
Orders of magnitude speed increase in Partial Least Squares feature selection

with new simple indexing technique for very tall data sets

P. Stefansson, U. G. Indahl, K. H. Liland, and I. Burud

Faculty of Science and Technology, Norwegian University Of Life Sciences.

Feature selection is a challenging combinatorial optimization problem that tends to require a large

number of candidate feature subsets to be evaluated before a satisfying solution is obtained. Due to

the computational cost associated with estimating the regression coe�cients for each subset, feature

selection can be an immensely time consuming process and is often left inadequately explored. Here

we propose a simple modi�cation to the conventional sequence of calculations involved when �tting

a number of feature subsets to the same response data with partial least squares model �tting. The

modi�cation consists in establishing the covariance matrix for the full set of features by an initial

calculation and then deriving the covariance of all subsequent feature subsets solely by indexing into

the original covariance matrix. By choosing this approach, which is primarily suitable for tall design

matrices with signi�cantly more rows than columns, we avoid redundant (identical) recalculations in the

evaluation of di�erent feature subsets. By benchmarking the time required to solve regression problems

of various sizes, we demonstrate that the introduced technique outperforms traditional approaches by

several orders of magnitude when used in conjunction with Partial Least Squares (PLS) modeling. In the

supplementary material, we provide code for implementing the concept with kernel partial least squares

regression.

Keywords: PLS, feature selection, variable selection, subset selection, Kernel PLS

1. INTRODUCTION

For centuries linear least squares �tting has been one of the most important statistical tools for mapping

a set of independent variables, X, to a dependent response variable, y. Its use has today spread to nearly

every quantitative �eld of science, and in areas such as bioinformatics and chemometrics multiple linear

regression is employed extensively. A serious challenge in the data driven �elds consists in identifying which

2

column vectors contained within a potentially megavariate data matrix X are signi�cantly correlated to

the response vector y and which are not. The process of eliminating non-informative variables from X is

typically referred to as either feature selection, variable selection or subset selection. Only an exhaustive

search is guaranteed to identify the globally best feature subset, which becomes computationally infeasible

as soon as the number of independent variables in the data are more than just a few. Some heuristic

method is therefore often required in practice to identify a combination of variables that is considered

`good enough'. Examples of feature selection methods frequently used in bioinformatics and chemometrics

include: forward selection, backward selection, genetic algorithms (GA), simulated annealing and interval

PLS (iPLS) [1, 2]. Each feature selection technique has its own advantages and disadvantages; stepwise

methods such as forward/backward selection are for instance relativley fast to use but are prone to getting

stuck in local optimas [1]. Population based feature selection methods such as genetic algorithms can

overcome such local optimas, but are often in comparison extremely slow, which limits the circumstances

under which they may be applied sucessfully [3]. A characteristic trait of most wrapper-based feature

selection methods is that they are driven by trial and error. As such, most methods generally require a large

number of candidate subsets to be evaluated before a useful solution is obtained. Due to the computational

cost of calibrating regression models for each of the subsets this process can be very time consuming for

big data sets.

Here, we present a seemingly trivial insight to matrix multiplications which, when utilized for feature

selection purposes in a speci�c way, leads to nontrivial speedups in the execution time required to explore

the performance of a large number of variable subsets subject to linear modeling. The introduced technique

is suitable to use together with any feature selection strategy that requires a large number of candidate

subsets to be evaluated, such as any of the feature selection methods mentioned above. Our approach

involves an extensive reuse of the results from identical calculations that occur across the evaluation of

di�erent variable subsets. The calculations available for reusing can easily be applied together with a

particular version of the Partial Least Squares (PLS) method in order to obtain substantial improvements

in computational performance.

3

2. THE CONCEPT

2.1. Relevant background information

In ordinary least squares (OLS) regression problems we assume that our (X, y)�data are well described

by a linear model of the form

y = Xβ + ε, (1)

where the error term ε should be `small'. The least squares solution of this equation is obtained by the

estimated vector of regression coe�cients, β̂, minimizing the sum of squared errors ‖ε‖2 = ‖y− ŷ‖2, where

the vector of �tted response values ŷ is calculated by the matrix-vector multiplication ŷ = Xβ̂.

