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A B S T R A C T

The main aim of the current study was to compare the accuracy of selection for muscle content of fat and the
health-promoting omega-3 fatty acids EPA and DHA in Atlantic salmon, by varying the sources of genetic in-
formation used in the estimation of breeding values. The following genetic information sources were compared:
pedigree, SNP-chip markers and allele-specific expression markers.

The results showed that differences between information sources were in general small, and different genetic
information performed best for different traits. SNP-chip performed best for DHA, and pedigree performed best
for EPA.

Knowledge from gene expression analysis of a few individuals can be utilized to select a small panel of
markers that perform relatively well. Genetic markers of allele-specific expression were able to capture a lot of
genetic variation for DHA, but did not give significantly higher accuracies when combined with SNP-chip or
pedigree information.

The cross-validation accuracies for selection for DHA and EPA were moderate and offer possibilities for
selection for these traits, especially if one extends the reference data set to a much bigger population, with more
sibs per selection candidate.

1. Background

Atlantic salmon (Salmo salar L.) is an important farmed fish species,
known for its high content of the health-promoting long-chain poly-
unsaturated omega-3 fatty acids (n-3 LC-PUFA) eicosapentaenoic (EPA;
20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). The replacement of
fish oil and fishmeal with plant ingredients in the diet of farmed
Atlantic salmon the last few decades has resulted in reduced levels of
EPA and DHA in the fish fillet (Sprague et al., 2016; Ytrestoyl et al.,
2015). Quantitative genetic analyses have demonstrated the potential
of selective breeding to increase n-3 LC-PUFA levels in salmon muscle
(Horn et al., 2018; Leaver et al., 2011). Muscle content of EPA and DHA
appear to be genetically different traits, with heritability of 0.09 and
0.26, respectively (Horn et al., 2018).

Selective breeding programs have historically been based on best
linear unbiased prediction (BLUP) of individual breeding values that
use pedigree-based relationship matrices. Genomic selection (GS) is a
method that uses DNA marker-based relationship matrices as the

genetic information to predict the breeding value of all genotyped in-
dividuals (Meuwissen et al., 2001). The GS methodology is of particular
relevance for traits that cannot be measured directly on selection can-
didates, such as muscle EPA and DHA content, because it allows pre-
diction of individual breeding values for non-phenotyped individuals.
GS has been shown to increase the accuracy of breeding values for
several traits in salmonids compared to conventional selection based on
pedigree data (Bangera et al., 2017; Tsai et al., 2016; Yoshida et al.,
2018). GS may be performed using several different sources of genetic
information, where dense SNP-chip genotypes are the most common.

An alternative source of genetic information is markers of variation
in gene expression. Variation in gene expression has the potential to
contribute significantly to phenotypic variation (Pritchard et al., 2006;
Wray et al., 2003). One technique to identify this variation is to screen
for allele-specific expression (ASE) – unequal expression of the two
alleles of a gene, caused by cis-regulatory elements (Yan et al., 2002).
ASE markers are more closely linked to causative loci affecting traits
than random markers, and can potentially be applied in selection
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programs. ASE is widespread within a large number of species, and ASE
genes have been found related to complex, economically important
traits in chicken, pigs and cattle (Cheng et al., 2015; Muráni et al.,
2009; Olbromski et al., 2013). Selection using ASE SNPs reduced dis-
ease incidence after one generation of selection in chicken (Cheng et al.,
2015). ASE markers could therefore potentially be useful in selection
for EPA and DHA in salmon.

The main aim of the current study was to compare the accuracy of
selection for muscle content of EPA, DHA and fat in Atlantic salmon, by
varying the sources of genetic information used in the estimation of
breeding values.

2. Materials and methods

2.1. Fish population and recordings

The 563 fish studied consisted of 174 full-sib families from 92 sires
and 174 dams. All fish originated from year-class 2014 of the Atlantic
salmon breeding population of SalmoBreed AS. Four generations of
pedigree information on direct ancestors of the fish were available.
Pedigree was tracked by PIT-tagging. The fish were transferred to sea at
a mean weight of 0.1 kg, and slaughtered approximately 12 months
later, at a mean weight of 3.6 kg. The fish were fed a commercial
broodstock feed from Skretting (https://www.skretting.com/en/
products/atlantic-salmon/?lifephase=474980) with a high fish oil
content, and were fasted 13–14 days prior to slaughter. All fish were
reared under the same conditions.

