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Summary 

Bovine milk is a highly regarded food source. Still, some milk fatty acids may have 

unfavourable health effects and can influence manufacturing properties of dairy products. 

Individual milk fatty acids show moderate heritabilities, and better knowledge of the 

underlying genes may be used to speed up the genetic progress of the traits and provide dairy 

products of higher quality and nutritional value. In this thesis, mutations underpinning 

variation in bovine milk fat composition in Norwegian Red cattle was explored, with 

emphasis on fatty acids produces de novo in the mammary gland, and the two dominant acids 

in bovine milk, palmitic (C16:0) and oleic acid (C18:1cis9). 

Paper I established the calibration equations to predict the fatty acid profiles from Fourier-

transform infrared spectroscopy (FTIR) data used to estimate variance components for 

individual and groups of fatty acids. Most major fatty acids were predicted rather accurately. 

Short and medium length saturated acids were, in general, more heritable than longer and 

unsaturated acids. A genome-wide association analysis performed on both individual acids 

and groups of acids revealed a region on chromosome 13 with strong influence on levels of 

the even chain fatty acids C4:0 to C14:0. The association was first thought to be related to the 

gene acyl-CoA synthetase 2 (ACSS2), but subsequent fine-mapping highlighted another close-

by gene; nuclear receptor coactivator 6 (NCOA6).  

Paper II aimed to further explore the genetic basis of the de novo synthesised acids, extending 

the analysis with a larger data set, imputed sequence variants and mammary gene expression 

data. Progestagen Associated Endometrial Protein (PAEP) on Bos taurus autosome (BTA)11 

was strongly associated with the content of the shortest acid C4:0, acetoacetyl-CoA synthetase 

(AACS) on BTA17 was associated with the content of C4:0 and C6:0. NCOA6 on BTA13 was 

associated with acids of intermediate chain lengths (especially C8:0), whereas fatty acid 

synthase (FASN) was mainly associated with the longest acid, C14:0. All suggested positional 

candidate genes were expressed in the bovine udder during lactation.  

Paper III focused on C16:0 and C18:1cis-9, possibly having opposing effects on human 

cardiovascular health and relevance for dairy manufacturing properties. A set of variants 

within and close to PAEP on BTA11 shown to affect the ratio between the two acids were 

identified. The variants were further shown associated with PAEP gene expression and levels 

of the translated protein β-lactoglobulin. Breeders may use the Paper III findings to promote 

milk with a healthier fatty acid profile and positive effect on cheese-making properties. 
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Kumelk er regnet som en god human ernæringskilde. Samtidig kan nivået av enkelte fettsyrer 

i melk ha uheldige helsekonsekvenser, i tillegg til å kunne påvirke meieriprodukters 

produksjonsegenskaper. Studier har vist at konsentrasjonen av melkefettsyrer er arvbar, og 

bedre kunnskap om de underliggende gener og varianter vil kunne utnyttes i avl for å kunne 

oppnå genetisk fremgang for denne egenskapen. I denne avhandlingen ble mutasjoner med 

påvirkning på fettsyresammensetningen i melk undersøkt, med fokus på syrer syntetisert de 

novo i jur, og de to vanligste fettsyrene i melk; palmitinsyre (C16:0) og oljesyre (C18:1cis9).  

Artikkel I etablerte kalibreringslikningene nødvendig for å predikere fettsyreprofiler og 

beregne fettsyrenes arvbarhet ved bruk av FTIR-spektra. De fleste frekvente melkefettsyrer 

ble predikert med tilstrekkelig nøyaktighet. Mettede fettsyrer med kort og medium 

kjedelengde hadde generelt høyere arvbarhet en lengre og umettede syrer. En 

assosiasjonsstudie, utført med både fettsyregrupper og individuelle fettsyrer, pekte mot en 

region på kromosom 13 med sterk effekt på nivået av de likekjedede fettsyrene C4:0 til 

C14:0. Genet acyl-CoA synthetase 2 (ACSS2) ble først pekt ut som det beste kandidatgenet, 

men videre finkartlegging pekte mot det nærliggende genet nuclear receptor coactivator 6 

(NCOA6).  

I artikkel II ble den genetiske bakgrunnen for de novo-syntetiserte fettsyrer videre studert. 

Analysen identifiserte sterke assosiasjoner mellom genene Progestagen Associated 

Endometrial Protein (PAEP) og acetoacetyl-CoA synthetase (AACS) og innhold av C4:0-

C6:0, NCOA6 og syrer med mellomlang kjedelengde (C6:0-C12:0) og fatty acid synthase 

(FASN) ble funnet sterkt assosiert til innhold av C14:0. Alle foreslåtte kandidatgener ble 

funnet uttrykt i jur. 

Artikkel III fokuserte på C16:0 og C18:1cis9, de to mest frekvente fettsyrene i melk, som har 

betydning for både human helse og melkeproduksjonsegenskaper.  Det ble identifiserte et sett 

varianter i og nær genet PAEP på kromosom 11, med motsatt effekt på palmitin og oljesyre. 

De samme variantene ble også assosiert til redusert ekspresjon av PAEP og redusert nivå av 

det translaterte proteinet β-lactoglobulin. Funnene fra artikkel III kan utnyttes til å avle frem 

melkekyr med sunnere melkefettsyreprofil og positive effekter på melkens ysteegenskaper. 
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1.� General introduction. 

�Why study the genomics of milk fat composition? 

Milk is a primary product produced and consumed in almost every country. Its appeal, 

widespread availability, and versatility as a food product have led milk to become a key 

nutritional element for billions of people worldwide. Among cows, milk’s nutritional 

component concentration varies, influenced by a complex interplay between genes and 

environmental factors such as feeding, lactation stage, health status and breed (Jensen 2002; 

Bionaz & Loor 2011; Maurice-Van Eijndhoven et al. 2011). Although marketed as a healthy, 

natural product, milk’s health effects remain controversial, mainly because 60 to 70 percent of 

milk fatty acids are saturated (Jensen 2002).  

Dietary saturated fatty acids (SFAs) have been linked to cardiovascular and metabolic disease, 

and it is believed that a reduction in dietary SFAs is beneficial (Hooper et al. 2015). In this 

context, it will be advantageous to identify individual genes, or preferably causal DNA 

variation responsible for genetic variation in milk fat composition. Such information is 

important for understanding bovine fatty acid metabolism and may be used to develop new 

and innovative dairy products through selective breeding. 

 

�Brief overview of milk fat composition. 

Bovine milk fat is remarkably complex, containing more than 400 different fatty acids (Jensen 

2002). The total fat content in cow’s milk is normally between three and five percent, with 

about 98 percent of the fat present as triglycerides (Jensen 2002). Triglycerides are 

characterised by three fatty acids attached to a glycerol backbone (Figure 1.1). The fatty acids 

are composed of carbon chains that differ in length. Short-chain fatty acids (SCFA) refers to 

acids with five or fewer carbon atoms, medium chain fatty acids (MCFA) six to 14, long 

chain fatty acids (LCFA) have chains of 15 to 21 carbons, and very long chain fatty acids 

(VLCFA) have >21 carbons. Most fatty acids are saturated, consisting of an unbranched 

carbon chain with single bonds between each carbon, but can also have one or several double 

bonds making an unsaturated fatty acid.  

In systematic nomenclature, each unsaturated fatty acid is named according to where the 

double bond sits in the carbon-bond chain. For example, oleic acid, the mid fatty acid in 

Figure 1.1 is named cis-Δ9-Octadecenoic acid, or just C18:1cis-9. 
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Figure 1.1 Chemical structure of a triglyceride with a saturated (top), mono-unsaturated 

(mid) and polyunsaturated fatty acid (bottom) attached to a glycerol backbone. 

The majority of fatty acids in milk are even-chain numbered saturated acids with carbon 

chains from 4 to 18 (C4:0 - C18:0), along with the unsaturated C18:1cis9, which has one 

double bond in its carbon chain (Table 1.1).   

 

Table 1.1 Typical composition of bovine milk fatty acids (Adapted from Jensen 2002) 

fatty acid 
carbon number 

fatty acid 
common name 

Average range 
(g/100g fat) 

4:0 Butyric 2–5 
6:0 Caproic 1–5 
8:0 Caprylic 1–3 
10:0 Capric 2–4 
12:0 Lauric 2–5 
14:0 Myristic 8–14 
15:0 Pentadecanoic 1–2 
16:0 Palmitic 22–35 
16:1 Palmitoleic 1–3 
17:0 Margaric 0.5–1.5 
18:0 Stearic 9–14 
18:1 Oleic 20–30 
18:2 Linoleic 1–3 
18:3 Linolenic 0.5–2 
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�Milk fat biosynthesis 

The complexity of milk fatty acid composition is a consequence of the many pathways and 

processes by which fatty acids arise. Essentially, in ruminants, they are derived either from 

direct transport from the diet to the mammary gland via the circulatory system, or by de novo 

synthesised in the mammary gland (reviewed by Bionaz & Loor 2008). The two pathways are 

represented schematically in Figure 1.2, with central genes shown in green colour.  

 

 

Figure 1.2. Schematic representation of the metabolism of de novo synthesised and feed 

derived milk fatty acids.  

In the mammary gland, the short- and medium-chained saturated fatty acids C4:0 to C14:0, as 

well as about half of the palmitic acid (C16:0), are de novo synthesised from two and four 

carbon chain precursors. De novo synthesis begins with the uptake of acetate, acetoacetate and 

a small fraction β-hydroxybutyrate originating from bacterial fermentation of roughage in the 

rumen. Acetate is activated to acetyl-CoA by the enzyme acyl-CoA synthetase 2 (ACSS2). 

Acetoacetate is first activated by the enzyme acetoacetyl-CoA synthetase (AACS) to form 

acetoacetyl-CoA and then via acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase alpha 

(ACACA). Malonyl-CoA, along with butyryl-CoA, further serve as precursors for medium-

chained acids and C16:0 synthesis. In a cyclic reaction called the malonyl-CoA pathway, the 



14 
 

enzyme fatty acid synthase (FASN) add two carbon units to the growing fatty acid-chain in 

each round of the cycle. This cycle’s natural endpoint is C16:0. However, in ruminants, 

SCFAs and MCFAs can leave this cycle at any time by a chain determination mechanism, 

which gives rise to the relatively high fraction of MCFAs in ruminant milk compared to for 

example human milk (Barłowska et al. 2011). 

Even-numbered LCFAs are transported into the milk from circulating plasma lipids 

originating either from the diet or lipolysis of adipose tissue triacylglycerol. Odd-numbered 

SFAs (C15:0 and C17:0) are indirectly derived from feed after first being synthesised by 

bacteria in the rumen. Once present at the udder, LCFAs enter the mammary cells bound to 

fatty acid binding protein (FABP). Before uptake, most LCFAs have been saturated by the 

rumen microorganisms. A fraction of these fatty acids is further desaturated by Δ9-desaturase 

to their cis-9 monounsaturated counterparts by the enzyme stearoyl-CoA desaturase (SCD). 

Once inside the cell, the fatty acids are activated (i.e. adding a coenzyme A) by a coordinate 

activity between fatty acid translocase (CD36), fatty acid transporter (SLC27A), and acetyl-

CoA synthetase (ACSL) (genes not shown in Figure 1.1).  

The next step is shared by both feed derived, and de novo synthesised acids, where Acyl-CoA 

synthetase activate the fatty acids before they enter the triacylglyceride synthesis pathway. In 

this pathway, the fatty acids are attached to a glycerol 3-phosphate backbone in several steps 

catalysed by the enzymes glycerol-3-phosphate acyltransferase (GPAM), 6-acylglycerol-3-

phosphate O-acyltransferase (AGPAT6), lipin (LPIN1) and diacylglycerol O-acyltransferase 

(DGAT1). Once formed, the triacylglycerides are inserted into the intra-leaflet of the 

endoplasmic reticulum membrane, forming lipid droplets coated with proteins and polar 

lipids. Upon secretion from the cell to the milk, the lipid droplets are enveloped with the cell 

plasma membrane. This plasma membrane called the milk fat globule membrane consists 

mainly of polar lipids and membrane-bound proteins. The size and composition of the milk fat 

globule membrane have impact on the stability and technological properties of milk  

(Lindmark Månsson 2008). 

All these fatty acid metabolism steps are catalysed and regulated by a network of genes 

encoding a set of enzymes, transcription regulators and nuclear factors. Among the key 

regulators are nuclear receptor coactivator 6 (NCOA6), peroxisome proliferator activated 

receptor gamma (PPARG), insulin induced gene 1 (INSIG1) and sterol regulatory element 

binding transcription factor 1 (SREBF1) (Bionaz & Loor 2008).  
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�Milk fat and human health. 

Cow´s milk and milk derived dairy products constitute approximately 20 percent of the total 

fat consumed in a typical western diet. Health authorities in many countries advise people to 

reduce dietary saturated fat (Montagnese et al. 2015; Mozaffarian & Ludwig 2015), and since 

the fraction of SFA in bovine milk can be as high as 70 percent, peoples perception of milk 

and dairy products has developed unfavourably in recent decades. 

While some epidemiological studies have indicated a protective effect of milk against 

coronary heart disease, stroke, diabetes and certain cancers (Haug et al. 2007), there is also 

evidence for adverse effects of individual fatty acids. SFAs with 14 or 16 carbons (C14:0 and 

C16:0) have been associated with increased low-density lipoprotein cholesterol levels 

(German and Dillard, 2006) which in turn are associated with increased risk of cardiovascular 

disease (Mensink et al. 2003). In contrast, SFAs shorter than C12 and longer than C18 are 

considered to have neutral or positive effects on cardiovascular diseases (Mensink et al. 

2003). Among LCFAs, particular attention has been given to the conjugated linoleic acids 

(CLAs) and the omega-6:omega-3 ratio (Haug et al. 2007). CLAs are interesting because of 

their supposed role in plasma lipid modulation, anti-carcinogenic and anti-inflammatory 

effects (Haug et al., 2007). Western diets are believed to have an unfavourable high omega-6 

to omega-3 ratio (10:1 – 14:1) linked to heart disease and insulin resistance (Bartsch et al. 

1999). Bovine milk, on the other hand, can have a ratio close to the optimal 2:1, depending on 

feeding regime (Thorsdottir et al. 2004).  

The conclusion concerning the health effects of milk fat, especially on cardiovascular disease, 

has yet to be drawn. Nevertheless, increased understanding of milk fat synthesis and its 

heritable component can be used to optimise the lipid profile of milk products. 

 

�The genetic basis of bovine milk fat composition. 

Trait heritability measures the fraction of a trait’s phenotypic variation that is due to genetics. 

Previous heritability estimates for fatty acid concentration (g fat/100g fat)  range from 20 to 

70 percent depending on breed, season, and fatty acids investigated (Soyeurt et al. 2007; Bobe 

et al. 2008; Stoop et al. 2008; Garnsworthy et al. 2010; Krag et al. 2013).  

Experimental strategies to identify genetic variants associated with a trait like fatty acid 

composition include candidate gene studies and genome-wide association studies (GWAS). 

Candidate gene studies examine genetic variants of pre-selected genes for association to fatty 
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acid concentrations. One example is the detection of a single nucleotide polymorphism (SNP) 

within the diacylglycerol O- acyltransferase 1 (DGAT1) gene shown to explain more than 50 

percent of the genetic variance of milk fat percentage (Grisart et al. 2002). Another example is 

the detection of variants within DAGT1 affecting the fatty acid indexes mono-unsaturated 

fatty acids (MUFA) and MCFAs (Roy et al. 2006; Morris et al. 2007; Rincon et al. 2012).  

While the candidate gene approach relies on pre-existing biochemical knowledge, GWAS 

provide a way to identify chromosome regions affecting a trait of interest without any prior 

understanding of underlying biology or associated genes (Goddard & Hayes 2009). In a 

GWAS, one searches for associations between SNPs evenly distributed throughout the 

genome (e.g. 50,000) and trait animal recordings, preferably in the thousands. The success of 

GWAS relies on the existence of linkage disequilibrium (LD) between the causative genetic 

variants and those variants empirically tested in the experiment.  

For milk fatty acid composition, previous GWAS have reported multiple significant regions, 

called quantitative trait loci (QTL). Stoop et al. (2009) found significant QTLs affecting short- 

and medium chained fatty acids on Bos taurus autosome (BTA)6, 14, 19 and 26, and 

suggestive QTLs on 21 other chromosomes. The same group revealed significant QTLs 

associated with LCFA on BTA14, 15 and 16 as well as suggestive QTLs on 16 additional 

chromosomes (Schennink et al. 2009), indicating that fatty acid composition is affected by 

many genes (i.e. being polygenic as opposed to monogenic or oligogenic). While the 

importance of DGAT1, SCD1, and FASN was confirmed in these and subsequent studies 

(Bouwman et al. 2011; Bouwman et al. 2014), genes with previously unknown effects have 

also been revealed. Duchemin et al. (2014) found a highly significant region on bovine 

chromosome 17 affecting de novo synthesised fatty acids, which included the progesterone 

receptor membrane component 2 (PGRMC2) gene not previously described in the context of 

milk fatty acid composition.  

  

�Identifying putative causative variants.  

While the GWAS approach efficiently identifies both novel and known loci affecting milk 

fatty acid concentration, our ability to identify the underlying causal variants is hampered by 

the long-range LD found in most modern cattle breeds with low effective population size 

(Ne). Low Ne is caused by intensive historical selection (Sodeland et al. 2011; Kemper et al. 

2015), and leave long, unrecombined segments of DNA to segregate in the population. Long-

range LD makes GWAS with relatively low-density marker maps possible, but at the same 
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time makes it challenging to separate underlying causal variants from other variants co-

segregating with the QTL  (Goddard & Hayes 2009; Sodeland et al. 2011). In response to this, 

researchers have adopted an approach where a selection of key reference animals are 

genotyped using costly high-density SNP-arrays, while the remainder of the population is 

genotyped using affordable mid-density (e.g. 50K) arrays. In this instance, the issue of LD 

becomes an asset, enabling genotypes of the high-density SNP markers to be imputed 

throughout the mid-density genotyped samples (Scheet & Stephens 2006) thereby creating an 

opportunity to identify markers in closer LD to the causal variant and reducing the list of 

potential causative genes. 

A natural extension of imputation from SNP-array genotypes is to use resequencing data as a 

source of SNP loci and genotypes in the reference animals. Even the highest density arrays 

are limited to containing only a fraction of the factual SNPs in a bovine genome, and many 

novel, breed specific markers, or low frequency markers are likely to be missing from a 

consortium developed commercial array. In the 1000 bull genomes project (Daetwyler et al. 

2014), partners have volunteered re-sequencing data from, at the time of writing, more than 

2000 cattle. The intention for this data is that it may serve as a multi-breed reference allow 

partners to obtain (impute) full genome sequence for bulls and cows within their study 

population that have been genotyped with SNP-arrays (Goddard 2017). 

  

Although the principles on which imputation is based are relatively simple, factors such as 

imputation errors, statistical sampling errors and extensive LD make the tests uncertain, and it 

is necessary to filter the result based on the likely functional effect of each SNP. Various 

pipelines exist which can predict whether a SNP can lead to a frameshift mutation, 

introduction of a stop-codon, change an amino-acid, or reside within a region potentially 

involved in promoter activity (e.g. the Ensembl variant effect predictor; VEP (McLaren et al. 

2016). Indeed, while SNPs that change the protein sequence are obvious targets of 

associations studies, most significant variants found in GWAS does not alter proteins, but 

rather the expression levels of the gene. The Functional Annotation of Animal Genomes 

project (FAANG) aims to produce comprehensive maps of functional elements in 

domesticated animal species genomes (Andersson et al. 2015) and promises to provide a basis 

for the regulatory annotation of candidate variants. Beyond the predictive modelling 

performed by VEP and enabled by FAANG data, the analysis of data from RNA-sequencing 

and proteomics can endorse causal variants and allow us to discard non-causal, co-segregating 

variants.  
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�FTIR calibration and measurement of milk fat composition   

Any effort to improve our understanding of a trait’s genetics would benefit from a fast and 

inexpensive method of phenotyping. Fatty acid profiling is usually done by gas 

chromatography (GC). However, while this method is accurate, it is also time-consuming and 

expensive, and therefore not so well suited for high throughput screening. An alternative 

approach is to use Fourier-transform infrared spectroscopy (FTIR) for fatty acid profiling of 

milk samples. This is a fast and inexpensive method already routinely used in the dairy 

industry to quantify milk components such as fat and protein percentage, casein contents,  

lactoferrin and antibiotics (Afseth et al. 2010). Soyeurt et al. (2006) demonstrated that the 

most frequent fatty acids in cow’s milk could be predicted with acceptable accuracy using 

calibration equations developed utilising pairwise GC and FTIR measurements.  

The equations are founded on the absorption of infrared light at specific wavelengths is 

proportional to the concentration of a given fatty acid in the sample. FTIR analysis of a milk 

sample yields a spectrum of absorption signal which is mathematically converted to 

interpretable spectral data using Fourier-transformation, which enable the spectra to represent 

the absorptions at different wavenumbers (cm−1) for each distinct fatty acid chemical 

composition of the sample analysed (Coates 2000). Since 2006, several studies investigating 

milk fatty acid composition applied this quantification method (Soyeurt et al. 2007; Rutten et 

al. 2009; Afseth et al. 2010; Wang et al. 2016), which confirms its potential for use in regular 

milk recording. With fatty acid composition estimates for each cow, it becomes possible to 

quantify the genetic contribution to fatty acid concentration and facilitate genome-based 

selection to improve the nutritional quality of cow milk. 
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2.� Methodological overview 

A schematic representation of the methodological workflow underlying much of this thesis is 

presented in Figure 1.3. Between 2007 and 2014, more than 8 million FTIR recordings were 

obtained from routine milk samplings conducted in Norway and stored in a relational database 

management system. Using pairwise GC and FTIR measurements, calibration models were 

developed and applied to predict fatty acid profiles for all milk samples. The predicted fatty 

acid profiles were used further to calculate daughter yield deviations (DYDs) for progeny 

tested bulls.  A DYD value describes the average performance of a sire’s daughters corrected 

by their environmental and other non-genetic effects (Szyda et al. 2008). After obtaining high-

resolution genotypes for the bulls with imputation, the DYDs were used in a GWAS to 

identify chromosome regions, genes and genetic variants associated with variation in milk 

fatty acid composition.   

