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Abstract
The onset of Darcy–Bénard convection in an unlimited horizontal porous layer is studied 
theoretically. The thermomechanical boundary conditions of Dirichlet or Neumann type 
at the lower and upper plane are switched from one type to another, at certain values of 
the horizontal x-coordinate. A semi-infinite portion of the lower boundary is defined as 
thermally conducting and impermeable, while the remaining boundary is open and with 
given heat flux. At the upper boundary, the same thermomechanical conditions are applied, 
but with a relative spatial displacement L and in the opposite spatial order. A domain of 
local destabilization around the origin is generated between the lines of discontinuity 
x = ±L∕2 . The marginal state of convection is triggered centrally, while it is penetrative 
in the domains exterior to the central domain. The onset problem is solved numerically, 
with a general 3D mode of disturbance, but 2D disturbances are preferred in most cases. 
The critical Rayleigh number is given as a function of the dimensionless gap width L and 
the wavenumber k in the y direction along the lines of discontinuity in the boundary condi-
tions. An asymptotic formula for 2D penetrative eigenfunctions is shown to be in agree-
ment with the numerical results.

Keywords  Darcy–Bénard problem · Onset · Penetrative convection · Porous medium

1  Introduction

Natural convection arising by buoyancy-driven instability in a porous medium heated 
from below is usually called Darcy–Bénard convection. It is a relatively simple type 
of hydrodynamic stability. One simplifying element is the finite-amplitude undisturbed 
state with a linear temperature profile. Another simplifying element is the linear Darcy 
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law with no other spatial differential operators than the gradient. The only nonlinear-
ity is the convective term in the heat equation, which is linearized in the eigenvalue 
problem. The elementary onset problem is referred to as the Horton–Rogers–Lapwood 
(HRL) problem (Horton and Rogers 1945; Lapwood 1948).

The Darcy–Bénard eigenvalue problem is of fourth order. This coupled thermo-
mechanical problem is physically more complicated than the mathematically related 
fourth-order problem of freely vibrating elastic plates. The theory for fourth-order 
problems is not highly developed because the biharmonic operator does not separate 
in orthogonal coordinate systems. Analytical methods for the Darcy–Bénard problem 
are available when the homogeneous boundary conditions are compatible with normal 
modes, inducing separation of variables. The price to pay for obtaining separability is 
some kind of degeneracy for the eigenvalue problem.

Solvable degenerate problems dominate the literature and give a background for 
understanding non-separable problems. A subtle degeneracy was discovered by Lyubi-
mov (1975), finding two sets of eigenfunctions with coinciding critical Rayleigh num-
bers for two-dimensional (2D) porous cavities with conducting and impermeable walls. 
Nilsen and Storesletten (1990) calculated these thermomechanical eigenfunctions for 
a rectangular geometry, confirmed and extended by Rees and Lage (1996). Rees and 
Tyvand (2004) generalized the linear theory for 2D porous cavities with impermeable 
and conducting wall.

Mathematical difficulties arising from non-separability of the eigenvalue problem have 
a low priority in the literature. Tyvand and Storesletten (2018) showed that degeneracy is 
needed to obtain separable problems for vertical porous cylinders. Tyvand et  al. (2019) 
solved the onset problem for a 2D porous rectangle with boundary conditions that defy 
analytical solutions.

Our onset problem has an additional length parameter compared with the HRL prob-
lem. The eigenvalue problem defies analytical solutions because its eigenfunctions do not 
separate. The uniform horizontal porous layer of infinite horizontal extent is designed with 
abrupt switches between Dirichlet and Neumann conditions along the upper and lower 
boundaries. A spatially concentrated instability is surrounded by penetrative convection 
laterally, beyond the two central borderlines where the boundary conditions switch.

Convection onset penetrating vertically has been studied by various authors. Convec-
tion in a porous layer with unstable thermal stratification may penetrate into a neighboring 
stable layer. This phenomenon may occur when the saturating fluid (water) has a density 
maximum, see Straughan (2004). Internal heat sources/sinks may also induce vertically 
penetrative convection. The book by Nield and Bejan (1998) describes thermally driven 
natural convection with penetration into passive domains.

McKibbin (1986) started the investigation of convection instability which is penetra-
tive horizontally. He added physical realism for geothermal models by considering verti-
cal porous layers with different properties. He maintained the confinement between two 
horizontal planes of the HRL problem and found locally triggered instability, penetrating 
laterally into locally stable domains. Rees and Tyvand (2009) performed a similar study 
with periodically varying permeability. Their 2D analysis was extended to 3D by Rees and 
Barletta (2014).

Ahmad and Rees (2016) considered the Laplacian thermal fields in solid blocks sur-
rounding a porous box with convection onset. The two conducting blocks in their problem 
are similar to two surrounding isothermal domains where Darcy flow without buoyancy 
takes place. The Laplacian fields in the domains surrounding the unstable domain have 
passive spatial damping.
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These previous papers considered heterogeneity in the horizontal direction, triggering 
local convection penetrating into more stable surroundings. The present model is different, 
with a homogeneous porous layer of infinite horizontal extent. Only the variable Dirichlet 
or Neumann conditions along the upper and lower boundaries are responsible for the pen-
etrative convection. We will let a central domain of the layer have boundary conditions that 
trigger a local instability.

