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ABSTRACT Addressing the need for high-quality, time efficient, and easy to use annotation tools, we pro-
pose SAnE, a semiautomatic annotation tool for labeling point cloud data. The contributions of this paper
are threefold: (1) we propose a denoising pointwise segmentation strategy enabling a fast implementation
of one-click annotation, (2) we expand the motion model technique with our guided-tracking algorithm,
and (3) we provide an interactive, yet robust, open-source point cloud annotation tool, targeting both skilled
and crowdsourcing annotators. Using the KITTI dataset, we show that the SAnE speeds up the annotation
process by a factor of 4 while achieving Intersection over Union (IoU) agreements of 84%. Furthermore,
in experiments using crowdsourcing services, SAnE achieves more than 20% higher IoU accuracy compared
to the existing annotation tool and its baseline, while reducing the annotation time by a factor of 3. This result
shows the potential of SAnE, for providing fast and accurate annotation labels for large-scale datasets with
a significantly reduced price. SAnE is open-sourced at https://github.com/hasanari/sane.

INDEX TERMS Annotation tool, crowdsourcing annotation, frame tracking, point cloud data.

I. INTRODUCTION

The growing popularity of high-frequency point cloud data,
scanning real-world driving scenes, fuels up a new research
stream on 3D perception systems. This is enriching the per-
ception systems discussion previously centered around image
analysis (from cameras) to the realm of point cloud analysis,
which includes point cloud classification, segmentation, and
object detection [1], [2]. Several large driving scene datasets,
containing point cloud data, have recently been published by
self-driving tech companies, such as ArgoVerse, Waymo and
Lyft [3], highlighting the trend of collecting and using Light
Detection and Ranging (LiDAR) point cloud data in the self-
driving technologies that are being developed and deployed
in the real world.

Developing robust self-driving technologies requires more
than just data acquisition. Data annotation, i.e. labeling
objects in point cloud scenes, is also necessary to enable the
learning process. The annotation process is usually tedious
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and resource-consuming, and the results can be inaccurate if
done manually [4]. Furthermore, as the complexity of anno-
tating 3D point clouds increases, human annotators become
more prone to making mistakes. The annotation errors for 3D
objects have been found to be significantly higher than for 2D
instances. The erroneous labels of the KITTI 3D object detec-
tion dataset (such as objects with missing labels or objects
having incorrect bounding box locations) [5] is an example
of the practical challenge of providing high-quality ground
truth annotations.

To tackle these challenges, researchers have proposed
both fully automated point cloud annotation techniques
(e.g. Frustum Pointnet [6], F-Convnet [7], and AVOD [8])
and semiautomatic annotation tools (e.g. PolygonRNN [9],
PolygonRNN++ [10], 3D-bat [11], and Latte [4]). 3D-bat
and Latte are specifically proposed for annotating 3D point
cloud data. The 3D-bat application proposes a 3D annotation
toolbox that is equipped with features that focus on usabil-
ity and annotation efficiency, but is lacking with respect to
automatic functionalities. Latte proposes a tool for 3D point
cloud annotation with one-click annotation (based on the
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FIGURE 1. The interface of SAnE, a semiautomatic annotation tool based on a one-click annotation scheme empowered by a denoising pointwise

segmentation approach and a robust guided-tracking algorithm.

DBSCAN algorithm [12]) and frame tracking (based on the
Kalman Filter [13]), reducing the complexity of the annota-
tion task and attaining improved efficiency and an accuracy
performance of 87.5% [4]. This seems promising for effective
annotation, but for the application to be practical, it has to
be easy to use for common users, such as crowdsourcing
workers. We have experimented with Latte in such a settings,
collecting annotations from workers using Amazon Mechani-
cal Turk, and obtained an annotation accuracy of only 59.32%
in terms of Intersection over Union (IoU), a drop of 28.18% in
IoU from the performance reported in [4]. This result aligns
with findings in [14], suggesting that when an annotation tool
is used by crowdsourcing workers, the results tend to be less
accurate, and in some cases, not even usable.

