosen for
this study [19]. The Medium Range Forecast (MRF) scheme was also
not tested, as the YSU is considered an improved version of it [20].
The YSU scheme was run in two configurations; based on the two
wind-bias correction methods for terrain effects [20]. SL, LSM and
other parameterisation schemes (apart from the PBL schemes)
were selected based on recommendations of [3,20] and similar
researches in the tropics (mentioned earlier). Cumulus parame-
terisation was turned off for domain 3 as the horizontal resolution
in this domain is considered fine enough for adequate resolving of
cumulus processes [2,3].

2.3. Experimental approach

The experimental approach in this study is slightly different
from what has been used in other studies, where a whole year or
several months are simulated in order to choose the best scheme
for an area. In the approach used for this study, we assume that the
parameterisation scheme configuration that best predicts extreme
(the highest and lowest) wind events consistently, should be able to
predict other wind events well. Against this assumption, the
scheme configurations were tested on “sets” of test days, selected
for their relatively high or low daily average wind speeds, and their
representativeness of the two main seasons in this part of Ghana;
the Rainy season (spanning April to November), and the Harmattan
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Table 2
Model Configuration.

Model Version: ARW 3.8.1

Nudging

Initial and boundary conditions
Land Use data

Geographical Projection scheme
Vertical Resolution

Horizontal resolution (km) 27
Domain size (grid points) 91 x 103
Parameterisation Schemes:
Cloud Microphysics (MP)
Long-wave Radiation (LW-Rad)
Short-wave Radiation (SW-Rad)
Surface Layer (SL)

Mercator

Grid Nudging; turned off for lower 10 model levels.
NCEP Final Analysis (GFS-FNL): 1-degree spatial and 6 hourly temporal resolutions.
30-arc-second USGS

40 levels (automatically set)

82 x94 64 x 55

Eta microphysics (ETA) scheme

Rapid Radiative Transfer Model scheme (RRTMG)

Dudhia scheme

Revised MMS5 similarity scheme (R-MM5), Eta similarity scheme (ETA),

Quasi-Normal Scale Elimination PBL's surface layer scheme (QNSE),
Nakanishi and Nino PBL's surface layer scheme (MYNN),

Pleim-Xiu surface layer scheme (PX),

Total Energy — Mass Flux surface layer scheme (TEMF).

Land Surface Model (LSM)
Planetary Boundary Layer (PBL)

Noah Land Surface Model, Pleim-Xiu Land Surface Model.
YSU, MY], ACM2, QNSE, MYNN2, MYNN3, BL, UW, TEMF, GBM.

Cumulus Kain-Fritsch scheme — turned off for domain 3
Table 3
Parameterisation Scheme configurations that were tested.
Designation MP LW - Rad SW - Rad SL LSM PBL Cumulus
YSU(1) ETA RRTMG Dudhia R-MM5 Noah YSU (topo_wind = 1) Kain-Fritsch
YSU(2) ETA RRTMG Dudhia R-MM5 Noah YSU (topo_wind = 2) Kain-Fritsch
MY] ETA RRTMG Dudhia ETA Noah MY] Kain-Fritsch
QNSE ETA RRTMG Dudhia QNSE Noah QNSE Kain-Fritsch
MYNN2 ETA RRTMG Dudhia MYNN Noah MYNN2 Kain-Fritsch
MYNN3 ETA RRTMG Dudhia MYNN Noah MYNN3 Kain-Fritsch
ACM2 ETA RRTMG Dudhia PX PX ACM2 Kain-Fritsch
uw ETA RRTMG Dudhia R-MM5 Noah uw Kain-Fritsch
GBM ETA RRTMG Dudhia R-MM5 Noah GBM Kain-Fritsch
BL ETA RRTMG Dudhia R-MM5 Noah BL Kain-Fritsch
TEMF ETA RRTMG Dudhia TEMF Noah TEMF Kain-Fritsch
1\ with the lowest daily wind speed average, and that with the highest
‘ daily wind speed average from each of the 3 seasons. The second set
! lWi,j,k+1 of test days comprised the days with the second highest and second
| lowest average wind speeds from each of the seasons, and so on.
T All the scheme configurations were used to simulate the first
| . .
! and second sets of test days. Scheme configurations that consis-
E i,j+.1,};7 tently ranked worst after simulations of the first twelve test days,
U | were dropped from subsequent tests, in which the remaining
e : - .

° ij,k j N " N scher_nes were tested with simulations Qf more select_ed_ days.
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| Vi,j,k " after each subsequent test, until a consistently best-ranked scheme
| . . ) )

! was identified and selected as the best scheme for the simulations.
5 The advantage of this approach is that, it enabled us to test seasonal
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o . . . . .
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. X X N
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jllongitude) a period of 36 h. The first 12 h (from noon of the previous day) was
considered as spool up time for the model and discarded as per
i (latitude)

Fig. 4. Grid cell in WRFE.

Season (spanning December to March). A three month “High
Winds” season (spanning July to September) within the Rainy
Season was also considered, because the highest monthly average
wind speeds at this site are usually recorded during this (High
Winds) period [32]. Each set of test days comprised six (6) selected
days; from each season. The first set of test day comprises the day

recommendations of [1,2,18]. A plot of the daily wind speed aver-
ages for this site in the year 2013 and the selected days used in this
study are available in Appendix 1.

2.4. Post-processing of wind data from WRF result files

A position (specified as latitude (i), longitude (j), and vertical
level (k)) on the WRF grid corresponds to a cell. Surface wind
speeds and directions for a position in WRF were calculated from
the U (x-component) and V (y-component) winds. The U winds are
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on at the centres of the left and right faces of the cell, while the V
winds are on the middles of the front and back faces as illustrated in
Fig. 4. The simulated winds that were used for analysis was calcu-
lated (on an hourly basis) using a vector approach as:

) 2705
Speed — |:(Ui.j‘k +2Ui+1j,k> N <Vij,k +2Vij+1,k> } 5)

Direction was determined from the same hourly U and V aver-
ages using the four-quadrant inverse tangent formular.

The wind speeds at heights of analysis (40m, 50m, 60m) were
interpolated from wind speeds for the levels immediately below
and above them. For this, the vertical levels in WRF had to be
converted to height above ground level (in m). These were calcu-
lated hourly according to Ref. [20] as;

(PH + PHB); . + (PH -+ PHB),; j .1
2g

Height(a.g.l) = < ) — HGT

(6)

where PH is the perturbation geopotential height, PHB the base-
state geopotential height, and HGT, the terrain height [20]. Values
for PH, PHB and HGT were all obtained from the simulation results.

2.5. Statistical metrics for validation

WREF predictions of wind speeds at heights of 40, 50, and 60 m
above ground level, and direction predictions at 50 and 60 m were
evaluated with the comparative Prediction Skill Score measure [33].
This was calculated from the sum of scaled (unity normalised)
values of the following Statistical Metrics of evaluated simulated
wind speeds and directions:

(i) Root Mean Square Error (RMSE),
(ii) Mean Error (ME),
(iii) Standard Error (STDE) and
(iv) Correlation Co-efficient between simulated and measured
speeds and directions.

The RMSE is a measure of the difference between simulated and
measured values. However, it is often criticised for “punishing”
small errors by exaggerating them and making bad predictions
appear worse than they are; something we consider to be conser-
vative in this case. It is calculated as:

RMSE — <% ZN: <A>2)0'5 7

i

where A = Speedgiyiated — SP€€dmequrea aNd N, the number of data
points.

The Mean Error (ME), like the RMSE, is a measure of error, but
more importantly, helps determine whether the model was over-
predicting or under-predicting winds. It is calculated as:

1N
ME = N Z (4) (8)
The Standard Error (STDE) gives an indication of how spread out

predictions are from the predicted mean. A smaller standard error
is preferred. It is calculated from the RMSE and ME as;

STDE = (RMSEZ - MEZ)O‘5 9)

The linear dependence of simulated and measured wind speeds

was assessed with the Pearson Correlation Coefficient given as [34].

. SE-X)(Y-Y)
VX=X S (Y- )
where X and Y are the simulated and observed wind speeds

respectively.
For angles (wind directions), A was calculated as follows [7];

(10)

Osim —Oobs when|fgim — 0ops| <180°
= 360
(Bsim — Oobs) (1 7m> when (i, — 0ops|>180°

(1)

Angular mean was calculated using vector notation approach
[35], and correlation between simulated and measured angles was
determined with a Circular Correlation Coefficient, calculated as
[35]:

> sin(a — @)sin(8 — B) (12)
S sin? (e — @)sin®(8 — B)

CircC =

where « and g are the simulated and observed wind direction an-
gles respectively.
The Prediction Skill Score was calculated as [33]:

Skill Score = (1 — RMSESQ\LED) + (] — ‘ME‘SCALED) + (]
— STDEscarep) + CCscatep (13)

Such that. 0 < Skill Score < 4
Metrics were scaled according to Ref. [33] as;

X. _ Xi - Xmin
SCALED = e X

(14)

Such that. 0 < Xscarep < 1
The scheme with the highest Skill Score was ranked as the best
scheme and vice versa.

3. Results

We exclude the TEMF scheme configuration from this initial
analysis as we could not simulate all the first twelve test days, with
that scheme. The model kept crashing when we attempted to
simulate four of those days (February 17th, June 20th, March 15th,
and April 10th) with this configuration (using the same model
timestep as had been used in all the other simulations).