We will investigate how the onset criterion depends on the width of the unstable 
domain, and we will investigate the spatial decay of the thermomechanical field penetrating 
into the surrounding stable domains.

2 � Mathematical Formulation of the Designed Physical Model

The present model is designed for the purpose of developing a simple spatially localized 
marginal state of convection in a porous layer. We choose the simplest possible geometry 
for a Darcy–Bénard onset problem, which is a uniform horizontal porous layer of infinite 
horizontal extent. The convective instability is concentrated in a small spatial domain with-
out changing the simple geometry of a horizontal porous layer of unlimited extent. We 
will let the homogeneous thermomechanical boundary conditions change from Dirichlet to 
Neumann conditions at appropriate locations along the lower and upper boundaries of the 
porous layer. The marginal state of convection will then be a state of penetrative convec-
tion, with spatial decay as |x| → ∞.

The lower and upper boundaries of the horizontal porous layer are z = − h∕2 and 
z = h∕2 . The z axis is directed vertically upward, where g denotes the gravitational accel-
eration. The velocity vector � has Cartesian components (u, v, w). The temperature field is 
T(x, y, z, t), with t denoting time. There is an undisturbed motionless state with a uniform 
vertical temperature gradient. The gravitational acceleration is written in vector form as 
� . The porous medium is homogeneous and isotropic, with permeability K. The standard 
Darcy–Boussinesq equations for free thermal convection can be written

In these equations, p is the dynamic pressure, � is the coefficient of thermal expansion, 
� = �0 is the fluid density at the reference temperature T0 , � is the dynamic viscosity of the 
saturating fluid, cp is the specific heat at constant pressure, and �m is the thermal conduc-
tivity of the saturated porous medium. The subscript m refers to an average over the solid/
fluid mixture, while the subscript f refers to the saturating fluid alone.

A semi-infinite left-hand portion of the lower boundary is taken to be perfectly heat-
conducting and impermeable

(1)∇p +
�

K
� + �0� (T − T0)� = 0,

(2)∇ ⋅ � = 0,

(3)(�cp)m
�T

�t
+ (�cp)f � ⋅ ∇T = �m∇

2T .

(4)T = T0, w = 0, at z = −
h

2
, x < −

l

2
.
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where l is a length parameter that is defined below. The semi-infinite right-hand portion 
of the lower boundary is subject to a given heat flux, and with constant pressure (open 
boundary)

This dynamic constant-pressure condition implies that � × ∇p = 0 along a semi-infinite 
portion of the lower boundary z = − h∕2 , and the cross-product of Darcy’s law (1) implies 
this flow condition of zero tangential velocity. ΔT  is the temperature difference across the 
layer in its undisturbed state. T0 is a reference temperature.

In our designed boundary conditions, we introduce a horizontal displacement length 
l for applying the same types of boundary conditions at the upper boundary. The length 
l is the horizontal distance between two straight lines: (1) the horizontal line x = − l∕2 
where the boundary conditions switch from Dirichlet to Neumann type along the lower 
boundary. (2) The horizontal line x = l∕2 where the boundary conditions switch from 
Neumann to Dirichlet type along the upper boundary.

The semi-infinite right-hand portion of the displaced upper boundary is taken to be 
perfectly heat-conducting and impermeable

The semi-infinite right-hand portion of the displaced upper boundary is subject to a given 
heat flux, and with constant pressure (open boundary)

Thus, the boundary conditions for the portion x < −l∕2 of the lower plane z = − h∕2 are 
handpicked to be the same as the boundary conditions for the portion x > l∕2 of the upper 
plane z = h∕2 . The same is true for the semi-infinite portion x > −l∕2 of the lower plane 
and the portion x > l∕2 of the upper plane. This means that the whole configuration of the 
porous layer has an antisymmetry around the origin, which is a reason that we have placed 
the origin in the middle of the porous layer.

Our open-boundary condition of constant pressure along semi-infinite horizontal 
planes must agree with establishing an undisturbed state of rest with a linear tempera-
ture profile. A nonzero buoyancy force at these open boundaries may induce a basic 
vertical flow. Therefore, we assume a uniform fluid layer of small thickness � compared 
with the layer thickness h, below and below each open boundary. Each layer of sat-
urating fluid may itself be a porous layer of permeability much greater than K, next 
to an impermeable bottom. Mass balance forbids a vertical throughflow in the basic 
state. The fluid layers − 𝛿 < z + h∕2 < 0 below the porous medium and 0 < z − h∕2 < 𝛿 
above the porous medium serve one single purpose. This purpose is to prevent horizon-
tal pressure gradients from arising along the open portions of these boundaries. The 
rigid exterior horizontal planes confining these open boundaries ( z + h∕2 = − 𝛿, x < 0 
and z − h∕2 = 𝛿, x > 0 ) serve to block the basic vertical flow that might otherwise be 
present in a basic state of pure conduction with hydrostatic pressure. A perturbation 
velocity is allowed in order to maintain the requirement of constant pressure along an 
open boundary. The thin layers above and below an open (penetrative) boundary must 

(5)
𝜕T

𝜕z
= −

ΔT

h
, � × � = 0, at z = −

h

2
, x > −

l

2
.