Therefore, in this paper, we propose the Smart Annotation
and Evaluation (SAnE) tool for cost-effective point cloud
annotation, inspired by the Latte interactive tool, implement-
ing a 3D point cloud deep learning model and a guided
tracking algorithm to boost performance. SAnE enables both
expert annotators and crowdsourcing workers to annotate the
point cloud data accurately and efficiently by implementing:

1) Denoising pointwise segmentation, a novel nearly

noise-free semantic segmentation strategy, enabling
a robust one-click annotation technique. In addition,
the denoising technique eliminates the need for a work-
able ground removal algorithm, that is a requirement in
Latte [4].
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2) Guided tracking, based on a motion model that pro-
vides baseline tracking through all the frames and
refined using heuristic approaches (greedy search and
a backtracking algorithm). Only minimal adjustment
(if any) is needed for the human annotator to track
sequential point cloud scenes.

3) Improved annotation flow, enhanced with both
Al-based functionalities (one-click annotation, guided-
tracking, and fully automated bounding box propos-
als) and User Interface (UI) based improvements,
such as keyboard-only annotations, multi-user environ-
ments, user-adjusted parameters, and 3D bounding box
estimation.

Our experiments using the KITTI dataset [15] highlight
that SAnE can achieve a competitive result compared to Latte
under similar experiment settings, an average loU agree-
ment of 84.27% and a recall value of 86.42%. Furthermore,
when tested in a crowdsourcing setting, SAnE achieved much
higher performance (79.36% and 80.64%) compared to Latte
(59.32% and 58.86%) in terms of IoU agreement and recall
value, respectively. Besides, in this crowdsourcing setting,
SAnE attains 2.92 times speedup compared to its baseline,
implying a significant potential for reducing annotation costs
in an already low-cost service.

The rest of our work is organized as follows. In Section II,
we review point cloud annotation algorithms. In Section III,
we describe the key machinery that we have either
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designed or adapted from earlier work when developing the
SAnE. Experiment results, ablation studies, and discussions
are provided in Section IV. Finally, conclusions are provided
in Section V.

Il. RELATED WORK

A. POINT CLOUD SEMANTIC SEGMENTATION

AND OBJECT DETECTION

LiDAR based 3D object detection is essential for autonomous
driving, because point clouds collected from LiDAR con-
tain rich 3D information, including location, dimension, and
orientation. However, compared to 2D images, 3D point
clouds are irregular and unordered. It is therefore hard to
leverage the traditional image analysis techniques to perform
general recognition tasks on point clouds, such as semantic
segmentation [2], [16]. In early works, people manually trans-
formed irregular point clouds into regular 3D voxel grids [17].
Such a transformation successfully represents irregular 3D
data but is constrained by the data density and the shape
of the objects. More recent works operate directly on 3D
point clouds. PointNet [18] directly consumes point cloud
data and provides a unified approach to general 3D recogni-
tion tasks. PointCNN [19] is a generalized CNN framework
that includes feature learning from point clouds to achieve
point cloud segmentation. We leverage and improve this
method using our proposed denoising pointwise segmenta-
tion method, boosting the accuracy and efficiency of the
SAnE.

Some works achieve end-to-end object detection on point
clouds. Many works have tried to leverage mature 2D detec-
tors for generating 2D proposals and perform bounding box
regression in 3D space, such as the Frustum Pointnet [6].
Inspired by 2D region proposal networks like F-Convnet [7]
and AVOD [8], it proposes a novel architecture that contains a
feature extractor and subnetworks for 3D proposal generation
and regression.

B. ANNOTATION TOOLS FOR POINT CLOUDS

With the development of LiDAR based detection methods
and the increasing demand for 3D datasets, some works
have contributed annotation tools that aim at improving the
efficiency of creating useful datasets. PolygonRNN [9] and
PolygonRNN++ [10] propose a semiautomatic approach to
polygon region prediction, speeding up the image annotation
process by a factor of 7. Annotation tools on 2D image data
have been very successful, and 3D annotation tools are also
improving. 3D-Bat [11] and Latte [4] provide well-developed
point cloud annotation tools integrated with semiautomatic
functionalities, deployed as web-based applications. Latte
realizes one-click annotation, significantly reducing complex
annotation work into a simple click operation. It also pro-
poses frame-to-frame object tracking that further boosts the
annotation efficiency for sequential data frames. However,
Latte is still using 2D detectors (MaskRCNN [20]) on images,
combined with points projected from 3D point clouds, for
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label prediction. This approach is constrained by camera
view and image quality, and tends to mislabel closely located
objects. To address this problem, we propose a denoising
pointwise segmentation to improve the prediction accuracy
and simplify one-click annotation.