When the m× n matrix X is composed of a large number of observations m� n where n denotes the

number variables, �nding the OLS solution of the linear system with respect to β in the numerically most

accurate way may become slow and computationally costly. The normal equations for the OLS solution of

Eq. 1 is the n× n-system

X>y = X>Xβ. (2)

Solving the normal equations directly is usually not recommended due to the potentially unfavourable

condition number of X>X with associated numerical issues. On the other hand, provided that m � n,

Eq. 2 yields a much smaller system of equations which can be solved considerably faster also when

accounting for the computational costs of forming the products X>y and X>X. In addition to the

OLS use case, these products are also exploited in some partial least squares algorithms, such as kernel

PLS, to reduce the dimensions of the regression problem under consideration and speed up the β̂-estimation.

The feature selection problem requires comparison of a large number of competing models. The com-

putational advantages of solving normal equations rather than the original systems may therefore justify a

priority over numerical precision in the explorative phase of a feature selection study where most candidate

4

models will be discarded anyway. For the most attractive feature combination candidates found in the

explorative phase, the �nal feature evaluation and -selection should be based on repeated modeling using

numerically stable algorithms for solving the associated regression problems. In the following section we

investigate a simple, but seemingly overlooked, aspect of the X>X and X>y calculations and demonstrate

that these quantities, which may be the most computationally costly calculations involved in solving Eq.

2, only need to be calculated once regardless of how may column subsets of X one decides to evaluate.

2.2. Technique for reusing X>X and X>y calculations with indexing

Consider a simple design matrix, X, containing three observations of four independent variables, each

indicated with its own color:

 X =


1 4 7
2 5 8
3 6 9


10
11
12

.

And its transpose

X =




1 2 3
4 5 6
7 8 9
10 11 12 




.

When multiplying X> with X to form the quantity X>X needed to solve Eq. 2, the colors�i.e. the in-

dependent variables�will `blend' with each other according to the rules of linear algebra as shown in Fig. 1.

As can be seen in Fig. 1, the in�uence of the �rst column of X�the blue one�can be traced along

the �rst column and the �rst row of X>X. The second column of the original X matrix�the green

one�only in�uences the second column and the second row of X>X. This pattern continues throughout

the resulting matrix product regardless of what dimension the original X matrix is of. In summary; the

in�uence of the jth column of X is con�ned to the jth row and column of X>X.

This means that if one already has determined the X>X matrix using all available columns of X and

5

then, for instance, wishes to obtain what the matrix product would have been had the last column of

X�the red one�not been included, it is not necessary to redo the matrix multiplication with one less

column. Instead the last row and column of the full X>X matrix product can simply be discarded.

1 10 + 2 11 + 3 121 1 +

·
·
·
·

·
·
·
·

·
·
·
· 2 2 + 3 3 1 4 + 2 5 + 3 6 1 7 + 2 8 + 3 9

4 10 + 5 11 + 6 124 1 + 5 2 + 6 3 4 4 + 5 5 + 6 6 4 7 + 5 8 + 6 9

7 10 + 8 11 + 9 127 1 + 8 2 + 9 3 7 4 + 8 5 + 9 6 7 7 + 8 8 + 9 9

10 10+11 11 +12 1210 1 + 11 2 + 12 3 10 4 + 11 5 + 12 6 10 7 + 11 8 + 12 9

X X =

·
·
·
·

·
·
·
·

·
·
·
·

·
·
·
·

·
·
·
·

·
·
·
·

·
·
·
·

·
·
·
·

·
·
·
·

FIG. 1: Illustration of how the elements of X>and X would blend during the calculation of the matrix
product X>X. Numbers are colored according to their column origin in the example X given in section
2.2.

