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SUMMARY 

Mastitis is an inflammation of the mammary gland that can result in an elevated 

somatic cell count (SCC). It is mainly caused by intramammary infections (IMI). Cows 

with mastitis can have clinical signs (clinical mastitis) or no clinical signs (subclinical 

mastitis). From an economic perspective, mastitis is one of the most important 

diseases in dairy production, and most of the economic losses are due to reduced milk 

production following subclinical mastitis. Because subclinical IMI are the commonest 

cause of subclinical mastitis, detection and management of subclinical IMI are of 

considerable importance for dairy production. 

The detection of subclinical IMI using laboratory analysis of milk samples is, however, 

both time consuming and costly. Therefore, subclinical IMI are normally detected using 

SCC as part of a dairy-herd improvement program (DHI). The challenge with this 

approach is, first, the moderate association between SCC and subclinical IMI, and, 

second, that the time lag between readings of SCC based on DHI samples is often too 

long for the prediction of future episodes of subclinical IMI. More recently, various on-

farm sensor systems have been developed to detect IMI. These provide data 

registrations that, to varying extents, are linked to the status of the animal. Therefore, 

algorithms using such sensor data can be seen as diagnostic tests, where the ability to 

classify disease status correctly based on sensor data represents the diagnostic test 

properties of the sensor system. A major challenge with these systems is that the 

diagnostic test properties for detection of subclinical IMI are either only moderately 

accurate or not known. This, in turn, hampers implementation of such systems for 

decision support. 

Therefore, the main objective of this thesis was to evaluate the use of SCC data from 

online cell count (OCC) values obtained from each milking of cows in an automatic 

milking system (AMS). Specifically, we wanted both to evaluate the detection of cows 

with subclinical IMI using OCC values, and to use the OCC values to predict the future 

prevalence of subclinical IMI at the herd level. 

We expected considerable variation in OCC values from milking to milking. Therefore, 

we used the elevated mastitis risk (EMR) index as a diagnostic test to evaluate the 

association of the OCC values with subclinical IMI (Paper I). The EMR index is the 
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output of an algorithm that preprocesses and parameterizes the raw OCC values into 

an EMR indicator, ranging from 0 - 1, where higher EMR values indicate an elevated 

risk of mastitis. Our findings showed that the diagnostic test properties of the EMR 

were too low to be used as the sole method of detection of subclinical IMI in individual 

cows during lactation. It may, however, be useful for detection of cows with subclinical 

IMI at drying off (Paper I). 

In Paper II, we investigated the variation in OCC values from cows with and without 

subclinical IMI and found that only 15% of the variation in OCC values could be 

described by subclinical IMI and by other fixed effects like lactation stage, parity, milk 

yield, OCC in residual milk from the previous milking, inter-quarter difference between 

the highest and lowest conductivity, genetic constitution, milking interval and season. 

However, the fixed and random effects (cow and lactation within cow) together 

described 55% of the milking-to-milking variability of OCC. This means that 45 % of 

the variation in OCC values is not explained. Therefore, moderate diagnostic test 

properties should be expected when using EMR as a diagnostic test for detection of 

subclinical IMI in individual cows during lactation.   

In order to predict the future prevalence of subclinical IMI at the herd level, we 

developed a Susceptible-Infectious-Susceptible transmission model for IMI based on 

bacteriological culture results of quarter milk samples (Paper III). Simulations, based 

on parameters for transmission and cure rate, can be used to generate predictions for 

any given time. We used Corynebacterium spp., which are bacteria known to cause 

persistent subclinical IMI, as the infectious pathogen to establish this model. In Paper 

IV, this transmission model was applied to the EMR, and we demonstrated that the 

transmission model can also be used to predict future prevalence of subclinical IMI in a 

herd, using the EMR as a proxy for infection. Although the detection of subclinical IMI 

using the EMR is not optimal for individual cows, predictions of herd-level prevalence 

will be relatively accurate and consistent. Changes in the parameters of the EMR in 

such dynamic models, will alter the predicted subclinical IMI prevalence. This way, 

simulations can be used to determine future herd level status of udder health. Such 

information can be implemented in a decision-support tool, and preventive actions can 

be taken to avoid an increase in the future prevalence of subclinical IMI. 
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The research conducted in this PhD has contributed to our understanding of the 

association between OCC values and subclinical IMI, using the EMR as a diagnostic test. 

Furthermore, we have shown that the EMR may be used as a proxy for infection in 

transmission modeling of subclinical IMI at the herd level. Despite suboptimal 

diagnostic test properties of the EMR, a sensor system based on the EMR can provide 

useful information in an udder-health management decision-support tool. The 

transmission model can be further extended to include the effects of different 

preventive actions to reduce the transmission rate of subclinical IMI in the herd. In 

order to do this, we need more knowledge of parameterization of preventive actions 

and the quantification of their effect on transmission dynamics.  
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SAMANDRAG 

Mastitt er ein betennelse i ein eller fleire jurkjertlar som kan gi auka innhald av 

kjernehaldige celler (SCC) i mjølka. Den vanlegaste grunnen til mastitt er 

intramammære infeksjonar (IMI). Kyr med mastitt kan visa kliniske teikn (klinisk 

mastitt) eller ingen kliniske teikn (subklinisk mastitt). Mastitt er ein av dei viktigaste 

sjukdommane i mjølkeproduksjonen over heile verda. Den gir dårlegare dyrevelferd, 

redusert produksjon og økonomiske tap. Storparten av det økonomiske tapet kjem 

som følgje av redusert mjølkeproduksjon frå kyr med subklinisk mastitt. Sidan 

subklinisk IMI er den vanlegaste grunnen til subklinisk masttitt, er det viktig for 

mjølkekvalitet, dyrevelferd og bondens økonomi at subklinisk IMI vert oppdaga og 

handtert så raskt og så godt det lar seg gjera.  

Det er ei utfordring at laboratorieundersøking av mjølkeprøver for å oppdaga 

subklinisk IMI er både tidkrevjande og kostbart. Difor vert subklinisk IMI i dag 

vanlegvis oppdaga ved analyse av SCC frå prøver tekne i samband med mjølkeveging. 

Utfordringa med denne tilnærminga, er at det er moderat samanheng mellom SCC og 

subklinisk IMI, og at tida mellom analyse av SCC frå prøver tekne i samband med 

mjølkeveging er for lang til å predikera framtidige episodar av IMI. Dei siste åra har det 

vorte utvikla fleire sensorar til bruk på garden for å oppdaga IMI. Slike sensorsystem 

leverer data som, i varierande grad, er knytta til dyrets status. Difor kan ein sjå på 

algoritmer, som bruker slike data, som diagnostiske testar, der evna til å klassifisera 

eit dyr sin sjukdomsstatus gir dei diagnostiske testeigenskapane til sensorsystemet. 

Diverre har desse systema anten moderate eller ukjente diagnostiske testeigenskaper 

for å oppdaga subklinisk IMI, noko som gjer at systema har moderat verdi som 

beslutningsstøtte for bonden. 

Målet med denne avhandlinga var difor å få meir kunnskap om korleis me kan bruka 

data frå celletalsmålaren i automatiske mjølkingssystem (AMS). Denne gir eit celletal 

(OCC) frå kvar mjølking og me ville sjå om dette kan brukast til å oppdaga kyr med 

subklinisk IMI og til å predikera framtidig prevalens av IMI på buskapsnivå.  

Først undersøkte me korleis endringar i OCC over tid heng saman med subklinisk IMI 

(Artikkel I). Til dette brukte me ein algoritme som omarbeider og parameteriserer 

data til ein «Elevated Mastitis Risk» (EMR) indeks. Dette er ein indikator for auka 
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mastittrisiko som går frå 0 til 1, der stigande verdiar indikerer auka risiko for mastitt. 

Våre funn viste at EMR har for dårlege diagnostiske testeigenskapar til å kunne 

brukast som einaste rutine for å oppdaga individuelle kyr med subklinisk IMI i 

laktasjon. Den kan likevel brukast til å oppdaga kyr med subklinisk IMI før avsining.  

I Artikkel II såg me på variasjonen i OCC hjå kyr med og utan subklinisk IMI. Då fann 

me at berre 15% av variasjonen i OCC kunne forklarast med subklinisk IMI og andre 

faste variablar som laktasjonsstadium, paritet, yting, OCC i restmjølk frå førre 

mjølking, skilnad mellom høgaste og lågaste leiingsevne mellom kjertlar, genetisk linje, 

mjølkingsintervall og sesong. Til saman forklarte dei faste og tilfeldige variablane (ku 

og laktasjon innan ku) 55 % av variasjonen i OCC frå mjølking til mjølking. Dette tyder 

at 45 % av variasjonen i OCC ikkje er forklart. Difor må ein forventa moderate 

diagnostiske testeigenskapar ved bruk av EMR til å oppdaga subklinisk IMI hjå 

individuelle kyr i laktasjon. 

Me laga ein «Suscpetible-Infectious-Susceptible»-modell av transmisjonsdynamikken 

for subklinisk IMI for å predikera framtidig prevalens av subklinisk mastitt på 

buskapsnivå. Denne vart utvikla på dyrkingsresultat frå kjertelmjølkeprøver (Artikkel 

III), og me brukte Corynebacterium spp. som infeksiøst agens i denne modellen. Dette 

er bakteriar som er kjent for å gi persistent subklinisk IMI. I Artikkel IV vart denne 

transmisjonmodellen brukt på EMR, og me viste at EMR kan brukast i modellen til å 

predikera framtidig prevalens av subklinisk IMI i ein buskap. Tanken bak dette er at 

sjølv om statusen for kvar enkelt ku er upresis, så vil dette jamna seg ut i buskapen og 

antatt framtidig prevalens av IMI vil difor vera nokolunde rett. Ei endring i 

prediksjonen av framtidig IMI-prevalens kan difor tyda på ei kommande endring i 

jurhelsa i buskapen. Denne informasjonen kan brukast i verktøy for beslutningsstøtte 

til bonden, slik at førebyggande tiltak kan settast inn tidleg for å unngå ei framtidig 

auke i prevalensen av subklinisk IMI. 

Samla sett har forskinga i denne avhandlinga bidrege til vår forståing av samanhengen 

mellom OCC og subklinisk IMI, med EMR som ein diagnostisk test. Vidare har me vist at 

EMR kan brukast i transmisjonsmodellering av subklinisk IMI på buskapsnivå. Eit 

sensorsystem basert på OCC kan gi verdifull informasjon til bruk i styring av jurhelsa, 

sjølv om dei diagnostiske testeigenskapane er suboptimale. Transmisjonsmodellen kan 
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utvidast til å ta inn effekt av ulike førebyggande tiltak for å redusera overføringa av 

subklinisk IMI i buskapen. Men for å gjera dette er det nødvendig å studera effekten av 

aktuelle tiltak og bruka desse parameterane når transmisjonsdynamikken skal 

modellerast. 
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INTRODUCTION 

Background 

Dairy farming provides nutritional, social, and economic benefits to a large proportion of 

the world’s population and, as such, is a vital component of the global food system (IDF, 

2018). In Norway, the dairy industry is important for both food production and the gross 

domestic product, contributing to over 25,000 jobs throughout the country and a wealth 

creation of 19.5 billion Norwegian kroner (NOK) (Samfunnsøkonomisk analyse AS, 2017). 

In 2018, the average dairy-herd size in Norway was 28 cows (TINE Rådgiving, 2019), and, 

although the majority of cows are still milked in either tie-stalls or milking parlors, the 

number of farms with automatic milking systems (AMS) is increasing (Figure 1). However, 

the number of AMS per farm is low in Norway (1.1) compared with Denmark (2.9) and the 

overall average of 1.6 AMS per farm in the Nordic countries (Sigurdsson et al., 2019). In 

2018, 45% of cows in Norway were milked in an AMS and they produced 48% of milk 

delivered to the dairies (TINE Rådgiving, 2019). Therefore, Norway may be viewed as a 

“laboratory” for research on AMS, including testing auxiliary technology and new 

approaches to dairy production.  

An AMS performs the entire process of milking the cows, and thus the manual labor 

associated with the milking process is largely reduced to maintenance of the system and 

follow-up of cows that either do not show up for milking or are registered with failed 

milking attempts. Although this increases labor efficiency, one disadvantage might be that 

contact between the farmer and the animals during the milking process is considerably 

reduced. This is especially challenging regarding the detection of sick animals and abnormal 

milk. Therefore, AMS should include technologies for rapid and accurate detection of sick 

cows. 

From the AMS, we are able to obtain even more data than ever before. Instead of 

periodically sending milk samples to the laboratory for different analyses, sensors can 

inform us about the various milk components at every milking. This provides new 

possibilities for monitoring an individual animal, and also has the potential to result in 

improvements in herd-health management. However, in order to achieve this, there are some 

obstacles that must be overcome. While the amount of data increases substantially in AMS, 

it remains a challenge to extract the relevant information and to use it to provide decision 
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support for the farmer. Therefore, information from Dairy Herd Improvement (DHI) 

programs are still commonly used for herd-health management even when AMS is used. 

These DHI programs are based on analyzing composite milk samples from lactating cows, 

usually on a monthly or bimonthly basis. The DHI results are then used to determine the 

current status and historical development at both the cow level and the herd level. If 

applicable, the information can be used to change standard operating procedures (SOP) in 

order to achieve a desired improvement or to reach a future goal. While this is a proven and 

effective way of managing herd health, progress may be slow. Furthermore, the changes in 

SOP may not always address the cause of the herd-health challenges. An example of this 

could be that a revised SOP emphasizes checking intramammary infection (IMI) status and 

rapid treatment of infected cows to reduce the pressure of infection in the herd. Although 

this might be a successful approach for limiting the prevalence of IMI, it does not solve the 

problem should the underlying cause for new infections be predominantly associated with 

factors such as poor hygiene in the lactation pen or with animal traffic to and from the 

lactation pen. Therefore, prediction of future developments and establishing decision-

support systems based on new sensors and new algorithms have the potential to improve 

herd-health management substantially. 
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Figure 1. Number of herds with AMS in the Nordic countries by year. Figure from The 

Nordic Dairy Associations’ Committee for Milk Quality Issues. 

Mastitis and intramammary infection 

Mastitis is, economically, one of the most important diseases in dairy production 

(Halasa et al., 2007; Hogeveen et al., 2011). It is an inflammation of the mammary 

gland, and can be clinical or subclinical. Whereas clinical mastitis is an udder 

inflammation that is characterized by visible abnormalities in the milk and or udder 

(IDF, 2011), subclinical mastitis is an inflammation of the mammary gland that 

requires a diagnostic test for detection. Milk somatic cell count (SCC) is routinely used 

for detection of subclinical mastitis, with a diagnostic cut-off of 200,000 cells/mL at the 

cow level (IDF, 2011).  

Mastitis is the most common disease in Norwegian dairy production. In 2018, there 

were 18 veterinary treatments for mastitis per 100 cow-years in Norway (TINE 

Rådgiving, 2019). Treatment of mastitis frequently involves antimicrobial therapy, and 

therefore mastitis contributes to a large proportion of antimicrobial use in Norwegian 

dairy production. This is a challenge, as antimicrobial resistance (AMR) can occur 

following antimicrobial treatment. However, prudent use can reduce the development 
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of AMR (Abdi et al., 2018). Therefore, in addition to improving animal welfare and 

reducing economic losses, the prevention of mastitis can also contribute to less use of 

antimicrobials and reduced development of AMR.  

Mastitis is almost always caused by a bacterial IMI (Hogan et al., 2016), which is an 

infection occurring in the secretory tissue or the ducts and tubules of the mammary 

gland, or all of the above (IDF, 2011). Different bacteria can cause IMI (Dohoo et al., 

2011), and IMI have received considerable focus in research on udder-health 

management (Ruegg, 2017). Following an infection, the immune system of the cow 

mounts a response to this infection. The purpose of the response is to clear the 

infection, but it often also changes the milk composition and reduces milk production. 

The severity and duration of these changes will be dependent on several factors, 

including the causative pathogen, and both the genetic composition and/or 

physiological status of the cow (Nash et al., 2002; Rivas et al., 2013). Figure 2 shows 

the development of IMI and subsequent mastitis.  

An IMI is commonly diagnosed by microbiological culture of aseptically obtained milk 

samples (IDF, 2011). The definition of IMI is not straightforward. Zadoks et al. (2002) 

and Reksen et al. (2012) used a combination of number of colony forming units 

(cfu)/mL and duration of persistency for the definition of cases of IMI in their studies 

on transmission of Staphylococcus aureus and non-aureus staphylococci, respectively. 

In these studies, a cow was considered to be harboring an IMI when ≥ 1000 cfu/mL of 

the pathogen were cultured from a single milk sample, or when ≥ 500 cfu/mL of the 

pathogen were cultured from two out of three consecutive milk samples, or when ≥ 

100 cfu/mL were cultured from three consecutive milk samples, or when ≥ 100 

cfu/mL were cultured from a clinical sample. The advantage of this approach is that 

cows that are defined as infected (harboring an infection) are likely to be truly 

infected. However, with sampling intervals of 3 (Zadoks et al., 2002) and 4 (Reksen et 

al., 2012) weeks, some infections are likely to be missed with this approach. In 

contrast, Dohoo et al. (2011) argued that a single sample is sufficient for diagnosing an 

IMI, while still providing the opportunity for an adaptation of the cfu/ml thresholds for 

diagnosing an IMI depending on the intended use of the information. Other studies 

have used the SCC, alone or in combination with clinical signs, as determinants in the 

definition of IMI status. In a review article, Schukken et al. (2003) argued that SCC in 
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composite milk can be used as a proxy for IMI status, and used 200,000 cells/mL as the 

threshold. Using 200,000 cells/mL as the threshold, Dufour and Dohoo (2013) found 

that quarter level SCC is necessary for computing and monitoring the incidence of IMI 

during lactation. The advantage of using bacteriological culture results to define IMI, is 

that a specific pathogen can be isolated and considered in association with changes in 

milk composition. Knowledge of the specific causative pathogen may be relevant for 

selecting the most appropriate management actions that are known to be effective at 

reducing IMI caused by this pathogen (Whist et al., 2007). This knowledge can also be 

used to improve the herd SOP for udder-health management (Østerås and Sølverød, 

2009). However, due to the costs associated with sampling and bacteriological analysis 

of the milk samples, often a considerable period of time elapses between milk 

sampling events. Therefore, there is some uncertainty concerned with the IMI status of 

cows in the period between the two samples. This is particularly challenging for 

defining the IMI status of cows that have either acquired a new IMI or have recovered 

from an existing IMI. Zadoks et al. (2002) addressed this challenge by using a mid-

point estimation approach, in which they argued that a new IMI or recovery from a 

previous IMI will, on average, occur mid-way between the two sampling events. 
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Figure 2. Development of mastitis following intramammary infection. Figure from 

Hogan et al. (2016). (A) A mastitis pathogen enters the udder via the teat canal and 

teat cistern. (B) When the mastitis pathogen gains access to the small ducts and 

glandular tissue, it can potentially affect the alveolar cells. (C) Toxins produced by the 

mastitis pathogen (small arrows) have the potential to harm or kill the alveolar cells, 

which, in turn, release inflammatory substances that increase blood-vessel 

permeability (larger arrows). (D) The increased blood-vessel permeability allows 

influx of leukocytes from the blood and into the alveolus, where they attempt to 

remove the mastitis pathogen from the udder. This recruitment of leukocytes into 

infected alveoli is the main cause of increased SCC in milk from cows with IMI. 
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An important aspect of IMI is the potential for transmission of an infection from 

infected cows to susceptible cows. This, combined with the fact that much of the 

economic loss from mastitis is due to reduced milk production following subclinical 

mastitis (Hogan et al., 2016), makes detection and management of subclinical IMI an 

important task in dairy production.  

Milk somatic cell counts and udder-health management 

Somatic cells are normally present in low concentrations in milk from uninfected 

mammary glands, and this is usually below 100,000 cells/mL in dairy cows (Leitner et 

al., 2012; Nyman et al., 2014). Following a challenge to the udder, there is recruitment 

of inflammatory cells to the mammary gland and this rapidly increases the SCC in milk 

(Figure 2) (Persson and Sandgren, 1992). The most common cause of elevated SCC in 

milk is IMI. However, in a previous study, Nyman et al. (2014) found that the IMI status 

explained only 24% of the SCC. This is mainly because the SCC can be affected due to 

reasons other than IMI, including other systemic diseases, stage of lactation, stress, 

trauma, previous IMI, milking interval, day-to-day variation, and diurnal variation 

(IDF, 2013). When an infected cow recovers from the infection, the SCC usually return 

to normal levels within 21 days (Pyörälä, 1988). However, the duration of elevated SCC 

following an IMI is influenced by, among other things, genetic constitution and the 

causative mastitis pathogen (Nash et al., 2002). In cases where the cow does not 

recover from a subclinical IMI, the SCC can remain elevated for a prolonged period. 

The elevation of inflammatory somatic cells during subclinical IMI is thus the basis for 

using SCC as an indicator of infection status (Rivas et al., 2013). 
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The SCC obtained through DHI programs are widely used to diagnose subclinical IMI (IDF, 

2011), and they have been evaluated and found to be a valuable component in udder-health 

monitoring programs (Schukken et al., 2003). Udder-health management based on SCC can 

be seen as part of a health-management cycle, where farm-specific goals are set, and SCC 

are used to assess current status relative to these goals. When goals are not met, the farmer 

can take actions to improve progress towards achieving them (Kelton, 2006). This process 

can be illustrated with a Deming circle (Figure 3).

 

Figure 3. The Deming circle. The farm has a plan to manage udder health (“Plan”). This 

plan is executed (“Do”), and progress is monitored (“Check”). If deviations occur, further 

action is taken to improve progress in order to reach the goals (“Act”). These additional 

actions should be evaluated for possible inclusion into an updated udder-health management 

plan (“Plan”).  

Research on mastitis has shown that prevention of new cases of mastitis is particularly 

effective for management of udder health (Ruegg, 2017). It is therefore a challenge that the 

current approach of using historical information from DHI programs (Østerås and Sølverød, 

2009) mostly allows for only slow improvements that sometimes result in opportunities 

being missed for preventing new cases of subclinical IMI. With the introduction of on-farm 

sensors, we may progress to real-time surveillance and predictions of future development. 

This may allow us to take early preventive actions and thereby achieve improved strategies 

for avoidance of new cases of subclinical IMI and other undesirable events in the future.  

Act Plan

DoCheck
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Sensor systems 

Sensor systems for udder-health management provide data registrations, which, to a 

varying extent, are linked to the status of the animal. Therefore, algorithms using such 

sensor data can be seen as diagnostic tests, where the ability to classify the disease 

status correctly represents the diagnostic test properties of the sensor system (Dohoo 

et al., 2009). The basic principles for sensor systems in dairy production are shown in 

Figure 4. The idea is that algorithms can use sensor data to detect and provide alerts 

about deviations that are predictive of a specific disease or a defined status. This 

information is then used, alone or together with a SOP, in a decision-support model 

intended to assist the farmer in making appropriate management decisions. An 

optimal sensor system yields only true positive and true negative results. In such a 

system, the sensitivity and specificity would both be 100%. However, such perfection 

is never the case, and the information extracted from sensor data is therefore an 

inherently flawed proxy for an individual cow’s biological status. As a result, the sensor 

system uses both true and false test results as the basis for the sensor-system alerts. 

An example of a false-negative test result could be that the test classifies a cow as 

healthy, whereas the cow actually has a subclinical IMI. A false-positive test result 

could be when the test classifies a cow as infected, whereas in reality the cow has no 

subclinical IMI. As the current udder-health sensor systems measure a cow’s response 

to the infection, rather than the infection itself, the diagnostic test properties are likely 

to be imperfect. In addition, there is considerable biological variation within the cow 

population regarding the level and duration of the response in milk composition 

following an infection (Nash et al., 2002; Rivas et al., 2013).  
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Figure 4. Basic principles of sensor systems. The solid lines signify direct pathways of 

data into the alert algorithm and through to the decision. The dotted lines signify 

potential interaction between sensors and possible data input not only to the alert 

algorithm, but also to the decision support model. Figure from Henk Hogeveen, 

adapted from Rutten et al. (2013).  

In everyday use, farmers with AMS on their farms prefer sensor systems with high 

specificity rather than high sensitivity (Claycomb et al., 2009). This is mainly because a 

large number of false sensor-system alerts is of practical concern for farmers 

(Hogeveen et al., 2010). Also, false sensor-system alerts could result in unnecessary 

treatment or other actions directed at healthy animals. On the other hand, failure to 

alert the farmer to a sick animal is a potential concern for animal welfare and herd 

health. Therefore, the diagnostic test properties of sensor systems should be 

investigated and reported such that implementation of sensor systems in decision-

support tools can be improved.  

