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ABSTRACTAQ:3 This work presents a machine vision system for the localization of strawberries and envi-
ronment perception in a strawberry-harvesting robot for use in table-top strawberry production. A deep
convolutional neural network for segmentation is utilized to detect the strawberries. Segmented strawberries
are localized through coordinate transformation, density base point clustering and the proposed location
approximation method. To avoid collisions between the gripper and fixed obstacles, the safe manipulation
region is limited to the space in front of the table and underneath the strap. Therefore, a safe region
classification algorithm, based on Hough Transform algorithm, is proposed to segment the strap masks into
a belt region in order to identify the pickable strawberries located underneath the strap. Similarly, a safe
region classification algorithm is proposed for the table, to calculate its points in 3D and fit the points onto
a 3D plane based on the 3D point cloud, so that pickable strawberries in front of the table can be identified.
Experimental tests showed that the algorithm could accurately classify ripe and unripe strawberries and could
identify whether the strawberries are within the safe region for harvesting. Furthermore, harvester robot’s
optimized localization method could accurately locate the strawberry targets with a picking accuracy rate
of 74.1% in modified situations.

15 INDEX TERMS Robotics and automation, strawberry harvester, machine vision, environment perception.

I. INTRODUCTION16

Machine vision is an essential element in agricultural robots.17

Before the development of deep learning techniques, tradi-18

tional image processing methods were used, such as methods19

based on color thresholding, however these were not able to20

adapt to changing agricultural environments [1]–[3].21

Deep Convolutional Neural Networks (CNN) have greatly22

improved the performance of image processing, partic-23

ularly since the emergence of AlexNet, proposed by24

Krizhevsky et al. [4] and the numerous other detection CNN25

subsequently developed, some of which have been utilized26

for the detection of crops and fruits. Examples of such27

networks include You Only Look Once (YOLO), proposed28

by Redmon et al. [5], Single Shot Detector (SSD), pro-29

posed by Liu et al. [6] and the Region-based Convolutional30

Neural Network (Faster R-CNN), proposed by Girshick [7].31

Sa et al. [8] utilized Faster R-CNN in the detection of32

sweet peppers, mangoes, strawberries and other fruit while33

The associate editor coordinating the review of this manuscript and
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Bargoti and Underwood [9] adopted the same network to 34

detect apples and mangoes, further improving its detection 35

performance through data augmentation. 36

Besides object detection, segmentation CNNs have also 37

been adopted for other applications in agriculture. Popular 38

semantic segmentation networks include Fully Convolu- 39

tional Network (FCN) [10], SegNet [11], DeepLab [12] and 40

U-net [10]. Popular instance segmentation networks include 41

Sharp Mask [13] and Mask R-CNN [14]. Bargoti and Under- 42

wood [15] utilized a semantic segmentation network to detect 43

apples and estimate the yield. In addition, Yu et al. [16] 44

utilized Mask R-CNN [14] for strawberry detection and sim- 45

ilarly, Gonzalez et al. [17] used the same network for blue- 46

berry detection. While detection and segmentation networks 47

have been widely used for the detection and counting of 48

fruit, their applications in fruit harvesting have been rarely 49

reported. Most of these methods focused on image analy- 50

sis, thus were not applied to a specific agricultural machine 51

system. 52

In order to achieve the efficient and reliable picking 53

of the objects, they need to be localized after detection. 54

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 1

https://orcid.org/0000-0003-0049-6977
https://orcid.org/0000-0001-5593-8440
https://orcid.org/0000-0003-2604-7555