7.7 77
75 g 7.7
7.6 = 76 |75
Average 73
Wind 70 | 69 7.1
Speeds 7.0
(mv/s)
65 ||
60 L
O » & & O < N Q& Y
< S g & 9 S <
S N . S

L

RS

Fig. 5. Average wind speeds for all schemes for first six (6) test days at 60 m height.
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Table 4

Statistical metrics at 60 m for 6 test days for all schemes.
PBL Scheme RMSE (m/s) ME (m/s) STDE (m/s) cc
ACM2 2.2 0.1 2.2 0.8
YSU(1) 2.1 0.7 2.0 0.9
YSU(2) 2.1 0.8 19 0.9
MYNN2 2.1 0.4 20 0.9
MYNN3 20 0.2 20 0.9
MY] 23 0.8 21 0.8
QNSE 24 0.6 23 0.8
GBM 22 0.8 20 0.9
uw 2.1 0.7 20 0.9
BL 22 0.6 21 0.8

3.1. Wind speed prediction for first 6 test days

Fig. 5 shows the average simulated wind speed for the first 6
days for all but the TEMF scheme configuration. As can be observed
from this figure, the ACM2, MYNN3, and MYNN2 scheme configu-
rations give the best three estimations of average wind speeds for
the first 6 selected test days. Among the worst predictors are the
YSU(2), MYJ and GBM schemes.

Statistical metrics at 60 m are presented in Table 4. All the
scheme configurations overestimated the wind speeds. The ACM2
scheme configuration exhibited the least estimation bias while the
YSU(2), the least Standard Error. Most of the schemes exhibited and
good prediction-observation correlation. However, only the
MYNN3 scheme exhibited good prediction with RMSE <2 m/s, as
recommended by Refs. [8,36], for this period. Combining the met-
rics into Prediction Skill Scores and ranking the schemes with the
scores, the MYNN3, MYNN2 and ACM2 rank as the top 3 scheme
configurations for this period. This can be observed from Fig. 6,
which illustrates the wind speed prediction skill scores of the
scheme configurations tested. Despite not having the worst pre-
diction of the average wind speed for the first 6 test days, the QNSE
scheme configuration scores lowest in prediction skill score, and
therefore ranks worst. This is because it performs relatively poorly
in in almost all the metrics, except for the ME. The YSU(2) scheme,
despite having one of the worst average speed predictions ranks 5,
above the QNSE scheme, which had a better prediction. And this is
because the YSU(2) is relatively better than the QNSE in terms of
almost all the metrics. It can also be observed from Fig. 6 that the
performance of the scheme configurations remained consistent,
even when they were analysed for the two other heights at which
we had measured data. Full results of the analyses at 50 m and 40 m
are available in Appendix 2.

3.2. Direction prediction for first six (6) test days

All the schemes predicted North-East to be the dominant wind

direction, as can be observed in Fig. 7, which comprises wind roses
for measured and predicted wind directions at a height of 60 m.
Direction prediction was almost the same by all schemes. Measured
wind directions for this period was mostly from the north-east and
the east. Since the predicted angles were calculated from the pre-
dicted wind speeds, differences in the angle predictions can be
attributed to differences in the wind speed predictions by the
different scheme configurations. Similarly, we found no significant
differences in angle predictions by the scheme configurations when
the analysis was conducted at 50 m. Details of average measured
and predicted directions, statistical metrics and skill scores are
available in Appendix 2.

3.3. Sensitivity to seasons

The best scheme configurations for the entire 6 days test period
largely remained the best in the two main seasons: the Harmattan
season, and Rainy season. However, this changed for the “High
Winds” season, where the two YSU schemes and GBM scheme
configurations were now the best 3 schemes. It however must be
noted that, for the entire rainy season (which includes this High
Winds season) the MYNN schemes remained two of the top three
schemes. This can be observed from Table 5, which comprises
measured and predicted average wind speeds (from the days in the
various seasons), as well prediction skill scores for scheme con-
figurations at a height of 60 m.

3.4. Consistency of scheme predictions

We increased the number of test days to 36 in increments of 6,
eliminating the consistently poorly ranked schemes with each
increment. After the first increment to 12 test days, the BL, MY] and
QNSE schemes, having consistently ranked poor among the
schemes, as illustrated in Fig. 7, were dropped. The GBM, YSU(1)
and UW were also dropped after 18 test days, for similar reasons. As
can be observed from Fig. 8, the top 3 scheme configurations for up

4.0
337
3.0 A 30
[OBX] Y
Prediction b B 28 060m
skill ,e B25 050m
Score T B 23 9 40m
2.0
. 21
(o]
1.0 0
ACM2  YSU(l) YSU(Q) MYNN2 MYNN3 MyY] QNSE GBM  UW BL

Scheme Configurations

Fig. 6. Speed prediction Skill Scores at all heights for first 6 test days (Values are Scores at 60 m).
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Table 5

Seasonal average Wind speeds and speed prediction skill scores at 60 m for first 6 test days.

Harmattan

Entire Rainy Season

High Winds

Average Wind Speed (m/s) Skill Score Average Wind Speed (m/s) Skill Score Average Wind Speed (m/s) Skill Score

Measurements 6.59 7.05 8.06

ACM2 7.30 33 6.79 1.9 7.52 1.8
YSU(1) 7.89 1.9 7.49 2.6 7.94 35
YSU(2) 8.07 2.5 7.59 2.6 8.01 3.8
MYNN2 7.43 29 7.18 3.1 7.59 24
MYNN3 7.10 3.5 7.09 37 7.51 2.0
MY] 8.13 1.0 7.50 22 793 35
QNSE 8.13 13 7.20 15 7.57 1.0
GBM 8.09 1.8 7.47 2.7 7.92 3.8
uw 7.96 22 7.39 33 7.73 29
BL 7.80 1.7 741 23 7.72 2.1

to 24 test days consistently remained MYNN3, MYNN2 and ACM2
schemes, and the MYNN2 scheme always ranked after the MYNN3
scheme. However, neither the MYNN3 nor ACM2 scheme was
consistently ranking best, for which reason the two (ACM2 and
MYNN3) were tested further for 12 extra test days, bringing the
total number of test days (for the two) to 36. The MYNN3 scheme
emerged the most consistently best scheme of the two after the
extra testing. Full results are available in Appendix 2.

The seasonal test after increasing the number of test days to 12,

produced similar trends as the seasonal test for the first 6 test days,
in that the best schemes again for the whole period dominated the
two main seasons, but different schemes dominated predictions in
the “High Winds” season. This can be observed in Table 6, which
presents seasonal sensitivity results for the schemes for 12 days of
simulations. Therefore, subsequently, we analysed scheme perfor-
mance in the High Winds season only, with increasing test days, to
determine the best scheme for this season. Fig. 9 illustrates the
ranking of the schemes in the (High Winds) season with increasing

Measured ACM2 YSu(1) YSU(2)
100% N 100% W 100% N 100% i
75% 5% 75% 5%
50% 50% 50% 50%
25% \ 25% 25% 25%
w Fan e | El |w L, w El |w 3
S /
s s s s
MYNN2 MYNN3 MYJ QNSE
100% N 100% N 100% N 100% N
75% 75% 75% 5%
50% 50% 50% 50%
25% 25% 25% 25%
w E W w el w 5
s s s s
GBM uw BL
N N N
100% 100% 100%
75% 75% 75%
50% 50% 50%
25% 25% 25%
w E W w < E
s s s
Oto3 3to5 5t07 7t09 9to 12 12t0 13
(ms™)

Fig. 7. Wind roses of observation data and scheme predictions at a height of 60 m.
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Fig. 8. Scheme Rankings for predictions at 60 m.
Table 6
Seasonal average wind speeds and speed prediction skill for first 12 test days.
Harmattan Entire Rainy Season High Winds
Average Wind Speed (m/s) Skill Score Average Wind Speed (m/s) Skill Score Average Wind Speed (m/s) Skill Score
Measurements 6.26 6.80 7.58
ACM2 6.59 3.2 6.83 35 7.18 24
YSU(1) 7.15 2.1 753 27 7.74 3.2
YSU(2) 7.30 2.7 7.64 24 7.82 33
MYNN2 6.68 3.2 7.11 3.1 7.31 23
MYNN3 6.43 33 6.99 3.2 7.16 15
MY]J 740 09 7.56 1.8 7.76 3.1
QNSE 737 13 727 1.2 729 1.2
GBM 7.28 25 7.55 2.1 7.67 3.7
uw 7.14 26 7.38 32 7.52 3.7
BL 7.20 1.8 742 22 7.56 28
0
1 [ ] - | | | - | |
EGBM
2 - - -
| | | | [ ] —Uw
3 o ° [ ] [ ] n [ ] 0YSU(1)
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Fig. 9. Scheme Rankings in the “High Winds" season for predictions at 60 m.
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test days at a height of 60 m. It can be seen from the figure that, the
GBM scheme consistently ranks best or second best in simulating
winds from the days selected from this season. The UW and YSU
also rank consistently well. However, at lower heights, the UW
sometimes outranked the GBM scheme (see full results in
Appendix 2).

3.5. Results with TEMF scheme

With TEMF scheme, some days in the first 12 days (February
17th, June 20th, March 15th, April 10th) could not be simulated and
therefore, all results for this scheme were excluded from the
analysis and results already presented in this work. Notwith-
standing, when this scheme was included in an analysis that was
restricted to the days that it could fully simulate, we found it to be
one of the relatively worst schemes, and it had no significant in-
fluence on the ranking of the best schemes, be it across all seasons
or in the High Winds season. For this reason, it was not included in
subsequent tests. Detailed results for this analysis (that included
the TEMF scheme) are available in Appendix 2.