Online cell counts 

One on-farm sensor is the DeLaval Online Cell Counter (DeLaval International AB, Tumba, 

Sweden). This sensor provides online cell counts (OCC) as a proxy for SCC from every 

milking tested. Previous studies of associations between OCC and IMI have relied on 

records of clinical mastitis as the gold standard for the evaluation of sensor performance 
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(Kamphuis et al., 2008; Sørensen et al., 2016). However, the ability of OCC to discriminate 

between subclinical IMI and physiological alterations in SCC has not yet been determined.  

One challenge associated with automated detection of subclinical IMI using OCC, is that 

because the OCC is a function of a cow’s response, this value varies widely (Rivas et al., 

2013). Thus, differentiating between physiological normal variation and variation due to 

pathology remains a major challenge. One advantage of frequent sampling of OCC is that a 

larger density of records may enable better separation of measurement noise from true 

changes due to biological processes. In such a system, arbitrary changes in OCC values can 

be viewed as within-animal deviations and corrected for by calculating rolling averages or 

by using smoothing functions (Sørensen et al., 2016). Sørensen et al. (2016) showed that by 

using this approach, OCC may be used to detect cases of clinical mastitis (Figure 5). 

However, this has not yet been demonstrated for prediction of subclinical IMI status of cows 

in an AMS. 

An elevated mastitis risk (EMR) parameter as shown in Figure 5, has, however, only 

been tested for the ability to detect cases of clinical mastitis (Sørensen et al., 2016), 

and not for the ability to detect episodes of subclinical IMI. Therefore, EMR threshold 

values for the detection of subclinical IMI are lacking.   
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Figure 5. Example of the variations in OCC from milking to milking. Figure from (Sørensen 

et al., 2016). The figure shows fluctuations in the OCC from milking to milking, before a 

marked increase in association with a case of clinical mastitis. Smoothed OCC values = 

OCC level and trend from the double exponential smoothing algorithm developed by 

(Sørensen et al., 2016). The SCC from DHI samples is shown for comparison. EMR = 

elevated mastitis risk. 

Diagnostic test evaluation 

The diagnostic performance of a test is often evaluated by calculating the test’s 

sensitivity and specificity. These parameters quantify the ability of the particular test 

to determine correctly the biological status of the animal being tested. Table 1 shows 

the data setup for evaluating the diagnostic sensitivity and specificity of a test. 
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Table 1. Contingency table for calculation of diagnostic test properties of a test for 

subclinical IMI 

 Subclinical IMI1 

present 

Subclinical IMI 

absent 

Totals 

Test positive a  

true positive 

b 

false positive 

a + b 

Test negative c 

false negative 

d 

true negative 

c + d 

Totals a + c b + d a + b + c + d 

1 Intramammary infection 

Sensitivity (true positive rate) = 
𝑎

𝑎+𝑐
 

Specificity (true negative rate) = 
𝑑

𝑏+𝑑
 

For imperfect tests, there is a trade-off between sensitivity and specificity. Hence, if the 

test threshold is lowered to maximize sensitivity, there will be a greater number of 

false-positive test results. Conversely, if the test threshold is elevated to maximize 

specificity, there will be more false-negative test results. Regardless of the approach 

used for defining IMI, the definition will have an impact on the results, and thus, 

potentially, on the management actions.   

Transmission modeling 

Detection of cows with an ongoing subclinical IMI is important. It would, however, be 

better to avoid episodes of subclinical IMI altogether. Therefore, prediction of the 

future prevalence of subclinical IMI, and suggested actions to keep this as low as 

possible, would be preferable. This may be done at the herd level by using a 

transmission model, based on ordinary differential equations (ODE), to predict 

alterations in the future prevalence of subclinical IMI in the herd. With repeated 

bacteriological milk culture results of all lactating quarters (QMS) in a herd, we can 

model the transmission dynamics of persistent IMI (Lam et al., 1997; Reksen et al., 

2012; Barlow et al., 2013). Such models can be used to predict the future IMI 

prevalence. However, taking and analyzing monthly QMS of all lactating cows is not 

cost efficient for management of udder health in commercial dairy herds. With the 
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introduction of sensors like the OCC, we can obtain frequently repeated cow-level 

measurements in a relatively cost-efficient way. If the relationship between OCC values 

and subclinical IMI is sufficiently strong, then repeated measurements of OCC may be 

implemented in automated detection algorithms for the prediction of the prevalence of 

subclinical IMI in AMS herds. In this way, the introduction of sensors such as the OCC 

may facilitate the progression from retrospective herd-health management, to 

modelling real-time herd-specific udder-health transmission dynamics as an 

alternative to laboratory analyses of bacteriological milk samples. Transmission 

parameters can also be used to simulate future udder health status.  

Several mastitis pathogens have the potential to spread between cows in a contagious 

manner (Barkema et al., 2009). The reproductive number (R0) is the number of 

secondary infections that occur when an infected individual is introduced into a naive 

population. The R0 is a function of contacts per unit time, the transmission probability 

per contact, and the duration of infectiousness (Anderson and May, 1991). When R0 is 

greater than 1, there will be an increasing number of infections in the population 

(outbreak). When R0 is below 1, then transmission of infection will not be sustained in 

the population without the influence of other factors, such as the influx of infected 

cows from outside (e.g., fresh or purchased cows). Therefore, R0 is often used to 

describe the epidemic potential of infections (Anderson and May, 1991). Although the 

transmission of a pathogen is described by R0 at the population level, it is the rate of 

both entry and exit of quarters, the transmission parameter, and the cure or recovery 

rate or duration of infection that determines the value of R0. This means that the same 

bacteria may have different potentials for spreading in different herds, depending on 

factors like udder-health management, culling, and treatment routines within the herd. 

Precision livestock farming 

Precision livestock farming (PLF) is often used as a collective term to describe 

integrated livestock-management systems based on sensor information. Halachmi and 

Guarino (2016) defined PLF as “real-time monitoring technologies aimed at managing 

the smallest manageable production unit’s temporal variability”. Using PLF, cows may 

be managed both as a group and as individuals at the same time. Successful application 

of PLF requires information from monitoring technologies, a mathematical model to 

predict current status, a defined management goal, and quantification of the effects 
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from possible management actions (Wathes et al., 2008). Because several of these 

prerequisites are not available at present, true implementation of PLF is not presently 

feasible for management of udder health. 
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KNOWLEDGE GAPS 

Detection of subclinical IMI using OCC values 

While historical SCC data can be used for management of udder health (Schukken et al., 

2003), we do not know how best to use the frequently measured OCC values to manage 

subclinical IMI. Also, before OCC data can be implemented in algorithms to predict 

udder health, we need more knowledge regarding the association and correlation 

between OCC values and subclinical IMI status, including potential threshold values for 

detection of subclinical IMI using the OCC sensor. Hence, although there is presently an 

information overload based on a large quantity of data provided from sensor systems, 

it is not clear how this information can be most usefully used by the farmers. 

Therefore, there is a need for knowledge on which information is provided by the 

sensors, and how this information can be applied to improve decision support.  

One of the challenges precluding the use of sensor systems for continuous monitoring 

of udder health and associated decision support, is the suboptimal diagnostic test 

properties of the current algorithms in sensor systems (Norberg et al., 2004; Rutten et 

al., 2013). When the sensor-system alerts are not trustworthy, then neither is the 

management advice obtained from the sensor system.  

Causes of variation in OCC values from milking to milking and from day 

to day  

With the introduction of the OCC sensor system, we are gaining access to huge 

amounts of data. However, extraction of relevant information from sensor data such as 

OCC and others has proven difficult regarding management of udder health (Rutten et 

al., 2013). Therefore, investigation of the predictors for variation in OCC values could 

provide useful information that would be beneficial in understanding how this 

measure can best be interpreted and used. 

Transmission model of subclinical IMI using OCC values as a proxy for 

infection 

Detection of subclinical IMI episodes during lactation is only relevant if there are SOP 

or predetermined management actions associated with the detection of these cases. 

During lactation, management actions could be, for example, segregation of infected 
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animals, improving the hygiene, or reducing the density of stocking. However, 

prevention of a possible increase in the prevalence of subclinical IMI in the future 

would be preferable. In order to accomplish this, it is necessary to be able to predict 

the future situation regarding subclinical IMI. One way to do this is using transmission 

modeling, with EMR included as a proxy for infection. However, a sensor-based 

transmission model must first be developed for this approach to be successful. 



39 
 

OBJECTIVES OF THE STUDY 

The main objective of this study was to evaluate the use of OCC from every milking in 

an AMS for the detection of cows with subclinical IMI, and for predicting the future 

prevalence of subclinical IMI at the herd level. 

Secondary objectives: 

1. Define criteria for OCC changes associated with subclinical IMI and test the 

diagnostic test properties of the EMR as a test for detection of subclinical IMI 

(Paper I). 

2. Describe the variation in OCC values related to subclinical IMI and cow-specific 

factors (e.g. parity, days in milk) (Paper II).  

3. Build an SIS (Susceptible-Infectious-Susceptible) transmission model based on 

bacteriological milk culture results to determine the transmission of subclinical 

IMI, using Corynebacterium spp. as a model pathogen (Paper III). 

4. Use dynamic changes in EMR as a proxy for subclinical IMI and build a second 

SIS transmission model based on daily EMR readings for herd-health 

surveillance of udder health (Paper IV).  
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MATERIALS AND METHODS 

This section gives an overview of the material and methods used in the thesis. More 

details are provided in the separate papers. The work included 2 observational 

longitudinal studies. Papers I, II, and IV used data from a 17-month longitudinal 

observational study in the dairy research herd at the Norwegian University of Life 

Sciences. Paper III used data from a 13-month longitudinal observational study in 2 US 

dairy herds. Figure 6 shows a simplified overview of the material and methods used in 

the 4 papers. 

 

Figure 6. Simplified overview of the material and methods used in this work. 
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Study samples  

17-month longitudinal study (Papers I, II and IV) 

Data were obtained during 2016 and 2017 in a 17-month longitudinal study in the 

dairy research herd at the Norwegian University of Life Sciences. Two groups, each of 

approximately 50 Norwegian Red cows, housed in the same barn, were milked, on 

average, 2.6 times per day by two identical AMS (Delaval VMS, DeLaval, Tumba, 

Sweden) during the study period. The mean monthly number of lactating cows was 96, 

the mean milk production per cow per day was 27.9 kg, and the average cow 

composite OCC was 115,103 cells/mL. The farm used standardized mastitis-control 

practices, such as monthly milk-quality testing in a DHI program, postmilking teat 

disinfection, and selective dry-cow therapy.  

13-month longitudinal observational study (Paper III) 

Data were obtained from a 13-month longitudinal study conducted in two commercial 

Holstein dairy herds (one in New York and one in Vermont) during 2003 and 2004. In 

this study, cows were housed in pens of approximately 100 cows and milked 3 times 

per day in a milking parlor. The mean monthly number of lactating cows was 319 and 

346 in the 2 farms, respectively. The corresponding mean milk production was 32.7 kg 

and 35.0 kg. Similarly, the average cow composite SCC was 404,000 cells/mL and 

292,000 cells/mL. The herds participated in a DHI program, with monthly milk-quality 

testing. Both farms used standardized mastitis-control practices, including pre- and 

postmilking teat disinfection, and blanket dry-cow therapy.  

OCC and EMR 

The DeLaval Online Cell Counter (DeLaval International AB, Tumba, Sweden) provides 

OCC shortly after milking a cow in the AMS. The device samples a fraction of the 

composite milk and adds a colored reagent that stains the nuclei of somatic cells, 

before a digital camera takes a picture and counts the number of nuclei in the sample 

(DeLaval, 2019). Sørensen et al. (2016) evaluated the performance of the OCC relative 

to DHI analysis (Eurofins, Holstebro, Denmark) using CombiFoss equipment (Foss 

Electric, Denmark). They found an average R2 of 0.86, ranging from 0.71 – 0.93, using 

linear regression to assess the performance. These results indicate that the OCC can be 

used as a proxy for DHI-based SCC. 
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A major challenge with using sensor-system data, such as the OCC, is the large 

physiological variation from milking to milking and from day to day. This makes it 

difficult to identify moderate deviations from a normal situation. Because subclinical 

IMI results in a moderate inflammation of the udder, it is difficult to detect it using 

OCC. Sørensen et al. (2016) used a stepwise process to improve the usability of OCC. 

This process involves a single exponential smoothing and correction of the raw data 

from the sensor, before a double exponential smoothing of the individual cow’s data. 

Finally, the smoothed data is parameterized into an EMR indicator, ranging from 0 – 1, 

where a higher value indicates an elevated mastitis risk.  

IMI status 

In both study populations, QMS were collected from all lactating cows on a monthly 

basis according to recommended guidelines (Hogan et al., 1999). Samples were frozen 

after collection and during transport to the laboratory for microbiological analyses. 

Samples were thawed in the laboratory, and bacteriological culture was performed 

according to standard procedures (Hogan et al., 1999).  

We decided to focus on detection of subclinical IMI with potential for transmission. We 

defined this as episodes of subclinical IMI detected in QMS from the same cow in 

several successive samples or in high amounts in a single sample. This was adapted 

from Zadoks et al. (2002). Therefore, cows were given an udder-health status for 

subclinical IMI throughout the study period, based on a combination of persistence 

and cfu/mL. Using this approach, cows that were assigned the status “subclinical IMI” 

were likely to be truly infected.    

Because the OCC values are recorded at the cow level, the quarter level bacteriological 

diagnoses were aggregated into cow-level diagnoses. A consequence of this, was that 

the same cow could experience an episode of subclinical IMI with more than one 

pathogen at the same time, and we would be unable to determine which pathogen had 

the most influence on the OCC values. Therefore, we divided the pathogens into 2 

groups (Pat 1 and Pat 2). The Pat-1 group consisted of pathogens that are expected to 

result in a marked elevation of OCC values. These were: Staphylococcus aureus, 

Streptococcus dysgalactiae, Streptococcus uberis, Enterococcus faecalis, Enterococcus 

faecium, Lactococcus lactis, Staphylococcus epidermidis, and Staphylococcus simulans 
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(Djabri et al., 2002; Reksen et al., 2008; Simojoki et al., 2009; Simojoki et al., 2011; Fry 

et al., 2014). The Pat-2 group consisted of those pathogens that were not included in 

the Pat-1 group: Corynebacterium bovis, Staphylococcus chromogenes, Staphylococcus 

haemolyticus, Aerococcus viridans, Staphylococcus hominis, Staphylococcus xylosus, and 

other bacteria cultured. Whenever a cow was found to have a subclinical IMI with one 

or more pathogens from both Pat 1 and Pat 2 simultaneously, the change in OCC values 

was attributed to the Pat-1 subclinical IMI. That is, we implemented a hierarchical 

classification system, where a cow could only be assigned to the Pat-2 subclinical IMI 

category when there was no concurrent Pat-1 subclinical IMI. 

In the 17-month study in Norway, species of bacteria were identified using matrix-

assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF 

MS) microflex LT (Bruker Corporation, Billerica, USA) (Cheuzeville, 2015). 

The principle of the MALDI-TOF MS is shown and described in Figure 7. Briefly, a 

sample of a bacterial colony is put on a target plate and covered with a matrix before 

ionization using a laser. The mass spectrum obtained can be used to identify 

microorganisms. MALDI-TOF MS provides a fast and reliable way of identifying 

mastitis pathogens (Cheuzeville, 2015; Nonnemann et al., 2019). 



45 
 

 

Figure 7: Principle of the MALDI-TOF MS. Figure from Cheuzeville (2015). The matrix-

covered sample is ionized by a laser, leading to desorption and transfer of protons 

from the matrix to the sample that forms ions, with minimal fragmentation. 

Application of an electric field accelerates the ions, which go through a vacuum flight 

tube towards a detector. The time of flight through the tube is influenced by the weight 

of the ions, where lighter ions have greater speed, and thus a shorter time of flight. 

This difference is used for species identification of the bacterial colonies being tested. 

Diagnostic test evaluation 

In Paper I, the subclinical IMI status based on QMS results was used as the gold 

standard for the evaluation of the EMR as a diagnostic test for detection of subclinical 

IMI. We tested 4 different thresholds of the EMR for their ability to classify subclinical 

IMI status correctly. The thresholds were set so that the specificities were 80, 85, 90, 

and 99%, and the corresponding sensitivities were calculated for each threshold, 

respectively. Thus, each threshold can be considered as a separate diagnostic test for 

detection of subclinical IMI.  

Multilevel modelling 

In Paper II, the variation in OCC from milking to milking was evaluated using a linear 

mixed model (Dohoo et al., 2009). The advantage of using such a model is that it 

considers the multilevel structure of the data (Dohoo et al., 2009), and we could 

therefore describe how much of the overall variability resided at the cow-level 

(between cows) and at the lactation-level (within cow).  
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Transmission model and transmission parameters 

We built a transmission model and used it to evaluate the transmission dynamics of 

IMI episodes (Paper III and Paper IV). In Paper IV, we used the EMR threshold values 

from Paper I to assign cows to a subclinical IMI-status category. Cows were 

categorized with the status of subclinical IMI when the EMR value was greater than a 

given threshold. We tested 4 different threshold levels with different sensitivities and 

specificities for the detection of subclinical IMI. The transmission dynamics of the 

subclinical IMI episodes and the 4 different EMR thresholds were displayed in a 

Susceptible-Infectious-Susceptible (SIS)-transmission model, as shown in Figure 8. 

The model describes a population divided into two compartments: (1) compartment S 

denotes susceptible quarters or cows with no subclinical IMI, and (2) compartment I 

denotes quarters or cows affected with subclinical IMI. The compartments thus 

represent the proportion of lactating quarters or cows in each state. The dynamics of 

state transitions are illustrated in Figure 8.   

 

Figure 8. Schematic representation of the mathematical model of transmission of 

subclinical IMI. The boxes represent the state variables and the arrows represent the 

flow rates between susceptible (S) and infected (I) states. Β = transmission parameter; 

βI = daily rate of new infections; α = daily rate of cured episodes; µ = daily rate of entry 

and exit. The proportions of entries into the S and I compartments are determined by 

θS and θI, respectively. 
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The model is described mathematically by the following non-linear ODE: 

dS

dt
= -βSI + αI+ θsNμ – μS        (1) 

dI

dt
= βSI – αI+ θINμ – μI              (2) 

The transfer rates in such a model are quantified by the parameters α and β. 

Parameter β is a function of the contagiousness of the pathogen and the contact rate 

between animals, and denotes the transmission rate of an infection from a cow with 

subclinical IMI to a susceptible cow (Keeling and Rohani, 2011). Parameter α describes 

the daily rate of cow recovery from a subclinical IMI. N represents the sum of 

susceptible and infected cows in the study at any given time. The daily rate of entry 

and exit of cows to and from the lactation pen is described by μ. Entries of cows from 

the fresh pen to the susceptible and infectious compartments within the lactation pen 

are determined by the proportions θs and θI, respectively. The transmission 

parameters in the model are unknown and therefore must be calculated for each herd 

being considered. This estimate may be made using knowledge of the subclinical IMI 

status of cows over time from the results of the bacteriological milk samples of QMS. 

Therefore, we estimated the transmission parameters in the model using OCC-value 

patterns, assuming that these represent the presence of a subclinical IMI. The 

estimated transmission parameters were used as input in the dynamic simulation 

model for prediction of future herd prevalence of subclinical IMI.  
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MAIN RESULTS 

Paper I  

In paper I we showed that OCC may be useful for identifying cows with an episode of 

subclinical IMI. The diagnostic test properties of the OCC were improved when using 

the EMR compared with using the raw OCC values. The sensitivity of detection of Pat-1 

subclinical IMI using EMR was 69% and 8% at the predefined specificities of 80% and 

99%, respectively. Examples of the practical implications of the properties of the EMR 

as a diagnostic test for the number of false sensor-system alerts are shown in Table 2. 

There is a clear tradeoff between sensitivity and specificity when using EMR to detect 

Pat-1 subclinical IMI. Although increasing the sensitivity will result in detection of 

more cases of Pat-1 subclinical IMI, it will also result in more false sensor-system 

alerts. On the other hand, increasing the specificity in order to reduce the number of 

false sensor-system alerts will result in the likelihood of detecting cases of subclinical 

IMI decreasing. A farmer with a high tolerance for false sensor-system alerts may 

choose to increase sensitivity at the cost of lower specificity, so that more episodes of 

subclinical IMI are detected and can be managed accordingly.  
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Table 2. Examples of the practical implication of detection event and specificity level 

on the number of false sensor-system alerts in an AMS1 herd with 100 cow-years, 

milking 2.7 times a day, and using the EMR2 for detection of subclinical IMI3. 

Test specificity 

demand 
Detection event 

False sensor-

system alerts 

Test sensitivity of 

the EMR (Paper I) 

Specificity ≥ 99 

EMR evaluated 

after every milking 
≈ 2 per day 

8 
EMR evaluated 

once before dry off 
≈ 1 per year 

Specificity ≥ 80 

EMR evaluated 

after every milking 
≈ 35 per day 

69 
EMR evaluated 

once before dry off 
≈ 20 per year 

1 Automatic milking system 
2 Elevated mastitis risk 
3 Intramammary infection 
 

Paper II 

In paper II we showed that only 15% of the variation in OCC values could be described 

by subclinical IMI and by other fixed effects like lactation stage, parity, milk yield, OCC 

in residual milk from the previous milking, inter-quarter difference between the 

highest and lowest conductivity, genetic constitution, milking interval and season. 

However, the fixed and random effects (cow and lactation within cow) together 

described 55% of the milking-to-milking variability of OCC. Figure 9 shows the 

distribution of ln-transformed OCC values for cows with no IMI, Pat-1 subclinical IMI, 

Pat-2 subclinical IMI, and transient colonization. Although the OCC values for cows 

with Pat-1 subclinical IMI are higher than for the other groups, there is still 

considerable overlap. Therefore, moderate diagnostic test properties must be expected 

in studies in which only OCC are used as the indicator of subclinical IMI. 
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Figure 9. Smoothed density plot showing the distribution of ln-transformed online cell 

count values (in 1000 cells/mL). Figure from Nørstebø et al. (2019). 

Paper III 

We studied the transmission dynamics of Corynebacterium spp., which are bacteria 

known to cause subclinical IMI. The statistical analyses in Paper III demonstrated that 

transmission of IMI due to Corynebacterium spp. in the 2 herds studied was influenced 

by preexisting infections with Corynbacterium spp. IMI. In one of the 2 farms studied, 

there was also an increase in the prevalence of Corynebacterium spp. IMI throughout 

the study, which resulted in an R0 of 1.18. This was related to a low rate of recovery 

from Corynebacterium spp. IMI in this farm, and this therefore increased the epidemic 

potential of Corynebacterium spp. IMI in this particular situation. 
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Paper IV 

The statistical analyses in Paper IV demonstrated transmission of subclinical IMI, using 

EMR as a proxy for subclinical IMI. For the EMR thresholds with 80%, 85%, and 90% 

specificity for detection of subclinical IMI, the R0 was above 1, indicating an epidemic 

potential. Furthermore, the transmission of subclinical IMI, using EMR as a proxy for 

subclinical IMI, was influenced by a preexisting EMR above the EMR thresholds, with 

80%, 90%, and 99% specificity for detection of subclinical IMI. That is, cows with an 

existing EMR above the threshold are significant for the transmission of subclinical 

IMI. This is proof of concept that a transmission model using EMR can be used for 

surveillance of subclinical IMI episodes during lactation at different levels of 

specificity. 
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DISCUSSION 

The work in this thesis has shown that EMR may be used to identify cows with an 

episode of subclinical IMI, and that the transmission dynamics of subclinical IMI may 

be modeled using EMR as a proxy for subclinical IMI in a dynamic transmission model. 

Detection of subclinical IMI using EMR 

None of the sensor systems used in dairy production, including the OCC sensor used in 

this thesis, currently operate at the desired level of 80% sensitivity and 99% specificity 

(ISO 20966:2007; Rutten et al., 2013). This is a challenge for animal welfare regarding 

detection of new cases of clinical mastitis, as this condition should be identified and 

treated as quickly as possible. Therefore, current sensor systems cannot be used as the 

sole approach for detection of cases of clinical mastitis in dairy production. However, 

for episodes of subclinical IMI, we are more concerned with controlling the prevalence 

of the relevant pathogens at a low level, rather than immediate detection and 

treatment of all cases. Therefore, use of sensor systems may be rewarding in 

management of subclinical IMI, despite moderate diagnostic test properties.  

A practical consequence of the limited sensitivity and specificity achieved using EMR 

as a diagnostic test in this work, is that human involvement is essential in the optimal 

management of udder health in AMS. At the current performance level of the EMR, 

there is also a large difference between detection and diagnosis. If the diagnostic test 

properties are suboptimal, the system can only be used for detection of cows that 

potentially have subclinical IMI. In such settings, secondary investigations and testing 

must be performed to diagnose a subclinical IMI. This could be, for example, a physical 

checkup along with bacteriological culture of QMS of cows with sensor-system alerts. 