IEE
E P

ro
of

Y. Ge et al.: Fruit Localization and Environment Perception for Strawberry Harvesting Robots

Different methods based on different cameras have been used55

for the localization of fruits and other agricultural crops.56

These include the use of stereo cameras, depth cameras or sin-57

gle camera with extra assumptions.58

Mehta and Burks [18] localized citrus fruits using a fixed59

monocular camera. Xiong et al. [1] used a single RGB (Red,60

Green, Blue) camera for weed localization, based on the61

assumption that the distance between the camera and the62

weed plane was fixed.63

Single camera techniques are simple but limited in their64

depth determination and, therefore, much work has been65

done on the development of multiple camera systems.66

Font et al. [19] presented a stereo camera system for apple67

and pear localization. Mehta and Burks [20] investigated the68

fruit localization problems using multiple cameras based on69

the assumption that the target had been matched successfully.70

Similarly, Ji et al. [21] used stereo matching for the localiza-71

tion of apple branches.72

Many agricultural robots use an RGB-D (RGB-Depth)73

camera for detection and localization because of its74

simplicity. Wang et al. [22] used an RGB-D camera for the75

detection and fruit size estimation of mangoes. Vitzrabin and76

Edan [23] proposed a detection method for sweet peppers77

using an RGB-D camera, and Xiong et al. [3] developed a78

strawberry harvester using an RGB-D camera for the detec-79

tion and localization of the fruits. In this paper, we used an80

RGB-D camera for object detection and localization.81

Environment perception or ambient awareness is crucial82

for agricultural robots, to ensure safe interaction between the83

robot and humans, the surrounding environment and other84

objects. Reina et al. [24] integrated Light Detection And85

Ranging (LiDAR) and imaging for the environment aware-86

ness of outdoor vehicles. Similarly, the same researchers [25]87

developed a multi-sensor system that integrates stereo-vision,88

LiDAR, radar and thermography, for the ambient awareness89

of agricultural vehicles in crop fields. They also [26] used90

RGB-D images to sense obstacles in outdoor environments91

in the navigation of rough terrain mobile robots. Indeed,92

the environment perception system is most commonly used93

for vehicle navigation, the conditions of which are markedly94

different to those for a strawberry picking robot on a straw-95

berry farm. In order to ensure safe picking operations, it is96

necessary for the robot to detect the environment directly97

surrounding the target strawberries.98

In the development of various strawberry harvesters, some99

have adopted machine vision systems based on color thresh-100

olding methods [2], [3], [27], utilizing the color differences to101

distinguish between ripe strawberries and other strawberries102

and plants. Somemachine vision systems have been designed103

to detect the strawberry peduncle as they work with a scissor-104

like cutter to cut the peduncle [28]–[30]. These systems apply105

color thresholding to first detect the strawberry and then106

detect the peduncle of the strawberry by identifying a certain107

region above the strawberry. However, as mentioned above,108

this color-based image processing is not able to adapt to109

changing environments [3].110

Traditional feature learning methods have most typically 111

been used for learning the different shapes of strawber- 112

ries [31] and deep learning techniques for object detec- 113

tion and segmentation have shown results in the detection 114

of strawberries [8], [16], [32]. However, these work have 115

focused on image processing and, as previously mentioned, 116

when integrated with a real strawberry harvester, the accurate 117

localization of the strawberries and maintenance of the safe 118

picking operations are essential and are, therefore, the main 119

focus of this paper. 120

Specially, we aim to solve the localization and collision 121

problems frequently encountered during table-top picking 122

for the strawberry harvester. The following highlights are 123

presented in this paper: 124

• We utilize the deep learning network for instance seg- 125

mentation to detect the target strawberries. Based on 126

the detection results, we propose a localization method 127

based on points clustering and location approximation 128

algorithms. 129

• We raise the potential collision problems for manipula- 130

tors in table-top strawberry farming. We solve this prob- 131

lem by proposing environment perception algorithms 132

that can identity a safe manipulation region and the 133

strawberries within this region. We propose the safe 134

region classification method for the strap in a 2D image 135

and the table in 3D point cloud to identify the pickable 136

strawberries that are located underneath the straps as 137

well as the pickable strawberries in front of the table. 138

• The methods for localization and environment percep- 139

tion were implemented and evaluated on our strawberry 140

harvesting robot in the farm conditions, thus providing 141

a reference for machine vision systems for localiza- 142

tion and environment perception for similar harvesting 143

robots. 144

II. OVERALL SYSTEM DESIGN 145

Our strawberry picking robot conducts static picking, 146

in which it stops and processes the input image before issuing 147

a command to the robot control system. Therefore, when the 148

robot is static, the RGB and depth image acquired from the 149

camera module is utilized for the computation of localization 150

and environment perception in the machine vision system. 151

The overall architecture of the proposed machine vision 152

system is shown in Fig. 1. Instance segmentation network 153

Mask R-CNN was utilized to detect our targets, includ- 154

ing strawberries, strap and table. Thereafter, the detected 155

strawberries undergo safe operation checking in 2D imaging, 156

coordinate transformation, a 3D location approximation algo- 157

rithm and safe operation checking in 3D space, to obtain the 158

final 3D strawberries’ locations within the safe manipulation 159

region, thus achieving safe and efficient picking. 160

The proposed environment perception algorithms include 161

defining the safe manipulation region in 2D image according 162

to the locations of the strawberries and strap, and defining the 163

safe manipulation region in 3D according to the locations of 164

the strawberries and table. 165
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FIGURE 1. Overall architecture diagram.

FIGURE 2. Mask R-CNN for strawberry fruits detection and segmentation.