In fact, when X>X is calculated including the complete set of n variables in X, each of the matrix

products X>
i Xi obtained by de�ning Xi as one of the (2n − 1) possible column subset matrices of X

can be derived without additional calculations�simply by indexing into the already available full product

X>X. The same idea holds true for �nding X>
i y by indexing into X>y. Thus for any variable subset

matrix Xi, the associated normal equations X>
i y = X>

i Xiβ can be obtained directly by an appropriate

indexing into the full normal equations (2). To see in mathematical notation why this is true, assume that

the vector y ∈ Rm and the matrix X = [x1 x2 ... xn] has dimension m × n where the column vectors

x1, ..., xn ∈ Rm. Note that except for the diagonal values of X>X, exactly two vectors are involved in

the calculation of each entry for both

X>X =




x>1 x1 x>1 x2 ... x>1 xn

x>2 x1 x>2 x2 ... x>2 xn

: ... x>i xj :

x>n x1 x>2 xn ... x>n xn




and X>y =




x>1 y

x>2 y

:

x>i y

:

x>n y




.

6

Each matrix� and vector entry is calculated by taking dot products of the form x>i xj and x
>
i y, respectively.

Elimination of all entries involving any speci�c vector xi will therefore remove its contribution to the �nal

product�clearly without in�uencing any of the remaining dot products. As will be demonstrated below, the

performance implications of this observation are profound when using a kernel PLS algorithm for evaluating

multiple variable combinations.

3. APPLICATION TO FEATURE SELECTION WITH PARTIAL LEAST SQUARES, PLS

In �elds such as chemometrics where multicolinearity amongst the variables in X is common, a partial

least squares approach is often used instead of ordinary least squares due to the robustness bene�ts that

comes with using latent rather than actual variables under such conditions [4, 7]. For large data sets

where the X matrix is either very tall or very wide Kernel PLS algorithms have been developed as faster

alternatives to the conventional NIPALS PLS �tting procedure [5, 8, 9]. The primary focus in this paper

lies on situations where X is tall, i.e. has substantially more rows than columns (m � n). In such cases,

the original Kernel PLS algorithm [5] or any of the existing derivatives/improvements of which [6] generally

constitutes good algorithm choices in terms of computational e�ciency. One property of these kernel

algorithms�that turns out to be greatly bene�cial when conducting feature selection�is that they base

their entire parameter estimation process around the information content of the covariance matrices X>X

and X>y. Because they operate on the covariance matrices, the indexing strategy introduced in section 2.2

can easily be incorporated into the �tting process in order to further increase the computational e�ciency

of evaluating multiple feature subsets. Furthermore, calculating the quantities X>X and X>y is generally

amongst the very �rst steps involved in kernel based PLS algorithms, which makes the necessary alteration

required to incorporate the indexing technique from section 2.2 trivial to implement and limited to a small

part of the calculation sequence. To speed up the coe�cient �tting of a batch of feature selections with

a kernel PLS algorithm, the only modi�cation required compared to a conventional naive approach is to

loop through the subsets one by one after the initial covariance matrices have been calculated, rather than

7

placing the same loop around the entire PLS algorithm. Essentially this means that the variable selection

procedure is placed inside the PLS algorithm rather than wrapped around it. The fundamental di�erences

between the two approaches are respectively made clear in algorithms 1 and 2 which depict the concepts

behind conventional variable selection using kernel PLS and the suggested modi�ed implementation. Prac-

tically implementing the matrix indexing technique described in section 2.2 is exceptionally simple in most

high-level programming languages: �rst the quantities X>X and X>y are calculated with the full set

of variables. Then, the relevant covariance elements for any feature subset can be extracted from these

quantities by applying the same indexing logic across all dimensions. The most straightforward approach

to achieving this is to represent a particular feature selection as an n-dimensional Boolean vector and then

applying the vector as a means of indexing into X>X and X>y, i.e. only including the dot products of

intersecting true-elements. The process can then be repeated for all feature subsets in a loop as shown in

algorithm 2.