(6)T = T0 − ΔT , w = 0, at z =
h

2
, x >

l

2
.

(7)
𝜕T

𝜕z
= −

ΔT

h
, � × � = 0, at z =

h

2
, x <

l

2
.
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be thick enough to serve as hydrostatic pressure reservoirs where pressure fluctuations 
are absorbed to prevent horizontal pressure gradients from arising.

In Fig. 1, we show two sketches of the physical model, where we omit the thin neighboring 
layers that guarantee for the realism of the open-boundary condition. The horizontal x, y plane 
is placed in the middle of the porous layer, with a vertical z axis. The mathematical symbols in 
Fig. 1 will be introduced and explained below.

2.1 � Dimensionless Equations

From now on, we work with dimensionless variables. We reformulate the mathematical prob-
lem in dimensionless form by means of the transformations

where �m = �m∕(�0cp)f  is the thermal diffusivity of the saturated porous medium. We 
denote the vertical unit vector by � , directed upward.

1

h
(x, y, z) → (x, y, z),

h

�m
(u, v,w) → (u, v,w), h∇ → ∇,

1

ΔT
(T − T0) → T ,

K

��m
(p − p0) → p,

(�cp)f�m

(�cp)mH
2
t → t,

Fig. 1   Definition sketches of a porous layer of unit thickness and of infinite horizontal extent. These are 
perspective sketches of perpendicular cuts through the physical model, showing the boundary conditions for 
the 3D eigenfunctions � and � at the lower and upper plane. The upper sketch represents the perturbation 
temperature � . The lower sketch represents the vector potential � . Mixed boundary conditions apply at the 
lower boundary z = 1∕2 and the upper boundary z = 1∕2 . Neumann conditions are marked in red, while 
Dirichlet conditions are marked in blue. The vertical z axis is directed in the direction opposite of gravity 
(g). The thermomechanical boundary conditions switch between the Dirichlet type and Neumann type in 
the two lines (x = − L∕2, z = − 1∕2) and (x = L∕2, z = 1∕2) , in terms of dimensionless length
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The dimensionless governing equations can then be written

The dimensionless boundary conditions at the lower boundary are

We give the corresponding conditions at the upper boundary

where we have introduced the dimensionless displacement length L = l∕h.
Here, the Rayleigh number R is defined as

2.2 � Basic Solution

The stationary basic solution of Eqs. (8)–(14) is given subscript “b”

This basic state of hydrostatic fluid has a linear temperature profile.

2.3 � Linearized Perturbation Equations

In our stability analysis, we disturb the basic state (16) with perturbed fields

where the perturbations �,�, p′ are functions of x, y, z and t. Linearizing Eqs. (8)–(10) with 
respect to perturbations and eliminating the pressure gives

(8)� + ∇p − R T� = 0.

(9)∇ ⋅ � = 0

(10)
�T

�t
+ � ⋅ ∇T = ∇2T .

(11)T = w = 0, at z = −
1

2
, x < −

L

2
,

(12)
𝜕T

𝜕z
= − 1, u = v = 0, at z = −

1

2
, x > −

L

2
.

(13)T = −1, w = 0, at z =
1

2
, x >

L

2
,

(14)
𝜕T

𝜕z
= − 1, u = v = 0, at z =

1

2
, x <

L

2
.

(15)R =
�0g�KΔTh

��m
.

(16)�b = 0, Tb = − z, pb = −
1

2
R z2.

(17)� = �b + �, T = Tb(z) + �, P = Pb(z) + p�.

(18)∇2w = R∇2
1
�,
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With vanishing vertical vorticity, one single scalar function � (x, y, z) represents the 3D 
thermomechanical vector field. The incompressible flow field is given by this poloidal vec-
tor potential as � = ∇ × (∇ × �� ) , where � is the vertical unit vector. The velocity compo-
nents are

where the horizontal Laplacian operator ∇2
1
= �2∕�x2 + �2∕�y2 has been introduced. From 

Eq. (18), it follows that the perturbation temperature is given by

Assuming a non-oscillatory marginal state, the heat Eq. (19) becomes

The boundary conditions at the lower boundary are

The conditions at the upper boundary are

The coupled eigenvalue problem for the dimensionless eigenfunctions � and � is already 
illustrated in Fig. 1 above. The upper sketch in Fig. 1 shows the mixed thermal boundary 
conditions, while the lower sketch shows the mixed conditions for the flow. In our designed 
physical model, the eigenfunctions � and � obey the same homogeneous boundary condi-
tions everywhere, either of Dirichlet type (with blue color markings) or of Neumann type 
(with red color markings). The lengths that we have introduced in Fig. 1 are dimensionless.

3 � The 3D Eigenvalue Problem Reduced to 2D in x and z

With infinite horizontal extent, the 3D solution includes a Fourier component with wave-
number k in the y direction, prescribing the eigenfunctions

(19)
��

�t
− w = ∇2�.

(20)(u, v,w) =

(
�2�

�x�z
,
�2�

�y�z
,−∇2

1
�

)
,

(21)� = −R−1∇2� .