In Fig. 1, the procedures related to strawberry localization166

are highlighted in red, while those related to environment167

perception are highlighted in blue. These two objectives coor-168

dinate with each other to finalize the positions of strawberries169

within the safe region, therefore the procedures relating to170

both objectives are highlighted in green. The detailed local-171

ization and perception algorithms will be described in the172

following sections.173

III. INSTANCE SEGMENTATION AND LOCALIZATION174

A. FRUITS DETECTION AND SEGMENTATION175

Mask R-CNN [14] was used for the detection and segmen-176

tation of fruits, tables and straps. Mask R-CNN is a deep177

neural network that can generate both the bounding box178

and the masks for each instance, as can be seen in Fig. 2.179

ResNet101was used as the base convolutional neural network180

for feature extraction.181

As described above, there are several networks available182

for object detection that are fast, accurate and well suited for183

fruit counting and yield estimation [5]–[7]. However, our goal184

is to estimate the fruit location in 3D space as accurately as185

possible. In this case, segmentation can provide more detailed186

information and is thus more appropriate for localization,187

since the segmented masks only contain the pixels of the tar-188

gets whereas bounding boxes additionally include pixels of189

other objects. To sum up, the instance segmentation method190

was used because it can generate pixel-level segmentation for191

each object.192

Four target groups were classified, namely ripe strawber-193

ries, raw strawberries, straps and tables. The ripe strawberries194

are, of course, the harvester’s target, while the tables and195

straps present potential collision problems with the gripper196

while in manipulation and are, therefore, also objects that197

should be detected. Detailed discussion about strap and table 198

detection will be presented in the next section. 199

Three examples of the detection and segmentation results 200

are provided in Fig. 3. Fig. 3 (a) shows the input images and 201

Fig. 3 (b) displays the detection and segmentation results, 202

including bounding boxes, masks and class names, while 203

Fig. 3 (c) shows the colorized segmented pixel-level masks, 204

with each color representing a different object. 205

B. COORDINATE TRANSFORMATION FOR SEGMENTED 206

STRAWBERRIES 207

Through image processing, several masks were created for 208

the strawberries, in which one mask represented a detected 209

target. The masks were de-projected into 3D points, repre- 210

senting the 3D positions of the targets in the camera frame 211

C. The workflow of the coordinate transformation is shown 212

in Fig. 4. The masks were extracted from the detected results 213

and the depth image was aligned to the RGB coordinate 214

system. The depth value was then obtained by matching the 215

aligned depth imagewith the correspondingmask results. The 216

coordinates were transformed from the image frame I to the 217

RGB camera optical frame C using the intrinsic parameters 218

of the RGB-D camera. 219

Examples of the coordinate transformation process and its 220

results can be seen in Fig. 5. The first and second columns 221

are the colorized detected masks and the corresponding depth 222

images, respectively. The third column is the visualization of 223

transformed points marked by 3D bounding boxes in the point 224

cloud. The detected masks contain the unripe strawberries but 225

only the positions of the ripe strawberries were selected and 226

sent to the harvester. Therefore, the third column shows the 227

3D bounding boxes of the ripe strawberries. 228

C. TARGET LOCATION APPROXIMATION METHODS 229

1) POINTS CLUSTERING 230

In this harvesting system, once the 3D positions of the 231