An important feature of an annotation tool is that it is
easy to use, even with minimum instruction. This is essential
for non-experts, like crowdsourcing workers. At the same
time, the tool must deliver high-quality results. Balancing
between quality and cost is always problematic, especially
in crowdsourcing environments [14], [21], [22]. Furthermore,
it is important to have high-quality annotation labels to
improve the accuracy of heuristic-and-learning based algo-
rithms. To address these problems, we propose SAnE, an easy
to use semiautomatic annotation tool, capable of delivering
fast and accurate annotation labels, even in a crowdsourcing
setting.

Ill. SAnE ANNOTATION

Creating an open-source, yet high-quality, Al-assisted point
cloud annotation tool has been our goal. In this section,
we emphasize three key contributions of our work, namely:
(1) The denoising pointwise segmentation strategy, enabling
accurate one-click annotation, (2) The guided-tracking algo-
rithm, easing the frame-to-frame annotation process, and
(3) An interactive yet robust point cloud annotation tool that
simplifies the creation of high-quality 3D annotation datasets.

A. DENOISING POINTWISE SEGMENTATION

Deep learning based pointwise segmentation techniques,
such as PointNet [18], PointNet++ [23], and PointCNN [19],
are based on the cross-entropy loss function and the back-
propagation algorithm in their kernel optimization processes.
These techniques, even though they tend to provide high
accuracy prediction results [23], are prone to provide a noisy
segmentation near the object boundaries, see Fig. 2a and b.
This is because the particular loss function penalizes all
wrong predictions, formulated as

C
L=—Y"tilog(s, ()

where C denotes the number of classes, s; denotes the
confidence-score class i, while #; denotes the ground truth for
class i.

A noisy pointwise segmentation complicates the annota-
tion process, such as the Latte one-click-annotation technique
(see [4]). This technique uses the Density Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm [12]
to isolate point-clusters and generate a bounding box for
the selected cluster. A noisy cluster may result in a wrong
bounding box shape and an inaccurate prediction of the box
direction, see Fig. 2c and d. The proposed denoising tech-
nique aims to provide a noise-free segmentation, enabling
one-click annotation. In addition, the technique also does
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FIGURE 2. The impact of the denoising pointwise segmentation on
estimating bounding box proposals using one-click annotation technique:
(a-b) noisy boundaries pointwise segmentation, (c-d) bounding box
estimation using a standard one-click annotation technique on noisy
point cloud segmentation, and (e-f) bounding box estimation using the
denoising pointwise segmentation technique.

ground removal that is required for the one-click annotation
process.

The main idea of the denoising technique is to force the
deep learning model to avoid wrong predictions near object
boundaries during kernel optimization (training process) by
increased penalization. As shown in Fig. 2e and f, the same
one-click annotation technique provides better bounding box
proposals for the noise-free point cloud segmentation data.
The denoising technique is implemented as a set of penalty
values to the prediction results during the loss calculation.
Therefore, the technique can be implemented for both the
cross-entropy loss function and other loss functions [2], [24].

Given a set of weighted penalties W), in the point cloud
data (P), the denoising penalties are described in Alg. 1. For
all objects in a frame, the denoising-weight-penalty calculates
all point indices inside the bounding box (Line 3), and recal-
culates all point indices inside the enlarged (4n0) bounding
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Algorithm 1 Denoising Weight Penalty
1: Wy, n0,nW,w, zO > Weighted
penalties, noise offset, noise weight, normal weight, and
distance offset to the ground.
2: for obj in allObjects do

3: Iiy < obj.pointIndicesInsideBox() >
pointIndicesInsideBox() gathers indices of points inside
the obj.

4: obj.dimensions < obj.dimensions + nO >

obj.dimensions contains the dimensions of obj, in terms
of width, length, and height.

Loyr < obj.pointIndicesInsideBox()

Wyllou] < nW

Min < min(P(liy, Zaxis]) + zO0

Wyllinand (W[, Zaxis] > zMin)] < w
end for

R AN

box (Line 5). Lines 6-8 assigns the noise penalty (nW) for all
boundary locations and ground object areas, forcing the loss
function to give higher penalties around those areas.

B. GUIDED TRACKING ALGORITHM

Annotating sequential frames of point cloud data can be
time-consuming, but it can be speeded up using a frame-to-
frame tracking algorithm. For example, the Kalman filtering
approach [13] is adopted by Latte [4] to track the bounding
box center of an object, and provides a speed-up by a factor
of 4.74 compared to manually creating bounding boxes for
each new frame. A tracking algorithm does not only speed-
up the annotation process but also gives better annotation
agreement and accuracy of the tracked bounding boxes [4].