(22)∇2
1
� = ∇2�.

(23)𝛩 = 𝛹 = 0, at z = −
1

2
, x <

L

2
,

(24)
𝜕𝛩

𝜕z
=

𝜕𝛹

𝜕z
= 0, at z = 0, z = −

1

2
, x >

L

2
.

(25)𝛩 = 𝛹 = 0, at z =
1

2
, x >

L

2
,

(26)
𝜕𝛩

𝜕z
=

𝜕𝛹

𝜕z
= 0, at z =

1

2
, x <

L

2
.

(27)� = �(x, z)eiky, � = �(x, z)eiky,
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where i denotes the imaginary unit. The 2D perturbation equations for the eigenfunctions 
�(x, z) and �(x, z) are

We will equip our 2D eigenvalue problem in the vertical xz-plane with boundary condi-
tions. The conditions at the lower boundary are

The conditions at the upper boundary are

3.1 � The 2D Eigenvalue Problem Where We Introduce a Streamfunction

We will work with a modified eigenfunction �(x, z) , which is the streamfunction in the x, z 
plane when k = 0 . It is defined by

The perturbation equations for the eigenfunctions �(x, z) and �(x, z) are

A 2D eigenvalue problem is formulated in the vertical xz-plane, to be equipped with 
boundary conditions. The conditions at the lower boundary are

(28)
(
∇2 − k2

)
� = −R �,

(29)
(
∇2 − k2

)
� =

(
�2

�x2
− k2

)
� .

(30)𝜃 = 𝜒 = 0, at z = −
1

2
, x < −

L

2
,

(31)
𝜕𝜃

𝜕z
=

𝜕𝜒

𝜕z
= 0, at z = −

1

2
, x > −

L

2

(32)𝜃 = 𝜒 = 0, at z =
1

2
, x >

L

2
,

(33)
𝜕𝜃

𝜕z
=

𝜕𝜒

𝜕z
= 0, at z =

1

2
, x <

L

2
.

(34)� =
��

�x
.

(35)(∇2 − k2)� = −R
��

�x
,

(36)(∇2 − k2)
��

�x
=

(
�2

�x2
− k2

)
� .

(37)𝜃 = 𝜓 = 0, at z = −
1

2
, x < −

L

2
,

(38)
𝜕𝜃

𝜕z
=

𝜕𝜓

𝜕z
= 0, z = −

1

2
, x > −

L

2
,



Laterally Penetrative Onset of Convection in a Horizontal Porous…

1 3

The conditions at the upper boundary are

Figure 2 illustrates the 2D eigenvalue problem valid for the 3D physical model sketched in 
Fig. 1. The upper sketch introduces the mixed thermal conditions and the differential equa-
tion for � . The lower sketch shows the corresponding differential equation and boundary 
conditions for � . As in Fig. 1, the Dirichlet conditions are marked in blue, with the Neu-
mann conditions in red. Figure 2 gives a 2D sketch showing the rectangular box defined 
by |x| < |L|∕2 , designed for triggering local convection, intruding the two neighboring 
domains |x| > |L|∕2 as penetrative convection. The designed boundary conditions have 
antisymmetry around the origin.

The 3D temperature field is

with the 3D velocity components

(39)𝜃 = 𝜓 = 0, at z =
1

2
, x >

L

2
,

(40)
𝜕𝜃

𝜕z
=

𝜕𝜓

𝜕z
= 0, at z = 1, z =

1

2
, x <

L

2
.

(41)� = eiky�(x, z),

(42)u = eiky
��

�z
(x, z),

(43)v = ikeiky ∫
��

�z
(x, z)dx,

Fig. 2   Definition sketches of a 
vertical cross section for a porous 
layer of unit thickness and of 
infinite horizontal extent. The 3D 
eigenvalue problem is given a 
dimensionless 2D formulation in 
the x, z plane, where the perpen-
dicular y direction is represented 
by the wavenumber k. Mixed 
boundary conditions apply at the 
lower boundary z = 1∕2 and the 
upper boundary z = 1∕2 . The 
thermomechanical boundary 
conditions switch between the 
Dirichlet type and Neumann type 
in the two points with dimension-
less positions (− L∕2,− 1∕2) and 
(L/2, 1/2)
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with real parts representing physical quantities.

4 � Two‑Dimensional Convection (k = 0)

We will first study 2D convection where k = 0 , before looking for the possibility of an even 
lower Rayleigh number when k is nonzero. The 2D marginal states include streamline pat-
terns, not available in 3D.

We will now present some numerical results for the marginal state of 2D convection. 
Figure 3 shows the critical Rayleigh number as a function of the displacement length L for 
k = 0.

In Fig.  4 we display the 2D thermomechanical eigenfunctions for gradually reduced 
displacement lengths: L = 2 , L = 1 , L = 0 , L = − 1 and L = − 2 . In all these cases, we 
have applied a numerical truncation. Dirichlet and/or Neumann conditions are applied at 
the lateral truncation boundaries x = ±X , since the numerical method does not handle the 
assumed infinite extent ( X → ∞ ). We have chosen X = 5 in Fig.  4, where the complete 
computational domain −X < x < X is displayed.