Algorithm 1 PLS(X, y, SubSets)

1: /* Loop over candidate subsets */
2: for i← 0 to k do
3: /* XX and Xy for relevant subset */
4: Xi = X[:,SubSets[i,:]]
5: XXi = X>

i ×Xi

6: Xyi = X>
i ×y

7:

8: /* Kernel PLS using XXi and Xyi */
9: βi = KernelPLS(XXi,Xyi)

10: end for

Algorithm 1: Pseudocode explaining how a batch of feature selections conventionally would be estimated
using kernel PLS. Input variables are assumed to be an m × n design matrix X, an m × 1 response vector
y and a k × n Boolean matrix SubSets containing k di�erent subsets represented as 1 × n vectors.

8

Algorithm 2 FastPLS(X, y, SubSets)

1: /* Calculate full covariance matrices */
2: FullXX = X>×X
3: FullXy = X>×y
4:

5: /* Loop over candidate subsets */
6: for i← 0 to k do
7: /* XX and Xy for relevant subset */
8: XXi = FullXX[SubSets[i,:],SubSets[i,:]]
9: Xyi = FullXy[SubSets[i,:]]

10:

11: /* Kernel PLS using XXi and Xyi */
12: βi = KernelPLS(XXi,Xyi)
13: end for

Algorithm 2: Pseudocode illustrating modi�cations to algorithm 2 necessary to reuse covariance
calculations between variable subsets to speed up the �tting of a batch of feature selections using a kernel
PLS algorithm.

3.1. BENCHMARK OF FEATURE SELECTION WITH RANDOM SEARCH

To experimentally validate the supposed performance bene�ts that comes with reusing the full X>X and

X>y calculations for all feature subsets rather than individually determining them for each variable subset,

both methods (algorithm 1 & 2) were benchmarked in terms of execution time over various problem

sizes. Four di�erent X matrices with 100 columns and 104, 105, 106 and 107 rows, respectively, were

generated and populated with pseudorandom data together with �ve y vectors with the same numbers

of rows. Batches containing 1, 1000, 2000, 3000, 4000 and 5000 feature selections were randomly

generated with a uniform distribution of active and inactive variables. Using the same input data the

PLS regression between X and y was then performed using both the method that reuses covariance

calculations (algorithm 2) and the conventional kernel PLS method (algorithm 1). For both algorithms

the maximum number of PLS components was set to 15. The kernel algorithm used to perform the

parameter estimation during the benchmark was the Modi�ed kernel algorithm #2 [6]. In appendix 1,

a MATLAB implementation of this algorithm is provided with the indexing technique from algorithm

2 incorporated. The implementation of the Modi�ed kernel algorithm #2 provided in the appendix

9

di�ers slightly from Dayal and MacGregor's original algorithm [6] in the sense that we have included a

stabilizing reorthogonalization (line 42, appendix 1), eliminated some redundant intermediate calcula-

tions (the lines 44-49, appendix 1) and simpli�ed the regression coe�cient calculations (line 50, appendix 1).

The runtimes for the subset sizes k (1 ≤ k ≤ 5000) that were not directly evaluated in our benchmark

experiments were linearly interpolated to provide a more coherent trend line. Figure 2 shows the result of

the benchmark and indicates that the performance bene�ts of reusing the full X>X and X>y for each

feature subset grows as the number of evaluated subsets increases. When only evaluating one feature

subset the modi�cation described in section 2.2 naturally o�ers no performance bene�ts at all and is

consistently slightly slower than the conventional approach. When evaluating a large number of feature

subsets for a regression problem with many observations however, the technique described in section 2.2

is several orders of magnitude faster than the conventional method and peaks in our tests at a runtime

decrease of roughly 5920x (m = 107, k = 5000).

