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Preface

The work presented in this report is the result of the project “Bruk av fjernmåling til kartlegging av

fremmede bartrær” (Use of remote sensing for mapping of non-native conifer species). The project

was  funded  by  the  Norwegian  Environment  Agency  and  conducted  from  November  2014  to

November 2015. The project consisted of four parts. 

The first part in the report present the current literature on the use of remote sensing for

species identification and classification, with an emphasis on non-native and invasive species. It

includes  a  discussion  of  available  remote  sensing  platforms,  sensors  and  general  methods  for

identification. 

In the second part, we derive species distribution maps for Norway spruce and Scots pine

using existing literature and national remote sensing based forest maps. We then use the same forest

maps and the derived species distribution of Norway spruce to create a non-native species map, and

demonstrate how such a non-native species map can be used to provide statistical sound estimates

of the area dominated by non-native tree species. We conclude this second part by evaluating the

consistency between our map and other available sources of non-native species locations and we

demonstrate how such a map can be used to compute coverage and proximity to important natural

areas.

In  the  third  part,  we develop models  and evaluate  the  performance of  different  remote

sensing data to discriminate between Norway spruce and Sitka spruce. These two species occur in

the same areas, and there is a need to discriminate between them in order to map and monitor the

spread of the non-native Sitka spruce. The remote sensing data we evaluated were single scene and

multi-temporal data from the Landsat  8 satellite,  as well  as remote sensing data acquired on a

regular  basis  in  Norway.  These  include  the  three  dimensional  information  from airborne  laser

scanning, and orthophotos created from aerial imagery acquired through the national aerial photo

campaigns (omløpsfotografering).

In the fourth and last part, we summarize our results, and discuss a possible establishment of

a mapping and monitoring program for non-native tree species in light of the current knowledge. 
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Summary

Non-native species are by many considered a threat to local biodiversity. In Norway, conifer species

have been introduced in order to find species with better timber production than the native species.

Several of these introduced species have been considered to be invasive, and put on an official

«blacklist». Thus, from a management perspective, more information about the extent, occurrences

and potential dispersal are important information. To gather such information solely based on field

surveys are time-consuming and costly, and it has therefore been suggested to develop methods

based on remote sensing. In this report we review different types of remote sensing data and how

these can be used to map and monitor non-native species.

Natural  species  distributions  of  Norway  spruce  and  Scots  pine  were  created  based  on

available literature and existing remote sensing-based forest maps. The same maps were used to

create  a  non-native  species  map,  i.e.  a  map  of  areas  where  spruce  occur  outside  its  natural

distribution.  We  evaluated  the  accuracy  of  the  map  by  photo-interpretation,  and  assessed  the

consistency with other occurrence data. We further estimated the area of non-native species on a

county and national level in Norway. The area covered by non-native species outside the natural

distribution of spruce was estimated to be 1200 km2,  with a standard error of 275 km2.

A specific  challenge  when  using  remote  sensing  for  mapping  of  non-native  species  in

Norway is to separate species of the same genera. We therefore conducted a study in Fusa and

Tysnes municipalities where we evaluated the ability to discriminate between Norway spruce and

Sitka spruce using different types of remote sensing data. Data from Landsat 8 satellite images,

aerial  imagery  and  airborne  laser  scanning  were  tested.  Slight  to  moderate  ability  to  separate

between the two species were found, with a best overall accuracy of 78%. The results suggest that

Landsat 8 imagery can be used to discriminate between stands dominated by Norway spruce and

Sitka spruce. Additional data from airborne sensors contributed not substantially in this case.

Based  on  our  own  analyses  and  a  review  of  relevant  literature  we  discuss  a  possible

establishment of a national mapping and monitoring programme for non-native tree species. 
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Sammendrag

Fremmede arter blir av mange betraktet som en trussel mot det biologiske mangfoldet. I Norge har

flere bartrearter blitt innført med tanke på å bedre produksjonspotensialet i skogen, og flere av disse

artene finnes nå på den offisielle «svartelista». For forvaltningen er det derfor et økende behov for

kunnskap  om  utbredelse  og  potensiell  spredning  av  disse  artene.  Det  er  både  tidkrevende  og

kostbart  å  samle denne informasjonen utelukkende basert  på feltundersøkelser,  og det  er  derfor

foreslått å utvikle metoder basert på fjernmåling for kartlegging og overvåkning. I denne rapporten

har  vi  gjennomgått  ulike  typer  fjernmålingsdata  med  hensyn  på  potensiale  for  kartlegging  og

overvåking av fremmede bartrær.

Vi  har  videre  etablert  utbredelsekart  for  vanlig  gran  og furu basert  på  gjennomgang av

eksisterende litteratur samt nasjonale skogkart fra fjernmålingsdata. De eksisterende skogkartene

ble  også  bruk til  å  etablere  et  kart  over  fremmede  bartrær,  dvs.  grantrær  utenfor  sin  naturlige

utbredelse.  Nøyaktigheten  av  utbredelseskartet  ble  evaluert  ved  hjelp  av  fototolkning.  Videre

undersøkte  vi  hvordan  kartet  stemte  overens  med  andre  tilgjengelige  kilder  om lokaliteter  av

fremmede treslag, og estimerte arealet med fremmede bartrær på fylkes- og landsnivå. Arealet av

fremmede bartrær utenfor den naturlige utbredelsen til gran i Norge ble estimert til 1200 km2, med

en standardfeil på 275 km2.

En spesifikk utfordring i fjernmåling av fremmede bartrær er å skille mellom arter av samme

slekt. Vi etablerte en test i Fusa og Tysnes dere vi vurderte potensialet for å skille mellom vanlig

gran  og  sitkagran  med  ulike  typer  fjernmålingdata.  Fjernmålingsdata  som  ble  testet  var

satellittbilder fra Landsat 8, flyfoto fra omløpsfotograferingen og flybåren laserskanning. Vi fant en

svak til moderat evne til skille mellom de to artene. Den beste totale nøyaktigheten var på 78%, dvs.

at 78% av lokalitetene var riktig bestemt. Testen indikerer at Landsat 8 bilder kan brukes til å skille

mellom bestand med vanlig gran og sitkagran og at resultatene ikke bedres vesentlig ved bruk av

flybårne sensorer. 

Basert på en litteraturgjennomgangen og våre analyser diskuterer vi en mulig etablering av

et kartleggings- og overvåkingopplegg for fremmede treslag.
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Abbreviations and terms

Airborne Carried by an aircraft.

ALS Airborne laser scanning. Range measurements using lidar.

GIS Geographical Information System. 

kappa Measure  of  overall  classification  accuracy.  Suitable  for  comparison  of

performance of different models on the same classification problem.

lidar Range measurements using laser light (LIght Detection and Ranging).

Orthophoto Orthorectified aerial  images,  i.e.  images that  have the same scale in all

parts of the image.

Pixels size Is the smallest addressable element in a image or raster dataset. In remote

sensing the size is given in real world scale, also referred to as the ground

sampling distance. 

Producer accuracy Measure of classification accuracy. The probability that an entity in a given

class is classified as belonging to this class. 

Random forest A machine learning technique used for classification.

Spaceborne Carried by a satellite (or space shuttle).

Spatial resolution Typically referring to the resolution of remote sensing data as observed on

the ground. Pixel size in the case of imagery, or points per m2 for ALS data.

Spectral resolution Referring to the number of spectral bands in an image. An ordinary digital

colour image is called multispectral: it contains information in three bands

– from the red, green and blue part of the spectrum. Hyperspectral images

typically contain information in more than 100 narrow bands. In addition

to  the  visible  light,  also  the  near-infrared  and  the  infrared  radiation  is

commonly used in remote sensing. 

SVM Support  Vector  Machine.  A  machine  learning  technique  used  for

classification.

UAV Unmanned Aerial Vehicle (drone).

User accuracy Measure of classification accuracy. The probability that a classified entity

really belong to this class. 
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Part 1: Remote sensing and species identification 

Introduction

Non-native species are by many considered a threat to local biodiversity. The spread of non-native –

and potentially invasive – species is typically caused by human activity; either through deliberate

introduction of species or as a consequence of transportation of biological matter in for example

ballast water or wood materials. In the forestry sector in Norway the previous use of tree species

from around the world is an example of a purposive introduction of non-native species. The purpose

was in this case to find species with potential for better timber production than the native species,

especially in areas at the west coast. Sitka spruce (Picea sitchensis), Contorta pine (Pinus contorta),

Silver  fir  (Abies  alba),  Western  hemlock  (Tsuga  heterophylla)  and  different  varieties  of  Larch

(Larix spp.) have been planted in Norway. A hybrid between White spruce (Picea glauca) and Sitka

spruce called Lutz spruce (Picea × lutzii)  has also been introduced. Of these, several have been

considered to be invasive,  and put on an official  «blacklist» (Gederaas et  al.  2012).  The direct

spread of non-native species will typically occur within a given distance from an initial location,

with the distance determined by characteristics of the specific species, wind and other factors. From

a management perspective, it is desirable to map occurrences of non-native species, and to establish

systems to monitor further expansion. Reliable mapping of such scattered occurrences through field

surveys can  be  time-consuming and costly,  it  is  therefore  suggested  to  develop methods  using

remote sensing data. 

To be able to identify non-native species through remote sensing it is required that there

exist features which distinguish the non-native vegetation apart from the native vegetation, and that

these  features  are  directly  or  indirectly  present  in  the  remote  sensing  data.  One  typical  –  and

important  –  example  is  spectral  information;  how  vegetation  reflects  light  and  other  types  of

electromagnetic radiation depends on a range of factors, including species or species composition

(Turner et al. 2003). Spectral data from aerial or satellite imagery can therefore be used to map

vegetation. Imagery with low resolution can be used to analyse vegetation communities, whereas a

finer resolution can be used to map and identify individual vegetation elements, such as single trees.

Three-dimensional remote sensing data – such as lidar data – contains information on the spatial

structure  of  the  vegetation  and  can  further  contribute  to  a  discrimination  between  species  or

vegetation types.  In  the case of  non-native species  this  could for  example  mean to be  able  to

identify  species  with  a  diverting  crown  shape,  or  which  form stands  with  an  atypical  spatial

structure.

From the 2000s and onward there have been several studies on detection of non-native and
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invasive species using remote sensing data. There have also been studies which use similar methods

to  map  and  classify  different  native  species  and  vegetation  types.  A detailed  introduction  and

discussion of the use of remote sensing data for identification of invasive trees and plants can be

found in Bradley (2014) and Huang and Asner (2009).