We note the concentrated and closed streamlines near the two points 
(x, z) = (−L∕2,− 1∕2) and (x, z) = (L∕2, 1∕2) where the boundary conditions change 
abruptly, indicating singularities in the eigenfunctions. The thermal cell walls closest to 
the unstable domain have curvature, revealing that the temperature perturbation is non-
separable in space. Only one thermal cell wall on each side has visible curvature, as the 
neighboring cell walls for the streamlines are almost vertical.

The situation where L ≤ 0 is different, because the central domain around x = 0 will be 
stabilized. The instability will be triggered for |x| > |L|∕2 , and the eigenfunctions will not 
vanish at infinity. The artificial sidewalls of numerical truncation x = ±X will then overrule 
the eigenfunctions by setting their phase in the far field, and the critical Rayleigh number will 
be exactly Rc = �2 for all values L ≤ 0 when the horizontal porous layer extends to infinity. 
We include two different sets of boundary conditions for the plots with L ≤ 0 in Fig. 4, denot-
ing the applied thermal condition in each case. When we apply a Dirichlet condition for � at 
the truncation walls x = ±X , the conditions for � are of Neumann type. The opposite case of 
a thermal Neumann condition is accompanied by a Dirichlet condition for the streamfunction, 
corresponding to normal-mode-type separable eigenfunctions in the far field. The numerical 

(44)w = eiky
(
k2 ∫ �(x, z)dx −

��

�x
(x, z)

)
,

Fig. 3   Numerically calculated 
normalized Rayleigh numbers 
R∕�2 as a function of L for 2D 
convection with k = 0 . The ten 
lowest modes of marginal stabil-
ity are represented. The onset 
modes are numbered from 1 to 
10 and classified in increasing 
order according to their Rayleigh 
numbers (ranked according to 
the numerical solution at each 
displacement length)
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values of Rc are slightly greater than �2 when L ≤ 0 , for several reasons: (1) The stabiliz-
ing influence from the central domain around x = 0 . (2) The applied truncation length X = 5 
appears as small and quite restrictive for eigenfunctions that do not decay in space. (3) The 
options of Dirichlet- or Neumann-type thermal conditions in Fig. 4 cannot be expected to hit 
the lowest eigenfunctions. There is only one exception in Fig. 4, where the Rayleigh number 
is R = 9.9182 , reasonably close to the exact value Rc = �2 = 9.8696 for L ≤ 0 with infinite 
horizontal extent. In this case, the truncation walls x = ±X obey a Neumann condition, pro-
ducing thermal cells of almost normal-mode shape with wavelength 4, even with an abrupt 
sign change through x = 0 . The other case where the truncation walls obey a Dirichlet condi-
tion produces a broader and clearly non-separable thermal cell around x = 0.

4.1 � The 2D Penetrative Eigenfunctions for |x| > |L|∕2

The marginally stable 2D eigenfunctions (with k = 0 ) will decay spatially into the domains 
of lateral penetration |x| > |L|∕2 (when L > 0 ). In our asymptotic analysis of this decay, 

L = 2 R = 1.6275

L = 1 R = 4.3308

L = 0 R = 10.1690

L = 0 R = 9.9182

L = -1 R = 10.2500

L = -1 R = 10.1150

L = -2 R = 10.3850

z

-4-5 4 53210-1-2-3 x

D
irichlet

D
irichlet

N
eum

ann
N
eum

ann
N
eum

ann
N
eum

ann
N
eum

ann

Fig. 4   The lowest 2D eigenfunctions (with k = 0 ) for the displacement lengths L = 2 , L = 1 , L = 0 , L = 0 , 
L = − 1 , L = − 2 . The thermal boundary condition at the numerical truncation walls x = ±X is shown in 
the figure. When L ≤ 0 , we include both the Dirichlet condition and the Neumann condition. The truncation 
length is chosen as X = 5
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we introduce a complex wavenumber �(L) = �r + i�i . It represents these locally stable 
domains intruded by penetrative flow from the marginally stable domain |x| < |L|∕2 . A 
known Rayleigh number R = Rc is assumed for the marginal stability, where Rc < 𝜋2 when 
L > 0 . We know the form of the local 2D eigenfunction, when x ≫ L∕2

Inserting k = 0 in Eqs. (35)–(36) and eliminating � give the governing equation

where the penetrative eigenfunction (45) produces the relationship

which may be called the spatial dispersion relation of penetrative convection. The eigen-
value is the complex wavenumber � = �r + i�i , while R has the role of a fixed parameter. 
This spatial dispersion relation has two solution branches

The minus sign leads to the two eigenvalues relevant for x > L∕2

The penetrative temperature field is

asymptotically valid as x ≫ L∕2 , and the real part represents physical temperature. The 
amplitude A is complex to account for a free phase angle. By Eq. (35) the streamfunction 
gets a similar form

with a complex amplitude B. The vorticity Eq. (35) reduces to

with k = 0 . Equations (50)–(51) combine with the spatial dispersion relation (47) to form 
the relationship between the penetrative eigenfunctions

in the asymptotic limit x ≫ L∕2 . We note the phase shift of a quarter of a wavelength 
between � and � , well known from the HRL problem (Horton and Rogers 1945; Lapwood 
1948).
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The spatial decay rate is 
√
�2 − R∕2 =

√
Rlocal − R∕2 , where Rlocal is the local Ray-

leigh critical number in the stable regions of penetration, while R is the smaller global 
Rayleigh number of externally triggered marginal stability. The spatial decay rate is 
weaker, the closer the globally marginal Rayleigh number is to the critical local Ray-
leigh number in the penetrated domain.