A drawback with PLS algorithms in terms of computational e�ciency is that they are inherently

serial in their execution since each �tted component builds upon the previous one. Because X>X and

X>y which a kernel PLS algorithm operates on are typically very small in size compared to the full X

and y, kernel PLS algorithms require very little working memory as they run. An advantage of this is that

it allows multiple kernel PLS instances to be executed in parallel across several threads such that several

feature subsets are evaluated simultaneously�even though each individual algorithm runs in serial. In the

supplementary material found online [LINK?], a GPU implementation of algorithm 2 written in CUDA C

is available which assigns one thread�of potentially thousands available on modern GPUs�to the �tting

of each of the k feature selections. The GPU implementation can also be called from MATLAB through

the MEX interface. The benchmark results of this implementation are shown in green in Fig. 2. When

including the CUDA implementation in the comparison, the speedup increases even more and peaks at

around 7316x at m = 107 k = 5000 compared to algorithm 1.

10

1 second

1 hour

1 millisecond1e-3

1e-2

1e-1

1e0

1e1

1e2

1e3

1e4

Time elapsed time /s

1 1000 2000 3000 4000 5000

No. variable selections fitted (k)

X dim. 104×100 X dim. 105×100 X dim. 106×100 X dim. 107×100

X dim. 104×100 X dim. 105×100 X dim. 106×100 X dim. 107×100

Reusing XTX and XTy calculations

Not reusing XTX and XTy calculations (conventional way)

X dim. 104×100 X dim. 105×100 X dim. 106×100 X dim. 107×100

Reusing XTX and XTy calculations (parallel CUDA implementation)

 m=10
4

 m=10
5

 m=106

 m=107

 m=10
4

 m=10
5

 m=10
6

 m
=10

7

 m=10
6

 m=107

FIG. 2: Benchmark results from �tting batches of feature selections of varying sizes to random data using
an improved version of the modi�ed kernel #2 PLS algorithm with and without reusing calculations. Blue
lines represents calculations performed according to algorithm 2, orange lines according to algorithm 3.
CPU benchmarks were performed on an Intel i7-7700K @ 4.2 GHz. Green lines represents the parallel
CUDA implementation of algorithm 3 executed on an Nvidia GTX1080ti @ 1.6 GHz. The maximum
number of PLS components was set to 15 in all cases.

11

3.2. BENCHMARK OF COMMONLY USED FEATURE SELECTION METHODS

The results from the random search benchmark in section 3.1 provides a good overview of how the PLS

calculation time scales with problem size. It does not, however, clearly convey what speedup one could

expect in practice when implementing the indexing technique from section 2.2 together with commonly

used non-random feature selection methods along with real data. In this section, three commonly used

feature selection methods: forward selection, backward selection and a genetic algorithm, are therefore

benchmarked together with a hyperspectral data set to �ll this void. The data set used in the benchmark

consists of six vis-NIR hyperspectral time series sequences where each sequence depicts a separate wood

sample of the species Scots pine (Pinus sylvestris). Initially, each wood sample was submerged entirely

under water and left to soak for 24 hours. After the soaking period the wood samples were taken from the

water and placed one by one on a digital scale, which in turn was positioned underneath a hyperspectral

camera. Over the course of roughly 21 hours, the absorbance of each wood sample was then monitored by

the camera using 190 bands in the 500 − 1005 nm region as the wood dried. In total, 843 hyperspectral

images were taken and the absorbance spectra from all images are used as X in the data set. The digital

scale placed underneath the wood samples was used to measure the weight of the wood samples as it

decreased over time due to moisture evaporation. The sample weight was then recalculated into an average

moisture content of each wood sample for each point in time. The time dependent moisture content is

used as the response (y) in the data set. For more information on the data set the reader is referred to [11].