4. Discussion

When we rank the PBL schemes tested in this study based on
their prediction skill scores, the second order MYNNS3 local closure
approximation scheme appears to be the best scheme for wind
simulations across all major seasons. It consistently often ranked
best at all the heights that were considered for analysis. It is fol-
lowed by the 1.5 order hybrid closure ACM2, and local closure
MYNN2 schemes. These three schemes consistently predicted with
the best prediction skills irrespective of the number of simulated
days. Judging from the terrain and pertaining vegetation cover in
the study area, the main source of turbulence over the study area
should be thermal turbulence, as there is little elevation or the kind
of vegetation cover that can cause significant mechanical turbu-
lence. The good performance of the local MYNN schemes, suggests
the turbulent eddies generated by thermal turbulence over this site
are more often small and localised in nature; conditions that are
generally better resolved by local closure techniques [16]. As a
second order scheme, the MYNN3 scheme predicts Turbulent Ki-
netic Energy (TKE) and other second moment terms, instead of
approximating them like the lower order schemes would have
done. This probably explains why the MYNN3 scheme consistently
ranked better than MYNN2 scheme which does a limited prediction
of TKE at “sub-grid” level [20]. The ACM2 scheme is a hybrid
scheme that combines non-local upward closure with local
downward closure techniques. Its good performance suggests that
some eddies that were generated on some of the days tested, were
large enough to be considered non-localised, presenting conditions
that it could resolve better than the MYNN schemes.

The GBM and UW schemes generally simulate winds better, in
the “High Winds” season. These two schemes are similar and were
designed to better depict the influence of clouds in the PBL and
better resolve conditions comparable to large eddy simulation
conditions. A major difference between the two is that the UW
scheme diagnosis TKE (approximates by relating it to the state of
other variables) instead of predicting it [23]. The consistence of the
top four (4) ranked schemes, which are GBM, UW and the two non-
local YSU schemes, suggests that the cloud cover that this part of

the country tends to experience around this time of the year [37],
combined with the high winds during this period, produces con-
ditions that are more similar to non-localised large eddy conditions
during this time of the year compared to the rest of the year. Where
a full year's simulation, comprising shorter runs like the type used
in this study will be conducted at this site, it might make sense to
run this period with the GBM or UW schemes for better results,
though we cannot tell at this stage how much improvement in
overall wind energy estimate this might bring.

Generally, our findings agree with findings of other similar
studies we found in open literature. The QNSE and MY] schemes
were often the worst schemes for speed prediction [9]. The TEMF
scheme was one of the worst schemes when it was included in the
analysis [18]. The best schemes include MYNN2, YSU and ACM2
schemes [6,8,24,26], as well as the UW and GBM schemes [7].
Compared with the ACM2 scheme, the YSU scheme is better [8].
However, we find that performance of the PBL schemes depends on
the prevailing weather conditions of period they are used to
simulate. Overall, the MYNN3 appears to be the best scheme for
simulations over this area.

5. Conclusion

In this paper, we investigated the sensitivity of selected BPL
schemes in the AR-WRF v3.8.1 to winds at a site with high wind
energy potential in South-Eastern Ghana. From our findings, we
conclude that generally, the higher local closure schemes with TKE
prediction, and hybrid schemes (combining local and non-local
closure) best simulate all year winds at this site, with the former
being more consistent. We believe the local, second order, MYNN3
scheme is best for wind simulations in this area (and perhaps other
parts of the country and West African sub-region with similar
terrain and climate), due to its consistently good performance
ranking in our tests. We also find that the local 1.5 order GBM and
UW schemes simulate winds better during a “High Winds” period
but do not give the kind of all-year performance that the MYNN3
exhibited. We recommend tests covering longer periods to deter-
mine if the comparative performance of the schemes remains same.
We also recommend tests to determine if estimated energy with
combined data simulated by different schemes for the different
periods in which each performs best, would have any advantages
over energy estimations with data from just one scheme.
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Appendix 1

Daily Wind Speed Averages at Anloga for 2013

Appendix 2. Analyses Results
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Average speeds and metrics for speed prediction (12 high winds test days)
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Abstract: This paper examines the impacts of five planetary boundary layer (PBL) parameterization
schemes paired with several compatible surface layer (SL) parameterization schemes in the Weather
Research and Forecasting Model on wind hindcasts for resource assessment purposes in a part of
Coastal Ghana. Model predictions of hourly wind speeds at 3 x 3 km? and 9 x 9 km? grid boxes
were compared with measurements at 40 m, 50 m, and 60 m. It was found that the Mellor-Yamada
Nakanishi and Niino Level 3 (MYNNS3) PBL scheme generally predicted winds with a relatively better
combination of error metrics, irrespective of the SL scheme it was paired with. When paired with the
Eta surface layer scheme, it often produced some of the relatively fewest errors in estimated mean
wind power density (WPD) and Weibull cumulative density. A change in the simulation grid size
did not have a significant impact on the conclusions of the relative performance of the PBL-SL pairs
that were tested. The results indicate that the MYNN3 PBL and Eta SL pair is probably best for wind
speed and energy assessments for this part of coastal Ghana.

Keywords: wind resource assessment; dynamical downscaling; parameterization schemes;
WRF; Ghana

1. Introduction

Over the years, there has been increasing interest in the use of numerical weather prediction
(NWP) models, such as the Weather Research and Forecasting (WRF) model [1], for wind resource
assessment. By numerically downscaling meteorological datasets, these models are used to generate
wind data (wind speeds and directions) at relatively low cost for areas lacking ground measurements of
such data for preliminary assessments of wind resources. Owing to diverse model options, identifying
optimum model configurations (which are basically combinations of the options available in the
models) for an application sometimes requires sensitivity tests, which assess, comparatively, the effects
of varying model options on model performance. Predictions of surface winds by NWP models such as
WREF are sensitive to model options such as simulation grid size, model physics, initial and boundary
data, and parameterization of processes at the subgrid scale [2,3]. This paper focuses on selected
parameterization options in the Advanced Research WRF (ARW).

Planetary Boundary and Surface Layer Parameterization

Atmospheric processes play an important role in determining certain fundamental properties of
the weather and climate of the earth. Therefore, their correct representation in atmospheric models is
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important. In NWPs, this is done in part via the model physics, the purpose of which is to resolve
and parameterize (approximate) these processes in the models [4]. Where, due to the complexity
of the processes or the scales on which they occur or for other reasons, the processes cannot be
explicitly represented in or resolved by the models, they are parameterized (or approximated with
parameterization schemes) [4]. Parameterization involves relating the effects of such processes to
variables that can more easily be determined by the models [4]. The physics parameterization schemes
in WREF fall into the microphysics (MP), cumulus, long-wave radiation (Rad-L), short-wave radiation
(Rad-S), land surface model (LSM), surface layer (SL), and planetary boundary layer (PBL) categories [1].
Vertical sub-grid scale transport processes in the atmosphere are parameterized by the PBL schemes,
which interact directly with the SL and LSM schemes [5].

Transport processes transmit the effect of surface phenomena such as frictional drag, heat transfer,
and terrain induced flow modification in the planetary boundary layer to the upper layers of the
atmosphere [6]. Turbulence plays a key role in such transport processes and acts as a feedback
mechanism in wind circulation [6-8]. PBL schemes compute turbulence flux profiles within the
atmosphere, providing atmospheric tendencies of temperature, moisture, and horizontal momentum [5],
which are used in predicting variables. A key difference in the PBL schemes in WRF is how they
address the turbulence closure problem, which arises in the mathematical representation of turbulence
(explained in several texts such as [4,9,10]), due to the difficulty of resolving the smallest turbulent
eddies (which are in the order of a few milometers [6-8]). This is often a challenge in NWPs, as they are
often run at grid resolutions that do not allow the adequate resolving of such eddies. Depending on
how the closure problem is addressed in a PBL scheme, it may be classified according to an order
of closure, and as a local or nonlocal closure scheme. Only vertical levels that are directly adjacent
to a given point directly influence the estimation of the fluxes at that point in local closure schemes.
In nonlocal closure schemes, on the other hand, multiple vertical levels influence the estimation of
fluxes at a given point [11]. In addition, in WRF, most nonlocal schemes have diagnostic components
for a flux profile, while the local closure schemes use turbulent kinetic energy (TKE) predicted at a
point in approximating fluxes [12]. Higher order local closures and nonlocal closures are often more
accurate than lower order local closure schemes [4]. Brief descriptions of several PBL schemes as well
as their shortcomings have been summarized in the literature [11-14].

Parameterization methods perform differently in different atmospheric stability conditions, which
inform their formulation [5,11]. Stability dependent information and other inputs needed by the PBL
schemes are provided by SL schemes. The SL schemes also provide exchange coefficients for the
calculation of the heat and moisture fluxes by LSM schemes. These fluxes serve as bottom boundary
conditions for the PBL schemes [15,16]. Key differences among SL schemes include the approaches and
methods used in computing surface exchange coefficients [5]. However, they are mostly based on the
similarity theory, which is explained in texts such as [6,9,10]. In WRF, PBL schemes are recommended
to be used with specific SL schemes but are generally compatible with most of the LSM schemes in
the model.

Given the importance of wind speeds to wind energy extraction, and as wind turbines operate in
the lower parts of the PBL, several studies [3,17-23] over the years have examined the impact of PBL
schemes in WRF on the wind hindcasts. However, studies in the tropics [17-21] have often not tested
the different PBL schemes with different compatible SL schemes. In addition, the impact of the schemes
on model performance is influenced by local terrain features and atmospheric conditions, which often
vary with geographical location [2,3]. Against this background, in this paper, we investigate the impact
of selected PBL schemes, paired with several compatible SL schemes, on wind hindcasts for wind
energy assessment purposes in an area in coastal Ghana. The study focuses on five PBL schemes
selected from a preliminary study of PBL schemes in coastal Ghana, and other studies in tropical
areas [17-21]. These are:

e 1storder hybrid (local/nonlocal) closure Asymmetric Convective Model (ACM2) [24]
e 2nd order TKE closure Mellor-Yamada Nakanishi Niino Level 3 (MYNN3) [25]
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e 1.5 order TKE closure University of Washington (UW) [26]
e 1.5 order TKE closure Grenier-Bretherton-McCaa (GBM) [27]
e  1st order nonlocal closure Yonsei University (YSU) [28]

The aim of the study is to offer some insight into the relative impacts of the selected PBL-SL pairs
on wind speed and mean wind power density estimates by the model for coastal Ghana. The rest of the
paper is organized as follows; Section 2 covers the study area, verification data, model configuration,
and experimental design. Section 3 presents and discusses results of analysis, and Section 4 summarizes
the study and presents conclusions drawn from the study.

