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The brain is the most complex of human organs, and the pathophysiology underlying 
abnormal brain function in psychiatric disorders is largely unknown. Despite the 
rapid development of diagnostic tools and treatments in most areas of medicine, our 
understanding of mental disorders and their treatment has made limited progress during the 
last decades. While recent advances in genetics and neuroscience have a large potential, 
the complexity and multidimensionality of the brain processes hinder the discovery of 
disease mechanisms that would link genetic findings to clinical symptoms and behavior. 
This applies also to schizophrenia, for which genome-wide association studies have 
identified a large number of genetic risk loci, spanning hundreds of genes with diverse 
functionalities. Importantly, the multitude of the associated variants and their prevalence 
in the healthy population limit the potential of a reductionist functional genetics approach 
as a stand-alone solution to discover the disease pathology. In this review, we outline 
the key concepts of a “biophysical psychiatry,” an approach that employs large-scale 
mechanistic, biophysics-founded computational modelling to increase transdisciplinary 
understanding of the pathophysiology and strive toward robust predictions. We discuss 
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BACKGROUND: DISPARATE 
PROGRESSES IN DIFFERENT FIELDS 
OF MEDICINE

Mental illnesses place a large emotional, health, and financial 
burden on patients, their families, and the society (1). Mental 
disorders account for about one third of all years lived with 
disability worldwide (2) with rising prevalence (3), and there 
is overwhelming evidence of a large mortality gap between 
individuals with mental illness and the general population (4, 
5). At the same time, there have been limited improvements 
in treatment of affected individuals over the past decades, and 
there are no diagnostic or prognostic biomarkers for these 
disorders. Crucially, most mental illnesses are not caused by a 
single condition but arise from a complex interplay between 
several internal and environmental factors, and this makes 
drug development challenging (6). As a result, most major 
pharmaceutical companies have left this research field due to lack 
of future potential in standard research approaches (7). These 
shortcomings have been highlighted by the European Union and 
the World Health Organization, which have called for additional 
research to address this problem (www.who.int/mental_health/
mhgap/en/).

In other fields of biomedicine, significant progress has been 
made during the last decades. There has been a continuous 
reduction in the mortality rate of heart disease since the 1970s, 
and the mortality rate for several types of cancer has also started 
to decline (8, 9). A key development in recent years was the 
completion of the Human Genome Project in 2003 (10), which 
marked a beginning of a new era (11, 12). Important subfields 
of biology, such as structural and functional genomics, systems 
biology, and statistical genetics, have emerged to figure out the 
implications of the genetic content on living cells and how the 
genes play together to cause cellular and tissue-level phenotypes 
as well as human diseases (11).

In parallel, in the wake of efficient computer technology 
and advanced software, the use of computational models for 
describing neuronal function has become an important tool 
for understanding the behavior of single neurons and neuronal 
networks (cf. 13, 14). Detailed and compartment-specific models 

of neurons describe the transmembrane currents of different ion-
channel families and their voltage-dependent gating, and they 
are typically based on real (three-dimensionally reconstructed) 
neuron morphologies, although reduced compartmental models 
can also be used for computational efficiency or generalizability 
(15). Moreover, the modelled neurons can be coupled with each 
other using descriptions of synaptic currents to create biophysical 
models of large-scale neuronal circuits (16). To standardize the 
methodology in computational neuroscience and to facilitate 
reproduction of simulation results, efficient simulation software 
has been developed, such as NEURON, which is a widely used 
simulator of single- and multi-compartment neuron models 
and model networks that flexibly allows the user to define the 
ion channels and their distribution along the neurites (17). 
These advances allow analyses of how alterations in a specific 
ion-channel family can affect the functions of the neural circuit 
at local and global scales and can thus foster many types of 
computational studies of heritable (or by other means of genetic 
origin, i.e., through de novo mutations) mental disorders (18–20).

At present, the role of specific signaling molecules and ion 
channels in mental disorders is poorly understood, and most 
of the specific hypotheses regarding, for example, molecular 
genetic factors and psychiatric disease will have to be considered 
tentative and preliminary. However, we are now getting to the 
situation where the computational modelling approaches will be 
sufficiently developed so that candidate hypotheses can be tested 
against experiments. Specifically, simulations of brain networks 
based on biophysically detailed neuron models are now becoming 
feasible, and molecular effects on the behavior of neurons and 
networks, and eventually also systems, can be systematically 
explored with mathematical modelling (14). This could be 
compared with the progress of weather forecasting technology. 
The knowledge about meteorological factors affecting the 
weather was defined already in the 1920s, but the computational 
power did not become available until the 1960s and 1970s, when 
weather forecasts, supported by improved parametrization of the 
underlying physical processes, started to become accurate (21). 
Today, we can accurately predict the weather for 1  week using 
advanced computational models that integrate meteorological 
and topographical data. While we do not yet have a single strong 
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hypothesis of the underlying “microscopic principles” for mental 
disorders, the possibility to test, falsify, and refine present and 
future candidate hypotheses for these principles by comparing 
simulation results with physiological experiments could be a 
game-changer. Thus, building on genetic data, neuroscience 
research, biophysical insights, and large-scale computation, 
we might hope for a breakthrough in the understanding of the 
molecular and cellular mechanism behind mental disorders.

In the following, we review the relevant advances made 
in functional genomics, statistical genetics, and cellular 
neuroscience, and we suggest how these new data can be used 
in a computational neuroscience approach to understand 
mental disorders. Basing on the large increase in computation 
power and availability of quantitative data in molecular and 
cellular biology over the past years, we predict a wide range of 
possibilities for this “biophysical psychiatry” approach. Our 
main focus is on distorted functions of ion channels and disease 
phenotypes emerging from these alterations. Dysfunctional 
neuronal excitability represents the branch of mental disorders 
that is most ready for a prominent computational analysis, but 
we extend our discussion on other aspects of heritable mental 
diseases, which will be possible to simulate in the near future. We 
also discuss the most significant gaps of knowledge and obstacles 
for this approach.