targets are obtained, the machine vision system needs to 232

send the positions of all strawberries to the manipula- 233

tion system. However, it was found that the raw points 234

transformed from the masks were not sufficiently accurate. 235
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FIGURE 3. Detection and segmentation results. (1)-(3) are three examples. (a) shows the input images; (b) displays the
visualized segmentation results on the input image; (c) shows the colorized segmented pixel-level masks.

FIGURE 4. Workflow of the coordinate transformation.

Therefore, post-processing procedures were implemented on236

the raw points to obtain a point-set that could better represent237

the target’s real position.238

The inaccuracy of the transformed points was caused by239

several factors. For example, the target points could be pro-240

jected to the background scene due to inaccurate sensing from241

the depth camera, such as the example shown in Fig. 6 (a).242

Another factor was noise from the adjacent objects and,243

in addition, there may have been inaccurate segmentation of244

the masks from the Mask R-CNN.245

Therefore, a clustering algorithm was utilized to screen246

out irrelevant or noisy points. Density-Based Spatial Clus-247

tering (DBSC) of applications with a noise algorithm [33]248

is a method that in which group points can be closely249

packed together. By setting a threshold distance to mea-250

sure core samples and a parameter of a minimum number251

of points that can be a cluster, the less dense points and252

noises could be removed. Fig. 6 shows three examples of253

points before and after clustering, enclosed in the bound-254

ing boxes. The noises marked in the figure, can be fil-255

tered through this clustering method. Fig. 6 (a) shows an256

example of a strawberry edge sticking to the background,257

while 6 (b) and (c) show the examples of noises caused by 258

adjacent objects. 259

2) TARGET POSITION OPTIMIZATION 260

The 3D bounding boxes of target strawberries in the RGB 261

camera optical frame were sent to the manipulator. The raw 262

points obtained after clustering and the bounding box that 263

encloses the region of the points is shown in Fig.7 (a), 264

in which it is evident that the bounding box can only represent 265

a portion of a strawberry. The surface of the target that faces 266

towards the camera is sensed better than other surfaces as 267

the RGB-D camera uses a projection method to obtain 3D 268

points. In the table-top scenario, if the camera angle is that 269

of the front view, the lengths in the x and z dimensions of a 270

strawberry are almost the same. Therefore, in order to localize 271

the targets more accurately, we used the dimensions detected 272

in the x axis (representing the surface towards the camera) to 273

represent those in the z axis. Fig.7 (b) shows the strawberry 274

points and the refined bounding box. 275

D. WORLD COORDINATE TRANSFORMATION 276

The camera module enabled the location of the 3D coordi- 277

nates of the fruit in the camera optical frame C, so it was 278

necessary to convert the locations from the camera frame C 279

into the arm frameW. The relationship between the different 280

frames is shown in Fig. 8, in which S represents the straw- 281

berry, C the camera frame, W the arm frame and B the chess 282

board frame. 283
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FIGURE 5. Examples of coordinate transformation for strawberries: (a) detected masks, with each color
representing a detected strawberry; (b) is the colorized depth image; (c) localization results visualized in
point cloud using bounding boxes.

FIGURE 6. Three examples of clustering of strawberry points.

FIGURE 7. Position optimization: (a) the bounding box of a strawberry
that encloses the filtered points; (b) the optimized bounding box and
corresponding strawberry points.