2. Materials and Methods

2.1. Study Area and Data

The study area covers the coastal plains of South East Ghana (shown in Figure 1). The area
comprises predominantly low-lying coastal plains with savanna grass vegetation and experiences
two main seasons in a year: a harmattan season that is dominated by dry and dusty desert winds
from the North-East, starting from around November and lasting until February, and a bimodal rainy
season dominated by Monsoon winds that ends around November [29,30]. The Energy Commission of
Ghana (EC) has conducted mast measurements at selected sites, mostly along the coast of this region.
The observed (measured) data for this study, which comprise hourly measurements of wind speeds (in
selected months) in 2013, at heights of 40, 50, and 60 m above ground level, is from one such EC masts,
located at 5.7861 °N and 0.9188 °E.

Google Earth

C
'Anloga

Google Earth

Figure 1. Map of Ghana showing the study area (in yellow and red, respectively).
2.2. Model Configuration

Version 3.8.1 of the Advanced Research WRF (ARW) [1] was used for this study. Key features
of the model include a fully compressible, non-hydrostatic Euler equation, a terrain following a
vertical coordinate system, and a staggered horizontal grid. Model prognostic variables include
three-dimensional wind, turbulent kinetic energy, and potential temperature. Detailed descriptions of
the model physics, equations, and dynamics are provided by [1].
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The model configuration for the study is summarized in Table 1. Map projections transform
atmospheric properties (defined on earth’s spherical surface) to a flat model grid [4] to enable the
application of grid point methods to solutions of the atmospheric flow equations. Map projections
tend to affect model stability as they distort distances at any given point, affecting the maximum stable
timestep in the WRF solver. To maintain numerical solution stability, it is recommended to use a
projection that keeps the map-scale factor (a measure of distance distortions from the transformation)
close to unity over the simulation grid [4]. For low-latitude and tropical regions, the Mercator projection
is recommended as it best satisfies this (stability) condition [4,31]. To further ensure model stability,
amodel timestep of 120 s (less than the maximum 6 times the magnitude of the coarsest horizontal grid
distance) was used as suggested by [1]. The domains, shown in Figure 2, have horizontal resolutions
of 27 km, 9 km, and 3 km, and a vertical resolution of 40 vertical pressure levels each. The horizontal
resolutions were chosen to achieve a nesting ratio of 3, and the final horizontal resolution of 3 km was
used because it was found to be optimal for wind simulations in WRF [32,33]. The vertical resolution
was chosen following recommendations of [34]. The model top was 50 hPa with the lowest half level
at approximately 28 m asl.

Table 1. Model configuration.

Model Version Advanced Research WRF v3.8.1
Initial and Boundary Conditions NCEP Final Analysis (GFS-FNL) [35]: 1° x 1° and 6 h Resolution
Land Use Data 30-arc-second USGS! with lakes
Topographical Data 30-arc-second USGS GMTED2010
Map Projection Mercator
Vertical Resolution 40 vertical pressure levels (automatically set)
Horizontal Resolution (km) 27 9 3
Domain Size (grid points) 91 x 103 82 x 94 64 x 55
Model Timestep (seconds) 120
FDDA? Analysis Nudging (Disabled in the PBL)
Parameterization Schemes:
Cloud Microphysics (MP) Eta microphysics [36]
Long-Wave Radiation (LW-Rad) Rapid Radiative Transfer Model [37]
Short-Wave Radiation (SW-Rad) Dudhia [38]

i. Mellor-Yamada Nakanishi Niino (MYNN)
ii. Pleim-Xiu (PX) [39]

iii. Revised MMS5 Similarity (R-MMS5) [40]
iv. Eta Similarity (Eta) [41-43]
Unified Noah [44]

Pleim-Xiu (PX) [45,46]

i. ACM2 [24]

ii. GBM [27]

Planetary Boundary Layer (PBL) iii. MYNNS3 [25]

iv. UW [26]
v. YSU [28]

Cumulus Kain-Fritsch [47] (turned off for domain 3 [1,32])

! United States Geological Survey. 2 Four-Dimensional Data Assimilation.

Surface Layer (SL)

Land Surface Model (LSM)
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Terrain Height (MSL)

10N

10W 0 10E
Figure 2. Simulation domains.

The selected PBL parameterization schemes were paired with compatible SL schemes as
recommended by [31,48] (except the old MM5 scheme). Other required parameterization schemes were
selected based on other wind sensitivity studies in coastal Ghana [49,50], and practices from other wind
sensitivity studies (mostly in the tropics) [17-21]. The Eta Microphysics, New Rapid Radiative Transfer
Model [37] and Dudhia [38] schemes were used for MP, LW-Rad, and SW-Rad parameterizations,
respectively. Cumulus parameterization was not used in domain 3, as the horizontal grid resolution
in this domain was considered fine enough for adequate resolving of cumulus processes [1,32].
For domains 1 and 2, however, cumulus processes were parameterized with the updated Kain-Fritsch
scheme [47]. The Unified Noah LSM [44], was used for land surface parameterization. In addition,
following recommended best practices on the use of the ACM2 PBL scheme and PX SL schemes [51],
the PX LSM [45,46] was also tested but with the PX SL scheme only. The resulting PBL-SL-LSM
configurations that were tested are presented, with references as obtained from the WRF physics page,
in Table 2.

Table 2. Configurations tested.

No. Designation PBL Scheme SL Scheme LSM Scheme
1 ACM2-P-P ACM2 PX PX
2 ACM2-P-N ACM2 PX Noah
3 ACM2-R-N ACM2 R-MM5 Noah
4 GBM-R-N GBM R-MM5 Noah
5 MYNN3-M-N MYNN3 MYNN Noah
6 MYNN3-R-N MYNN3 R-MM5 Noah
7 MYNN3-E-N MYNN3 Eta Noah
8 UW-R-N uw R-MMS5 Noah
9 UW-E-N Uw Eta Noah
10 YSU-R-N YSU R-MM5 Noah

2.3. Experimental Design

A total of 10 configurations were tested. Owing to limited computational resources, each
configuration was used to simulate a period comprising four months, January, February, May,
and September of 2013, one month at a time. The months were selected for their relatively high or
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low monthly average wind speeds in the seasons that pertained in this part of Ghana; January and
March represented the harmattan season and May and September, the rainy season. It was hoped
that by selecting the periods simulated in this manner (as has been done in other resource assessment
sensitivity studies [22,32]), the effect of major seasonal changes on annual winds would be captured by
the options being tested. The grid nudging option of the WRF Four-Dimensional Data Assimilation
(FDDA) system is a technique that has been used in several studies on wind downscaling for resource
assessment purposes [20,52,53]. The technique bridges the gap between the model simulations and
time-interpolated values from input data. All three simulation domains were nudged during all
the simulations, following practices of previous studies [20,52,53]. Nudging options and simulation
lengths were chosen based on recommendations from a previous study in coastal Ghana [49].

2.4. Postprocessing of Data and Evaluation of Options

Post-processing of results generally followed the procedure used in previous studies in the study
area [49,50]. However, hourly predictions of winds (at 10 m and other relevant half vertical levels) were
bilinearly interpolated to the mast location. Furthermore, winds were interpolated to the heights of
analysis (40 m, 50 m, and 60 m), with log-linear interpolation [54]. Scheme performance was assessed
in terms of four error metrics, which were calculated with procedures from previous studies [49,50]:
mean error (ME), root mean square error (RMSE), standard deviation of the error (STDE), as well as the
correlation coefficient (CC) of the predictions. The error metrics were combined into a prediction skill
score (SS) (as was done in previous studies [49,50]), which was used to rank the options. In addition,
the ME, RMSE, and CC were compared to values that were considered as indicators of good model
performance in studies [18,19,55].

As the intended application of the findings of the study is wind energy assessment, the impacts
of the options on wind power estimation were evaluated by comparing their Weibull cumulative
distributions and mean wind power densities to those from observations for the study period.
The Weibull distribution is widely used in many fields of the wind energy industry. The cumulative
distribution gives the probability of wind speeds being less than or equal to the speed at which it is
evaluated. Its function is given as [56]

Flv)=1- exp[—(g)k] (1)

where v, ¢, and k are the wind speed, Weibull scale, and shape factors, respectively. The scale and shape
parameters were estimated using the empirical (mean and standard deviation) method (with formulas
from [56]). This method was chosen after an evaluation of five methods—the empirical, moment,
graphical or least squares, the energy pattern factor, and maximum likelihood methods—using an
evaluation method from a study by [56]. The empirical method was chosen for its simplicity and often
relatively better or on-par relative test rank, which was in terms of total normalized results.