Several remote sensing technologies and platforms can be relevant; airborne laser scanning

(ALS),  aerial  or  satellite  multispectral  or  hyperspectral  imagery  as  well  as  data  collected  with

unmanned aerial vehicles (UAV). These remote sensing technologies and platforms have different

advantages and disadvantages when used to map and monitor tree species in general, which also

apply to the more special case of mapping and monitoring non-native species. In the next section,

we will review and discuss these remote sensing technologies and their strengths and challenges

related to  tree species mapping and classification.  We treat  medium and high spatial  resolution

spaceborne sensors separately. These sensors are typically passive, and the main difference between

them will be the spatial resolution. Differences due to spectral, temporal and radiometric resolution

will  in  most  cases  play  a  minor  role.  Lastly,  we  discuss  high  spatial  resolution  airborne

technologies. The airborne sensors include passive multispectral and hyperspectral sensors as well

as the active lidar sensors used in ALS. 

Medium spatial resolution spaceborne sensors

The use of spectral data from medium spatial resolution satellite imagery has a high potential for

mapping and monitoring of non-native species. This is mainly due to easy access and the temporal

resolution  of  these  data.  The  most  common  sensors/satellites  available  are  Landsat  8  and  the

upcoming Sentinel 2 missions, which was lauched in June 2015 and a second satellite planned for

lauch  in  mid-2016.  These  sensors  typically  have  a  spatial  resolution  of  10  -  60  m,  a  spectral

resolution of 8 - 13 bands and cover large geographical areas. Landsat 8 has a revisit time of 16

days and Sentinel will achieve 2-3 days revisit times at mid-latitudes with two satellites operational.

Thus – for monitoring purposes – these satellites will provide repeated measurements which will

increase the number of cloud free images and further facilitate multi-temporal analysis. 

Medium spatial resolution satellite imagery is typically combined with field inventory data

from national  forest  inventories  to  develop national  forest  maps (Gjertsen 2007;  Tomppo et  al.

2008). Beyond this application for production of national forest maps, medium spatial resolution

satellite  imagery  is  rarely  used  in  operational  forest  inventories  due  to  insufficient  accuracy

(Holmgren and Thuresson 1998; Mäkelä and Pekkarinen 2004).

Carter et al. (2009) used multispectral (Landsat 5) and hyperspectral (Hyperion) medium

spatial  resolution  images  acquired  to  classify  Tamarisk (Tamarix  spp.)  in  North-America.  They
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concluded  that  the  high  spectral  resolution  of  Hyperion  gave  an  increase  in  accuracy  of  8

percentage points over the multispectral alternative. The accuracies obtained for this classification

were between 80 and 88% in terms of overall accuracy, but commission (false positive) errors were

also high at 62-83%.

Classification  can  also  be  enhanced  by  acquiring  remote  sensing  data  at  specific

phenological  stages  where the  non-native species  can be separated from native  vegetation.  For

example, Resasco et al. (2007) evaluated Landsat imagery from different time periods over the year

and found better classifications of under-story shrub using leaf-off imagery from a specific time

period. 

A limitation with medium spatial resolution data is that a single pixel represent a mix of

species. Thus, they are only suitable for mapping of patches or stands of non-native species. Early

detection of occurrences of non-native trees is desirable from a management point of view, but the

resolution of the remote sensing data will determine at what scale detection of non-native species is

possible.  Using  satellite  imagery  with  a  spatial  resolution  of  e.g.  30  m  it  is  unlikely  that

identification of single non-native trees will be successful. However, such coarse resolution might

on the other hand be sufficient for identification of forest stands dominated by non-native species.

For example, it has been demonstrated that in pure Sikta spruce plantations in United Kingdom

mean height can be predicted from medium resolution satellite imagery (Donoghue et al.  2004;

Huang and Asner 2009).

High spatial resolution spaceborne sensors

High  spatial  resolution  spaceborne  sensors  typically  have  a  spatial  resolution  of  5  m  or  less,

however usually a lower spectral resolution than the medium resolution satellites. The revisit time is

often higher because the sensors can adjust the image acquisition angle. The costs are typically

moderate and a relatively large area can be covered with one scene. This gives more homogeneous

image quality than with multiple aerial images.

High resolution satellite imagery has been used for species identification (Carleer and Wolff

2004; Mora et  al.  2010). Mora et  al.  (2010) also discriminated between spruce species – black

spruce  (Picea  mariana)  and  white  spruce  (Pica  glauca).  One  suggested  application  of  high

resolution  imagery  is  to  support  large-area  sample-based  forest  inventories  in  remote  areas

(Falkowski et al. 2009).

In a study which aimed at classifying the invasive species Tamarisk four-bands multispectral

imagery with 2.5 m spatial resolution was preferred over 220-bands hyperspectral imagery with 30

m  spatial  resolution  (Carter  et  al.  2009).  Fuller  (2005)  used  spectral  features  derived  from
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multispectral  satellite  images  with  a  spatial  resolution  of  4  m  to  detect  areas  dominated  by

melaleuca (Melaleuca quinquenervia) – an invasive tree species – in Florida. The results showed

that large and dens stands of the invasive species were reliably detected, whereas the method and

data  were  to  a  lesser  extent  suitable  for  detection  of  smaller  groups  or  single  trees.  This

demonstrates the important relationship between data resolution and the size of detectable objects.

Bradley (2014) notes – based on results from reviewed studies – that “detection of more heavily

invaded areas seems to be most promising”. Successful detection and classification of for example

single trees  does  require  a  resolution of  the  remote  sensing data  such that  a  tree crown spans

multiple pixels. It is suggested by Hengl (2006) that the minimum size of objects detectable in

imagery must have a size greater that four pixels. Thus, for a spatial resolution of 4 m the the

smallest object recognizable is 64 m2.

High resolution spatial resolution airborne sensors

Data from airborne sensors  are  typically  expensive  to  acquire  but  do have  a  very high spatial

resolution. 

In operational forest inventories data from airborne sensors are preferred over data acquired

from  satellites.  This  is  mostly  due  to  higher  spatial  resolution.  Data  from  aerial  imagery  are

typically  photointerpreted  to  obtain  information  about  species  in  operational  forest  inventories

(Magnusson et al. 2007). However, aerial imagery has also been used to  classify important tree

species (Brandtberg 2002). Today, aerial imagery is commonly used in combination with ALS in

operational forest inventories. The three-dimensional data from ALS have a high correlation with

important forest attributes such as timber volume and tree height. ALS can also be used to delineate

and identify single trees, allowing for recognition of species on an individual tree level. A review of

the use of ALS for species classification are provided by Vauhkonen et al. (2014) Although, most of

the ALS species classification studies are based on individual trees, area-based approaches have

also been tried out. For example, Donoghue et al. (2007) separated plantations of Lodgepole pine

(Pinus contorta) and Sitka spruce using only ALS data. They pointed out intensity, variation in

height and percentages of ground returns as important variables. 

ALS has however limitations in more complex forest with many species and species within

the same genera. Thus, it is suggested that ALS is combined with spectral information when forest

conditions  are  more  diverse  (Vauhkonen  et  al.  2014).  Alternatively,  multispectral  ALS data  as

recommended by Vauhkonen et  al.  (2014) are now becoming available.  Fusion of multispectral

imagery and ALS have been used to obtain species information either on an area-basis, or at a

single-tree level (Ørka et al. 2013; Dalponte et al. 2012). Estimation of species-specific tree volume
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using data  from a combination  of  multispectral  imagery  and ALS are  becoming operational  in

Finland (Packalén and Maltamo 2007; Packalén et al. 2009). Singh et al. (2015) did however not

find any improvement by adding spectral data when classifying an invasive understory plant using

ALS.

In detection of non-native species some studies also use multiple data sources, such as the

combination of ALS data and hyperspectral imagery. The digital imagery yields in that case spectral

or  textural  information  from  the  surface  of  the  vegetation,  whereas  the  ALS  data  provide

information on the three-dimensional spatial structure. Asner et al. (2008) combined data from ALS

and hyperspectral imagery to identify an invasive tree species (Morella faya) in Hawaii. In that

study,  they found that  the  spectral  signature of  the non-native species  differed from the native

vegetation. This enabled an identification of areas with occurrences of the invasive species. 

Hyperspectral sensors are not frequently used in operational forest inventories. This is because of

the limitations in commercial availability of such sensors, together with the large amounts of data

delivered by such systems. With respect to forest  inventory information data from hyperspectal

airborne sensors have been found to be superior to multispectral imagery (Dalponte et al. 2013;

Dalponte et al. 2009; Ørka et al. 2013). 

The body of literature on the use of airborne spectral imagery for species recognition is

dominated by the use of hyperspectral images. The high numbers of continuous narrow bands in

hyperspectral  imagery  increase  the  ability  to  describe  and  distinguish  between  the  spectral

responses from different species. The list of studies using hyperspectral imagery to detect invasive

species are long, and includes species such as leafy spurge (Euphorbia esula)  (Lawrence et  al.

2006), spotted knapweed (Centaurea maculosa) (Lass et al. 2002; Lawrence et al. 2006), iceplant

(Carpobrotus  edulis);  jubata  grass  (Cortaderia  jubata)  (Underwood  et  al.2003),  Brazilian

waterweed (Egeria densa) (Hestir et al. 2008) and pepperweed (Lepidium latifolium) (Andrew and

Ustin 2008). 

Remote sensing with Unmanned Aerial Vehicles (UAV) 

The availability of easily operated UAVs has increased the last 5 years. Using imagery acquired by

UAVs together with structure from motion algorithms and photogrammetric principles provide data

for estimation of forest  attributes with high accuracy (Puliti  et  al.  2015).  The use of UAVs for

species  monitoring is  however  restricted  by limitations  regarding the size  of  the area which is

practical to cover, as well as legal aspects regarding autonomous operation of UAVs. 

Some relevant studies do however use data from UAVs, for example Reid et  al.  (2011)

captured images from a UAV to classify vegetation and single species. The classification of areas
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with  different  vegetation  was  carried  out  using  spectral  and  textural  features  extracted  from

automatically delineated segments. Textural features can be used to detect non-native species if

these have shape or form patterns that distinguish them apart from the native vegetation. Rapid

technological development and low costs of UAVs can make this platform a suitable alternative for

data acquisition. The use of UAVs is however only feasible for data acquisitions in areas of limited

size. 

A table with information for some relevant studies related to this section is given as an appendix,

(Table A-1).

Concluding remarks 

All the above-mentioned remote sensing technologies may be used for mapping and monitoring of

non-native species. The spatial resolution is important because it determines the size of the objects

that  can  be  detected  on  the  ground,  whereas  other  parameters  mostly  influence  the  obtained

accuracy.  The  choice  of  remote  sensing  technology  should  be  based  on  an  analysis  of  total

inventory cost, available budget, desired accuracy and the value of information. If for example the

value of information is small, the use of freely available satellite imagery and a limited amount of

field data could be a viable solution. 
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Part 2: Non-native and native species distributions

Introduction

An important requirement for mapping non-native species on large scales is to have information on

the geographical distribution of the native species. Distribution maps are crucial in management of

non-native species, since they, based on the current regulation, define whether a species is native or

not.  However,  the  details  of  existing  distribution  maps  –  such  as  those  found  in  international

geodatabases1 –  are  often  too  coarse  to  be  used  in  management  and monitoring  of  non-native

species. 