However, the use of several tests for the same condition introduces a challenge for the 

combined interpretation of both tests. If diagnosis of a subclinical IMI is based on the 

results from both tests being positive, then this is series testing. If, however, a positive 

result from either one of the tests is sufficient for diagnosing subclinical IMI, then this 

is parallel testing. In general, series testing decreases sensitivity and increases 

specificity, whereas parallel testing increases sensitivity and decreases specificity 

(Dohoo et al., 2009). Therefore, in order to be sure that the additional testing 



54 
 

contributes to successful dairy-health management, guidelines on the interpretation of 

results from multiple tests should be described in the herd-health management plan.  

We decided to evaluate 4 different test thresholds for detection of subclinical IMI using 

EMR. The reason for using this approach, rather than identifying a single threshold 

with maximum sensitivity and specificity combined, was to demonstrate the possibility 

of using different thresholds for different management purposes.  

Detection of subclinical IMI using the EMR is relatively straightforward when 

comparing cows with episodes of, for example, Staphylococcus aureus-subclinical IMI 

with true negative cows (Paper I). However, there will always be a mixture of cows, 

with some with subclinical episodes or transient colonization with other mastitis 

pathogens. These cows blur the picture, meaning that strict definitions cannot be 

easily applied, and thereby the diagnostic test properties of the EMR are diminished. 

Therefore, we decided to group the bacteria into two groups, Pat 1 and Pat 2. This 

enabled us to detect episodes of Pat-1 subclinical IMI using EMR (Paper I). However, 

the detection was rather nonspecific, and secondary testing is necessary to identify 

those specific bacteria that are presenting the challenge in udder-health management 

of individual cows and farms. Although the approach in this study can be used to 

improve detection of subclinical IMI in herds with AMS, more work should be done on 

pathogen-specific detection of subclinical IMI using sensor systems. With pathogen-

specific detection of subclinical IMI, management could be tailored for each individual 

cow and herd. This would facilitate the progression of udder-health management into 

PLF.  

In this study, the EMR developed by Sørensen et al. (2016) was used for detection of 

IMI with the OCC sensor. The reason that we chose an already established algorithm 

was to avoid overfitting of the algorithm to the data from our 17-month field study. 

Also, it enabled investigation into the diagnostic test properties of the OCC sensor 

alone, using the EMR to extract information from the OCC values. It has been suggested 

that little improvement is to be expected from adding more sensors (Hogeveen et al., 

2010). However, improvements have recently been made by combining data from 

several sensors for detection of clinical mastitis cases (Khatun et al., 2018). It is likely 

that a new algorithm, combining information from several sensors, could improve on 
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our results. However, we would have needed several farms in our study to validate the 

results from such an algorithm.  

 

Causes of variation in OCC values from milking to milking and from day 

to day 

The moderate diagnostic test properties of using EMR to detect subclinical IMI are not 

surprising. As we show in Paper II, only 15% of the variation in OCC values is 

explained by subclinical IMI, and other fixed effects. However, the fixed and random 

effects (cow and lactation within cow) together described 55% of the milking-to-

milking variability of OCC. Still, 45 % of the variation in OCC values is not explained, 

and we concluded that this is most likely due to physiological or normal variability. 

Hence, the sensor information is not a perfect proxy for biological status, and we 

cannot expect perfect diagnostic test properties from an OCC-based detection system 

of subclinical IMI.  

One practical consequence of the moderate performance level of current sensor 

systems, is that there are many false sensor-system alerts and the farmer is therefore 

obliged to undertake several needless checks of a number of cows every day. This is 

also the case when using EMR to detect subclinical IMI. In order to avoid this 

unnecessary work, the number of false sensor-system alerts should be minimized 

(Claycomb et al., 2009). This will, in turn, usually reduce the sensitivity of the sensor 

system, due to the tradeoff between sensitivity and specificity for imperfect tests. 

Therefore, the test threshold should be set depending on the desired application of the 

test results. On this basis, sensor systems probably need to include several algorithms, 

each adapted to a different management need of the farmer. This will allow tailoring of 

algorithms to provide decision support for specific management questions, despite the 

sensor system not being perfect. 

Transmission model of subclinical IMI using EMR as a proxy for 

infection 

The challenge of suboptimal diagnostic test properties using EMR as a proxy for 

infection is exacerbated by the high number of detection events in AMS. Although the 

EMR aggregates information from several milkings to some extent, the specificity 
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would have to be very high to minimize the number of false sensor-system alerts if the 

EMR is evaluated at every milking (Table 2). One way to address the suboptimal 

diagnostic test properties of the EMR, is to reduce the number of detection events. If 

the period of interest is reduced to once per lactation (e.g., before dry off), then the 

sensitivity can be maximized at the expense of lower specificity (Table 2). In such a 

system, the proportion of false alerts is at the same high level, but the total number of 

false alerts is tolerable. For detection during lactation, the specificity should be 

maximized to avoid an overwhelming number of false alerts. The practical implication 

of this is that such a sensor system will detect fewer subclinical IMI episodes during 

lactation, but the episodes detected will probably be true episodes of subclinical IMI 

that warrant secondary testing (serial testing) and, potentially, therapy, culling, or 

segregation from the herd. For surveillance at the herd level, however, it is not 

important which individual cow is infected or uninfected, but rather the current 

prevalence of subclinical IMI, and what it is likely to be in the future. Simulations, 

based on parameters for transmission and cure rate based on OCC-data (EMR), can be 

used to generate predictions for the future herd prevalence of subclinical IMI. The 

premise of this approach is that even though the individual status of the cows is 

somewhat imprecise, a reliable prediction of the herd-level prevalence will, on 

average, be obtained. A change in the prediction of future subclinical IMI prevalence 

may thus be indicative of a future change in the herd-level udder-health status. In such 

a system, the sensitivity can be increased for the purpose of transmission modelling, as 

the farmer will not be notified of individual cows that have values above the alert 

threshold. Instead, the farmer will be alerted when the prediction of the future 

prevalence shows a negative trend or exceeds the farm-specific udder-health goals. As 

we showed in Paper IV, both the current and a simulated future cure rate may be 

described, along with the other transmission parameters, using dynamic simulation 

modelling based on data from an OCC sensor. The advantage of using OCC data is that 

herd specific transmission parameters, and thus the dynamic simulation model, can be 

updated daily. In paper III, we used Corynebacterium spp., which are bacteria known to 

cause persistent subclinical IMI, as the infectious pathogen to establish this model. And 

we noticed that despite similar management routines in the two farms, the cure rate 

was significantly different. This underscores the importance of herd specific modelling 

approaches.  
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Our application of changes in the EMR at the herd level indicates that the EMR can be 

used efficiently, despite suboptimal diagnostic test properties at the cow level. 

Through modeling EMR, these patterns can be predicted as a proxy for the future 

subclinical IMI prevalence in the herd. These predictions can be made for a prolonged 

period and be included in a decision-support tool to alert farmers when udder-health 

management actions against future subclinical IMI episodes are required. This will 

prove valuable, as management of udder health is particularly focused on preventing 

new cases (Ruegg, 2017). With herd-specific evaluation of subclinical IMI transmission 

parameters, management actions can be directed towards preventing a future increase 

in IMI episodes. In such a system, the concern is not about which particular cows have 

a subclinical IMI, but the focus is on the future prevalence of subclinical IMI in the 

herd. Such a sensor system could be integrated as a part of a health-management cycle 

(Kelton, 2006). This iterative process of continued improvement can be visualized as a 

part of the previously mentioned Deming circle, where sensor-system alerts indicate 

the need to “Check” (Figure 10). If the future trend is negative, the farmer should “Act” 

to prevent this. This could then lead to a change in “Plan” for future udder-health 

management. If there are no new alerts, the farmer carries out the established plan to 

manage udder health (“Do”). Moreover, in the “Act” and “Plan” phases, the 

transmission model can be evaluated to indicate the management area in which 

actions and new plans should be made. An example of this could be that the sensor 

system alerts the farmer of a predicted increase in the future subclinical IMI 

prevalence. The system indicates that the transmission parameters that are having 

most effect at driving this increase are the number of infected animals and the total 

number of animals. Suggested actions could then be either to reduce the number of 

infected animals, to decrease transmission (e.g., teat dipping), or to reduce the stocking 

density. When applicable, the farmer could also change the herd-health plan to 

maintain a lower stocking density in the future. The question regarding which cows 

are infected can then be left for other management-decision moments, (e.g., selection 

of cows for secondary testing and potential dry-cow therapy). 
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Figure 10. The Deming circle with a sensor system. Each herd has a herd-specific 

udder-health management plan (“Plan”). The farmer will execute this plan (“Do”). 

Whenever there is a sensor system alert (“Red arrow”), the farmer should investigate 

this and (potentially) perform secondary testing (“Check”). Depending on the findings 

from the investigation, the farmer must either take actions to optimize udder health 

(“Act”) or go back to performing as planned (“Do”). When there is altered 

management, this can be implemented in a new udder-health management plan 

(“Plan”). 

When using models to explain and predict transmission dynamics, it is important to 

keep causality in mind. The mathematics need to be aligned with the real situation and 

biological possibilities. This is especially important in the use of algorithms, like the 

EMR, where there is a lot of pre-processing of OCC values before a parameterized 

product can be applied as a diagnostic test for detection of subclinical IMI.  

Allore and Erb (1999) studied 3 approaches to modelling IMI in dairy cattle: Markov 

processes, discrete-event simulation, and differential equations. Each approach has its 

own advantages and limitations, and none of them are perfect. One advantage of the 

differential equation model is that its simplicity allows for estimation of sensitivity to 

changes in the different parameters of the model (Allore and Erb, 1999). That is, the 

model can be extended to evaluate which parameter has most effect on the changing 

Act Plan

DoCheck

Sensor system 

alert  
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transmission rates. This could prove useful when evaluating the effects of possible 

management actions, such as treatment, culling, or segregation of animals, and in 

coupling this with cost-benefit considerations into the decision-support process. A 

disadvantage of the differential equation model is that longitudinal information from 

the population being investigated is needed to estimate the necessary parameters to 

run the model. However, this information is now available from the AMS, and 

differential equation models can therefore be implemented in the future management 

of udder health in AMS.  

Limitations 

The findings in this work are limited to one farm (Paper I, II, and IV) and two farms 

(Paper III) only. We believe that the amount and quality of our data means that our 

results are valid for the herds in our study. That is, the internal validity of our results is 

good. The limited number of herds is, however, a challenge to the external validity of 

our results. Therefore, caution is advised regarding extrapolation of our results to 

other herds. However, the aim of this work was to test the practical applicability of 

using the OCC sensor, rather than to generalize the results to a larger proportion of the 

population. We have shown that the EMR may be used for detection of subclinical IMI, 

but the thresholds identified in Paper I should be tested in other herds before 

widespread application. Indeed, Sørensen et al. (2016) found that the pattern of 

change in OCC values differed between herds. Although the EMR reduces some of this 

variation, the consequence still might be that EMR thresholds for subclinical IMI are 

farm specific.    

In the 17-month longitudinal study (Papers I, II, and IV), we have monthly QMS and 

OCC data from every milking. Due to the prolonged period between each QMS, some 

true infections were probably missed. That is, the sensor system may have been 

correct in some cases, while the gold standard of the biological infectious status (based 

on monthly QMS) was wrong. Also, the onset of, and recovery from, infection is 

unlikely to have occurred midway between the QMS for all episodes. Using EMR, the 

duration of subclinical IMI was found to be 4 days (Paper IV). In order to evaluate 

whether this was related to a real change in subclinical IMI status or not, we would 

have needed QMS several times per week. However, despite these imperfect sampling 
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routines, we were able to demonstrate that the transmission of EMR above the 

thresholds could be modeled for subclinical IMI between cows (R0 > 1). 

When using the EMR to detect subclinical IMI, we are reducing the variation in the OCC 

values through a series of smoothing operations and parameterization of the 

smoothed values. The inference is that true changes in subclinical IMI status will still 

be detected. However, discarding variation may result in loss of information that could 

have proven useful for identifying the correct subclinical IMI status for individual 

cows. Potentially, this variation could have been picked up with more advanced big-

data techniques (e.g., spatial or temporal analysis). Future studies should therefore 

attempt to keep more of the sensor data in the analyses, as this may improve the 

diagnostic test properties.  
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CONCLUSIONS AND FUTURE PERSPECTIVES 

Detection of subclinical IMI using EMR 

We have shown that the EMR can be used to detect subclinical IMI in dairy cows 

(Paper I). Despite suboptimal diagnostic test properties, a sensor system based on OCC 

values can provide useful information for udder-health management. When every 

milking is a detection event, specificity should be maximized. In contrast, for a single 

detection event  (e.g., before drying off), a lower specificity is acceptable in order to 

maximize sensitivity. 

Causes of variation in OCC values from milking to milking and from day 

to day 

We demonstrated that a major reason for relatively moderate diagnostic test 

properties is that the subclinical IMI status explains only a moderate part of the 

variation in OCC values (Paper II). Thus, only moderate degrees of explanation should 

be expected from a subclinical IMI sensor system that is based on OCC values alone. 

Transmission model of subclinical IMI using EMR as a proxy for 

infection 

We developed an SIS model for transmission of Corynebacterium spp. IMI (Paper III). 

This model was then applied to the EMR, and we demonstrated that, using EMR, the 

model can be applied to predict the future prevalence of subclinical IMI in a herd based 

on simulations using a dynamic modelling approach (Paper IV). These predictions can 

be updated daily when using EMR for estimation of transmission parameters. This 

transmission model can, theoretically, also be extended to indicate which management 

area has most effect in driving an undesirable trend. More work on parameterization is 

necessary in order to use the model to assess the effects of different interventions, 

such as culling, treatment, and teat dipping. By combining different alerts, the sensor 

system can be adapted to the needs of individual farmers in the udder-health 

management on their farm. 

Future perspectives 

It is likely that future sensor development and research will improve the detection of 

subclinical IMI using sensor systems. The ability to combine data from different 
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sources and to retain variation for analysis in the final model will be important. 

Therefore, the key point of this study is the approach towards an efficient use of 

suboptimal sensor information, by aggregating sensor information by time. This was 

accomplished by introducing the EMR for subclinical IMI, and by modelling changes in 

EMR at herd level using dynamic transmission models.  

Sensor-based decision-support tools are likely to improve farm management in the 

future. Such systems will guide farmers towards animals and management areas in 

need of attention. This, combined with suggested actions, will enable implementation 

of PLF to improve both animal welfare and farmer prosperity, as well as 

environmental and economic viability of future dairy farming.  

Further development of transmission models for PLF application requires 

parameterization of the effects of relevant interventions (e.g., culling, treatment, teat 

dipping, teat sealant) at the herd level. The current thesis, may, however, be viewed as 

a first step towards testing the applicability of transmission models, using EMR as a 

basis for decision making at the herd level. 

Potential follow-up projects 

The period between QMS being taken for bacteriological culture was a challenge in this 

study. Therefore, a similar study on using OCC values for detection of subclinical IMI, 

but with a shorter time period between taking QMS for bacteriological culture, could 

provide more knowledge on the relationship between change in OCC-value patterns 

and subclinical IMI.  

Parameterization of the effects of different management actions remains a challenge. 

Therefore, a study that parameterizes the effects of different management actions 

could contribute greatly to the development of automated decision support in PLF. 

Another approach towards closing the knowledge gap could be to couple the data from 

sensor data in the AMS with DHI information on QMS bacteriological culture results on 

a larger scale. This way, numerous herds with OCC data from the AMS and 

bacteriological culture results registered in the DHI system could be included in a 

study to evaluate the use of OCC-value patterns as a proxy for subclinical IMI. In order 

to do this, we would need an efficient way to collect the sensor data from farms with 
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sensor systems and couple this with DHI information on QMS bacteriological culture 

results.  
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ABSTRACT

Timely and accurate identification of cows with 
intramammary infections is essential for optimal ud-
der health management. Various sensor systems have 
been developed to provide udder health information 
that can be used as a decision support tool for the 
farmer. Among these sensors, the DeLaval Online Cell 
Counter (DeLaval, Tumba, Sweden) provides somatic 
cell counts from every milking at cow level. Our aim 
was to describe and evaluate diagnostic sensor prop-
erties of these online cell counts (OCC) for detecting 
an intramammary infection, defined as an episode of 
subclinical mastitis or a new case of clinical mastitis. 
The predictive abilities of a single OCC value, rolling 
averages of OCC values, and an elevated mastitis risk 
(EMR) variable were compared for their accuracy in 
identifying cows with episodes of subclinical mastitis or 
new cases of clinical mastitis. Detection of subclinical 
mastitis episodes by OCC was performed in 2 separate 
groups of different mastitis pathogens, Pat 1 and Pat 2, 
categorized by their known ability to increase somatic 
cell count. The data for this study were obtained in a 
field trial conducted in the dairy herd of the Norwegian 
University of Life Sciences. Altogether, 173 cows were 
sampled at least once during a 17-mo study period. The 
total number of quarter milk cultures was 5,330. The 
most common Pat 1 pathogens were Staphylococcus 
epidermidis, Staphylococcus aureus, and Streptococcus 
dysgalactiae. The most common Pat 2 pathogens were 
Corynebacterium bovis, Staphylococcus chromogenes, 
and Staphylococcus haemolyticus. The OCC were suc-
cessfully recorded from 82,182 of 96,542 milkings during 

the study period. For episodes of subclinical mastitis 
the rolling 7-d average OCC and the EMR approach 
performed better than a single OCC value for detection 
of Pat 1 subclinical mastitis episodes. The EMR ap-
proach outperformed the OCC approaches for detection 
of Pat 2 subclinical mastitis episodes. For the 2 patho-
gen groups, the sensitivity of detection of subclinical 
mastitis episodes was 69% (Pat 1) and 31% (Pat 2), 
respectively, at a predefined specificity of 80% (EMR). 
All 3 approaches were equally good at detecting new 
cases of clinical mastitis, with an optimum sensitivity 
of 80% and specificity of 90% (single OCC value).
Key words: intramammary infection, sensor, somatic 
cell count, online cell count

INTRODUCTION

From an economic perspective, mastitis is one of the 
most important diseases in dairy production (Halasa et 
al., 2007; Hogeveen et al., 2011). Much of the economic 
losses are due to reduced milk production following 
subclinical mastitis (Hogan et al., 2016). Therefore, de-
tection and management of both subclinical and clini-
cal mastitis are of importance for milk quality, animal 
welfare, and economic return.

The SCC can to some extent be used for the surveil-
lance of IMI (Schukken et al., 2003), and the industry 
has advanced toward developing new sensors that are 
specifically designed for udder health surveillance. One 
of these is the DeLaval Online Cell Counter (DeLaval, 
Tumba, Sweden). With this, we can obtain repeated 
measurements of online cell counts (OCC) at cow level. 
These may be implemented in automated detection sys-
tems for the management of udder health in automatic 
milking systems (AMS).

Several studies of associations between SCC and IMI 
have used treatment of clinical mastitis as the gold 
standard for their evaluation (Kamphuis et al., 2008, 
2013; Sørensen et al., 2016). However, these studies 
used different sensors to estimate SCC. Sørensen et 
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al. (2016) used direct optical counting of somatic cells, 
whereas Kamphuis et al. (2008, 2013) used an indirect 
measurement of SCC based on viscosity measurements. 
Also, the ability of OCC to discriminate between IMI 
and physiological fluctuations in SCC not related to 
IMI has not been reported. This may be because lon-
gitudinal studies of IMI are both time consuming and 
costly, and because the detection of IMI is not straight-
forward.

An elevated SCC is usually a response to an IMI 
(IDF, 2013), and we are therefore measuring response 
to an infection, rather than the infection itself. Auto-
mated detection of the response to an IMI by using 
OCC must therefore take into account that the immune 
systems of different cows may respond differently to 
the same IMI pathogens (Rivas et al., 2013). Thus, the 
OCC from different cows with IMI due to the same 
pathogen may vary. However, with frequent sampling of 
OCC we may be able to distinguish between measure-
ment noise and true changes resulting from biological 
processes. That is, arbitrary changes in OCC can be 
viewed as within-animal deviations and corrected for 
by calculating rolling averages or by using smoothing 
functions (Sørensen et al., 2016). To detect cases of 
clinical cases of mastitis, Sørensen et al. (2016) cre-
ated an elevated mastitis risk (EMR) indicator, based 
on smoothed OCC. The EMR is a continuous variable 
(from 0–1), where values close to 0 indicate low risk of 
mastitis and higher values, approaching 1, indicate an 
increased risk of mastitis (Sørensen et al., 2016).

The OCC can also be elevated due to reasons other 
than IMI, including other systemic diseases, stage of 
lactation, stress, trauma, previous IMI, milking inter-
val, day-to-day variation, and diurnal variation (IDF, 
2013). Thus, the ability to distinguish between elevated 
OCC due to IMI or for other reasons is crucial for 
udder health management. Detection systems with a 
high specificity are often preferred by farmers using 
AMS (Claycomb et al., 2009) because a large number 
of false-positive alerts is a concern (Hogeveen et al., 
2010). The diagnostic test properties of sensor systems 
should therefore be investigated and reported, so that 
farmers have an evidence-based foundation for choosing 
systems that match their requirements.

The primary aim of this study was to detect episodes 
of subclinical mastitis caused by mastitis pathogens. 
A secondary aim was to detect new cases of clinical 
mastitis. Specifically, we first wanted to test the predic-
tive abilities of single values and rolling averages of 
OCC and an EMR indicator for detection of periods 
of subclinical mastitis or new cases of clinical mastitis. 
Second, we wanted to compare the diagnostic proper-
ties of these different approaches.

MATERIALS AND METHODS

Field Study

Data were obtained during a 17-mo longitudinal ob-
servational study in the research herd at the Norwegian 
University of Life Sciences. Two groups, each of ap-
proximately 50 Norwegian Red cows, housed in imme-
diate proximity to each other, were milked on average 
2.6 times per day by 2 identical AMS (DeLaval VMS) 
during the study period. The monthly mean number of 
lactating cows was 96, the mean milk production per 
cow per day was 27.9 kg, and the average cow compos-
ite OCC was 115,103 cells/mL. The farm had reliable 
identification of animals and used standardized mastitis 
control practices, such as monthly milk quality testing 
in a DHIA program, postmilking teat disinfection, and 
selective dry-cow therapy.

The OCC were recorded from every milking from 
January 5, 2016, to May 22, 2017.

Trained veterinary personnel collected quarter milk 
samples (QMS) from all lactating cows on a monthly 
basis according to recommended guidelines (Hogan et 
al., 1999). Samples were frozen after collection and 
during transport to the laboratory for microbiological 
analyses. Samples were thawed in the laboratory and 
bacteriological culture was performed according to 
standard procedures (Hogan et al., 1999). Briefly, 0.1 
mL of milk from each quarter was spread on cattle 
blood agar plates with esculin and incubated at 37°C. 
Plates were read at 24 and 48 h. Species identification 
of cultured bacteria was performed with MALDI-TOF 
MS microflex LT (Bruker Corporation, Billerica, MA; 
Cheuzeville, 2015). Samples with culture results indi-
cating more than 2 morphologically different colony 
types were treated as contaminated and excluded from 
further analyses.

Mastitis Status

Based on the culture results, the cows were given an 
udder health status for subclinical mastitis throughout 
the study period. In this way, every milking was ei-
ther associated with an episode of subclinical mastitis 
or not. A cow was considered to have an episode of 
subclinical mastitis when meeting at least 1 of the fol-
lowing criteria: (1) ≥1,000 cfu/mL of a single mastitis 
pathogen was cultured from a single sample in at least 
1 quarter, (2) ≥500 cfu/mL of a mastitis pathogen was 
cultured from 2 out of 3 consecutive milk samples from 
the same quarter, or (3) ≥100 cfu/mL of a mastitis 
pathogen was cultured from 3 consecutive milk samples 
from the same quarter. These definitions were adapted 
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from those of Zadoks et al. (2002). Cows with posi-
tive milk cultures that did not meet any of the above 
criteria were classified as being transiently colonized 
(Reksen et al., 2012).