The distributions for observed data and the configurations were compared via the maximum
absolute error of the cumulative distribution function (max CDF error), which was determined as the
maximum difference between the cumulative distributions of observed and predicted data, (evaluated
in 0.5 m/s bins as recommended by [57]) [53]:

Max CDF Error = max|F (v;) F (Ui)sim|' 2)

obs

The mean wind power densities were expressed as the percent error of the difference between the
mean WPD of observed and predicted data for a period of evaluation. The error was then expressed
as a percentage of the mean WPD from observations. The mean WPDs were determined from the
estimated Weibull parameters as [56,57]

WPD = [%p@r(l + %)] ®)
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where p, the air density, was assumed to be 1.160 kg m™3, as estimated in a previous study [49] in the
study area.

3. Results

Results at 60 m for the PBL-SL pair options are presented in Table 3. It can be seen from the error
metrics that the impacts of all the tested PBL-SL pairs on model performance were mostly within the
acceptable limits: RMSE < 2 m/s, ME < 0.5 m/s. However, the ACM2, GBM, and YSU predictions had
CCs that were slightly less than the acceptable limits (CC > 0.7 [18,19,55]). It can also be observed that
for the same PBL scheme, although the choice of an SL scheme did have some impact on the average
wind speed prediction, the impact (if any at all) was less on the error metrics. Again, for the same PBL
scheme, the Eta SL scheme produced higher average wind speeds than the other SL schemes. The YSU
PBL scheme predicted higher average wind speeds than the MYNNB3 PBL scheme (irrespective of
SL scheme). Generally, configurations with the MYNN3 PBL scheme predicted with some of the
least RMSEs, the best consistency (least STDEs), and highest correlations, and therefore, gave the
best skill scores, although as has been mentioned, the error metrics for all the other configurations
(except for the CCs of the ACM2, GBM, and YSU PBL schemes) were within acceptable limits for
good model performance. In contrast to the average wind speed predictions, the configurations had
more significant impacts on WPD estimates. However, some of the trends observed in the speed
predictions were also observed in the WPD estimates; the configurations with the Eta SL scheme gave
relatively smaller absolute WPD errors than the R-MMS5 SL scheme. The MYNN3-E-N and ACM2-R-N
configurations gave the best average WPD estimates for the entire study period. However, as can be
seen from the table, the MYNN3-E-N configuration had a better maximum error of CDEF. In addition,
it can be observed from the CDF plots presented in Figure 3 that the probability plot of the MYNN3-E-N
configuration was closest to the plot of observed data for speeds below 7 m/s; the other options
gave relatively lower probabilities. For higher speeds, the MYNNB3-E-N together with the UW-E-N
configurations gave the closest probability plots.

Table 3. Error metrics and skill scores at 60 m for study period.

Average
Wind ME RMSE STDE Skill  Weibull Weibull —Mean ~ WPD - Max
Speeds (m/s) (m/s) (m/s) cc Score k WPD Error  |CDF
(Wm~2) (%) Error|
(m/s)
Observation 5.87 2.93 6.58 167
ACM2-P-P 5.83 -0.04 1.65 1.65 067 0.3 3.78 6.59 145 -13.1  0.0645
ACM2-P-N 5.95 0.08 1.66 1.66 067 0.2 3.78 6.59 154 -7.6 0.0693
ACM2-R-N 6.08 0.21 1.65 1.64 0.67 1.0 3.86 6.72 163 -22 0.0888
GBM-R-N 6.06 0.19 1.60 1.59 0.69 20 4.04 6.68 158 -5.1 0.0964
MYNN3-M-N 5.68 -0.19 155 1.54 071 33 3.56 6.31 137 -17.6  0.0731
MYNN3-R-N 5.71 -0.16 1.55 1.54 072 35 3.34 6.36 143 -142  0.0545
MYNN3-E-N 5.96 0.09 1.58 1.57 072 26 3.33 6.64 163 -22 0.0399
UW-R-N 5.86 -0.01 157 1.57 070 21 3.67 6.49 149 -10.9  0.0530
UW-E-N 6.19 0.32 1.63 1.60 070 22 3.70 6.85 174 4.6 0.0932
YSU-R-N 6.01 0.14 1.60 1.59 0.69 19 3.85 6.64 157 -5.7 0.0802

Similar trends were often observed when the analysis was restricted to the seasons in the area;
a change in SL scheme did not often produce a significant change in metrics. The Eta SL scheme
produced higher average wind speed estimates than the R-MMS5. The YSU scheme simulated higher
wind speeds than the MYNNS3 scheme. Configurations with the MYNNB3 PBL scheme still ranked
best in the rainy season and all the options satisfied all the criteria for good performance (except the
ACM2 configurations, which had CCs < 0.7 in the rainy season). Notable exceptions to these trends are
the ACM2 PBL scheme with the Noah LSM (with either SL schemes) ranking relatively better for speed
prediction during the harmattan season. In addition to the MYNNS3-E-N configuration, the UW-R-N



Energies 2019, 12, 3670 8of 16

configuration gave a relatively good WPD error with a better max CDF error in the harmattan season.
Results on the seasonal analyses at 60 m are available in Table A2 in the Appendix A.

1
08 1 Observation
- ACM2-P-N
0.6 1 ACM2-R-N
= —— GBM-R-N
= —— MYNN3-E-N
504 4
o UW-E-N
=
[
— - — - YSU-R-N
02 +
0 4 +
0 2 4 6 8 10 12

Wind Speed (m/s)
Figure 3. Cumulative probability plots of data for selected options.

Changes in heights of analysis and the simulation grid box sizes did not have significant impacts
on most of the above trends either. At the lower heights, the relative performances of the configurations
for speed predictions at the lower heights were also largely the same. However, the UW-E-N and
GBM-R-N configurations tended to give relatively better mean WPD errors, although the max CDF error
of the MYNN3-E-N configuration was still relatively better. In the seasonal analyses, the MYNN3-E-N
still tended to give some of the relatively best (if not the best) mean WPD and max CDF error. Data from
the 9 x 9 km? grid produced generally lower average wind speeds and general increase in absolute
ME with little impact on the scheme rankings presented earlier. Max CDF errors were also higher
when compared to those estimated with data from the 3 X 3 km? grid. The MYNN3-E-N and UW-E-N
configurations still tended to give relatively lower mean WPD errors with the max CDF error of the
former better as compared to the other options. Selected results on these analyses are available in
Tables A1 and A3 in the Appendix A.

4. Discussion

The performance of PBL and SL schemes differ in different atmospheric stability conditions, which
inform the methods used by the schemes [58]. Due to inadequate data, we were not able to assess
stability conditions in the study area, and so are unable to assess the performance of the schemes against
some of these conditions. However, we find that our observations are consistent with results from
several studies. For instance, the YSU scheme was observed to generally predict higher wind speeds
than the MYNN3 scheme due the relatively shallower mixed layer that it simulates [2,3,21]. PBL schemes
were found to have more significant impacts on error metrics of surface wind speed hindcasts than
other parameterization schemes in studies in similarly coastal terrains [2,22]. Furthermore, the often
relatively better ranking of the MYNN3 PBL scheme (over the other local closure schemes) is possible
due to it being of a higher order closure. Higher order local (and nonlocal) closure schemes generally
yield more accurate results than schemes that employ lower order local closures [4].

The diurnal profiles of average wind speeds for the seasons in the area (shown in Figure 4) are
also consistent with what has been reported from other sensitivity studies of PBL schemes in WRF
to wind hindcasts in tropical and coastal areas [3,19,21]. Similar peak winds and a relatively high
overestimation of winds around and after sunset have been reported for a tropical area. In addition,
winds peaking between noon and sunset were also reported in a relatively cooler season in the same
area [19]. It was explained that the overestimation of winds after sunset can be attributed to the
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inability of the PBL schemes to decouple air near the surface and aloft at night, as a result of differences
in vertical mixing strength and entrainment of air above the PBL [3,21].

7 Observed
o = 7 ACM2-P-P
56.5 g 65 ACM2-P-N
'E g - ACM2-R-N
% 6 & 8, ——e—— GBMR-N
] &

T:} 'g ———&—— MYNN3-M-N
%5_5 ] E 55 ——e—— MYNN3R-N
ap %D ——&—— MYNN3-E-N
g
s 54 “E 5 ——e—— UW-RN
< < ——e—— UW-E-N

45 45 ——e—— YSURN

0 06 12 18 00 00 06 12 18 00
(a) Local Time (HH) (b) Local Time (HH)

Figure 4. Diurnal variation of average wind speeds for the (a) harmattan season and the (b) rainy season.

The profiles also suggest local winds to be from land-sea circulations. Land and sea breezes result
from a convective cycle where warm air over land rises to be replaced by cool sea breezes during the
day. The cycle reverses at night as land cools more rapidly than the sea. The Land-sea temperature
difference plays a key role in the strength of this cycle, often producing stronger sea breezes (Figure 4),
as it is higher during the day [59]. The profiles and reports on the relative predictions of temperature
by the Eta and R-MMb5 SL scheme also offer possible explanations as to why winds produced by
configurations with the Eta scheme are higher than those with the R-MM5. Higher land temperatures
during the day should result in higher land-sea temperature differences (as the sea temperature
rises at a relatively lower rate) and thus stronger winds [59]. The Eta SL scheme was reported to
produce relatively higher temperatures (due to its higher heat fluxes and exchange coefficients) than
the R-MMS5 [60] (citing [61,62]). The diurnal plots of the average temperature at 2 m (T2) shown in
Figure 5, which are consistent with those reported by [19] and [60] (citing [62-65]), suggests this to
be the case in the area. In addition, we see from the profiles for both seasons that the MYNN3-M-N
configuration, which often predicted some of the lowest average wind speeds (in both seasons), also
recorded some of the lowest T2s diurnally. However, despite the relatively higher temperatures in the
harmattan season, relatively lower average wind speeds were observed during this season. This is
possibly due to a weakening of the breezes by the northeast winds that blow during the harmattan.