The penetrative eigenfunctions (50)–(51) have a dimensionless wavelength � with 
asymptotic value � = 4�∕

√
R , in agreement with the wavelength 4 that would emerge 

if there had been local convection instead of penetrative convection. The wavelength 
starts at � = 4 with L = 0 , where the critical Rayleigh number has its highest possible 
value R = �2 . Note that there is no physical wavelength in the domain |x| < L∕2 where 
the convection is triggered since the locally preferred mode is a uniform upwelling (or 
downwelling) flow, known from Nield (1968) as a limit case of zero Rayleigh number 
with zero wavenumber.

This limit R → 0 represents L → ∞ in the present model. The spatial decay of the pen-
etrative eigenfunctions is stronger the wider the central domain L. The formulas (50)–(51) 
give the maximal decay factor exp(−�|x|) , in the limit of large L, where R is close to zero.

The asymptotic factor of decay for a marginal onset mode over its penetrative wave-
length � is given by 

√
�2 − R�∕2 = 2�

√
Rlocal∕R − 1 , where the local critical Rayleigh 

number Rlocal is �2 for the present choice of boundary conditions.
In Tables 1 and 2, we check the validity of this asymptotic theory of penetrative con-

vection, by comparison with our numerical computations. We consider only the case 
L = 0.5 , with the most unstable mode of 2D convection ( k = 0) . Admittedly, 3D con-
vection is preferred in this case, but we had to choose a relatively small value of L for 
convergence in the tables, avoiding too strong spatial decay.

Table  1 shows successive cell wall positions x = xm for the penetrative flow cells, 
with the numerically evaluated thermal eigenfunction at each flow cell wall. The decay 
factor over half a wavelength �m∕2 = xm+1 − xm is computed and compared with the 
asymptotic formula. The numerical half-wavelength is compared with its asymptotic 
value. Table 2 shows successive cell wall positions x = xn for the thermal cells, with the 
numerically evaluated flow eigenfunction at each flow cell wall. The agreement with 
the asymptotic theory is excellent, apart from the first half-wavelength near the central 
domain of marginal stability. We observe fluctuations in the numerical eigenfunctions, 
as their values get very small for large x.

Table 1   Cell wall positions x = x
m
 for successive penetrative flow cells, defined by �(x

m
, y, 0) = 0

Numerical values of �m = �(xm, y, 0) are given, with their decay factors |�m∕�m+1| and half-wavelengths 
xm+1 − xm . The asymptotic formulas for spatial decay and wavelength are evaluated. The chosen displace-
ment length is L = 0.5 , and we consider the preferred mode of 2D convection ( k = 0 ), with the computa-
tional domain −X < x < X chosen as X = 20 . The Rayleigh number of marginal stability is R = 7.904

m x
m

�
m

|�
m
∕�

m+1| e
(�

m
∕4)

√
�2−R x

m+1 − x
m �∕2 = 2�∕

√
R

1 0.2426 4.6108 3.664 4.093 2.0104 2.2349
2 2.2530 − 1.2585 4.826 4.789 2.2344 2.2349
3 4.4874 0.2608 4.759 4.793 2.2356 2.2349
4 6.7230 − 0.0548 4.81 4.794 2.2360 2.2349
5 8.9590 0.0114 4.75 4.791 2.2350 2.2349
6 11.1940 − 0.0024 4.82 4.781 2.2320 2.2349
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5 � Three‑Dimensional Convection

We will take into account the possibility that 3D disturbances can be more unstable than 2D 
disturbances. We will search for the preferred 3D mode of convection, where the wavenumber 
k = kc(L) is selected to determine the minimum Rayleigh number R = Rc(L).

Our numerical results are obtained by the commercial software Comsol Multiphysics, 
where we work with two end walls x = ±X where we specify boundary conditions either of 
Dirichlet or Neumann type. In the special case L = 0 , the eigenfunctions do not decay in the 
far field, where they have sinusoidal variations with x. The choice of X will then set the phases 
for the eigenfunctions, which would be undetermined for an unlimited horizontal domain. 
Once L is greater than zero, the eigenfunctions will decay with increasing |x| , as we have dis-
cussed analytically above, for the 2D case.