DYDs were calculated for 991 bulls in Paper I and 1811 bulls in Papers II and III. In addition 

to calculating fatty acid DYDs, the heritability of each fatty acid was estimated.  
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Figure 1.3 Schematic representation of how milk FTIR data was utilised for prediction 

of fatty acid composition and GWAS.  1). Development of fatty acid calibrations using GC 

measurements and FTIR spectra from milk samples for the prediction of fatty acid profiles. 

2). Fatty acid heritabilities and bull DYDs calculated using the fatty acid profiles of the bull’s 

daughters and pedigree. 3) Association studies using imputed genotypes from the bulls and 

the DYDs for individual milk fatty acids as phenotype. 
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3.� Aims of the thesis 

The primary objective of this thesis was to identify DNA-variation underlying bovine milk fat 

composition. The primary objective can be subdivided into the following specific aims: 

1.� Utilise a national database containing more than 8 million FTIR spectra to predict fatty 

acid phenotypes for GWAS and estimate fatty acid trait heritabilities. (Paper I) 

2.� Evaluate the FTIR-based fatty acid calibrations in context of genome-based 

improvement of milk fat composition by assessing the quality of the calibration 

equations developed. (Paper II) 

3.� Fine-map associated variants and identify candidate genes and causative variants 

underlying the observed variation in milk fatty acid levels, using whole genome 

sequence imputation, gene expression data and milk protein level measurements. 

(Papers II and III) 
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4.� Brief summary of Papers I-III 

Paper I 

In Paper I, milk fatty acid composition was predicted from the nation-wide recording scheme 

using Fourier transform infrared (FTIR) spectroscopy data and applied to estimate 

heritabilities for 24 individual and 12 combined fatty acid traits.  

Twenty-nine traits had a prediction accuracy in the form of R2CV above 0.5 which we 

considered sufficient for further analysis. Heritability estimates for the studied traits ranged 

from 0.09 for C18:1trans-11, to 0.35 for C4:0. Short and medium length fatty acid were 

somewhat more heritable than longer and unsaturated fatty acid, while heritability for the 

polyunsaturated index (PUFA) was slightly higher than that of the MUFA and saturated 

(SAT) indexes, being 0.171, 0.130 and 0.137, respectively. 

The recordings were used to generate daughter yield deviations that were first applied in a 

GWAS with 17,343 markers to identify QTL affecting fatty acid composition. The GWAS 

revealed 200 significant associations, with the strongest QTLs located on BTA1, 13 and 15. 

The results on BTA13 were followed up with high-density genotyping and sequence data. The 

most significant signals were found close to ACSS2, which is considered a good functional 

candidate gene for de novo synthesis of short- and medium-chained SFAs. The fine-mapping 

identified another nearby candidate gene, NCOA6. NCOA6 is a nuclear receptor known to 

interact with transcription factors such as PPARγ, which is a master regulator of bovine milk 

fat synthesis. 

 

Paper II 

In Paper II, we sought to explore the genetic basis of de novo synthesis by doubling the 

number of predicted fatty acid recordings for the GWAS and utilising whole genome 

sequence data from 153 Norwegian Red cattle. Most of the sequenced animals were elite 

sires; key ancestors of the Norwegian Red cattle population. BTA 11, 13, 17 and 19 were 

imputed to sequence density for 1811 elite artificial insemination (AI) bulls and significant 

regions from the initial SNP array-based GWAS were fine mapped. RNA-sequence data 

obtained from somatic cells in milk were used to assess expression of the candidate genes in 

the mammary gland. The results of the GWAS and subsequent fine mapping using sequence 

imputed genotypes, revealed the involvement of the genes PAEP on BTA11, AACS on 
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BTA17, NCOA6 or ACSS2 on BTA13 and FASN on BTA19. Among these, polymorphisms in 

PAEP and AACS seem to mostly affect de novo synthesis of the shortest acids (C4:0-C6:0), in 

NCOA6 or ACSS2 the synthesis of fatty acids of intermediate chain lengths (C6:0-C14:0), and 

variants in FASN to affect the longest acid (C14:0). In all cases, the effect of the underlying 

polymorphism was expected to regulate gene expression rather than changing the amino acid 

sequence. Expression analyses performed on mRNA isolated from milk samples revealed that 

all suggested candidate genes were expressed in the bovine mammary gland during lactation.  

 

Paper III 

C16:0 is the predominant SFA in milk, and it may be possible to counteract its implied 

adverse health effects by replacing it with higher levels of unsaturated fatty acids, such as 

C18:1cis-9. Paper III utilizes dense genotyping, whole genome sequence data, mRNA 

transcript profiling and protein analyses to reveal genetic variants underlying levels of C16:0 

and C18:1cis-9. The initial whole genome scan exposed significant associations on 17 

chromosomes. We further dissected a strong QTL located at ≈103 Mb on chromosome 11 

showing opposite effects on the content of C16:0 and C18:1. The QTL region covered a 

tightly linked cluster of significant genetic variants in coding and regulatory regions of PAEP. 

The favourable haplotype, linked to reduced levels of C16:0 and increased C18:1cis-9, was 

also associated with a marked reduction in PAEP gene expression and levels of protein. PAEP 

encodes β-lactoglobulin, an abundant milk protein, whose level in milk affect important dairy 

production parameters such as cheese yield. The genetic variants detected in this paper can 

potentially be exploited in breeding programs to lead to milk with a healthier fatty acid profile 

and positive effect on cheese making properties.  
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5.� Discussion 

5.1 Predicting individual fatty acid profiles using FTIR data 

A keystone methodology of this thesis was the use of large-scale FTIR-data to predict milk 

fatty acid composition. More than 4 million fatty acid profiles from ≈640,000 cows were 

generated after applying calibration models to infrared spectra collected as part of the 

Norwegian Dairy Herd recording system between 2007 and 2014. The calibration equations 

were produced from ≈900 milk samples measured with both FTIR and GC. The equations 

were developed using the  partial least squares regression method by Indahl et al., (2005), 

which utilises all the spectral data for the calibration and takes the covariance between the 

predictor (spectral data) and response variables (GC-measured fatty acid compositions) into 

account when the models are established (Frank et al. 1984; Martens & Næs 1989). 

The optimal number of informative components used in the equation was determined using 

20-fold cross-validation. As shown in Paper I, applying the calibration equations on all 

FTIR/GC measured sample pairs, 18 of the 21 individual fatty acid achieved prediction 

accuracies (R2CV) above 0.5. Paper III focus on de novo synthesised C16:0 and C18:1cis9 

fatty acid, which all have had R2CV well above 0.7. Together, fatty acids with R2CV 

exceeding 0.7 represented more than 70 percent of the total fat content in the reference 

samples. Paper I therefore conclude that the majority of milk fat components could be 

satisfactorily predicted from FTIR data.  

Although not significantly investigated in papers I-III, the R2CV for poly- and mono-

desaturation indexes might be of particular interest, as both these indexes could serve as 

markers for milk with properties beneficial to heart health (Haug et al. 2007; Hooper et al. 

2015). The MUFA index had an R2CV of 0.96, while the PUFA index was 0.72. The MUFA 

index seems heavily influenced by C18:1cis-9 (R2CV = 0.94), which constitute about 80 

percent of it, while the PUFA index may benefit from the effect of grouped measurements 

since the R2CV of the index exceeds that achieved for any of the individual fatty acids it 

contains. While Paper I encompassed a range of fatty acids, Papers II and III explore specific 

classes of fatty acids in more detail. A consistent finding was that short and medium de novo 

synthesised fatty acid (C6:0-C14:0) and the SAT and MUFA group indexes were all well 

predicted with a R2CV above 0.86.  

Levels of the de novo synthesised acids are known to be highly correlated, which seems logical 

since they are all products of the same reaction governed by the multifunctional enzyme FASN. 
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The high internal correlations yield stronger signals in the spectral data for each fatty acid and 

give better predictions than if they were independent of each other. Afseth et al. (2010) noted 

that if these internal correlations were stable also for future samples, they could be utilised to 

improve prediction equations.  

The concentration of milk fatty acids is affected by the total milk fat percentage in the sample 

(Eskildsen et al. 2014). This relationship can lead to fatty acid predictions being influenced by 

a sample’s total fat percentage, rather than reflecting the true concentration of each acid 

(Soyeurt et al. 2006). To account for this, we assessed fatty acid concentrations as percentages 

of total fat instead of gram-acid-per-unit-of-milk. As a result, predicted fatty acid levels were 

more effectively disconnected from total fat percentage with no individual correlations 

exceeding 0.3. In none of the cases were the R2CV of a single fatty acid or index higher than 

the squared correlations between total fat and the trait, which suggest that the predicted 

concentrations were due to real absorbance values specific to the fatty acid (Soyeurt et al. 

2006; Paper I: Table 1). Furthermore, we observed a general trend for long unsaturated fatty 

acids to be negatively correlated to total fat and short- and medium-chain fatty acids to be 

positively correlated to total fat. This is supported by literature claiming that a diet rich in 

polyunsaturated fatty acids affect the cow’s ability to synthesise fatty acids de novo (MacLeod 

et al. 2016). 

The trait heritabilities we obtained were in general somewhat lower than those reported by 

other studies using infrared spectroscopy (Soyeurt et al. 2007; Stoop et al. 2008; Bastin et al. 

2013; Lopez-Villalobos et al. 2014). Still, the reported heritabilities of these studies vary 

considerably and factors such as sample size, breed, and chosen mathematical model, which 

may explain some of this discrepancy. The estimates of predictability (R2CV) and 

heritabilities presented in Paper I largely agree with what has been reported elsewhere and 

most major fatty acids were considered predictable and showed substantial heritability. Our 

results underline that, with the widespread use of FTIR instruments and their speed and 

efficiency considered, FTIR data coupled with modern genomics tools can provide ways to 

genetically improve milk fat composition as well as to identify milk fatty acid QTLs using 

GWAS.  

Even though most major fatty acids were predicted with high accuracy, the methodology did 

not provide satisfactory prediction equations for fatty acids present in low concentrations. 

Thus, improved calibration methods are needed to quantify the whole range of fatty acid 

composition in bovine milk. Afseth et al. (2010) showed that milk samples on dry-film could 
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be used to produce feasible calibrations (R2CV from 0.78 to 0.93) for the low concentration 

fatty acids such as CLA (18:2cis-9, trans-11), PUFA, and the summed 18:1transisomers. They 

conclude that it is possible to perform dry-film measurements in mass scale, but the method is 

not implemented in the Norwegian Dairy Herd Recording system. While Afseth et al. (2010) 

showed potential for enhanced FTIR measurements, others have demonstrated that calibration 

models can be improved by preselecting informative wavelengths and thus avoiding errors 

linked the spectra (Ferrand-Calmels et al. 2014). 

 

5.2 Candidate genes in light of fatty acid metabolism 

Milk fatty acid metabolism is a complex process involving multiple pathways, transcription 

factors and enzymes. Paper I focused on a wide array of short and long-chained, branched and 

unbranched acids. We found that the relatively frequent short and medium chained SFA were 

predicted most accurately. Paper I and II focus on identifying the genes involved in the 

synthesis of fatty acids C4:0 to C14:0. Paper III, focus on C16:0 and C18:1cis9. These are 

fatty acids derived mainly from circulating blood lipids, which may suggest the involvement 

of genes related to transportation and cellular trafficking.  

The most prominent candidate genes for fatty acid composition detected in this thesis were 

PAEP on BTA11 (discussed in papers II and III), NCOA6 and/or ACCS2 on BTA13 (papers I 

and II), AACS on BTA17 (Paper II) and FASN on BTA19 (Paper II). Variants within AACS 

showed the strongest association to the short fatty acids C4:0 and C6:0. Polymorphisms 

within PAEP were also associated with levels of C4:0 but, in addition, associated with the 

inverse effect relationship seen for C16:0 and C18:1cis-9. Variants in NCOA6 or ACSS2 were 

related to synthesis of acids with intermediate chain lengths (especially C8:0), while the 

FASN variants were associated with levels of the longest DNS fatty acids (C14:0). All these 

genes have largely defined roles in bovine milk fat synthesis, and operate across the core 

pathways responsible for DNS and triacylglycerol (TAG) metabolism (Figure 1.2). Early in 

DNS, ACSS2 facilitates the conversion of acetate to acetyl-CoA (Bionaz & Loor 2008). 

Alternatively, acetyl-CoA may be derived from acetoacetyl-CoA in the process beginning 

with the production of acetoacetate-CoA from acetoacetate by AACS (Buckley & Williamson 

1975). Later, FASN oversees a process whereby palmitate (C16:0) is synthesised from acetyl-

CoA and malonyl-CoA in a repeated, cyclic reaction. Importantly, intermediate length acids 

(C4:0 to C14:0) can leave the elongation cycle before the chain reaches full length (Knudsen 

& Grunnet 1982). The entire lipid synthesis machine is regulated by a network of genes 
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encoding transcription factors and nuclear receptors. One of these, peroxisome proliferator-

activated receptor gamma (PPARG), is a well-described transcriptional regulator affecting 

lipid storage (Bionaz & Loor 2008; Liu et al. 2016), while NCOA6, being a ligand for PPARG 

and PPARA (Caira et al. 2000; Lemay et al. 2007) is a transcriptional coactivator enhancing 

the activity of, among other things, PPARG. PAEP encodes the milk protein β-lactoglobulin 

which is abundant in bovine milk. Although the effect of PAEP alleles on several milk 

production traits including fat yield and fat percentage is well documented (Tsiaras et al. 

2005; Berry et al. 2010), PAEPs role in milk fat synthesis is poorly understood. β-

lactoglobulin bind both saturated and unsaturated fatty acids in vitro, especially C16:0, which 

may suggest a role in fatty acid transport.  

For all detected candidate genes, most of the top-ranking variants were found in putatively 

regulatory regions such as the promoter, in untranslated regions, or in regions of uncertain 

function such as introns and intergenic regions. The only exceptions are the two 

nonsynonymous SNPs within PEAP encoding the well characterised A and B protein variants 

of the β-lactoglobulin protein. As shown in Paper III, for Norwegian red cattle (and well 

documented in other breeds) these SNPs are in strong LD with several variants in the PEAP 

promoter. Considering this fact together with the large transcription and protein level 

differences seen between haplotypes, and presented in Paper III, we propose that the effects of 

PEAP are caused by variants within regulatory regions rather than by variants within the 

protein coding region.  

The amount of data material, especially the marker density, increased markedly from Paper I 

to Papers II and III. While the GWAS of Paper I involved only 17,000 SNPs, more than 

600,000 markers were included in the GWAS of Papers II and III. Despite this, the findings in 

the three papers are quite similar. QTLs on BTA13 and BTA17 were detected in the same 

region in both Papers I and II. In Paper I we first proposed the BTA13 QTL to be caused by 

variants within ACSS2 but later fine-mapped it to NCOA6. In Paper II, the QTL was mapped 

to a region that spanned both these two genes, but we were not able to identify the underlying 

causal variant or variants. The reason for this is somewhat unclear since the LD among the 

significant markers were not particularly high. Further, the QTL affecting C4:0 at AACS was 

also mapped to approximately the same position in Paper I as in Paper II.  

In contrast, the QTLs located near PAEP and FASN were not detected in Paper I. We believe 

this is most likely because of the lower marker density and fewer animals with phenotypes 

(≈900 vs ≈1800) used in the first paper. Paper I on the other hand reports associations for 
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several de novo synthesized acids close to very interesting functional and positional candidate 

genes on BTA1 and 15, but these were not confirmed in Paper II and Paper III.  A possible 

explanation is that as the number of tests increases, so does the significance threshold, leading 

to these variants being filtered as non-significant markers in Paper II.  

Papers II and III included DYD estimates using spectra from a much larger number of cows 

compared to Paper I. The number of genotyped bulls with DYDs was doubled, and the marker 

density of Paper I was a fraction (<3%) of that used in the GWA studies of papers II and III. 

With these differences in mind, we conclude that agreement among the three papers was 

good. 

The results presented in this thesis are generally well supported by literature. Previous studies 

have found a QTL near ACSS2 and NCOA6 with effect on de novo synthesis of C6:0, C8:0 

and C10:0 in Dutch Holstein Friesian (Bouwman et al. 2011) and in Danish Jersey cattle 

(Buitenhuis et al. 2014). The same region has also been associated with several C16 and C18 

fatty acids in Chinese Holstein (Li et al., 2014). Several authors have reported significant 

associations within or near FASN on BTA19 (Bouwman et al. 2014; Li et al. 2014). FASN is 

an obvious candidate gene because of its well documented role in fat synthesis and has been 

extensively studied in candidate gene studies for fat content in milk and adipose tissue (Roy et 

al. 2006; Zhang et al. 2008; Abe et al. 2009; Schennink et al. 2009; Li et al. 2012; Oh et al. 

2012). PAEP is a novel candidate gene in the context of milk fatty acid composition in cattle, 

but variants of β-lactoglobulin was found to affect the concentration of C16:0 and other fatty 

acids in dairy ewes (Mele et al. 2007), as well as associated to a number of milk traits in 

cattle, including total fat yield and fat percentage (Tsiaras et al. 2005; Berry et al. 2010). 

The fact that AACS and PAEP have yet not been detected in GWA studies focusing on 

bovine milk fatty acids might have several explanations. Breed differences between 

Norwegian Red cattle and breeds studied in other studies will affect the allele frequencies of 

the underlying causal polymorphisms. Hence, regulatory SNPs in LD with the PAEP protein 

variants in Norwegian Red cattle might be fixed in Holsteins for example. Another aspect is 

the wide array of methods used. For instance, may a small difference in significance levels 

cause an association to be detected in one study and not in others. 

Most genome scans performed in other cattle breeds have reported strong associations 

between milk fatty acids and the genes diacylglycerol acyltransferase 1 (DGAT1) on BTA14 

and stearoyl-coenzyme A desaturase 1 (SCD) on BTA26. DGAT1 encodes an enzyme that 
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catalyses the final stage of triacylglyceride synthesis (Cases et al. 1998), while SCD on 

BTA26 is involved in the synthesis of monounsaturated fatty acids by introducing a double 

bond in the delta-9 position of C14:0 and C16:0, primarily, thus producing the cis-9 variant of 

these acids (Ntambi & Miyazaki 2003). No genome-wide significant associations were 

detected near these genes in our studies of Norwegian Red cattle. We have not found any 

animals that carry the K variant of the DGAT1 K232A polymorphism (unpublished results), 

suggesting that the K2342A polymorphism is missing in the Norwegian Red population. The 

SCD A293V polymorphism that is the suspected causal variant (Schennink et al. 2008) does 

segregate in our breed, but this SNP was not significantly associated with any fatty acid in our 

studies. However, C14:1 and C16:1 were poorly predicted by our FTIR approach, which most 

likely hindered the possibility to detect significant associations for these fatty acids. 

 

6.� Concluding remarks and future perspectives 

A critical goal of the current thesis was to develop an efficient workflow to facilitate genome-

based selection for fatty acid composition in Norwegian Red cattle. FTIR data is, as of today, 

routinely gathered as a part of the national milk recording system in Norway. Even though 

there is room for improvement to the presented prediction qualities, we believe the work 

presented in this thesis has shown that millions of FTIR-predicted fatty acid profiles gathered 

over several years can serve as a fast and inexpensive method that, coupled with high-density 

genotype data, can be implemented to breed for improved milk fatty acid composition in 

Norway. Moreover, we have shown that the methodology can contribute to the biological 

understanding of milk fat metabolism in cattle, and with proper management of the spectral 

database, will continue to do so in the future. 

If we assume that the increasing availability of high-quality sequence data will enable the 

identification of large proportions of the quantitative traits causal variants, it may also be 

possible to specifically improve breeding schemes by gene editing techniques like the 

CRISPR-Cas9 system.  Furthermore, today's sequencing technologies are versatile and can be 

used for both quantitative and qualitative analysis of the transcriptome, and for DNA-

methylation analysis, while other technological refinements have significantly improved 

accuracy and precision of high-resolution proteome quantification. In combination with 

genome information, supplementary functional genomics data will contribute to a more 

complete understanding of the biology underlying milk fatty acid composition. 
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Abstract 

Background: Bovine milk is widely regarded as a nutritious food source for humans, although the effects of indi-
vidual fatty acids on human health is a subject of debate. Based on the assumption that genomic selection offers 
potential to improve milk fat composition, there is strong interest to understand more about the genetic factors 
that influence the biosynthesis of bovine milk and the molecular mechanisms that regulate milk fat synthesis and 
secretion. For this reason, the work reported here aimed at identifying genetic variants that affect milk fatty acid 
composition in Norwegian Red cattle. Milk fatty acid composition was predicted from the nation-wide recording 
scheme using Fourier transform infrared spectroscopy data and applied to estimate heritabilities for 36 individual and 
combined fatty acid traits. The recordings were used to generate daughter yield deviations that were first applied in a 
genome-wide association (GWAS) study with 17,343 markers to identify quantitative trait loci (QTL) affecting fatty acid 
composition, and next on high-density and sequence-level datasets to fine-map the most significant QTL on BTA13 
(BTA for Bos taurus chromosome).