At slaughter, sex was determined by visual inspection of the gonads,
body weight was recorded, and skeletal muscle samples for lipid and
fatty acid analysis taken from the Norwegian Quality Cut were col-
lected, frozen and stored at −20 °C.

2.2. Muscle fat and fatty acid analysis

The traits analyzed in this study were muscle EPA and DHA content,
and total muscle fat (MFAT). EPA and DHA content was expressed as a
percentage of the total amount of fatty acids in the sampled muscle
tissue, and muscle fat (MFAT) expressed as total lipid percentage in the
sampled muscle tissue.

Muscle fat content was measured by extracting total lipids from
homogenized skeletal muscle samples of individual fish, according to
the Folch method (Folch et al., 1957). Using one milliliter from the
chloroform-methanol phase, fatty acid composition of total lipids was
analyzed following the method described by Mason and Waller (1964).
The extract was dried briefly under nitrogen gas and residual lipid
extract was trans-methylated overnight with 2′,2′-dimethoxypropane,
methanolic-HCl, and benzene at room temperature. The methyl esters
formed were separated in a gas chromatograph (Hewlett Packard 6890;
HP, Wilmington, DE, USA) with a split injector, using an SGE BPX70
capillary column (length 60 m, internal diameter 0.25 mm, and film
thickness 0.25 μm; SGE Analytical Science, Milton Keynes, UK) and a
flame ionization detector. The results were analyzed using HP Chem
Station software. The carrier gas was helium, and the injector and de-
tector temperatures were both 270 °C. The oven temperature was raised
from 50 to 170 °C at the rate of 4 °C / min, and then raised to 200 °C at a
rate of 0.5 °C / min and finally to 240 °C at 10 °C / min. Individual fatty
acid methyl esters were identified by reference to well-characterized
standards.

2.3. Genotyping

The 563 fish studied were genotyped using a customized 57 K axiom
Affymetrix SNP Genotyping Array (NOFSAL02). From the initial 57 K
SNPs, we retained those with call rate> 0.8, minor allele fre-
quencies> 0.05, and Hardy-Weinberg equilibrium correlation p-
value> .001. A total of 49,726 SNPs passed quality control (QC)

filtering and were used to construct the genomic relationship matrix (G-
matrix) GSNPCHIP (see section Genomic relationship matrices).

2.4. Allele specific expression

ASE is unequal expression of the two alleles of a gene and indicates
the presence of one or more variants that act in cis to affect the ex-
pression level of the gene (Yan et al., 2002). We identified SNPs on the
NOFSAL02 SNP-chip located within genes showing ASE by using RNA-
seq data on 59 of the 563 fish. The methods and fish for the RNA-seq
data is described in Horn et al. (2019). First, genes exhibiting ASE for
the traits EPA and DHA were identified by selecting all genes whose
expression was identified as associated with EPA and/or DHA content
in muscle and/or liver in Horn et al. (2019). This resulted in 6194 genes
detected as trait-associated (TA) at a nominal probability-value (p-
value) of 0.10. Second, heterozygote individuals for the TA genes were
identified among the 59 fish with RNA-seq data using the Freebayes
software (https://github.com/ekg/freebayes). Third, the relative ex-
pression levels of the reference and the alternative allele were com-
pared by counting how many times the heterozygous individuals had
the alternative allele more often expressed than the reference allele.
This number was compared to the Binomial distribution with p = .5 as
a null-hypothesis distribution to determine statistical significance in a
one-sided-test for overexpression of the alternative allele at a p-value of
0.001. A one-sided statistical test was performed because we observed a
general tendency for the reference allele to be over-expressed (possibly
because the reads with the reference allele are more likely to align with
the reference genome than reads with alternative alleles). This statis-
tical test resulted in a total of 537 genes with significant allele specific
expressions. Within the SNP-chip we found 395 SNPs within these 537
genes, which were used to construct a genomic relationship matrix,
GASE.