THE POWER AND SHORTCOMINGS OF 
GENOME-WIDE ASSOCIATION STUDIES

Genome sequencing data are an ideal source of information 
for large-population studies for at least three reasons. First, the 
data obtained are independent of the state (e.g., fatigue, mood, 
and phase in daily routines) of the subject and, apart from 
cancerous tissue, generalizable to any cell type in the human body 
[although data challenging this view do exist (22, 23)]. Second, 
the data obtained are absolute (no scaling or other preprocessing 
is needed), although several sources of error exist [see, e.g., Ref. 
24)]. Third, it is relatively inexpensive to both take the sample and 
perform the genome-wide screening, at least if we concentrate 
on the commonly used single-nucleotide polymorphism (SNP) 
arrays (25). Consequently, genome-wide association study 
(GWAS) sample sizes have grown to tens of thousands of subjects, 
increasing the statistical accuracy of the obtained results.

These advantages have made possible the application of GWAS 
to a lot of heritable traits and diseases, including mental disorders. 
Crucially, mental disorders are polygenic phenotypes, that is, no 
single gene determines the disorder outcome, but the risk of the 
disorder may depend on as much as hundreds of genetic loci. 
For example, for schizophrenia, an ever-increasing number of 
genetic loci are identified: 108 genetic loci were identified using 
a sample of 37,000 affected individuals and 113,000 controls 
(26), and the number of identified risk loci was yet larger (145) 
in the latest GWAS (27). Importantly, the new GWAS results 
typically replicate the majority of the previous GWAS findings, 
which is often not the case with the hypothesis-driven candidate 
gene methods that used to be the standard in the field (28). The 
large number of identified risk variants associated with mental 

disorders and their frequent prevalence in healthy population 
(most of the identified gene variants are common) place a 
challenge on the functional genomics approach typically applied 
to variants of heritable diseases. The identified 145 schizophrenia 
loci typically contain many risk SNPs with variable degrees of 
linkage disequilibrium with each other. Application of novel 
biostatistics tools will likely capture more of the heritability of 
mental disorders and thus further increase these numbers (29–
31). Another related challenge is the functional diversity of the 
identified loci. In schizophrenia, the implicated genes contribute 
to the immune system (32), neuronal electrogenesis (33, 34), 
synaptic function and neurotransmission (35), and redox 
homeostasis (36, 37).

Thus, a systematic functional genomics approach to polygenic 
mental disorders would have to 1) consider many cellular 
phenomena that a variant may affect, each of which should be 
particularly designed to quantify a phenotype in the underlying 
genetic pathway, 2) test many genetic loci to capture the effects 
of all risk variants in the considered gene, and 3) perform the 
experiments with large sample sizes to detect small effects, 
as expected from common variants. Overcoming these three 
challenges is beyond the capabilities of the scientific community 
of today. And if it becomes possible, we would still be left with 
the question on how the interaction between different variants is 
involved in inducing disease phenotypes. Although this certainly 
does not altogether disqualify reductionist methods driven by 
genomic data, it points us toward alternative approaches that 
allow making and testing hypotheses on the disease mechanisms 
of polygenic mental disorders, ideally in a less costly but as 
standardized and reproducible manner as the functional 
genomics approach. In the following sections, we will discuss 
how well-suited biophysically detailed computational modelling 
is for this purpose.

THE COMPUTATIONAL PSYCHIATRY 
APPROACH

Computational neuroscience builds upon describing of neurons, 
neuronal circuits, brain areas, or the whole brain by quantitative, 
computational models. On the single-neuron level, a 
computational model of a neuron is typically a set of equations 
that describes its properties based on a solid biophysical 
foundation—the current balance across the cell membrane and 
the conduction of ions across the media. Biophysically detailed 
whole-neuron modelling relies on two scientific breakthroughs in 
the last century [reviewed in Ref. (38)]. First, the work by Hodgkin 
and Huxley (39) to characterize and quantify the properties of 
action potential generation is still today a cornerstone of neuron 
modelling. Second, the work by Wilfrid Rall (40) to describe the 
signal propagation along neurites (the “cable theory”) forms a 
basis for multi-compartmental neuron modelling and the use of 
reconstructed neuron morphologies. The full potential of these 
two theoretical approaches has become (and is still becoming) 
possible through recent development of computer hardware 
and a base of knowledge about different ion channels and their 
functions. Indeed, Hodgkin and Huxley themselves could not 
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reach their goal of characterizing the molecular basis of the 
action potential generation, but 20 years later, the discovery of 
ion channels established this basis [reviewed in Refs. (41, 42)].

During the 1980s and 1990s, a deeper characterization of the 
contributors to neuronal electrogenesis was obtained through the 
advances made in ion-channel blockers and electrophysiological 
and optical techniques, which allowed the construction of 
biophysically more detailed neuron models (43). Following 
the sequencing of the mammalian genomes, a focus is now on 
describing the ion-channel behavior in terms of their genetic 
composition. Online databases, such as Channelpedia (http://
channelpedia.epfl.ch/) and ICGenealogy (https://icg.neurotheory.
ox.ac.uk/) are examples of sources for such information (44, 45). 
Due to difficulties in both experimental design (46) and the 
model fitting (cf. 47, 48), this line of development is still in its 
infancy (45). Nevertheless, the existing biophysically detailed 
neuron models already classify different types of transmembrane 
currents based on their sensitivity to different blockers, and it is 
relatively well known which ion-channel subunits contribute to 
which of these currents (43). This lays a foundation for analyses 
of how different genes—and their different variants—affect the 
neuronal excitability on a cellular level.