We extend the motion model technique by using the
guided-tracking algorithm. The objective of this algorithm is
to reduce the effort to refine and/or reannotate the tracked
objects. The idea is that some initial bounding box location
can be regressed to fit the closest point cloud cluster. The
hypothesis is that each cluster belongs to a different object,
therefore regressing the bounding box to fit the closest clus-
ter will help refine the bounding box location given by the
motion model.

The guided-tracking algorithm comes with three modules,
namely: (1) A greedy search, regressing the bounding boxes
to their closest corresponding clusters, (2) Backtracking, pre-
venting overlapping between multiple bounding boxes, and
(3) Tracking refinement, optimizing the final bounding box
location based on the closest point cluster.

1) GREEDY SEARCH

The greedy search algorithm, presented in Alg. 2, works by
moving the predicted bounding box around its initial location.
It uses the bounding box center location and the point cloud
data, denoted as b and P, respectively. A dictionary (s), con-
taining bounding box movements, is also used. For each new
location of b, the number of points inside the bounding box is
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counted (numPoints) and the distances between points inside
the box and their closest edges are calculated and summa-
rized (avgDist). The location with maximum numPoints and
minimum avgDist is assumed to be the best possible location
for the current iteration. The search is implemented using a
recursive function, and an iteration that doesn’t change the
value of numPoints ends the search process.

Algorithm 2 Greedy Search Algorithm
1: procedure GreedySearch(s, b, P)
2: b, < b > b contains bounding box information.
b.c denotes the bounding box center location along the x
and y axis.

3: b.cx < b.cx—sp

4: bcy <« bcy—sp

5: stride < sp * 2/Spum > Spum denotes the number of
strides.

6 for x =0; x < spum; x++ do

7: for y =0; y < spum; y++ do

8: Xy < by.cx < b.c.x + x % stride

9: yt < by.c.y < b.c.y +y* stride

10: Ps;, < by.contains(P)

11 Sdict[xt, y¢1[0] <= (len(Psin))

12: Sdict X1, ye1[1] <= (by)

13: Sdict[xt, y¢1[2] <= Dist(Psiy, by.edges)

14: Sdict[Xt, y1[2] <= Avg(saice[xt, y1[2])

15: end for

16: end for

17: maxIndices < argMaxes(sgict[. - -][0]) >

argMaxes() gathers the indices of the maximum values
from the dictionary.

18: if len(maxindices) > 1 then

19: minldx < argMin(sgic;[maxIndices][2]) >
argMin() gathers the index of the minimum value from
the dictionary.

20: numPoints, b,y < Sgic:[minldx][0, 1]

21: else

22: numbPoints, b,y < SgictImaxIndices][0, 1]

23: end if

24: if numPoints > Spunpoints then > SnumPoints

is a global variable, denoting the highest numPoints from
previous iterations.

25: SnumPoints <— numPoints

26: Sdict < {}

27: Return GreedySearch( sgict, brow, P)
28: end if

20: Return s, b, P
box location.
30: end procedure

> b.c[x, y] is the optimal bounding

Alg. 2 relies on the padding size (s,) to move the bounding
box to the best possible location with the highest numPoints.
A higher s, means a higher possibility for the bounding box
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to overlap with other bounding boxes, see Fig. 3a. Therefore,
a backtracking algorithm is included to alleviate this problem.

2) BACKTRACKING

The backtracking algorithm works by re-tracking (move-back)
the overlapped bounding box locations (Bs) to the best pos-
sible locations where the boxes do not overlap anymore. The
first step is that for each bounding box, the distance between
the initial and the updated bounding box location from
Alg. 2 is calculated. Then, overlapping boxes are re-tracked
based on those distances. The overlapping boxes with the
longest distances are moved until the particular boxes are
not overlapping anymore, see Alg. 3 for a more complete
explanation.

Algorithm 3 Backtracking Algorithm

1: procedure BackTracking(Bs)
$isOverlapExist < true
while $isOverlapExist do
$isOverlapExist < false
for i =0; i < len(Bs); i++ do
for j = 0; j < len(Bs); j++ do
idx < —1
if i A then
while idx # 0 A Bsl[i].Overlap(Bsl[j])

R A A A T

> do
Overlap() check if box[i] is overlapping with box[j].
10: $isOverlapExist < true
11: iDist < Bsl[i].centerDist() >
centerDist() get the current distance of box[i] from its
current location to its initial location before the back-
tracking occurred.