Let W S be the location of the strawberry S with respect284

to the arm frame W, and CS be defined as the location of285

strawberry S location in the camera frame. The coordinate286

transformation of strawberries from camera frame to arm287

FIGURE 8. Frames for world coordinate transformation.

frame can be expressed as follows: 288

W S = W
C R ∗

CS + W
C t (1) 289

where W
C R and W

C t are the rotation matrix and translation 290

vector from the camera frame C to the arm frame W. 291
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FIGURE 9. The safety manipulation region for the strawberry picking
robot. (a) is a front view with the safety region marked by white dash
line; (b) is a side view with the safety region marked by white dash line.

The B
CR,

B
C t shown in Fig. 8 can be obtained through camera292

calibration while W
B R,

W
B t are known parameters. Based on293

these two sets of parameters, WC R and W
C t can be obtained.294

IV. ENVIRONMENT PERCEPTION295

A. PROBLEM DEFINITION296

It is necessary for the strawberry harvester to sense its envi-297

ronment in order to make predictions and plan for the manip-298

ulation. Therefore, the scene must be segmented and objects299

that could cause potential damage must be localized.300

During the experiments, the manipulator collided with the301

table or strap when the strawberries were either too close to302

the table or above the strap. Therefore, we used the segmen-303

tation network to detect the strap and table and make esti-304

mations about whether or not a target strawberry was located305

within the safe manipulation region. The regions marked by306

white dash lines in Fig. 9 represent the safe safety region307

for the manipulation. Fig. 9 (a) is a front view of the scene,308

in which the safe region is below the strap, while Fig. 9 (b)309

shows a side view showing the safe region below the strap310

and a safety distance from the table. Strawberries should,311

therefore, be picked in the safe region.312

B. SAFETY SOLUTIONS FOR THE STRAPS313

An important output obtained by theMaskR-CNNmodelwas314

the strap masks. The strap above the strawberry table is used315

to support the strawberries plant during growth, making fruit316

easier to harvest and also preventing the stems from breaking.317

Most ripe strawberries hang underneath the straps, however318

some can be found above the straps, which may be dangerous319

for the gripper during harvesting. In this section, we introduce320

two methods by which strawberry positions can be identified321

in relation to the strap.322

1) METHOD 1: ORIGINAL MASKS323

In order to classify the strawberries that are on or above the324

straps, the top positions (yitop) and the horizontal centroids325

(x ic) of the strawberries bounding boxes are first calculated,326

as shown in Fig. 10. Thereafter, for each strap mask region327

of non-zero pixels, x ic is applied to obtain all the vertical328

FIGURE 10. Schematic of safety solution calculation for the straps:
(1) using method 1, case 1, case 2 and case 4 would be considered
successful, while case 3 would be a failure; (2) using method 2, all cases
would be considered successful.