Capturing Effects of Genetic Alterations 
on Channel Properties in Biophysically 
Detailed Models
Data from functional genomics have attracted modellers of 
neurons and other excitable cells ever since they became available 
(49). Clancy and Rudy (50) modelled the effects of long-QT 
syndrome risk variants on cardiac ventricular action potentials 
basing on data from electrophysiological measurements 
performed on cells with wild-type or mutated channels. Splawski 
et al. (51) measured the effects of a Timothy syndrome mutation 
on the inactivation of the L-type Ca2+ channels and modelled 
their effects on cardiomyocyte action potentials. Spampanato et 
al. (52) predicted altered firing thresholds and increased firing 
rates for epilepsy-associated mutations based on data from 
electrophysiological measurements. These are a few of numerous 
examples, but a notable trend is that most of them concern cardiac 
cells and heart diseases rather than neurons and brain disorders. 
This may partly be due to the fact that cardiac disease constitutes 
the largest cause of death (thus representing an ultimately 
important topic) and partly because the cardiac cell models are in 
general genetically better characterized than the neuron models 
and the link between cellular and tissue-level pathologies is better 
understood (cf. 53). Among the brain disorders, epilepsy is likely 
to be the one that has been most studied using computational 
modelling, due to the multitude of scales at which the disease 
symptoms and phenotypes can be both observed and modelled 
(54, 55)—for a review of computational modelling strategies in 
this field, see Soltesz and Staley (56) and Wendling et al. (57). 

In the brain, there are a vast number of different neuron types 
(let alone glial and endothelial cells), each of which expresses 
a different set of ion channels and other proteins that change 
with the developmental stage of the cell and its involvement in 
neuronal network dynamics (e.g., long-term plasticity) (58, 59). 

Consequently, each neuron type may contribute in a unique and 
dynamic way to brain disorder phenotypes. Such a complexity, 
added to the challenges caused by the branching neurite geometry 
(60), is a likely cause for a slower development of highly detailed 
single-neuron models than is the progress made in biophysical 
models of cardiac cells [see, e.g., Ref. (61)]. Nevertheless, certain 
neuronal cell types are already relatively well characterized in 
terms of biophysically detailed models, offering a platform for 
modelling functional genomics data. Two such neuron types 
are the Purkinje cells in the cerebellum (62, 63) (cf. 64) and the 
layer V pyramidal cells in the neocortex (65). Building upon a 
long line of Purkinje cell models [reviewed in Ref. (66)], a recent 
model (67) described the kinetics of 15 gene-based types of ion 
channels and their (manually fitted) distributions along the 
neuron morphology. The ion-channel descriptions in models 
of layer V pyramidal cells are not as well characterized down to 
genetic level, but the more recent models [following the principles 
in an early, biophysically detailed model by (65)] included nine 
to 13 different ion channels (68–70). In particular, these models 
included a simple description of the intracellular Ca2+ dynamics, 
differentiated between low- and high-voltage-activated Ca2+ 
currents, and described the kinetics of the Ca2+-activated K+ 
channels underlying the medium or slow afterhyperpolarization. 
These models can thus be used to analyze the contributions 
of both ion channel- and Ca2+ transporter-encoding genes to 
hyperpolarizing and depolarizing transmembrane currents—
and thus to neuron firing.

Unlike simpler models such as integrate-and-fire models 
or the basic two-channel Hodgkin–Huxley model (39), the 
biophysically detailed models enable analysis of many aspects 
of neuron excitability and the contributions of different genes 
and gene variants to these properties. Masoli et al. (67) validated 
the model against data from genetic studies that knocked out 
certain ion channel-encoding genes and observed effects on 
spontaneous and stimulated firing behaviors, which argues for 
the usability of the model in predicting effects of mutations in 
the underlying genes.

Modelling of Non-Ion Channel-Related 
Genetic Variants and Other Disease-
Related Alterations
Rather than simple genetic channelopathies, heritable mental 
disorders are typically hypothesized to be complex diseases 
affected by genetic variants in a variety of gene ontologies as well 
as by environmental factors. To this end, many types of genetic 
perturbations, other than variants of neuronally expressed voltage-
gated ion channel-encoding genes as outlined above, can be flexibly 
included in computational studies of heritable mental disorders. 
The premise is that neuronal signalling is the common pathway 
for all brain biology generating thoughts, emotions, and behavior, 
and therefore, dysfunctional or lacking neuron firing in one form or 
another is a common abnormality in all mental diseases. A typical 
solution for modelling mental diseases other than channelopathies 
is to use less biophysically detailed modelling approaches, where 
a disease-related condition observed at a cellular or network level 
(instead of at the level of proteins) is implemented, and the effects 
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of the condition on the network dynamics or circuit functions 
are predicted. To name a few examples, in the modelling study of 
Vattikuti and Chow (71), the autism spectrum disorder-associated 
phenotypes of saccade hypometria and dysmetria were shown 
to result from a distorted excitation/inhibition balance, which is 
one of the leading hypotheses for network-level aberrations in 
autism spectrum disorder. In a similar fashion, NMDA receptor 
hypofunction—a widely hypothesized cellular mechanism in 
schizophrenia [reviewed in Ref. (72)]—was shown to lead to a 
schizophrenia-associated phenotype, namely, distortions in gamma 
band oscillations, in a series of modelling studies [reviewed in Ref. 
(73)]. Comparable computational network studies have used as a 
starting point a decreased intensity of GABAergic neurotransmission, 
a schizophrenia anomaly widely suggested by post-mortem studies 
(74, 75), and analyzed its effects on network dynamics in light of 
schizophrenia-associated phenotypes (76–79) or hypothesized 
modes of psychotic circuit activity (80). Similar strategies have been 
employed in examining the effects of hypodopaminergic modulation 
of prefrontal cortex, one of the more traditional hypotheses for 
schizophrenia mechanisms (81), on working memory capacity 
and precision (82). Typically, these studies employ simpler point-
neuron models such as integrate-and-fire models, and the alteration 
of a model parameter used for representing the disease cannot be 
directly mapped down to gene level. However, new genetic data and 
understanding of genetic interactions could be used to revise these 
descriptions, which would lead to a better understanding of the 
heritable component of these disorders.