During the last two decades remote sensing has been used to develop consistent national

forest maps or vegetation maps in many countries (Tomppo et al. 2008; Gjertsen 2007). Such maps

have often information on species distributions in  terms of stem volume per  hectare or similar

attributes. Thus, these maps have information about the current species distribution and accounts for

alpine,  oceanic  and  arctic  tree-lines.  However,  in  cases  where  these  maps  do  not  distinguish

between  individual  species  or  between  native  and  non-native  species  from  the  same  genera,

additional information is needed to establish a map of the native species distribution. One example

is at the west coast of Norway where different spruce species occur in the same areas. Most of these

spruce species are non-native, but one species, Norway spruce, also occur as native (Lid and Lid

2007). Norway spruce has also frequently been planted outside its native habitat in these regions. In

order to separate the areas where Norway spruce occur natively, from where it is introduced outside

its native habitat and where other non-native spruce species occur, a more detailed distribution map

is needed. Although DNA methods are available (Tollefsrud et al. 2015), the most readily available

information  of  the  native  species  distribution  in  Norway  is  found  in  existing  literature.  Thus,

combining a current distribution map created from available national maps and a literature-based

native species distribution map seems to be the most viable solution to provide more detailed and

updated native distribution maps. 

A current  distribution  map  at  the  genera  level  can  include  both  native  and  non-native

species. Such a map can be used to estimate the area covered by non-native species, and to assess

the  impact  in  –  and  proximity  to  –  specific  areas  of  high  natural  value.  In  the  case  of  area

estimation, rigorous statistical methods beyond a mere summary of map areas should be used to

obtain estimates of non-native species, as well as uncertainty measures and standard errors for these

estimates. The simplest methods of obtaining area estimates from classified maps is to use the error

matrix obtained from a sample (Stehman 2013). However, in both area estimation and in impact

1  e.g. http://www.euforgen.org/distribution-maps/ 
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assessment the accuracy of the underlying map product will be highly influential. Using already

existing maps may be a cost efficient way to obtain the information compared to organizing and

conducting  separate  remote  sensing  campaigns  to  produce  an  updated  non-native  species  map.

However, it is likely that the designated remote sensing campaigns will provide higher accuracies

than national available map products. Thus, evaluating the application and the accuracy that can be

obtained by using non-native species distribution maps derived from national available vegetation

and forest maps would support future decisions on how to obtain maps of non-native species. 

In the current part of this project our aim was to produce digital maps of the native species

distributions for Norway spruce and Scots pine in Norway, based on national available maps. Based

on  these  maps,  distribution  maps  for  non-native  conifer  species  were  then  created,  and  we

investigated the applicability and accuracy obtained for such maps in area estimation and impact

assessment. The specific objectives of the current part were to: 

1. Create national maps of the native distribution of Scots pine and Norway spruce.

2. Create a national non-native spruce species map and estimate the area dominated by non-

native spruce species.

3. Examine the relationship between the non-native species map and established databases, i.e.

species occurrence data and the current risk assessment of protected areas. 

4. Mapping the coverage and distances to important natural areas.

5. Creating maps indicating potential expansion from locations with non-native species. 

Materials 

Study area

The analyses was carried out in two steps at two different spatial scales. First, the distribution maps

was created on national scale. In the second step, the area defined to contain non-native species was

analysed in more detail.

Forest map

The map product named SAT-SKOG (Gjertsen 2007) was used as a source of information for tree

species and forest extent. The map is based on Landsat imagery and field observation from the

Norwegian  national  forest  inventory,  and is  created  by the  Norwegian  institute  of  bioeconomy

research (NIBIO). The map contains information that include species proportions for pine, spruce

and broadleaved trees. SAT-SKOG is the only map product providing this information for large

areas in  Norway. The map do however lack information in some areas (Figure 2-1).  The main

impact on the results produced in the current project is that information from Finnmark county was
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missing. 

Figure 2-1: Coverage and missing information in the national forest map (SAT-SKOG). SAT-SKOG

is a map product from NIBIO based on Landsat satellite imagery.

Validation data – species occurrence maps

We assessed the consistency between the non-native species map and other sources of occurrence

data. Occurrence data on spruce (Picea sp.) found outside the native distribution area for spruce was

downloaded from the Species Map Service provided by Norwegian Biodiversity Information Centre
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and  Global  Biodiversity  Information  Facility  Norway2 (Artsdatabanken).  Only  data  with  a

coordinate  precision  better  than  100  m  was  considered,  which  resulted  in  a  total  of  2157

observations. Of these 1566 had a coordinate precision better than 30 m. This level of accuracy

corresponds  to  the  pixel  size  of  SAT-SKOG,  not  including  the  positional  error  of  the  pixels

themselves which is typically considered to be half the pixel size. The majority of the species in the

downloaded  observations  were  Norway  spruce  (1512)  and  Sikta  spruce  (492),  the  remaining

observations were of Lutz spruce (77), white spruce (26), Serbian spruce (Picea omorika) (4), blue

spruce (Picea pungens) (3) and other species (5).

Impact assessment – protected areas and selected nature types

The coverage of non-native species and the distance to non-native species were mapped for selected

natural areas. The natural areas considered were protected areas, selected nature types and INON-

areas (areas without major infrastructure). Spatial datasets of these areas were downloaded from the

Norwegian Environment Agency3.  The selected nature types considered were: i) “Slåttemark”, ii)

“Slåttemyr”, iii) “Kalksjøer”, iv) “Kalk-lindeskog”, v) “Hule eiker”, and vi) “Kystlynghei”.

Methods

Natural species distribution

A native  species  distribution  map  was  created  based  on  existing  literature  and  the  species

information  in  SAT-SKOG.  First,  two  different  species  distribution  maps  were  created,  one

representing the current species distribution based on SAT-SKOG and the other based on existing

literature and administrative boundaries.  The two maps were merged to  create  a current  native

distribution map of Norway spruce and Scots pine. 

Current species distribution maps of spruce and pine were created based on the information

provided by SAT-SKOG. The maps were produced through a GIS analysis: First all polygons with

species proportions of more than 0 percentage for either of the two conifer species (i.e. spruce or

pine) were selected. Other threshold levels were considered, but all thresholds will be subjective

and thus introduce other types of errors in the final maps. Next, all polygons within a distance of

250 m was added to the first selection (i.e. the spruce or pine polygons). On the selected polygons a

dilation operation using a 500 m filter (a buffer of 500 m) followed by an erosion operation with a

filter of 450 m (a negative buffer of 450 m) was applied to remove small polygons. This procedure

resulted in a map of the current species distribution.

2 http://artskart.artsdatabanken.no/ 

3 Downloaded on September 4, 2015.

20

http://artskart.artsdatabanken.no/


The administrative native species distribution was established based on the description in the

Norwegian flora (Lid and Lid 2007) and was created as a geographical layer using an official map

of municipalities and counties. The administrative natural species distribution for Norway spruce

and Scots pine are tabulated in Table 2-1. Scots pine have a natural distribution according to Lid

and Lid (2007) for most of Norway and are only absent in parts of Finnmark. Norway spruce occurs

on Sørlandet from Lyngdal, on Østlandet and Trøndelag and in Nordland, north to Rana, with some

spontaneous locations north of Saltfjellet.  On the west coast, Norway spruce occurs in Ryfylke,

Hardanger, Voss, Modalen and Indre Sogn (Lid and Lid 2007).

The administrative natural species distribution seems most uncertain for Norway spruce.

The counties and municipalities mentioned in Lid and Lid (2007) fit well with one of the oldest

references  and  descriptions  of  the  distribution  of  spruce  in  Norway  (Gløersen  1884).  There  is

however some uncertainty related to if localities mentioned by Gløersen are natural spontaneous

locations or if they are introduced by humans. In the current analysis we used the description by Lid

and Lid (2007) as the source for the native distribution, including areas where the species occurs

less frequent, i.e. areas with spontaneous locations. There is also a current hypothesis that Norway

spruce may have survived in ice-free refugia in Scandinavia during the last glaciation e.g. on the

west coast of Norway (Parducci et al. 2012). NIBIO has also located sites with potential natural

spruce  occurrence  based  on  earlier  literature  descriptions  of  sites,  orthophotos  and  3D  data

(Tollefsrud et al. 2015). These sites could possibly be evaluated in more detail to understand the

immigration history of spruce and the current native distribution of spruce in Norway.

The  detailed  natural  distribution  map  was  derived  by  clipping  the  current  species

distribution map with the map based on the administrative native species distribution. The level of

detail in this map is high because it includes detailed boundaries towards the alpine areas and the

coastline. We did therefore also create a simplified version. In this version, all inner holes (e.g.

lakes, urban areas and mountain tops) were included in the native distribution, and all individual

polygons with a size less than 1 km2 were removed or merged. 

Non-native spruce species map

Data were extracted from SAT-SKOG for all areas outside the administrative native distribution of

spruce defined above. From SAT-SKOG the areas dominated by spruce, defined as areas where

spruce had the highest proportion of timber volume were created and defined as the non-native

species distribution map. This non-native species map covered 4 counties on the west coast, namely

Rogaland, Hordaland, Sogn og Fjordane and Møre og Romsdal. Nordland and Troms in northern

Norway were also included. The non-native species map was used to:
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1. Estimate the area of non-native species.

2. Evaluate the consistency of the map to other sources. 

3. Map coverage and distance to natural areas.

4. Establish risk maps.

The steps in the process described above are outlined in Figure 2-2.

Table 2-1: Native distribution of Norway spruce and Scots pine on an administrative level.