Because the OCC is recorded at the cow level, the 
bacteriological diagnoses at the quarter level were ag-
gregated into cow-level diagnoses. The same cow could 
experience an episode of subclinical mastitis in more 
than 1 quarter simultaneously, and in some cases, these 
2 episodes could be caused by different mastitis patho-
gens. Hence, pathogens were divided into 2 groups (Pat 
1 and Pat 2), according to characteristics of the bacte-
ria. The group of pathogens from which a high cell count 
would be expected during a subclinical mastitis episode 
was named Pat 1. The Pat 1 group consisted of the 
following species: Staphylococcus aureus, Streptococcus 
dysgalactiae, Streptococcus uberis, Enterococcus faecalis, 
Enterococcus faecium, Lactococcus lactis, Staphylococ-
cus epidermidis, and Staphylococcus simulans (Djabri 
et al., 2002; Reksen et al., 2008; Simojoki et al., 2009, 
2011; Fry et al., 2014). Known mastitis pathogens not 
included in Pat 1 were assigned to the Pat 2 category. 
These Pat 2 pathogens included Corynebacterium bovis, 
Staphylococcus chromogenes, Staphylococcus haemo-
lyticus, Aerococcus viridans, Staphylococcus hominis, 
Staphylococcus xylosus, and other bacteria cultured.

Cows were given the status of subclinical mastitis 
when 1 or more quarters were positive for either a 
subclinical mastitis with a Pat 1 mastitis pathogen or 
a Pat 2 mastitis pathogen. For milkings where a cow 
was found positive for subclinical mastitis for masti-
tis pathogens from both categories (Pat 1 and Pat 2) 
simultaneously, we regarded the OCC response to be 
primarily due to the mastitis pathogen in the Pat 1 
category. That is, we implemented a hierarchical order 
in the classification such that a cow could only be as-
signed to the Pat 2 subclinical mastitis category when 
there was no simultaneous diagnosis of a Pat 1 subclini-
cal mastitis in the same cow during the same infectious 
period.

As sampling was performed monthly, we did not 
know exactly when each episode of subclinical mastitis 
started, and duration of infection was therefore calcu-
lated using the mid-point estimation method previously 
described by Zadoks et al. (2002). Thus, the start of the 
subclinical mastitis episode was defined as the middle 
of the time interval between a negative culture and the 
first positive culture event, and the end of the subclini-
cal mastitis episode was defined as the middle of the 
time interval between the last positive culture event 
and the first negative culture for a cow defined as cured 
(Zadoks et al., 2002).

A veterinary treatment for clinical mastitis was de-
fined as a new case of clinical mastitis.

Farm personnel identified cows with suspected clini-
cal mastitis based on generalized clinical symptoms, in-
cluding anorexia, lethargy, or elevated rectal tempera-
ture. These cows underwent clinical examination by the 
herd veterinarian. Cows that were treated for clinical 
mastitis were transferred to a treatment pen without 
AMS, and we do not have OCC records throughout 
the period of treatment for the clinical mastitis cases. 
Therefore, the last milking in the AMS before veteri-
nary treatment was associated with each new case of 
clinical mastitis.

OCC

Statistical analyses were conducted using Stata 
(Stata SE/14, Stata Corp., College Station, TX).

The raw OCC values were smoothed using 1 of 3 
different methods: (1) rolling 7-d average of available 
OCC, (2) rolling 48-h average of available OCC, and 
(3) calculation of the EMR for all milkings. The rolling 
7-d and 48-h average of OCC were not transformed 
before calculating rolling averages and correspond to 
the values given in the AMS software DelPro (DeLa-
val). The EMR was computed as described by Sørensen 
et al. (2016) for all milkings. Briefly, we checked the 
validity of all recorded OCC measurements before ln-
transformation. Only milkings from 5 to 305 DIM with 
a milking interval of 4 to 24 h and a milking yield of 
≥3.5 kg were included. Online cell count values of 0 were 
omitted from further analyses. We used the Wood lac-
tation curve to calculate lactation-specific OCC curves 
for first, second, and third and above lactations (Wood, 
1967). Periods with missing OCC data were corrected 
for by slowly approaching the lactation-specific OCC 
curves by 5% for each milking with missing observa-
tions (Sørensen et al., 2016). The ln-transformed OCC 
data were adjusted for aberrations and drift at the sen-
sor level by single exponential smoothing (Hyndman et 
al., 2008) before double exponential smoothing of the 
adjusted OCC values was employed according to the 
description by Sørensen et al. (2016).

The lactation-specific OCC curves were used for 
rapid initialization of the double exponential smooth-
ing (Sørensen et al., 2016). The output from the double 
exponential smoothing (level and trend) were used to 
calculate EMR values on a continuous scale from 0 to 1 
(Sørensen et al., 2016).

Diagnostic Test Properties

The raw OCC values, rolling 7-d OCC values, and 
the EMR were evaluated against the subclinical mas-
titis status of the cow at every milking. For subclini-
cal mastitis, the diagnostic properties were explored 
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separately for the 2 pathogen groups, Pat 1 and Pat 2. 
Furthermore, the raw OCC values, rolling 48-h OCC 
values and the EMR were evaluated against the clinical 
mastitis status of the cow at every milking. For each 
of the approaches, alert thresholds were calculated for 
4 different levels of specificity for detection of Pat 1 
subclinical mastitis episodes, Pat 2 subclinical mastitis 
episodes, and new cases of clinical mastitis using the 
“roctab” and “diagt” functions in Stata (Stata SE/14, 
Stata Corp.). The “roctab” function was used to iden-
tify the cut-point for each predefined level of specificity. 
It uses all registered outcomes of the diagnostic test 
variable as a classification cut-point and computes the 
corresponding sensitivity and specificity. The sensitiv-
ity of the identified diagnostic test variable cut-point 
for specificities of 80, 85, 90, and 99% were further 
evaluated with “diagt.” This displays summary statis-
tics for a diagnostic test as compared with the true 
status, in our case an episode of subclinical mastitis 
or a new case of clinical mastitis. Alert thresholds for 
each level of specificity for Pat 2 subclinical mastitis 
were calculated after removing observations with a 
Pat 1 subclinical mastitis alert at the same level of 
specificity. The 4 different detection approaches were 
compared using the “roccomp” function in Stata, which 
compares the area under multiple receiver operating 
characteristics curves (Stata SE/14, Stata Corp.). The 
receiver operating characteristics area under the curve 
for detection of Pat 2 subclinical mastitis were calcu-
lated after removing observations with Pat 1 subclini-

cal mastitis alerts at the level of 80% specificity for Pat 
1 subclinical mastitis.

RESULTS

Field Study

Altogether, we collected 5,330 QMS from a total of 
257 lactations in 173 cows. Each cow was on average 
sampled 8 times, ranging from 1 to 16. Cows entered 
the study with an average of 38 DIM, ranging from 
4 to 269. The average DIM of cows at sampling was 
119, ranging from 5 to 303. Bacteria were cultured from 
1,222 samples, with 1 and 2 pathogens cultured in 1,152 
and 67 samples, respectively. We excluded 3 samples 
from the analysis due to contamination. Pathogens 
were found in 222 lactations in 155 cows. The distribu-
tion of bacterial culture results are shown in Table 1.

Mastitis Status

According to our definition of subclinical mastitis 
status, there were 106 cow-level episodes of Pat 1 sub-
clinical mastitis during the course of the study. These 
episodes were based on 324 positive cow-level culture 
results. A total of 23,409 AMS milkings from 97 lacta-
tions in 80 cows were associated with these episodes 
of Pat 1 subclinical mastitis. An additional 65 Pat 1 
positive cow-level samples from 55 lactations in 53 cows 
did not meet any of our defined criteria for subclinical 

Table 1. Distribution of 1,286 microbiological diagnoses in 1,219 samples with positive bacteriological culture 
results out of 5,327 quarter milk samples

Bacterial species detected N

Culture result (cfu/mL)

≥100 and <500 ≥500 and <1,000 ≥1,000

Staphylococcus epidermidis 234 54 36 144
Corynebacterium bovis 225 31 41 153
Staphylococcus chromogenes 167 14 12 141
Staphylococcus aureus 119 45 11 63
Staphylococcus haemolyticus 116 43 17 56
Aerococcus viridans 91 57 14 20
Enterococcus faecalis, Enterococcus faecium, 
 and Lactococcus lactis

81 16 3 62

Streptococcus dysgalactiae 66 9 3 54
Staphylococcus simulans 32 6 5 21
Staphylococcus hominis 31 19 6 6
Streptococcus uberis 25 1 2 22
Staphylococcus xylosus 8 1 1 6
Streptococcus agalactiae — — — —
Other1 91 48 17 26
Not detected 4,108    
1Other bacteria cultured: Acinetobacter lwoffii, Bacillus pumilus, Corynebacterium amycolatum, Corynebacterium 
spp., Corynebacterium stationis, Macrococcus caseolyticus, Macrococcus luteus, Staphylococcus auricularis, 
Staphylococcus capitis, Staphylococcus equorum, Staphylococcus hyicus, Staphylococcus spp., Streptococcus canis, 
Streptococcus lutetiensis, Streptococcus spp., and Trueperella pyogenes.
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mastitis and were classified as being transiently colo-
nized.

Similarly, 117 episodes of Pat 2 subclinical mastitis 
occurred during the study period. These were associ-
ated with 288 positive cow-level culture results. A total 
of 22,182 milkings from 107 lactations in 84 cows were 
associated with these episodes of Pat 2 subclinical mas-
titis. An additional 106 Pat 2 positive cow-level culture 
results from 55 lactations in 51 cows were isolated in 
connection with an episode of Pat 1 subclinical masti-
tis. Following our hierarchical definition of subclinical 
mastitis, these culture results were not included in the 
Pat 2 subclinical mastitis episodes. Furthermore, 101 
Pat 2 positive cow-level culture results from 78 lac-
tations in 70 cows did not meet any of our defined 
criteria for subclinical mastitis and were classified as 
being transiently colonized.

During the study period, we recorded 16 veterinary 
treatments for clinical mastitis in 15 cows.

OCC

The OCC was successfully recorded from 82,182 of 
96,542 milkings; the 14,360 missing values were because 
of equipment failure or failure to service and refill the 
OCC unit with reagent.

The Pat 1 subclinical mastitis pathogens were gen-
erally associated with a higher OCC than the Pat 2 
subclinical mastitis pathogens. An overview of the 
pathogen-specific subclinical mastitis diagnoses and 
corresponding 7-d average OCC at the time of sampling 
are given in Table 2. The 7-d average OCC of cows with 
different subclinical mastitis status, as well as the 48-h 
average OCC of cows with a new case of clinical masti-
tis, are shown in Table 3. The 7-d average OCC of cows 
with Pat 1 subclinical mastitis and the 48-h average 
OCC of cows with a new case of clinical mastitis are 
clearly higher than the corresponding values from other 
groups, but this is not the case for Pat 2 subclinical 

Table 2. Pathogen-specific 7-d average cow-level online cell count (OCC) at the time of microbiological 
sampling in cows with subclinical mastitis

Pathogens in episodes of subclinical mastitis N
OCC  

(1,000 cells/mL) 95% CI

Staphylococcus epidermidis 141 191 150–232
Corynebacterium bovis 104 114 77–150
Staphylococcus chromogenes 136 154 111–197
Staphylococcus aureus 77 355 281–430
Staphylococcus haemolyticus 67 112 82–142
Aerococcus viridans 20 119 14–224
Enterococcus faecalis, Enterococcus faecium,  
 and Lactococcus lactis

56 292 183–400

Streptococcus dysgalactiae 56 308 204–412
Staphylococcus simulans 27 310 217–404
Staphylococcus hominis 6 119 0–309
Streptococcus uberis 22 298 162–434
Staphylococcus xylosus 7 180 122–238
Other1 25 131 76–185
1Other bacteria cultured: Acinetobacter lwoffii, Bacillus pumilus, Corynebacterium amycolatum, Corynebacterium 
spp., Corynebacterium stationis, Macrococcus caseolyticus, Macrococcus luteus, Staphylococcus auricularis, 
Staphylococcus capitis, Staphylococcus equorum, Staphylococcus hyicus, Staphylococcus spp., Streptococcus canis, 
Streptococcus lutetiensis, Streptococcus spp., and Trueperella pyogenes.

Table 3. Pathogen group-specific 7-d average of cow-level online cell count (OCC) values at the time of 
microbiological sampling in cows with subclinical mastitis (SCM), and average of cow-level OCC from milkings 
during the 48 h before a new case of clinical mastitis

Group N
OCC  

(1,000 cells/mL) 95% CI

Pat1 1 SCM 311 260 224–298
Pat 2 SCM 269 83 70–96
Any SCM 580 178 157–200
Transient colonization 134 124 56–192
No SCM and no bacteria cultured from any teat in cow 519 53 44–61
New case of clinical mastitis 16 1,280 721–1,838
1Pat = pathogen group.
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Figure 1. Examples of online cell count (OCC) values and mastitis status. The cow in (a) is a typical example of a cow with low OCC values 
until the onset of a case of Pat 1 subclinical mastitis (SCM). The Pat 1 SCM is followed by a case of Pat 2 SCM. This cow was not treated for 
clinical mastitis. The cow in (b) is an example of a cow with Pat 1 SCM and 2 treatments for clinical mastitis. EMR = elevated mastitis risk. 
Pat 1 and Pat 2 = different groups of mastitis pathogens.
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mastitis and transient colonizations. Examples of OCC 
curves and mastitis status are shown in Figure 1.

Diagnostic Test Properties

The diagnostic test properties for the predefined 
specificities of a single OCC value, the rolling 7-d or 
48-h average of OCC and the EMR, are shown dis-
tributed by Pat 1 subclinical mastitis episodes, Pat 2 
subclinical mastitis episodes, and new cases of clinical 
mastitis in Table 4. The sensitivity of the different ap-
proaches decreases when higher specificity is demanded.

The receiver operating characteristics area under 
the curve of Pat 1 subclinical mastitis episodes, Pat 2 
subclinical mastitis episodes, and new cases of clinical 
mastitis are shown in Table 5. In our study, we found 
that the EMR and the rolling 7-d average of OCC 
performed better than the single OCC for detection of 
Pat 1 subclinical mastitis episodes. The ROC curves of 
the different approaches for detecting Pat 1 subclinical 
mastitis episodes are shown in Figure 2. For the detec-
tion of Pat 2 subclinical mastitis episodes, the EMR 
approach performed better than both OCC approaches. 
The 3 different detection approaches performed equally 
well for detection of new cases of clinical mastitis. The 
ROC curves of the different approaches for detecting 
new cases of clinical mastitis are shown in Figure 2.

DISCUSSION

This is a study exploring the practical application of 
OCC to detect episodes of subclinical mastitis and new 
cases of clinical mastitis. The study is limited to one 
farm, which hampers the generalizability of the results. 
However, the aim of the study was to test the practical 

applicability of the approach rather than to generalize 
the results on a larger proportion of the population.

In this study we demonstrate that OCC may be used 
to identify cows with an episode of subclinical mastitis 
and new cases of clinical mastitis. The diagnostic test 
properties of the system can be adapted according to 
the required practical application, with settings se-
lected on the basis of the tradeoff between sensitivity 
and specificity. A farmer with a high tolerance of false 
positives may choose to increase the sensitivity at the 
cost of lower specificity.

No systems, including our approach in this study, 
currently operate at the desired level for sensor systems 

Table 4. Sensitivities at set specificities for detection of cases of Pat 1 subclinical mastitis (SCM), cases of Pat 2 SCM, and new cases of clinical 
mastitis (CM) using online cell count (OCC) or elevated mastitis risk (EMR) values1

Item
Sp = 80 

Se (95% CI) [cut-off]
Sp = 85 

Se (95% CI) [cut-off]
Sp = 90 

Se (95% CI) [cut-off]
Sp = 99 

Se (95% CI) [cut-off]

Pat 1 SCM     
 Single OCC 63 (63–64) [≥74] 54 (54–55) [≥97] 43 (42–44) [≥132] 7 (6–7) [≥814]
 7-d average OCC 69 (69–70) [≥77] 62 (61–62) [≥101] 51 (50–51) [≥137] 7 (6–7) [≥726]
 EMR 69 (68–69) [≥0.03] 59 (59–60) [≥0.05] 48 (48–49) [≥0.08] 8 (7–8) [≥0.62]
Pat 2 SCM     
 Single OCC 29 (28–30) [≥40] 20 (19–20) [≥57] 12 (12–13) [≥88] 0.5 (0.4–0.7) [≥642]
 7-d average OCC 29 (29–30) [≥42] 21 (20–21) [≥58] 14 (14–15) [≥90] 0.3 (0.3–0.4) [≥626]
 EMR 31 (30–31) [≥0.01] 19 (18–20) [≥0.02] 12 (11–12) [≥0.04] 0.5 (0.4–0.6) [≥0.54]
New CM     
 Single OCC 87 (60–98) [≥121] 87 (60–98) [≥159] 80 (52–96) [≥232] 60 (32–84) [≥1,397]
 48-h average OCC 81 (54–96) [≥126] 69 (41–89) [≥167] 69 (41–89) [≥243] 44 (20–70) [≥1,336]
 EMR 81 (54–96) [≥0.08] 81 (54–96) [≥0.12] 75 (48–93) [≥0.20] 38 (15–65) [≥0.83]
1Cut-off values for the levels of sensitivity (Se) and specificity (Sp) are in 1,000 cells/mL for OCC and between 0 and 1 for the EMR. Calculated 
sensitivities for Pat 2 subclinical mastitis were conducted for each level of specificity after the removal of milkings with a sensor alert for subclini-
cal Pat 1 subclinical mastitis at that level of specificity. Pat 1 and Pat 2 = different groups of mastitis pathogens.

Table 5. Receiver operating characteristics area under the curve 
(ROC area) of the 3 detection approaches for detection of cases of Pat 
1 subclinical mastitis (SCM), Pat 2 SCM, and new cases of clinical 
mastitis (CM)1

Detection approach
ROC  
area 95% CI

Pat 1 SCM
 Single OCC2 0.783 0.779–0.787
 Rolling 7-d average OCC 0.809 0.806–0.813
 EMR3 0.804 0.800–0.808
Pat 2 SCM
 Single OCC 0.587 0.581–0.593
 Rolling 7-d average OCC 0.597 0.591–0.603
 EMR 0.641 0.635–0.647
New CM
 Single OCC 0.931 0.859–1.000
 Rolling average 48 h OCC 0.925 0.869–0.980
 EMR 0.904 0.802–1.000
1The ROC area under the curve for detection of Pat 2 subclinical mas-
titis is calculated after excluding milkings with Pat 1 subclinical mas-
titis alerts at the level of 80% specificity for Pat 1 subclinical mastitis. 
Pat 1 and Pat 2 = different groups of mastitis pathogens.
2OCC = online cell count.
3EMR = elevated mastitis risk.
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Figure 2. Receiver operating characteristic curves for detection of (a) Pat 1 subclinical mastitis and (b) new cases of clinical mastitis. The 
time windows for rolling averages are 7 d and 48 h for (a) and (b), respectively. EMR = elevated mastitis risk; OCC = online cell count. Pat 1 
and Pat 2 = different groups of mastitis pathogens.
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in dairy production (ISO, 2007). We suggest that us-
ing sensor systems could still be advantageous for the 
herd manager and that the usefulness of the system 
depends on the desired application. Thus, we suggest 
that sensitivity should be high for detection of cows for 
dry-cow treatment, but specificity should be high for 
detection of IMI during lactation. This suggestion is 
related to the number of detection events. For selective 
dry-cow therapy, for which there is a single detection 
event, high sensitivity at the cost of lower specificity 
will result in a moderate number of false-positive IMI 
alerts. However, a test with similar characteristics will 
lead to numerous false alerts during lactation, when 
every sensor measurement would represent a possible 
detection event. Both single OCC values and smoothed 
values, like the EMR of Sørensen et al. (2016), can be 
used to detect episodes of subclinical mastitis and new 
cases of clinical mastitis. Based on this, we propose 
that systems should be adjusted according to the lacta-
tion stage of the individual cow and the tolerance of 
the farmer for false positives, such that farm-specific 
everyday practical udder health management is accom-
modated. This is in line with current work undertaken 
by the International Dairy Federation (Hogeveen et al., 
2018).

Sørensen et al. (2016) used treatment of mastitis with 
antibiotics as their gold standard for mastitis cases, but 
they also suggested that the EMR could identify cows 
with chronic infections. From our data, the single EMR 
and the rolling 7-d average OCC performed better than 
a single OCC value for the detection of Pat 1 subclini-
cal mastitis episodes. Furthermore, the EMR approach 
performed better than both the OCC approaches for 
the detection of Pat 2 subclinical mastitis episodes. 
We suggest that this reflects the variation in immune 
response between individuals (Rivas et al., 2013), and 
that the cow-specific smoothing inherent in the EMR 
provides more information that improves the diagnostic 
properties of the system.

Our results shows that the confidence interval (CI) 
of the 7-d average OCC for episodes of Pat 1 subclinical 
mastitis or new cases of clinical mastitis differed from 
those of the other groups. The corresponding CI for Pat 
2 subclinical mastitis episodes and transient coloniza-
tion overlapped, and the CI of transient colonization 
overlapped with those of cows with both no subclinical 
mastitis and no transient colonization. This overlap 
in CI makes it difficult to separate the latter groups 
from each other. However, as the aim is to manage 
udder health, as measured by bulk tank SCC, the most 
important goal is to identify cows with a true IMI ac-
companied by a high SCC.

We consider the results are applicable to dairy cows 
with frequent OCC measurements in AMS. However, 
Sørensen et al. (2016) reported large differences in test 
algorithm performance between herds. Assuming that 
this is the case for our study also, a limitation of the 
external validity of our results is that we have only 
studied a single herd that may have a quite specific 
OCC pattern. Furthermore, because the results are 
based on OCC only, they cannot be extrapolated to 
other udder health sensors or SCC from DHI samples 
without further evaluation.

Our aim was to use OCC measurements to detect 
cows with subclinical mastitis associated with infec-
tion over time or high colony-forming unit counts of 
mastitis pathogens. We chose bacteriological culture of 
QMS combined with our criteria of infection over time 
or high colony-forming unit counts to define episodes of 
subclinical mastitis. This is an imperfect gold standard 
and the results may be biased by misclassification of 
subclinical mastitis status (Dohoo et al., 2011). Be-
cause of our conservative definition of subclinical mas-
titis status, there were likely few false positive cases. 
Therefore, the misclassification mainly includes cows 
with subclinical mastitis that were falsely defined as 
healthy. This results in a negative bias in specificity. 
Furthermore, as cows were sampled for bacteriological 
culture once monthly, some cows may have had an epi-
sode of subclinical mastitis between our visits. When 
cured, these would not be detected by bacteriological 
culture, but they might have been identified by the sen-
sor system. Also, the sensor system may have detected 
the true start and end of subclinical mastitis episodes, 
whereas our defined start and end were set by the mid-
point estimation method described. Thus, we may have 
treated the sensor alerts as false, although they could 
actually have been correct. This is a challenge for all 
detection approaches that are based on SCC (IDF, 
2013).

We grouped the bacteriological diagnoses in our study 
in the Pat 1 and Pat 2 groups, and not the traditional 
major and minor pathogen groups. This was because 
the non-aureus staphylococci is a heterogeneous group 
of bacterial species (Vanderhaeghen et al., 2015). In 
our study, we included Staphylococcus epidermidis and 
Staphylococcus simulans of the non-aureus staphylococci 
in the group expected to cause elevated OCC (Pat 1). 
This was based on reports of these pathogens’ ability 
to cause IMI over time and elevated SCC (Simojoki 
et al., 2011; Fry et al., 2014). Furthermore, we chose 
a hierarchical approach to grouping bacteriological di-
agnoses in Pat 1 subclinical mastitis episodes and Pat 
2 subclinical mastitis episodes, such that a cow could 
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not be positive for both Pat 1 subclinical mastitis and 
Pat 2 subclinical mastitis simultaneously. The reason 
for choosing this approach was that Pat 1 subclinical 
mastitis episodes were likely to have a greater effect 
on the OCC than Pat 2 subclinical mastitis episodes. 
The benefit of this approach is that we could evaluate 
the ability of the system to identify episodes of Pat 
2 subclinical mastitis after removing cows with Pat 1 
subclinical mastitis alerts. Thus, the system divided the 
herd into 4 mastitis status groups: cows with Pat 1 
subclinical mastitis episodes, cows with Pat 2 subclini-
cal mastitis episodes, cows with no subclinical mastitis 
and cows with a new case of clinical mastitis.

Rapid detection of clinical mastitis is important for 
both animal welfare, milk quality, and economic return. 
At the same time, more data may improve the diag-
nostic test properties of sensor equipment (Hogeveen 
et al., 2010). To balance this issue, the rolling average 
OCC for detection of clinical mastitis in our study was 
set to use OCC data from 48 h. This did, however, not 
improve the detection of new cases of clinical mastitis 
in our study. Although, in our study, all 3 approaches 
performed equally for the detection of new cases of 
clinical mastitis, we have relatively few cases. There 
could be differences in the operating characteristics of 
the 3 approaches for the detection of new cases of clini-
cal mastitis that we are unable to estimate with our 
material. Also, because we do not have OCC readings 
throughout the clinical mastitis treatment period, we 
cannot evaluate which approach is best for continued 
alerts for clinical mastitis. However, the sensitivities 
and specificities are both likely to improve when the 
time window for matching the gold standard of clinical 
mastitis is increased (Hogeveen et al., 2010).