Another new promising subfield of computational psychiatry 
is the biochemically detailed modelling of brain disorders. For 
example, computational modelling has clarified the effects of 
Alzheimer’s disease-related genetic variants on β-amyloid plaque 
formation and tau-protein phosphorylation, which are among the 
main hypothesized causes for Alzheimer’s disease [see Ref. (83) 
for a review]. In Sasidharakurup et al. (84), intracellular signaling 
pathways in control vs. Parkinson’s disease cases were simulated, 
and the mechanisms leading to cell death were analyzed. 
Biochemically detailed modelling of immune system pathways 
may also constitute an important branch of future computational 
modelling work in the pathology of schizophrenia and autism, 
both of which have recently been associated with alterations 
in inflammatory pathways [reviewed in Refs. (85) and (86)]. A 
challenge in this type of models is the lack of cellular-level data 
with which to validate the model parameters describing the 
biochemical reactions as well as a lack of frameworks in which 
the model predictions in the cellular and subcellular regimes can 
be linked to system-level behavior. Nevertheless, such models 
may be a valuable aid in integrating the effects of environmental 
factors, including stress, with genetic factors to create a clearer 
picture of the pathogenesis of heritable mental disorders.

Biophysical Psychiatry: Biophysically 
Detailed Modelling of Heritable Mental 
Disorder Mechanisms
We propose to combine neuroscience modelling with psychiatric 
genomic data in an approach we have termed “biophysical 
psychiatry.” This is a particular type of neuroscience modelling 

that integrates data on risk genes and variants thereof to study the 
pathology of mental disorders. We propose that the development 
of biophysically detailed models is a suitable method for creating 
hypotheses on the mechanisms of heritable mental disorders. These 
can be tested and validated in experiments, both preclinically on 
a (translational) functional level and clinically, and then further 
refined. We illustrate the overall concept in Figure 1.

In our previous work, we applied a polygenic modelling 
framework similar to that of Figure 1 to study the effects of small 
effect-size variants of schizophrenia-associated genes on layer 
V pyramidal cell excitability and integration of inputs (20, 87). 
Another study measured the effects of schizophrenia-associated 
de novo mutations in CACNA1I gene on the surface expression 
of the encoded protein and the corresponding Ca2+ current and 
simulated their effects on neuron firing in the thalamic reticular 
nucleus (88). In a modelling study of major depressive disorder, 
Ramirez-Mahaluf et al. (89) showed that a slowed-down 
reuptake of glutamate [an alteration supported by post-mortem 
experimental data from major depressive disorder patients (90)], 
caused hyperexcitability in the ventral anterior cingulate cortex 
and suggested an impairment of switching from emotional to 
cognitive processing. A study combining experimental data 
and computational modelling showed that a reduction of SK 
currents, which was experimentally shown to follow a loss-of-
function mutation of SCN1A in an epilepsy mouse model, led 
to prolonged seizure-like bursts of reticular thalamic cells (91). 
Importantly, when analyzing the effects of the mutations on 
network dynamics, the biophysically detailed models, unlike 
integrate-and-fire models and rate-based models, enable the 
separation between voltage-gated ion channel-mediated and 
synaptic scaling-mediated effects. For example, we recently 
showed that neither synaptic scaling [such as that provided 
by homeostatic plasticity (92)] nor an artificial manipulation 
of the passive membrane properties can imitate the predicted 
effects of our variants of voltage-gated ion channel- and Ca2+ 
transporter-encoding genes on delta power (93). Although 
such results could not be obtained using simple integrate-and-
fire models, these simpler models are nevertheless invaluable in 
analysis of large-scale network activity. Previously, innovative 
approaches combining the scalability of the simpler models and 
the biophysical detail of the more complex models have been 
applied to the forward modelling of local field potentials (94) and 
analysis of neuronal input–output relationships (95) and could 
be employed in studying the genetic effects as well.

Top-Down and Bottom-Up Modelling 
Approaches
The approaches above can be considered bottom-up approaches 
as their foundation lies on models and data in the cellular 
and genetic levels, and they make predictions for higher-level 
phenotypes. Nevertheless, important insights can also be 
obtained from top-down approaches, where the models are fitted 
to higher-level data, such as electroencephalography (EEG) or 
functional magnetic resonance imaging (fMRI) data, and can 
make predictions for the cellular of sub-cellular level phenotypes. 
Typically, bottom-up models are founded in basic laws of 
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physics, while top-down models are more phenomenological 
by nature. As an example of a top-down approach, in dynamic 
causal modelling (DCM), a neural mass model is constructed 
based on EEG or fMRI data and an underlying network model 
(96, 97). Given measurements of both mental disorder patients 
and healthy controls, this type of modelling can reveal important 
circuit pathologies underlying the mental disease. In one study 
based on DCM and EEG data from patients with psychosis and 
healthy controls performing an oddball task, a decrease in frontal 
inhibitory connections in patients with psychosis was predicted 
(98). Another DCM study predicted an impaired thalamocortical 
connection in schizophrenia basing on fMRI data collected from 
psychotic patients and healthy controls performing a verbal 
fluency task (99). However, the use of DCM for fMRI data has 
been questioned due to challenges in the underlying biophysical 
model and statistical inversion (100). Many other biophysically 
less detailed modelling approaches exist as well, as reviewed 
in Montague et al. (101) and Wang and Krystal (102). These 
approaches are especially useful in studying the pathology of 
non-heritable mental disorders, where the cause of the disorder 
may be dysfunction or dysconnectivity in a single brain region—
however, the use of models that are more detailed, all the way to 
the genetic level, can be argued for when studying the cause of 
heritable mental disorders.