12: jDist < Bslj].centerDist()
13: if iDist > jDist then
14: idx < Bslil.updateldx()

updateldx() update (decrements) the tracking index of
Bs[i], then return the updated tracking index. Tracking
index for each box is initialized as the number of move-
ments for each bounding box.

15: else

16: idx < Bsl[jl.updateldx()

17: end if

18: end while

19: end if

20: end for

21: end for

22: end while

23: end procedure

The backtracking algorithm can separate overlapping
objects effectively, see Fig. 3b. However, the proposal
for each updated bounding box location might not be
optimal. This is because the algorithm does not optimize the
numPoints and avgDist of the moved boxes. Therefore, the
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FIGURE 3. The backtracking algorithm for refining the greedy search overlapping problem: (a) before and (b)

after the backtracking algorithm.

tracking refinement step is required to optimize the bounding
box locations while preventing overlap.

3) TRACKING REFINEMENT

The tracking refinement is a reimplementation of Alg. 2 with
much smaller s,. The intuition is that after the first greedy-
search and backtracking processes, the proposed bounding
box locations are already close to the optimal solutions.
Therefore, only a small change is required to find the best-
fitted location.

C. AI-ASSISTED ANNOTATION TOOL

Based on an effective denoising technique and the robust
frame-to-frame tracking algorithm, we offer an open-source
semiautomatic annotation tool for 3D point cloud data.
Several easy to use, yet powerful features are embedded, such
as one-click annotation, frame-to-frame tracking, and several
other non-Al functionalities.

1) ONE-CLICK ANNOTATION
Our one-click annotation technique is adopted from Latte’s
implementation [4]. The main improvement is that denoising
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is used to replace the ground removal algorithm by inducing
enhanced penalties around the ground areas. Additionally,
a region growing step based on a Nearest Neighbor (NN)
search is used as a replacement for Latte’s DBSCAN
implementation. This is because this DBSCAN implemen-
tation is computationally slow (each click requires around
5-10 seconds to process). We hypothesize that the segmented
point clusters are separated from each other by some distance,
therefore, using an NN search with a predefined search radius
gives similar (or better) region proposals compared to the
DBSCAN implementation, and works faster for estimating
point clusters.

2) FRAME TO FRAME TRACKING.
The frame to frame tracking implemented in the annotation
tool follows the description from Subsection III-B including
both the motion model technique and guided tracking. The
annotators can choose which tracking algorithm they want
to use.

Complementing the AI functionalities, SAnE is also
equipped with several useful features, including side-view
refinement, height estimation, keyboard-only annotation,
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object recoloring, and more. The side-view refinement is used
to simplify the bounding box refinement in locating, isolat-
ing, and magnifying the selected object. The height estima-
tion is used to estimate object height based on the maximum
and minimum point inside the bounding box, normalized
with the RANSAC algorithm [25]. Moreover, keyboard-only
annotation maximizes the use of predefined hotkeys, while
object recoloring is used for contrasting the color of points
inside and outside a selected bounding box.

IV. EXPERIMENT RESULTS AND FINDINGS

A. EXPERIMENTAL SETUP

We have evaluated our approach on the KITTI tracking
dataset [15], and used the training data with their labels for
our experiments. The dataset contains 20 scenes and 8 object
categories, including car, van, truck, pedestrian, cyclist, sit-
ter, tram, and miscellaneous. 3D Velodyne point cloud data
with their colored images along with GPS/IMU data and
3D object tracklet labels are included in the dataset. Due to
the limitations of the KITTI labels, i.e inaccurate bounding
boxes [4], [5] and only objects in front of the ego vehicle
being annotated [15], we also used an expert annotator to
provide high-quality Ground Truth labeling (GT). For the rest
of this paper, we treat this labeling (GT) as the actual ground
truth. It should be noted that the mean IoU agreement between
GT and KITTI labels is 72.77%.

For the experiment, we selected eight scenes and used the
first 10 frames per scene to do the annotations. We then
conducted the experiments by asking four of our skilled
workers to annotate objects in those scenes by using the full
features of SAnE. We also asked these annotators to annotate
the dataset by using a baseline annotation tool, i.e by drawing
bounding boxes in the point cloud frame without using any of
the proposed SAnE features.