Results: The initial GWAS revealed 200 significant associations, with the strongest signals on BTA1, 13 and 15. The 
BTA13 QTL highlighted a strong functional candidate gene for de novo synthesis of short- and medium-chained satu-
rated fatty acids; acyl-CoA synthetase short-chain family member 2. However, subsequent fine-mapping using single 
nucleotide polymorphisms (SNPs) from a high-density chip and variants detected by resequencing showed that the 
effect was more likely caused by a second nearby gene; nuclear receptor coactivator 6 (NCOA6). These findings were 
confirmed with results from haplotype studies. NCOA6 is a nuclear receptor that interacts with transcription factors 
such as PPARγ, which is a major regulator of bovine milk fat synthesis.

Conclusions: An initial GWAS revealed a highly significant QTL for de novo-synthesized fatty acids on BTA13 and was 
followed by fine-mapping of the QTL within NCOA6. The most significant SNPs were either synonymous or situated in 
introns; more research is needed to uncover the underlying causal DNA variation(s).
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Background
While bovine milk is generally regarded as being highly 
nutritious for humans and serving as an important 
source of proteins, fat, minerals, vitamins and bio-active 
lipid components, the net effect of dairy fat on human 
health is strongly debated. This is because saturated fatty 
acids (FA), which constitute roughly 60 to 70% of the FA 
in milk, have been associated with cardiovascular disease 
and obesity, while mono-and polyunsaturated FA have 
been associated with positive effects on both cardiovas-
cular health and diabetes (see e.g., [1] for a review).

Biosynthesis of bovine milk fat is a complex process, 
which is regulated by a network of genes that encode a 
set of transcription regulators and nuclear factors [2]. 
In essence, milk FA are derived via one of two major 
pathways: either by de novo synthesis in the mammary 
gland, or by direct transport from rumen to mam-
mary gland through blood. More specifically, short- and 
medium-chained saturated FA C4:0–C14:0, as well as 
approximately 50% of C16:0, are synthesized de novo in 
the mammary gland from C2 and C4 precursors. The 
remaining C16:0 and long-chained saturated FA are 
derived from circulating plasma lipids which originate 
from the diet or from lipolysis of adipose tissue triacyl-
glycerols. Long-chained FA are mainly saturated in the 
rumen. Both the long- and the medium-chained acids 
can be desaturated by Δ9-desaturase to their cis-9 mono-
unsaturated counterparts.

Milk FA composition varies among individuals, as well 
as within individuals depending on their lactation stage 
[3, 4]. It is highly affected by environmental factors such 
as feeding, udder health and season, but is also geneti-
cally influenced. Substantial genetic variation associated 
with bovine milk fat composition has been reported [5–
10], with estimated heritabilities for individual FA being 
low to moderate (usually in the range from 0.05 to 0.40). 
This raises the possibility to improve nutritional proper-
ties of milk fat by selective breeding.

Traditionally, detailed milk fat composition is deter-
mined by gas chromatography (GC) analysis. This is 
an accurate but expensive method and is not suitable 
for routine milk recording. Recent studies showed that 
Fourier transform infrared spectroscopy (FTIR) data, 
calibrated against gas chromatography with flame ioni-
zation detector (GC–FID) reference data from the same 
samples, has the potential to provide detailed prediction 
of milk fat composition [11–19]. An advantage of this 
approach is that the millions of records obtained by rou-
tine recording of cows can be used to estimate genetic 
parameters and improve traits by breeding. In this study, 
we used such data to perform a genome-wide association 
analysis (GWAS) in Norwegian Red cattle to search for 
genes that affect milk fat composition. A candidate region 

on BTA13 (BTA for Bos taurus chromosome) that influ-
ences de novo synthesis of short- and medium-chained 
FA was fine-mapped and re-analyzed for novel single 
nucleotide polymorphisms (SNPs) that were detected by 
re-sequencing in order to attempt to identify the under-
lying causal DNA variation.

Methods
Estimation of bovine milk fat composition from FTIR 
spectroscopy data
To obtain a calibration model for FTIR spectra, 262 milk 
samples obtained from a feeding experiment [14] and 
616 samples from field sampling were analyzed in paral-
lel by FTIR spectroscopy and GC–FID reference analy-
sis. All samples were from Norwegian Red (NR) cows. 
FTIR analyses were performed using an FT-IR MilkoScan 
Combifoss 6500 instrument (Foss, Hillerød, Denmark). 
Samples were homogenized and temperature-regulated 
before entering a cuvette (37 μm) for transmission meas-
urements in the spectral range from 925 to 5011  cm−1. 
The instrument was equipped with a DTGS detector. All 
spectra were transformed from transmittance to absorb-
ance units. Absorbance spectra were preprocessed by 
taking the second derivative using Savitzky–Golay algo-
rithm with a polynomial of degree 2 and a window size 
of 9 channels followed by extended multiplicative signal 
correction [20] in order to correct for baseline variations 
and multiplicative effect [21]. FTIR spectra (regressors) 
were subsequently calibrated against GC–FID refer-
ence values (regressands) by using powered partial least 
squares regression (PPLSR, [22]). Regressands were pre-
sented as percentages of GC–FID fatty acid values to 
total fat in order to reduce to a minimum value the corre-
lation between the FA and total fat in milk samples. Cali-
bration was assessed by 20-fold cross-validation, i.e. the 
calibration data was divided randomly into 20 segments 
and each of them was used as an independent test set at a 
time. The number of components was selected automati-
cally by evaluating if the improvement of the cross-vali-
dated prediction of the regressands was significant when 
the number of PLS components (linear channel combi-
nations) increased in the reduced-rank PPLSR model. If 
improvement of the calibration model was not significant 
when moving from component number A to component 
number A + 1, A was chosen as the optimal number of 
components. However, in order to avoid overfitting, the 
maximum number of components was set to 25.

The traits that were calibrated in this study included 
24 individual FA and 12 combined traits. Individual FA 
included seven short- and medium-chained, even-num-
bered saturated FA (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, 
C16:0), two long-chained saturated FA (C18:0, C20:0), 
two odd-numbered saturated FA (C15:0, C17:0), seven 
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monounsaturated FA (C14:1cis-9, C16:1cis-9, C18:1cis-9, 
C18:1cis-11, C18:1trans-9, C18:1trans-10, C18:1trans-11) 
and six polyunsaturated FA [C18:2cis-9,cis-12, C18:3cis-
9,cis-12,cis-15, arachinonic acid (ARA), conjugated 
linoleic acid (CLA), docosahexaenoic acid (DHA) and 
eicosapentaenoic acid (EPA)]. The combined traits were 
CIS (% of FA with cis bonds), TRANS (% of FA with trans 
bonds), TRANS:CIS (trans:cis ratio), N3 (total amount of 
omega-3 FA), N6 (total amount of omega-6 FA), N3:N6 
(omega-3:omega-6 ratio), DNS (de novo FA synthesis, 
i.e., sum of the short-chained FA C6:0–C12:0), SAT (% of 
saturated FA), MUFA (% monounsaturated FA), PUFA (% 
polyunsaturated FA), TOTAL (total fat yield), and iodine 
value. NEFA (free FA) and UREA were also included in 
the GWAS, but these traits have built-in prediction equa-
tions in the FT-IR instrument and are stored as a routine 
procedure in the Norwegian Dairy Herd recording sys-
tem as parameters of milk quality and feeding, and were 
therefore not calibrated in this study.

Estimation of variance components and daughter yield 
deviations
The obtained calibration models were applied to about 
1,650,000 infrared spectra from the Regional Laborato-
ries of the Norwegian Herd recording system for the peri-
ods February to November 2007 and July 2008 to March 
2009 (spectra from November 2007  to  July 2008 were 
missing due to technical problems with the storage of 
data during that period). Predicted values of bimonthly 
test day samples were used for further statistical analyses. 
The ~1,650,000 FTIR-based FA profile predictions for 
individual cows (Y) were related to the pedigree structure 
of the NR population. To condense the information for 
genetic analyses, only a subset of the data was used. The 
cows had to be in 1st  to  4th lactation and the test-days 
between 10 and 320  days after calving. The milk yield 
at the test-day had to be between 5 and 50  kg, and the 
fat percentage between 1.75 and 7.0. These criteria were 
designed to remove obvious outliers. Finally, the sire 
had to be an artificial insemination (AI) NR bull. Milk 
samples were recorded on a bimonthly basis. This left 
950,170 profiles from 300,126 cows that were daughters 
from 1095 sires, with a total number of animals in the 
pedigree of 871,455 animals.

The data were analyzed with the following mixed linear 
animal repeatability model:

where RYM is the fixed effect of region (9 regions) by 
year and month of the test-day, with i ranging from 1 to 
170; RPL is the fixed effect of region by lactation num-
ber by 10-day period in lactation of the test-day, with j 
ranging from 1 to 1116; htd is the random effect of herd 

Y = RYMi + RPLj + htdk + pel + am + eijklm,

by test-day, with k ranging from 1 to 83,850; pe is the 
random permanent environmental effect of the cow on 
her repeated records, with l ranging from 1 to 300,126; 
a is a random additive genetic effect of the animal, with 
m ranging from 1 to 871,455; and e is a random residual 
effect.

The distributional assumptions for the random effects 
were the following: htd  ~  N(0, Iσ2htd), pe  ~  N(0, Iσ2pe), 
a ~ N(0, Aσ

2
a), and e ~ N(0, Iσ2e), where 0 is a null vector, I 

an identity matrix and A is the additive genetic relation-
ship matrix.

The variance components were estimated by using the 
DMU software [23] and an average information algo-
rithm. Given the variance components, breeding values 
and fixed effects were estimated by the DMU software 
using an iteration on data algorithm.

Daughter yield deviations (DYD) for the GWAS were 
then derived from these results as the sire averages of 
daughters’ predicted FA compositions, which were each 
corrected for her fixed effects, non-genetic random 
effects and half of her dam’s genetic effect. The number 
of bulls with DYD and genotype information varied from 
step to step as described below, mainly because genotyp-
ing on the SNP chips (see below) was performed on ani-
mals with trait data for many of the traits in the breeding 
goal, and was not specific to animals with DYD for the 
milk FA. The average number of daughters per bull was 
~300 in all steps.

Genotypes for genome-wide association analyses
Initial genotyping for the GWAS was performed on 
2552 NR AI bulls using the Affymetrix 25K bovine SNP 
chip (Affymetrix, Santa Clara, CA, USA) as described in 
[24]. SNP filtering reduced the number of useful SNPs to 
17,343 (see [24] for details). SNPs were positioned on the 
genome by using the UMD 3.1 assembly [25]. DYD were 
available for 991 of the 2552 bulls.

Construction of a high-density SNP dataset with 16,567 
SNPs on BTA13
A dense SNP map for fine-mapping on BTA13 was 
constructed by combining genotypes from the Affy-
metrix 25K SNP chip with genotypes from Illumina’s 
BovineSNP50 (54K) and BovineHD (777K) BeadChips 
(Illumina, San Diego, CA, USA). A total of 1575 NR bulls 
were genotyped with the 54K chip, 536 of these bulls 
were also among the 2552 animals genotyped with the 
25K chip. Next, 384 of the 1575 bulls were genotyped 
with the 777K chip. The three datasets were filtered to 
remove SNPs with a minor allele frequency lower than 
0.05 and all remaining SNPs were positioned according 
to the UMD 3.1 assembly. The 25K dataset was imputed 
to 54K before the combined 54K dataset was imputed to 
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777K. All imputations and phasing were performed using 
BEAGLE v3.3.1 [26] with default options. Phase informa-
tion of the imputed haplotypes was used to identify dou-
ble recombinants and if possible correct or remove these. 
The resulting dataset consisted of 3289 NR bulls and 
16,567 SNPs on BTA13. DYD were available for 1024 of 
the bulls, with an average of 278 daughters per son. The 
991 bulls used in the previous GWAS step were among 
these 1024 bulls.

Genome re-sequencing and construction of a 
sequence-level SNP dataset for the candidate gene region
Whole-genome re-sequencing data were obtained for five 
NR elite bulls on an Illumina Genome Analyzer GAIIx 
instrument (Illumina, San Diego, CA, USA) with 2× 108 
paired end reads. The five bulls were selected based on 
their large numbers of offspring and minimum relation-
ships and therefore represented the genetic diversity of 
the population. Library preparation was performed using 
a TruSeq SBS V2-GA kit (Illumina, San Diego, CA, USA). 
Adaptor- and quality-trimming of raw reads in FASTQ-
format was performed using the FASTX-toolkit v0.0.13 
[27]. The reads were aligned against BTA13 (bovine ref-
erence genome assembly UMD 3.1) using Bowtie v0.12.7 
[28] with default parameters. Sorting, marking of PCR 
duplicates and indexing of the resulting SAM files were 
performed using Samtools v0.1.17 [29]. Between 98.7 and 
99.7% of the reads were mapped to the bovine reference 
genome assembly UMD 3.1, including all chromosomes 
and unplaced scaffolds. The average whole-genome 
sequence coverage for each animal was estimated by 
dividing the total number of sequenced fragments 
times read length by the length of the bovine genome 
(3 gigabases). Two bulls in the dataset had an average 
whole-genome sequence coverage of about 10×, while 
three bulls had an average coverage of 4×. Variant calling 
was performed with Freebayes v0.1.0 [30] with a mini-
mum read coverage of 2 and a minimum alternate allele 
count of 1. The settings were chosen to maximize calling 
sensitivity given the relatively low sequence coverage for 
three of the samples.

Since the parameters for variant calling were set to 
detect as much variation as possible, rather strict crite-
ria for selecting a novel SNP for further genotyping were 
set. A total of 1260 SNPs were found within the two 
genes nuclear receptor coactivator 6 (NCOA6) and acyl-
CoA synthetase short-chain family member 2 (ACSS2) 
or within 2000 bp on either side of these genes. Among 
these 1260 SNPs, all SNPs in exons and UTR were 
selected for genotyping together with intronic SNPs that 
were present in the dbSNP database [31] and co-segre-
gated with the most significant SNPs from the analyses of 
the high-density data on BTA13. This approach resulted 

in 71 SNPs that were used to genotype 570 animals. 
However, as expected given the relatively relaxed SNP 
detection criteria applied initially, several of these SNPs 
were found to be monomorphic and hence to be false 
positives after genotyping. Only 17 SNPs passed all the 
steps. Of these, two exonic and 11 intronic SNPs were 
positioned within NCOA6, one exonic and two intronic 
SNPs were located within ACSS2, and one SNP was 
found in the neighboring gene GSS. In order to include 
missing genotypes, to include bulls with trait data that 
were not genotyped, and to also cover the regions out-
side the two genes, the 17 novel SNPs together with SNPs 
from the BovineHD array positioned in the QTL region 
were imputed by using BEAGLE v3.3.1 [26]. Hence, 
the final map consisted of 204 SNPs that were located 
between 63,488,876 and 65,786,868 bp. Of these, 15 and 
9 SNPs were located within NCOA6 and ACSS2, respec-
tively. The total number of bulls with genotypes for the 
204 SNPs and trait data in the dataset was equal to 782, 
and the average number of daughters per bull was equal 
to 362. This dataset was used to fine-map the candidate 
gene region and for haplotype analyses. Names, positions 
and primer sequences for the 17 novel SNPs detected by 
re-sequencing are in Additional file 1: Table S1.

Single-marker association studies
A single-marker association model was used for the 
GWAS, the re-sequenced BTA13 map and the candidate 
gene map. The model that was fitted to the performance 
data for each trait and each SNP was as follows:

where DYDi is performance of bull i, μ is the overall 
mean, m is a random SNP effect, ai is a random polygenic 
effect of bull i, and ei is a residual effect. We used a ran-
dom SNP effect because since we performed a REML 
likelihood ratio test using REML, it was necessary to 
have the same fixed effects in H1 and H0 (i.e., the model 
with and without the SNP effect) for the two models to 
be comparable. Alleles were coded as numbers from 1 to 
4 (i.e., A = 1, C = 2, G = 3 and T = 4). A random poly-
genic effect was included to account for putative genetic 
differences among bulls other than the SNP effect. The 
DYD were weighed by the number of daughters. The 
variances were estimated from the data. The SNP effect 
m was assumed to follow a normal distribution ~N(0, 
σ
2
m ), where σ2m is the SNP variance. The polygenic effect a 

was assumed to follow a normal distribution ~N(0, Aσ
2
a ), 

where A is the relationship matrix among the analyzed 
bulls derived from the pedigree, and σ2a is the additive 
genetic variance. The residual effect e was assumed to 
follow a normal distribution ~N(0, Wσ

2
e), where σ2e is the 

environmental variance and W is the matrix of weights 

DYDi = μ + m + ai + ei,
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computed by ASReml based on the number of daughters 
in the DYD mean.

Significance levels for the random SNP effects were 
obtained from the log-likelihoods (logL) of a model that 
includes the SNP effect [LogL(H1)] as well as those of a 
model without this SNP effect [LogL(H0)], which were 
both calculated for each SNP using the ASREML pack-
age version 2.0 [32]. A likelihood ratio test-statistic (LRT) 
was calculated as LRT = 2 * [LogL(H1) − LogL(H0)]. Fol-
lowing Baret et al. [33], the distribution of the LRT under 
the null hypothesis can be seen as a mixture of two Chi 
square distributions with 0 and 1 degree of freedom, 
respectively. The significance levels are then obtained 
from a Chi square distribution with 1 degree of freedom 
but doubling the probability levels. Due to the amount of 
multiple-testing performed, we required a rather strin-
gent significance threshold of p  =  0.00025. Thus, the 
corresponding LRT were obtained from a Chi square dis-
tribution with 1 degree of freedom and p = 0.0005, and 
must be equal to 12.12 or more.

Correction for the most significant QTL
In order to determine if more than one QTL was seg-
regating in the candidate region, the effect of the most 
significant SNP from the single-marker analyses of the 
candidate gene region was corrected for by including it 
as a fixed effect in the single-marker model and repeat-
ing the analysis for all other SNPs in the candidate gene 
region.

Haplotype analyses
Pair-wise LD measure (r2) was estimated for all SNP 
pairs in the candidate gene region on BTA13 using Hap-
loview 4.2 [34]. Haploptype blocks were defined manu-
ally. Block 1 was a narrow NCOA6 block that contained 
the most significant SNPs (SNPs 98–102), block 2 was 
a wider NCOA6 block (SNPs 98–108), block 3 spanned 
ACSS2 (SNPs 114–122), while block 4 included SNPs that 
were present in both NCOA6 and ACSS2 (SNPs 98–125). 
For each of the defined blocks, haplotypes for each sire 
were determined from the phased genotypes. Since very 
few sires were homozygous for the least frequent haplo-
types, sires with one or two copies of the haplotype were 
grouped and a two-sample t test was performed in R [35] 
to test for differences in mean phenotypic value between 
this group and the remaining sires.

Results and discussion
FTIR spectroscopy and variance component estimation
A key requirement of this study was to be able to esti-
mate FA composition in milk samples based on FTIR 
spectroscopy data using a GC–FID reference analy-
sis method [14]. The results showed that 29 of the FA, 

together representing more than 90% of the total fat con-
tent, achieved cross-validated squared Pearson product-
moment correlation coefficients (R2CV) above 0.5; these 
FA were therefore considered predictable and included 
in the further analyses. As shown in Table  1 and Addi-
tional file 2: Table S2, the highest concentrations of indi-
vidual FA were found for C16:0, C18:1cis-9, C18:0 and 
C14:0 (mean concentrations equal to 25.25, 21.4, 11.29 
and 11.21% of total fat, respectively). The best combined 
trait predictions were obtained for SAT, CIS and MUFA 
(R2CV = 0.96), while the best predictions for individual 
FA were found for C18:1cis-9 (R2CV = 0.94) and for C8:0 
to C12:0 (R2CV  =  0.91). The results showed that most 
major FA were predicted rather accurately, however with 
lower R2CV for C16:0, C14:0 and C18:0 (R2CV  =  0.77, 
0.73 and 0.54, respectively). The ability to predict a FA 
with high confidence depended strongly on its con-
centration, and FA with concentrations less than 1% 
generally showed low R2CV and were considered unpre-
dictable (Table  1). There were exceptions to this with a 
few low-frequency FA that achieved high R2CV, which is 
most likely due to cross-correlation with more frequent, 
predictable FA. Correlations between predicted FA 
and total fat percentage were low to moderate (Table 1) 
and showed a general trend for negative correlations 
for longer unsaturated FA, and positive correlations for 
shorter saturated FA. Mean concentrations of each trait 
from the GC–FID reference analyses, R2CV, correlation 
coefficients between each predicted FA and total fat per-
centage as well as heritabilities are in Table  1, while all 
the results for the PPLSR calibration and the GC–FID 
reference values and variance components are in Addi-
tional file 2: Table S2.

Several studies investigated the effectiveness of mid-
infrared spectroscopy to predict bovine FA composition 
[11–19], and reported that accuracies vary due to dif-
ferences in the number of samples, breeds, spectra pre-
treatments, reference methods and units of measure. 
In agreement with our findings, prediction accuracies 
are generally best for FA with high concentrations and 
for the short and medium-chained FA, C18:1cis-9, and 
for SAT and MUFA. Prediction accuracies were in gen-
eral better when FA concentrations were expressed as a 
quantity per unit of milk rather than a quantity of total 
milk fat, which is most likely because FA concentrations 
are correlated to total fat, and predicting FA in milk on 
the basis of FTIR is the combined effect of predicting fat 
content and fat composition [11, 13, 16]. However, these 
correlations should be lower when FA concentrations 
are expressed as quantity of total milk fat when models 
are developed on the basis of fat as in our study. Soyeurt 
et  al. [11] suggested that the predicted concentrations 
were not due to real absorbance values specific to FA if 
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the calibration correlations were not higher than the cor-
relations between total fat and FA. As shown in Addi-
tional file  2: Table S2, the squared correlations between 
a FA and total fat percentage were markedly lower than 

the R2CV for all FA and combined traits groups in our 
study, which indicated that the predicted concentrations 
are due to real absorbance values of the FA rather than to 
correlations to total fat only. Moreover, prediction accu-
racies for C8:0, C10:0, C12:0, C18:1cis-9, SAT and MUFA 
were as high as those reported with milk-based mod-
els [13, 15, 17–19]. C4:0 and C14:0 were predicted with 
somewhat poorer accuracies than those usually obtained 
with milk-based models, but with better accuracies than 
those obtained with fat-based models [11, 13, 19]. Predic-
tions of C16:0 were comparable to those obtained with 
fat-based models [11, 13, 19].