In order to compare this method to a random set of markers, 400
random markers were sampled from the SNP-chip, and a genomic re-
lationship matrix was constructed based on these; GRANDOM.

2.5. Statistical analyses

The different models compared in the current study differed solely
with respect to their specification of the relationship matrix that was
fitted:

- PED: Classical pedigree-based analysis with a numerator relation-
ship matrix (A).

- SNPCHIP: G-matrix based on ~50,000 QC genome-wide SNP mar-
kers (GSNPCHIP).

- ASE: G-matrix based on 395 markers identified in the allele specific
expression analysis (GASE).

- RANDOM: G-matrix based on 400 randomly selected markers
(GRANDOM).

- ASE + PED: Fitting both the A and the GASE relationship matrix.
- ASE + SNPCHIP: Fitting both the GASE and GSNPCHIP matrices.

2.5.1. Genomic relationship matrices
The G-matrices were constructed using the GCTA software, fol-

lowing the method by Yang et al. (2011), using the following equation
to estimate the genetic relationship between individuals j and k:

∑=
− −

−=
G

N
x p x p

p p
1 ( 2 )( 2 )

2 (1 )jk i

N ij i ik i

i i
1

where xij is the number of copies of the reference allele for the ith SNP of
the jth individual, xik is the number of copies of the reference allele for
the ith SNP of the kth individual, and pi is the frequency of the reference
allele, estimated from the observed allele frequencies in the 563 sam-
ples.
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In order to stabilize the relationship matrix (make it invertable), a
small value (0.05) was added to the diagonal, in accordance with Forni
et al. (2011).

The following G-matrices were constructed: GSNPCHIP, GASE and
GRANDOM.

2.5.2. Breeding value estimation
The following linear mixed model was applied for the estimation of

breeding values:

= + + + + +y μ X b X b Zu Zu e( )1 1 2 2 1 2

where y is a vector of the phenotype (EPA, DHA or MFAT content), μ is
the overall mean, b1 is the fixed effect of body weight as a covariable, b2
is a vector of fixed effect of sex (Horn et al., 2018), X1 and X2 are in-
cidence matrices for the effects contained in b1 and b2, u1 is a vector of
additive genetic effects distributed as u1~N(0,Gσu1

2) (or u1~N(0,Aσu1
2)

in case of PED), where σu1
2 is the additive genetic variance, G is the

genomic relationship matrix, and A is the pedigree relationship matrix;
Z is the corresponding incidence matrix to additive genetic effects, and
e is the vector of random residual effects with e~N(0, Iσe2). In models
where two relationship matrices are fitted, the additive genetic effect of
the second relationship matrix is included (Zu2) with distribution u2~N
(0,G2σu2

2), where G2 is the second genomic relationship matrix, and
σu2

2is its associated variance component. Variance components and
breeding values were estimated by ASReml 4.0 (Gilmour et al., 2015).
Estimated breeding values (EBV) were obtained as = +EBV u u(1 2 ),
where ^ denotes estimates of the effects.

2.5.3. Selection accuracy
Selection accuracies of the different models were assessed through

predictive ability, using a cross-validation scheme by randomly
masking the phenotype of one of the siblings in every full-sib family
consisting of more than three full-sibs. As 40 of the 174 families were
represented by one or two individuals only, this resulted in 87 valida-
tion and 476 training individuals.

The mean selection accuracy (Acc) of 100 replicates was computed
as:

= √Acc r(EBV , ŷ)/ hv
2

where r represents the correlation between EBVv and ŷ, EBVv represents
breeding values for validation individuals estimated using the reference
data, ŷ is y adjusted for fixed effects by calculating
ŷ = EBVa + residual, with EBVa denoting the pedigree based estimates
of breeding values using all data, and h2 is heritability estimates cal-
culated as the ratio of additive genetic (σ2A) to total phenotypic (σ2P)
variance (h2 = σ2A/σ2P) using the pedigree based estimates of the var-
iance components using all data.