306 306 o MYNN3-MN
—=e— MYNN3-R-N
305 1 305 1 —e— MYNN3-E-N
— —~ —e— UWV-R-N
¥ 304 1 £ 304
N S —e— UWV-EN
| =
o L)
9303 1 303 1
12 12
> >
< 302 4 < 302 N\\\/
301 301
00 06 12 18 00 06 12 18 00
(@) Local Time (HH) (b) Local Time (HH)

Figure 5. Diurnal variation of selected configurations in (a) harmattan season and (b) rainy season.
5. Summary and Conclusions

Though the Mesoscale Atmospheric Simulation System (MASS) NWP model from the AWS
Truewind MesoMap system has been used to assess Ghana’s wind resources in the past, it is a propriety
model. In addition, there was a lack of adequate mast measurements at the time limited verifications
and adjustments of the model for optimum performance over coastal Ghana [66]. The open source
nature and increasing popularity of WRF for similar purposes makes it an attractive alternative for
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future assessments. Predictions of surface winds by WRF are sensitive to model options such as physics,
simulation grid size, and parameterization of processes at the subgrid scale. In this paper, we tested
the sensitivity of wind in coastal Ghana to five planetary boundary layer (PBL) parameterization
schemes (selected based on a preliminary study and other studies [17-21,50,67]), paired with different
compatible surface layer (SL) schemes [31,48]).

It was found that hindcasts from all 10 PBL-SL pairs generally had speed prediction error metrics
within or close to acceptable limits for good performance, as established from other sensitivity studies
(RMSE < 2 m/s, ME < 0.5, CC > 0.7 [18,19,55]). However, they differed in their prediction of the mean
wind power densities (WPD) and cumulative distribution functions for the period, in consistency
and accuracy. Hindcasts with the MYNN3 PBL scheme generally had a relatively better combination
of error metrics, and when combined with the Eta SL scheme, it often gave the best or some of the
best WPD and maximum errors of CDE. Relative to the other SL schemes, the Eta SL scheme tended
to predict relatively higher wind speeds for the same PBL scheme. At lower heights, the UW and
GBM PBL schemes (with the Eta and R-MMS5 SL schemes, respectively) tended to give better mean
WPD errors, but the MYNNB3 with the Eta SL scheme still gave better skill scores and max CDF errors.
The above trends were also largely observed in the two seasons that pertain along the coast of Ghana
with few exceptions. A change in grid resolution was not found to significantly affect the trends in the
relative performance of the options.

Though we were not able to assess the performance of the schemes against different atmospheric
conditions, several of the trends from our results were found to be consistent with what has been
reported by other studies in the literature, based on which we believe our other observations and
conclusions are largely credible. Some of such results from other studies include the following: a
change in SL scheme did not have significant impacts on most of the error metrics [2,22]; the YSU
PBL scheme simulated higher winds than the MYNN3 PBL scheme [2,3,21]; average wind speeds
between sunset and sunrise were overpredicted [3,21]; the Eta SL scheme predicted higher T2s than
the R-MMS5 scheme [60,63]; and no one option was always superior to the others [2,11].

The MYNNB3-E-N configuration (as tested in this study with the GFS FNL) is most consistent
in predicting with relatively better combined wind speed error metrics and errors of CDF, as well
as relatively good mean WPD errors with changing factors (i.e., height, simulation grid box size,
and seasons in coastal Ghana). In addition, when predictions from this configuration (MYNNB3-E-N)
for the study period were compared with monthly average wind speeds for four other locations along
the coast of Ghana estimated from [68], results were largely reasonable; average mean error was
within 0.5 m/s for the locations (see Table A4 in the Appendix A). Based on this we conclude that the
MYNNS3-E-N configuration could be considered suitable for wind hindcasts for resource assessments
in coastal Ghana.
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Abstract

Analysis, reanalysis and Land Use and Land Cover (LULC) datasets serve as sources of initial and boundary
conditions, as well as surface properties data required for simulations in the Weather Research and
Forecasting model (WRF). The accuracy of these datasets is among factors that significantly impact the
prediction of surface winds in WRF. In this study, we examine sensitivity of surface wind and wind energy
potential estimates in an area in coastal Ghana to five analysis and reanalysis datasets, as well as the two
global LUCL datasets currently found in the static datasets of WRF. In contrast to the LULCs tested, model
estimates were significantly impacted by the different analysis or reanalysis datasets. For the same type of
reanalysis datasets, those prepared with higher resolution forecasts combined with more advanced data
assimilation techniques produced better estimates, and vice versa. The Atmosphere—Ocean—Sea Ice—Land
NCEP CFSv2 Reanalysis generally gave higher predictions of wind speeds and the best predictions of wind
energy. However, the JMA JRA-55 Reanalysis data, and the NCEP GFS Analysis data, also had good
impacts on model performance and are recommended as alternatives or complements to the NCEP CFSv2

for wind simulations in the study area.

Keywords:
Weather research and forecasting model (WRF), Wind resource assessment, Analysis and reanalysis, Land

use and land cover



1 Introduction

Assessments of the wind resources, key to commercial development of wind power, have
traditionally being done with data from mast mounted instruments, and in recent times, remote sensors such
as Light Detection and Ranging (LIDAR) and Sound Detection and Ranging (SODAR). However,
owing to the time consuming and the expensive nature of measuring campaigns with these instruments,
Numerical Weather Prediction (NWP) models, such as the Weather Research and Forecasting model (WRF)
model, are now being used to downscale meteorological datasets for the preliminary assessments. In a
process referred to as dynamical downscaling, these models modify initial conditions (from the
meteorological datasets) to predict time varying atmospheric data at each point on a simulation grid, to
generate data at desired spatial and temporal resolutions [1, 2]. The process takes into account the land cover
and topographical properties of the area for which the data is desired, in addition to other things [3, 4]. The
land cover and topographical properties serve as inputs in the calculation of heat and energy fluxes which
affect turbulence in the atmosphere [3]. Turbulence acts as a feedback mechanism in wind circulation [5].
Therefore, in addition to other factors (such as the parameterisation of the processes occurring on the sub-
grid scale and model resolution), the accuracy of the surface properties, and the meteorological (initialisation)
datasets for downscaling, significantly impact the quality of the generated data [5-11]. This paper focuses on
the impact selected meteorological and land cover datasets on the accuracy of wind that is downscaled (wind
hindcasts) using the WRF model.

For wind hindcasts in the WRF model, Analysis and Reanalysis datasets often serve as sources of
initial and boundary conditions. They are produced via data assimilation, a process that uses observations
and model-based forecasts to estimate atmospheric conditions and produce a gridded set of model dependent
variables that are consistent with both the model dynamics and the information from the observations. The
process involves the provision of a forecast of the atmosphere, which is updated in light of observations [2,
12]. Reanalysis datasets are produced with a frozen system (forecast models and data assimilation methods)
that remains unchanged over the temporal coverage (or range) of the dataset. The systems for producing
Analysis datasets on the other hand benefit from model updates and upgrades over time [2, 4, 13-16]. In
addition, unlike Analysis datasets, Reanalysis datasets comprise data from a Retrospective Analysis; the
process of assimilating data for past periods, using a current model and all available data for those periods,
to produce a long-term, model-consistent dataset [12].

Due to differences in the (capabilities of the) forecast models and data assimilation techniques, as
well as the amount and quality of the raw observational data that are used in their production, analysis and
reanalysis datasets tend to vary in quality (accuracy when compared to observations). For instance, based on
the incremental advancement of reanalysis techniques, datasets can be classified as first, second and third
generation datasets; each new generation employing data assimilation techniques that offer improvements
over the previous generation’s techniques [13]. In addition to the data assimilation techniques, the forecast
models, can also have an impact on quality of the datasets. The forecast models, which in the case of global
datasets are often spectral Atmospheric General Circulation Models (AGCMs), are basically NWP models
that are formulated with the spectral method, as opposed to finite difference method used in finite-grid



AGCMs. A key advantage of the spectral method (which might explain its wide use in global forecast
models) is that, it is comparatively less computationally expensive [17]. Differences in the methods and how
they impact model formulation and performance are explained in texts such as [17]. The resolution of
spectral models is governed by a wavenumber of truncation [17]. Higher wavenumbers mean higher
resolutions (and often better datasets as model resolution significantly impact forecasts from NWP models),
but at increased computational cost. In addition, parameterisation techniques (for approximating atmospheric
processes occurring at sub-grid scale or are not fully understood) in these models affects their performance,
and often varies among models. Lastly, the quality of the datasets might also be affected by the raw
observational data that are used in their production. Sources of the observational data include radiosonde,
satellite, buoy, aircraft among others. Changes in observation locations and observation platforms, as well
as periodic data voids, sometimes throughout entire nations or regions for varying reasons, results in an
inherent lack of uniformity in the quality of the raw data available [2, 13, 14]. These factors introduce
unavoidable differences in the quality of initialisation datasets and their impacts on the results of the
downscaling process [2, 13, 17].

In producing wind hindcasts, Planetary Boundary Layer (PBL) parameterisation schemes in the
WRF model need moisture and heat fluxes at the lower levels of the atmosphere. These fluxes are essential
for better simulations of surface winds by NWPs [5]. Surface terrain parameters, such as surface roughness
length, albedo, moisture, and emissivity, among others, serve as inputs in the estimation of these fluxes. They
are calculated by the surface layer parameterization schemes in the WRF model, based on tabulated values
associated with different Land Use And Land Cover (LULC) category datasets [6]. LULC datasets are
prepared by classifying raw satellite data into categories based on the satellite imagery [18] and serve as
sources of surface properties in WRF simulations.