Furthermore, to improve the detection of subclini-
cal mastitis in our study, the rolling average OCC for 
detection of subclinical mastitis was set to use data 
from 7 d. This significantly improved the diagnostic 
test properties for detection of Pat 1 subclinical mas-
titis episodes. We propose that this longer detection 
window is acceptable because subclinical mastitis does 
not necessarily require immediate action for animal 
welfare reasons.

Frequent sensor alerts can be a concern for herd 
managers. Therefore, information from the sensor sys-
tem has to be actionable, and the level of alert should 
be adapted to the urgency of the situation. That is, 
whenever there is an alert, the system should be able to 
evaluate whether there is a need for immediate notifica-
tion of the herd manager. Furthermore, optimal actions 
should be suggested, with predictions of outcome for 
each suggestion. For the convenience of the user and to 
limit overtreatment of cows, the number of false posi-
tives should be minimized.

CONCLUSIONS

We investigated detection of subclinical mastitis epi-
sodes and new cases of clinical mastitis based on OCC 
from every milking. For diagnosis of Pat 1 subclinical 
mastitis episodes, the EMR and a rolling 7-d average 
of OCC outperformed a single OCC value. For diag-
nosis of Pat 2 subclinical mastitis episodes, the EMR 
outperformed the OCC approaches. For detection of 
new cases of clinical mastitis, all approaches performed 
equally well. By combining different alerts, the systems 
can be adapted to the needs of individual farmers re-
garding udder health management in their herds.
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A B S T R A C T

Fully automated on-line analysis equipment is available for analysis of somatic cell count (SCC) at every milking
in automatic milking systems. In addition to results from on-line cell counters (OCC), an array of additional cow-
level and quarter-level factors considered important for udder health are recorded in these systems. However,
the amount of variability in SCC that can be explained by available data is unknown, and so is the proportion of
the variability that may be due to physiological or normal variability. Our aim was to increase our knowledge on
OCC as an indicator for disturbances in udder health by assessing the variability in OCC in cows free from clinical
mastitis. The first objective was to evaluate how much of the variability in OCC could be explained by different
potential sources of variability, including intramammary infection (IMI) status (assessed by bacterial culture of
quarter milk samples). The second objective was to evaluate the repeatability of the OCC sensor used in our
study and the agreement between OCC values and SCC measured in a dairy herd improvement (DHI) laboratory.
A longitudinal study was performed in the research herd of the Norwegian University of Life Sciences from
January 5th 2016 to May 22nd 2017. Data from 62,471 milkings from 173 lactations in 129 cows were analyzed.
We used ln-transformed OCC values (in 1000 cells/ml) as the outcome (lnOCC) in linear mixed models, with
random intercepts at cow-level and lactation-level within cow. We were able to explain 15.0% of the variability
in lnOCC with the following fixed effects: lactation stage, parity, milk yield, OCC in residual milk from the
previous milking, inter-quarter difference between the highest and lowest conductivity, season, IMI status, and
genetic lineage. When including the random intercepts, the degree of explanation was 55.2%. The individual
variables explained only a small part of the total variability in lnOCC. We concluded that physiological or normal
variability is probably responsible for a large part of the overall variability in OCC in cows without clinical
mastitis. This is important to consider when using OCC data for research purposes or in decision-support tools.
Sensor repeatability was evaluated by analyzing milk from the same sample multiple times. The coefficient of
variation was 0.11 at an OCC level relevant for detection of subclinical mastitis. The agreement study showed a
concordance correlation coefficient of 0.82 when comparing results from the OCC with results from a DHI
laboratory.

1. Introduction

Management of udder health is essential for maintaining an efficient
and sustainable dairy production. Somatic cell count (SCC) is a widely
used indicator of udder health status in dairy cows, and is used both at
quarter level, cow level, and bulk-tank level (Schukken et al., 2003).
Dairy herd improvement (DHI) programs commonly include monthly
or bimonthly measurements of cow-level SCC for assessing udder health
and implementing selective dry cow therapy strategies (Østerås et al.,

1999; Torres et al., 2008). In automatic milking systems (AMS), fully
automated on-line analysis equipment is available for on-farm analysis
of SCC at every milking (Sørensen et al., 2016). This represents a sub-
stantial increase in the amount of data containing information, e.g., for
udder health management, which may also serve as phenotypes for
breeding programs. In addition to frequent measurements of SCC, a
whole array of additional cow-level and quarter-level factors con-
sidered of importance for udder health are recorded in the AMS at every
milking (Hogeveen et al., 2010). This raises the question regarding the
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extent to which the variability in SCC can be explained by different
explanatory factors, and the proportion of the variability that may be
due to physiological variation within and between cows. Therefore, it is
important that the relevance of using such frequent measurements is
evaluated against known biological states, and that sources of varia-
bility are studied within and between animals before a conclusion on a
given animal’s health status is reached.

A literature review estimated that the geometric mean SCC level in
uninfected quarters was 68,000 cells/mL (Djabri et al., 2002). However,
SCC in milk can increase by tenfold or more during an intramammary
infection (IMI) (de Haas et al., 2002). An IMI caused by bacteria is
considered to be the most common cause of elevated SCC in dairy cows
(Schepers et al., 1997; IDF, 2013). Other reasons for fluctuations in SCC
include, among other causes: systemic disease, trauma to the udder,
lactation stage, parity, and seasonal variation (IDF, 2013). However, a
large proportion of the variability in SCC remains unexplained, even
when accounting for these factors (Schepers et al., 1997). The milking-
to-milking variability in milk composition, including SCC, has been
investigated in previous studies (Quist et al., 2008; Forsbäck et al.,
2010). However, in these studies, data on bacteriological udder health
status were either not included at all (Quist et al., 2008) or only spar-
sely (Forsbäck et al., 2010). Both these studies were of short duration,
being only five and 21 days, respectively. Hence, milking-to-milking
variability in SCC over more prolonged periods in cows with known
bacteriological udder health status has, to our knowledge, not pre-
viously been described.

Although the detection of clinical mastitis in AMS still receives
substantial attention, implementation of preventive measures should be
preferable to reduce production losses, to reduce the use of anti-
microbial drugs, and to improve animal welfare. Detection of sub-
clinical mastitis by SCC plays an important role in mastitis prevention
programs. A recent study investigated the performance of results from
an on-line somatic cell counter (OCC) as an indicator for subclinical
mastitis (Dalen et al., 2019). Although the sensitivity and specificity for
detection of subclinical mastitis were reported to be better than those of
traditional DHI systems (Reksen et al., 2008; Dalen et al., 2019), the
amount of false positive alerts remains challenging. Increasing our
knowledge on potential sources of variability in OCC and determining
how much of the variability can be attributed to specific measurable
factors, might help improve future decision-support tools for udder
health management.

Sensor performance can be described by repeatability (the variation
in the results when the same sample is measured repeatedly) and the
agreement between one method and a reference method (also called
reproducibility) (Dohoo et al., 2009). The agreement between OCC
measurements and SCC measurements from a DHI system has pre-
viously been evaluated in commercial Holstein and Jersey herds
(Sørensen et al., 2016). However, the repeatability of the OCC sensor
has yet to be reported. As variability caused by suboptimal sensor
performance will be incorporated in the total variability in the frequent
OCC measurements, this needs to be evaluated separately in order to
assess how the precision might influence overall variability.

The aim of this study was to increase our knowledge on OCC as an
indicator for disturbances in udder health by assessing the variability in
frequently measured OCC in cows free from clinical mastitis. Our first
objective was to evaluate how much of the variability between fre-
quently measured OCC could be explained by potential explanatory
factors, including subclinical IMI status as determined by bacterial
culture in quarter milk samples (QMS), variability between cows, and
variability between milkings in the same cow, among other factors. To
assess the sensor as a potential source of variability in our data, a
second objective was to evaluate the repeatability of the OCC sensor
used in this study, and the agreement between OCC results and SCC
measured in a DHI laboratory.

2. Material and methods

2.1. Milking-to-milking variability in OCC

2.1.1. Field study and data collection
This study used data collected at the research herd at the Norwegian

University of Life Sciences in a study previously described by Dalen
et al. (2019). Cows in two lactation pens, each holding approximately
50 cows, were investigated over 17 months from January 5th 2016 to
May 22nd 2017. Each lactation pen was equipped with one AMS (De-
Laval VMS, DeLaval International AB, Tumba, Sweden) and an On-line
Cell Counter (DeLaval International AB, Tumba, Sweden) that recorded
cow-level OCC at every milking. Both AMS were adjusted to minimize
the amount of residual milk in the system after milking to reduce the
effect of carryover of milk from the previous cow. First, when a milking
had started, the milk pump was run for a short period to replace the
residual milk in the pump with milk from the current milking. Sec-
ondly, instead of mixing the milk in the receiver jar before sampling,
small pulses of milk were collected during pumping the entire milk
volume. The AMS recorded milking interval, electrical conductivity,
average milk-flow rate, and milk yield at quarter level in every milking.
These data were obtained from the DelPro management system (De-
Laval International AB, Tumba, Sweden). Because OCC is reported at
cow level, a variable describing the average milk-flow rate per milking
(kg/min) at cow level was calculated as the average value for quarters
with non-missing values. Conductivity was also reported per quarter,
and, to convert this into a cow-level indicator of disturbances in udder
health, the difference between the highest and lowest conductivity
among the four quarters (inter-quarter difference) was calculated
(Sheldrake et al., 1983; Nielen et al., 1992). Milk yield per milking (kg)
was reported at cow level. Most cows in the study herd belonged to one
of two genetic groups of Norwegian Red cattle, one selected for high
milk yield and the other for low incidence of clinical mastitis
(Heringstad et al., 2007). Differences in SCC have previously been re-
ported between these two genetic groups (Heringstad et al., 2008).

Aseptic QMS were collected monthly from all lactating cows, and
were frozen after collection and during transport to the laboratory for
microbiological analyses (Hogan et al., 1999). From the cultured bac-
teria, species identification was performed by matrix-assisted laser
desorption ionization-time of flight mass spectrometry (MALDI-TOF
MS) microflex LT (Bruker Corporation, Billerica, USA) (Cheuzeville,
2015). Samples with culture results indicating more than 2 morpholo-
gically different colony types were treated as contaminated and ex-
cluded from further analyses.

2.1.2. IMI status
The culture results from the QMS were used to assign a subclinical

IMI status for each cow throughout the study period. Dalen et al. (2019)
described the methodology in detail. In short, pathogens were divided
into 2 groups; the group of pathogens from which a high cell count
would be expected during an IMI episode was named Pat 1, while
known mastitis pathogens that were not included in Pat 1, were in the
Pat 2 category. Positive culture results were considered to be associated
with an episode of subclinical IMI when fulfilling at least one of the
following three criteria: (1) ≥ 1000 cfu/mL of a single mastitis pa-
thogen were cultured from a single sample in at least 1 quarter, (2) ≥
500 cfu/mL of a mastitis pathogen were cultured from 2 out of 3 con-
secutive milk samples from the same quarter, or (3) ≥ 100 cfu/mL of a
mastitis pathogen were cultured from 3 consecutive milk samples from
the same quarter. These definitions were adapted from Zadoks et al.
(2002). Cows with positive milk cultures that did not meet any of the
above criteria were classified as being transiently colonized (Reksen
et al., 2012). To assign an IMI status to every milking based on the
monthly QMS, we used the mid-point estimation method previously
described by Zadoks et al. (2002), assuming that a shift from one udder
health status to another happened midway between two sampling
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occasions. Furthermore, because the OCC is recorded at the cow level,
the udder health status at quarter level were aggregated into cow-level
diagnoses. When assigning the IMI statuses, we implemented a hier-
archical order in the classification such that a cow could only be as-
signed to the Pat 2 IMI group when there was no simultaneous diagnosis
of a Pat 1 IMI in the same cow during the same period. Based on this set
of criteria, cows were assigned one of the following four udder health
statuses for every milking: No IMI, Pat 1 IMI, Pat 2 IMI, or transient
colonization.

Details on the results from the microbiological analyses performed
on the QMS can be found in Dalen et al. (2019). Briefly, mastitis pa-
thogens were cultured from 1222 out of 5330 QMS, and the pathogens
detected most frequently were Staphylococcus epidermidis (n= 234),
Corynebacterium bovis (n= 225), Staphylococcus chromogens (n= 167),
Staphylococcus aureus (n= 119), and Staphylococcus haemolyticus
(n= 116).

2.1.3. Inclusion and exclusion criteria
A total of 96,524 milkings were performed in the two AMS during

the study period. This included data from 257 full or partial lactations
in 173 cows. Observations fulfilling the following criteria were included
in the analysis: days in milk (DIM) from 5 to 305, milking interval of
4–24 h, and milk yield of ≥ 3.5 kg per milking. Furthermore, ob-
servations with missing or zero OCC values, observations with missing
OCC from the previous milking in the same AMS, and lactations with
data from fewer than 100 days were omitted. All data from lactations
where a case of clinical mastitis had been recorded were excluded from
the analysis.

2.1.4. Statistical analysis
The dataset used in the statistical analyses contained 62,471 milk-

ings from 173 lactations in 129 cows; 85 cows contributed with one
lactation, and 44 cows with two lactations. At lactation level, the dis-
tribution among parities were as follows: 81 first parity, 42 second
parity, and 50 third or higher parities.

We used OCC (in 1000 cells/mL) transformed to a logarithmic scale
(lnOCC) as the outcome variable in linear mixed models (Schepers
et al., 1997; Reksen et al., 2008). The explanatory variables evaluated
are described below and summarized in Table 1. We included the
lnOCC value from the previous milking in the same AMS to adjust for
the carryover effect due to residual milk from the previous cow, as
suggested by Løvendahl and Bjerring (2006). Milk yield per milking
(kg) was included to account for the dilution effect of milk from healthy
quarters in the same cow (Green et al., 2006) and differences in milk
production between cows.

To adjust for possible differences between the two sensors used in
the study, a categorical variable, distinguishing between the two
milking stations, was included in the analysis. The maximum inter-
quarter difference in conductivity per milking was included as an

indicator of pathological processes in one or more quarters (Sheldrake
et al., 1983; Nielen et al., 1992). Previous research has shown that
average milk-flow rate is associated with SCC (Berry et al., 2013), and
the average milk-flow rate per milking was therefore included. Because
both the milk yield and the milk-flow rate per milking are associated
with time since last milking, our models adjusted for this by including
the milking interval in hours (Hogeveen et al., 2001). To account for
changes in SCC related to stage of lactation, DIM and lnDIM were in-
cluded in the model (Reksen et al., 2008). Cows with different parities
differ in SCC level (Laevens et al., 1997), and therefore our model in-
cluded a categorical variable distinguishing between first, second, and
third or later parities. To account for variability in OCC due to genetic
differences between cows, a categorical cow-level variable accounting
for differences between cows according to genetic group (“low mas-
titis”; “high yield”; “unknown”) was included in our model, with “low
mastitis” set as the baseline level (Heringstad et al., 2008). Seasonal
variability was accounted for by including a categorical variable dis-
tinguishing between winter (Dec., Jan., Feb.), spring (Mar., Apr., May),
summer (Jun., Jul., Aug.), and autumn (Sep., Oct., Nov.). Finally, the
IMI status (No IMI, Pat1 IMI, Pat2 IMI, or transient colonization) was
also included in the analysis as a categorical variable.

Due to the lack of independence between repeated OCC measure-
ments within cows and lactations, we used a multi-level modeling ap-
proach. Random intercepts were specified at cow level and lactation
level within cows. The significance of the random intercept terms was
evaluated against a model with a fixed intercept using the likelihood
ratio test. A variance component model was used for calculating the
intraclass correlation coefficient to describe how much of the overall
variability resided at the cow level and at within-cow lactation level. To
model the dependency between the residual error terms within cow and
lactation, the following correlation structures were evaluated: ex-
ponential, compound symmetry, and no within-lactation correlation
between the error terms. The exponential and compound symmetry
correlation structures were specified with the same grouping variables
as the random intercepts, and data was sorted by milking number
within lactations. First-order autocorrelation was also considered, but
was not used due to unequal time intervals between observations. The
model resulting in the lowest Akaike information criterion (AIC) value
was selected. Subsequently, a backwards variable selection procedure
was applied, and statistical significance was considered at P-value<
0.05. The regression modeling was performed in the package ‘nlme’ in
the statistical software R, version 3.6.1 (R Core Team, 2019).

Goodness-of-fit was evaluated by calculating the marginal and
conditional coefficient of determination (Nakagawa and Schielzeth,
2013), which describes the variance explained by the fixed factors only
and the combination of the random and fixed factors, respectively. The
estimates were calculated using the package ‘MuMin’ in the statistical
software R, version 3.6.1 (R Core Team, 2019) based on parameter
estimates from the final model. To evaluate the approximate

Table 1
Summary of explanatory variables evaluated in the study.

Variable Brief descriptiona

Carryover ln-transformed OCC (in 1000 cells/mL) from the previous cow milked in the same AMS.
Milking station Categorical variable distinguishing between the two OCC sensors used in the study.
Milk yield (kg) Adjustment for dilution effect on SCC from healthy quarters and differences in milk production between cows.
Conductivity Difference between highest and lowest conductivity among the four quarters.
Milk flow rate (kg/min) Average milk flow rate from quarters with registered milk flow.
Milking interval (hours) Time since previous milking for the same cow.
Lactation curve A lactation curve described by DIM and the natural logarithm of DIM accounting for changes in OCC related to lactation stage.
Parity Categorical variable for first, second, and third or later lactation.
Lineage Categorical variable distinguishing between different genetic lineages; low mastitis, high milk yield, and unknown.
Seasonal variability Categorical variable; winter, spring, summer, autumn.
IMI status Categorical variable; No IMI, Pat 1 IMI, Pat 2 IMI, transient colonization.

a OCC=on-line somatic cell count; AMS= automatic milking system; SCC= somatic cell count; DIM=days in milk; IMI= intramammary infection; Pat 1
IMI= IMI with mastitis pathogens from which a high somatic cell count would be expected; Pat 2 IMI= IMI with other known mastitis pathogens.
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contribution of the individual variables to the overall fit for the final
model, we used the difference in marginal coefficient of determination
between the final model and models where one term at a time was
omitted. The two parameters of the lactation curve (DIM and lnDIM)
were included simultaneously in all models.

Residual diagnostics were performed by graphical assessment of the
distribution of the residuals calculated for the individual observations
and for the random intercepts, respectively.

To compare the variability in OCC between periods of different IMI
status (no IMI, Pat 1 IMI, Pat 2 IMI, or transient colonization), the
distribution of lnOCC in periods of different IMI statuses was evaluated
graphically using smoothed density curves. In addition, coefficients of
variation were calculated for each of the four IMI statuses, assuming a
log-normal distribution in OCC.

2.2. Agreement between OCC and SCC

To evaluate the agreement between results from the OCC sensor
used in the current study and SCC measurements from a laboratory
accredited by the International Committee for Animal Recording
(ICAR), additional composite milk samples were collected at 16 occa-
sions over 5 weeks for a subset of milkings in one of the two milking
stations. The 64 cows present in one of the two lactation pens were
sampled multiple times. The samples were collected with an automated
milk sampler (DeLaval, Tumba, Sweden), conserved with bronopol (2-
bromo-2-nitropropane-1,3-diol) and shipped refrigerated to the ICAR-
accredited laboratory used for routine milk analyses by the Norwegian
Dairy Herd Recording System. The samples were analyzed in a Bentley
Somacount FCM (Bentley Instruments Inc., Chaska, MN). The dataset
included 1661 OCC values with corresponding SCC measurements from
64 cows.

Both SCC and OCC values were transformed to the natural loga-
rithmic scale. Because neither of the methods could be considered a
gold standard due to differences in sampling equipment, the con-
cordance correlation coefficient (CCC) was chosen for the statistical
analysis. A version of CCC modified to account for repeated measure-
ments within cow was used. The analysis was performed in the package
‘cccrm’ in the statistical software R, version 3.6.1 (R Core Team, 2019).
In addition, a scatterplot with a superimposed 45 ° line (representing
perfect agreement) was used for graphical assessment of the data.

2.3. Repeatability

To evaluate the repeatability of the OCC sensors, a sample of bulk
tank milk (5 L) was collected. The milk was mixed gently, but thor-
oughly, to ensure an even distribution of the milk constituents, before
drawing a number of consecutive 5mL samples in syringes. These
samples were subsequently injected directly in the OCC apparatus,
which was operated in manual mode. The process was repeated as
many times as possible in the available time slot (n= 62) for both OCC
sensors used in the study. The mean OCC value, standard deviation and
coefficient of variation (CV) were calculated for both sensors.

3. Results

3.1. Milking-to-milking variability in OCC

3.1.1. Descriptive results
The arithmetic and geometric mean OCC value in the final dataset

was 96,629 cells/mL and 35,279 cells/mL, respectively. The lowest
OCC value was 1000 cells/mL (detection limit) and the highest was
7,474,000 cells/mL.

The intraclass correlation coefficient calculated from the variance
component model was 0.155 at the cow level, and 0.536 at the lactation
level. Hence, in our data, 15.5% of the variability in lnOCC could be
attributed to differences between cows, and 53.6% to differences be-
tween lactations (within cows). Consequently, 46.4% of the variability
could be attributed to milking-to-milking differences within lactation.

Smoothed density curves showing the distribution of lnOCC values
in periods of no IMI, Pat 1 IMI, Pat 2 IMI and transient colonization are
presented in Fig. 1. The no IMI-group has the highest density between
lnOCC of 2 and 3 (7400 and 20,000 cells/mL, respectively), whereas the
periods of Pat 1 IMI and Pat 2 IMI had their highest densities at an
lnOCC value of around 5 and 4, respectively (148,400 cells/mL and
54,600 cells/mL). Periods classified as transient colonization showed a
similar distribution as periods of No IMI. There was, however, a large
overlap between the lnOCC values between the groups. Supplementing
the graphical assessment in Fig. 1, the coefficients of variation for OCC
in periods of No IMI, Pat 1 IMI, Pat 2 IMI, and transient colonization
were 1.67, 2.13, 1.70, and 1.89, respectively.

3.1.2. Multivariable model
The multivariable linear mixed model, using an exponential corre-

lation structure, was selected based on the lowest AIC. The likelihood
ratio test showed that the random intercept terms of “cow” and “lac-
tation” within cow contributed significantly to a better model fit
(P < 0.001). The estimates from the final model are presented in
Table 2. The model showed that, compared with culture-negative per-
iods, the lnOCC increased on average by 0.43 units in periods of sub-
clinical Pat 1 IMI, and by 0.29 units in periods of subclinical Pat 2 IMI.
At an SCC of 100,000 cells/mL this corresponds to an increase of 54,000
and 33,000 cells, respectively. The regression coefficients for DIM and
lnDIM describe a lactation curve where lnOCC decreases rapidly in
early lactation, reaches a minimum around 70 DIM, and slowly in-
creases towards the initial level during the rest of the 305-d lactation.
Cows belonging to the genetic group selected for high milk yield had
higher lnOCC values than cows in the low mastitis group. The re-
lationship between lnOCC and milk yield was negative; hence higher
milk yield was associated with lower lnOCC. The carryover effect
showed a positive relationship between the lnOCC in a given milking
and the OCC measured in the residual milk from the previous cow
milked in the same AMS. No difference was found between lnOCC in the
two milking stations, and the variable distinguishing between the two
milking stations was omitted from the final model. Only minor changes
in the estimates for the other variables were seen after this omission.

Random effect estimates for the final model, reported as standard
deviations (95% CI), were 0.41 (0.31 – 0.53) for cow, and 0.72 (0.64 –

Fig. 1. Smoothed density plot showing the distribution of ln-transformed On-
line Cell Count (OCC) values (in 1000 cells/mL) in periods of 1) no in-
tramammary infection (No IMI), 2) IMI with known mastitis pathogens from
which a high somatic cell count would be expected (Pat 1 IMI), IMI with other
known mastitis pathogens (Pat 2 IMI), and 3) Transient colonization.
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0.80) for lactation within cow. Within group standard error (95% CI)
was 0.87 (0.86 – 0.88). The correlation structure parameter ρ2 (95% CI)
was 1.81 (1.76–1.85).

The marginal and conditional coefficients of determination showed
that the fixed effects in the final model described 15.0% of the varia-
bility in lnOCC, while the fixed and random effects together described
55.2% of the milking-to-milking variability of lnOCC in clinically
healthy udders. The approximate contributions of the individual vari-
ables to the overall marginal coefficient of determination are reported
in Table 2.