For each of the 100 replicates, a data subset was created. The same
100 data subsets were used for estimating accuracy for all methods.
Thus, we obtained accuracy-estimates 1 to 100 for each method (for
data subset 1 to 100). To test if the accuracy-estimates for two methods
were significantly different from each other we compared the correla-
tions between EBV and masked phenotypes for each of the 100 re-
plicated sub data sets. We counted the number of replicates in which
one method yielded a higher correlation. Next, this number was com-
pared to a binomial distribution with null hypothesis H0 of both
methods being equally good (i.e. expected frequency was 0.5). This
yielded a one-tail p-value. The two-tail significance value was obtained
by doubling the one-tail p-value, because the expected proportion was
50%. Differences between the two models were considered significant if
the two-tail p-value was<0.01.

3. Results and discussion

The variance components showed that the genetic variance (and
thus heritability) estimates with genomic information were lower than

the estimates using pedigree, except for DHA where PED and SNPCHIP
were very similar (Table 1). Several authors have previously reported a
reduction in heritability estimates with genetic marker information
(Boison et al., 2019; Erbe et al., 2013; Robledo et al., 2018). This may
be explained by factors such as lack of markers that are in linkage
disequilibrium with the causative mutations, and large numbers of
markers that are in linkage equilibrium with the causative mutations
(de Los Campos et al., 2015). It should also be noted that the standard
errors of the estimates of the variance components were high (Table 1).

The accuracies were generally low (0.27–0.61; Table 2), which is
similar to a study on fatty acid traits in cattle (N = 1366), where the
accuracy of genomic prediction was<0.40 for the majority of the fatty
acids (Chen et al., 2015). We would expect to get higher accuracies
compared to Chen et al. (2015) as we used a different cross-validation
approach which included siblings of validation animals in the reference
population. The trait with the highest heritability (MFAT) had highest
accuracy. Higher heritability may be expected to result in increased
accuracy of genomic prediction (e.g., Sonesson and Meuwissen 2009).
Moreover, several studies have shown that low heritability can result in
low prediction accuracy (Nirea et al., 2012; Vela-Avitúa et al., 2015;
Daetwyler et al., 2008).

Inaccurate estimates of variance components may have reduced
cross-validation prediction accuracies in Table 2. In fact, for EPA none
of the heritability estimates were significantly different from zero,
which may explain the low cross validation accuracies. In a quantitative
genetic analysis using a bigger dataset (668 fish), the heritability esti-
mate was also not significantly different from zero (0.09 ± 0.06)
(Horn et al., 2018), suggesting that a larger dataset is required to detect
significant additive genetic variation for EPA. This could be explained
by that EPA muscle content is highly variable over time because EPA
serves many metabolic roles in the body, such as energy production and
conversion to bioactive components (Glencross et al., 2014; Sanden
et al., 2011). DHA content, on the other hand is more stable as it is
mainly incorporated into phospholipids in cell membranes (Ruiz-Lopez

Table 1
Estimates of variance components for EPA, DHA and muscle fat (MFAT) using
different genetic information.

DHA EPA MFAT

PED
h2 0.21 (0.09) 0.06 (0.05) 0.36 (0.10)
Va 0.038 (0.017) 0.061 (0.057) 2.216 (0.665)
Ve 0.144 (0.016) 0.988 (0.078) 3.877 (0.542)

SNPCHIP
h2 0.20 (0.07) 0.04 (0.04) 0.25 (0.07)
Va 0.036 (0.013) 0.044 (0.043) 1.505 (0.486)
Ve 0.144 (0.014) 1.001 (0.072) 4.501 (0.455)

ASE
h2 0.14 (0.05) 0.03 (0.03) 0.16 (0.05)
Va 0.026 (0.010) 0.033 (0.031) 0.960 (0.316)
Ve 0.154 (0.012) 1.013 (0.067) 5.012 (0.372)

RANDOM
h2 0.02 (0.04) 0.02 (0.03) 0.15 (0.05)
Va 0.003 (0.007) 0.026 (0.030) 0.872 (0.304)
Ve 0.177 (0.120) 1.021 (0.068) 5.106 (0.382)

ASE + PED
h2 0.21 (0.08) 0.05 (0.05) 0.36 (0.10)

GASE Va 0.020 (0.011) 0.020 (0.041) 0.324 (0.321)
A Va 0.018 (0.017) 0.031 (0.073) 1.861 (0.710)

Ve 0.143 (0.015) 0.996 (0.079) 3.877 (0.541)

ASE + SNPCHIP
h2 0.20 (0.07) 0.04 (0.04) 0.24 (0.07)

GASE Va 0.022 (0.016) 0.025 (0.073) 0.970 (0.599)
GSNPCHIP Va 0.015 (0.012) 0.016 (0.056) 0.463 (0.399)

Ve 0.143 (0.014) 1.004 (0.073) 4.553 (0.456)

Va: Additive genetic variance. Ve: Residual variance. h2: Estimated heritability.
Standard errors in brackets.
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et al., 2015). The differences in biological roles of the two fatty acids
are reflected in the higher heritability of DHA compared to EPA
(Table 1).