In general, the selected number of components was 
large, but since the PPLSR model is very selective for 
each component, a larger number of selected compo-
nents is expected than with a conventional PLSR model. 
In addition, the complexity of the calibration reference 
data used in this study was considerably higher and the 
level of variation of the data was much higher compared 
to those for the data reported in Afseth et  al. [14], and 
thus the model is expected to be more complex. Com-
pared to the reference data used in Afseth et al. [14], the 
current calibration set contains many samples with a 
considerable higher proportion of unsaturated acids.

Relatively high heritabilities were estimated from the 
FTIR predictions (Table 1). Estimates for the predictable 
FA ranged from 0.09 for C18:1trans-11 to 0.35 for C4:0. 
Short and medium length FA were slightly more heritable 
than longer and unsaturated FA. This is as expected since 
the shorter saturated FA are mainly synthesized by the 
animal, while longer unsaturated FA originate predomi-
nately from the diet. The heritability for the sum of poly-
unsaturated FA (PUFA) was somewhat higher than that 
for the sum of monounsaturated (MUFA) and saturated 
(SAT) FA (h2  =  0.171, 0.130 and 0.137, respectively). 
These results can be explained by the fact that all three 
indices (SAT, MUFA and PUFA) reflect a combination 
of genetic and environmental factors, and that the pre-
diction accuracy and concentration of individual FA are 
expected to affect the estimates for the indices. Estimated 
heritabilities for the sum of trans FA (TRANS) were 
lower than for the sum of cis FA (CIS), and this was also 
reflected in the individual FA.

In the literature, estimated heritabilities for bovine milk 
FA composition vary largely among studies depending on 
sample size, breed, and method. Our estimates were gen-
erally lower than those from other studies in which FA 
concentrations were predicted with mid-infrared spec-
troscopy [5, 7, 8, 10], but they were in the same range 
as in the study of Krag et al. [9] in which GC was used. 
Our observation that individual saturated FA have higher 
heritabilities than unsaturated FA has been previously 
reported by several authors [5, 7, 9], whereas estimated 

Table 1 Mean concentrations, cross-validated squared 
correlation coefficients, correlations to total fat, and herit-
abilities for all calibrated traits

Mean concentration from the GC–FID reference analyses (Cons), cross-
validated squared Pearson product-moment correlation coefficients (R2CV), 
Pearson correlation coefficients between the predicted fatty acids and total fat 
percentage (corr) and standard errors of the correlation, heritabilities (h2) and 
standard errors of the heritability for all calibrated traits. The concentration is 
expressed as percentage by weight of total fatty acid content (on a fatty acid 
methyl ester basis), except iodine value, which is expressed as g I2/100 g of total 
fatty acid content

Trait Cons R2CV Corr (SE) h2 (SE)

C4:0 4.16 0.73 0.111 (0.039) 0.353 (0.004)

C6:0 2.48 0.89 0.104 (0.039) 0.231 (0.003)

C8:0 1.48 0.91 0.040 (0.039) 0.187 (0.003)

C10:0 3.2 0.91 0.034 (0.039) 0.171 (0.003)

C12:0 3.55 0.91 0.045 (0.039) 0.179 (0.003)

C14:0 11.21 0.86 0.077 (0.039) 0.109 (0.003)

C14:1cis-9 0.98 0.52 0.089 (0.039) 0.222 (0.003)

C15:0 1.0 0.59 0.071 (0.039) 0.146 (0.003)

C16:0 25.25 0.77 0.433 (0.035) 0.145 (0.003)

C16:1cis-9 1.17 0.51 0.392 (0.036) 0.146 (0.003)

C17:0 0.49 0.43 0.146 (0.039) 0.142 (0.003)

C18:0 11.29 0.54 −0.279 (0.038) 0.175 (0.003)

C18:1trans-9 0.24 0.74 −0.521 (0.033) 0.141 (0.002)

C18:1trans-10 0.36 0.56 −0.543 (0.033) 0.171 (0.003)

C18:1trans-11 1.33 0.67 −0.318 (0.037) 0.092 (0.002)

C18:1cis-9 21.4 0.94 −0.186 (0.038) 0.127 (0.003)

C18:1cis-11 0.79 0.73 −0.357 (0.037) 0.146 (0.003)

C18:2cis-9,cis-12 1.39 0.61 −0.409 (0.036) 0.172 (0.003)

C18:2cis-9,trans-11 0.62 0.65 −0.325 (0.037) 0.120 (0.002)

C18:3cis-9,cis-12,cis-15 0.54 0.42 −0.231 (0.038) 0.190 (0.003)

C20:0 0.2 0.39 −0.336 (0.037) 0.161 (0.003)

ARA 0.07 0.46 −0.052 (0.039) 0.236 (0.004)

EPA 0.06 0.16 0.088 (0.039) 0.173 (0.003)

DHA 0.02 0.62 −0.014 (0.039) 0.159 (0.003)

SAT 64.31 0.96 0.308 (0.037) 0.137 (0.003)

MUFA 26.28 0.96 −0.229 (0.038) 0.130 (0.003)

PUFA 2.7 0.72 −0.491 (0.034) 0.171 (0.003)

Iodine value 25.51 0.95 −0.241 (0.038) 0.144 (0.003)

CIS 26.43 0.96 −0.198 (0.038) 0.138 (0.003)

TRANS 2.56 0.73 −0.419 (0.036) 0.103 (0.002)

TRANS:CIS 0.1 0.64 −0.377 (0.036) 0.096 (0.002)

DNS 10.72 0.92 0.048 (0.039) 0.165 (0.003)

N3 0.62 0.37 −0.211 (0.038) 0.191 (0.003)

N6 1.47 0.62 −0.386 (0.036) 0.170 (0.003)

N3:N6 0.44 0.42 0.143 (0.039) 0.193 (0.003)

Total 93.29 0.59 0.377 (0.036) 0.106 (0.002)
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heritabilities for groups of FA varied among studies. 
Whereas many studies support the general pattern of 
higher heritabilities for saturated FA than for unsatu-
rated FA [5, 6, 8, 10], the highest estimates were found for 
MUFA in the study of Krag et al. [9], and for PUFA in the 
current study. The disparity in these results most likely 
reflects differences in concentrations and prediction 
accuracies of the FA included in the different FA groups.

Genome-wide association studies
Phenotypic records for the 29 traits considered to be pre-
dictable, together with pre-existing records for urea and 
NEFA, were tested for their association with ~17,000 
genome-wide distributed SNPs using a single-marker 
association model. We detected 200 significant marker-
trait associations and the most significant associations 
were clustered on BTA1, 13 and 15. These QTL are fur-
ther discussed below and compared with findings from 
other studies. All significant results are in Additional 
file 3: Table S3.

BTA13
In our study, the most relevant QTL were detected 
between 55.4 and 66.1 Mb on BTA13. These QTL affected 
the content in all short- and medium-chained, saturated 
de novo synthesized milk FA (i.e.; C4:0–C14:0 and DNS). 
Among these, the highest LRT was detected between 
SNP rs29018443 and C8:0 (LRT = 26.98), and this same 
SNP was also highly associated with C6:0, C10:0, C12:0, 
C14:0 and DNS. A strong candidate gene, acyl-CoA syn-
thetase short-chain family member 2 (ACSS2), lies nearby 
this SNP and encodes an enzyme that catalyzes the acti-
vation of acetate for de novo synthesis of short-chained 
FA [36]. ACSS2 was also suggested as a candidate gene 
that affects de novo synthesized FA (C6:0, C8:0 and 
C10:0) in Dutch Holstein–Friesian [37] and Danish Jersey 
cattle [38], and several C16 and C18 FA in Chinese Hol-
stein [39].

BTA1
In our study, the most significant association 
(LRT  =  33.94) was between SNP rs29019625 located 
at 144.4  Mb on BTA1 and C18:2cis-9,cis-12. This SNP 
was also significantly associated to N6, C18:1trans-11, 
C15:0 and PUFA. The QTL region spanned the ~126.3–
144.4  Mb region and included also significant associa-
tions to C6:0–C12:0, DNS and DHA. SNP rs29019625 lies 
approximately 20 kb away from the SLC37A1 gene, which 
encodes a membrane bound protein that is involved 
in the translocation of glycerol-3-phosphate into the 
endoplasmic reticulum [40]. Other positional candidate 
genes are ABCG1 and AGPAT3. The former is located at 
144  Mb and is involved in macrophage cholesterol and 

phospholipid transport and may regulate cellular lipid 
homeostasis in other cell types (e.g., [41]), while AGPAT3 
is located at 146.7  Mb and encodes an acyltransferase 
that has a role in the de novo phospholipid biosynthetic 
pathway [42].

A connection between BTA1 and predominantly long-
chained FA was reported in several studies. Schennink 
et  al. [43] observed significant associations between 
markers on BTA1 and C18:0, C18-index and CLA-index 
at ~125  cM (which corresponds roughly to ~140  Mb 
according to their map published in Schopen et al. [44]). 
Bouwman et  al. [37] reported a QTL region for C14:0 
that is located between ~121 and 130 Mb and for C16:1 
between ~146 and 161 Mb in the Dutch Holstein–Frie-
sian population. Li et  al. [39] detected significant asso-
ciations with markers on BTA1 for C10:0 and C12:0 at 
132 Mb and for C18:0 and C18 index at 146 Mb in Chi-
nese Holstein. Furthermore, Li et al. [45] reported asso-
ciations between BTA1 and C18 index at 142.2  Mb in 
Chinese Holstein and C18:0 at 146.3 Mb in a joint analy-
sis of Chinese and Danish Holstein.

BTA15
The QTL region that was detected on BTA15 (between 
22.6 and 29.0  Mb) affects C8:0–C14:0, DNS, C18:0, 
C18:1cis-9, CIS, trans:cis ratio, iodine value and total fat 
yield, with the highest LRT being for DNS (LRT = 25.8). 
This QTL is situated close to the genes encoding the fol-
lowing apolipoproteins APOA1, APOA3, APOA4 and 
APOA5 at 27.9 Mb. This QTL region is frequently cited 
in the literature. Bouwman et  al. [37] detected associa-
tions between QTL in the region that lies from 20.5 to 
27 Mb on BTA15 and two de novo synthesized FA (C10:0 
and C14:0) in Dutch Holstein–Friesian. Within the same 
region, associations to C18:0 and C18 index in Chinese 
Holstein [39] and to C12:0, C14:0, and C18:1cis-9 in Dan-
ish Jersey [38] were reported. Furthermore, Li et al. [45] 
reported associations to C18:0 and C18 index at position 
28.6  Mb in Chinese Holstein and at 27.3–32.8  Mb in a 
joint analysis of Chinese and Danish Holstein.

GWAS studies frequently report strong associations 
between milk FA and the genes diacylglycerol acyltrans-
ferase 1 (DGAT1) on BTA14 and stearoyl-coenzyme A 
desaturase 1 (SCD) on BTA26. DGAT1 encodes an enzyme 
that catalyzes the final stage of triacylglycerol synthe-
sis (e.g. [46]), while SCD is involved in the synthesis of 
monounsaturated FA by introducing a double bond in 
the delta-9 position of C14:0, C16:0 and C18:0, primarily 
[47]. No significant associations in the vicinity of DGAT1 
were detected in our study. Subsequent re-sequencing of 
147 NR animals showed that they were all homozygous 
for the A variant of the DGAT1 K232A polymorphism 
(not shown). In contrast to the A variant, the K variant is 
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associated with increased fat yield, fat percentage and pro-
tein percentage and decreased milk yield and protein yield. 
Selection may have favored the A variant in the NR popula-
tion, because most selection pressure was put on milk and 
protein yield in the breeding goal. In contrast, both allele 
variants of an important SCD1 polymorphism (A293V) 
were found to be relatively common in the sequenced NR 
individuals with a MAF of 0.25 (data not shown); how-
ever a follow-up study that examined the SCD1 region by 
including additional SNPs did not detect any significant 
associations near SCD1 (unpublished results).

Fine-mapping using a high-density SNP dataset on BTA13
Subsequent analyses were performed to fine-map the 
BTA13 QTL that affects de novo synthesized FA and to 
identify potential causal variations. We began by reana-
lyzing the associations between all the high-density 
SNPs on BTA13 (n  =  16,567) and the traits that were 
significant in the initial GWAS (i.e. C4:0–C14:0 and 
DNS). Somewhat surprisingly, this analysis did not 
point towards the prime candidate gene ACSS2 as the 
most likely position of the QTL, but to a nearby gene i.e. 
nuclear receptor coactivator 6 (NCOA6) that encodes a 
transcriptional co-activator, which interacts with nuclear 
hormone receptors. The most significant result was 
found for SNP rs41700740 at 64,650,276  bp which is a 
synonymous variant located within this gene. The LRT 
for this SNP ranged from 62.6 for C8:0 to 24.5 for C14:0. 
Significant LRT were found for ~500 SNP/trait combina-
tions in the QTL region. As an example, results for DNS 
are in Fig. 1, while LRT for all SNP/trait combinations are 
in Additional file 4: Table S4.

Fine-mapping using SNPs in the NCOA6 and ACSS2 genes 
at the sequence level
Since our analyses pointed towards NCOA6 and not 
ACSS2 as the most likely positional candidate gene under-
lying the QTL, both genes were investigated in more 
detail. A dataset consisting of 15 SNPs within NCOA6 
and nine SNPs within ACSS2 as well as 180 SNPs in the 
regions surrounding these genes was constructed by com-
bining sequence-level polymorphisms with SNPs from 
the Bovine HD BeadChip. Both C6–C14 as well as DNS 
were reanalyzed for these SNPs using the single-SNP 
model. The results showed that, for C6:0–C12:0 and DNS, 
the highest LRT was found for SNP 99, i.e. rs41700742 
at 64,648,620  bp, which is a synonymous SNP located 
within NCOA6. High LRT were also detected for SNP 100 
(rs41700740 at 64,650,276  bp), SNP 102 (rs41700737 at 
64,655,588 bp) and SNP 98 (rs41700745 at 64,639,392 bp). 
All these SNPs are localized within NCOA6; the former 
and the latter are synonymous exonic SNPs whereas 
rs41700737 at 64,655,588 bp is an intronic SNP. For C14:0, 
SNP 161 (rs43711970) at 65,246,092 bp was slightly more 
significant (24.2 vs. 23.8) than SNP 99. SNP 161 is located 
within the gene UQCC, which is almost 400 kb away from 
NCOA6 on the telomeric side. Complete results for all 
traits and SNPs are in Additional file  5: Table S5. As an 
example, results for DNS are in Fig. 2.

In order to determine if more than one QTL segregated 
in the detected region, the DNS traits were re-analyzed 
by including the effect of SNP rs41700742 as a fixed term 
(not shown). The results showed that this SNP explained 
all the variation, which indicates that only one QTL is 
segregating for the DNS traits, and the signals detected 
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Fig. 1 Association analysis of FA synthesized de novo (DNS) for SNPs on BTA13 from the BovineHD BeadChip. The ordinate denotes the LRT, while 
the abscissa denotes SNP positions in Mb. The grey line indicates the significance threshold (LRT = 12.12)
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for the remaining SNPs were merely due to LD between 
SNPs.

Haplotype analyses
Finally, to better characterize the BTA13 QTL, all the 
SNPs within the QTL region were grouped into haplotype 

blocks in order to identify the haplotypes that displayed 
the strongest associations to C8:0, which is a proxy for 
DNS. Pair-wise LD measure (r2) for all SNP pairs in the 
candidate gene region are in Fig. 3 along with four man-
ually-constructed haplotype blocks. Within each block, 
each haplotype with a frequency higher than 0.01 was 
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Fig. 2 Association analysis of FA synthesized de novo (DNS) in the candidate gene region. Top results for the entire candidate gene region. The 
ordinate denotes the LRT, while the abscissa denotes SNP positions in bp. Bottom zoom on the region between 64.4 and 64.9 Mb. The positions of 
the genes in the region are indicated with grey boxes. The grey line indicates the significance threshold (LRT = 12.12)
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tested against the mean of the remaining haplotypes. 
Results for haplotypes with a frequency of 0.05 or more 
are in Table 2. The most significant effects were detected 
in the narrow NCOA6 block (block 1 that included SNPs 
98  to  102), which displays eight haplotypes. A frequent 
haplotype (denoted 1.1) was associated with higher con-
tent of short-chained FA (p  =  0.00037), while haplo-
types 1.2 and 1.4 were associated with lower FA content 
(p  =  0.0000048 and 0.027, respectively). When the hap-
lotype block was extended to include SNPs 98  to  108 in 
the broader NCOA6 block (block 2, which also consisted 
of eight haplotypes), the differences between haplotypes 
were less marked. Haplotype 2.1 within this block had an 
identical frequency and p value as in the narrow block. The 
two negative haplotypes from block 1 were split into sev-
eral less frequent haplotypes, with the most frequent being 
haplotypes 2.4 (p = 0.038) and 2.6 (p = 0.09). Block 3 cov-
ered ACSS2 (SNPs 114  to  122) and produced even less 
significant results. A larger block that contained the SNPs 
located within both NCOA6 and ACSS2 (block 4, includ-
ing SNPs 98 to 125 with eight haplotypes), the differences 
between haplotypes became more marked again. The 
most frequent haplotype (4.1) showed a stronger effect 
than the remaining haplotypes with a p value of 0.00046. 

In summary, the strongest associations were found for 
haplotypes within a rather narrow region that contained 
NCOA6. Neither the haplotypes within a larger block that 
included both NCOA6 and ACSS2 nor the block that con-
tained only ACSS2 were significant. Thus, the results of the 
haplotype analyses also suggest that NCOA6 is a stronger 
positional candidate for the observed variation in de novo 
FA synthesis than ACSS2. 

NCOA6
NCOA6, or nuclear receptor coactivator 6, encodes an 
essential, non-redundant multifunctional coactivator for 
nuclear hormone receptors and certain other transcription 
factors [48]. The gene is expressed in a variety of tissues, 
such as testis, brain, ovary, liver, fat and heart [48] and 
also in the mammary gland [49]. NCOA6 is essential for 
embryonic development [50], it is involved in cell survival, 
growth, wound healing and energy metabolism [51], and is 
important for normal mammary gland development [52]. 
Different NCOA6 isoforms are expressed in the mouse 
mammary gland at different developmental stages includ-
ing adult virgin, pregnancy, lactation and involution [48].

To the best of our knowledge, no studies have specifi-
cally investigated the role of NCOA6 in milk fat synthesis. 

NCOA6 ACSS2
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However NCOA6 is known to be a ligand for transcrip-
tion factors such as PPARα and PPARγ [53], and thus, its 
effect could be through these. PPARγ affects expression 
of genes that are involved in fatty acid transport such as 
LPL, CD36 and ACSL1 [54], and is proposed as a major 
regulator of bovine milk fat synthesis [2]. In a study on 
the gene regulatory networks in lactation, NCOA6 (in 
that study denoted PRIP) was identified as one of the fac-
tors involved in PPARα/RXRα signaling [55]. Therefore, 
NCOA6 could be a functional as well as a positional can-
didate for the QTL on BTA13.

Our study did not identify any candidate causal poly-
morphisms underlying the QTL. The three SNPs with the 
highest LRT are either synonymous or intronic and there-
fore do not directly alter the protein sequence. However, 
introns can harbor important regulating elements such as 
binding sites for transcription factors and sites that affect 
alternative splicing. Synonymous SNPs are also suggested 
to have important biological roles, as they may have an 
impact on critical cis-regulating sequences, alter mRNA 
structure and influence translational speed [56]. Further 
analyses will be undertaken in order to investigate the 
nature of the QTL on BTA13 and other QTL that have an 
effect on bovine milk FA composition.

Conclusions
Using a combined dataset of high-resolution genotypes 
and FTIR phenotypes, our GWAS detected significant 
QTL for milk fatty acids on BTA1, 13 and 15. On BTA13, 

the QTL for de novo fatty acid synthesis mapped close to 
a known candidate gene (ACSS2), but subsequent refined 
analyses highlighted that ACSS2 had little effect and 
that SNPs within the nearby NCOA6 gene were respon-
sible for the observed QTL. To date, the functional role 
of NCOA6 in milk fatty acid synthesis is unclear, but one 
possible effect could be that it is a ligand for the tran-
scription factor PPARγ, which is suggested to be a major 
regulator of milk fat synthesis.
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Unravelling genetic variation 
underlying de novo-synthesis of 
bovine milk fatty acids
Tim Martin Knutsen , Hanne Gro Olsen , Valeria , Morten Svendsen ,  
Achim Kohler , Matthew Peter Kent  & Sigbjørn Lien

manufacturing properties of dairy products. Understanding of genes controlling milk fat synthesis may 
contribute to the development of dairy products with high quality and nutritional value. This study 

de novo synthesis of the short- and medium-

associations of PAEP AACS  
or FASN mainly associated with content of 

biosynthesis, supports their potential role in de novo synthesis of bovine milk fatty acids.

Bovine milk is an important source of many nutrients including proteins, fat, minerals, vitamins and bioactive 
lipid components. The relative abundance and concentration of individual fatty acids (FAs) in milk affect both 
human health and the manufacturing properties of dairy products. Myristic (C14:0) and palmitic acid (C16:0) are 
associated with cardiovascular disease through increased level of blood cholesterol1, while shorter chain saturated 
FAs (C4:0 to C12:0) have been associated with positive health effects such as antiviral, antibacterial and anticancer 
activities2–4. The difference in melting point between saturated and unsaturated acids also affects the softness, 
flavour and colour of dairy products such as butter and cheese5,6.