For the crowdsourcing experiments, we used the Ama-
zon Mechanical Turk crowdsourcing services. We used
around 70 crowdsourcing workers and each worker annotated
(on average) 1.8 scenes. We asked the workers to annotate
the point cloud scenes by using the full features of SAnE,
the SAnE without any of the proposed features enabled (base-
line), and the full features of Latte. We obtained a copy of
the version of the Latte annotation tool, that is available
in their Github repo, and modified it to suit a multi-user
experiment setting. For the ablation study, the crowdsourcing
workers annotated the point cloud data by using the SAnE
with only one of the proposed features enabled at a time,
see Table 2.

In our annotation tool, we used PointCNN [19] as the point-
wise segmentation architecture. It was trained by using the
density adaptive sampling method [5] and weighted using the
proposed denoising technique. The DBSCAN algorithm and
region growing method were used for point level clustering,
and the proposed guided tracking algorithm with the motion
model was implemented for simplifying the frame to frame
tracking processes.
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Evaluation metrics: Intersection over Union (IoU) for
Bird’s Eye View (BEV) was used for quantifying bound-
ing box accuracies and we report the IoU averaged over
instances annotated by all workers within the same task.
The IoU agreement can be seen as the proportional overlap
between the intersection areas of the bounding box proposal
and its corresponding ground truth data, and the combination
(union) of those areas. It should be noted that an object
with IoU=0.0 is ignored when calculating the average loU
score. To consider the missing objects, we used the recall
values over all existing instances from the GT labels as an
additional evaluation metric. Similar to Latte [4], we used
a 50% IoU threshold value between an object and a ground
truth box to considered it as a true positive. The annotation
time per object (in seconds) is also calculated as a surrogate
efficiency measure to demonstrate the speed-up of the anno-
tation process for each task, when comparing the baseline
annotation process for the skilled annotators (HQ) and the
crowdsourcing workers (CS).

B. EXPERIMENTAL RESULTS

We present the efficiency and accuracy metrics of the annota-
tions obtained by using SAnE and Latte in Table 1. In Table 2,
we show the result of our ablation study, comparing the met-
rics obtained for each proposed feature. Finally, in Table 3 we
show the per-scene accuracy and efficiency for each selected
point cloud scene in the experiment annotated using different
settings.

TABLE 1. The accuracy and efficiency of SAnE and Latte annotation tools.

| Time(s) | MeanIoU(%)  STD IoU(%) [ Recall(%)

KITTI - 72.77 5.67 35.10
SAnE Baseline! 29.00 80.50 9.08 89.14
SAnE Full-Features’ 9.48 84.27 9.44 86.42
SAnE Baseline? 42.10 62.02 11.00 67.08
SAnE Full-Features? 14.44 79.36 9.56 80.65
Latte Full-Features? 32.86 59.32 11.59 58.86

Tskilled; 2crowdsourcing workers

TABLE 2. The ablation study of SAnE (including the full features of Latte
for comparison) annotated by crowdsourcing workers.

| Time(s) [ MeanIoU(%)  STD IoU(%) [ Recall(%)

Latte 32.86 59.32 11.59 58.86
Baseline 42.10 62.02 11.00 67.08
One-click annotation® 19.64 73.85 10.79 80.68
Motion model 13.43 74.59 10.22 84.51
Guided tracking 11.29 78.56 9.11 82.22
Full-features 14.44 79.36 9.56 80.65

Tusing denoising pointwise segmentation

Findings: From Table 1, we first observe that the Latte
full-feature efficiency and accuracy performance (in terms
of annotation time and IoU) is significantly worse in our
experiment (32.86s and 59.32%), compared to what has been
reported in [4] (9.51s and 85.5%). One plausible explantation
for this is that, in our experiment, we employed crowdsourc-
ing workers who might not have been as familiar with point
cloud annotation tools as those in Latte’s original experi-
ment. Low efficiency and effectiveness is a common phe-
nomenon reported in the crowdsourcing literature [14]. In our
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TABLE 3. The breakdown of accuracy and efficiency of SAnE and Latte annotated by crowdsourcing workers for each point cloud scene.