3.2. Agreement between OCC and SCC

The CCC between the results from the OCC and the DHI laboratory,
estimated on ln-transformed data, was 0.82 (95% CI: 0.78 - 0.85). The
CCC has a maximum value of 1, representing the situation of perfect
agreement between the two methods.

The agreement between OCC and SCC is displayed in Fig. 2. Al-
though most observations was clustered around the superimposed line
of perfect agreement, it appears that the agreement increases by in-
creasing lnSCC values.

3.3. Repeatability

Results from the repeatability study showed nearly identical results
for the two OCC sensors used in the current study. The 62 analyses
performed on OCC 1 resulted in a mean OCC value (in 1000 cells/mL)
of 112, a standard deviation of 12.8, and consequently a CV of 0.11.
The 62 analyses performed on OCC 2 resulted in a mean OCC value
(1000 cells/mL) of 117.9, a standard deviation of 12.7, also resulting in
a CV of 0.11.

4. Discussion

To the authors’ knowledge, this is the first presentation of the basic
characteristics of frequently measured OCC relative to known IMI
status. Only lactations with no records of clinical mastitis were included
in the analyses. Our findings contribute to a better understanding of the
normal variability in OCC; this is important for further improving the
use of OCC for research, for udder health management in AMS herds,
and for breeding programs.

SCC data are often used in research studies investigating how dif-
ferent aspects of dairy production (e.g., housing, milking routines,
treatment protocols, etc.) might affect udder health (Bielfeldt et al.,
2004; Erdem et al., 2007; Bhutto et al., 2010). The underlying as-
sumption is that a risk factor affects udder health, which, in turn, results
in changes in SCC. A major strength of our study is the close monitoring
of IMI status by monthly QMS bacterial cultures together with detailed
data recorded by the OCC and AMS at every milking. This enables us to
evaluate factors of importance for lnOCC and to assess the variability in
lnOCC obtained at every milking in clinically healthy cows. An im-
portant finding is that inclusion of subclinical IMI status in our model
increased the degree of explanation by only 2.9 percentage points, from
12.1% to 15.0%. This is, however, a conservative estimate because the
effect of IMI on OCC is adjusted by other variables included in the
model. The IMI status used in this study describes persistent infections
with known udder pathogens, which are recognized to be the most
important cause of elevated SCC (IDF, 2013). It is therefore relevant to
discuss some possible explanations why our study resulted in a rela-
tively low degree of explanation attributed to udder health status:
Firstly, this study focused on clinically healthy udders, and lactations
with clinical mastitis were excluded from the analysis. By doing so, the
range of IMI statuses was restricted to subclinical mastitis, and it is
likely that including cases of clinical mastitis would have increased the
degree of explanation in our model. Secondly, quarter milk samples

Table 2
Parameter estimates from the final multivariable model describing ln-trans-
formed on-line somatic cell count measured by DeLaval on-line cell counter in a
Norwegian Red dairy herd. The model included random intercepts at cow- and
lactation-level (within cow), and an exponential correlation structure.

Variablea Coefficient Standard
error

P-value R-squaredb

(%)

Lactation curve: 1.3
Days in milk (DIM) 0.005 0.0003 <0.001
lnDIM −0.358 0.023 < 0.001
Yield at cow level in the
current milking (kg)

−0.038 0.002 < 0.001 1.0

Carryover 0.141 0.002 < 0.001 2.4

Parity:
First (reference) – – – –
Second 0.303 0.148 0.047
Third or later 0.463 0.156 0.005

Udder health status: 2.9
No IMI (reference) – – –
Pat 1 IMI 0.434 0.031 < 0.001
Pat 2 IMI 0.278 0.024 < 0.001
Transient colonization 0.081 0.024 < 0.001
Conductivity (inter-
quarter difference),
mSv

0.381 0.011 < 0.001 1.4

Genetic lineage: 2.7
Low mastitis incidence
(reference)

– – –

High milk yield 0.371 0.137 0.008
Unknown 0.372 0.374 0.322

Milking interval (hours) −0.033 0.002 < 0.001 −0.5
Average milk flow rate
(kg/min)

0.480 0.052 < 0.001 0.8

Season: 0.1
Winter (reference) – – –
Spring −0.051 0.017 0.003
Summer −0.117 0.029 < 0.001
Autumn −0.048 0.024 0.047
Intercept 3.787 0.143 < 0.001

a Carryover= lnOCC from the previous cow milked in the same AMS;
IMI= intramammary infection; Pat 1 IMI= IMI with mastitis pathogens from
which a high somatic cell count would be expected; Pat 2 IMI= IMI with other
known mastitis pathogens.

b R-squared= the change in marginal coefficient of determination
(Nakagawa and Schielzeth, 2013) when a variable was added to a model al-
ready containing all other variables in the final model.

Fig. 2. On-line Cell Count (OCC) results plotted against Somatic Cell Count
(SCC) measured in a DHI laboratory. Scatterplot including 1661 observations
with corresponding OCC and SCC results with a superimposed 45 ° line re-
presenting the situation of perfect agreement between the two methods.
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were collected monthly. It is possible that a higher sampling frequency
would also have increased the degree of explanation between the sub-
clinical mastitis cases as defined in our study and the OCC values ob-
tained at every milking.

As for all biological variables, some degree of normal or physiolo-
gical variation should be expected in SCC. Our results obtained from a
herd of Norwegian Red cows show that the normal variation is likely to
be much higher than can be explained through close monitoring of
clinically healthy cows in sensor systems commonly used in AMS. This
is underlined by the graphical assessment of the distribution of lnOCC,
which shows a large extent of overlap in lnOCC values between periods
without IMI and periods with either IMI or transient colonization.
Nevertheless, the use of SCC in udder health management has con-
tributed to substantial improvements in dairy production by identifying
cows in need of closer attention, e.g., when implementing selective dry
cow therapy (Østerås et al., 1999; Zecconi et al., 2018a; Lipkens et al.,
2019).

In one of the few reports on variability in SCC, Schepers et al. (1997)
estimated variance components for factors affecting SCC at quarter
level from data recorded at approximately monthly intervals and re-
ported that their model explained 50.2% of the variation in ln-trans-
formed SCC. The model of Schepers et al. (1997) included herd and cow
within herd, in addition to season, bacterial diagnoses, stage of lacta-
tion, parity, and clinical mastitis. In their data from seven herds, cow
within herd explained 11% of the overall variability, while herd ex-
plained only 0.6%. In contrast to Schepers et al. (1997), the present
study used OCC data at cow level, and data were recorded at every
milking. It is possible that this difference has introduced additional
variability to our data. In addition to the monthly QMS, our model used
conductivity data measured at every milking as an indicator of changes
in udder health status; this is a possible explanation for reaching a si-
milar overall degree of explanation as that of Schepers et al. (1997).

Mastitis has been included in the breeding program for the
Norwegian Red breed since 1978, resulting in genetic improvement
(Heringstad and Østerås, 2013). More recently, geometric mean SCC
over 305-day lactations have been included in the genetic evaluation
for Norwegian Red (Interbull, 2012). SCC have also been evaluated as
an alternative trait in the absence of reliable data on clinical mastitis,
and a genetic correlation of 0.7 between these two traits shows not only
that SCC is a relevant indicator for clinical mastitis, but also that SCC
and clinical mastitis are genetically different traits (Ødegård et al.,
2003). In our study, clinically healthy cows of the genetic group for
high milk yield had higher lnOCC values than cows bred for low mas-
titis risk, also after adjustment for differences in milk yield. Hence, the
effect of genetic lineage on lnOCC in our final models is likely to be a
true effect of genetic differences in mastitis resistance, rather than a
correlated response of differences in production level. This is in
agreement with previous research results in the same breed (Heringstad
et al., 2008).

The AMS used in our study were adjusted to reduce the amount of
residual milk in the system after each milking (carryover effect).
Nevertheless, our statistical adjustment for the carryover effect was
significant in the multivariable models, and increased the marginal
coefficient of determination by 2.4%. Løvendahl and Bjerring (2006)
and Løvendal et al. (2010) reported up to 20% carryover in various
types of AMS, showing that the impact of carryover, and the need for
adjustment, is pronounced in commercial herds for which the sampling
equipment has not been optimized. As pointed out by Sørensen et al.
(2016), correction of carryover effect is also relevant for DHI samples
collected in AMS. In this case, the carryover effect will not only affect
the SCC measurement, but also the other milk constituents measured in
the same sample. These results show that further improvements in the
sampling equipment are necessary. Furthermore, by obtaining data on
the sampling order, it might be possible for DHI systems to adjust for
the carryover effect and provide more precise estimates for SCC and
other milk constituents.

With the high degree of normal variability in OCC and the large
extent of overlap in OCC in periods with and without IMI, it seems
likely that identification of new biomarkers or combinations of bio-
markers that are better at distinguishing pathological from physiolo-
gical processes in the udder would be of benefit to the dairy industry.
The difference in electrical conductivity between the quarter with the
highest and lowest value was significantly related to OCC, which is in
agreement with previous research (Nielen et al., 1992); a higher dif-
ference was associated with increasing OCC. Like SCC, electrical con-
ductivity is used as an indicator of ongoing inflammatory processes in
the udder. However, conductivity has been shown to have poor diag-
nostic test properties for the detection of subclinical mastitis (Norberg
et al., 2004). Although the combination of electrical conductivity and
SCC has been found to improve detection of clinical mastitis (Kamphuis
et al., 2008), it is not known whether this is also the case for subclinical
mastitis. A number of alternative biomarkers, such as L-lactate dehy-
drogenase, N-acetyl-β-D-glucosaminidase activity, and milk amyloid A,
have been evaluated for the detection of clinical mastitis (Chagunda
et al., 2006; Gerardi et al., 2009). The use of these on commercial farms
is limited, and only L-lactate dehydrogenase has been implemented in
on-farm systems (DeLaval Herd Navigator; DeLaval, Tumba, Sweden).
Furthermore, the concentration of these biomarkers in milk is related to
a compromised blood-milk barrier, and they are therefore less suitable
for detection of subclinical mastitis. Methods differentiating between
cell types in milk have recently been developed for the use in DHI la-
boratories (Damm et al., 2017), but it is still unclear how much useful
information this adds over traditional SCC measurements (Zecconi
et al., 2018b). Another aspect is the dilution effect of milk from healthy
quarters, which represents an important limitation of using composite
milk samples for detection of changes in milk arising in one quarter.
Forsbäck et al. (2010) studied the variability in milk constituents at
quarter level and argued that repeated measurements at quarter level
provides more accurate information on udder health than cow-level
data.

Sørensen et al. (2016) evaluated the agreement between OCC results
and SCC results from a DHI laboratory in seven commercial herds, and
reported generally good agreement between the two methods (mean
R2=0.86), although their results differed between herds and breeds. In
line with Sørensen et al. (2016) the results from the current study in-
dicates that the agreement between the two methods was reasonably
good (CCC=0.82) also in this herd of Norwegian red cows. However,
the graphical assessment revealed that the results differed substantially
between methods in some cases, and that this trend was more pro-
nounced at low lnSCC values. This needs to be taken into consideration
when operating at low thresholds for defining subclinical mastitis.

The repeatability of the OCC sensor, as evaluated by coefficient of
variation, was identical for the two devices used in our study
(CV=0.11) at an OCC-level comparable to threshold values for the
detection of IMI (e.g. 132.000 cells/mL at Sp= 90% for the detection of
Pat 1 IMI; Dalen et al., 2019). For comparison, the manufacturer of the
Bentley Somacount, which was used at the DHI lab, reports a CV≤ 0.06
at 100,000 cells/mL (Bentley Instruments Inc., Chaska, MN). However,
the present study was performed by manually injecting the milk sample
into the apparatus, hence any additional variability caused by the
sampling method could not be quantified. It should also be noted that
the current study evaluated the repeatability at one OCC level only, and
that data for other OCC levels is needed before concluding on the re-
peatability for the whole range of possible OCC values.

Milking interval was included in the final model and showed a
significant relationship with the outcome variable. Nevertheless, with
the chosen method for evaluating the contribution of the individual
variables to the overall degree of explanation, milking interval appar-
ently had a negative impact. This can be interpreted as an artifact
arising from the combination of milking interval as a fixed effect and
the correlation structure included in our model to account for the de-
pendency between residual error terms within cow and lactation.
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Because milking interval can be considered a measure of the temporal
proximity between two observations, including this variable in the
model will affect the correlation structure parameters. This way, when
removing milking interval from the model, a larger proportion of the
variance was accounted for by the random effects, resulting in the si-
tuation where omitting milking interval as a fixed effect apparently led
to a higher marginal degree of explanation. In lack of a more sophis-
ticated method, we acknowledge that the results should be interpreted
as approximate contributions to the overall model fit.

We recognize that our study has some limitations that should be
considered when interpreting the results. The data were obtained from
a single Norwegian Red herd, and although the herd, including man-
agement practices, housing, milking procedure etc., is comparable to
herds on commercial Norwegian farms of the same size, extrapolation
to other herds and other breeds should be done with caution.

5. Conclusion

This study identified several factors associated with fluctuations in
frequently measured OCC values in clinically healthy cows in an AMS
herd. However, these factors only explained a small proportion of the
overall variability in the data, and a large degree of the overall varia-
bility remain unexplained despite close monitoring of the IMI status by
monthly quarter milk samples. The unexplained variability likely re-
presents physiological fluctuations in OCC, which is important to con-
sider when using frequently measured OCC in research or for herd
management purposes.
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ABSTRACT

The development of reliable models for transmission 
of intramammary infections (IMI) is the subject of ex-
tensive research. Such models are useful to enhance the 
identification and understanding of factors that affect 
pathogen-specific IMI dynamics. Longitudinal trans-
mission models are valuable for predicting infection 
outbreak risks, quantifying the effectiveness of response 
tactics, and performing response planning. In this 
work, we focused on modeling Corynebacterium spp. by 
using a compartmental model. Previous investigations 
have considered modeling the transmission dynamics of 
several bacterial pathogens, but not Corynebacterium 
spp. We established a Corynebacterium spp. Suscep-
tible–Infectious–Susceptible (SIS) model. We simulated 
the model numerically by using parameters that we es-
timated by a generalized linear model approach, using 
month of study as the time variable. The data, from 
which the parameters of the model were estimated, 
were obtained in a field trial conducted in 2 US dairy 
herds. Altogether, 786 cows were sampled at least once 
during the 13-mo study period. The total number of 
quarter milk cultures and cases of IMI caused by Co-
rynebacterium spp. were 11,744 and 556, respectively, 
in farm A; the corresponding figures for farm B were 
11,804 and 179. Our modeling study included only 
transmission from persistent IMI caused by Corynebac-
terium spp. within the lactation pens. The rate of new 
infections was significantly related to preexisting IMI in 
both farms, underscoring the importance of preexisting 
Corynebacterium spp. IMI for the transmission of Cory-
nebacterium spp. within lactation pens. The estimated 

basic reproduction numbers (R0) in the 2 farms were 
1.18 and 0.98, respectively. The nonsignificant disparity 
in R0 was associated with significant differences in cure 
rates between farms.
Key words: intramammary infection, Corynebacterium 
spp., transmission model

INTRODUCTION

Mastitis is one of the economically most important 
diseases in dairy production (Halasa et al., 2007; Ho-
geveen et al., 2011). Much of the economic loss is due to 
reduced milk production following subclinical mastitis 
(Hogan et al., 2016). Intramammary infections with 
Corynebacterium spp. are generally mild with limited 
milk production loss. However, significant elevations in 
SCC have been observed (Brooks et al., 1983; Brooks 
and Barnum, 1984a). Although Corynebacterium spp. 
are classified as minor pathogens (Brooks and Bar-
num, 1984b; Harmon, 1994; Blagitz et al., 2013), the 
increased prevalence of Corynebacterium spp. IMI in 
some modern dairy farms (Pitkälä et al., 2004) war-
rants further investigation into the specific properties 
and roles of the bacteria.

Some authors have reported a protective effect of 
Corynebacterium spp. IMI against IMI caused by other 
pathogens (Rainard and Poutrel, 1988; Lam et al., 
1997a), whereas others report an increased risk of mas-
titis (Pankey et al., 1985; Berry and Hillerton, 2002; 
Parker et al., 2007). When investigating the relationship 
between secondary infections and a preexisting IMI by 
Corynebacterium spp., Parker et al. (2007) suggested 
that the diverging effects reported for Corynebacterium 
spp. IMI were due to the increased disposition for clini-
cal mastitis of glands with a preexisting IMI. There is 
also evidence that Corynebacterium bovis can colonize 
the teat canal without affecting the udder past Furst-
enberg’s rosette (Black et al., 1972).
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Mathematical models are powerful tools for under-
standing infection dynamics by providing predictions 
about the potential transmission of infections and the 
effectiveness of control measures (Magal and Ruan, 
2008; Otto and Day, 2011). Pathogen-specific transmis-
sion patterns have been described for other major and 
minor mastitis pathogens (Lam, 1996; Zadoks et al., 
2002; White et al., 2006; Reksen et al., 2012; Barlow et 
al., 2013), but not for Corynebacterium spp. The basic 
reproduction number, R0, is used in compartmental 
transmission models to determine transmission of a dis-
ease at the population level. It is defined as the number 
of secondary cases that one infectious case can produce 
if introduced into a susceptible population (Grossman, 
1980; Diekmann et al., 1990; Hethcote, 2000). Model-
ing the progression of a disease depends on appropriate 
parameter values that are often unknown and must be 
estimated from field data. In this study, we have used 
a generalized linear model for parameter estimation. 
The parameters estimated were used in a deterministic 
state-transition model to describe the transmission dy-
namics of Corynebacterium spp. from preexisting IMI 
within lactation pens.

The main aim of this study was to develop a novel 
mathematical description of the transmission dynam-
ics of Corynebacterium spp. IMI. Specifically, we first 
wanted to assess the importance of preexisting IMI by 
Corynebacterium spp. on new IMI caused by this group 
of bacteria. Second, we wanted to compare transmis-
sion parameters and cure rates for Corynebacterium 
spp. IMI between 2 US dairy farms with differing 
prevalences of Corynebacterium spp. IMI.

MATERIALS AND METHODS

Field Study

Data were obtained from a 13-mo longitudinal ob-
servational study in 2 commercial Holstein dairy herds 
(one in New York and one in Vermont). Cows were 
housed in pens of approximately 100 cows and milked 
3 times per day. In farm A, the monthly mean number 
of lactating cows was 319, the mean milk production 
per cow per day was 32.7 kg, and the average cow 
composite SCC was 404,000 cells/mL. In farm B, the 
monthly mean number of lactating cows was 346, the 
mean milk production per cow per day was 35.0 kg, 
and the average cow composite SCC was 292,000 cells/
mL. The herds participated in a DHIA program with 
monthly milk quality testing. Both farms had reliable 
identification of animals and used standardized mas-
titis control practices, including pre- and postmilking 
teat disinfection and blanket dry-cow therapy. Further 
details on the herds, microbial analyses, and sampling 

framework have been published previously (Reksen et 
al., 2012; Barlow et al., 2013).

Quarter milk samples were collected monthly from 
approximately 200 lactating cows on each farm. Ad-
ditional samples were collected within 3 d after par-
turition and when animals were moved to or from the 
lactation compartment.

Trained field technicians collected the scheduled 
monthly samples. Selected farm personnel, who had 
received training for this, obtained the additional 
samples. All samples were collected according to rec-
ommended guidelines (Hogan et al., 1999). Samples 
collected monthly were kept on ice after collection and 
during transport to the laboratory, where they were fro-
zen before microbiological analyses. Additional samples 
collected by farm personnel were frozen immediately 
after collection. Samples were thawed in the laboratory 
and bacteriological culture was performed according to 
standard procedures (Hogan et al., 1999). Samples with 
culture results presenting more than 3 morphologically 
different colony types were treated as contaminated 
and excluded from further analyses.

A quarter was considered to have an IMI with Co-
rynebacterium spp. when meeting at least one of the 
following criteria: (1) ≥1,000 cfu/mL of the pathogen 
were cultured from a single sample, (2) ≥500 cfu/mL of 
the pathogen were cultured from 2 out of 3 consecutive 
milk samples, (3) ≥100 cfu/mL of the pathogen were 
cultured from 3 consecutive milk samples, or (4) ≥100 
cfu/mL of the pathogen were cultured from a clinical 
sample (Zadoks et al., 2002). A case was considered 
clinical when there was abnormal milk, with or without 
pain or swelling in the udder, or systemic signs such 
as anorexia, lethargy, or elevated rectal temperature 
(Harmon, 1994). Positive bacterial cultures that did 
not meet any of the above criteria were classified as 
representing a transient colonization with Corynebac-
terium spp.

Statistical Analysis

Statistical analysis was conducted using SAS software 
(version 9.1; SAS Institute, Inc., Cary, NC). Transmis-
sion parameters (β) and cure rates (α) were calculated 
using the generalized linear model approach (PROC 
GENMOD). Evidence of overdispersion was evaluated 
and models were subsequently adjusted using an over-
dispersion parameter estimated from the ratio of the 
Pearson Chi-squared estimate divided by the remaining 
degrees of freedom (Pscale option).

The transmission parameter (β) was estimated in a 
linear model with number of new Corynebacterium spp. 
IMI events in each monthly interval (IM) as the out-
come; S = quarter-days in a susceptible udder, I = 
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quarter-days infected, N = total quarter-days in each 
interval (study month), β* is the intercept in the equa-

tion ln * ln ,I SI
NM( ) = +β  and the transmission coeffi-

cient β is expressed as eβ. A log link, assumption of a 

negative binomial distribution, and offset ln
SI
N

 (Zadoks 

et al., 2002) were used. Wald 95% confidence limits 
were used to compare transmission parameters between 
farms. To evaluate the effect of an existing Corynebac-
terium spp. IMI on transmission dynamics, we com-
pared the fit of a model with the complete offset term 
included and a model without the term I/N included in 
the offset by comparing the 2×log-likelihood ratios.

The cure rate (α) was estimated with number of 
cured quarters from Corynebacterium spp. IMI events 
in each monthly interval (CM) as the outcome. A log 
link, assumption of a negative binomial distribution, 
and offset ln (I) (Zadoks et al., 2002) were used; I = 
quarter-days infected in each monthly interval (study 
month), and α is the intercept in the equation ln(CM) = 
α + lnI, where CM = cured Corynebacterium spp. IMI 
events in each monthly interval, and the cure rate, α, is 
expressed as eα. Wald 95% confidence limits were used 
to compare cure rates between farms.

The population level transmission dynamics were 
further evaluated by the basic reproduction number, 

R0. The expression of R0 is given by R0 = +
β

µ α
, where 

μ is the observed rate of entry and exit of quarters to 
and from the lactation compartment, and the inverse of 
the cure rate (α) is the duration of infection. A confi-
dence interval for R0 was calculated using 1.96 × the 
standard error obtained from log-transformations of 
the monthly R0 expressions.

Model Formulation

The transmission dynamics of Corynebacterium 
spp. were explored by developing a Susceptible–Infec-
tious–Susceptible (SIS) model. The model describes a 
population of lactating udder quarters divided into 2 
compartments: (1) S denotes susceptible quarters with 
no Corynebacterium spp. IMI, and (2) I denotes quar-
ters affected with IMI caused by Corynebacterium spp., 
where the compartments represent the proportion of 
lactating quarters in each state. The dynamics of state 
transitions are illustrated in Figure 1, and the model 
is described mathematically by the following nonlinear 
ordinary differential equations (ODE):

 
d
d
S
t

SI I N SS=− + + − ,β α θ µ µ  [1]

 
d
d
I
t

SI I N II= − + − ,β α θ µ µ  [2]

where the interaction between the classes is quantified 
by the parameters α and β. The parameter β denotes 
the transmission of infection from a quarter with an 
IMI caused by Corynebacterium spp. to a susceptible 
quarter (Keeling and Rohani, 2011). The parameter α 
describes the daily rate of cured quarters, and N rep-
resents the sum of susceptible and infected quarters in 
the study at any given time. The daily rate of entry and 
exit of quarters to and from the lactation compartments 
is described by μ. Entries of quarters from the fresh pen 
to the different compartments within the lactation pen 
are determined by the proportions θS and θI.

The numerical resolution of the nonlinear ordinary 
equations of the SIS model was solved numerically by 
using a nonlinear programming solver of Matlab (Math-
Works, Natick, MA), “ode45” solver, which is based on 
the Runge-Kutta method (Dormand and Prince, 1980). 
The numerical values of the parameters of the ODE of 
the SIS model, used in the numerical simulations, were 
obtained from the statistical analysis.