Owing to the different levels of impact on WRF predictions of surface winds for different areas, as
has been realised from several studies on in open Jiterature [4, 6, 8-10, 19-21], and also that analysis and
reanalysis datasets are sometimes “tuned” for different objectives, making their performance dependent on
their intended use [16], a sensitivity analysis of available datasets might be necessary to determine the best
dataset(s) to use for simulations for an application in an area.

Against this background, in this paper, we assess the impact of selected initialisation and LULC
datasets to surface wind speed and energy predictions by WRF, for an area in coastal Ghana. We aim to
identify that might correlate well with accuracy of the hindcasts (when compared to observations) in order
to suggest guidelines for their selection for generating wind hindcasts in the area (and probably the west
African sub-region). In addition, we aim to recommend dataset(s) for generating wind hindcasts with the
WRF model for resource assessments in coastal Ghana. The rest of the paper is organised as follows; Section
2 covers the study area, verification data, selected details of the datasets tested and the experimental design.

Section 3 is on the results and discussions and section 4, the conclusions drawn from the results.

2 Data and Methods
2.1 Study Area and Measured Data
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The study area covers the coastal plains of south east Ghana. The measured wind data for this study was
measured on a mast (location: 5.786 °N, 0.918 °E) used in a wind measurement campaign by the Energy
Commission of Ghana. The data comprises wind speeds measured at heights of 40, 50, and 60 m above
ground level. The area experiences two main seasons in a year; a Harmattan season that is dominated by dry
and dusty desert winds from the North-East, lasting till around February, and a bimodal Rainy season

dominated by Monsoon winds ends around November [22].

2.2 Model Configuration

The Advanced Research WRF (ARW) 3.8.1 is used for this study. Key features of the model include
a Eulerian mass solver, a terrain following vertical coordinate and staggered horizontal grid system. A
detailed description of the model physics, equations and dynamics is available [23]. The model configuration,
summarized in Table 1 is the same as that used in an earlier study in the area [24].

Table 1: Model Configuration
Model Version Advanced Research WRF v3.8.1
Initial and boundary conditions a) NCEP GFS-FNL
b) NCEP CFSv2
c¢) ECWMF ERA-Interim
d) JMA JRA-55
e) NCEP/DOE R2

Topographical data USGS GMTED2010
Land Use data a) USGS with lakes

b) MODIS with lakes
Vertical Resolution 40 vertical levels (automatically set)
Domains dol do2 do3 do4
Horizontal resolution (km) 81 27 9 3
Domain size (grid points) 7477 100 x 103 103 x 103 55 x 55
Parameterisation Schemes: Same as was used by [24]

20°W 10°W 0° 10°E 20°E

Figure 1: Simulation domains.

The two global LULC datasets available in the WRF Static data [25] were tested. These are the
United States Geological Survey (USGS), and the IGBP-Modified Moderate Resolution Imaging

4



Spectroradiometer (MODIS) LULC datasets. The USGS dataset takes its primary inputs from composite
images from the Advanced Very High-Resolution Radiometer (AVHRR) satellite, sourced from April 1992
to March 1993 [7]. It has 24 land cover categories, classified according to the Normalised Difference
Vegetation Index (NDVI) [7]. The MODIS LULC on the other hand is derived from data from the
Terra/Aqua Earth Observation System satellites, and has 20 land cover classes, as defined by the
International Geosphere Biosphere Program (IGBP) [7]. Both LULC datasets were tested in combination
with the special land cover dataset in the WRF model that distinguishes between oceans and inland water
bodies (lakes) [26, 27]. Plots of both LULC categories from both datasets (for simulation domain 2) are
shown in Figure 2. The MODIS LULC plot has been reclassified to USGS according to [7] for easy

comparison.
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Figure 2: Plot of the MODIS (left) and USGS (right) LULC in the Second Domain.

Five Gridded Binary (GRIB) meteorological datasets from the Research Data Archive (RDA) of the
National Centre of Atmospheric Research (NCAR) [28] were tested. These are;
i. The 1 degree NCEP Final Analysis (NCEP GFS-FNL) [29].
ii. The NCEP Climate Forecast System Version 2 (NCEP-CFSv2) [30].
iii. The ECMWF ERA Interim [31].
iv. The Japan Meteorological Agency JRA-55 Reanalysis (JMA JRA-55) [32].
v. The NCEP/DOE R2 [33].

Selected characteristics of the meteorological datasets (as tested) are summarised in Table 2. Other
datasets were not tested because they did not cover the period for which we had observational data for
verification (2013) or have been improved upon by one of the five tested. The latter was the case with the
NCEP/NCAR R1.

Table 2: Selected specifications of initialisation datasets tested [15, 29-38].



Data Type AGCM Model Data Assimilation Resolution tested
Dataset

Resolution Technigue (lon. x lat. x pressure levels)
NCEP GFS-FNL Analysis T574/T190, L64 Hybrid 3DVAR * 1x1x26
NCEP CFSv2 Reanalysis  T126, L64 0.266 hPa top 3DVAR 0.5x0.5x37
ECMWF ERA-I  Reanalysis  T255, L60 0.1 hPa top 4DVAR 0.703 x ~0.702 x 37
JMA JRA-55 Reanalysis T319, L60 0.1 hPa top 4DVAR 1.25x1.25x 37
NCEP/DOE R2  Reanalysis T62, L28 3 hPa top 3DVAR 25x25x18

*as at 2012 [35]

Experimental Design

Ten experiments, each involving two simulations; one each, for the months of February and
September 2013, were conducted. These months were chosen because of their relatively high monthly
average wind speeds in the seasons in the study area. It was hoped that by selecting these months, seasonal
variations of winds could be accounted for in the study. A similar approach has been used in past sensitivity
studies [39, 40]. Possible interactions between LULC and initialisation datasets were explored by using a
different combination of LULC and initialisation dataset in each experiment. Details of the dataset
combinations are presented in Table 3. Initial runs with the IMA JRA-55 dataset were not successful (as a
result of unsuccessful pre-processing of soil data that is needed by the Noah LSM, which was used in the
configuration for this study). Therefore, the JRA-55 dataset was complemented with soil data from the GFS-
FNL dataset for both JRA-55 experiments. Following practices of past studies in the area [24, 41, 42], a spin-
up time of 12 hours was used for each simulation. To save on computational power, the nudging technique
in the WRF model’s Four Dimensional Data Assimilation (FDDA) System was applied in each simulation
with a simulation run time of 30 days as recommended in a previous study in the area [24]. All the
experiments except for the R2 experiments were run with the three inner domains (d02, d03, and d04). Due
to the larger spatial resolution the R2 dataset, domain d01 was used in addition to the inner 3 in the R2

experiments.

Table 3: Experimental Design

No.  Experiment Name Initialisation Data LULC Data Domains Used

1 USGS_CFSv2 NCEP CFSv2 USGS d02, do3, do4

2 MODIS_CFSv2 NCEP CFSv2 MODIS d02, d03, do4

3 USGS_FNL NCEP GFS FNL USGS d02, d03, do4

4 MODIS_FNL NCEP GFS FNL MODIS d02, d03, do4

5 USGS_ERA-I ECWMF ERA-Interim USGS d02, d03, do4

6 MODIS_ERA-I ECWMF ERA-Interim MODIS d02, d03, do4

7 USGS_JRA-55 JMA JRA-55 USGS d02, d03, do4

8 MODIS_JRA-55 JMA JRA-55 MODIS d02, d03, do4

9 USGS_R2 NCEP/DOE R2 USGS d01, d02, d03, do4
10 MODIS_R2 NCEP/DOE R2 MODIS d01, d02, d03, do4

2.5 Evaluation

Evaluation of predictions followed the same procedures as has been used in previous studies in the area
[41]. Predictions were assessed with the Root Mean Square Error (RMSE), Mean Error (ME), Standard
Deviation of the Error (STDE) and a Correlation Coefficient (CC) which were combined into a Skill Score
as was done in previous studies [24]. Calculation of each metric followed the procedures used in previous



studies in the study area [24]. The error metrics were also compared to performance benchmarks as had been
used in a previous study in the study area.

The Weibull cumulative distributions and mean wind power densities estimated with data from the
experiments and observations were also compared as has been done in previous studies. Weibull parameters,
and other metrics of comparison (Maximum absolute Cumulative Density Function Error, and Mean Wind
Power Density Error as explained in [41]) were calculated with the same formulations from [41]. However,
in this study, the Empirical, and the Power Density methods were used since they compared closely in an

evaluation with observational covering the study period. Formulations for the two methods were from [43].

3. Results and Discussion

Averages of observed and downscaled wind speeds, and evaluation metrics at 60 m for the study
period are presented in Table 4. It can be seen from the Table that, even though the MODIS LULC often
gave better metrics, its values did not differ greatly from those of the USGS LULC, irrespective of
meteorological dataset it was paired with. However, average wind speeds and error metrics differed
significantly for the different meteorological datasets. Most of the meteorological datasets met most of the
RMSE and CC benchmarks for performance (i.e. RMSE < m/s, CC > 0.7). However, the CC of the CFSv2
was less than the benchmark, and all the metrics of the NCPE/DOE R2 did not meet any of the benchmarks.
None of the datasets met the benchmark for ME. However, the IMA JRA-55 had the relatively least absolute
ME. While the CC of NCEP GFS FNL was best. JMA JRA-55 had the best combination of metrics followed
by the NCEP GFS FNL, then the ECWMF ERA-I. The NCEP/DOE R2 had the relatively worst combination
of metrics.

Table 4: Average predictions and Statistical Metrics at 60 m for the entire study period.