Nr County Norway spruce Scots pine
1 Østfold all all
2 Akershus all all
3 Oslo all all
4 Hedmark all all
5 Oppland all all
6 Buskerud all all
7 Vestfold all all
8 Telemark all all
9 Aust-Agder all all
10 Vest-Agder Lyngdal, Lindesnes, Mandal

Søgne, Kristiansand, Vennesla, 
Songdalen, Marnadal,Audnedal, 
Hægebostad, Åseral

all

11 Rogalanda Sauda, Suldal, Hjelmeland, Forsand all
12 Hordalandb Voss, Modalen, Kvam, Jondal, 

Granvin, Ulvik, Eidfjord, 
Ullensvang, Odda 

all

14 Sogn og Fjordanec Aurland, Lærdal, Årdal all
15 Møre og Romsdal Rindal all
16 Sør-Trøndelag all all
17 Nord-Trøndelag all all
18 Nordlandd Rana, Hemnes, Hatftfjelldal, Grane,

Vefsen, Vevelstad, Brønnøy, Bindal,
Gildeskål, 
Beirarn, Saltdal 

all

19 Troms none all
20 Finnmark Sør-Varanger, Kautokeino, 

Karasjok
Kvalsund, Porsanger, Sør-Varanger

 Lid and Lid (2007) description "inst i fjordar og dalføre i Ro Ryfylket" (Ro = Rogaland) defined as municipalities with a county border. Thus, the 

other municipalities in Ryfylke (Kvitsøy, Rennesøy, Finnøy and Strand) are not included.
b All municipalities in Hardanger in addition to Modalen and Voss.
c All municipalities in Indre Sogn
d Lid and Lid (2007) description "og nordover til No Rana, med nokre spreidde bestandar i Gildeskål (omlag utgått), Beiarn og Saltdal" (No = 

Nordland). 
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Figure 2-2. Outline of the process of creating the map products described in part 2 of the current

project (S% = proportion of spruce, P% = proportion of pine and B% = proportion of broadleaved

species).

Estimating area of non-native species

To estimate the area covered by non-native species we implemented a strategy based on an error

matrix  (Stehman 2013;  Olofsson et  al.  2014).  For  each of  the  6 counties  an equal  number  of

reference locations were created, and tree species interpreted from available orthophotos4. In each

county the reference sample was created by overlaying the map with a 1 x 1 km grid, and randomly

drawing 80 observations from the grid locations that fell in areas where the map showed non-native

4 From wms.norgeibilder.no.
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tree species (i.e. spruce) to be dominant. Similarly, 40 observations were drawn randomly from the

grid locations outside areas being mapped as dominated by spruce. From the interpreted reference

data a population error matrix was created:

Here p is a population error matrix, n is an error matrix, i is map class (row) and j is reference class

(column). Estimated values are indicated by adding a hat symbol. From the population error matrix

standard error matrix  features such as producer  accuracy (P)  and user accuracy (U)  as well  as

overall accuracy (O) and their respective variances (V) were calculated: 

Here q is the number of reference observations. The area of non-native species (y) and its variance

(v) were estimated based on the population matrix and the total area mapped in each class (W): 
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The square root of the variances (V) provided the standard errors and a 95 % confidence interval

was obtained by multiplying the standard errors with 1.96.

Consistency with spruce observations and protected areas

The agreement between the non-native spruce species map and the species occurrence observations

from Artsdatabanken and the assessment of the protected areas (Miljødirektoratet) was evaluated

through GIS analyses. From the point observations of species occurrence data the distances to the

nearest polygon with non-native spruce were calculated. We also recorded the spruce proportion

from SAT-SKOG at each point location. For the protected areas the proportion of the area covered

by non-native polygons and the distance to the nearest polygon in the non-native map were created. 

Coverage and distance to natural areas

Proportion of non-native species and distance to nearest polygon in the non-native species map

were  calculated  for  the  selected  natural  areas.  The  distances  was  summarized  and  analysed

according to the relevant categories in the data sources. 

Risk maps

A risk map was created by buffering the non-native map with 2 and 5 km, corresponding to the seed

dispersal zones suggested by Sandvik (2012). 
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Results and discussion

Native species distribution

Native species distribution maps were created combining the native administrative distribution and

the current distribution obtain from SAT-SKOG. The maps created include a native administrative

distribution, natural current distribution and a simplified native current distribution (Figure 2-3, 2-

4). It can be discussed if municipalities with only some small patches of spruce should be included

or not in a species distribution map. Such patches could have been introduced to by humans. We

will however argue that using the most up-to-date reference literature on the Norwegian species

distribution and include areas with enclaves of most likely native spruce, is a good foundation for

further work on non-native tree species. 

Non-native species map 

The  non-native  species  map  indicated  a  cover  of  1.3%  of  the  land  area  outside  the  natural
distribution of spruce (Figure 2-6). However, the area estimates need to be adjusted based on the
map  errors  (see  next  section).  Detailed  non-native  spruce  species  maps  for  selected  areas  are
included as an appendix (Figure A-2 – A-11).

Estimated area of non-native spruce species

The area dominated by non-native spruce species outside the native spruce distribution (excluding

Finnmark county) was in the current project estimated to be 1200 km2, with a standard error of 275

km2 and a corresponding 95% confidence interval of [661 km2, 1739 km2]. This estimate constitutes

approximately 9.1% of the productive forest area, and is higher than the 595 km2 estimate for non-

native spruce species reported by Øyen et al. (2009) (note that we have excluded pine and non-

spruce conifer species from the area reported by Øyen et al.  by using their reported per-species

figures). Øyen et al. derived this estimate from the number of seedlings delivered by forest nurseries

in  the  period  1875  –2005.  Using  data  from the  Norwegian  national  forest  inventory  the  area

dominated by any non-native species were estimated to be 570 km2 (Øyen et al. 2009). Øyen et al.

also derived from a third source an estimate of 2900 km2  of forest planted in Norway through the

so-called “skogreisning”. Most of this occurred in areas in which the planted trees would be non-

native,  but  some of these “skogreisning”-areas  are  located inside what  we have considered the

native distribution of spruce – for example in Hardanger – and is therefore not included in our

estimate. 
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Figure 2-3. Natural species distributions maps for pine (simplified map in figure A-1). The map

shows different sources of information on the native distribution of pine in Norway. The current

distribution is derived from a combination of a literature-based administrative distribution, and

conifer dominated pixels from the SAT-SKOG map product.
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Figure 2-4. Natural species distributions map for spruce (simplified map in figure A-2). The map

shows different sources of information on the native distribution of spruce in Norway. The current

distribution is derived from a combination of a literature-based administrative distribution, and

conifer dominated pixels from the SAT-SKOG map product. Some additional adjustments and

decisions have been taken to arrive at the depicted current distribution. See text for details.
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Figure 2-5. Non-native spruce species map. (Note that due to the included outlines of the green

non-native polygons, the map do not represent the true area of these). The map shows the

distribution of areas that are mapped as being dominated by non-native spruce species. The map is

created by identifying pixels from SAT-SKOG which are dominated by spruce species, which occur

outside the native distribution of spruce (see text for details).
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The difference between these estimates from Øyen et al. and the results in the current project

can partly be explained by the fact that the two first estimates from Øyen et al. do not include

Norway spruce as a non-native species, even outside its native distribution. All three estimates from

Øyen  et  al.  do  however  include  occurrences  of  non-native  spruce  species  from all  regions  of

Norway, also regions within the native distribution of Norway spruce, which were not considered in

the current project. Øyen et al. did not provide any standard errors for their area estimates. It is

therefore not possible to test statistically if these estimates in fact do differ from the results in the

present project. 

Area estimates were carried out for counties (Rogaland, Hordaland, Sogn og Fjordane, Møre

og Romsdal,  Nordland and Troms) and regions (Vestlandet  and Nord-Norge).  The largest areas

dominated by non-native spruce species are at the west coast of Norway, particular in Sogn og

Fjordane and Møre og Romsdal counties (Figure 2-7, 2-8 and Table 2-2). 

Table 2-2. Productive forest area and estimates of area dominated by non-native spruce species. 

a Derived from the AR50 map product.

Figure 2-6. Area estimates (km2) and confidence intervals of non-native spruce species dominance

in different regions. The adjusted area is the area from the non-native map adjusted for the errors of

this map obtained from photo interpretation of the stratified random reference sample.
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Figure 2-7. Area proportion estimates and confidence intervals of non-native spruce species

dominance in different regions. 

The non-native spruce species map has relatively high producer and overall accuracies, but

the  user  accuracy are  quite  low because  many of  the  locations  classified  as  non-native  spruce

species are in reality dominated by native pine or broadleaved species. Especially in Nordland and

Troms county the errors are high and many areas with non-native species in the map are other forest

types or non-forest when checked in orthophotos. In these areas, the number of reference plots in

the national forest inventory is lower and that has most likely also influenced the accuracy of the

forest map, i.e. SAT-SKOG. These errors are accounted for in our final area estimates, which means

that our area estimates are unbiased. The standard errors of these estimates are however relatively

large, and vary from 21% to 48% of the area estimates. They can potentially be reduced by adding

additional reference samples. The reference samples can be identified in available orthophotos with

high confidence at most locations. Another method to improve the estimates is to fit a model to the

reference samples (the photo-interpreted locations) and the data in the forest map. This will improve

the accuracy of the map, but an independent validation is needed. 
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Table 2-3: Error matrices for the photo-interpreted reference points.

Native Non-native Sum Producer's accuracy
Rogaland
Native 75 2 77 97.4
Non-native 15 25 40 62.5
Sum 90 27 117
User's accuracy 83.3 92.6
Overall accuracy 85.5
Hordaland
Native 79 2 81 97.5
Non-native 11 29 40 72.5
Sum 90 31 121
User's accuracy 87.8 93.5
Overall accuracy 89.3
Sogn og Fjordane
Native 78 1 79 98.7
Non-native 12 28 40 70.0
Sum 90 29 119
User's accuracy 86.7 96.6
Overall accuracy 89.1
Møre og Romsdal
Native 78 1 79 98.7
Non-native 16 26 42 61.9
Sum 94 27 121
User's accuracy 83.0 96.3
Overall accuracy 86.0
Nordland
Native 80 0 80 100.0
Non-native 30 10 40 25.0
Sum 110 10 120
User's accuracy 72.7 100.0
Troms
Native 82 0 82 100.0
Non-native 29 11 40 27.5
Sum 111 11 122
User's accuracy 73.9 100.0
Overall accuracy 76.2
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Table 2-4: Population error matrices, accuracy measures and area estimates in km2. (SE = standard error).