Limitations of Biophysical Models of 
Psychiatric Disease—and Opportunities
There are several challenges in the biophysical psychiatry 
outlined above. First, the risk variants are typically identified 

by tag SNPs, which represent variations within a region of 
DNA instead of a single causative SNP (103). This may distort 
the analysis of the effects of the variant, as the causal SNP may 
reside within or outside the protein-coding region of a gene or 
may regulate many distinct genes. Second, as mentioned earlier, 
the computational models made for ionic currents are usually 
not unique to ion-channel subunits encoded by a single gene, 
and even if they were, there are many parallel genetic pathways 
that affect the channel kinetics and maximal conductance. 
While the ion-conducting pore in voltage-gated Ca2+ and Na+ 
channels is composed of a single α subunit with repeating motifs, 
the pore in the K+ channels is composed of four subunits that 
may (homomeric) or may not (heteromeric) be identical, and 
the composition typically impacts the conductance, voltage 
dependence, or kinetics of the channel (104). Furthermore, the 
expression of voltage-gated K+ as well as Ca2+ and Na+ channels 
on the membrane and their functional properties is affected by 
the auxiliary subunits (e.g., β subunits) (105). This presents a 
particular challenge for modelling of polygenic diseases, such 
as schizophrenia, where there are identified gene variants in 
various subunit-encoding genes even of the same ion-channel 
family (34). Third, the neuron models are typically built and 
validated using data from a specific brain region of a particular 
animal species (typically, rat or mouse), and thus, predictions 
made for human disease phenotypes based on such models 
unavoidably represent a generalization of a kind (106). Fourth, 
since the models are typically built using single-cell data only, 
their predictions are primarily applicable to cellular phenotypes 
only, and prediction of brain-level phenotypes requires careful 
adjustment of the network model according to the underlying 

FIGURE 1 | Schematic illustration of the biophysical psychiatry approach for studying heritable mental disorders. This approach typically consists of five main 
stages ranging from initial GWAS to prediction of the effects of genetic variants on circuit functions (black arrows). First, the results from GWASs are used to identify 
risk variants and risk genes. Data from patients and structural genomics can be used to constrain the range of possibilities how these variants affect the protein 
functions: Is there evidence of altered expression of these proteins in the patients and in what tissue (purple arrows)? Are the identified SNPs likely to affect the 
protein structure (dark green arrow)? This type of information is important for formulating an initial hypothesis on the functional role of the variant (light red arrow), 
and importantly, together with data from functional genomics, it can be used for computational models of neurons or ion channels as well as other proteins affecting 
the function of the neuronal circuit (yellow arrows). The effects of the risk gene variants on neuron function can be predicted with the models (orange arrows). 
When these effects are implemented in a network model that describes both neuronal activity and synaptic communication between the neurons, the impact of the 
variants on circuit and/or behavioral functions can be predicted (dark red arrow). In case the genetic background of the disease is not known or it is not possible 
to directly link the genetic variant effects to all desired aspects of the model behavior, cellular-level data from patients or animal model studies can be used as a 
shortcut and make the model express the dichotomy suggested by the experiments (light grey arrows). Lastly, data from animal studies can be used to validate the 
model: Is the studied neuron type really behind the modelled phenotype (light green arrow)? Are the genes in which the modelled variants are located expressed in 
the particular neuron type (light blue arrow)? Are there behavioral observations in animal model studies that support the conclusions (dark blue arrow)? These are 
but few questions to consider in a modelling approach bridging the gap between genes and behavior.

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Biophysical PsychiatryMäki-Marttunen et al.

7 August 2019 | Volume 10 | Article 534Frontiers in Psychiatry | www.frontiersin.org

brain microcircuits (107). In particular, the heterogeneity of 
macroscopic brain signals, such as EEG, in both spatial and 
temporal domains makes it difficult to link cellular phenotypes 
to clinical observations (108). This presents a challenge for 
psychotic disorders, where the symptoms and phenotypes are 
complex and the cellular and network mechanisms underlying 
them are largely unknown (109).