In Fig. 5 we investigate marginal stability in 3D with a given wavenumber k = �∕2 in the 
y direction. This value is equal to the preferred wavenumber for local convection in the stable 
domains of penetration. When L ≫ 1 , we know from Nield (1968) that the preferred eigen-
function in the x, z plane represents a uniform vertical flow, and the 3D eigenfunctions will 
have the asymptotic form

(54)� = Aeiky, � = Beiky, L → ∞,

Table 2   Cell wall positions x = x
n
 for successive penetrative thermal cells, defined by �(x

n
, y, 0) = 0

Numerical values of �m = (xm, y, 0) are given, with their decay factors |�n∕�n+1| and half-wavelengths 
xn+1 − xn . The asymptotic formulas for spatial decay and wavelength are evaluated. The chosen displace-
ment length is L = 0.5 , and we consider the preferred mode of 2D convection ( k = 0 ), with the computa-
tional domain −X < x < X chosen as X = 20 . The Rayleigh number of marginal stability is R = 7.904

n x
n

�
n

|�
n
∕�

n+1| e
(�

n
∕4)

√
�2−R x

n+1 − x
n �∕2 = 2�∕

√
R

1 1.1444 − 7.6440 4.728 4.760 2.2258 2.2349
2 3.3702 1.6169 4.791 4.790 2.2348 2.2349
3 5.6050 − 0.3375 4.794 4.794 2.2358 2.2349
4 7.8408 0.0704 4.772 4.788 2.2342 2.2349
5 10.0750 − 0.01475 4.76 4.794 2.2360 2.2349
6 12.3110 0.00310 4.82 4.792 2.2353 2.2349

Fig. 5   Numerically calculated 
normalized Rayleigh numbers 
R∕�2 as a function of L for 3D 
convection with k = �∕2 . The 
truncation length is chosen as 
X = 10 . The onset modes are 
numbered from 1 to 10 and 
classified in increasing order 
according to their Rayleigh 
numbers (ranked according to 
the numerical solution at each 
displacement length)
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where A and B are complex amplitudes, taking care of phase shift between these eigen-
functions. Inserting these eigenfunctions into the governing Eqs. (35) and (36) gives the 
asymptotic onset criterion

with the special case R(�∕2) = �2∕4 shown in Fig. 5, where we have added the preferred 
mode for two cases with smaller wavenumbers, k = �∕2 (dashed curve) and k = 0 (the 2D 
case, dotted). There is a clear trend that 2D modes are preferred, with possible exceptions 
only when 0 < L < 1 . These plots confirm the asymptotic limit formula (55). Compar-
ing Figs. 3 and 5 indicates that 2D convection is usually preferred at the expense of 3D 
convection.

We will search for possible exceptional cases where a 3D onset mode with k ≠ 0 may 
be preferred. Figure 6 is calculated for that purpose, with the small displacement length 
L = 0.5 giving a narrow porous domain with Neumann conditions above and below. The 
wavenumber k in the perpendicular y direction is given increasing values, where we 
observe how the preferred cell structures in the x, z broaden with increasing k. Figure 6 
shows that the 2D case is not preferred, as there is a slightly smaller Rayleigh number 
for k = 0.5 . Figure 6 is calculated with a truncation length X = 5 , and we note how the 
highest displayed value k = 4 gives a misleading solution with perpendicular isotherms 
at the truncation boundaries x = ±X where a thermal Neumann condition is applied.

(55)R(k) = k2, L → ∞,

z

-4-5 4 53210-1-2-3 x

k = 0 R = 7.9836

k = 0.25 R = 7.9757

k = 1 R = 8.0360

k = 2 R = 9.8092

k = 4 R = 21.0790

k = 0.5 R = 7.9612

N
eum

ann
N
eum

ann
N
eum

ann
N
eum

ann
N
eum

ann
N
eum

ann

Fig. 6   The lowest 3D eigenfunctions (with L = 0.5 ) for different values of k. The chosen thermal boundary 
condition at the numerical truncation wall is of Neumann type. The truncation length is chosen as X = 5
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Figure  7 shows the 3D dependency of the Rayleigh number for the case L = 0 , with 
no locally unstable domain and no penetrative convection. The convection cells are spa-
tially periodic in the far field, and the critical Rayleigh number is Rc = �2 , dictated by the 
far field with its critical wavenumber �∕2 . The disturbance with k = �∕2 in the y direc-
tion seems to represent the global minimum for the Rayleigh number in Fig. 7, yet this is 
an artifact imposed by the truncation boundaries x = ±X where the wall conditions set 
a phase for each eigenfunction which will not fit exactly with the global minimum when 
k = 0 . We present two versions of Fig.  7 to show how these phase effects influence the 
onset problem when the Dirichlet/Neumann conditions for the two eigenfunctions are 
interchanged.

A finite domain L = 0.5 with local instability is shown in Fig.  8. This case is more 
interesting because it may expose genuine 3D effects for the onset of penetrative convec-
tion, but the disadvantage is that we do not have any analytical methods for proving that 
the small 3D effects that we find are genuine. Figure 8 shows Rayleigh numbers R(k)∕�2 
for the onset of convection, where we calculate a critical wavenumber kc = 0.58324 with 

Fig. 7   Rayleigh number (R∕�2) 
as a function of k2 for 3D convec-
tion with L = 0 . The ten lowest 
eigenfunctions are represented. 
In the upper plot, a thermal Neu-
mann condition is applied at the 
truncation walls x = ±X , where 
X = 10 . The lower plot applies 
a thermal Dirichlet condition. 
The dots represent the global 
minimum R = �2 occurring for 
3D convection with k = �∕2