Native Non-native
Map area

(km2)
Adjusted
area(km2)

Adjusted area
(SE)(km2)

Adjusted
proportion

Proportion
(SE)

Producer's
accuracy

 SE
Producer's

Overall
accuracy

SE
Overall

Rogaland
Native 0.96 0.03 5159 5061 94 0.96 0.018 0.99 0.003 0.97 0.035
Non-native 0.01 0.01 97 194 94 0.04 0.018 0.31 0.299
Total 0.96 0.04 5255 5255 189 1.00 0.036
User's accuracy 0.97 0.63
SE User's accuracy 0.04 0.15
Hordaland
Native 0.95 0.02 6804 6678 119 0.96 0.017 0.99 0.003 0.97 0.033
Non-native 0.01 0.02 152 278 119 0.04 0.017 0.40 0.333
Total 0.96 0.04 6956 6956 237 1.00 0.034
User's accuracy 0.98 0.73
SE User's accuracy 0.03 0.14
Sogn og Fjordane
Native 0.97 0.01 11032 10959 141 0.97 0.012 0.99 0.003 0.98 0.024
Non-native 0.01 0.01 223 296 141 0.03 0.012 0.53 0.491
Total 0.97 0.03 11255 11255 281 1.00 0.025
User's accuracy 0.99 0.70
SE User's accuracy 0.03 0.14
Møre og Romsdal
Native 0.96 0.01 14165 14116 181 0.97 0.012 0.99 0.004 0.98 0.024
Non-native 0.01 0.02 344 392 181 0.03 0.012 0.54 0.49
Total 0.97 0.03 14508 14508 362 1.00 0.025
User's accuracy 0.99 0.62
SE User's accuracy 0.03 0.15
Nordland
Native 0.99 0.00 15392 15498 10 1.00 0.001 0.99 0.001 0.99 0.001
Non-native 0.01 0.00 140 35 10 0.00 0.001 1.00 0
Total 1.00 0.00 15533 15533 19 1.00 0.001
User's accuracy 1.00 0.25
SE User's accuracy 0.00 0.14
Troms
Native 1.00 0.00 25821 25859 4 1.00 0 1.00 0 1.00 0
Non-native 0.00 0.00 53 14 4 0.00 0 1.00 0
Total 1.00 0.00 25874 25874 8 1.00 0
User's accuracy 1.00 0.28
SE User's accuracy 0.00 0.14



Consistency with other sources

The percentage of non-native spruce species observations from Artsdatabanken with a distance of

less than 100 m (corresponding to the accuracy of the coordinates reported) from areas in our map

classified as dominated by non-native spruce species, was 32.7%. A similar proportion was found

when only considering locations with a higher precision, greater or equal to 30 m (31.2%). The

average distance from a non-native spruce observation from Artsdatabanken to a spruce dominated

area was 584 m, with 75% of the observations within 540 m and a median distance of 203 m.

Furthermore, nearly half (1038 of 2157) of the locations from Artsdatabanken did not have any

presence of spruce in SAT-SKOG, and only 101 of the locations had a spruce proportion of more

than 50% according to data from SAT-SKOG (Figure 2-9).

Although the coordinate  precision for  many of  the  observations  were reported  to  be of

sufficient quality to be related to the SAT-SKOG product there are little consistency between these

two sets of data. The main reason is that many of the records in the database are observations of

single trees, which will not be visible in the 30 m resolution satellite imagery used to produce SAT-

SKOG. It seems like the used of the species occurrence data from Artsdatabanken is of little use as

calibration or validation data due to lack of the required level of accuracy. Another aspect is that the

occurrence data are not representatively distributed in the landscape (Figure 2-10). Such clustering

of observations will violate the assumptions for accuracy assessment, where random or systematic

sampling are typically required. Thus, it is a clear recommendation not to rely on this occurrence

data as field reference for remote sensing based estimation. We also consider it to be very likely that

accuracies reported to be better than 1 – 5 m in Artsdatabanken are actually considerably lower. Use

of survey-grade high precision GPS equipment in forested areas has been shown to have errors of

up to 3 m with logging times of 15 minutes (Næsset and Gjevestad 2008) and consumer-grade GPS

equipment have accuracies of around 10 m (Andersen et al. 2009; Wing et al. 2005).

The number of protected areas outside the native distribution of spruce was 158. Of these 55

intersected with the non-native spruce species areas.  The average distance from these protected

areas to a non-native spruce species area was 4437 m. However, the median value was 140 m, and

75% of  the areas  were within  1068 m from a  non-native  spruce  dominated stand.  Taking into

account the suggested risk zones of 2 and 5 km nearly 90% of all the protective areas were within

these distances: 143 (91%) and 139 (88%), respectively. Relating the protected areas directly to the

forest map revealed that 30% of the protected areas outside the native distribution of spruce were

dominated by spruce (> 50%) and 58% of the protected areas had a proportion of spruce of > 10%

(Figure 2-9). Thus, there is a limited consistency between the threat assessment and the non-native

species map.
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FIGURE 2-8. Distance between spruces occurrence data and the non-native species map polygons

(upper left) and spruce proportion from SAT-SKOG on species occurrence locations (upper right).

Distance between threatened protected areas and the non-native species map polygons (lower left)

and the maximum spruce proportion from SAT-SKOG inside the threatened protected areas (lower

right).
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Figure 2-9: Density of spruce occurrence recording in Artsdatabanken provided by Norwegian

Biodiversity Information Centre and Global Biodiversity Information Facility Norway. In total the

density map is based on the 2157 observation (of Picea sp.) where the coordinate precision was

better than 100 m. 

Non-native species in protected and natural areas

Approximately half of the protected areas had some cover of non-native spruce species based on the

created map. However, the coverage of areas dominated by non-native spruce species within the

protected areas was usually low. On average,  the area coverage was 2%, and 82 of the of the

protected  areas  (13%)  had  a  coverage  between  5% and  10%.  Only  12  protective  areas  had  a

36



coverage of areas dominated by non-native spruce species of more than 10%. The median distance 

Figure 2-10. Overlap between the non-native species map and selected nature types. The area of

the individual nature types dominated by non-native spruce species (left). Proportion of the

individual nature types dominated by non-native spruce species (right). 

Figure 2-11. Coverage and distance from INON areas to locations mapped as dominated by non-

native spruce species. Proportion of the area of each INON zone that are dominated by non-native

spruce species (left) (N = Areas newly removed from INON, 2 = between 1 and 3 km from technical

installation etc., 1 = 3 – 5 km from technical installation, V= Wilderness areas . 
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Figure 2-12. Coverage and distance from protected areas to locations mapped as dominated by

non-native spruce species. Number of protected areas plotted against the percentage of the area

that are mapped as dominated by non-native spruce species (left). Number of protected areas

related to their distance from the nearest non-native spruce dominated polygon (right). 

from a non-native polygon to a protected area was 793 m. However, 64% and 82% percent of the

combined area of the individual protected areas were within the dispersal risk distance of 2 and 5

km (Figure 2-13).

All  the  selected  nature  types  intersected  with  an  area  dominated  by  non-native  spruce

species.  The  median  cover  and  the  average  cover  within  the  areas  were  2.6%  and  9.5%,

respectively.  The  coverage  was  highest  in  “Rik  edelløvskog”  (5.0% of  the  area)  “Slåttemark”

(10.2%  of  area)  and  “Store  gamle  trær”  (11.5%  of  area).  However,  in  terms  of  total  area

“Edellauvskog” and “Kystlynghei” were the types with the largest coverage of non-native species

(Figure 2-11).

Only 6% of the INON polygons outside the administrative native distribution of spruce had

some coverage of non-native species. The total area coverage with non-native species in the INON

area  according to  the  map was approximately  50 km2.  The  coverage  of  non-native  species  are

largest in zones closest to technical installations (Figure 2-12).

We would like to emphasize that the results presented above should be interpreted in light of

the accuracy obtained for the non-native species map.
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Risk maps

We created a risk map by applying the seed dispersal distances suggested by Sandvik (2012) to the

non-native species map (Figure 2-14). These risk zones cover large parts of the land in the analysed

areas. Thus, when a more detailed invasive species map is obtained, topography and wind directions

should also be considered when producing such risk maps.

Figure 2-13. Risk zone map based on 2 and 5 km dispersal range from the non-native spruce map.

The map shows the non-native spruce polygons with a 2 and 5 km buffer, i.e. the areas indicated in

the map are within a distance of 2 or 5 km from locations with non-native spruce. 
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Part 3: Classification of spruce species

We have in this part  of the project tested and validated methods to discriminate between Sitka

spruce and Norway spruce, using remote sensing data.Both airborne and spaceborne remote sensing

data have been used to map and classify vegetation. The main advantage of spaceborne remote

sensing data is the availability both in terms of coverage and costs. Satellite imagery such as the

Landsat products are freely available, and covers most areas of the globe with multiple acquisitions

annually.  The disadvantage of satellite  imagery of this  type is  a resolution that is  typically  too

course for some applications. With a spatial resolution of 30 m it is for example not possible to

identify individual vegetation elements, which could be achieved using airborne remote sensing.

Airborne sensors are flown closer to the ground and thus typically are able to provide data with a

much higher resolution. Some sets of data from airborne sensors – such as the aerial imagery from

the Norwegian mapping authorities – are freely available for governmental bodies, but the use of

other types of airborne remote sensing data can involve acquisition costs. 

We have tested and compared three sources of remote sensing data in the present part of the

project, namely Landsat 8 satellite imagery, orthophotos created from aerial imagery, and data from

ALS. Whereas the former two are imagery from passive spectral sensors, the latter is acquired using

a lidar sensor. ALS is based on and active sensors, sending out and recording then reflections of

pulses  of  laser  light.  The  data  product  from ALS is  typically  a  three-dimensional  point  cloud

representing the points where the laser pulses were reflected from the vegetation and the ground.

Laser echoes from the ground can be identified using specialized algorithms, which in turn enables

calculations of above-ground heights for laser echoes reflected from the vegetation. This principle is

central in the application of ALS for estimation in forestry. A thorough introduction to principles

and application of lidar for vegetation mapping is outside the scope of this rapport. An introduction

to  the  principle  behind  ALS can  be  found  in  Wehr  and  Lohr  (1999).  A more  comprehensive

introduction to the application of ALS in forestry can be found in Maltamo et al. (2014).

Materials

Study area 

The data used in this part of the project were collected within Fusa and Tysnes municipalities on the

western coast of Norway. The forest are naturally dominated by Scots Pine and deciduous species,

mainly birch (Betula pubescens). From the 1940s and throughout the second part of the twentieth

century regeneration using non-native tree species, mainly Norway spruce and Sitka spruce was

common in this region at the west coast of Norway. The productive forest area is about 260 km2 and
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the species composition is approximately 13% spruce, 66% pine and 20% deciduous forest. 

Field data 

Three sets of field observations were utilised in the present part of the project, with observations

from a total of 240 individual locations. All locations were situated in spruce dominated forest, and

the proportions of Sitka spruce and Norway spruce were recorded for all locations. Two of the sets

were initially  collected as  a  part  of  the data  acquisition in  other  research and forest  inventory

projects. The three datasets are described in the following:

Forest inventory plots 

Sample  plots  with  the  main  purpose  of  being  used  to  create  forest  management  plans  were

measured during the summer of 2012. These circular sample plots had a size of 250 m2. The sample

plots were clustered, with a 250 m spacing between sample plots in the cluster. From this initial set

of plots, a sub-sample of 57 plots dominated by either Norway spruce or Sitka spruce was used in

the present project. 

Research plots 

A second set of field observations was from sample plots measured during the autumn of 2013.