Nevertheless, there are ongoing large-scale projects and 
recent technological advances that aid in overcoming the 
abovementioned obstacles. First, ongoing international projects 
such as ENCODE as well as new data from deep sequencing (110) 
offer new detailed insights on the genetic risks of diseases. This 
can help in identifying risk-conferring SNPs and discovering 
the correlation structure between the SNPs, both locally and 
across the genome, and thus complements the GWAS data 
from large consortia. Second, quantitative data on ion-channel 
behavior and the contributions of different subunits and other 
proteins are rapidly growing, thanks to both online databases 
(such as Channelpedia and ICGenealogy) and new insights 
from molecular dynamics simulation approaches (111). Third, 
new large-scale projects such as the Allen Brain Atlas (https://
www.brain-map.org/) and Human Protein Atlas (https://www.
proteinatlas.org/) offer unique, standardized data sets on the 
expression of genes in both mice and men. In addition to brain 
area-wise information on gene expression and connectivity in 
the mouse brain, the Allen Brain Atlas includes a detailed data 
set on expression of tens of thousands of genes in different layers 
of the mouse primary visual cortex (http://casestudies.brain-
map.org/celltax). This allows modellers of effects of particular 
gene variants on cortical phenotypes to check whether the 
underlying gene and related genes are expressed in the cell type 
they are interested in or not, which helps in formulating and 
refining the research hypotheses. Moreover, neuroinformatics 
databases such as ModelDB (https://senselab.med.yale.edu/
modeldb/) help the modelers by offering curated neuron 
models from a variety of brain areas. Fourth, there are ongoing 
and recently completed large-scale projects that extend our 
knowledge on structure and function of brain circuits, in terms 
of both quantitative, computational models and qualitative or 
conceptual models. The NIH BRAIN initiative is a mega-scale 
program aiming at this goal (112). The Human Brain Project 
(https://www.humanbrainproject.eu/) has a comparable goal in 
developing an infrastructure that allows multi-scale modelling of 
large brain networks (113). Supporting this goal, the preceding 
EPFL-led project, the Blue Brain project (lending its name from 
the IBM’s Blue Gene supercomputer project) already offers 
large amounts of data that are directly usable in models (114). 
Improved quantification and understanding of the structure and 
dynamics of the neural circuits are essential for the accuracy of 
forward models of macroscopic brain signals and thus vital to the 
translation of findings from the models into clinical knowledge.

The projects named above support the development of new 
neuron models that are more accurate than before, in terms of 
both single-cell structure and dynamics (which ion channels are 
expressed and where in the neuron) and network interactions 
(how the neuron activity is affected by inputs from other 
cells). This is an important milestone on the way toward better 

predictive power for maps from gene to network level (107)—yet 
one has to keep in mind that detailed biophysics in one domain, 
such as voltage-gated ion channels, does not mean that the model 
is biophysically detailed in all aspects (cf. 19, 102). In particular, 
there is much to improve in how the actions of neuromodulators 
can be taken into account in the neuron models (115). 
Emphasis should also be placed on validation of the generated 
neuron models, which has recently been made easier by new, 
standardized tools (116).

In addition to these challenges, there is a lack of understanding 
of contributions of intracellular signalling mechanisms (117) as 
well as glial cell functions (118) and adult neurogenesis (119) 
to brain functions in health and disease. The schizophrenia-
associated genes encode many types of phosphatases and kinases 
involved in neurotransmission and long-term plasticity (35)—
variants of these genes can thus have crucial effects on neuronal 
circuit functions. Moreover, some of the schizophrenia-associated 
ion channel-encoding genes are also expressed in astrocytes 
(120). Biophysical models of glial functions, particularly models 
for Ca2+ excitability, exist, but the field is immature, and models 
are required to be better validated against electrophysiological 
and imaging data [for a review of models and their characteristics, 
see Ref. (121)]. The complexity of the intracellular signalling 
pathways also manifests in compensatory mechanisms that may 
counteract the effects of the modelled variants on both genetic 
[see, e.g., Ref. (122)] and cellular and network levels (123). Better 
integration across different scales and expanded quantitative 
descriptions of the biochemical machinery have been proposed 
as a path toward improved predictive power of the biophysically 
and biochemically detailed models (124, 125).

PARALLEL APPROACHES IN 
COMPUTATIONAL CARDIAC SCIENCE

As mentioned earlier, computational approaches have proved 
successful in reconstructing and explaining the mechanisms of 
several genetic conditions in cardiac electrophysiology. These 
successes have generally required detailed characterization 
of the functional outcomes of these mutations via classical 
electrophysiological methods, but similar approaches should be 
possible in sufficiently well-characterized neuropsychological 
conditions. The core requirement is a set of disease biomarkers 
that can be reproducibly observed in patients and a computational 
framework for replicating changes in those biomarkers due to 
testable genetic changes in the underlying neural machinery. 
Both of these characteristics have been developed for many 
congenital diseases of cardiac electrophysiology. This has been 
achieved in part by specifically seeking systematic understanding 
of diseases with clear distinguishing phenotypes, and in part 
through incrementally extending fundamental knowledge of 
cardiac bioelectricity to allow well-defined hypothesis generation 
and testing (126). While, as mentioned above, mental illnesses 
pose a greater set of challenges, there is no clear reason for these 
principles not to be similarly applied to the brain.

Independently of genetic diseases, current approaches to 
cardiac drug screening provide another example of the mature role 
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that computation and modelling play in the development of cardiac 
pharmacology. At the simplest level, computational approaches 
have been adopted to define optimal drug characteristics for 
specific cardiac conditions—for example, to reduce the unintended 
impacts of atrial fibrillation treatments (127). Most recently and 
considerably, a U.S. Food and Drug Administration-initiated 
consortium named the Comprehensive In Vitro Proarrhythmia 
Assay initiative (CiPA; https://cipaproject.org/) has been created 
to develop a multidisciplinary platform for better discriminating 
compounds with likely cardiac toxicity from those that are inert 
or beneficial (128, 129). This is a critical societal development 
because cardiac toxicity is the single largest cause of advanced 
stage drug failure across all disease indications. As a testament to 
the importance of modelling in cardiac pharmacology, CiPA has 
been chosen as an aim to replace small mammal experimental 
testing with model-based computational translation of in vitro 
electrophysiology to predict drug outcomes in humans.

Finally, with respect to multiscale aspects, computational 
modelling of cardiac electrical pathology has advanced to the 
stage that patient-specific and heart-scale models are now being 
used to guide clinical intervention. The use of these models to 
predict the sites of ablation for infarct-associated arrhythmia has 
recently been approved for a full prospective clinical investigation 
by Johns Hopkins University School of Medicine. This substantial 
development has followed a series of compelling retrospective 
studies, and most recently a mixed retrospective/prospective 
approach (130). In silico studies of cellular and subcellular disease 
phenotypes can also be conducted on brain and heart cell models 
in parallel, as done in Mäki-Marttunen et al. (87).