By improving our understanding of the pathways in bovine milk FA synthesis and identifying the genes and 
genetic polymorphisms associated with variation in milk FA content, it may be achievable through genome-based 
selection methods7 to optimally balance individual FAs allowing industry to satisfy consumer demands for 
healthy food of high quality. The short- and medium-chain length acids C4:0 to C14:0 are potential targets for 
this purpose. In contrast to the bulk of long-chained milk FAs and around half of C16:0 which are largely derived 
from the cow’s diet, C6:0 to C14:0 and a fraction of C4:0 are synthesized de novo in the bovine mammary gland8. 
These acids occur in milk in relatively high concentrations and show moderately high heritabilities (usually in 
the range of 0.10 to 0.50)9–12 and are therefore well suited for genetic analyses such as a genome-wide association 
study (GWAS).

The synthesis of short- and medium-chained FAs is founded upon C2 and C4 precursors absorbed from the 
diet. After being transported to the mammary gland, acetate and acetoacetate are converted to acetyl-CoA and 
then to malonyl-CoA which, along with butyryl-CoA (from plasma β-hydroxybutyrate and C2), are used as 
precursors for cytosolic de novo-synthesis. The process of carbon chain elongation from C2:0 or C4:0 to C16:0 
involves a cyclic reaction13 which also generates intermediate products, C4:0 to C14:0, via a chain termination 
mechanism14. Newly synthesised FAs are transported from the cytosol to the endoplasmic reticulum where they 
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are linked to a glycerol 3-phosphate backbone to form triacylglycerols, a final series of steps sees them secreted 
into the milk in the form of milk fat globules.

The current study explores genetic variation associated with the de novo-synthesis of short- and 
medium-chained FAs (C4:0 to C14:0). Milk fatty acid composition was predicted from Fourier transform infra-
red spectroscopy (FTIR) using prediction equations derived from GC/FTIR calibration sets. This method has 
been shown to provide fast and cheap large-scale phenotyping of the breeding population, especially for acids 
with relatively high concentration and heritability such as the de novo-synthesized FAs12,15–17. These phenotypes 
were combined with array-based single nucleotide polymorphism (SNP) genotypes in a genome-wide association 
study to identify chromosomal regions (quantitative trait loci - QTLs) with substantial effects on the traits under 
investigation. QTL regions identified on bovine chromosomes (BTA) 11, 13, 17 and 19 were re-analysed using a 
higher density of sequence variants (SNPs and indels) imputed from re-sequencing data in an attempt to identify 
putative functional polymorphisms. Moreover, mRNA sequence analysis of mammary epithelial cells from 36 
milk samples was used to verify that the candidate genes indicated by GWAS were expressed in the mammary 
gland during milk production.

Genome-wide association analyses for FA concentration. Our analysis began with combining 
daughter yield deviations (DYDs) for C4:0 to C14:0 from 1,811 bulls with genotypes from 609,361 autosomal 
SNPs to perform a GWAS and identify chromosomal regions with a major impact on de novo synthesis of these 
acids.

As shown in Fig. 1, we found the most significant associations on BTA11, BTA13, BTA17 and BTA19. Results 
for all significant marker and trait combinations are provided in Supplementary Table S1. The QTL on BTA11 was 
most significant for the shortest of the tested acids; C4:0, while the one on BTA17 was significant for both C4:0 
and C6:0. As FA chain length increases, these regions become less important, while the significance of the QTL on 
BTA13 increases. This QTL was most significant for acids with intermediate chain lengths (especially C8:0) with 

Figure 1. Manhattan plots showing results from genome-wide association analyses of C4:0 to C14:0 on high-
density marker data. Chromosomes are shown along the abscissa while the ordinate denotes the −log10(p-
value) for each marker – trait association. Chromosomes showing genome-wise significant associations for one 
or more of the tested acids are highlighted with black points. The red line denotes the genome-wide significance 
level.
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decreasing significance for shorter (C6:0) and longer acids (C10:0–C14:0). Finally, the QTL on BTA19 becomes 
the most significant for the synthesis of the longest of the analysed acids; C14:0.

All major QTL regions spanned genes with an established function in milk fat biosynthesis. The QTL on 
BTA11 was detected close to the associated endometrial protein (PAEP) gene at 103.3 Mb. The QTL region 
on BTA13 was rather broad and covered at least two potential candidate genes; nuclear receptor coactivator 6 
(NCOA6) at 64.6 Mb and acyl-CoA synthetase short-chain family member 2 (ACSS2) gene at 64.8 Mb. BTA17 
displayed a QTL close to the acetoacetyl-CoA synthetase (AACS) gene at 53 Mb. Closer examinations of BTA19 
revealed that the associations were located in two distinct regions; one at 37.4 Mb which is around 500 kb from 
acyl-CoA synthetase family member 2, mitochondrial precursor (ACSF2) at 36.9 Mb. The second QTL region was 
close to fatty acid synthase (FASN) at 51.4 Mb. However, analysis of sequence variants revealed that the significant 
markers detected around 36.9 Mb were not situated within or very close to ACSF2. Since no other convincing 
candidate gene was detected in this region, we chose not to follow up this QTL in further analyses.

Fine-mapping of imputed sequence variants on selected chromosomes. To characterize as much 
genetic variation as possible in and around the candidate genes we imputed SNPs and indels identified from 
whole genome sequence data resulting in a more than 20-fold increase in marker density after quality filtering 
in the regions 90–110 Mb on BTA11, 60–70 Mb on BTA13, 20–60 Mb on BTA17, and 45–55 Mb on BTA19. The 
quality of imputation relates most to marker allele frequencies. The Beagle software18 reports an internally calcu-
lated parameter, allelic r-squared (AR2), that is the estimated squared correlation between the most likely allele 
and the true allele for each marker19. The mean value of this parameter ranged from 0.84 for variants with minor 
allele frequency (MAF) below 0.05 to 0.94 for variants with MAF above 0.05. Imputed SNPs and indels, with AR2 
above 0.7, were included in a reanalysis of the QTLs for significant phenotype associations. Detailed information 
of the top significant variants on each chromosome for each FA tested, is shown in Table 1.

Results for BTA11 showed the strongest associations between C4:0 and a group of markers 
that were situated within and immediately outside of PAEP (Fig. 2). The most significant marker (rs109837926; 
p-value = 3.5e-9) was found at position 103,300,697 bp which is ≈800 bp upstream from PAEP’s transcription 
start site. The minor A allele (MAF = 0.34) was associated with a slight, but noteworthy increase in C4:0 levels 
(0.02 g/100 g milk fat). Closer examination of the haplotype containing the top ranked markers (all of which had 
p-values, effects and frequencies similar to rs109837926) revealed that the minor alleles for all markers were 
included in a single haplotype (frequency ≈ 0.3) that covered a region beginning 11 kb upstream from PAEP and 
extending into the neighbouring gene glycosyltransferase 6 domain containing 1 (GLT6D1). The high level of link-
age disequilibrium (LD) among these markers (Fig. 2) restricted our ability to pinpoint any one of them as causal. 
Among other top-ranking markers were two missense variants in PAEP, known to produce the A and B protein 
variants of beta-lactoglobulin (at 103,303,475 bp in exon 3 and 103,304,757 bp in exon 4), one splice region var-
iant (at 103,304,656 bp in PAEP exon 3), and three SNPs in the 5′UTR of PAEP (103,301,561 bp, 103,301,690 bp, 
and 103,301,694 bp). The four top-ranked markers were grouped in a region ≈1,000 bp upstream of PAEP which 

FA BTA rs number Top variant (bp) Ref allele Alt allele MAF p-value
C4:0 11 rs109837926 103,300,697 C A 0.34 3.47e-9
C4:0 13 — 62,280,697 A G 0.13 7.37e-7
C4:0 17 rs477658921 53,078,216 GAAAGTGA G 0.08 8.09e-11
C4:0 19 rs797503644 52,884,766 G A 0.28 2.17e-8
C6:0 13 rs41700742 64,648,620 A G 0.45 6.82e-16
C6:0 17 rs379029510 51,669,903 T C 0.46 2.05e-10
C6:0 19 rs476079746 37,421,626 G GAAAAAA 0.40 5.86e-9
C8:0 13 rs381037433 64,523,817 G GA 0.21 1.08e-18
C8:0 17 rs456738710 51,161,184 A T 0.22 1.31e-8
C8:0 19 rs457952543 51,334,328 C CT 0.03 1.26e-6
C10:0 13 rs381037433 64,523,817 G GA 0.21 7.6e-16
C10:0 17 rs456738710 51,161,184 A T 0.22 2.47e-8
C10:0 19 rs109016955 51,381,233 G C 0.04 5.21e-9
C12:0 13 rs381037433 64,523,817 G GA 0.21 4.79e-14
C12:0 17 rs456738710 51,161,184 A T 0.22 2.17e-7
C12:0 19 rs109016955 51,381,233 G C 0.04 7.5e-9
C14:0 13 rs381037433 64,523,817 G GA 0.21 5.2e-14
C14:0 17 rs384370770 51,231,279 T C 0.09 3.67e-8
C14:0 19 rs109016955 51,381,233 G C 0.04 4.07e-11

Table 1. Summary of the top variants on chromosomes 11, 13, 17 and 19 determined by single-marker 
association analyses of sequence variants for fatty acids C4:0 to C14:0. FA, fatty acid; BTA, bos taurus 
chromosome; rs, rs number; Top variant, position of the most significant markers in base pairs; Ref allele, 
reference allele; Alt allele, alternative allele; MAF, minor allele frequency.
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can suggest a regulatory role of the QTL. Results for all tested markers and trait combinations are shown in 
Supplementary Fig. S6 and Supplementary Table S2.

On BTA13, the most significant results were found for C8:0, with decreasing signifi-
cance levels for acids with shorter and longer chain lengths. For all traits, we detected similar p-values for a large 
number of markers in a region spanning from approximately 63.5 to 65.4 Mb (Fig. 3) that covered at least 39 
characterised genes (NCBI Bos taurus Annotation Release 105, UMD 3.1.1) including the two genes regarded 
as most potent candidates; NCOA6 and ACSS2. The most significant marker for C8:0, C10:0, C12:0 and C14:0 
was rs381037433 at 64,523,817 bp (p-values = 1.08e-18, 7.6e-16, 4.8e-14 and 5.2e-14, respectively), which is an 
intronic insertion (G/GA) in phosphatidylinositol glycan anchor biosynthesis class U (PIGU). The insertion had a 
frequency of 0.21 and was associated with a reduction of C8:0 level of 0.02 g/100 g milk fat. C6:0 was most signifi-
cantly associated to rs41700742 at 64,648,620 bp (p-value = 6.8e-16), which is a synonymous SNP in NCOA6. LD 
(r2) between these two markers is 0.3.

Many other markers in the 63.5 to 65.4 Mb region displayed p-values and allele substitution effects similar to 
those of rs381037433. However, MAFs varied from 0.07 to 0.47. Haplotype analyses revealed that the least frequent 
allele of all these markers was present in one specific haplotype with a frequency of approximately 0.08 that spanned 
the entire 63.5 to 65.4 Mb region. For markers where the MAF was higher than 0.08, the least frequent allele was also 
found in other haplotypes. Hence, the LD (r2) among the most significant markers were generally low.
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Figure 2. Results for BTA11 - C4:0 association analysis using imputed sequence variant data on BTA11, 
zoomed in on the region between 103.27 and 103.33 Mb. The ordinate provides −log10(p-value) for each marker 
– trait association, while the abscissa denotes marker position. The red diamond indicates the most significant 
marker for C4:0; rs109837926 at position 103,300,697 bp. Colouring indicates the level of LD (r2) between each 
marker and rs109837926. Gene annotation information (Ensembl Bos taurus annotation release 86) is shown 
with grey and black bars reflecting positive and negative strand orientations respectively.
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Figure 3. Results for BTA13 - C8:0 association analysis using imputed sequence variant data on BTA13, 
zoomed in on the region between 63 and 66 Mb. The ordinate provides −log10(p-value) for each marker – trait 
association, while the abscissa denotes marker position. The red diamond indicates the most significant marker 
for C8:0; rs381037433 at position 64,523,817 bp. Colouring indicates the level of LD (r2) between each marker 
and rs381037433. Gene annotation information (Ensembl Bos taurus annotation release 86) is shown with blue 
bars reflecting position and exon structure.
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Only two non-synonymous SNPs were found among these top-ranking markers; rs383480158 in peroxisomal 
membrane protein 4 (PXMP4) and rs446495267 in PIGU. Also, there were two 3′ UTR variants in zinc finger 
protein 341 (ZNF341) and ENSBTA00000000308. However, neither of these genes have a function that can easily 
be related to milk fat synthesis. All other significant markers were either synonymous (i.e. not causing an amino 
acid shift) or positioned in non-coding regions such as introns and intergenic regions. This suggests a regulatory 
role also for this QTL. Results for all tested markers and trait combinations are shown in Supplementary Fig. S7 
and Supplementary Table S3.

In agreement with the GWAS analysis, imputed sequence variants on BTA17 were found 
to have a main effect on short C4:0 and C6:0 fatty acids. The most significant association was found for C4:0 
and rs477658921 at 53,078,216 bp (Fig. 4). This is a 7-bp indel (GAAAGTGA/G) where the minor G allele 
(MAF = 0.08) was associated with an increase of C4:0 level of 0.05 g/100 g milk fat. This variant showed a lower 
significance against C6:0 (p-value = 1.3e-9) and no significance with other longer acids.

The rs477658921 indel is located within intron 1 of BRI3 binding protein (BRI3BP), which does not appear 
to be an especially good functional candidate gene, but it is also in close proximity to AACS at 52.97–53.03 Mb 
which may be involved in utilizing ketone body for fatty acid-synthesis. LD among the top-ranking markers was 
high (r2 higher than 0.84), indicating that the significance of the rs47765892 polymorphism on C4:0 could be a 
result of polymorphisms in or near AACS. As with BTA11, we found that the least frequent alleles of the most 
significant markers were contained within a haplotype with a frequency of 0.083 that spanned AACS and BRI3BP. 
All the top-ranking markers are either situated in introns of or outside these two genes and suggest a regulatory 
role of the QTL.

A second peak was detected at 51.49 Mb within the zinc finger protein 280B (ZNF280B). The LD between 
significant SNPs within this QTL region and the QTL embracing AACS and BRI3BP at 53.07 Mb is low which 
suggests that these are two different QTLs. The p-values of this second peak were approximately 1e-9 for all traits. 
Results for all tested markers and trait combinations are shown in Supplementary Fig. S8 and Supplementary 
Table S4.

The QTL on BTA19 was most strongly associated to C14:0 with significance levels decreas-
ing for acids with shorter chain length and until it dropped below the significance threshold for C8:0 and shorter 
acids. The most significant marker for C14:0, C12:0 and C10:0 was rs109016955 at 51,381,233 bp (p-values = 4.1e-
11, 7.5e-9 and 5.2e-9, respectively). This G/C SNP has a MAF of 0.04 where the minor C allele was associated 
with a reduction of C14:0 level of 0.14 g/100 g milk fat. It is situated ≈3,7 kb upstream of the transcription start 
site of FASN and annotated both as an upstream gene variant of FASN and as a 3′ untranslated region (3′ UTR) 
variant and a non-coding exon variant in various predicted transcript variants of coiled-coil domain containing 
57 (CCDC57). Similarly high significance levels were found for 24 variants situated either in introns of CCDC57 
and FASN or in the region between these two genes (Fig. 5). The MAF of all these markers were very low (0.03 to 
0.05), and most of them showed only moderate LD with rs109016955 (Fig. 5). Results for all tested markers and 
trait combinations are shown in Supplementary Fig. S9 and Supplementary Table S5.

To verify that the candidate genes we detected 
from GWAS are present in the udder during lactation we isolated mRNA from somatic milk cells and measured 
their level of expression. Specifically, all genes in the region between 63.5 to 65.4 Mb on BTA13 were tested, along 
with candidates and, where appropriate, neighbour candidates on BTA11, 17 and 19. Expression levels in the 
form of mean normalised gene count can be found as Supplementary Table S10. PAEP was the most abundantly 
expressed gene of those found to be significant in the association analyses, with a mean count of approximately 
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Figure 4. Results for BTA17 - C4:0 association analysis using imputed sequence variant data on BTA17, 
zoomed in on the region between 52.5 and 53.3 Mb. The ordinate provides −log10(p-value) for each marker – 
trait association, while the abscissa denotes marker position. The red diamond indicates the most significant 
marker for C4:0; rs477658921 at position 53,078,216 bp. Colouring indicates the level of LD (r2) between each 
marker and rs477658921. Gene annotation information (Ensembl Bos taurus annotation release 86) is shown 
with grey and black bars reflecting positive and negative strand orientations respectively.
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444,000 reads. No reads were found for its neighbour GLT6D1. The QTL region on BTA13 contains at least 39 
characterised genes (NCBI Bos taurus Annotation Release 105, UMD 3.1.1) of which 28 genes were found to be 
expressed in somatic milk cells. Mean expression levels varied from two to 5,407 normalised counts for these 
genes, with the highest expression found for ACSS2. NCOA6 showed the eight highest expression level of these 
genes. On BTA17, both AACS and BRI3BP were expressed in the SMC, but expression level of AACS was much 
higher than for BRI3BP. FASN on BTA19 showed the second highest expression level of the studied genes with 
a normalised read count of ~29,000, which was approximately 233 times higher than the expression level of the 
neighbour CCDC57.

Discussion
Understanding the role of genetic variation on fatty acid composition in bovine milk may reveal opportunities to 
produce superior raw product, and at the very least will improve our understanding of the genetics of fatty acid 
synthesis. Uniquely, our study combined data from 4.6 million FTIR recordings (FA composition phenotypes) 
representing 640,000 cows, with combined high-density genotyping and whole genome sequencing representing 
1,811 bulls. This analysis allowed us to reveal a number of genetic variants associated with the synthesis of short- 
and medium-chained FAs C4:0 to C14:0.

We identified one gene, PAEP, which is a novel candidate gene in the context of fatty acid content, and several 
previously known candidate genes. Our results revealed that concentration of C4:0 was most strongly affected by 
PAEP on BTA11 and AACS on BTA17. The QTL on BTA13, which is most likely caused by NCOA6 or alterna-
tively ACSS2, seems to be related to the generation of longer chain length acids, while the de novo-synthesis of 
the longest chain length acid, C14:0, is most strongly affected by a polymorphism in or around FASN on BTA19.

A key condition for using phenotype data (FA composition) predicted from FTIR profiles in an association study 
is that individual acids can be predicted with a high degree of confidence. The effectiveness of mid-infrared spectros-
copy to predict bovine milk fatty acid composition have been thoroughly discussed in a number of papers12,15–17,20–24.  
Inaccurate predictions and correlations among acids or between acids and other milk components may reduce 
the ability to identify true QTLs and determine exactly which fatty acids that are affected. We have previously 
reported that FAs with a concentration of 1% or higher are predicted with acceptable accuracies12. This find-
ing was also reflected in the current study, where all the tested de novo-synthesized acids (i.e., C4:0 to C14:0) 
were present in concentrations above 1% and had prediction accuracies (cross-validated squared Pearson 
product-moment correlation coefficients; R2CV) ranging from 0.73 (C4:0) to 0.90 (C6:0 - C14:0) and hence were 
considered well predictable. An argument against using FTIR to predict FA composition is that the acids are cor-
related to total fat and the prediction merely reflects total fat rather than individual acids20. This correlation was 
accounted for in our two studies by presenting the fatty acid concentrations as percentages of total fat instead of 
as gram acid per unit of milk21–23. Soyeurt21 suggested that predictions were due to real absorbance of the acids if 
the calibration correlations were higher than the correlations between the acids and total fat. As reported in our 
previous study12, the squared correlation to total fat ranged between 0.001 and 0.012, indicating that the predicted 
concentrations are due to real absorbance values of these acids. A consequence of this normalization is that the 
prediction accuracies are expected to be lower than when FA concentrations are expressed as a quantity per unit 
of milk21–23, however with the exception of C4:0, the accuracies were found to be comparable to those obtained by 
milk-based models12,21–23. Although C4:0 was predicted with lower accuracy than the other FAs included in our 
study, our analysis detected two candidate genes with functions judged relevant for C4:0 content. Separating FAs 
with similar chain lengths such as C4:0 and C6:0 using an FTIR approach can be challenging since their chemical 
structure is relatively similar, however, the technology allowed us to identify two clearly different QTL profiles for 
C4:0 and C6:0 which, if the phenotype measurements were severely confounded together, would not be as distinct 
as they appear to be.
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Figure 5. Results for BTA19 – C14:0 association analyses using imputed sequence variant data on BTA19, 
zoomed in on the region between 50.8 and 51.5 Mb. The ordinate provides −log10(p-value) for each marker – 
trait association, while the abscissa denotes marker position. The red diamond indicates the most significant 
marker for C14:0; rs109016955 at position 51,381,233 bp. Colouring indicates the level of LD (r2) between each 
marker and rs381037433. Gene annotation information (Ensembl Bos taurus annotation release 86) is shown 
with grey and black bars reflecting positive and negative strand orientations respectively.
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The genes highlighted as candidates for de novo-synthesis have, essentially, defined roles in bovine milk 
fat synthesis, and operate across the core pathways responsible for de novo-synthesis and triacylglycerol 
metabolism (Fig. 6). Early in de novo-synthesis, ACSS2 facilitates the conversion of acetate to acetyl-CoA25. 
Alternatively, acetyl-CoA may be derived from acetoacetyl-CoA in the process beginning with the production 
of acetoacetate-CoA from acetoacetate by AACS26. Later, FASN oversees a process whereby palmitate (C16:0) is 
synthesised from acetyl-CoA and malonyl-CoA in a repeated, cyclic reaction. Importantly, intermediate length 
acids (C4:0 to C14:0) can leave the elongation cycle before the chain reaches full length. The entire lipid synthesis 
machine is regulated by a network of genes encoding transcription factors and nuclear receptors. One of these, 
peroxisome proliferator-activated receptor gamma (PPARG), is a well described transcriptional regulator affecting 
lipid storage25,27, while NCOA6 (which is a ligand for PPARG and PPARA28,29) is a transcriptional coactivator 
enhancing the activity of, among other things, PPARG.