coordinates yi from the masks. Next, yitop is compared to the 329

minimum value of yi, which is used to represent the strap 330

position, and assigned as dangerous if the strawberries are 331

above the strap and safe if the strawberries are below the strap. 332

We observed, however, that this method was not always 333

sufficiently precise, as there were some situations in which 334

corrupted segmented straps were obtained, such as case 335

3 shown in Fig. 10. In this case, the calculation method was 336

not applicable to the strawberries that did not have strap 337

masks below and, therefore, case 3 may be considered a 338

failure using this method. 339

2) METHOD 2: RECTIFIED MASKS 340

To solve the above mentioned problems arising in method 1, 341

first, the Canny Edge Detection algorithm proposed by 342

Canny [34] was applied to ascertain all of the edge points 343

of a segmented strap. Thereafter, we sequentially applied 344

the Probabilistic Hough Transform algorithm proposed by 345

Kiryati et al. [35], which uses a random subset from the edge 346

detector to obtain multiple lines in the image, including their 347

starting and ending coordinates. All these coordinates were 348

then used to calculate the line equation (y = m · x + b) 349

that best interpolates all the points by using least squares. 350

The bounding box that enclosed all the strap masks, marked 351

by the dash line in Fig. 10, was determined by the width of 352

the strap and the fitted line. As shown in Fig. 10, to ver- 353

ify whether strawberries are above or below the straps and 354

assign a warning sign (dangerous or safe) to each fruit, x ic 355

is applied to the line equation to obtain the y and compare 356

it to the yitop + threshold . This threshold is a value obtained 357

through the original segmented mask to determine the safe 358

manipulation region between the line and the position of the 359

top of the fruit. As shown in Fig. 10, all cases were defined 360

correctly using this method. 361

Comparative visual results for the two methods described 362

above, the safety solution containing the original strap seg- 363

mentation and the rectified strap segmentation, are shown 364

in Fig. 11. The images Fig. 11 (a) presents the original 365

images, while the images in Fig. 11 (b) show the results 366

of the first method and the images in Fig. 11 (c) show 367

6 VOLUME 7, 2019
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FIGURE 11. Visual results of the safety solution for the original strap segmentation and the rectified strap segmentation: (a) original images (1,2,3);
(b) the image results of the first method; (c) image results of the second method; The green and yellow bounding boxes indicate, the safe (S) and the
dangerous (D) warning signs.

the results of the second method. The green and yellow368

bounding boxes indicate, the safe (S) and the dangerous (D)369

warning signs, respectively. It is evident from these images370

that the visual results obtained through the first method371

could not correctly classify as dangerous the strawberries372

above the corrupted regions of the strap masks. However,373

with the second method, all the fruits were classified374

successfully.375

C. SAFETY SOLUTION FOR THE TABLE376

The picking robot needs to know the specific 3D location377

of the table in order to identify the proximity of a strawberry.378

The same clustering method was used for the table 3D points.379

The detected table masks and corresponding 3D points for380

table can be seen in Fig. 5.381

In order to represent a table’s complete position, we fitted382

a 3D plane to the detected 3D points of the table. A plane383

in 3D space can be determined by defining a point p0 =384

(x0, y0, z0) on the plane and a normal vector n = (a, b, c) that385

is perpendicular to the surface. The surface p = (xp, yp, zp)386

can be represented by n · (p− p0) = 0.387

We used the centroid of the points as p0. Then we388

created a moment of inertia tensor and used singular389

value decomposition to obtain the normal vector n of the 390

plane. 391

The distance between the detected strawberry center ps and 392

the table surface plane p could then be calculated. A line 393

l = (xl, yl, zl) passing through point ps and perpendicular 394

to the table plane can be represented by l = k ∗ n + p. The 395

intersection point pi between the line and the plane satisfies 396

both equations as follows: 397{
l = k ∗ n+ pi
n · (pi − p0) = 0

(2) 398

Thus the value of k and the exact position of pi were 399

obtained. The distance between pi and ps was calculated 400

and used to ascertain whether or not a strawberry is 401

within the dangerous distance to the table of strawberry 402

trays. 403

The results of the detection and segmentation results of 404

table are presented in Fig.12 (a). The detected coordinates 405

in the image can be obtained from the masks and trans- 406

formed to the camera optical frame with the aligned depth 407

image. The fitted plane is marked in green in Fig.12 (b) and 408

Fig.12 (c). Fig.12 (c) also shows the point cloud and the 409

VOLUME 7, 2019 7
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FIGURE 12. Coordinate transformation and surface fitting for table:
(a) the input image, visualized segmentation results in the input image,
detected mask and corresponding depth image; (b) the transformed 3D
points (highlighted in black) and the fitted 3D plane (highlighted in
green); (c) point cloud with corresponding fitted table plane and detected
strawberries.