EXPERIMENTAL VALIDATION OF 
BIOPHYSICAL MODELS

Taken together, biophysically detailed modelling is in many ways 
a promising method for creating hypotheses on the mechanisms 
of mental disorders with a genetic component. The obtained 
hypotheses need to be tested experimentally, but these experiments 
are difficult partly for the same reasons that make the modelling 
of disease phenotypes difficult: the gaps between the scales of 
phenomena (genes to behavior) and the translation of findings 
from laboratory animals to humans. One method shows a 
particular potential in this regard: induced pluripotent stem cell 
(iPSC)-based cellular models (131). The development of iPSCs 
provides a rare opportunity for studying neuronal excitability and 
identifying clinically useful biomarkers in schizophrenia based 
on electrophysiology (132, 133). Although human iPSC-based 
approaches do not provide the full complexity of the central nervous 
system, the cellular phenotypes are likely to lie closer to the genetic 
and molecular disease mechanisms than phenotypes observed at 
the tissue or organism level (134). Therefore, cellular and small 
network phenotypes, achievable in iPSC-derived neuronal two- and 
three-dimensional cell cultures, may offer a more direct readout of 
the pathophysiological processes as an intermediate step toward 
understanding pathophysiology at the brain level.

As the cells in the iPSC approach are derived from patients, 
they include the complete genetic background (and possibly 

epigenetic modifications) of an individual in addition to the risk 
alleles. On the one hand, this may make the analysis of the results 
more difficult, but on the other hand, it can lead to discovery 
of new genetic modifiers (135). Moreover, iPSC-derived neurons 
from patients can be transplanted into developing or mature 
rodent brains to provide a (non-human) brain environment 
into which the human neurons can structurally and functionally 
integrate. This procedure is costly at the moment but shows 
promise in preclinical research on psychotic disorders (135–139).

Finally, since mental disorders appear to be exclusively human 
disorders, the hypotheses concerning the disease mechanisms 
should also be tested directly in human patients. Invasive 
recordings are very seldom an option, but data from non-invasive 
recordings, such as EEG, magnetoencephalography (MEG), and 
magnetic resonance imaging (MRI), could be used for testing 
certain model predictions. New, automated approaches may help 
in model validation against clinical observations—also against 
EEG data (140). To obtain a better translation of simulated 
neuronal dynamics to clinical measurements, new computational 
approaches allow forward modelling of EEG and MEG data based 
on the description of the transmembrane currents across the 
neuron morphology (141). As for MRI, the link between neuronal 
activity and measurable MRI signals involves more unknowns 
and is thus more speculative, but forward models exist for this 
approach too (142). The use of these models is constrained by the 
sparse temporal resolution that is typical to MRI signals (143). 
On the other hand, the number of studies showing differences 
in structural and functional MRI data between healthy controls 
and people with mental disorder is steadily increasing [see, e.g., 
a special issue on the topic (144), and newer discoveries (145–
147)]. This type of data could potentially be used to validate 
mechanistic multiscale models that predict differences in brain-
area interactions or even development of anatomical connections 
between healthy controls and patients.

Having a forward model from single-cell activity (or even 
subcellular dynamics) to brain measurables is important, because 
many of the endophenotypes of mental disorders (especially 
those of schizophrenia) are in fact electrophysiological measures 
of brain activity under certain stimulus protocols (148). As an 
example, the mismatch negativity (MMN) is the brain’s response 
to an outlier among a series of stimuli, such as a sound with 
a slightly different pitch or duration among other identical 
sounds. MMN is weakened in schizophrenia patients, and it is 
“automatic” in the sense that it is evoked in protocols that do 
not require cognitive effort (149). MMN has also recently been 
acknowledged as a key biomarker for better understanding the 
pathophysiology of schizophrenia (150).