PAEP encodes the milk protein beta-lactoglobulin (β-LG) which is the major whey protein in bovine milk. 
Although the effect of PAEP on milk production traits including total fat yield and fat percentage has been well 
documented30,31, its influence on individual fatty acids is poorly understood. β-LG is found to bind both saturated 
and unsaturated FA in vitro32, which might suggest a function as an intracellular transporter of FAs. The B variant 
of the β-LG protein is commonly known to be less abundant than the A variant31,33, and it is unclear if the effect of 
PAEP on C4:0 found in our study is due to the polymorphisms causing the A and B β-LG variants or to regulatory 
sites affecting PAEP expression. Although the promoter region has been extensively studied, the causal polymor-
phism has not been identified due to an extensive level of LD between the two polymorphisms that produce the 
A and B protein variants and polymorphisms situtated within putative transcription factor binding sites34–37. The 
effect of this QTL on C4:0 could possibly be due to the combined influence of alterations in several sites simulta-
neously rather than to one specific SNP in one single site.

With regards to BTA13, previous studies have pointed towards ACSS238–40 and NCOA612 as positional and 
functional candidates. Due to high levels of LD among SNPs in the 2 Mb QTL region embracing these genes, 
our association analyses have expanded the BTA13 candidate list to include 39 characterised genes of which 
several have functions related to milk fat biosynthesis. This list also includes E2F transcription factor 1 (E2F1) 
which is shown to regulate important genes involved in FA synthesis such as ACSL1, FASN and PPARG41, and 
agouti signalling protein (ASIP) which might regulate lipid metabolism in adipocytes42. However, the most sig-
nificant markers detected by the association analyses were either found in non-coding regions or genes without 
known relevant functions in fat synthesis such as PIGU. Expression analyses revealed that 28 of the 39 genes 
were expressed in the bovine mammary gland during lactation. While ACSS2 was distinctly more expressed than 
NCOA6 in all samples (Supplementary Table S10), variants within and near ACSS2 also showed a weaker asso-
ciation to the traits. Furthermore, since NCOA6 contained variants that were among the top-ranking SNPs, we 
consider this gene to be the most promising positional candidate gene.

Our finding of an association between C4:0 and markers near AACS at ~53 Mb on BTA17 has not been 
reported in other GWA studies as far as we know. Li et al.40 and Duchemin et al.43 reported associations to mark-
ers on BTA17 in Chinese Holstein and Dutch Holstein-Friesian, respectively, but in other regions than AACS. 
This discrepancy may be explained by differences in study design (direct FA measurements compared to our 
study using DYDs estimated from millions of spectra from 640,000 cows) or the use of different breeds.

For BTA19, several authors have reported significant associations within or near FASN and the neighbour-
ing gene CCDC5740,44. CCDC57 is poorly characterised, and its putative role in milk fat synthesis is unknown. 
Medrano et al.45 reported that CCDC57 was expressed in mammary tissues of a lactating cow with expression 

Figure 6. Illustration of the most relevant pathways and genes involved in de novo synthesis of short- and 
medium-chained fatty acids in the bovine mammary gland. Detected candidate genes are highlighted in green, 
whereas some additional well studied genes of high importance are shown in blue.
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levels higher than that of FASN. This is in contrast with the results of the present paper, where FASN was 
expressed more than 200 times higher than CCDC57. FASN is an obvious candidate gene because of its known 
role in fat synthesis. FASN has been extensively studied in candidate gene studies for fat content in milk and 
adipose tissue46–51, but similarly to the present study, this has not yet resulted in a clear identification of a causal 
polymorphism.

Most genome scans performed in other cattle breeds than Norwegian Red cattle have reported strong 
associations between milk fatty acids and the genes diacylglycerol acyltransferase 1 (DGAT1) on BTA14 and 
stearoyl-coenzyme A desaturase 1 (SCD) on BTA26. DGAT1 encodes an enzyme that catalyses the final stage of 
triacylglycerol synthesis52, while SCD on BTA26 is involved in the synthesis of monounsaturated FAs by introduc-
ing a double bond in the delta-9 position of C14:0, C16:0 and C18:0, primarily, thus producing the cis-9 variant of 
these acids53. No significant associations have been detected near these genes in any of our studies of Norwegian 
Red cattle. Resequencing of 147 widely used NR bulls revealed that all individuals were homozygous for the A 
variant of the DGAT1 K232A polymorphism (data not shown), suggesting that this variant is almost fixed in 
Norwegian Red cattle. The SCD polymorphism does segregate in our breed but was not significantly associated 
with any fatty acid neither in the present study nor in the previous study where a larger number of acids also 
including C14:1cis-9 and C16:1cis-9 were analysed12. However, these acids were poorly predicted by the FTIR 
approach12, which hampers the possibility to detect significant associations for these traits.

Imputation from HD-density to sequence level is heavily dependent upon MAFs and number of animals in 
the reference dataset54. In this study, 153 animals were whole genome sequenced and used as the imputation ref-
erence. When performed within breed, imputation for high-density genotypes to sequence has previously been 
shown to work acceptably with reference dataset of about 13055. We did not perform a cross validation procedure 
to test the expected accuracy in our dataset, but Beagle outputs a measure (AR2), defined as estimated squared 
correlation between most probable and true genotype, depending on the internally calculated uncertainty in the 
imputation model for each marker56. All markers with AR2 below 0.7 was filtered from our marker list before 
association analysis, as values above this threshold has shown to be a good indicator for reliable imputation 
accuracies55,57,58. Overall, mean AR2 was 0.92 for all sequence-level imputed variants, and 0.84 for variants with 
MAF below 0.05. AR2 was close to 1 for all variants found significant by the association analyses of sequence-level 
variants.

Conclusions
Understanding of genes and polymorphisms controlling milk fat synthesis may reveal opportunities to tailor the 
fatty acid content and thereby improve the nutritional value and quality of dairy products. In this study we iden-
tified a set of positional candidate genes within milk fat synthesis pathways by combining dense genotyping and 
whole genome sequencing with high-throughput phenotypes for de novo synthesis of milk fatty acids. These genes 
were PAEP (on BTA11), AACS (BTA17), NCOA6 or ACSS2 (BTA13) and FASN (BTA19). Their roles in fatty acid 
synthesis were further supported by their expression levels in milk.

Methods
Ethics statement. All animals included in the study were Norwegian Red cattle, and experiments were con-
ducted in accordance with the rules and guidelines outlined in the Norwegian Animal Welfare Act 2009, issued 
by the Norwegian Ministry of Agriculture and Food. Most data were generated as part of routine commercial 
activities outside the scope of that requiring formal committee assessment and ethical approval (as defined by the 
above guidelines).

Milk fat composition 
was estimated from FTIR spectroscopy data as described in Olsen et al.12, with some adjustments to number 
of spectra and animals used. In brief, 224 milk samples obtained from a feeding experiment and 659 samples 
from field sampling were analysed in parallel by FTIR and gas chromatography with flame ionization detector 
(GC-FID) reference analysis. FTIR spectra (regressors) were subsequently calibrated against GC-FID reference 
values (regressands) by using powered partial least squares regression (PPLSR59). Regressands were presented as 
percentages of GC-FID fatty acid values to total fat to reduce to a minimum value the correlation between the 
FA and total fat in milk samples. The calibration model was applied to a total of 4,619,737 infrared spectra from 
640,304 cows sampled in the periods February to November 2007 and July 2008 to June 2014. The traits that were 
calibrated for in this study were C4:0, C6:0, C8:0, C10:0, C12:0 and C14:0.

A detailed description of the estimation of heritabilities and DYDs is given in in Olsen et al.12. In short, the 
estimation of heritabilities were performed on a reduced dataset of 2,209,486 profiles from 426,505 cattle with 
a pedigree of 716,753 animals using the DMU software version 6 release 5.160. The data were analysed with the 
following mixed linear animal repeatability model:

Y RYM RPL htd pe a e (1)i j k l m ijklm= + + + + +

where RYM is the fixed effect of region (9 regions) by year and month of the test-day, with i ranging from 1 to 740; 
RPL is the fixed effect of region by lactation number by 10-day period in lactation of the test-day, with j ranging 
from 1 to 1,116; htd is the random effect of herd by test-day, with k ranging from 1 to 168,483; pe is the random 
permanent environmental effect of the cow on her repeated records, with l ranging from 1 to 426,505; a is a ran-
dom additive genetic effect of the animal, with m ranging from 1 to 716,753; and e is a random residual effect.

DYDs for the GWAS were then estimated using the 4,619,737 spectra for the full dataset of 640,304 cows with 
a pedigree of 999,470 animals as the sire averages of daughters’ predicted FA compositions, which were each cor-
rected for her fixed effects, non-genetic random effects and half of her dam’s genetic effect12.
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The concentration of each fatty acid together with the accuracy of prediction (in the form of cross-validated 
squared Pearson product-moment correlation coefficients; R2CV) and heritabilities were as reported in Olsen et 
al.12. Mean concentration ranged from 1.48% of total fat for C8:0 to 11.21% of total fat for C14:0. R2 ranged from 
0.73 for C4:0 to 0.91 for C8:0, C10:0 and C12:0, while heritabilities ranged from 0.11 for C14:0 to 0.35 for C4:0.

Genotypes for the studied animals were available from other 
projects and the routine genotyping performed by Geno Breeding and AI Association. DNA was extracted from 
semen samples of bulls and from blood samples of cows using standard phenol-chloroform-based protocols. The 
bulls were genotyped on at least one of four different platforms in order to make a genome-wide high-density 
SNP dataset for the association analyses; the Affymetrix 25 K SNP array (Affymetrix, Santa Clara), a custom 
Affymetrix 50 K SNP array, the Illumina 54 K BovineSNP50 BeadChip (Illumina, San Diego) and the 777 K 
Illumina BovineHD Genotyping BeadChip (Illumina, San Diego).

Imputation was done in a step-wise manner, were the 25 K Affymetrix dataset was imputed to the custom 50 K 
Affymetrix density, and then the combined Illumina 54 K and Affymetrix 50 K dataset were imputed to 777 K. The 
Affymetrix 50 K reference counted 5,009 NR animals and the Illumina 777 K reference consisted of 750 widely 
used AI bulls. Imputation was done using Beagle version 4.118, with effective population size (Ne) set to 200 and 
number of phasing iterations (niterations) set to 20. Remaining parameters were set to default. Map positions 
were based on the UMD 3.1 reference assembly61.

For each imputation step, the following quality control of the markers was applied: Variants with MAF less 
than 0.01 and Hardy-Weinberg Equilibrium p-values less than 1e-7 were filtered. Animals with more than 10% 
Mendelian errors were removed from the dataset, and all remaining genotypes with Mendelian errors were set to 
missing and later imputed. Markers and animals with a call rate below 95% were removed. Markers on sex chro-
mosomes were discarded. For each step, the imputation quality was tested using 5-fold cross validation. Markers 
with discordance between true and imputed genotypes above 10% were removed, as these markers are likely to 
be misplaced in the reference assembly62. SNPs on unplaced scaffolds and sex chromosomes were also discarded 
from the dataset.

A total of 2,434 genotyped AI bulls were considered for the initial 777 k GWAS analysis. After filtering bulls 
with less than 20 daughters, the dataset contained 1,811 bulls with imputed genotypes for the 777 K Illumina 
BovineHD BeadChip. Of the 1,811 bulls, 57 bulls had genotypes imputed from the Affymetrix 25 K array, 237 
were imputed from the custom Affymetrix 50 K SNP array, 1,113 animals from the Illumina 54 K BeadChip and 
404 were already genotyped on the 777 k Illumina BovineHD BeadChip. The resulting dataset consisted of 1,811 
bulls with trait data in the form of DYDs based on 20 or more daughters for the relevant FAs and with genotypes 
for 609,361 SNPs distributed on all 29 autosomes.

Whole-genome sequencing and variant calling. Whole-genome sequencing data were obtained from 
153 animals (132 AI bulls and 31 cows) as described in Olsen et al.63. The AI bulls were selected based on max-
imum number of daughters in production and by ensuring an even contribution to the population structure of 
Norwegian Red cattle, by manually examining the recorded pedigree. Animals were sequenced to an average 
coverage of 9 × using Illumina sequencing (Illumina, San Diego). All reads were aligned against UMD 3.1 using 
BWA-mem version 0.7.1064. Variant calling was done with FreeBayes version 1.0.265. Missing genotypes in the 
resulting Variant Call Format (VCF) file were imputed and phased using Beagle version 4.118. This phased dataset 
was used as a reference panel for imputing the 1,811 animal high-density panel to full sequence with the Beagle 
software using the same imputation parameters as described before except that expected allele miscall rate (err) 
were set to 0.01. In a final filtering step, variants with minor allele frequency above 0.02 were kept. Also, variants 
with Beagle’s reported allelic R2 (AR2) below 0.7 were filtered, as this has been shown to be a robust and relia-
ble threshold for filtering of imputed sequence variants56–58. The raw, unfiltered VCF-file were kept for future 
reference.

Genotyping of cows. The 36 cows used for the RNA sequencing were also genotyped on the Illumina 
BovineSNP50 BeadChip (54 K, Illumina, San Diego). Blood samples were collected by certified personnel, and 
DNA extraction and genotyping on the Illumina BovineSNP50 BeadChip (54 K, Illumina, San Diego) were per-
formed according to the manufacturer’s protocol. Genotypes were quality checked and imputed to sequence 
density as described above.

Genome-wide association studies. A single-marker genome-wide association analysis was performed 
for the fatty acids C4:0 to C14:0, and 609,361 genome-wide distributed SNPs. This analysis was conducted with 
the GCTA software66 for computational feasibility. A mixed linear model association analysis was performed with 
the –mlma-loco option of GCTA. The model fitted to the performance information for each trait and each SNP 
was:

DYD a bx g e (2)= + + +−

were DYD is the performance of the bull, a is the mean term, b is the fixed additive effect of the candidate SNP to 
be tested for association, x is the SNP genotype indicator variable coded as 0, 1 or 2, g− is the random polygenic 
effect, i.e. the accumulated effect of all SNPs except those on the chromosome where the candidate SNP is located, 
and e is the residual. The var(g−) will be re-estimated each time when a chromosome is excluded from calculating 
the genomic relationship matrix. The chromosome-wide significance level was set at p = 1e-5 which is a default 
value from qqman67. The genome-wide significance level was set at (0.05/609,361*6) = 1.37e-8, corresponding to 
a nominal type I error rate of 0.05 and Bonferroni correction for 609,361 markers and 6 traits.
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All sequence-level polymorphisms that 
passed quality control and were situated in the QTL regions detected by the GWAS were analysed using the 
ASReml package version 2.068. ASReml were selected for this step since it allowed us to weight the DYDs by num-
ber of daughters as well as to use genotype dosage data as input.

Analysed regions and traits were 100 to 107 Mb on BTA11 (C4:0), 60 to 70 Mb on BTA13 (C6:0 to C14:0), 20 
to 60 Mb on BTA17 (C4:0 and C6:0) and 45 to 55 Mb on BTA19 (C10:0 to C14:0).

The model that was fitted to the information on performance for each trait – marker combination was:

DYD 1 X Za eb (3)μ= + + +

where DYD is the vector of bull performances weighed by the number of daughters, 1 is a vector of ones, μ is the 
overall mean, X is a vector of marker genotypes coded as a decimal number between 0 and 2 depending on the 
estimated dosage of the alternate allele (as reported by Beagle 4.1), b is the fixed effect of the marker, Z is an inci-
dence matrix relating phenotypes to the corresponding random polygenic effects, a is a vector of random poly-
genic effects, and e is a vector of residual effects. Genetic and residual variances were estimated from the data. a 
was assumed to follow a normal distribution σN 0 A( , )A

2  where A is the relationship matrix derived from the 
pedigree, and σA

2  is the additive genetic variance. e was assumed to follow a normal distribution σN 0 I( , )e
2  

where e
2σ  is the residual variance. Association analysis was performed for each individual marker. Since ASReml 

does not output p-values for the marker effect automatically, these were calculated from the F statistics for the 
conditional sum of squares, the numerator degrees of freedom and the denominator degrees of freedom with the 
R function pf() from the stats package version 3.4.0.

Haplotype analyses. Pairwise LD measurements (r2) were estimated and haplotypes were identified for the 
top ranking markers within the relevant QTL regions using the Haploview 4.2 software69 on phased genotypes. 
Haplotypes were defined by Haploview according to the confidence intervals strategy70 or the four gamete rule71.

Gene expression levels were obtained using read counts 
from mRNA isolated from somatic milk cells (SMC) of 36 cows from the research facilities at the Norwegian 
University of Life Sciences, Aas, Norway. Pedigree information was used to avoid selection of close relatives. The 
cows were part of a research herd at our University. All milk samples were collected approximately 50 days (range 
47 to 55) after calving. This sampling period was chosen since it coincides approximately with peak expression of 
several relevant genes involved in bovine milk fat synthesis including FASN25 and also with the peak of synthesis 
and import of FAs in bovine milk25 and the top of the lactation curve of Norwegian Red cows72. The cows were in 
different parities due to the limited size of the research herd. All animals were fed an equal standard diet.

Milk is excreted by the mammary epithelial cells (MEC) lining the inside of the udder, which are subject 
to turnover and shed into the milk and therefore represent a proportion of the somatic cells found in milk73. 
Cánovas et al.74 found that compared to other sources (e.g. mammary gland tissue, laser dissected MEC), the 
quality of the total RNA extracted from the SMC was high. Moreover, the expression of genes investigated in SMC 
derived material was highly correlated with the expression observed in laser-dissected MEC. Several studies have 
confirmed the usefulness of this method73,75,76.

Milk samples were collected manually 2–3 hours after milking to maximise the amount of viable cells present 
in the milk. Teats were cleaned with water followed by 70% ethanol before milking by hand, and 2 × 50 ml milk 
from each animal was collected in Falcon tubes. Samples were stored on ice immediately after collection and cen-
trifuged at 4 °C for 10 min at 2,300 g within 1.5 hours to collect cells in the bottom of tubes. After centrifugation, 
most of the fat layer was removed with a clean pipette tip and supernatant decanted. Each pellet was dissolved in 
4 ml 1xPBS by pipetting up and down. The liquid was transferred to a new 50 ml Falcon tube. Samples were cen-
trifuged at 4 °C for 10 min at 2,300 g and supernatant decanted. Cell pellets were dissolved in 1 ml Trizol (Qiagen), 
and cells were lysed by pipetting up and down. Samples were stored in −80 °C until RNA extraction with Qiagen 
RNeasy Plus Universal Tissue Mini Kit (Qiagen) according to the manufacturer’s protocol. RNA concentrations 
and quality were measured with a NanoDrop8000 spectrophotometer (Thermo Fisher Scientific) and Agilent 
RNA 6000 assay on Agilent BioAnalyzer 2100 (Agilent Technologies), respectively. All samples had an RNA 
integrity number (RIN) between 6.6 and 9.2. Samples were prepared for paired-end sequencing (2 × 150 bp) using 
the Illumina® TruSeq® stranded mRNA library preparation kits and sequenced by the Norwegian Sequencing 
Centre (www.sequencing.uio.no) using an Illumina HiSeq. 3000 platform.

Before mapping, raw read quality were assessed using fastQC version 0.11.5 https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), Illumina adaptors were removed, and the sequences were quality-trimmed 
using cutadapt77. Cutadapt was set to cut adaptors with a minimum overlap length of 8 and low-quality 3′ ends 
were removed by setting a quality threshold of 20 (phred quality + 33). An index of the UMD 3.1 reference 
genome was built, and reads were aligned to the reference using STAR version 2.3.178. Sorting, indexing and 
conversion to the BAM file format (the compressed binary version of a SAM file) of the resulting SAM files were 
completed using SAMtools version 1.379. The code for the described RNAseq mapping method is available as part 
of a bash-script pipeline (version 1.1.0) found at https://gitlab.com/fabian.grammes/RNAseq-analysis/.

Variant annotations. All variants were annotated using the web version of Ensembl Variant Effect 
Predictor80 based on the Ensembl Bos taurus annotation release 86.