When performing regression on hyperspectral data, each pixel of the involved hyperspectral images can be

viewed as a unique observation. When arranging such a data set into a two-dimensional design matrix, the

number of rows (m) corresponds to the total number of pixels in all images�which can easily add up to

several million or billion in number. To make the data set easier to work with, the spatial resolution of the

original hyperspectral images can be lowered by averaging together neighboring pixels, resulting in an X

matrix with any desired number of rows. During the benchmark in this section the spectral resolution (n)

of the data set was kept constant at 190 bands, while the spatial resolution (m) of the design matrix was

down-sampled to 0.5e3, 1.0e3, 0.5e4, 1.0e4, 0.5e5, 1.0e5, 0.5e6 and 1.0e6 respectively. In each feature

selection algorithm a 10-fold cross-validation was performed and the cross-validated root mean square error,

12

RMSEcv, was used to drive the search. In the forward and backward selection benchmark, the selection

process was terminated as soon as an iteration caused the RMSEcv to increase. The genetic algorithm used

a population size of 200 and ran for 200 generations before terminating. In all benchmarks the maximum

number of considered PLS components was set to 15. The results from the three benchmarks are shown

in Fig.3. As can be seen Fig.3, the calculation time required to perform backward selection and genetic

algorithm was greatly decreased by the use of the indexing technique from section 2.2, while forward selection

bene�ted substantially less from the indexing technique. Table 1 summarizes the average and maximum

observed speedup of algorithm 2 compared to algorithm 1 for each of the feature selection methods in

the benchmark. As demonstrated by the random search benchmark, the speedup is directly related to the

number of subsets being evaluated, which di�ers greatly between the feature selection methods. In the

case of the genetic algorithm, which terminated after a �xed number of generations, the number of subsets

to evaluate is deterministic and often high compared to the other two methods, which is why it is natural

for the GA to bene�t a lot from the suggested method. In the case of forward- and backward selection,

the number of subsets evaluated throughout the feature selection process depends on when the termination

criterion is triggered, which in turn is data set speci�c. In the present example, backwards selection was

sped up a great deal more by the suggested indexing technique than forward selection, it should be noted

however, that this pattern could well be reversed for data sets that converges on a large number of active

features. Furthermore, when performing calculations on a GPU there is always an overhead accosted with

transferring data onto and from the device. When the computational workload is low, such as during the

initial stages of a forward selection algorithm, the cost of transferring data to and from the GPU is too

high to be completley amortized away by the o�ered parallelization of the PLS computation. This is why

the CPU implementation of algorithm 2 can be seen to outperform the GPU implementation of algorithm

2 under some circumstances in the benchmark.

13

1 minute

1 hour

1 hour

100

Time elapsed /s (forward selection)

101

102

103

103 104 105 106

Time elapsed /s (backward selection)

103 104 105 106

102

103

104

105

102

103

104

105

Time elapsed /s (genetic algorithm)

No. rows in X (m)
103 104 105 106

Not reusing XTX and XTy calculations

Reusing XTX and XTy calculations

Reusing XTX and XTy calculations (parallel

CUDA implementation)

No. rows in X (m)

No. rows in X (m)

FIG. 3: Benchmark results from performing feature selection with kernel PLS on X matrices of a varying
number of rows (m) using three commonly used feature selection algorithms; forward selection (upper),
backward selection (middle) and genetic algorithm (lower). Blue lines represents feature selection
performed using algorithm 2, orange lines according to algorithm 3. CPU benchmarks were performed on
an Intel i5-6300HQ @ 2.3 GHz. Green lines represents the parallel CUDA implementation of algorithm 3
excecuted on an Nvidia GTX1080ti @ 1.6 GHz. The benchmark results only include the time elapsed

when �tting regression coe�cients β̂ with kernel PLS, the additional time required to compute RMSEcv

is not included since it is unrelated to the choice of PLS algorithm and identical in the three cases.

14

TABLE I: Average and maximum observed speedup of algorithm 2 compared to algorithm 1 for the three
benchmarked feature selection methods.