Based on the results of this study, it cannot be concluded which
genetic information source is best because different genetic information
performed best for different traits (Table 2). Differences between in-
formation sources were in general small. SNPCHIP performed sig-
nificantly better than PED for DHA, where the use of SNPCHIP geno-
types resulted in 15.5% (on average) higher selection accuracy than all
other information sources (Tables 2 & 3). However, for the two other
traits, PED performed significantly better than SNPCHIP (Tables 4 & 5).
For EPA, PED gave significantly higher accuracy than the other sources,
except for ASE, which was similar to PED (Tables 2 & 4). Thus, in this
study GS did not result in higher accuracy than pedigree for a low
heritability trait (EPA). This is contrary to a previous study by Calus
et al. (2008), and may be due to the very low (non-significant) herit-
ability of EPA combined with the small dataset of the current study.
Moreover, the performance of SNPCHIP is dependent on the presence of
markers in genes influencing the trait. The NOFSAL02 SNP-chip does
not contain markers in the genes of fatty acid synthase
(LOC106610271), peroxisome proliferator-activated receptors pparb2b
and pparb2a, carnitine palmitoyltransferases cpt1b and cpt2, hormone-
sensitive lipase, and acetyl-CoA carboxylase (LOC106603271), which
are all known to influence lipid metabolism in mammals and/or fish
(Sul and Smith, 2008; Tocher, 2003; Varga et al., 2011). Therefore, it is
possible that including markers in these genes could increase the per-
formance of SNPCHIP.

The G-matrix based on ASE markers seemed able to capture a re-
latively high portion of genetic variation for DHA (72% of GSNPCHIP;
although standard errors of the components were high), indicating that
markers selected through the ASE method were relevant for this trait.

This was further supported by testing the GRANDOM matrix, which for
DHA resulted in a very low estimate of genetic variance (Table 1). This
confirms that the 395 markers selected based on ASE explain sub-
stantially more variance for DHA than 400 random markers. The results
for selection accuracies showed that ASE alone performed similarly to
PED for DHA (Tables 2 & 3). However, the ASE markers did not capture
a higher portion of genetic variance than RANDOM markers for the
traits EPA and MFAT. For EPA, this could be explained by the very low,
non-significant heritability of EPA in this dataset. The reason why ASE
markers did not perform better than random markers for MFAT, is
likely because the ASE markers were identified and selected based on
them being located in genes significantly associated with EPA and DHA
phenotypes, not MFAT. Although muscle fat is highly interconnected
with the muscle's EPA and DHA content (Horn et al., 2018), it is likely
that MFAT is regulated by different genes than those regulating the
proportional content of EPA and DHA. Thus, it is not expected that ASE
markers should perform as well for MFAT.

When combining ASE with either PED or SNPCHIP, ASE surprisingly
explained the greatest portion of the genetic variation of the two in-
formation sources (Table 1). However, the total genetic variation cap-
tured for the traits did not increase compared to PED or SNPCHIP alone,
thus ASE did not significantly improve prediction accuracies when
combined with SNP-chip or pedigree information (Tables 2–5). Except
for MFAT, where ASE + PED gave slightly higher accuracy than PED.
ASE + SNPCHIP surprisingly resulted in lower accuracy than SNPCHIP
alone (11% lower) for DHA, but this difference was not significant.
Moreover, ASE + PED did not give significantly higher accuracy than
PED alone. A possible reason why the combined models did not perform
better could be that there were twice as many effects to estimate (û1 and
û2), but the size of the reference data is too small to accurately estimate
that many effects. In addition, the variance due to ASE may be over-
estimated due to sampling, which may explain why the accuracy is not
improved.