Availability of data. DNA and RNA sequence data will be submitted to the European Nucleotide Archive, 
http://www.ebi.ac.uk/ena. Phenotype and genotype data are available only upon agreement with Geno Breeding 
and AI Organization (http://www.geno.no).
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Abstract 19 

While bovine milk is regarded as healthy and nutritious, its high content of saturated fatty 20 

acids (FA) may be harmful to cardiovascular health. Palmitic acid (C16:0) is the predominant 21 

saturated FA in milk whose adverse health effects might be countered by substituting it with 22 

higher levels of unsaturated FA; such as oleic acid (C18:1cis-9). In this work, we performed 23 

genome-wide association analyses using high-density SNP-array and whole genome 24 

sequence data to detect genetic variants underlying levels of C16:0 and C18:1cis-9 and 25 

investigate positional candidate genes by transcript profiling and protein level analyses. 26 

Genome-wise significant associations were detected for C16:0 on Bos taurus autosomes 27 

(BTA) 11, 16 and 27, and for C18:1cis-9 on BTA 5, 13 and 19. Closer examination of a 28 

significant loci on BTA11 identified PAEP, which encodes the milk protein β-lactoglobulin, 29 

as a particularly attractive positional candidate gene. We discovered a tightly linked cluster 30 

of genetic variants in coding and regulatory sequences that had opposing effects on levels of 31 

C16:0 and C18:1cis-9. The favourable haplotype, linked to reduced levels of C16:0 and 32 

increased C18:1cis-9 was also associated with a marked reduction in PAEP expression and 33 

β-lactoglobulin levels. β-lactoglobulin is an abundant milk protein whose levels in milk 34 

affect important dairy production parameters such as cheese yield. The genetic variants 35 

detected in this study could be used in breeding to promote milk with an improved FA health-36 

profile and enhanced cheese making properties.  37 
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Introduction 38 

Bovine milk is a staple food in billions of people’s diet, where it serves as an important 39 

source of proteins, fat, minerals and vitamins. Nonetheless, the positive effects of cow milk 40 

on human health has been debated, primarily due to its high content of saturated fatty acids 41 

(FAs) as compared to the level of unsaturated acids (Mensink et al., 2003; Lindmark 42 

Månsson, 2008). Palmitic (C16:0) and oleic (C18:1cis-9) acids are the dominant saturated 43 

and unsaturated milk FAs respectively, and together they represent 40 - 50% of the total milk 44 

fat content (Jensen, 2002). Replacing dietary saturated with unsaturated fat has been shown 45 

to reduce the risk of cardiovascular diseases (Mensink et al., 2003; Hooper et al., 2015), and 46 

might also reduce the risk of insulin resistance and type-2 diabetes (Kennedy et al., 2008).  47 

Both C16:0 and C18:1cis9 show moderate heritability across a range of 0.1 - 0.3 in the 48 

extensively studied Holstein-Friesian breed (Stoop et al., 2008; Krag et al., 2013; Lopez-49 

Villalobos et al., 2014). In Norwegian Red cattle, the heritability estimates are 0.13 and 0.14 50 

for C18:1cis9 and C16:0 respectively (Olsen et al., 2017), which raises the possibility of 51 

using selective breeding to improve the FA profile of cow’s milk.  52 

Detection of causal polymorphisms and implementation of genome information in selection 53 

typically requires phenotypic data from thousands of individuals. Traditionally, 54 

characterisation of milk fat composition has been performed using gas chromatography (GC), 55 

but this becomes costly when thousands of samples must be analysed. An  alternative is to 56 

predict milk fat composition using Fourier transform infrared spectroscopy (FTIR) (Afseth 57 

et al., 2010; Soyeurt et al., 2006b; Rutten et al., 2009; Maurice-Van Eijndhoven et al., 2013; 58 

Olsen et al., 2017; Knutsen et al., 2018), which produces fast, cheap and detailed phenotypes. 59 
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Compared to the widely used single nucleotide polymorphism (SNP) panels, the use of whole 60 

genome sequence data has the potential to detect causative variants underlying a given trait, 61 

or at least genetic variants in very close linkage disequilibrium (LD) to the causative variants. 62 

Once identified, such variants can be used to develop cost-effective genotyping panels for 63 

improved quantitative trait loci (QTL) discovery and genomic predictions that persists across 64 

diverse genetic backgrounds and multiple generations (Druet et al., 2014; van den Berg et 65 

al., 2016). Moreover, coordinated international actions to generate genome-wide maps of 66 

functional elements for animal genomes will provide valuable knowledge to understand the 67 

context where these variants operate and might eventually pin down the variants and 68 

candidate genes underlying the genetic basis of complex traits (Andersson et al., 2015).  69 

The current study seeks to identify and improve our understanding of the genetic variants 70 

underlying content of C16:0 and C18:1cis-9 using a combination of imputed sequence data 71 

and mRNA- and protein-expression profiling. Initially, FTIR-predicted phenotypes were 72 

combined with array-based SNP genotypes in a genome-wide association study (GWAS) to 73 

identify QTLs with impact on the concentration of the two FAs. Next, a candidate gene 74 

region was re-analysed using the imputed sequence variants (SNPs and indels). Finally, gene 75 

expression data from mammary epithelial cells and milk protein measurements were used to 76 

validate our analysis.  77 
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Results 78 

Genome-wide association analyses on a high-density SNP dataset 79 

To identify chromosomal regions with a major impact on C16:0 and C18:1cis-9 levels, we 80 

performed an initial GWAS using 1811 animals genotyped for 609,391 SNPs. As shown in 81 

Fig 1, genome-wise significant associations (p-value < 4.1e-8) were detected for C16:0 on 82 

Bos taurus autosomes (BTA)11, 16 and 27, and for C18:1cis-9 on BTA5, 13 and 19. 83 

Suggestive findings (p < 1e-5) were detected on BTA1, 4, 5, 6, 8, 17 and 18 for C16:0 and 84 

on BTA2, 7, 11, 14, 16, 22 and 26 for C18:1cis-9 (Fig 1). Results for all significant marker 85 

and trait combinations are provided in Supplementary Table S1. 86 

The most significant associations were found between C16:0 and five SNPs spanning a 24-87 

kb region located at 103.3 Mb on BTA11. This region included the progestagen-associated 88 

endometrial protein (PAEP) gene encoding β-lactoglobulin (β-LG) and the 89 

glycosyltransferase 6 domain containing 1 (GLT6D1) gene encoding a protein of the same 90 

name. The two top SNPs for C16:0 had equal p-values and frequencies (p-value = 3.34e-14, 91 

MAF = 0.34). The first (rs110186753; A/G) is situated in PAEP intron 1 at 103,302,351 bp, 92 

while rs109087963 (G/A) is located 1,940 kb downstream of PAEP at 103,308,330 bp. These 93 

SNPs also showed an association with C18:1cis-9 (p-value 1.91e-6), with alleles having 94 

opposing effects. That is, the G and A alleles of rs110186753 and rs109087963, respectively, 95 

were associated with elevated levels of C16:0 and reduced levels of C18:1cis-9. The 96 

proportion of daughter yield deviation (DYD) variance explained by each of these SNPs was 97 

3.4 % for C16:0 (allele substitution effect: 0.18g/100g milk fat) and 1.4 % for C18:1cis-9 98 

(allele substitution effect: -0.12g/100g milk fat).  99 
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Fig. 1. Manhattan plots of GWAS results for C16:0 (top) and C18:1cis-9 (bottom). 100 

Chromosomes and marker order are represented on the x-axis, with the significance of 101 

association (–log10 p-value) between each marker and trait shown on the y-axis. The red line 102 

represents the genome-wise significance level (p-value < 4.1e-8), while the blue line 103 

represents the suggestive significance level (p-value < 1e-5). 104 

 105 

Fine-mapping of the QTL region on BTA11 106 

To fine map the QTL on BTA11 and possibly identify underlying causal variants, we re-107 

analysed phenotype data for C16:0 and C18:1cis-9 using 109,401 imputed sequence variants 108 

spanning a region from 90 to 107 Mb. The results revealed a cluster of 174 variants associated 109 

with both C16:0 and C18:1cis-9 with largely similar p-values, MAFs and allele substitution 110 

effects (Fig. 2). Alleles associated with increased concentration of C18:1cis-9 were linked 111 
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to reduced C16:0 concentration and vice versa. Results for all significant marker and trait 112 

combinations are provided in Supplementary Table S2.  113 

Closer examination of pairwise (linkage disequilibrium) LD measurements (r2) between 114 

variants in the region, revealed that all 174 variants were in almost perfect LD with each 115 

other and could be combined into two major haplotypes extending from ≈10.5 kb upstream 116 

of the PAEP transcription start site, through PAEP and into the neighbouring gene GLT6D1 117 

(Fig 2). Two predominant haplotypes had frequencies of 0.29 and 0.54, while less frequent 118 

haplotypes, differing from the two major haplotypes only by two and three SNPs, were found 119 

with frequencies of 0.04 and 0.06. Two missense variants (rs110066229 in exon 3 and 120 

rs109625649 in exon 4) code for to the A and B variants of the PAEP protein β-LG (Caroli 121 

et al., 2009), and were present in the identified haplotype block. Accordingly, our two major 122 

haplotypes were denoted A and B. The more frequent B haplotype includes alleles associated 123 

with reduced levels of C16:0 (allele substitution effect: -0.2g/100g milk fat) and increased 124 

levels of C18:1cis-9 (allele substitution effect: 0.14g/100g milk fat), i.e. the desirable FA 125 

ratio. Supplementary Table S3 provides a more detailed description of the 174 markers 126 

assembling the haplotype block, including the haplotype A and B alleles and variant effect 127 

predictions. 128 

The haplotype included variants in both the coding and regulatory regions of PAEP. After 129 

variants annotation, a polymorphism in exon 3 (rs109990218 at 103,304,656 bp) was found 130 

to potentially affect alternative splicing of exons into different transcripts  (Fig 2), but no 131 

transcript splice variants (freq. > 0.05) were found. The most significant SNP for C16:0 was 132 

situated in PAEP intron 3 (rs110992345; 103,304,509 bp, p = 1.35e-14), while the top-133 
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ranking marker for C18:1cis-9 was found 2 kb upstream of PAEP (rs110920335; 103,300,718 134 

bp, p-value = 1.35e-8), but no obvious causal function could be assigned to either of these 135 

SNPs. Tightly linked to these top SNPs, and highly significant, were the two known missense 136 

variants determining the β-LG A and B variants. Lastly, the haplotype block contained two 137 

variants in the 5’ untranslated region of PAEP, a region that might influence gene expression 138 

(rs41255685; position 103,301,690 bp, and rs41255686, position 103,301,694 bp, both with 139 

a p-value of 9.5e-14).  140 
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141 

 142 
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Fig 2. Analysis of C16:0 using sequencing data. (Top). Association analysis of C16:0 in 143 

the region between 103.2 and 103.4Mb on BTA11 using variants imputed from sequence 144 

data. The zoomed region showed in the bottom figure, is indicated with a vertical grey bar. 145 

The y-axis shows –log10(p-value) for each marker-trait association, while the x-axis denotes 146 

marker position. The red diamond indicates the most significant marker for C16:0; 147 

rs110992345 at 103,304,509 bp. Colouring indicates the level of LD (r2) between each 148 

marker and rs110992345. Gene annotation information according to the Ensembl annotation 149 

release 88 is shown with grey and black bars reflecting positive and negative strand 150 

orientations respectively. (Bottom). An expanded plot showing variants and their effect 151 

relative to the position in the PAEP gene structure. The y-axis shows –log10(p-value) for each 152 

marker-trait association, while the x-axis denotes marker position. Point colour indicates 153 

variant effect class according to the Ensemble annotation release 88.  154 

 155 

Gene expression analyses  156 

To investigate whether any of the significant variants within the two haplotypes were 157 

associated with differential gene expression of the two genes spanned by the haplotype block 158 

(i.e. generate a cis expression QTL effect; cis eQTL), mRNA was isolated from somatic milk 159 

cells and sequenced to quantify expression of the genes. Despite being present in the QTL 160 

region, GLT6D1 was not found to be expressed in any sample. In contrast, PAEP was found 161 

highly expressed in all samples. Therefore, subsequent analyses were directed towards this 162 

gene.  163 
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SNPs significant at the genome-wise level, and/or situated within a region extending 5kb up- 164 

and downstream from PAEP, were tested for their association to the expression level of PAEP 165 

adjusted by total read count of all measurable milk protein mRNAs (see Methods section). 166 

The analysis showed that all 93 tested polymorphisms were significantly (p-value < 0.03) 167 

associated with PAEP expression (Supplementary Table S4). Their association (p-values) 168 

were relatively similar, reflecting the similarity in allele frequency and LD between the tested 169 

variants. To illustrate, PAEP expression levels relative to genotypes for rs110992345, the 170 

marker most significantly associated with C16:0, is shown in Fig 3a. In this Figure, the T 171 

allele of rs110992345 which is present in the frequent and favourable B haplotype and hence 172 

associated with lower PAEP expression is compared to the C allele found in the A haplotype.  173 

To validate the apparent difference in allele-dependent expression levels, we also tested for 174 

allele specific expression (ASE) in the 15 animals that were heterozygous for the seven 175 

variants located in exons and UTRs of PAEP. Concordant with the results of the eQTL 176 

analysis, we found that in 98 out of 105 tests for ASE, the alleles present in the B haplotype 177 

was expressed at a significantly (adjusted p-value < 0.05) lower level than the alleles present 178 

in the A haplotype (Fig 3b). Fifty of the ASE-tests showed extremely low adjusted p-values 179 

(< 5.3e-50), with the most significant having 6,598 reads from the A haplotype and 2,635 180 

reads from B haplotype (Supplementary Table S5).   181 
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Fig. 3. 182 

Effects of the top associated variants on expression of the PAEP locus. a) The relationship 183 

between cow genotypes (n = 34) of the top associated variant (Chr11_103304509_T_C; 184 

rs110992345) and the expression of PAEP. The Y-axis denotes the expression of PAEP 185 

relative to the sum of expression of the five other milk protein genes . The red dot represents 186 

the mean expression value within each group. b) ASE for 15 cows heterozygous for seven 187 

exonic SNPs (position shown in bp on BTA11) within PAEP. The X-axis shows mean 188 

normalised counts (x1,000) per haplotype allele. Haplotype A is coloured black, and 189 

haplotype B is coloured grey. c) The relationship between the two β-LG protein variants and 190 

the percentage of β-LG measured in 136 milk samples.  The red dot represents the mean 191 

expression value within each group. 192 
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Protein analyses 193 

Finally, β-LG protein levels were quantified to test whether the haplotypes associated with 194 

differences in FA and PAEP expression levels also reflect differences in protein 195 

concentration level. One-hundred and thirty-six cows were genotyped for the two SNPs 196 

determining the A and B β-LG variants tagging the A and B haplotypes, respectively. The 197 

results showed that animals homozygous for the B variant of β-LG (i.e. alleles of haplotype 198 

B) had on average 35% less β-LG than cows homozygous for the haplotype tagged by the A 199 

variant (Fig 3c). 200 

 201 

Discussion 202 

C16:0 and C18:1cis-9 are the most abundant FAs in bovine milk, but may have opposing 203 

effects on human health (Mensink et al., 2003; Kennedy et al., 2008; Hooper et al., 2015), 204 

and genome-based selection strategies increasing the ratio of C18:1cis-9 to C16:0 in milk 205 

may  offer ways to improve fat composition. In the current study, we combined milk FA 206 

composition phenotypes with high-density SNP information and whole genome sequence 207 

data, followed by gene expression and protein level analyses to reveal genetic variants 208 

influencing levels of these two acids in milk from Norwegian Red cattle.  209 

The results revealed genome-wise significant QTLs for C16:0 on BTA11, 16 and 27, and for 210 

C18:1cis-9 on BTA 5, 13 and 19. Subsequent analyses focused on the QTL on BTA11 since 211 

it was the most significant and showed antagonistic effects on levels of C16:0 and C18:1cis-212 

9. This analysis revealed a haplotype block spanning multiple variants in regulatory and 213 
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coding regions of PAEP, including the two SNPs coding for the A and B variants of the 214 

PAEP gene product β-LG. The most frequent haplotype in the block (haplotype B, encoding 215 

the B protein variant) was associated with (i) a more favourable C16:0 to C18:1cis-9 ratio, 216 

(ii) lower PAEP expression and (iii) lower β-LG levels as compared to haplotype A.  217 

β-LG is one of the most abundant proteins in bovine milk (Ng-Kwai-Hang and Kim, 1996). 218 

The two major protein isoforms, variant A and B, differ at mRNA positions 64 and 118 219 

leading to ASP>GLY and VAL>ALA substitutions, respectively (Caroli et al., 2009). The 220 

association between PAEP allelic variants and milk production traits such as protein 221 

percentage, total fat yield and fat percentage in cows has been well documented (Tsiaras et 222 

al., 2005; Berry et al., 2010). Previous studies have shown that β-LG can bind both saturated 223 

and unsaturated FAs, especially C16:0, in vitro (Le Maux et al., 2014). In dairy sheep, β-LG 224 

variants were shown to affect the concentration of C16:0 along with other FAs (Mele et al., 225 

2007). Furthermore,  the B protein variant associated with reduced C16:0 levels has been 226 

linked to favourable chemical composition and technological parameters such as shorter 227 

coagulation time, a lower concentration of whey proteins together with higher casein levels 228 

and higher cheese yield (Puppel et al., 2016; Ketto et al., 2017).  229 

Still, the mechanism for how different β-LG variants or the β-LG protein concentration in 230 

milk could influence individual FAs is not well understood. But given the strong C16:0 231 

binding capacity of β-LG, we the QTL effect on the C16:0 to C18:1cis-9 ratio may well be 232 

caused by differences in the affinity for the FAs between the protein variants, a change in 233 

the concentration of β-LG due to differential expression of PAEP, or a combination of these 234 

effects. 235 
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We found evidence for differential expression of the two protein variants but believe that 236 

this is more likely related to linked polymorphisms within regulatory regions rather than the 237 

protein variants themselves (Lum et al., 1997; Folch et al., 1999). PAEP expression in 238 

lactating mammals is reported to be regulated by signal transducer and activator of 239 

transcription 5 (STAT5, also known as milk protein binding factor) and activator proteins 1 240 

and 2 (Qian and Zhao, 2014). Several polymorphisms located in putative binding sites for 241 

these transcription factors have been identified (e.g. Wagner et al., 1994; Lum et al., 1997, 242 

Braunschweig & Leeb, 2006; Ganai et al., 2009), but the extensive levels of LD in the region 243 

hamper our ability to pinpoint one specific variant as the underlying causal factor. However, 244 

several of our top-ranked variants were situated in these binding sites. We therefore 245 

hypothesize that the effect on gene expression can be due to the combined impact of 246 

alterations at several regulatory sites within the haplotypes, rather than to one specific SNP.   247 

In addition to PAEP, our GWAS highlights several other genes with functions related to milk 248 

FA composition. For example, the QTL on BTA5 at 93.9 Mb affected both C16:0 and 249 

C18:1cis-9 in opposite directions, with the most significant SNP for C18:1cis-9 being 250 

situated in the first intron of microsomal glutathione S-transferase 1 (MGST1). Although the 251 

role of this gene in milk fat synthesis is unclear, it is known to be strongly associated with 252 

levels of milk fat, protein, and milk yield (Littlejohn et al., 2016; Raven et al., 2016; Xiang 253 

et al., 2017).  254 

BTA13 harbour a QTL for C18:1cis-9 in a region that also affects de novo-synthesis of short- 255 

and medium-chained saturated acids (especially C8:0) in our population (Olsen et al., 2017; 256 

Knutsen et al., 2018). This QTL region contains at least two functional candidate genes, 257 
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nuclear receptor coactivator 6 (NCOA6) at 64.6 Mb and acyl-CoA synthetase short-chain 258 

family member 2 (ACSS2) gene at 64.8 Mb. ACSS2 facilitates the conversion of acetate to 259 

acetyl-CoA early in the de novo synthesis of FAs (Bionaz and Loor, 2008b), while NCOA6 260 

is a transcriptional coactivator enhancing, among other things, the activity of the peroxisome 261 

proliferator-activated receptor gamma (PPARG), which is a well-described transcriptional 262 

regulator affecting lipid storage (Lemay et al., 2007; Bionaz and Loor, 2008b; Liu et al., 263 

2016).  264 

Two distinct QTLs were found for C18:1cis-9 on BTA19, of which the one at 51.38 Mb was 265 

located to fatty acid synthase (FASN), a multifunctional enzyme that catalyses de novo 266 

synthesis of milk FAs (Bionaz and Loor, 2008b).  267 

We also detected chromosome-wise significant associations between C18:1cis-9 and markers 268 

situated near the stearoyl-coenzyme A desaturase 1 (SCD) on BTA26. SCD is involved in the 269 

synthesis of monounsaturated FAs by introducing a double bond in the delta-9 position of 270 

C14:0, C16:0 and C18:0, primarily, thus producing the cis-9 variant of these acids (Ntambi 271 

and Miyazaki, 2003).  272 

The QTL affecting C18:1cis-9 at 36.2 Mb on BTA27 spans the gene glycerol-3-phosphate 273 

acyltransferase 4 (GPAT4) which encodes the rate-limiting enzyme in the triacylglycerol 274 

biosynthesis pathway and plays a crucial role in milk fat biosynthesis (Bionaz and Loor, 275 

2008a).   276 

An essential requirement when using phenotype data (FA composition) from FTIR profiles 277 

is that individual acids are predicted with high confidence. The prediction accuracy of mid-278 

infrared spectroscopy has been demonstrated (Soyeurt et al., 2006a; Rutten et al., 2009; 279 
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Afseth et al., 2010; De Marchi et al., 2011; Soyeurt et al., 2011; Maurice-Van Eijndhoven et 280 

al., 2013; Bonfatti et al., 2016; Olsen et al., 2017). However, since FA are correlated to total 281 

fat, a possible concern is that the prediction values reflect total fat rather than individual 282 

acids (Eskildsen et al., 2014). To address this, we assess FA concentrations as percentages 283 

of total fat instead of gram-acid-per-unit-of-milk (Olsen et al., 2017), which has led to a 284 

prediction accuracy (in the form of cross-validated squared Pearson product-moment 285 

correlation coefficients) of 0.77 for C16:0 and 0.94 for C18:1cis-9. Soyeurt et al. (2006) 286 

suggested that the predicted concentrations were due to real absorbance values specific to 287 

the FAs if the calibration correlations were higher than the correlations between total fat and 288 

FA. As reported in Olsen et al.(2017), the C16:0 and C18:1cis-9 squared correlation to total 289 

fat was 0.19 and 0.03, respectively, which is markedly lower than the cross-validated squared 290 

Pearson product-moment correlation coefficients. A consequence of correcting for total fat 291 

is that the prediction accuracies are expected to be lower than when FA concentrations are 292 

expressed as a quantity per unit of milk (Soyeurt et al., 2006a; Rutten et al., 2009; De Marchi 293 

et al., 2011). This was the case for C16:0, while the prediction accuracy of C18:1cis-9 was 294 

found to be comparable to those obtained by milk-based models (Rutten et al., 2009; De 295 