KITTI Mean IoU(%) Time(s)

SceneID [26] | KITTI  Baseline! Full-Features! Latte Baseline! Full-Features! Latte
0000 77.12 63.10 85.01 67.17 15.48 18.95 19.76
0004 67.66 66.17 79.91 54.19 35.92 12.56 37.65
0006 68.41 53.61 70.81 47.84 47.59 10.76 32.82
0007 77.35 61.60 80.34 61.98 43.58 19.03 29.15
0009 75.96 59.07 85.55 60.61 60.00 11.07 40.21
0011 72.25 53.67 76.83 65.82 43.98 8.57 25.43
0019 73.48 72.80 77.40 70.04 36.86 19.43 21.68
0020 69.92 65.21 78.53 49.71 49.07 1191 52.95

Tusing SAnE annotation tool.

crowdsourcing experiments, SAnE full-features (14.44s and
79.36%) outperform Latte full-features in both efficiency and
accuracy in a quite significant way, while SAnE baseline
underperforms in terms of efficiency (42.1s) but is on par in
terms of accuracy (62.02%). When SAnE is used by skilled
workers, both efficiency and accuracy improve, achieving
9.48s and 84.27% for SAnE full-features.

This significant improvement is due to the improved
one-click annotation, object tracking, and annotation flow
implemented in SAnE, as can be seen from Table 2. Latte
one-click annotation depends on the effectiveness of the
ground removal for filtering the point cloud, which can be
severely affected by scene structure and complexity (mean
IoU 59.32% and STD 11.59%). SAnE denoising pointwise
segmentation alleviates this dependence, which results in
a generally tighter bounding box, and thus better accuracy
performance (mean IoU 73.85% and STD 10.79%). Also,
SAnE’s guided tracking improves on Latte’s Kalman filter
(which uses a linear approximation for the motion model),
reducing the need for correcting the location of the object
bounding box in the subsequent frames, slightly improving
both annotation accuracy and efficiency (about 4% mean IoU
and 1% STD improvement). Finally, all of this, together with
the improved annotation flow and interface, allows SAnE to
replace several tedious processes in Latte. These processes
include real-time inference for image classification as well as
image cropping and bounding box prediction, and an unop-
timized DBSCAN algorithm. We replaced them with leaner
processes consisting of efficient denoising pointwise segmen-
tation and an optimized DBSCAN on the filtered point cloud.
By operating solely on point cloud data, SAnE can quickly
perform these processes and show the points belonging to an
object in a sidebar to guide the annotator almost instantly,
easing the overall annotation flow.

As can be seen in Table 1, relying solely on point cloud
data to generate bounding box annotations leads to some
problems, especially when using IoU as the accuracy metric.
The IoU accuracies for the baseline and the full-features of
SAnE, annotated by our skilled workers, are only 80.50%
and 84.27%, respectively. And the accuracy drops to 79.36%
when the annotation is performed by crowdsourcing workers.
The IoU improvement of 17.34% is good and can be con-
sidered significant but the IoU accuracies can be considered
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low for a semiautomatic technique. This is because the IoU
is a very sensitive metric, and perfect overlap (IoU=1.0)
between two bounding boxes on the point cloud scene is
almost impossible, see Fig. 4a. Moreover, objects in the point
cloud scene can be represented by only a few points, see
Fig. 4b. It means that the annotator subjective preferences
play a crucial role for providing the most fitted bounding box.

C. ABLATION STUDY
In Table 2, observe that one-click annotation implemented
by using denoising pointwise segmentation offers +11.83%
improvement in terms of IoU compared to the baseline. It also
reduces the annotation time per object by more than half.
Furthermore, our proposed guided tracking algorithm shows
a noticeable improvement compared to the motion-model
algorithm, from 13.43s to 11.29s and from 74.59% to 78.56%
in terms of annotation time and IoU accuracy, respectively.
Utilizing all the proposed features (full-features), SAnE
achieves the highest accuracy of 79.36% in terms of IoU.
The annotation time (per object) is only 14.44s slower when
compared to only using the guided-tracking feature. This is
because the one-click annotation (included in the full feature
setting) requires more time to generate a bounding box pro-
posal (server-side). However, the proposed bounding boxes
are tighter and more correct, compared to the manually drawn
bounding boxes, as reflected in the accuracy improvement.
It should be noted that similar effects are shown for the full-
features of Latte when all the automated server-side features
are enabled.