Another prominent EEG-based biomarker of schizophrenia 
is altered delta power, which is one of the more robust 
schizophrenia-associated brain-oscillation phenotypes (151). To 
this end, computational modellers of neuronal networks have 
a long history of reproducing neural oscillations of different 
frequencies and analyzing the cellular and network mechanisms 
underlying them (152). Figure 2 shows findings from our recent 
study where the forward EEG modelling approach was used 
to show that alterations in schizophrenia-associated voltage-
gated ion channel and Ca2+ transporter-encoding genes can 
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FIGURE 2 | Illustration of a modelling approach predicting that a combination of small-effect variants in different schizophrenia-associated ion channel- and Ca2+ 
transporter-encoding genes causes large effects on the delta band in the EEG power spectrum. (A) Schematic illustration of the subcellular domain (left) of a layer V 
pyramidal cell (middle) and the localization of the neuron with respect to a recording electrode (right). Genes ATP2A2 and ATP2B2 contribute to the Ca2+ dynamics 
of the neuron: ATP2A2 encodes a subunit of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) that pumps cytosolic Ca2+ into the endoplasmic reticulum 
(ER), and ATP2B2 encodes a subunit of the plasma membrane Ca2+ ATPase (PMCA) that expels cytosolic Ca2+ to the extracellular medium. Genes CACNA1C, 
CACNA1D, and CACNB2 encode subunits of high-voltage activated Ca2+ channels, and CACNA1I encodes a low-voltage activated Ca2+ channel: these channels 
are densely expressed in the “hot zone” of Ca2+ channels at the apical dendrite, but they are present in the soma as well (68). SCN1A encodes a subunit of the fast 
voltage-gated Na+ channel that is densely expressed in the soma and mildly expressed in the apical dendrite (68). Finally, KCNB1 encodes a subunit of a voltage-
gated K+ channel that is only present in the soma, and HCN1 encodes a subunit of a non-specific cationic channel whose density grows toward the end of the 
apical dendrite (68). (B) Effects of model variants of schizophrenia-associated ion channel- and Ca2+ transporter-encoding genes on firing rates of layer V pyramidal 
neurons as part of a network (main curves) and in isolation (insets). In the network experiments, interconnected networks of 150 neurons were simulated for 11 s so 
that the rate of presynaptic inputs (AMPA, NMDA, and GABA receptor-mediated currents) was controlled by factor (shown on x-axis), which influenced the average 
firing rate of the neurons in the network (shown on y-axis). In the single-cell experiments, a prolonged somatic square-pulse current (amplitude shown on x-axis) was 
given at the soma, affecting the firing frequency (shown on y-axis). The blue curves show the control network/neuron, while the purple curves show the network/
neuron with the model variant. The fifth subpanel in the bottom row shows the effects of combination of the eight variants. For network simulations, reduced-
morphology representations (48) of the layer V pyramidal cells were used to avoid excessive simulation load. Adapted from Mäki-Marttunen et al. (93). (C) Power 
spectrum of the EEG signal predicted from the activity of the network corresponding to presynaptic rate factor 1.0 in control and variant-combination conditions of 
panel (B). To obtain this signal, transmembrane currents were registered at each compartment of each cell, and these currents were used to calculate the dipole 
moment time series of the cell population. From the dipole moments, the EEG signal was estimated using a theoretical model of Næss et al. (153), implemented in 
the LFPy Python package (141). Consistent with the predictions of panel (B), the EEG power is increased for the combination of model variants compared with the 
control network, especially in the delta (0.5–5 Hz) range. Adapted from Mäki-Marttunen et al. (93). (D) Zoomed-in view on the red rectangle of panel (B).

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Biophysical PsychiatryMäki-Marttunen et al.

10 August 2019 | Volume 10 | Article 534Frontiers in Psychiatry | www.frontiersin.org

cause increased delta power (93). Discovering the mechanisms 
through which genetic risk leads to these widely examined 
quantitative biomarkers is an important milestone on the path 
to understanding the complex, largely qualitative symptoms and 
pathogenesis of mental disorders. In addition to EEG protocols 
based on resting state or sensory stimuli, magnetic and electrical 
brain stimulation could also be used for testing hypotheses on 
altered brain activity in mental disorders [these approaches are 
reviewed in Ref. (102)].

RELEVANCE FOR BIOMARKERS AND 
DRUG DEVELOPMENT

In addition to shedding light on the disease mechanisms of 
mental disorders, biophysically detailed neuron modelling is a 
suitable tool to assist drug development for diseases where ion-
channel functions are impaired (cf.154, 155). However, until a 
clearer picture of the pathology of a mental disorder is formed, 
the use of biophysical modelling as a means of treatment design 
may remain a long-term ambition. Especially in the case of 
schizophrenia, there are currently many more open questions 
concerning all levels of brain function than answers to these 
questions: How do the schizophrenia-associated gene variants 
(27) affect neuronal excitability in different brain areas? Are 
the observed changes in connectivity a response to this altered 
excitability, or do they represent an independent disease 
phenotype? How can we relate changes in neuron excitability 
and neuronal connectivity to negative and positive symptoms 
of the disease? What is the cell-type specific contribution to the 
pathophysiology? If the impaired ion-channel function could be 
restored by drugs, should it be done before the onset of the disease 
or can it be done afterwards? From the modelling perspective, the 
involvement of the immune system in schizophrenia represents 
another great unknown, as there are few modelling efforts 
integrating the neuronal functions with altered immune system 
functions. Nevertheless, in combination with animal models of 
schizophrenia, computational models could be employed to test 
specific hypotheses on drug effects on cellular and network-level 
functions, and the data obtained could be used to translate them 
into hypotheses on human brain functions.

We believe that in the near future, biophysically detailed 
modelling can become a fruitful tool in systematic analysis of 
the endophenotypes and biomarkers of the mental disorders. 
Endophenotypes have been suggested as a gate toward 
understanding the pathology of diseases where both the genetic 
origin and disease symptoms are complex (156). This is a case 
in point for schizophrenia. There are many widely adopted 
schizophrenia-associated endophenotypes and biomarkers that 
can be quantified using behavioral tests or electrophysiology. 
Due to the possibility of reference to animal models, these 

endophenotypes and biomarkers are better characterized 
than the symptoms of schizophrenia, which are almost 
exclusively human symptoms. The genetic foundation of these 
endophenotypes and biomarkers is still largely unknown. 
However, unlike the symptoms of the mental disorders, the 
physiology and neuronal origin of these phenotypes are relatively 
well mapped. Biophysically detailed modelling could become 
an invaluable tool for deeper characterization of the effects of 
disease-associated variants on the disease endophenotypes and 
biomarkers, which would shed light on the pathology of the 
heritable mental disorder as a whole.

CONCLUSIONS

Biophysically detailed modelling of brain functions and the 
contributions of disease-associated genetic variants therein is a 
significant challenge for this century. Eventually, this “biophysical 
psychiatry” approach may become a powerful approach to 
generate testable hypotheses for the pathophysiology of complex, 
heritable mental disorders such as schizophrenia. International 
consortia that collect and analyze patient data as well as other 
large-scale efforts that map mammalian brain structure and 
function are key sources of data for this line of research, but new 
innovative experimental techniques and modelling approaches 
are required as well in order to gain maximally informative 
insights into mental disorder pathology.
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