Marchi et al., 2011; Olsen et al., 2017). 296 

In recent years, methods exploring ways to apply imputed sequence variants in GWAS and  297 

genomic predictions in dairy cattle has emerged (van den Berg et al., 2016; Goddard, 2017; 298 

VanRaden et al., 2017). The current study utilised sequence imputation to fine map several 299 

QTL regions associated with 16:0 and C18:1cis9 levels in milk. With sequence density 300 

genotypes, we expect to have the causal variants present in the data for the direct estimation 301 

of their GWA p-value, and hence also their effect on the trait. While GWAS analysis with 302 
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imputed sequence data has previously confirmed causal loci in cattle (MacLeod et al., 2016),  303 

imperfect imputation, extensive LD and sampling error may result in the causal 304 

polymorphism not being identified as the most highly associated variant . However, using 305 

non-linear prediction models were most variant effects are set to zero and some to have larger 306 

effects seem promising (Erbe et al., 2012; MacLeod et al., 2016). Others have shown 307 

improved genomic prediction reliabilities when including selected sequence variants from 308 

GWA in the prediction (van den Berg et al., 2016; VanRaden et al., 2017). Both these 309 

strategies could be used with the results from the current paper. Nonetheless, further research 310 

to discover functional variants in the genome, and improvements to the computational and 311 

statistical methodology of GWA and genomic prediction strategies is critical to realising the 312 

full potential of the sequence data approach.  313 

 314 

Conclusions 315 

The current study revealed a haplotype block with two major haplotypes spanning both 316 

coding and regulatory sequences of PAEP, including the polymorphisms underlying the A 317 

and B variants of the β-LG protein. The most frequent haplotype B was associated with a 318 

favourable C16:0 to C18:1cis-9 ratio and a marked reduction in PAEP expression and β-LG 319 

levels, which suggests a regulatory role of causal variants underlying the QTL. Furthermore, 320 

the B variant is considered beneficial for milk production traits . Our results may, therefore, 321 

be applied in breeding to produce milk with healthier FA profile and more favourable cheese-322 

making properties. 323 
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Materials and methods 324 

Ethics statement 325 

All animals included in the study were Norwegian Red cattle, and experiments were 326 

conducted in accordance with the rules and guidelines outlined in the Norwegian Animal 327 

Welfare Act 2009, issued by the Norwegian Ministry of Agriculture and Food. Data 328 

generated as part of routine commercial activities are considered outside the scope of that 329 

requiring formal committee assessment and ethical approval. 330 

Estimation of bovine milk fat composition from FTIR spectroscopy data 331 

Milk fat composition was estimated from FTIR spectroscopy data as described in Olsen et 332 

al. (2017) with some adjustments to the number of spectra and animals used. In brief, 224 333 

milk samples obtained from a previous feeding experiment and 659 samples from field 334 

sampling were analysed in parallel by FTIR and GC with flame ionisation detector (GC-FID) 335 

reference analysis. FTIR spectra (regressors) were subsequently calibrated against GC-FID 336 

reference values (regressands) by using powered partial least squares regression (PPLSR; 337 

Indahl, 2005). Regressands were presented as percentages of GC-FID FA values to total fat 338 

to reduce to a minimum value the correlation between the FA and total fat in milk samples. 339 

The calibration model was applied to a total of 4,619,737 infrared spectra from 640,304 cows 340 

sampled in two periods; February to November 2007 and July 2008 to June 2014. The traits 341 

that were utilised in this study were C16:0 and C18:1cis-9.  342 

A detailed description of the estimation of heritabilities and DYDs is given in in Olsen et al. 343 

(2017). In short, the heritability estimates were performed on a reduced dataset of 2,209,486 344 
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FA profiles from 426,505 cows with a pedigree of 716,753 animals using the DMU software 345 

version 6 release 5.1 (Madsen and Jensen, 2008). The data were analysed with the following 346 

mixed linear animal repeatability model: 347 

ijklmmlkji eapehtdRPLRYMY ������      (1) 348 

where RYM is the fixed effect of region (9 regions) by year and month of the test -day, with 349 

i ranging from 1 to 740; RPL is the fixed effect of region by lactation number by 10-day 350 

period in lactation of the test-day, with j ranging from1 to 1,116; htd is the random effect of 351 

herd by test-day, with k ranging from 1 to 168,483; pe is the random permanent 352 

environmental effect of the cow on her repeated records, with l ranging from 1 to 426,505; a 353 

is a random additive genetic effect of the animal, with m ranging from 1 to 716,753; and e is 354 

a random residual effect. 355 

GWAS DYDs were estimated using the 4,619,737 spectra for the full dataset of 640,304 356 

cows with a pedigree of 999,470 animals as the sire averages of daughters’ predicted FA 357 

compositions, which were each corrected for her fixed effects, non-genetic random effects 358 

and half of her dam’s genetic effect (Olsen et al., 2017).  359 

The concentration of the two acids together with the accuracy of prediction (in the form of 360 

cross-validated squared Pearson product-moment correlation coefficients; R2CV) and 361 

heritabilities were as reported in Olsen et al. (2017). Mean concentrations were 25.25 and 362 

21.4 % of total fat for C16:0 and C18:1cis-9, respectively. R2CV was 0.75 and 0.94, and 363 

heritabilities 16.06 and 14.34 for C16:0 and C18:1cis-9, respectively. 364 
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Construction of a dense SNP dataset 365 

Genotypes for the studied animals were available from other projects and the routine 366 

genotyping performed by Geno Breeding and AI Association. DNA was extracted from 367 

semen samples of artificial insemination (AI) bulls, and from blood samples of cows using 368 

standard phenol-chloroform-based protocols. The bulls were genotyped on at least one of four 369 

different platforms in order to make a genome-wide high-density SNP dataset for the 370 

association analyses; the Affymetrix 25K SNP array (Affymetrix, Santa Clara), a custom 371 

Affymetrix 50K SNP array, the  Illumina 54K BovineSNP50 BeadChip (Illumina, San Diego) 372 

and the 777K Illumina BovineHD Genotyping BeadChip (Illumina, San Diego).   373 

Imputation was done step-wise, with the 25K Affymetrix dataset first imputed to the custom 374 

50K Affymetrix density, and then the combined Illumina 54K and Affymetrix 50K dataset 375 

imputed to 777K. The Affymetrix 50K reference counted 5,009 animals and the Illumina 376 

777K reference consisted of 750 widely used AI bulls. Imputation was done using Beagle 377 

version 4.1 (Browning and Browning, 2016), with effective population size (Ne) set to 200 378 

and number of phasing iterations (niterations) set to 20. Remaining parameters were set to 379 

default. Map positions were based on the UMD 3.1 reference assembly (Zimin et al., 2009).  380 

For each imputation step, several genotype quality control steps were applied: 1) Variants 381 

with MAF less than 0.01 and Hardy-Weinberg Equilibrium p-values less than 1e-7 were 382 

filtered. 2) Animals with more than 10 % Mendelian errors were removed from the dataset, 383 

and all remaining genotypes with Mendelian errors were set to missing and later imputed. 3) 384 

Markers and animals with a call rate below 95% and markers on sex chromosomes were 385 

discarded. 4) For each step, the imputation quality was tested using 5-fold cross-validation. 386 
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Markers with discordance between true and imputed genotypes above 10% were removed, 387 

as these markers are likely to be misplaced in the reference assembly (Erbe et al., 2012). 388 

SNPs on unplaced scaffolds and sex chromosomes were also discarded from the dataset. 389 

A total of 2,434 genotyped AI bulls were considered for the initial 777k GWAS analysis. 390 

After filtering bulls with less than 20 daughters, the dataset contained 1,811 animals with 391 

imputed genotypes for the 777K Illumina BovineHD BeadChip. Of the 1,811 bulls, 57 bulls 392 

had genotypes imputed from the Affymetrix 25K array, 237 were imputed from the custom 393 

Affymetrix 50K SNP array, 1,113 animals from the Illumina 54K BeadChip and 404 were 394 

already genotyped on the 777K Illumina BovineHD BeadChip. The resulting dataset 395 

consisted of 1,811 bulls with trait data in the form of DYDs based on 20 or more daughters 396 

for the relevant FAs and with genotypes for 609,361 SNPs distributed on all 29 autosomes. 397 

Whole-genome sequencing, variant calling and sequence imputation. 398 

Whole-genome sequencing data were obtained from 153 animals (132 AI bulls and 31 cows) 399 

as described in Olsen et al. (2016). The AI bulls were selected based their number of 400 

daughters in production and by ensuring an even genetic contribution to the population 401 

structure of Norwegian Red cattle, by examining the recorded pedigree. Animals were 402 

sequenced to an average coverage of 9 x using Illumina sequencing (Illumina, San Diego). 403 

All reads were aligned against UMD 3.1 using BWA MEM version 0.7.10. Variant calling 404 

was done with FreeBayes version 1.0.2 (Garrison and Marth, 2012). Missing genotypes in 405 

the resulting Variant Call Format (VCF)-file were imputed and phased using Beagle version 406 

4.1 (Browning and Browning, 2016). This phased dataset was used as a reference panel for 407 

imputing the 1,811 animal high-density panel to full sequence with Beagle using the same 408 
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imputation parameters as described before, except that allele miscall rate (err) was set to 409 

0.01. In a final filtering step, variants with minor allele frequency above 0.02 were retained. 410 

Also, variants with Beagle’s reported allelic R2 (AR2) below 0.7 were filtered, as this has 411 

been shown to be a robust and reliable threshold for filtering of imputed sequence variants  412 

(Littlejohn et al., 2016; Browning and Browning, 2008; van Binsbergen et al., 2014) .  413 

Genotyping of cows 414 

The 36 cows used for the RNA sequencing were also genotyped on the Illumina 415 

BovineSNP50 BeadChip (54K, Illumina, San Diego). Blood samples were collected by 416 

certified personnel, and DNA extraction and genotyping on the Illumina BovineSNP50 417 

BeadChip (54K, Illumina, San Diego) were performed according to the manufacturer's 418 

protocol. Genotypes were quality checked and imputed to sequence density as previously 419 

described.  420 

Genome-wide association study 421 

This study was initiated by conducting a single marker genome-wide association study for 422 

C16:0 and C18:1cis-9 concentration with genotypes for 609,361 genome-wide distributed 423 

SNPs and phenotypes in the form of DYD from 1,811 elite AI bulls, with follow-up analyses 424 

of selected regions imputed to sequence level density. The initial GWAS was conducted with 425 

the GCTA software (Yang et al., 2014) for computational feasibility, while the follow-up 426 

analyses of selected regions were analysed using ASReml package version 3.0 (Gilmour et 427 

al., 2009) to be able to weight the analysis by number of daughters for each DYD and to be 428 

able to use genotype dosage data in the model.  429 
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 A mixed linear model single-marker association analysis was performed with the –mlma-430 

loco option of GCTA. The model fitted to the performance information for each trait and 431 

each SNP was: 432 

 DYD = a + bx + g- + e           (2) 433 

were DYD is the performance of the bull, a is the mean term, b is the fixed additive effect of 434 

the candidate SNP to be tested for association, x is the SNP genotype indicator variable coded 435 

as 0, 1 or 2, g- is the random polygenic effect, i.e. the accumulated effect of al l SNPs except 436 

those on the chromosome where the candidate SNP is located, and e is the residual. The 437 

var(g-) will be re-estimated each time when a chromosome is excluded from calculating the 438 

genomic relationship matrix. The suggestive significance level was set at p = 1e-5, which is 439 

a default setting in the R-package qqman used for producing manhattan plots (Turner, 2014). 440 

The genome-wise significance level was set at (0.05/609,361*2) = 4.1e-8, corresponding to 441 

a nominal type I error rate of 0.05 and Bonferroni correction for 609,361 markers and two 442 

traits. 443 

Re-analyses of the candidate gene region on BTA11 using sequence-level variants  444 

All sequence-level polymorphisms situated between 90 and 107 Mb on BTA11 that passed 445 

quality control were analysed for association to C16:0 and C18:1cis-9 using ASReml. The 446 

model that was fitted to the information on performance for each trait – marker combination 447 

was: 448 

��� = �� + �b + �� + 	,      (3) 449 
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where ��� is the vector of bull performances weighed by the number of daughters, � is a 450 

vector of ones, � is the overall mean, � is a vector of marker genotypes coded as a decimal 451 

number between 0 and 2 depending on the estimated dosage of the alternate allele (as 452 

reported by Beagle 4.1), b is the fixed effect of the marker, � is an incidence matrix relating 453 

phenotypes to the corresponding random polygenic effects, � is a vector of random polygenic 454 

effects, and 	 is a vector of residual effects. Genetic and residual variances were estimated 455 

from the data. � was assumed to follow a normal distribution ~ 
(�, �σ�
� )  where � is the 456 

relationship matrix derived from the pedigree, and σ�
�

 is the additive genetic variance. 	 was 457 

assumed to follow a normal distribution ~ 
(�, �σ	
�) where σ	

�
 is the residual variance. 458 

Association analysis was performed for each individual marker. Since ASReml does not 459 

output p-values for the marker effect automatically, these were calculated from the F 460 

statistics for the conditional sum of squares, the numerator degrees of freedom and the 461 

denominator degrees of freedom  with the R-function pf() from the stats package version 462 

3.4.0 (R Core Team, 2017). 463 

The fraction of genetic and phenotypic DYD variance explained by each SNP for each 464 

phenotype was calculated as 2p(1-p)α2, divided by the additive genetic variance and 465 

phenotypic variance, respectively (Falconer and Mackay, 1996). Here p is the frequency of 466 

one allele of a biallelic SNP, and α is the allele substitution effect. 467 

Haplotype analyses  468 

Pairwise LD measurements (r2) were estimated and haplotypes were identified for the top-469 

ranking markers within the QTL region using the Haploview 4.2 software (Barrett et al., 470 
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2005) on phased genotypes. Haplotypes were defined by Haploview according to the 471 

confidence intervals strategy (Gabriel, 2002).  472 

RNA isolation, sequencing and read mapping 473 

Gene expression levels were obtained using read counts from mRNA isolated from somatic 474 

milk cells (SMC) of 36 cows from the research herd at the Norwegian University of Life 475 

Sciences, Ås, Norway. The animal pedigree was used to avoid selection of close relatives. 476 

All milk samples were collected approximately 50 days (range 47 to 55) after calving.  This 477 

sampling period was chosen since it roughly coincides with peak expression of several 478 

relevant genes involved in bovine milk fat synthesis, including FASN (Bionaz and Loor, 479 

2008b) and with the top of the lactation curve of Norwegian Red cows (Andersen et al., 480 

2011). The cows were in different parities due to the limited size of the research herd. All 481 

cows were fed the same diet.  482 

In our study, mRNA was isolated from somatic milk cells. Most common is the use of 483 

mammary tissue from biopsies, which is invasive and represent technical challenges and 484 

management issues in the recovery of the animals. Contrary to this, milk is excreted by the 485 

mammary epithelial cells (MEC) lining the inside of the udder, which is subject to turnover 486 

and shed into the milk and therefore represents a proportion of the somatic cells found in 487 

milk (Boutinaud and Jammes, 2002). Cánovas et al. (2014) found that compared to other 488 

sources (e.g. mammary gland tissue, laser dissected MEC), the quality of the total RNA 489 

extracted from the SMC was high. Moreover, the expression profile of genes investigated in 490 

SMC derived material was highly correlated with the expression observed in laser-dissected 491 
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MEC. Several studies have confirmed the usefulness of this method (Boutinaud and Jammes, 492 

2002; Boutinaud et al., 2002; Feng et al., 2007). 493 

Milk samples were collected manually 2-3 hours after milking to maximise the number of 494 

viable cells present in the milk. Teats were cleaned with water followed by 70% ethanol 495 

before milking by hand, and 2 x 50 ml milk from each animal was collected in Falcon tubes. 496 

Samples were stored on ice immediately after collection and centrifuged at 4°C for 10 min 497 

at 2,300g within 1.5 hours to collect cells in the bottom of tubes. After centrifugation, most 498 

of the fat layer was removed with a clean pipette tip and supernatant decanted. Each pellet 499 

was dissolved in 4 ml 1xPBS by pipetting up and down. The liquid was transferred to a new 500 

50 ml Falcon tube. Samples were centrifuged at 4°C for 10 min at 2,300g and supernatant 501 

decanted. Cell pellets were dissolved in 1 ml Trizol (Qiagen), and cells were lysed by 502 

pipetting up and down. Samples were stored in -80 °C until RNA extraction with Qiagen 503 

RNeasy Plus Universal Tissue Mini Kit (Qiagen) according to the manufacturer’s protocol. 504 

RNA concentrations and quality were measured with a NanoDrop8000 spectrophotometer 505 

(Thermo Fisher Scientific) and Agilent RNA 6000 assay on Agilent BioAnalyzer 2100 506 

(Agilent Technologies), respectively. All samples had an RNA integrity number (RIN) 507 

between 6.6 and 9.2.  Samples were prepared for paired-end sequencing (2x150 bp) using 508 

the Illumina® TruSeq® stranded mRNA library preparation kits and sequenced by the 509 

Norwegian Sequencing Centre (www.sequencing.uio.no) using the Illumina HiSeq 3000 510 

platform. 511 

Before mapping, raw read quality was assessed using fastQC version 0.11.5 512 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), Illumina adaptors were 513 
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removed, and the sequences were quality-trimmed using cutadapt (Martin, 2011). Cutadapt 514 

was set to cut adaptors with a minimum overlap length of 8 and low-quality 3′ ends were 515 

removed by setting a quality threshold of 20 (phred quality + 33). An index of the UMD 3.1 516 

reference genome was built, and reads were aligned to the reference using STAR version 517 

2.3.1 (Dobin et al., 2013). Sorting and indexing of the resulting BAM files were completed 518 

using SAMtools version 1.3 (Li and Durbin, 2009).  The code for the described RNAseq 519 

mapping method is available as part of a bash-script pipeline found at 520 

https://gitlab.com/fabian.grammes/RNAseq-analysis/ (version 1.1.0). To look for novel 521 

splice variants of candidate genes, the BAM-files were assembled into transcripts using 522 

stringtie version 1.3.3 (Pertea et al., 2015). Isoform fraction was set to 5 %. All other settings 523 

were set to default.  524 

Effect of genotype on gene expression.  525 

Detection of cis-acting eQTLs was performed using the linear eQTL method implemented in 526 

the R package Matrix eQTL version 2.1.1 (Shabalin, 2012). Cis distance (CisDist) was set to 527 

5 kb so that all variants within and ±5 kb of the tested gene are included for association with 528 

the expression level of that gene. A weakness we identified in using somatic milk cells as 529 

the basis for RNAseq analysis was that the expression levels of FA metabolism genes varied 530 

remarkably between the sampled cows. Even after accounting for sequence library size, there 531 

was an approximately 100-fold difference in the expression level of key FA metabolism 532 

genes (such as FABP3, SCD1 and DGAT1) between samples with highest and lowest levels 533 

of expression. Given that we collected the samples from cows eating the same feed, in the 534 

same environment, at the same lactation stage, we believe this is due to variation in the 535 

proportion of mammary epithelial cells compared to white blood cells (immune cells) in each 536 
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sample. To adjust for this effect, we included an effect of the total expression level of the 537 

other five major milk protein genes (gene names: CSN1S1, CSN2, CSN1S2, CSN3 and 538 

LALBA) as a covariate in the linear model run by Matrix eQTL. Use of this covariate will 539 

be an indirect way of adjusting for the sample MEC to white blood cell fraction.  540 

The percentage PAEP expression variance explained by the top-SNP genotype was 541 

calculated by modelling the expression as a function of the animal genotype using the lm 542 

function in R.  543 

Allele-specific expression 544 

ASE analysis was accomplished using the tool ASEReadCounter from the Genome Analysis 545 

Toolkit (McKenna et al., 2010) with default settings. Before running the tool, duplicated 546 

reads were removed using markdup from Sambamba (Tarasov et al., 2015).  547 

ASEReadcounter produces a table with separate read counts for every heterozygous bi-allelic 548 

variant in the provided BAM files. To test for significant levels of ASE, we used a two-sided 549 

Exact Binomial Test using the R-function binom.test with the number of trials equal to total 550 

read counts at each locus. The test gives a p-value for the hypothesis that the number of reads 551 

for each allele at heterozygous loci will be approximately equal when sequenced (Castel et 552 

al., 2015). The p-values were adjusted using the p.adjust R-function with method = 553 

“bonferroni”.  554 

Protein analysis.  555 

The relative concentration of β-LG was determined by using an Agilent capillary 556 

electrophoresis (CE) system (G1600AX), installed with Agilent ChemStation software 557 

(Agilent Technologies, Germany) as described in Ketto et al. (2017). Composition of β-LG 558 
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was determined by adjusting the relative concentration of β-LG with the total protein content 559 

determined by MilkoScan FT1 (Foss Electric A/S, Hillerød, Denmark) as described in 560 

Jorgensen et al. (2016). The effects of milk protein genotypes on the β-LG concentration of 561 

milk were analysed using the lme4 R package (Bates et al., 2014), where the effect of cow 562 

was treated as a random effect. Effects of parity, selection line and stage of lactation were 563 

not found to be significant and therefore excluded from the statistical analysis.  564 

Variant annotations 565 

All variants were annotated using the Ensembl Variant Effect Predictor web tool (McLaren 566 

et al., 2016), based on the Ensembl Bos taurus annotation release 88. 567 

Availability of data 568 

DNA and RNA sequence data will be submitted to the European Nucleotide Archive, 569 

http://www.ebi.ac.uk/ena. Phenotype and genotype data are available only upon agreement 570 

with Geno Breeding and AI Organization (http://www.geno.no). 571 
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