detected strawberries, as well as the distance between the410

target and the table.411

D. STRAWBERRIES IN THE SAFE MANIPULATION REGION412

The coordinates of detected strawberries were compared with413

the positions of the strap and table, to ascertain whether a414

strawberry was within the safe region. The algorithm for the415

position checking sequence can be seen in Algorithm 1.416

The entire process can be concluded within the following417

three main steps. First, the positions of the strawberry and418

strap are compared within the 2D image, disregarding any419

strawberries above the strap. Second, the positions of the420

strawberry and the table are compared in the 3D space in the421

RGB camera’s optical frame. The remaining strawberries and422

the table are also compared in 3D space, with those strawber-423

ries close to the table screened out by the pre-defined safety424

distance. In the third and final step, only the strawberries425

Algorithm 1AscertainWhether Strawberries AreWithin
the Safe Region
Result: coordinates of strawberries in safe manipulation

region
pre-processing: 2D line fitting for the strap and 3D plane
fitting for the table. ;
for every detected strawberry do

comparing the strawberry position with strap line
and table surface;
if the strawberry is above the strap then

remove the position of this strawberry target;
else if Dist2T < Dist_safe_limit then

remove the position of this strawberry target;
else

keep the position of this strawberry target;
end

end

TABLE 1. Evaluation results of detection method.

below the strap and outside the safety distance to the table 426

are selected. 427

V. EXPERIMENTS 428

A. EVALUATIONS OF DETECTION METHOD 429

The metrics used to evaluate the detection results include pre- 430

cision, recall, F1 score andAverage Precision(AP), as defined 431

in Eq. 3, below. A total of 120 images were used to evaluate 432

the detection method and the number of True Positive (TP) 433

and False Positive (FP) were recorded. Three confidence val- 434

ues, ranging from 0.7-0.9, were set to compute the precision, 435

recall, F1 score and AP. The results are shown in Table 1, 436

in which it can be seen that ripe strawberries had a higher 437

rate of detection accuracy. It was evident that from the anno- 438

tation process that the ripe strawberries are easy to define 439

while unripe strawberries are more difficult as they undergo a 440

long growth stage from young, small strawberries to partially 441

ripe strawberries. This could be confusing to the detection 442

network. 443

precision =
TPs

TPs+ FPs

recall =
TPs
GTs

F1 =
2× precision× recall
precision+ recall

AP =
1∫
0
p(r) dr

(3) 444

8 VOLUME 7, 2019
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TABLE 2. Confusion metrics for the safety solution methods of straps:
Method 1 (original masks) and Method 2 (rectified masks).

TABLE 3. Confusion matrix for the safety solution of table.

B. EXPERIMENTS OF SAFETY SOLUTION FOR THE STRAPS445

The performance of the two safety solution methods for the446

straps were evaluated, using test images containing a total447

of 418 strawberries. It is relevant to mention the strawberries448

were most commonly situated below the strap, so the warning449

sign classification was highly unbalanced. Confusion metrics450

for both methods are presented in Table 2, in which it is451

evident that the results for the method involving the original452

masks show high classification errors for the dangerous warn-453

ing sign class. Some of the Dangerous classes were classified454

as Safemainly due to the corrupted regions of the strapmasks.455

However, after rectifying the masks, this error was mitigated456

and the overall accuracy results were improved from 83.7%457

to 96.9%.458

In both methods, the inaccurate classifications (Safe clas-459

sified as Dangerous) were due to poor segmentation as well460

as inaccurate line equations.461

C. EXPERIMENTS OF SAFETY SOLUTIONS FOR THE TABLE462

The safety solutions for the table were evaluated using the463

RGB images, aligned depth images and point cloud. The464

RGB and depth images were used for obtaining detection and465

localization results while the ground truth was obtained by466

manually measuring the distance between the target and the467

table in the point cloud. The safety distance was set to 10 cm468

based on reasonable practical experience. Twenty sets of the469

collected data with 112 strawberries were tested and the clas-470

sification results are shown in the confusionmatrix in Table 3.471

Similar to straps results, significantly fewer strawberries were472

found in the dangerous region than in the safe region. The473

overall accuracy was 97.3%.474

The accuracy of the plane fitting was based on accurate475

detection and localization of the table. Therefore, the evalu-476

ations were primarily based on the assumption that the table477

had been correctly detected. Should the points not sufficiently478

accurate, the resulting fitted plane may not be well aligned479

FIGURE 13. Strawberry harvester, developed by Noronn AS, including the
platform, camera, robotic arm and gripper: W and C represent the origins
of arm and camera frame, respectively.