The main limitation of this study is the size of the reference popu-
lation. The cross-validation method is unfavorable for this dataset,
because we are masking one individual from each family whilst we
have small family sizes. The latter hampers the accuracy of GS, as there
are insufficient siblings to assign which chromosome segment is best
within a family. Yet, the choice of this validation scenario is realistic
because for most traits in aquaculture (and especially for carcass quality
traits), selection of breeding candidates is based on full- and half-sib
phenotypic information. However, to obtain high accuracies of GS we
need high numbers of validation animals per family (Odegård et al.,
2014).

Table 2
Estimated accuracies by cross-validation for DHA, EPA and muscle fat (MFAT) for six different genetic information sources.

Trait PED SNPCHIP ASE ASE + PED ASE + SNPCHIP

DHA 0.328 (0.018) 0.413 (0.019) 0.359 (0.02) 0.342 (0.019) 0.369 (0.019)
EPA 0.374 (0.046) 0.321 (0.042) 0.331 (0.039) 0.268 (0.041) 0.267 (0.04)
MFAT 0.603 (0.013) 0.565 (0.014) 0.564 (0.013) 0.606 (0.013) 0.566 (0.014)

Standard errors in brackets.

Table 3
P-values from binomial test indicating significant differences in accuracies be-
tween sources of genetic information for DHA.

DHA PED SNPCHIP ASE ASE + PED ASE + SNPCHIP

PED – ⁎ ns ns ns
SNPCHIP – ns ⁎ ns
ASE – ns ⁎

ASE + PED – ⁎

ASE + SNPCHIP –

ns = not significant (p > .01).
⁎ p < .01.

Table 4
P-values from binomial test indicating significant differences in accuracies be-
tween sources of genetic information for EPA.

EPA PED SNPCHIP ASE ASE + PED ASE + SNPCHIP

PED – ⁎ ns ⁎ ⁎

SNPCHIP – ns ns ⁎

ASE – ⁎ ⁎

ASE + PED – ns
ASE + SNPCHIP –

ns = not significant (p > .01).
⁎ p < .01.

Table 5
P-values from binomial test indicating significant differences in accuracies be-
tween sources of genetic information for muscle fat (MFAT).

MFAT PED SNPCHIP ASE ASE + PED ASE + SNPCHIP

PED – ⁎ ⁎ ⁎ ⁎

SNPCHIP – ns ⁎ ⁎

ASE – ⁎ ⁎

ASE + PED – ⁎

ASE + SNPCHIP –

ns = not significant (p > .01).
⁎ p < .01.
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The model used for estimating breeding values does not include a
term to account for dominance effects. Although dominance may in-
fluence variance components, as estimates of the additive genetic var-
iance may be overestimated when dominance variance is ignored.
However, it is not expected to affect accuracies of breeding value es-
timates substantially (Gallardo et al., 2010).

The accuracies of selection for DHA and EPA were moderate and
offer possibilities for selection for these traits, especially if one uses a
much larger reference data set with more sibs per selection candidate.
The latter requires cost-effective recording of DHA and EPA in large
reference populations, which is currently unavailable. When using the
395 ASE markers alone, the reference population does not need to be so
large since there are not as many marker effects to estimate. In the
current case we cannot recommend using ASE markers, but the results
show that knowledge from gene expression analysis of a few individuals
(59 in this case) can be utilized to select a small panel of markers that
perform relatively well.

4. Conclusions

The results of this study show that different genetic information
sources performed best for different traits, and that differences between
information sources were in general small. SNPCHIP genotype in-
formation performed relatively poor, possibly due to the small size of
the reference population and the small number of animals per family.

Knowledge from gene expression analysis of a few individuals can
be utilized to select a small panel of markers that perform relatively
well. Markers based on allele-specific expression were able to capture a
substantial fraction of the genetic variation for DHA (72%), but did not
give significantly higher accuracies when combined with SNP-chip or
pedigree information in this dataset.

The cross-validation accuracies for selection for DHA and EPA were
moderate and offer possibilities for selection for these traits, especially
if one extends the reference data set to a much bigger population
containing more sibs per selection candidate.
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