RESULTS

Field Study

In farm A, 11,744 milk samples were collected from 
a total of 371 cows. Among these, udder pathogens 
were cultured and identified in 5,021 samples. The dis-
tribution of bacterial culture results is given in Table 
1. According to our definition of IMI, there were 556 
Corynebacterium spp. IMI episodes during the study 
period, from 1,183 positive cultures; the remaining 
1,618 positive samples were defined as transient colo-
nizations. Of the 556 IMI episodes, 465 (84%) and 200 
(36%) were associated with one or more samples having 

Figure 1. Schematic representation of the mathematical model of 
transmission of IMI with Corynebacterium spp. The boxes represent 
the state variables and the arrows represent the flow rates between 
susceptible (S) and infected (I) states. β = transmission parameter; 
βI = daily rate of new infections; α = daily rate of cured quarters; μ 
= daily rate of entry and exit of lactating quarters. The proportion of 
quarters into the S and I compartments are determined by θS and θI, 
respectively.
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≥1,000 or ≥5,000 cfu/mL, respectively. The distribu-
tion of quarter samples according to this categorization 
is shown in Table 2. Among IMI episodes, 3 cultures of 
Corynebacterium spp. were isolated in association with 
clinical cases. These were all co-infections with other 
minor pathogens and were not treated. Bacteriological 
milk culture was performed before and after the dry 
period in 471 quarter samples. Of these, 37 quarters 
were dried off while harboring a Corynebacterium spp. 
IMI. At the start of the next lactation, 36 of those were 
cured and 1 IMI persisted. Out of 434 quarters dried off 
without a Corynebacterium spp. IMI, 31 quarters were 
infected during the dry period.

In farm B, 11,804 milk samples were collected from 
a total of 415 cows. Among these, udder pathogens 
were cultured and identified in 3,528 samples. The dis-
tribution of bacterial culture results is given in Table 
1. According to our definition of IMI, there were 179 
Corynebacterium spp. IMI episodes during the study 
period from 255 positive cultures; the remaining 816 
positive samples were defined as transient coloniza-
tions. Of the 179 IMI episodes, 147 (82%) and 15 (8%) 
were associated with one or more culture results with 
more than 1,000 and 5,000 cfu/mL, respectively. The 
distribution of quarter samples according to this cat-
egorization is shown in Table 2. Among IMI episodes, 
no cultures were isolated in association with clinical 
cases of Corynebacterium spp. IMI. Bacteriological milk 
culture was performed both before and after the dry 
period in 506 quarter samples. Of these, 13 quarters 

were dried off while harboring a Corynebacterium spp. 
IMI. At the start of the next lactation, all 13 quarters 
were cured. Out of 493 quarters dried off without Cory-
nebacterium spp. IMI, 3 quarters were infected during 
the dry period.

Estimation of Transmission Parameters

From the statistical analyses, we obtained the fol-
lowing values for farm A. The transmission parameter, 
β, was 0.0188 (95% CI: 0.0159–0.0222), the cure rate, 
α, was 0.0122 (95% CI: 0.0098–0.0152), the daily rate 
of udders leaving and entering the lactation pen, μ, 
was 0.0039 (95% CI: 0.0027–0.0050), and R0 was 1.1767 
(95% CI: 0.9269–1.5760).

The difference in 2×log-likelihood between the model 

predicting number of new IMI with ln
SI
N

 used as the 

offset term and the model with only ln S as the offset 
was 138.9. With 1 df, the Chi-squared statistic pre-
dicted a highly significant effect of an existing IMI with 
Corynebacterium spp. on the transmission of the bacte-
ria from infected to susceptible quarters (P < 0.001).

The proportion of infected by days of study, as ob-
tained from the raw data, is presented in Figure 2. This 
curve shows the evolution of the infection throughout 
the study period. The prevalence of infection began to 
increase after 215 d of study.

From the statistical analyses, we obtained the fol-
lowing values for farm B. The transmission parameter, 
β, was 0.0239 (95% CI: 0.0197–0.0291). The cure rate, 
α, was 0.0202 (95% CI: 0.0161–0.0253), the daily rate 
of udders leaving and entering the lactation pen, μ, 
was 0.0040 (95% CI: 0.0029–0.0051), and R0 was 0.9879 
(95% CI: 0.6632–1.4846). The 95% CI for α did not 
overlap between farms, whereas the corresponding CI 
for β, R0, and μ were not different between farms.

The difference in 2×log-likelihood between the model 

predicting number of new infections with ln
SI
N

 used as 

the offset term and the model with only ln S as the 
offset was 7.27. With 1 df, the Chi-squared statistic 
predicted a significant effect of an existing IMI with 

Table 1. Distribution of microbiological diagnoses among samples 
positive for one or more udder pathogens

Culture result

Proportion (%)

Farm A Farm B

Corynebacterium spp. 39.5 23.4
CNS 39.0 48.2
Streptococcus spp. 15.3 21.5
Staphylococcus aureus 2.7 0.9
Coliforms 1.4 4.8
Trueperella pyogenes 0.4 0.3
Streptococcus agalactiae — —
Other 1.7 0.9

Table 2. Number of samples with positive Corynebacterium spp. culture results

Count (cfu/mL)

Corynebacterium spp. positive

 

Corynebacterium spp. IMI

Farm A Farm B Farm A Farm B

≥5,000 218 16 218 16
≥1,000 and <5,000 330 140 330 140
≥500 and <1,000 409 298 158 53
≥100 and <500 1,844 617 477 46
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Corynebacterium spp. on the transmission of the bacte-
ria from infected to susceptible quarters (P < 0.01).

The proportion of infected quarters by time, as ob-
tained from the raw data, is presented in Figure 3. This 
curve shows the evolution of the infection throughout 
the study period. The prevalence of infection on farm B 
may be characterized as uniformly low throughout the 
study period.

Numerical Simulations

The proportions of I and S quarters from the dy-
namic simulation for farm A are presented in Figure 
4. The proportion of I quarters increased throughout 
the simulation period, reaching a prevalence of 16.7% 
at 361 d on farm A. Figure 5 shows the proportion of I 
and S quarters on farm B. The proportion of I quarters 
was uniformly low throughout the simulation period on 
farm B.

DISCUSSION

By plotting the proportion of Corynebacterium spp. 
IMI by study days, we demonstrated an increase in the 
proportion of infected quarters from 215 d of study 
(December) and onward in farm A. We did not demon-
strate a similar increase in the rate of new infections on 
farm B. For farm A, we obtained an R0 of 1.18 that was 
not significantly different from the corresponding value 
for R0 (0.98) on farm B. However, the number of IMI 
by Corynebacterium spp. developed differently between 
the 2 farms throughout the study period. Although the 
transmission of a pathogen is described by R0 at the 
population level, it is the rate of both entry and exit 
of quarters, the transmission parameter, and the cure 
rate or duration of infection that determines the value 
of R0. In our investigation, there was no significant dif-
ference between farms for the transmission parameters 
or the rates of entry and exit of quarters. However, 

Figure 2. Proportion of quarters in farm A harboring an IMI (I; □) 
with Corynebacterium spp. and susceptible quarters (S; ∆) throughout 
the study period.

Figure 3. Proportion of quarters in farm B harboring an IMI (I; □) 
with Corynebacterium spp. and susceptible quarters (S; ∆) throughout 
the study period.

Figure 4. Simulation of the proportion of quarters in farm A har-
boring an IMI (I; □) with Corynebacterium spp. and susceptible quar-
ters (S; ∆) using the Susceptible–Infectious–Susceptible (SIS) model. 
The values after initialization were I0 = 0.07613 and S0 = 0.9239.
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we found that cure rates were significantly different 
between farm A and farm B. The lower cure rate in 
farm A increased the R0 for this herd, which explains 
the steady increase in new infections caused by pre-
existing IMI with Corynebacterium spp. in this farm. 
Correspondingly, the significance of a preexisting IMI 
with Corynebacterium spp. was demonstrated for both 
farms when we compared models with and without an 
existing IMI included in the offset term. The associa-
tion between preexisting IMI and new infections was 
highly significant in farm A.

Biologically, it is plausible to relate the duration of 
infection to immunological characteristics of the host, 
or the animal’s ability to eliminate an infection. It is 
worth noting that the cure rate during the dry period 
was high, with only 1 of 37 Corynebacterium spp. IMI 
persisting from one lactation to the next on farm A, 
and none out of 13 on farm B. However, we cannot 
quantify the degree of self-cure because blanket dry-
cow therapy was used in the study herds.

Transmission of Corynebacterium spp. IMI depend-
ing on preexisting IMI has not, to our knowledge, been 
documented previously. There may be many reasons for 
the observed increase in new infections in our study, but 
it is worth noting that the increase started in Decem-
ber, which is the beginning of winter in New York and 
Vermont. Seasonal factors may thus have contributed 
to an increase in the infectious transmission of udder 
pathogens, including more wet and cold udders, damp-
er environments, and so on. Because our diagnostics 

were limited to classifying at the Corynebacterium spp. 
level, we cannot exclude a shift toward more contagious 
subtypes, resulting in an alteration of transmission 
characteristics of the bacterial population in farm A. 
The deterministic state transmission simulation model 
shows how the epidemic evolves in a population of cows 
over time. This model will be suitable for modeling the 
long-term effect of the transmission parameters on the 
herd prevalence of Corynebacterium spp. IMI, and for 
modeling the effect of prophylactic interventions.

Very few, if any, studies have attempted to quantify 
the infection dynamics of Corynebacterium spp. in dairy 
farms. However, observational studies have indicated 
that the prevalence of this minor pathogen is related 
to the quality of postmilking teat disinfection in dairy 
herds (Brooks et al., 1983; Harmon et al., 1986; Hogan 
et al., 1994; Lam et al., 1997b; Berry and Hillerton, 
2002; Williamson and Lacy-Hulbert, 2013). In accor-
dance with this, the present study showed that udder 
infections contribute significantly in the transmission 
of Corynebacterium spp. IMI. We observed 735 cases 
of IMI, 3 of which were from clinical cases. From the 
biological perspective, transient colonization does not 
necessarily equal IMI. Therefore, we limited our model-
ing to our definition of IMI.

It should be noted that the results we obtained 
were from 2 herds with different prevalences of Co-
rynebacterium spp. IMI, despite being of similar size 
and having comparable management routines. We cul-
tured Corynebacterium spp. from 23.9% of the quarter 
samples from farm A, but from only 9.1% of the quar-
ter samples in farm B. The prevalence in farm A was 
relatively high compared with that reported in other 
publications (Brooks et al., 1983; Pitkälä et al., 2004; 
Green et al., 2005). In farm A, a higher proportion of 
the IMI episodes were associated with culture results 
having >5,000 cfu/mL than in farm B. This higher 
shedding level might contribute to an increased trans-
mission potential on farm A. However, the estimated 
transmission parameter, β, did not differ between the 
2 farms. Therefore, the observed difference in duration 
of infection and proportion of quarters shedding >5,000 
cfu/mL might be attributable to host–pathogen factors 
associated with the ability of the cows to respond to, 
and clear, the infections. A study on Salmonella sug-
gested that the prevalence of different infected states 
within or between herds could be due to a combined 
effect of host immunity, herd, and Salmonella serotype 
characteristics (Lanzas et al., 2008).

In the classic infectious disease epidemic SIR models 
(Anderson and May, 1991), the total population is di-
vided into a susceptible compartment (S), an infected 
compartment (I), and a recovered compartment (R), 

Figure 5. Simulation of the proportion of quarters in farm B har-
boring an IMI (I; □) with Corynebacterium spp. and susceptible quar-
ters (S; ∆) using the Susceptible–Infectious–Susceptible (SIS) model. 
The values after initialization were I0 = 0.02346 and S0 = 0.9765.
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where recovered individuals are often considered to be 
resistant or removed from the susceptible population. 
In our modeling study, we adjusted the traditional SIR 
model with modifications specific to mastitis transmis-
sion in dairy herds, where cure and reinfection of indi-
viduals are observed, and it is assumed that recovery 
does not confer absolute resistance to reinfection. This 
could be described by an SIS model (Lam et al., 1996; 
White et al., 2001; Reksen et al., 2012), where the total 
number of quarters is divided into susceptible quarters 
(S) and infected quarters (I), assuming that suscep-
tibility does not differ between naive individuals and 
recovered quarters.

CONCLUSIONS

The current study presents an investigation of trans-
mission dynamics of Corynebacterium spp. IMI. The 
statistical analyses demonstrated that transmission of 
Corynebacterium spp. IMI in the 2 herds studied were 
influenced by preexisting Corynebacterium spp. IMI. In 
1 of the 2 farms, the prevalence of Corynebacterium 
spp. IMI increased, consistent with an observed R0 > 
1.0 related to a low cure rate of Corynebacterium spp. 
IMI in this farm.
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ABSTRACT

Management of udder health is particularly focused 
on preventing new infections. Data from the DeLaval 
Online Cell Counter (DeLaval, Tumba, Sweden) may 
be used in forecasting to improve decision support for 
improved udder health management. It provides online 
cell counts (OCC) as a proxy for somatic cell counts 
from every milking at the cow level. However, these 
values are typically too insensitive and nonspecific to 
indicate subclinical intramammary infection (IMI). 
Our aim was to describe and evaluate use of dynamic 
transmission models to forecast subclinical IMI epi-
sodes using milk cultures or changes in OCC patterns 
over time. The latter was expressed by an elevated mas-
titis risk variable. Data were obtained from the dairy 
herd of the Norwegian University of Life Sciences (Oslo, 
Norway). In total, 173 cows were sampled monthly 
for bacteriological milk culture during a 17-mo study 
period and 5,330 quarter milk samples were cultured. 
Mastitis pathogens identified were assigned to 1 of 2 
groups, Pat 1 or Pat 2. Pathogens from which a high 
cell count would be expected during a subclinical IMI 
episode were assigned to the Pat 1 group. Pathogens 
not in the Pat 1 group were assigned to the Pat 2 group. 
Staphylococcus epidermidis, Staphylococcus aureus, and 
Streptococcus dysgalactiae were the most common Pat 
1 pathogens. Corynebacterium bovis, Staphylococcus 
chromogenes, and Staphylococcus haemolyticus were the 
most common Pat 2 pathogens. The OCC were suc-
cessfully recorded from 82,182 of 96,542 milkings. The 
current study included 324 subclinical IMI episodes. 
None of the mastitis pathogens demonstrated a basic 
reproduction number (R0) >1. Patterns of OCC change 

related to an episode of Pat 1 subclinical IMI at speci-
ficity levels of 80, 90, and 95% at sensitivity levels of 
69, 59, and 48% respectively, demonstrated an R0 >1. 
An existing infection was significant for transmission 
for several Pat 2 pathogens, but only for Staphylococ-
cus aureus and Staphylococcus epidermidis among Pat 1 
pathogens. Dynamic transmission models showed that 
patterns of OCC change related to an episode of Pat 1 
subclinical IMI were significantly related to the same 
pattern occurring in susceptible cows at specificity 
levels of 80, 90, and 99% at sensitivity levels of 69, 48, 
and 8%, respectively. We conclude that changes in herd 
prevalence of subclinical IMI can be predicted using dy-
namic transmission models based on patterns of OCC 
change. Choice of specificity level depends on manage-
ment goals and tolerance for false-positive alerts.
Key words: intramammary infection, transmission, 
somatic cell count, online cell count

INTRODUCTION

Management of udder health is particularly focused 
on preventing new infections (Ruegg, 2017). Common 
management approaches apply standard operating 
procedures using historical information (Østerås and 
Sølverød, 2009; Scherpenzeel et al., 2016), which yields 
slow-moving improvement. Therefore, real-time detec-
tion and management of transmission of subclinical 
IMI may improve management of udder health.

An IMI is defined as being present when a quarter 
is infected with a bacterial species (Berry and Meaney, 
2006). In many but not all cases, an IMI may be iden-
tified based on an increase in SCC (Sargeant et al., 
2001). This inflammatory response, often caused by an 
IMI, is defined as mastitis (Djabri et al., 2002). When 
clinical symptoms occurs, this is defined as clinical 
mastitis; when there is an increase in SCC but no clini-
cal signs occur, this is defined as subclinical mastitis 
(IDF, 2011).
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To some extent, SCC values can be used for surveil-
lance of IMI (Schukken et al., 2003). For reasons of 
surveillance and precision diagnostics, the industry has 
advanced toward developing sensors specifically for ud-
der health. One of these sensors is the DeLaval Online 
Cell Counter (DeLaval International AB, Tumba, Swe-
den). Using this sensor, we can obtain repeated online 
cell counts (OCC) at the cow level. These data may 
be implemented in automated detection systems for 
management of udder health in automatic milking sys-
tems (AMS). Based on smoothed OCC data, Sørensen 
et al. (2016) created an elevated mastitis risk (EMR) 
indicator to detect cases of clinical mastitis. This EMR 
indicator is a continuous variable (from 0 to 1), where 
values close to 0 indicate a low risk of mastitis and 
higher values, approaching 1, indicate an increased risk 
of clinical mastitis (Sørensen et al., 2016).

Dalen et al. (2019) demonstrated that the EMR indi-
cator can be used to detect subclinical mastitis episodes 
in individual cows. However, when every milking is a 
potential detection event, the diagnostic test properties 
are insufficiently sensitive for direct application in a 
decision-support tool (Dalen et al., 2019). Therefore, 
the interpretation and use of OCC during lactation 
should be improved in decision-support tools for dairy 
farmers.

Compartmental transmission models are powerful 
tools for understanding infection dynamics by providing 
predictions about the potential transmission of infec-
tions and the efficacy of control measures (Magal and 
Ruan, 2008; Otto and Day, 2011). Pathogen-specific 
transmission patterns have been described for major 
and minor mastitis pathogens (Zadoks et al., 2002; 
White et al., 2006; Reksen et al., 2012). However, these 
models have not previously been applied to patterns of 
OCC change associated with subclinical IMI episodes. 
By modeling the patterns of OCC change associated 
with subclinical IMI episodes, as a proxy for transmis-
sion of pathogens, the underlying infection pressure in 
the herd can be continuously monitored. When there is 
an increase in the prevalence of a particular pattern of 
OCC change, there are probably more cows in the herd 
that have the potential to transmit mastitis pathogens 
to susceptible cows. Forecasting future development of 
this transmission-associated pattern, by dynamic simu-
lation modeling, could be used to determine whether 
actions should be taken to reduce transmission risk.

The primary aim of this study was to describe and 
evaluate the possibility of using dynamic transmission 
models to forecast the herd prevalence of subclinical 
IMI episodes by exploiting measured changes in OCC 
patterns over time. Specifically, we first wanted to es-
timate the transmission parameters of subclinical IMI 

episodes based on culture results and associated chang-
es in OCC patterns expressed by the EMR. Second, we 
wanted to evaluate the effect of preexisting episodes on 
new subclinical IMI episodes defined by culture results 
or changes in the OCC patterns.

MATERIALS AND METHODS

Field Study

This study used data obtained during a 17-mo lon-
gitudinal observational study in the research herd at 
the Norwegian University of Life Sciences (Oslo, Nor-
way). On average, 96 cows were milked 2.6 times a day 
in 2 identical AMS (Delaval VMS, DeLaval, Tumba, 
Sweden). Mean OCC and milk production per cow per 
day were 115,103 cells/mL and 27.9 kg, respectively. 
The farm used standardized mastitis control practices, 
such as post-milking teat disinfection, selective dry-cow 
therapy, and monthly milk quality testing in a DHIA 
program.

The 2 AMS were set to record OCC from every 
milking during the study period. Quarter milk samples 
(QMS) were collected monthly from all lactating cows, 
according to recommended sampling guidelines (Hogan 
et al., 1999). Samples were frozen and transported to the 
laboratory, where bacteriological culture was performed 
according to standard procedures (Hogan et al., 1999). 
Briefly, 0.01 mL of milk from each quarter was spread 
on cattle blood agar plates with esculin and incubated 
at 37°C. Plates were read at 24 and 48 h. We used a 
MALDI-TOF MS Microflex LT system (Bruker Corp., 
Billerica, MA; Cheuzeville, 2015) for species identifica-
tion of cultured bacteria. Further details on the study 
herd, sampling framework, and microbial analyses were 
previously published (Dalen et al., 2019).

Subclinical IMI Status

In this study, we investigated subclinical IMI episodes 
only. Cows treated for clinical mastitis were transferred 
to a treatment pen without AMS, and we do not have 
bacteriological samples or OCC records throughout the 
period of treatment for the clinical mastitis cases. The 
diagnosis of subclinical IMI was based on bacteriologi-
cal culture results or using OCC data as a proxy for 
bacteriological culture results. A cow was considered 
to have a subclinical IMI episode with an individual 
mastitis pathogen when meeting at least one of the fol-
lowing criteria: (1) ≥1,000 cfu/mL of a single mastitis 
pathogen cultured from a single sample in at least 1 
quarter, (2) ≥500 cfu/mL of a mastitis pathogen cul-
tured from 2 out of 3 consecutive milk samples from the 
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same quarter, or (3) ≥100 cfu/mL of a mastitis patho-
gen cultured from 3 consecutive milk samples from the 
same quarter. These definitions are adapted from those 
of Zadoks et al. (2002).

Because OCC is recorded at the cow level, and our 
aim was to model transmission of subclinical IMI based 
on both individual and grouped mastitis pathogens, as 
well as on patterns of OCC change, we aggregated the 
bacteriological diagnoses at the quarter level into cow-
level diagnoses. Also, because the same cow could expe-
rience a subclinical IMI episode with different mastitis 
pathogens at the same time, pathogens were divided 
into 2 groups (Pat 1 and Pat 2), according to charac-
teristics of the bacteria. The group of pathogens from 
which a high cell count would be expected during a 
subclinical IMI episode was designated Pat 1, according 
to Dalen et al. (2019). The pathogens included in the 
Pat 1 group were Staphylococcus aureus, Streptococcus 
dysgalactiae, Streptococcus uberis, Enterococcus faecalis, 
Enterococcus faecium, Lactococcus lactis, Staphylococ-
cus epidermidis, and Staphylococcus simulans (Djabri 
et al., 2002; Reksen et al., 2008; Simojoki et al., 2009, 
2011; Fry et al., 2014). Mastitis pathogens that were not 
included in Pat 1 were grouped in the Pat 2 category. 
This included Corynebacterium bovis, Staphylococcus 
chromogenes, Staphylococcus haemolyticus, Aerococcus 
viridans, Staphylococcus hominis, Staphylococcus xylo-
sus, and other mastitis pathogens (Dalen et al., 2019). 
A cow was considered to have a Pat 1 or Pat 2 subclini-
cal IMI when one or more quarters were positive for a 
Pat 1 or a Pat 2 mastitis pathogen, respectively.

Because sampling was performed monthly, the exact 
time of infection and cure was not known. Therefore, 
we used the mid-point estimation method previously 
described by Zadoks et al. (2002) to calculate the infec-
tion period. We defined the start of the subclinical IMI 
episode as the middle of the time interval between a 
negative culture and the first positive culture event, 
and defined the end of the subclinical IMI episode as 
the middle of the time interval between the last posi-
tive culture event and the first negative culture for a 
quarter defined as cured (Zadoks et al., 2002).

OCC

Online cell counts were successfully recorded from 
82,182 of 96,542 milkings (85%); the 14,360 missing 
values were due either to equipment failure or failure 
to service and refill the OCC unit with reagent. We 
computed EMR values (as described by Sørensen et 
al., 2016; Dalen et al., 2019) for all milkings. Statisti-
cal analyses were conducted using Stata (Stata SE/14, 
Stata Corp., College Station, TX). Briefly, the validity 

of all recorded OCC measurements were checked before 
logarithmic transformation. We included only milkings 
from 5 to 305 DIM with a milking interval of 4 to 24 
h and a yield of ≥3.5 kg. Also, OCC values of 0 were 
omitted from further analyses. Lactation-specific OCC 
curves were calculated for first, second, and third and 
later lactations using Wood’s lactation curve (Wood, 
1967). For milkings with missing OCC data, the miss-
ing data were replaced with a value given by 95% of the 
previous value and 5% of the lactation-specific OCC 
curve for the cow at the DIM of the milking with miss-
ing data. This way, the OCC curve of cows with missing 
data approached the lactation-specific OCC curves by 
5% for each milking where OCC was missing (Sørensen 
et al., 2016).

The ln-transformed OCC data were adjusted for 
aberrations and drift at the sensor level by single ex-
ponential smoothing (Hyndman et al., 2008), before 
double exponential smoothing of the adjusted OCC 
values according to Sørensen et al. (2016).