These circular sample plots had a size of 250 m2 and were laid out in clusters of three in a triangular

design.  The internal distances between plots within the clusters were 20 m. A total  of 93 plots

dominated by Norway spruce or Sitka spruce were used from this set in the present project.

Additional Sitka spruce plots 

Field measurements with the main purpose of increasing the number of observations from locations

dominated by Sitka spruce were carried out during the summer of 2015. From an initial set of all

forest stands in the study area dominated by Sitka spruce, 30 stands were subjectively chosen for

measurements. With an initial goal of having the observations evenly spread out in the study area,

the selection was ultimately guided by accessibility from e.g. forest roads. The selection of the 30

stands were carried out prior to visiting the stands in the field, with the exception of a few occasions

in which a nearby stand was measured instead, due to severe storm felling in the originally chosen

stand. Within the selected stands, three locations were subjectively chosen, guided by these criteria:

the locations should be evenly spread out in the stand, and should preferably not be close to stand

borders. At each of the three locations, the proportions of the basal area of Sitka spruce versus other

species were recorded using a relascope. 
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Plot positioning

For the first two datasets, the plot centers were positioned using survey-grade GPS+GLONASS

equipment. The forest inventory plots were positioned using real time kinematic GPS+GLONASS

using DPOS from the Norwegian Mapping Authorities (reported accuracy from processing < 0.20

m), and the research plots using differential GPS+GLONASS (reported accuracy from processing <

3.2 m). with post-processing. In the post-processing the three closest base-stations operated by the

Norwegian mapping authority were used. A hand-held GPS receiver was used to record the position

for additional Sitka spruce plots (accuracy ~10 m).

Remote sensing data 

Airborne laser scanner data 

Airborne laserscanning data was acquired using two Optech ALTM Gemini instruments mounted in

a PA31 Piper Navajo fixed-wing aircraft. The data acquisition was carried out from 5th of June to

7th of August 2010. The initial processing of the ALS data was carried out by the contractor (Blom

Geomatics,  Norway)  according  to  standard  procedures.  Echo  heights  were  normalized  using  a

triangular irregular network (TIN) created from ground echoes identified using the progressive TIN

densification algorithm (Axelsson 1999; 2000). 

Aerial imagery – orthophoto

Norway has a system for acquiring aerial images on a routinely basis. The orthophotos produced

from these images are made readily available on the internet for end-users. The orthophotos used in

the current project have a resolution of 0.25 m and were created from imagery acquired in July 2013

as part of the campaign “Vestlandet 2013”. 

Landsat 8 

A search restricted to images in the period from February 11, 2013 to August 31, 2015 with less

than 30% cloud coverage returned 30 potential images covering the study area. Of these seven were

selected for further use,  based on manual inspection of the distribution of the cloud cover. The

Landsat 8 data were downloaded5, and had a pixel size of 30 m. The acquisition dates for the seven

Landsat images were:

#1: 2013-07-10, #2: 2013-07-26, #3: 2014-09-15, #4: 2013-11-06, 

#5: 2014-03-30, #6: 2014-04-15, #7: 2014-05-01.

5  From http://libra.developmentseed.org/
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Methods

Variable extraction

For all the field reference locations numerical features were extracted from the remote sensing data,

and these features  – or  variables in  a modelling context  –  are  described for each of the three

datasets in the following:

Landsat 8

Field reference data were with the Landsat 8 data coupled with the pixel from the satellite images

which contained the recorded field position. From this pixel, spectral values from the bands of the

Landsat image were extracted. We also computed normalized difference vegetation index (NDVI)

and three indices derived with a so-called tasseled cap transformation. Coefficients for the tasseled

cap  transformation  were  taken  from  Baig  et  al.  (2014),  where  these  indices  also  are  further

described. An overview of the variables extracted from the Landsat images is presented in Table 3-

1.

Table 3-1. Variables derived from the Landsat satellite imagery and the corresponding band(s) used

for calculating the variable. 

Variable Band(s)

Red 4

Green 3

Blue 2

Near infrared (NIR) 5

Short wavelength infrared (SWIR) 1 6

SWIR 2 7

NDVI 4 and 5

Brightness 2 – 7 (tasseled cap transformation)

Greenness 2 – 7 (tasseled cap transformation)

Wetness 2 – 7 (tasseled cap transformation)

Airborne laser scanning data

Laser echoes were extracted from 250 m2 circular areas centred at the field measured plot centers,

corresponding in size to the forest inventory plots. Note that this size also was used for the locations

with relascope measurements. Within these circular areas above-ground heights of the laser echoes

were extracted and percentiles and order statistics were obtained from the height distribution. This
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type of height-derived variables have been used in estimation for forest inventories, and have been

shown to be well correlated with e.g. timber volume (Næsset 2002). To use these height metrics for

classification they were normalized to the maximum echo height (See Table 3-2). In addition to an

accurate position, each recorded laser echo is also associated with an intensity value, giving the

intensity of the reflected laser light. Previous studies show that these intensity values might hold

information  that  can  be  used  to  discriminate  between  different  tree  species  (Ørka,et  al.  2009;

Korpela et al. 2010). We therefore included variables describing the distribution of intensity values,

corresponding to the variables derived from the height distribution. The variables were computed by

the R-package lasR6, developed by the authors, in the statistical software R (R Development Core

Team 2011) . A summary of the variables derived from the ALS data is given in Table 3-2.

Table 3-2. Variables derived from the ALS data. 

Variable Description

Hmean Mean echo height relative to the maximum echo height

Hsd Standard deviation of the echo height distribution

Hcv Coefficient of variance for the echo height distribution, relative to

the maximum echo height

Hkurt Kurtosis of the echo height distribution

Hskewness Skewness of the echo height distribution

H10, H20 … H90 the 10th ,20th , … 90th percentile of the height distribution of the laser

echoes, relative to the maximum echo height

d0, d1, …. d10 Density variables. Number of echoes above equally spaced height

intervals.

imax Maximum echo intensity 

imean Mean echo intensity

isd Standard deviation of the echo intensity distribution

icv Coefficient of variance for the echo intensity distribution

ikurt Kurtosis of the echo intensity distribution

iskewness Skewness of the echo intensity distribution

i10, i20 … i90 the 10th ,20th , … 90th percentile of the intensity distribution of the

laser echoes.

i0, i1, …. i10 Number of echoes above equally spaced height intervals in the echo

intensity distribution.

6 https://github.com/hansoleorka/lasR 
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Aerial imagery - Orthophoto

Pixels within 250 m2 field plots were extracted from the aerial images, and variables were derived

from the distribution of spectral values. All variables were derived separately for the red, green and

blue bands. The distribution of spectral values was captured as percentiles of the value distribution

(see  Table  3-3).  Texture  is  commonly  used  in  different  image analysis  tasks,  and we included

textural variables derived using co-occurrence matrices (Haralick et al. 1973). The glcm R-package

(Zvoleff  2015) was used to calculate the textural variables.  Textural variables  derived with co-

occurrence matrices were calculated for each pixel,  and the value depends on a  predetermined

window size, which gives the number of neighbouring pixels to include in the calculations. We

calculated two distinct sets of textural variables: 1) a set with the values of the textural features

from the single center pixel at each field reference location. In this case, the side of the window was

equal  to  the  diameter  of  the  250  m2 field  plot,  which  means  that  the  pixels  included  in  the

calculations approximately corresponded to the pixels within the circular field plot. 2) Another set

of textural variables derived by averaging the values for all pixels within the plot. In this latter case,

the window size was reduced in order to limit the number of pixels outside the circular plot that

were included in the calculations. The window side was in this case set to correspond to the radius

of the 250 m2  circular field plots. Both these approaches will lead to some pixels outside the plot

being included in the calculation of textural variables. An overview of the variables derived from

the orthophotos is presented in Table 3-3.

Modelling – classification algorithms

Three distinct types of classification models were used and compared in the present project: random

forest, support vector machine (SVM) and logistic regression. Random forest is a machine learning

classification algorithm and is based on multiple binary classification trees, grown with bootstrap

samples  of  the  data.  It  was  introduced  by  Breiman  (2001),  and  is  used  for  classification  and

regression.  SVM  is  another  widely  used  machine  learning  classification  algorithm  based  on

constructing optimal separating hyperplanes in transformed versions of the data. Classification with

random forest, SVM and logistic regression is further described by Hastie et al. (2013). 

The classification was carried out using a leave-three-out cross-validation procedure. Three

observations were held back as validation data, and the remaining 237 observations were used to

build the classification models. The observations were grouped according to the clusters in the field

data, which ensured that all observations from the same cluster or stand were in the same group, and

thus not occurred in the modelling and validation set at the same time. The procedure was repeated

80 times, until all groups of three observations had been used for validation once. The predictions
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for each validation iteration were recorded, and accuracy statistics computed.

The classification with the random forest algorithm was in the present project carried out

using  the  randomForest package  in  R  (Liaw and  Wiener  2002).  Default  values  for  adjustable

parameters were used. Classification with SVM was carried out using the  svm function from the

e1071 package in R (Meyer et al. 2015). Default values for adjustable parameters were used for the

SVM models. The logistic regression models were fit with the  glm function in R, using the  step

function to do a stepwise variable selection. The stepwise procedure was carried out using Bayesian

information criterion (BIC) for selection. Both forward and backward selections were enabled, with

an empty model as the initial model. Finally the glmulti function in the glmulti package (Calcagno

2013) in R was used to select the best model from all possible subsets of the variables selected

through the stepwise selection procedure. In this final model selection BIC was used as criterion,

and only models with less than six variables were considered.

We derived the predicted classes from the logistic regression by using a cut-off value of 0.5,

i.e. observations with a modelled probability of > 0.5 were classified as dominated by Sitka spruce. 

Table 3-3. Variables derived from the orthophotos. 

Variable Description

P10_red, P20_red … P90_red

P10_green, P20_green … P90_green

P10_blue, P20_blue … P90_blue

10th ,20th , … 90th percentiles of the distribution

of  the  red,  green  and  blue  spectral  values,

respectively.

Textural variables

mean

The textural variables were calculated separately

for the red, green and blue band. The variables

are further described in Haralick et al. (1973).

variance

homogeneity

contrast

dissimilarity

entropy

second moment

correlation

Accuracy assessment

The classification performance for each model was assessed by computing the overall accuracy,

user and producer accuracy for the Sitka class, as well as the kappa statistic. The user accuracy

corresponds in this case to the probability that a location classified as being dominated by Sitka
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spruce  really  belong  to  this  class.  Conversely,  the  producer  accuracy  is  the  probability  that  a

location dominated by Sitka spruce is in fact classified as such. The kappa statistic – also referred to

as the Cohens kappa – is a measure of the overall accuracy, and is well suited for comparison of

different models solving the same classification problem. There are several ways of interpreting the

kappa value – Landis and Koch (1977) consider 0-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as

moderate and 0.61-0.80 as substantial, and 0.81-1 as almost perfect. 