D. SCENE ANALYSIS

In Table 3, the scenes cover different driving environmentsi.e.
parking location, intersection, highway, urban neighborhood,
crowded place, and more. From all these different scenes,
the full-features of SAnE consistently achieves the highest
accuracy, ranging from 70.81% to 85.55%. with a median
value of 79.91% in terms of IoU. This is double-digit higher
than the Baseline and Latte accuracies. The numbers are
also higher than the KITTI label accuracy by more than 5%.
It should be noted that the KITTI dataset is widely used for
benchmarking the accuracy of state-of-the-art algorithms for
object detection and tracking [26].
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FIGURE 4. Challenges with high accuracy bounding boxes (loU=1.0) for a point cloud

scene.

By looking at the annotation time per object per scene,
the full-features of SAnE dominates the results by providing
the fastest annotation times for almost all the scenes, more
than three times faster compared to the Baseline and Latte
annotation times. It shows the applicability of the SAnE to
provide fast and accurate annotation labels for point cloud
data with a significant cost reduction. This is important
because by using the SAnE, computer vision researchers,
especially the ones focusing on point cloud learning, can
acquire accurate large-scale datasets that are tailored to their
needs with a much lower price tag, potentially boosting the
development of this research area.

In our experiment using 80 frames from eight scenes of the
KITTI dataset, the SAnE shows promising results for generat-
ing low cost, high quality point cloud annotations. However,
larger scale experiments using multiple datasets with various
object categories are still needed to show the applicability
of SAnE for annotating different types of objects and envi-
ronments. Moreover, in this work, the per-class accuracies
were not reported because the number of non-car objects, like
pedestrian and cyclist, are very limited in the data. There-
fore, further research with other datasets, like Waymo Open
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Dataset [3], will be required to get a more balanced report for
those categories.

E. LIMITATIONS

Based on a straight forward weighted penalty, the denois-
ing technique is easy to use and offers powerful guidance
for bounding box generation, especially using the one-click
annotation algorithm [4]. However, as the penalties empha-
size the object boundaries, other areas far from the boundaries
suffer, with bad prediction results. This is understandable and
even desirable for annotation tools, but for fully automated
pointwise segmentation, this approach yields a lower predic-
tion accuracy.

In addition to the segmentation accuracy problem, the one-
click annotation is also sensitive to the point-density distri-
bution and object shape representations. The L-shape fitting
algorithms [27] are good for generating high quality bound-
ing boxes when the annotated objects are in prefect L-shape
forms. However, the L-shape is not the only shape of objects
appearing in point cloud scenes. I-shape, U-Shape and even
dot-shape are other typical shapes, and the fitting algorithm
does not really work on all of these shapes. More work, such
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as scene completion [28] and point cloud generation [29],
is needed to overcome these problems.

V. CONCLUSION

In this work we have introduced SAnE, a robust semiauto-
matic annotation tool that simplifies the creation of high accu-
racy bounding box annotations for point cloud data, targeting
both skilled and crowdsourcing annotators. We believe that
this tool can help computer vision researchers acquire the
tailored high-quality datasets needed to conduct their experi-
ments. The main contributions of our research are threefold.
Firstly, we have proposed a denoising pointwise segmentation
strategy that can provide nearly noise-free point level clas-
sification, enabling one-click annotation. Secondly, we have
developed a novel guided tracking algorithm, enhancing the
motion model tracking by using a combination of greedy
search and backtracking, easing the frame-to-frame anno-
tation processes. Finally, we provide an open-source and
easy to use annotation tool that combines Al-based func-
tionalities (such as fully automated bounding box propos-
als, one-click annotation, and frame-to-frame tracking) and
Ul-based enhancements, i.e side-view refinement, height
estimation, keyboard-only annotation, object recoloring, and
more.

Experiments were carried out on the KITTI tracking
dataset and the results show that the full features of SAnE,
when used by skilled workers, can speed up the annotation
process by a factor of 4.44 while achieving higher accuracy
than the manual annotation process. Our proposal achieves
IoU agreements of 84.27% and a recall value of 86.42%.
In our crowdsourcing experiment, the full features of SAnE
provided +17.34% and +20.04% improvement in terms of
IoU compared to the Baseline and Latte annotation tools,
respectively. Furthermore, in the same setting, our proposed
annotation tool achieved the fastest annotation time, provid-
ing almost 3 times faster annotation than its baseline, poten-
tially providing a significant reduction in annotation costs in
an already low-cost environment. Further improvement may
be achieved by combining the scene completion and point
cloud generation algorithms, alleviating the limitations of
point cloud data for representing complete object structure,
reducing the influence of human annotation subjectivity.
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