Feature selection method Avg. speedup Max. speedup

Forward selection (CPU) 5x 8x
Forward selection (GPU) 4x 8x
Backward selection (CPU) 96x 281x
Backward selection (GPU) 136x 335x
Genetic algorithm (CPU) 69x 207x
Genetic algorithm (GPU) 127x 271x

15

4. CONCLUSIONS AND DISCUSSION

Many heuristic feature selection algorithms are largely driven by trial and error, because of this they tend

to be rather time consuming - which creates a demand for computationally fast PLS �tting procedures

such as kernel PLS. By taking advantage of a new simple indexing technique, the computational cost

of �tting multiple variable subsets of the same data with PLS regression is substantially reduced. In

cases were the design matrix X consists of a far greater number of observations than variables, we have

demonstrated that the proposed technique o�ers a speedup of several orders of magnitude compared to the

conventional approach when evaluating regression models for a large number of di�erent variable subsets.

The speedup is achieved by performing the computationally expensive covariance matrix calculations

X>X and X>y only once using the complete set of variables within X and then reusing the already

calculated results for all subsequent feature subsets, rather can recalculating the covariances for each

individual subset. It should be emphasized that the performance bene�ts of this technique becomes

greater the larger the number of evaluated feature subsets becomes. In the special case of consider-

ing only one feature subset, the method o�ers no improvements at all since there are no calculations to reuse.

Because the success of many heuristic variable selection algorithms depend on the ability to explore

a search space by evaluating the performance of a large number of subsets, the technique introduced here

has the potential of improving essentially all wrapper-based feature selection methods by enabling more

feature subsets to be evaluated per unit of time than previously possible. The kernel PLS algorithms

are, however, not among the most numerically stable PLS alternatives. It is therefore recommended

to recalibrate the most promising feature combination(s) by using a numerically more stable PLS

algorithm, such as bidiag2 [10], before carefully evaluating, choosing and deploying the �nal model.

It should also be mentioned that there are other �avors of PLS, such as sparse partial least squares

regression (SPLS) which circumvents the need for conventional feature selection by producing sparse linear

combinations of the original features within the algorithm [12]. Although SPLS requires the optimization

of additional built-in parameters, it may in some cases�such as when the computational cost is not of

critical importance or when the data set is small�be worthwhile to consider as a viable alternative approach.

16

Lastly it should also be mentioned that the indexing technique introduced in this paper is not lim-

ited to partial least squares regression. Indeed, in cases where solving an ordinary least squares regression

problem through the normal equations is numerically acceptable, the indexing technique introduced in this

paper is trivial to implement together with OLS and o�ers speedups on par with the ones demonstrated

for PLS in section 3.

REFERENCES

[1] Y. Saeys, I. Inza and P. Larranaga, A review of feature selection techniques in bioinformatics. Bioinformatics,

vol. 23, no. 19, pp. 2507-2517, 2007.

[2] T. Mehmood, K. Liland, L. Snipen and S. Sæbø, A review of variable selection methods in Partial Least

Squares Regression. Chemometrics and Intelligent Laboratory Systems, vol. 118, pp. 62-69, 2012.

[3] Z. Xiaobo, Z. Jiewen, M. Povey, M. Holmes and M. Hanpin, Variables selection methods in near-infrared

spectroscopy. Analytica Chimica Acta, vol. 667, no. 1-2, pp. 14-32, 2010.

[4] M. Anzanello and F. Fogliatto, A review of recent variable selection methods in industrial and chemometrics

applications. European J. of Industrial Engineering, vol. 8, no. 5, p. 619, 2014.

[5] F. Lindgren, P. Geladi and S. Wold, The kernel algorithm for PLS. Journal of Chemometrics, vol. 7, no. 1, pp.

45-59, 1993.

[6] B. Dayal and J. MacGregor, Improved PLS algorithms. Journal of Chemometrics, vol. 11, no. 1, pp. 73-85, 1997.

17

[7] D. Kepplinger, P. Filzmoser, K. Varmuza, Variable selection with genetic algorithms using repeated cross-

validation of PLS regression models as �tness measure. https://arxiv.org/pdf/1711.06695.pdf.

[8] N. Kettaneh, A. Berglund and S. Wold, PCA and PLS with very large data sets. Computational Statistics &

Data Analysis, vol. 48, no. 1, pp. 69-85, 2005.