Experiment Average Wind Speeds RMSE STDE cc ME Speed Prediction
(m/s) (m/s) (mfs) (m/s) Skill Score
Observation 6.89
USGS_FNL 5.94 1.52 1.19 0.8 0.9 34
MODIS_FNL 6.00 1.49 1.20 0.8 -0.9 35
USGS_CFSv2 6.10 1.65 1.45 0.6 -0.8 2.5
MODIS_CFSv2 6.11 1.64 1.45 0.6 -0.8 2.5
USGS_ERA-I 5.74 1.77 1.34 0.7 -1.2 2.3
MODIS_ERA-I 5.82 1.68 1.29 0.7 -1.1 2.7
USGS_JRA-55 6.22 1.46 1.30 0.7 -0.7 3.5
MODIS_JRA-55 6.26 1.43 1.28 0.7 0.6 3.7
USGS_R2 5.54 2.18 1.71 0.5 -1.4 0.1
MODIS R2 5.65 2.15 1.76 0.5 -1.2 0.2

Similar trends were observed on the Mean WPD, as well as the Mean WPD and Max CDF Errors as
well, as can be seen in Table 5. Though the MODIS LULC generally had lower errors, it was often not more
than 2 points better than the USGS LULC. The JMA JRA-55 again had the relatively best predictions of
Mean WPD, Max CDF Error while the NCEP/DOE R2 had the relatively worst. However, these estimates
for the CFSv2 were better than those for the NCEP-GFS FNL and ERA-I datasets. These trends were not

affected by the methods we used in computing the Weibull parameters. However, errors were slightly smaller



when the Power Density Method was used. Significant differences were not observed in the above trends in
similar analyses at 50 m and 40 m (see Tables in appendix). A repeat of the analysis with data from the 9
km resolution domain did not change trends observed in the earlier analysis. Error margins in the two LUCL
datasets were greater. But the MODIS LULC still had better impacts than the USGS LULC.

Table 5: Weibull parameters, Mean WPD Error, and Max CDF Error calculated with Empirical and Power
Density Methods.

Empirical Method Power Density Method
Mean WPD Mean
Mean Max Mean Max
¢k wep E&Sr icoEEror | € K wep WP'(DO Ag"or |CDF Error|

Observation 76 42 230 7.6 4.1 233
USGS_FNL 6.5 4.7 143 -38.1 0.25 6.5 4.2 148 -36.5 0.22
MODIS_FNL 6.6 48 147 -36.3 0.23 6.6 42 152 -34.6 0.21
USGS_CFSv2 6.7 4.7 154 -33.1 0.21 6.7 4.2 160 -31.3 0.18
MODIS_CFSv2 6.7 49 153 -33.4 0.22 6.7 42 160 -31.2 0.18
USGS_ERA-I 63 42 133 42.3 0.28 63 4.1 134 42.3 0.27
MODIS_ERA-I 64 4.3 138 -40.1 0.26 64 4.1 140 -40.0 0.25
USGS_JRA-55 6.9 4.1 171 -25.9 0.15 69 4.0 172 -26.2 0.15
MODIS_JRA-55 6.9 42 173 249 0.15 69 4.0 175 -25.1 0.14
USGS_R2 62 35 128 -44.5 0.29 6.1 39 123 -47.2 0.30
MODIS_R2 63 35 136 -41.0 0.27 6.2 39 131 -44.0 0.28

4. Discussion

The quality downscaled data depends on a combination of several factors such as the quality of the
input datasets (which are in turn affected by factors discussed earlier), the capabilities of the downscaling
model itself which also depends on several other factors. It will be difficult to satisfactorily explain trends in
our results without considering all these factors and how they interact with each other to affect the final
downscaled data. Nonetheless, some of the trends in the comparisons of the initialisation datasets can be
explained to some extent.

The meteorological datasets can be classified according to some key characteristics, which include;
the type of dataset (whether analysis or reanalysis), the data assimilation technique that was used in the
(analysis/reanalysis) process, the type of AGCM and the resolution at which it produced the forecasts for the
(analysis/reanalysis) process, and the final resolution of the datasets from this process. These characteristics
are summarised for each meteorological dataset tested, in Table 2. In terms of data assimilation techniques,
the ECMWF ERA-I and JMA JRA-55 can be classified as third-generation Reanalyses, with the NCEP R2,
a first generation Reanalysis, as explained by [13]. The NCEP GFS-FNL is an analysis dataset, and the NCEP
CFSv2 differs from all the other datasets tested here, in that it is a Coupled Reanalysis, as it utilises forecasts
from a Coupled Forecast Model (a coupled atmosphere—ocean—sea ice—land model to better account for
ocean interactions) in its forecasts [13, 44].

The mathematical concepts and basis for various approaches to data assimilation (which have
evolved over the years), are described in texts such as [2, 45]. A major improvement to the data assimilation
process was achieved with the variational 3DVAR method which enabled the use of worldwide observations
[2, 46]. However, limitations of 3DVAR data assimilation include its inability to use asynoptic data (data
measured at times either than the synoptic hours of 00, 06, 12 and 18 UTC) and account for the time-evolution

of the errors associated with data [45, 47, 48]. The 4ADVAR method accounts for this to some extent with a



linear forecast model to account for the evolution of perturbations in the atmospheric state, representing and
calculating the time-evolution of errors from the forecast and observational data, albeit at extra computational
cost [45, 48, 49]. The Hybrid (Variational-Ensemble) data assimilation technique combines the variational
data assimilation with another technique; the Ensemble Kalman Filter (EnKF) technique. The Ensemble
Kalman Filter (EnKF) technique (like the 4DVAR,) accounts for time-evolution errors by deriving error
estimates from nonlinear short-range forecasts from an ensemble prediction system (EPS) [48, 49]. The
Hybrid data assimilation technique has been found to sometimes offer comparatively better performance
over the pure variational and pure ensemble techniques in both 3DVAR and 4DVAR modes [49, 50].

Generally, better data assimilation techniques (used for the latter generation datasets) and higher
resolutions of the forecasts by the AGCM models, should produce better analysis/reanalysis products
(datasets) [13, 17]. Our results suggest that, the relative performances are probably significantly impacted
by the forecast resolutions and data assimilation techniques employed in their production.

This will explain the relative worse quality of the of the R2 Reanalysis as compared to all the other
datasets, as they both use AGCM forecasts of relatively better resolution and relatively better data
assimilation techniques in their reanalysis process (See Table 2). The NCEP GFS-FNL’s forecast model (the
Global Forecast System (GFS)) and data assimilation systems (the Global Data Assimilation System
(GDAVY)) have, and continue to benefit from updates since its introduction [35], hence it is an analysis dataset.
In May 2012, the GDAS started employing the Hybrid 3D-VAR technique and the GFS resolution was
T574/T190L64 (depending on forecast time) [35]. As has been noted by [49, 50], the Hybrid 3DVAR
technigue sometimes produces better results than more sophisticated assimilation techniques. This, with its
higher resolution model forecasts, is probably responsible to some extent, for its relatively better prediction
metrics. Atmospheric forecast models use somewhat simplified physics representations compared with the
physics representations of Coupled Forecast Models[2]. Giving that the study area is near the coast with
possible ocean influences on local winds (land and sea breezes), the possible influence of the coupled model
forecasts (even though are of a relatively coarse resolution) cannot be ruled out on the quality of the CFSv2
dataset.

The results did not suggest a trend in the impact of the spatial resolution of the produced datasets (as
downloaded) on the quality of the data downscaled from them, as the JIMA-55 is of a relatively lower (worse)

resolution than the CFSv2, ERA-1 and GFS-FNL datasets, yet it seems to outperform them.

4 Summary and Conclusion

Land Use and Land Cover (LULC) and meteorological datasets have been reported to have varying
impacts on the quality of dynamically downscaled wind data by the WRF model worldwide [4, 6, 8-10, 19-
21]. Against this background, this study sought to recommend LULC and GriB formatted meteorological
datasets data from the options available at [25] and [28] respectively on wind speeds downscaled with the
WRF model for a coastal area in Ghana. The study also sought to identify characteristics of the

meteorological datasets that often correlated well with good hindcasts to inform choices in future



downscaling exercises or studies Two LULC datasets and five meteorological datasets were tested in 10
dynamical downscaling experiments.

Results confirm that, the accuracy of the downscaled data depends on the meteorological datasets
that are downscaled [5, 9, 11]. In addition, results also confirm that when newer generation reanalysis
meteorological datasets are downscaled, the end products are better (in terms of all the evaluation criteria
considered in this study) than older generation ones [13, 21]. Among the meteorological datasets tested, the
JMA JRA-55 gave the best combination of error metrics, Mean Wind Power Density and Cumulative Density
Function error. Though the CFSv2 gave the next best WPD and Cumulative Density Errors, its combination
of wind speed error metrics was not as good as that of the GFS FNL dataset. In addition, the GFS FNL had
the relatively best CC of all the datasets tested. The first generation NCEP R2 reanalysis was the worst of
the meteorological datasets tested. On the LULC datasets, results indicate the MODIS LULC gave the
relatively better combination of error metrics as well as Mean WPD and CDF Errors when compared to the
USGS LULC, though the difference between the metrics of the two were not so different. Trends were not
significantly affected by a change in the grid size or the method of estimating the Weibull parameters for
Power Density estimations.

From our results we conclude that tests of different meteorological datasets are necessary to
determine the best one to downscale for wind data for different areas and periods. For areas in coastal Ghana
(and perhaps the west African sub region), where the meteorological datasets are of the same type, the
resolution of the global model forecasts and the data assimilation techniques used in their preparation can be
used as criteria select candidate options for testing. Based on the current results, we conclude that the IMA
JRA-55 probably gives the best downscaled wind data for this area in coastal Ghana. However, all the other
meteorological datasets except the NCEP R2 are worth considering in future tests and downscaling activities.
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