Results and discussion

The  overall  results  from  the  cross-validation  procedure  show  slight  to  moderate  ability  to

discriminate  between locations dominated by each of  the two spruce species,  using the remote

sensing  data.  The  resulting  kappa  values  varied  between  0.106  and  0.556  for  the  tested

combinations of remote sensing data and classification methods (Table 3-4). 

In terms of classification accuracy, the combination of Landsat image #1 and orthophoto

images performed in the present study best, with a kappa value of 0.556 and a corresponding overall

classification accuracy of 78% (Table 3-4). When inspecting the results from using data derived

from single Landsat images it is evident that the accuracies vary, with kappa values ranging from

0.228 to 0.522. Models with data from Landsat images #1 and #3 performed best, with kappa values

of 0.522 and 0.465, respectively. The best model using data from Landsat image #4 on the other

hand, had a kappa value of 0.228. This indicates that the inherent information that reveal differences

between Norway spruce and Sitka spruce is not present to the same degree in all seven Landsat

images. Using a single Landsat image for this kind of classification is in other words sensitive to the

selection of the image, and it could therefore be beneficial to use multitemporal Landsat imagery.

The results could suggest that satellite imagery acquired in the summer yields a better classification,

but a thoroughly investigation of possible differences due to acquisition season was not carried out

in this project. It could be subject to further research.

Compared to the models based on data from the two airborne sensors, the satellite imagery

performed in this  comparison well,  despite a lower spatial  resolution.  Using data with a  lower

spatial resolution does however restrict the possible spatial levels for predictions. 

Combination  of  data  from different  sources  did  not  yield  predictions  with  considerable

higher accuracy in this comparison. Adding data from ALS or orthophotoes did however slightly

improve the classification accuracy as compared to the use of Landsat imagery alone. Also in this

case, using data with a higher spatial resolution will also enable predictions at a finer spatial scale.

Three  types  of  classification  methods  were  tested  in  the  present  project,  with  logistic

regression  yielding  the  best  results.  The  logistic  regression  was  however  implemented  with  a
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variable selection procedure which was not used for the other two approaches. Any conclusions

drawn from the performance of the different models should incorporate this, and future research

could reveal  if  the  two machine learning procedures  would benefit  from the  use of  a  variable

selection procedure with this type of data.

There are few directly comparable studies, but the accuracy obtained in the present project

seems to be within the range of accuracies obtained in some related studies (see Table A-1 in the

appendices). Carter et al. (2009) used imagery from Landsat 5 to classify an invasive tree species in

Colorado (US), and obtained an overall accuracy of 80%. Higher accuracies than in the present

study were obtained in some studies using satellite imagery with a higher resolution, such as Asner

et al. (2008) and Fuller (2005). The classification accuracies in those studies were also higher than

the accuracies obtained with high resolution orthophotos and ALS in the present project. One reason

could be that the spectral and structural differences between Sitka spruce and Norway spruce are too

small, or of such a nature that they are not well captured in the remote sensing data. 

Vauhkonen  et  al.  (2014)  notes  that  the  task  of  inter  genera separation  of  species  is

challenging, and in species classification studies using remote sensing the species are typically from

different genera. 

Overall, the results from this part of the project suggest that Landsat 8 imagery can be used

to discriminate between stands dominated by Norway spruce and Sitka spruce. Slight to moderate

ability  to  separate  the  two  species  were  found,  with  a  best  overall  accuracy  of  78%.  Using

additional data from airborne sensors did not yield considerable higher classification accuracies.

The  accuracy  when  classifying  Norway spruce  and  Sitka  spruce  in  an  operational  setting  will

however  also  rely  on  the  ability  to  discriminate  between  spruce  dominated  forest  and  other

vegetation and land cover types. The experience from the use of SAT-SKOG data in part 2 of this

project suggest that errors must be expected, so how the final accuracy is influenced by these should

be further evaluated. 
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Table 3-4. Accuracy statistics from the cross-validation of the classification models. User and

producer accuracy for the Sitka class. The table is sorted according to the kappa value, i.e. the

models with best performance appear at the top of the table. For Landsat the # indicate the image

number used. (The terms used in the table are further described in the Terms and abbreviations

section).
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Part 4: Recommendations for non-native species mapping

Introduction

The words mapping, inventory and monitoring are by many used as synonyms, but they are not.

The  use  of  the  words  do  also  differ  slightly  between  disciplines.  Some  authors  consider  an

inventory to be a complete census for a specific area (Pokorny et al. 2006), but inventories may also

be  sample  based,  due  to  high  costs  of  complete  inventories.  One  example  of  a  sample  based

inventory is the Norwegian national forest  inventory.  Ground survey data can be used alone to

produce inventory information using appropriate statistical estimators, or it can be used as reference

data for an remote sensing-based inventory. A map can be produced as part of this process, which

could  be  referred  to  as  an inventory  (complete  census)  or  a  mapping.  Usually,  when the  term

inventory is used, the map are combined with the ground references to produce estimates, as in Part

3 of this report. Monitoring is typically considered as repeated inventories or surveys. This part of

the report will mainly focus on how inventories of non-native conifer species can be conducted in

Norway. Establishing monitoring programmes to obtain information on the spread of non-native

species is also discussed.

Considering objectives and goals 

Before one establishes an inventory system targeting non-native species the aims should be clear.

There might be demands for statistics and maps, identifying threatened areas, and to establish a

monitoring  programme  aiming  at  detecting  the  spread  of  non-native  species.  To  meet  these

demands, several aspects should be considered. In Part 2 of this report, we establish statistics and

maps for the presence of non-native spruce species in parts of Norway based on available sources.

This map can be established at a relatively low cost. However, there were a lot of false positives,

meaning that a some of the areas mapped as dominated by non-native species are miss-classified

and do in  fact  contain only native  trees.  Thus,  this  approach are most  likely  only  suitable  for

production of mean statistics, where by increasing the number of references points it its possible to

decrease the standard errors of these estimates. Other more detailed methods are needed if the aim

of the inventory or monitoring programme is  early detection of new occurrences of non-native

species. 

Before establishing an inventory and a subsequent monitoring programme targeting non-

native  tree  species  in  Norway some insight  can  be gained from the  current  project  as  well  as

available literature. Firstly, medium spatial satellite imagery has several advantages and thus seems

like a suitable remote sensing data source. In the current project, the accuracies obtained with such
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imagery were among the best.  The limitations in the tested classification methods are that only

mature forest was included in the data material, but it is likely that younger forest also could be

separated to some degree, although this have to be tested. Nevertheless, the youngest development

classes  and  occurrences  of  single  non-native  trees  can  not  be  detected  using  medium satellite

imagery. The size of the minimum detectable object in such imagery is 3.6 ha, and at best 0.4 ha if

the highest resolution of Sentinel 2 can be used alone. Thus, the objective of using such imagery

should be restricted to mapping areas or forest stands dominated by non-native species. 

To monitor spread of non-native species the use of medium resolution satellite imagery from

archives may provide a rough indication on the large scale spread during the last, say, 30 years.

However, even if the species composition is relatively stable over time, it would be difficult to

validate such maps using present field observations, and the obtained accuracy will most likely not

be very high. To monitor spread of non-native tree species more detailed methods could therefore

be considered. Areas selected for monitoring are probably best located based on maps produced by

medium resolution satellite imagery. The areas could be placed subjectively or in accordance with

predetermined guidelines. This will depend on if the objectives are to monitor specific areas – such

as  a  protected area – or  if  the objective  is  to  produce  national-  or  county-wise  estimates  with

standard errors. 

To decide which species to include in a non-native tree species inventory some guidance can

be taken from the estimate that nearly 60% of the conifer non-native species are Sikta spruce (Øyen

et  al.  2009).  This  will  also  affect  the  selection  of  areas.  An  inventory  and  monitoring

implementation could be carried out as a stepwise process and improved as more information are

obtained. Therefore, it seems advisable to consider one or more of the counties which have areas

outside the native spruce distribution in Norway first. However, an inventory should include all

non-native tree species.

The scope of the inventory is also important. If only national statistics are aimed for, the use

of  data  from  the  national  forest  inventory  are  most  likely  enough.  However,  if  county-wise

estimates  are  needed,  additional  sources  of  data  should  be  considered.  If  the  aim is  to  obtain

estimates on a stand – or even single tree level – yet more detailed data and methods must be used.

Field survey considerations

A field survey should be designed to provide a statistical estimate of areas which are dominated by,

or  have  presence  of,  non-native  tree  species.  Data  from a  field  survey  could  also  be  used  as

reference data for remote sensing, provided that this is incorporated in the design of the survey. One

important requirement for field observations to be coupled with remote sensing data is sufficient
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accuracy and rigour in the georeferencing of the field plots. With an accurate coupling of field

observations and remote sensing data, the remote sensing data can be used as auxiliary information

and improve the field based area estimates. 

Field  data  are  essential  in  remote  sensing  analysis.  They  typically  also  represent  a

substantial cost. For example, the field inventory that was used in the current project had a price of

approximately 2000 NOK per field plot. If the distance between plots increases, the inventory costs

will also increase. In order to use meaningful statistical estimators, sample plots should be located

following predetermined and specific rules.

The area covered by non-native species in Norway is – according to the findings in the

present  project  –  less  than 2%, and less  than 6% in the counties  with the highest  proportions.

Planning  sampling  surveys  for  populations  occupying  only  some  percentages  of  the  area  is  a

challenging task (Kalton and Anderson 1986). It seems natural to base as inventory of non-native

tree  species  on  the  Norwegian  national  forest  inventory.  Today,  the  Norwegian  national  forest

inventory uses a 3 × 3 km grid in all counties except for Finnmark where a grid of 9 × 9 km is used.

This inventory can provide data on the national level but additional field data are needed to provide

more detailed estimates.

Compared to other variables, such as biomass and tree height, species composition is more

stable over time. It could therefore be possible to utilise collected field data over a longer time

period. If a field sample is established now, it could be possible to use the field data together with

the Landsat archives to estimate species distribution back in time. Conversely, field data collected

today could be used as reference data for future acquisitions of Landsat images. Thus, this might

reduce inventory costs. This should however be tested.

Remote sensing data 

The costs, spatial resolution and coverage for different satellite-borne and airborne remote sensing

techniques are listed in Table 4-1. As mentioned above these specifications have to be consider

jointly together with the objectives of inventory.