The lactation-specific OCC curves were used for 
rapid initialization of the double exponential smooth-
ing (Sørensen et al., 2016). The output from the double 
exponential smoothing (level and trend) were used to 
calculate EMR values for every milking on a continu-
ous scale from 0 to 1 (Sørensen et al., 2016). Because 
both the level and trend are used in calculation of the 
EMR, the underlying historic and current OCC values 
can be different in 2 cows with the same EMR value. 
Therefore, we use the term “OCC pattern” to describe 
the OCC changes associated with EMR values. Fur-
thermore, we used the threshold values from Dalen et 
al. (2019) to assign cows to a subclinical IMI status, 
based on the OCC pattern given by the EMR value. 
Cows were classified as having a subclinical IMI when 
the EMR value was greater than the threshold. For the 
4 patterns of OCC change, the EMR value thresholds 
were 0.03, 0.05, 0.08, and 0.62 at specificity levels of 
80, 85, 90, and 99%. The corresponding sensitivities 
for each pattern of OCC change for detection of Pat 1 
subclinical IMI were 69, 59, 48, and 8%, respectively 
(Dalen et al., 2019).

Transmission Parameters

The transmission parameter (β) was calculated using 
Poisson regression (Stata SE/14, Stata Corp.) with 
number of new episodes of subclinical IMI in each 

monthly interval (IM) as the outcome, and offset ln ,
SI
N

 

where S = cow-days of a susceptible cow, I = cow-days 
infected, N = total cow-days in each interval (study 
month), and β* is the intercept in the equation 
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ln * ln .I SI
NM( ) = +β  The transmission coefficient β is 

expressed as eβ.
We estimated the cure rate (α) using Poisson regres-

sion (Stata SE/14, Stata Corp.). As outcome, the num-
ber of subclinical IMI episodes cured in each monthly 
interval (CM) was used, with ln(I) as offset. Cure rate 
(α) is the intercept and I = cow-days infected in each 
monthly interval (study month) in the equation: ln(CM) 
= α + lnI, where the cure rate α is expressed as eα and 
CM = cured subclinical IMI episodes in each monthly 
interval.

Furthermore, we evaluated population-level trans-
mission dynamics using the basic reproduction number, 

R0, which is given by the expression R =
+ 0
β

µ α
. The 

observed rate of entry and exit of cows to and from the 
lactation pen is μ, and the duration of infection is the 
inverse of the cure rate (α).

Variance of R0 was obtained using a log-transforma-

tion, where ln ln ,R0( ) =
+











β
µ α

 and then further sim-

plified to ln ln .β µ α( )− ( )+  The variance of ln(R0) is 
then variance ln(β) + variance ln(μ + α), assuming no 
covariance between β and μ + α. The individual vari-
ances are obtained from the regression equations as 
described above. An estimate of the variance of R0 is 
then obtained and the standard error (SE) by obtaining 
the square root of the resulting estimate. Subsequently, 
we used ±1.96 × SE to calculate a confidence interval 
for R0.

Infection dynamics may be studied using the subclini-
cal IMI status of cows, as defined above, or using pat-
terns of OCC change, thereby assuming that patterns 
of OCC change indicate the presence of a subclinical 
IMI. Observations from the first 7 d of each cow were 
omitted for the calculation of transmission parameters 
for patterns of OCC change. This was done to allow 
“burn in” of the EMR status, because the EMR for 
every cow is, by default, initialized with the lactation-
specific OCC curves of the herd (Sørensen et al., 2016), 
and this is likely to be too low for cows with subclinical 
IMI. Also, as cows were milked several times each day 
and the transmission models use cow-days as the time 
variable, only the first observation of the EMR per day 
was retained in the transmission model of changes in 
OCC pattern.

Transmission Models

We evaluated the transmission dynamics of the dif-
ferent mastitis pathogens separately and for the groups 
Pat 1 and Pat 2, as well as the 4 different patterns 

of OCC change. We modeled subclinical IMI episodes 
only. The transmission dynamics of the different patho-
gens, pathogen groups, and patterns of OCC change 
were displayed in a Susceptible-Infectious-Susceptible 
(SIS) model for each pathogen, pathogen group, and 
change in OCC pattern. The compartmental model 
describes a population of lactating cows divided into 2 
compartments, where S denotes susceptible cows with 
no subclinical IMI, and I denotes cows with subclinical 
IMI, where the compartments represent the proportion 
of lactating cows in each state. Figure 1 illustrates the 
state transition dynamics.

The following nonlinear ordinary differential equa-
tions describe the model mathematically:

 
d
d

= 
S
t

SI I N SS− + +β α ,θ µ − µ  [1]

 
d
d

=  .
I
t

SI I N IIβ α θ µ − µ− +  [2]

The parameters α and β quantify the transfer rates, 
where the transmission rate of infection from a cow 
with subclinical IMI to a susceptible cow is described 
by β (Keeling and Rohani, 2011). The daily rate of 
cured cows is described by α. At any given time, the 
sum of susceptible and infected cows is represented by 
N. The parameter μ describes the daily rate of entry 
and exit of cows to and from the lactation pen. The 
proportions θS and θI describe cows entering the lacta-
tion pen from the fresh pen to the susceptible or the 
infectious compartment, respectively.

The difference in 2 × log-likelihood between the 
model predicting number of new episodes of subclinical 

IMI with ln
SI
N

 used as the offset term and the model 

with only lnS as the offset was used to evaluate the ef-
fect of existing subclinical IMI episodes on the trans-
mission from infected to susceptible cows. The differ-

Figure 1. Schematic representation of the mathematical model of 
transmission of subclinical IMI. The boxes represent the state vari-
ables and the arrows represent the flow rates between susceptible (S) 
and infected (I) states. β = transmission parameter, βI is the daily 
rate of new infections, α = daily rate of cured cows; μ = daily rate of 
entry and exit of lactating cows. Proportion of cows entering the S and 
I compartments are determined by θS and θI, respectively.
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ence was evaluated with chi-squared statistics with 1 
df.

A nonlinear programming solver of Matlab (Math-
Works, Natick, MA), “ode45” solver, was used to solve 
the nonlinear ordinary equations of the SIS model. This 
approach is based on the Runge-Kutta method (Dor-
mand and Prince, 1980). The parameter values used 
in the numerical simulations of the SIS model were 
obtained from the statistical analysis.

RESULTS

Field Study

We collected 5,330 QMS from a total of 257 lacta-
tions in 173 cows. Each cow was sampled, on average, 8 
times (range 1 to 16). The cows entered the study at an 
average of 38 DIM (range 4 to 269 DIM). Bacteria were 
cultured from 1,222 samples, with 1 and 2 pathogens 
cultured in 1,152 and 67 samples, respectively. Accord-
ing to our criteria for evaluation of contamination, 3 
samples were excluded from the analysis. We recorded 
16 veterinary treatments for clinical mastitis during 
the study period. Mastitis pathogens were found in 
222 lactations in 155 cows. The most common patho-
gens found were Staph. epidermidis, C. bovis, Staph. 
chromogenes, Staph. aureus, and Staph. haemolyticus. 

A detailed overview of the distribution of microbial 
diagnoses can be found in Dalen et al. (2019). Accord-
ing to our definition of subclinical IMI, there were 324 
subclinical IMI episodes during the study period.

Estimation of Transmission Parameters

From the statistical analyses, we obtained transmis-
sion parameter β, cure rate α, and daily rate of cows 
leaving and entering the lactation pen μ; based on these 
parameters, we calculated R0 for each pathogen and 
pathogen group, and for the pathogen-proxy pattern 
of OCC change. The distribution of subclinical IMI 
episodes and the associated transmission parameters 
for the different pathogens, pathogen groups, and pat-
terns of OCC change are shown in Table 1. None of the 
individual mastitis pathogens nor the grouped Pat 1 
subclinical IMI or Pat 2 subclinical IMI were found to 
have an R0 >1. However, patterns of OCC change with 
a specificity of 80, 85, and 90% for Pat1 subclinical IMI 
had an R0 >1. The average duration of the subclinical 
IMI episodes, as given by the inverse of the cure rate α, 
is shown for each pathogen and group in Table 2. The 
duration of subclinical IMI episodes was significantly 
lower for the 4 patterns of OCC change than for the 
Pat 1 subclinical IMI episodes.

Table 1. Transmission parameters1 for subclinical IMI with individual and grouped (Pat 1 and Pat 2) mastitis pathogens and for 4 online cell 
count (OCC) patterns with different levels of specificity for detection of Pat 1 subclinical IMI episodes

Subclinical IMI with pathogen,  
group, or pattern N2 β (95% CI) α (95% CI) R0 (95% CI)

Staphylococcus epidermidis 64 0.0088 (0.0063–0.0123) 0.0080 (0.0058–0.0111) 0.71 (0.45–1.14)
Corynebacterium bovis 70 0.0179 (0.0139–0.0231) 0.0074 (0.0052–0.0107) 1.53 (0.98–2.39)
Staphylococcus chromogenes 36 0.0024 (0.0012–0.0046) 0.0038 (0.0023–0.0062) 0.30 (0.13–0.67)
Staphylococcus aureus 33 0.0093 (0.0060–0.0142) 0.0078 (0.0050–0.0123) 0.76 (0.41–1.42)
Staphylococcus haemolyticus 22 0.0061 (0.0036–0.0106) 0.0062 (0.0037–0.0105) 0.58 (0.27–1.24)
Aerococcus viridans 21 0.0254 (0.0158–0.0408) 0.0203 (0.0121–0.0343) 1.03 (0.51–2.09)
Enterococcus faecalis, Enterococcus faecium, 
 and Lactococcus lactis

12 0.0023 (0.0009–0.0061) 0.0022 (0.0008–0.0058) 0.35 (0.09–1.41)

Streptococcus dysgalactiae 25 0.0065 (0.0036–0.0117) 0.0077 (0.0045–0.0130) 0.54 (0.25–1.19)
Staphylococcus simulans 6 — 0.0046 (0.0017–0.0123) —
Staphylococcus hominis 6 0.0294 (0.0132–0.0655) 0.0242 (0.0101–0.0582) 1.03 (0.31–3.38)
Streptococcus uberis 7 0.0030 (0.0007–0.0119) 0.0029 (0.0007–0.0116) 0.41 (0.06–2.93)
Staphylococcus xylosus 2 0.0043 (0.0036–0.0064) 0.0086 (0.0021–0.0342) 0.34 (0.03–3.71)
Other 20 0.0165 (0.0099–0.0273) 0.0139 (0.0080–0.0239) 0.91 (0.43–1.90)
Pat 1 106 0.0069 (0.0053–0.0091) 0.0048 (0.0036–0.0064) 0.76 (0.51–1.13)
Pat 2 147 0.0048 (0.0036–0.0064) 0.0070 (0.0056–0.0087) 0.43 (0.32–0.58)
Elevated mastitis risk (EMR) 80% specificity3 1,116 0.1368 (0.1310–0.1428) 0.0889 (0.0851–0.0928) 1.45 (1.36–1.54)
EMR 85% specificity4 1,051 0.1465 (0.1377–0.1559) 0.1039 (0.0976–0.1107) 1.34 (1.22–1.46)
EMR 90% specificity5 1,045 0.1768 (0.1662–0.1881) 0.1368 (0.1285–0.1456) 1.24 (1.14–1.36)
EMR 99% specificity6 261 0.2692 (0.2380–0.3045) 0.2575 (0.2275–0.2914) 1.02 (0.86–1.22)
1β = transmission parameter; α = daily rate of cured cows; R0 = basic reproduction number.
2Number of subclinical IMI episodes.
3Pattern of OCC change with 80% specificity and 69% sensitivity for detection of Pat 1 subclinical IMI episodes.
4Pattern of OCC change with 85% specificity and 59% sensitivity for detection of Pat 1 subclinical IMI episodes.
5Pattern of OCC change with 90% specificity and 48% sensitivity for detection of Pat 1 subclinical IMI episodes.
6Pattern of OCC change with 99% specificity and 8% sensitivity for detection of Pat 1 subclinical IMI episodes.
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The predicted relationships between a preexisting 
subclinical IMI or EMR threshold and subsequent cases 
of the same condition in other cows are shown in Table 
3 for each pathogen and EMR threshold. For several 
mastitis pathogens, the number of existing infections 
had a significant effect on the transmission risk from an 
infected cow to a susceptible uninfected cow. However, 
the only Pat 1 mastitis pathogens among these were 
Staph. aureus and Staph. epidermidis.

For the patterns of OCC change, the EMR threshold 
at 80, 90, and 99% specificity for Pat 1 subclinical IMI 
had a significant effect on whether this pattern would 
subsequently arise in another cow (P = 0.009, 0.011, 
and 0.009, respectively).

Numerical Simulations

The proportion of cows with alerts for Pat 1 subclini-
cal IMI based on the EMR are shown for the 4 levels 
of specificity by days of study, as obtained from the 
raw data in Figure 2. This curve shows the propor-
tion of infected cows throughout the study period. The 
numerical simulations of the dynamics of I and S cows 
for each level of specificity are presented in Figure 2. 
Both the raw data and the dynamic simulations showed 

a stable transmission dynamic of the 4 patterns of OCC 
change in this herd throughout the study period. The 
numerical resolution of the ordinary differential equa-
tions describing the model can be used to generate 
predictions for any given time.

DISCUSSION

In this study, we propose using a transmission model 
based on frequent OCC measurements to forecast sub-
clinical IMI dynamics at the herd level. By modeling 
patterns of OCC change, we are able to predict the 
evolution of OCC patterns, as a proxy for subclinical 
IMI, in the herd. We used EMR as described by Sø-
rensen et al. (2016) for this purpose. Changes in the 
proportions of S to I can be simulated and forecast for 
a prolonged period. This approach could be included 
in a decision-support tool to alert farmers when udder 
health management actions against subclinical IMI are 
required during lactation and at drying off.

Based on research, significant improvements have 
been made in detection, management, and prevention 
of mastitis (Ruegg, 2017). We propose further improve-
ment in prevention of new cases of mastitis by using 
herd-specific evolution of the different transmission pa-

Table 2. Average duration in days of infection with subclinical IMI for individual and grouped (Pat 1 and Pat 
2) mastitis pathogens and for 4 online cell count (OCC) patterns with different levels of specificity for detection 
of Pat 1 subclinical IMI episodes

Subclinical IMI with pathogen N1 Duration (95% CI)

Staphylococcus epidermidis 64 125 (90–172)
Corynebacterium bovis 70 135 (93–192)
Staphylococcus chromogenes 36 263 (161–435)
Staphylococcus aureus 33 128 (81–200)
Staphylococcus haemolyticus 22 161 (95–270)
Aerococcus viridans 21 49 (29–83)
Enterococcus faecalis, Enterococcus faecium, 
 and Lactococcus lactis

12 455 (172–1,250)

Streptococcus dysgalactiae 25 130 (77–222)
Staphylococcus simulans 6 217 (81–588)
Staphylococcus hominis 6 41 (17–99)
Streptococcus uberis 7 345 (86–1,429)
Staphylococcus xylosus 2 116 (29–476)
Other 20 72 (42–125)
Pat 1 106 208 (156–278)
Pat 2 147 143 (115–179)
Elevated mastitis risk (EMR) 80% specificity2 1,116 11 (11–12)
EMR 85% specificity3 1,051 10 (9–10)
EMR 90% specificity4 1,045 7 (7–8)
EMR 99% specificity5 261 4 (3–4)
1Number of subclinical IMI episodes.
2Pattern of OCC change with 80% specificity and 69% sensitivity for detection of Pat 1 subclinical IMI epi-
sodes.
3Pattern of OCC change with 85% specificity and 59% sensitivity for detection of Pat 1 subclinical IMI epi-
sodes.
4Pattern of OCC change with 90% specificity and 48% sensitivity for detection of Pat 1 subclinical IMI epi-
sodes.
5Pattern of OCC change with 99% specificity and 8% sensitivity for detection of Pat 1 subclinical IMI episodes.
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rameters to indicate which area of management should 
be improved to prevent an increase in new subclinical 
IMI episodes. Such transmission models also allow pre-
diction of the effect of culling and treatment decisions 
on new cases of subclinical IMI, as demonstrated by 
Reksen et al. (2012).

An interesting finding in our study was the rather 
low transmission of Pat 1 mastitis pathogens between 
lactating cows. None of the Pat 1 pathogens demon-
strated an R0 >1. Also, but not unexpectedly, Staph. 
aureus and Staph. epidermidis were the only Pat 1 
pathogens for which an existing subclinical IMI episode 
was significantly related to transmission from infected 
to susceptible cows. That is, existing infections with 
these pathogens were still transferred from one cow to 
another but at a lower rate than would be the case if 
R0 was >1. With only 2 AMS available for milking the 
cows in our study herd, we expected a higher degree of 
transmission of pathogens such as Staph. aureus and 
Strep. dysgalactiae between cows. In an AMS, some of 

the recommended preventive actions to limit transmis-
sion of contagious mastitis pathogens during milking 
(Barkema et al., 2009) are violated, because a large 
number of cows are milked with the same teat cups 
and the teat cups are only rinsed with lukewarm wa-
ter between milkings. However, the observed absence 
of contagious properties of Staph. aureus and Strep. 
dysgalactiae in our study indicate that the AMS is not 
a major vector of transmission of subclinical IMI in 
this herd. In line with this, a previous study suggested 
reduced overmilking and no cross-quarter contamina-
tion in AMS as potentially beneficial factors for ud-
der health in AMS (Hogeveen et al., 2001). This may 
explain the low transmission rates, although this is be-
yond the scope of the current study. Another potential 
explanation for this minor rate of transmission is that 
shedding of bacteria may be too low to enable effec-
tive transmission from cows with no clinical symptoms. 
Furthermore, the duration of subclinical IMI was short 
for most bacterial species, with the exception of Staph. 

Table 3. Effect of an existing subclinical IMI episode or online cell count (OCC) pattern on the number of 
subsequent new events (transmissions of the same condition from infected cows to susceptible cows)1

Subclinical IMI with pathogen N2

P-value of the fit of a 
model with S × I versus 
only S in the offset term

Staphylococcus epidermidis 64 <0.001
Corynebacterium bovis 70 <0.001
Staphylococcus chromogenes 36 0.172
Staphylococcus aureus 33 0.041
Staphylococcus haemolyticus 22 0.040
Aerococcus viridans 21 0.005
Enterococcus faecalis, Enterococcus faecium, 
 and Lactococcus lactis

12 0.196

Streptococcus dysgalactiae 25 0.069
Staphylococcus simulans 6 —
Staphylococcus hominis 6 0.004
Streptococcus uberis 7 0.524
Staphylococcus xylosus 2 0.284
Other 20 0.016
Pat 13 106 0.065
Pat 23 147 0.063
Elevated mastitis rate (EMR) 80% specificity4 1,116 0.009
EMR 85% specificity5 1,051 0.156
EMR 90% specificity6 1,045 0.011
EMR 99% specificity7 261 0.009
1The difference in 2 × log-likelihood between the model predicting number of new episodes of subclinical IMI 

with ln
SI
N

 used as the offset term and the model with only ln S as the offset was used to evaluate the effect. S 
= cow-days of a susceptible cow, I = cow-days infected, N = total cow-days in each interval (study month).
2Number of subclinical IMI episodes.
3Pathogens from which a high cell count would be expected during a subclinical IMI episode were assigned to 
the Pat 1 group. Pathogens not in the Pat 1 group were assigned to the Pat 2 group.
4Pattern of OCC change with 80% specificity and 69% sensitivity for detection of Pat 1 subclinical IMI epi-
sodes.
5Pattern of OCC change with 85% specificity and 59% sensitivity for detection of Pat 1 subclinical IMI epi-
sodes.
6Pattern of OCC change with 90% specificity and 48% sensitivity for detection of Pat 1 subclinical IMI epi-
sodes.
7Pattern of OCC change with 99% specificity and 8% sensitivity for detection of Pat 1 subclinical IMI episodes.
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Figure 2. Observed proportion of cows with elevated mastitis risk (EMR) above the threshold (I; □) and susceptible cows (S; Δ) for specific-
ity (Sp) of (a) 80%, (c) 85%, (e) 90% and (g) 99% for Pat 1 (pathogens from which a high cell count would be expected during subclinical IMI) 
subclinical IMI using EMR. Corresponding dynamic simulation is shown for specificity of (b) 80%, (d) 85%, (f) 90%, and (h) 99%, respectively, 
for Pat 1 subclinical IMI.
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epidermidis and C. bovis. The high prevalence of C. 
bovis is likely to have elevated the transmission of this 
infection.

None of the known mastitis pathogens in our study 
demonstrated both an R0 >1 during lactation and 
a significant effect of an existing subclinical IMI on 
transmission from infected to susceptible cows. This 
indicates that a major outbreak of mastitis cases 
due to these species of bacteria was unlikely. How-
ever, although transmission rates were low, an existing 
subclinical IMI was significantly associated with the 
number of new episodes of subclinical IMI for several 
Pat 2 pathogens, along with Staph. aureus and Staph. 
epidermidis. In such circumstances, the maintenance of 
a relatively constant prevalence of subclinical IMI is 
likely to depend on infected cows entering the lactation 
pen after calving (Reksen et al., 2012).

The EMR thresholds with 80 and 90% specificity 
for detection of Pat 1 subclinical IMI episodes showed 
both an R0 >1 and a significant association between an 
existing pattern of OCC change and the occurrence of 
a new subclinical IMI episode in susceptible cows in our 
study. That is, the prevalence of cows with EMR over 
the threshold was significantly related to new episodes 
of EMR over the threshold in susceptible cows. In addi-
tion, spread of the patterns of OCC change apparently 
has the potential to be associated with an outbreak. 
This dynamic was observed despite no outbreak occur-
ring during the study period; this implies, therefore, 
that this approach may be quite sensitive and useful for 
surveillance of the underlying udder health situation at 
the herd level. Our results also showed that the number 
of cows with an EMR over the threshold should be 
maintained at a low level to prevent an EMR over the 
threshold developing in other cows.

With low sensitivity and specificity for IMI, current 
application of sensors is of limited practical use for sub-
clinical IMI management at the cow level (Norberg et 
al., 2004; Dalen et al., 2019). However, the current study 
showed that modeling transmission dynamics, based on 
patterns of OCC change as a proxy for subclinical IMI 
prevalence at herd level, may be useful for predicting 
the trend of new infections at the herd level. A forecast 
of an elevation in the proportion of infected cows in the 
herd may signal an increasing udder health problem 
in the herd. The usefulness of such a system depends 
on the defined threshold values for an alert. Applica-
tion of predictions from the EMR-based transmission 
model with a specificity of 99% for Pat 1 subclinical 
IMI will result in relatively few alerts, but these will 
almost certainly be related to an ongoing subclinical 
IMI episode. This could prove useful for alerting the 
farmer of individual cows in need of attention. Lower-

ing the specificity to 80% would result in more frequent 
but less specific alerts. These frequent alerts could be 
used in a surveillance of udder health on the herd level.

The duration of subclinical IMI episodes was sig-
nificantly shorter for the 4 patterns of OCC change 
than the duration of the Pat 1 subclinical IMI episodes, 
as defined by culture results from QMS. A potential 
explanation for this is that the limited sensitivity and 
specificity for detection of Pat 1 subclinical IMI us-
ing the 4 patterns of OCC change results in a greater 
number of both false-positive and false-negative results. 
If so, this increases both the observed number of new 
episodes and cures, which, in turn, reduces the duration 
of each episode. Another possibility is that the dura-
tion of subclinical IMI episodes based on culture results 
is overestimated in our study, because milk sampling 
for bacteriological culture was performed monthly and 
the cows may have recovered from the infections in the 
period between the sampling events.

The basic reproduction number R0 is a combined 
value affected by the number of contacts per unit time, 
transmission probability per contact, and duration of 
the infectious period (Anderson and May, 1991). Dalen 
et al. (2018) found that the cure rate for subclinical IMI 
differed significantly between 2 farms with the same 
mastitis pathogen, and that this difference affected 
the prediction of transmission dynamics of the same 
pathogen in each farm. With herd-specific knowledge 
of which transmission parameters have most effect on 
transmission dynamics, we can improve udder health 
management by focusing preventive actions on those 
management areas that are related to the transmission 
parameters of concern for each specific herd.

CONCLUSIONS

In the current study, we presented an investiga-
tion of transmission dynamics of mastitis pathogens, 
pathogen groups, and related alterations in EMR in a 
single herd. Forecasting changes in the herd prevalence 
of subclinical mastitis can be achieved using dynamic 
transmission models based on patterns of OCC change. 
The statistical analyses demonstrated transmission 
of patterns of OCC change as a proxy for subclinical 
IMI at specificity levels of 80, 90, and 95%, and new 
episodes of EMR over the threshold were influenced by 
patterns of OCC change exceeding the EMR threshold 
at specificity of 80, 90, and 99%. Although limitations 
were apparent, this study provides proof of concept that 
an EMR transmission model can be used at different 
levels of specificity for Pat 1 subclinical IMI episodes. 
This could be used for surveillance during lactation, 
depending on an individual farmer’s herd-health man-
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agement goals and tolerance for false positives. Future 
developments in sensor technologies and data analyses 
are likely to improve sensor-based transmission models.
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