[9] S. Rännar, F. Lindgren, P. Geladi and S. Wold, A PLS kernel algorithm for data sets with many variables and

fewer objects. Part 1: Theory and algorithm. Journal of Chemometrics, vol. 8, no. 2, pp. 111-125, 1994.

[10] Å. Björck and U. Indahl, Fast and stable partial least squares modelling: A benchmark study with theoretical

comments. Journal of Chemometrics, vol. 31, no. 8, p. e2898, 2017.

[11] P. Stefansson, J. Fortuna, H. Rahmati, I. Burud, T. Konevskikh and H. Martens, Hyperspectral time

series analysis: Hyperspectral image data streams interpreted by modeling known and unknown variations.

Hyperspectral imaging. Analysis and applications. , 1st ed., 2018. [IN PRESS]

[12] H. Chun and S. Kele³, Sparse partial least squares regression for simultaneous dimension reduction and variable

selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 72, no. 1, p. 3-25,

2010.

18

Appendix 1: PLS coe�cient estimation of a batch of feature selections with reused covariance

1 function [Beta] = PLSvarsel(X, y, A, VarSels)

2 % Filename: PLSvarsel.m

3 % Description: Matlab function which estimates regression coefficients for a batch of

variable

4 % selections using the PLS algorithm 'Modified kernel algorithm #2'. For reference

regarding

5 % the fitting sequence see: Improved PLS algorithms, Journal of chemometrics Vol. 11 p

73−85.

6 % Inputs:

7 % 1. a [m−by−n] double−precision design matrix X.

8 % 2. a [m−by−1] double−precision response vector y.

9 % 3. a [1−by−1] double−precision scalar, A, specifying maximum PLS components.

10 % 4. a [k−by−n] logical matrix with k variable selections.

11 % Outputs:

12 % 1. a [n−by−A−by−k] array, Beta, with fitted coefficients for all feature

selections.

13 % Inactive variables are given a coefficient value of 0.

14 % Syntax:

15 % Beta = PLSvarsel(X,y,A,VarSels);

16 %

17 % Written 2017−10−04 by Petter Stefansson.

18 % Modified 2018−03−01 by Ulf Indahl.

19 %% −−−−−−−−−−−−−−−−−−−−−−− Calculate full covariance matrices X'X and X'y

−−−−−−−−−−−−−−−−−−−−

20 XX = X'*X;

19

21 Xy = X'*y;

22 % Memory allocation for Beta.

23 k = size(VarSels,1); n = size(X,2);

24 Beta = zeros(n,A,k);

25

26 % Loop over all variable selections.

27 for v = 1 : k

28 %% −−−−− Index into XX and Xy using a variable selection to acquire new

covariances −−−−−

29 smallXX = XX(VarSels(v,:),VarSels(v,:));

30 smallXy = Xy(VarSels(v,:));

31 smalln = size(smallXX,1);

32 % Ensure number of PLS components <= number of variables.

33 if A > smalln; MaxComps = smalln; else; MaxComps = A; end

34

35 %% −−−−−−−−−−− PLS on extracted covariances using Modified Kernel#2 algorithm

−−−−−−−−−−−

36 % Memory allocation for matrices W, P, R and vector b.

37 W = nan(smalln,MaxComps); P = nan(smalln,MaxComps);

38 R = nan(smalln,MaxComps); b = zeros(smalln,1);

39

40 % PLS Component loop.

41 for i = 1 : MaxComps

42 w = smallXy − W(:,1:i−1)*(W(:,1:i−1)'*smallXy);

43 w = w/sqrt(w'*w);

44 r = w − R(:,1:i−1)*(P(:,1:i−1)'*w);

45 smallXXr = smallXX*r;

20

46 tt = r'*smallXXr;

47 p = smallXXr/tt;

48 q = (r'*smallXy)/tt;

49 smallXy = smallXy − smallXXr*q;

50 b = b + r*q;

51 W(:,i) = w;

52 R(:,i) = r;

53 P(:,i) = p;

54 Beta(VarSels(v,:),i,v) = b;

55 end

56 end