Fig. 8   Rayleigh number (R∕�2) 
as a function of k2 for 3D convec-
tion with L = 0.5 . The ten lowest 
eigenfunctions are represented. 
Thermal Neumann condition is 
applied at the truncation walls 
x = ±X , where X = 10
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truncation length X = 5 . Its corresponding Rayleigh number is R(kc)∕�2 = 0.80287 , which 
is about 0.25 per cent below the value R(0)∕�2 = 0.80491 according to 2D theory. Due to 
the short truncation length, these results are uncertain, so we have recalculated them with 
a ten times higher truncation length X = 50 , where we found R(kc)∕�2 = 0.800795 and 
R(0)∕�2 = 0.802641 . This gives the same trend of slight preference for a 3D onset mode of 
convection. Figure 8 shows only one mode much more unstable than the higher modes, and 
all of the higher modes repeat the preference of a 3D convection mode where k = �∕2 and 
the Rayleigh number is R = �2.

6 � Summary and Conclusions

In this paper, a simple physical model is introduced for the convection onset in a homoge-
neous and isotropic porous layer of infinite horizontal extent, heated uniformly from below. 
We have investigated the effects of switching the thermomechanical boundary conditions 
from Dirichlet to Neumann type at one location at the upper boundary, and oppositely at 
one location at the lower boundary, generating a transition zone with displacement length L 
between the two locations of switching boundary conditions. When L is positive, a domain 
of local convection emerges within this transition zone where the Neumann boundary con-
dition allows an almost uniform vertical flow, with laterally penetrative convection in the 
more stable neighboring domains. The possible types of local convection have exact ana-
lytical solutions, with critical Rayleigh numbers either zero, �2 or 4�2.

The critical Rayleigh number as a function of L has been determined numerically, 
obtained with a finite numerical truncation width that is questionable when L is very small 
or zero. The general solution is 3D and with a wavenumber k in the y direction along the 
borderlines where the boundary conditions switch between Dirichlet type and Neumann 
type. This orthogonal wavenumber k transforms the 3D eigenvalue problem into a 2D 
problem in the xz-plane. The numerical results show that the marginal mode of convection 
onset is mostly 2D. A weak preference for 3D convection is found when L is smaller than 
one, but its critical Rayleigh number is only slightly lower than the Rayleigh number for 
2D convection. The case L = 0 has no other length scale than the unit depth, with critical 
Rayleigh number R = �2 for unlimited horizontal extent, known from Nield (1968).

We have investigated analytically the spatial dependency of the penetrative thermo-
mechanical eigenfunctions, which decay exponentially as they intrude the locally stable 
domains. The dispersion relation for penetrative convection determines a complex wave-
number in such stable domains. The real part of the complex wavenumber settles the peri-
odic cell structure, and these asymptotic predictions agree well with the relevant numerical 
results. The imaginary part of the complex wavenumber represents spatial decay of the 
intruding eigenfunctions, and it has also been confirmed by our numerical results for 2D 
convection.

The present theory for the penetrative onset of convection can be extended to the 
other sets of boundary conditions studied by Nield (1968), but the spatial dispersion 
relations must be evaluated numerically. A result for penetrative convection is the 
asymptotic spatial decay rate 

√
Rlocal − R∕2 , according to Eq. (50), and we expect simi-

lar behavior for more complicated eigenfunctions. The penetrative eigenfunctions will 
generally be separable in the far field, while they are non-separable in the near field. 
Our numerical results indicate that weak local singularities exist at the boundary points 
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where the boundary conditions switch between the Dirichlet type and the Neumann 
type. Such singularities seem not to influence the critical Rayleigh number.

The previous work on penetrative convection onset is mainly concerned with ver-
tical penetration from unstable domains into stably stratified domains. Our model 
deals exclusively with horizontal sideways (lateral) penetration from marginally stable 
domains into locally stable domains. The phenomena of penetrative convection are rich, 
so we chose to design a theoretical model with as few physical parameters as possible. 
The model is simple physically, but the eigenvalue problem is complicated with no ana-
lytical solutions available since the separation of variables cannot be used. From Nield 
(1968) we know the simple limit case of local convection with zero Rayleigh number 
and zero wavenumber at marginal stability. Higher modes with finite wavenumber and 
finite Rayleigh number exist for local convection (Nield 1968), but our numerical results 
show that they will never be triggered. Thus, the finite Rayleigh number for finite gap 
width of the locally unstable domain will always be set by the neighboring domains of 
penetration. It also means that the spatial phase angle in the surrounding penetrative 
convection cells is indirectly set by these local domains themselves and not exported 
from the locally unstable domain which has uniform upwelling (or downwelling) with 
no sign change.

A physically simplifying element in the present theory is that the tendency of uni-
form upwelling/downwelling in the unstable zone prevents phase effects from originat-
ing there. Phase effects from recirculating cells in the unstable zone will give a more 
complicated interaction with the surroundings. We have not discussed the vortex struc-
tures with short length scale that appear in the numerical solutions near the points 
where the boundary conditions switch between Neumann type and Dirichlet type, since 
the solution is probably singular there, and the numerical results will then only repre-
sent the outer solution in a matched asymptotic expansion. Finite-amplitude convection 
with lateral penetration is a challenging topic for follow-up research.
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