TABLE 4. Timing of the machine vision system.

to the real table. Because the aim of the algorithm is to 480

accurately identify the strawberries within the safe manipula- 481

tion region, the confusion matrix was used that would reflect 482

related failures. 483

D. EVALUATION OF LOCALIZATION ON THE 484

HARVESTING ROBOT 485

We tested the strawberry detection and localization method 486

on our strawberry harvester (developed by Noronn AS). This 487

harvester comprises a vehicle platform, a camera, a robotic 488

arm and a gripper for picking strawberries [3], [36], as shown 489

in Fig.13. A GPU (GTX 1060, NVIDIA, USA) was used 490

for running the machine vision and manipulation control 491

systems. The average processing time for one image frame, 492

including running the detection network, coordinate transfor- 493

mation and other computations was 0.82s, as can be seen 494

in Table 4. The time is an average of 119 image frames 495

with a resolution of 640 × 480. The average times and their 496

standard deviations for processing the detection, coordinate 497

transformation (including strawberries and table points) and 498

other computations are listed separately in Table 4. 499

The successful picking rates of the localization method 500

based on raw points (method 1) and the bounding box 501

optimization (method 2) were compared using the same 502

scenarios, in which the cutting action was disabled so that 503

the gripper swallowed the strawberry, moved down and went 504
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TABLE 5. Picking success rate with the localization method.

to the next strawberry. Each successful swallowing was con-505

sidered as a successful picking.506

The tests were conducted in modified situations, including507

those in which the strawberries were isolated and those in508

which ripe and raw strawberries were hanging adjacent to509

each other. In this test, the Rumba variety of strawberry510

was used, and the number of successfully detected and suc-511

cessfully swallowed strawberries of 12 trials are recorded512

in Table 5. The test of different growing situations can also513

be found in [36], in which the various harvesting failure cases514

were introduced. The picking rate in this paper is lower than515

that in [36], because in this test the variety of strawberry is516

more challenging for picking and the tests were conducted517

with one attempt of picking.518

The picking rates for the two localization methods were519

obtained by dividing the swallowed strawberries by the num-520

ber of detected strawberries. Method 1 in Table 5 indicates521

localization based on raw points, while method 2 indicates522

the optimized localizationmethod. It can be seen that the opti-523

mized localization method achieved a success rate of 74.1%524

in the modified environment, while the localization based on525

raw points achieve a successful picking rate of 51.8%.526

VI. CONCLUSION527

This work proposed a localization method and environment528

perception algorithms for strawberry harvesting robots. The529

localization method was based on the segmented masks of530

a deep convolutional neural network and depth images from531

an RGB-D camera. To increase localization accuracy, density532

based point clustering was used to segment and remove noise533

points in the 3D point cloud. The table and strapwere detected534

and located using the same network, and their locations535

were compared with the positions of strawberries in order536

to identify whether the strawberries were within the safe537

manipulation region. The position comparison between the538

target strawberries and the strap was based on the line fitting539

using the Hough Transform algorithm, while the position540

comparison between strawberries and the table was based on541

a 3D plane fitting. The test results showed that the optimized542

localization method can accurately localize targets, with an543

accurate picking rate of 74.1% in modified situations. The 544

overall accuracy rates for the strap and table safety identifi- 545

cations were 96.9% and 97.3%, respectively. 546

This work investigated the challenges of localization based 547

on deep learning segmentation networks. It also raised the 548

problem of environment perception in harvesting and pro- 549

vided methods for detecting the danger objects for the har- 550

vester and classifying the safe manipulation region. 551

In future work, the localization algorithm could be fur- 552

ther optimized and adopted to suit more complex situa- 553

tions, such as occluded and unusual hanging positions of the 554

strawberries. 555
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