Medium resolution satellite imagery has a spatial resolution of 10 – 30 m, resulting in a

minimum mapping unit of approximately 0.4 – 3.6 ha. Combining Landsat with other airborne data

sources  slightly  improved  the  classification  of  Sitka  spruce  and  Norway  spruce  in  the  current

project. For the separation of the two species alone the addition of airborne data is not important,

but when considering also other land cover classes it could be important. Use of additional ALS

data will for example provide a very useful dataset for separation of forested and non-forested areas.
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Table 4-1: Overview of satellite-borne and airborne remote sensing data sources.

Type Examples Spatial resolution Approx. costs Coverage

Spaceborne:

Medium satellite 

imagery

Landsat,

Sentinel 

10 – 30 m Free 35000 km2

High resolution satellite 

imagery

RapidEye

Ikonos

GeoEye

1 – 5 m 10-16 NOK/km2

80 – 130 NOK/km2

500 – 3500 km (6000)

Airborne:

Aerial imagery

(Multispecktral)

Ultracam 0.1 – 0.5 m 300-520 NOK/km2 60 – 4000 km2

LiDAR Optech 0.5 – 10 p/m2 500-2000 NOK/km2 60 – 4000 km2

Hyperspectral HySpex 0.5 – 1.5 m 1000 – 1500 

NOK/km2

(5000 NOK/km2)

0 – 4000 km2

UAV eBee 2 – 4 cm 7200 NOK km2 0.5 - 2.5 km2

If the aim of a remote sensing campaign is to cover specific smaller areas, technologies with

a higher spatial resolution should be considered. A combination of ALS and hyperspectral imagery

has been pointed out to be efficient (Huang and Asner 2009). Another, possibility is to use data

derived from photogrammetric point clouds (White et al. 2015; Gobakken et al. 2014). These have

lower cost compared to ALS and since most of Norway already have or will have an ALS based

terrain model they could a viable alternative. Photogrammetric point clouds can also be created

from imagery  acquired  by  UAVs.  A choice  between airborne  or  UAV-borne  sensors  should  be

defined by the size of the target area, data acquisition costs and desired point cloud accuracy. 

Remote sensing data is typically used with a full data coverage in the study area. It can

however also be used with a sampling approach, in which data from only selected parts of the area

are acquired. This reduces both the cost and time consumption associated with the data acquisition.

One could with this approach apply additional high spatial resolution remote sensing in a sampling

framework for the target area, and thus increase the level of detail and at the same time provide

statistical based estimates of the desired properties. Such designs have been proposed for both high

resolution satellite imagery (Falkowski et al. 2009), ALS (Wulder et al. 2012) and it is used in the

“Norwegian land cover and land resource survey of the outfields” (Strand 2013). Prediction maps

produced with this approach will still have to rely on data with full coverage.

Both Landsat 8 and Sentinel 2 will provide data with a temporal resolution that will enable

the use of multi-temporal imagery.  The variation between classification accuracies observed for
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different Landsat images in part 3 of the present project suggests that data from multiple images

could be used to ensure more stable results. Multi-temporal data can also be further utilised, giving

possibilities for detection of invasive plants with growth that differs from the native vegetation over

a given time period. Huang and Geiger (2008) successfully detected Lehman lovegrass (Eragrostis

lehmanniana) – an invasive plant in desert grasslands in North America – by using inter-annual

satellite imagery. Bradley (2014) noted that invasive species have an advantage in competition with

native species, and that “phenological patterns could provide opportunities for remote detection”.

Methods requiring multi-temporal  remote sensing  data  might  pose restrictions  on possible  data

sources, and also increase cost and complexity of the data acquisition process. 

Suggestions for implementation of a full scale inventory

Implementation of a full-scale monitoring system for non-native tree species in Norway could be

beneficial. We do however recommend to first establish a pilot inventory in a smaller area, prior to a

large-scale implementation. We suggest the following phases in such a pilot: 

1. Establish goals for the non-native inventory, mapping and monitoring system.

2. Select a test area. 

3. Do preliminary analysis based on available data in the selected area.

4. Select and establish sampling design and field reference protocol.

5. Acquire field and new remote sensing data.

6. Data management, modelling, analysis and reporting.

Based on the discussion above, the following objectives and goals can be formulated:

1. Derive full coverage maps and area estimates of areas dominated by non-native conifers at

the county level.

2. Derive estimates of early dispersal of non-native species on county level. 

3. Obtain detailed maps of a specific area, such as a protected area. 

This list of objectives is not intended to be complete, but facilitates three different approaches that

can be illustrated with different solutions based on remote sensing. The suggested use of remote

sensing in relation to these three objectives will be:

1. Use Landsat 8 or Sentinel 2 data with a design-based field inventory, e.g. a systematic field
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inventory. This will give relatively detailed maps of areas dominated by non-native species

where  the  trees  are  higher  than,  say,  10  m,  or  where  the  crown  coverage  is  high.

Furthermore, based on a probabilistic field sample, area estimates with standard errors can

be produced. The cost of this approach will be related to the field inventory and the data

processing.

2. In  order  to  use  remote  sensing  for  detection  of  early  dispersal,  high  spatial  resolution

techniques  are  needed.  A combination  of  airborne  lidar  and  hyperspectral  imagery  is

probably a good choice (Huang and Asner 2009). The high resolution data should then be

acquired  in  selected  areas  of  the  county  based  on  principles  from  sampling  surveys

(Falkowski et al. 2009). Field reference data must be acquired for some of these areas. The

costs are in this approach related to acquisition of both field and remote sensing data, as well

as data processing.

3. The third possible objective listed above is an example of estimation with field and remote

sensing data acquired for a smaller area. In this case lidar data and aerial imagery available

through  the  national  mapping  authorities  may  be  used.  Costs  are  here  related  to  field

reference data and processing. 

One reasonable and realistic objective could be to obtain a highest possible accuracy at a low cost.

The result from such a monitoring system should be maps and area estimates of non-native tree

species.  The  area  estimates  should  be  based  on  statistical  sound  estimators  and  thus  include

estimated standard errors. This corresponds to #1 in the list above. We do suggest doing a pilot

inventory in one selected county, where Landsat 8 and Sentinel-2 data are used to map non-native

species. We will discuss the suggested phases of such an implementation in the following: 

Phase 1: Preliminary work

The first  phase in this  phase should be to select a study area.  We suggest to select one of the

counties on the west coast (Vestlandet). It should include the challenge of separating Norway spruce

and Sikta spruce, as well as having Norway spruce natively present in large parts of the county.

Therefore, Rogaland, Hordaland or Sogn og Fjordane counties seems most relevant. 

The initial work with the selected study area should include analyses similar to those carried

out in the current project. In this first phase one should acquire relevant satellite data, map data and

available field data (field data could possibly be derived from the national forest  inventory).  It

should also be considered if an initial photo-interpretation should be carried out. These data can

then be used to create initial maps of land-cover, including main genera of trees. The initial maps
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can be based on map data as the forest map used in the current study, and then calibrated based on

observations or classified satellite imagery. 

Phase 2: Establishing sampling design and field inventory protocol

Based on the available information establish in phase 1 one should evaluate different sampling

designs and sampling intensities in order to establish an efficient field protocol. This process should

be done by simulating different scenarios based on the available data. In this phase where decisions

on the sampling design are carried out, specific considerations regarding rare non-native species

have to be considered. Establishing a sampling design are important in order to provide statistical

sound estimates  and standard  errors.  The  locations  selected  through  this  phase  should  then  be

visited in the field. 

In this phase one should also evaluate the number of field reference observation needed. In

part 2 of this study we used 120 reference plots and in part 3 we used 240 reference observations.

Similar numbers might also be relevant for a pilot study, but we recommend to record additional

reference observation. This will enable an evaluation of the effect of the number of field reference

locations. 

A complete field inventory protocol should also be established during this phase. It must be

decided if the species proportions should be recorded in terms of biomass, stem volume, number of

stems, basal area etc. The cost of travelling to a location will most likely be a considerable part of

the total cost in the field work, and recording some additional information when the field personnel

are at the location will probably add only a minor cost. 

Measurement of additional field locations independent of the sampling design to increase

the number of observations used for classification should be considered. These locations may be

subjectively placed and cannot be used as part of the statistical area estimation, but might improve

the classification accuracy and the overall accuracies.

Phase 3: Field inventory

Survey-grade  GPS  equipment  is  commonly  used  in  operational  forest  inventories.  The  high

positional accuracy obtained by this equipment might not be required if observations of e.g. species

composition within larger stands are to be coupled with Landsat imagery. We did use a hand-held

recreational GPS receiver for the addition Sitka spruce locations in the current project, because we

aimed at a stand level classification. It is however important that field locations are georeferenced. 

A benefit of recording species information is that the species present at a forest location are

relatively stable over time, which means that information can be recorded throughout the whole
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growing season. 

With good training of field personnel, the field inventory protocol should be easily adopted

by  persons  with  without  forestry  background.  Personnel  from  Statens  Naturoppsyn  may  for

example be responsible for the field data acquisition. 

Phase 4: Analyses and reporting

When all data are collected and processed, updated maps and area estimates should be produced and

reported. It might also be possible to use the data and the developed classification models to create

maps  of  non-native  species  based  on historical  imageries  from the  Landsat  archives,  and thus

analyse development over time. 

Conclusions

Using remote sensing data to map, inventory and monitor non-native conifer species seem to be

possible. The present project showed that the use of existing maps to produce statistics provided

unbiased estimates of the area covered by non-native species, but standard errors were high. 

Separation  of  Sitka  spruce  and  Norway  spruce  using  remote  sensing  data  resulted  in

moderate accuracies. The use of Landsat 8 satellite imagery or aerial  imagery gave the highest

accuracies, so these data sources should be considered further. One available data source that might

improve the separation of these two species from the same genera are hyperspectral data. This was

not tested in the present project. 

For a full  scale mapping, medium spatial  resolution data such as satellite imagery from

Landsat 8 or Sentinel-2 should be considered. This will however only provide information at a stand

level – at best – with no chances of early detection of single occurrences of non-native trees. Such

data do however have the advantage that time series will be available in the future (for Landsat it

already exist). 

Data acquired  with  high-resolution techniques  – typically  using airborne  sensors  – may

provide an ability to early detect dispersal of non-native tree species. However, the potential of

these techniques has to be investigated. It can also be applied for detailed mapping and inventories

in targeted smaller areas. High spatial resolution data may also be applied in a sampling design,

allowing for more accurate estimates of for example proportion of non-native tree species. This will

however not yield full coverage data for e.g. predictions. 

Establishing an inventory or monitoring program for non-native tree species using remote

sensing data must facilitate accurately positioned field reference plots, distributed according to a
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sampling design with known estimators. Objectives and goals of the inventory should be clearly

stated before any decisions on the design are made. When the objectives and goals are known we

suggested to carefully design the inventory – in accordance with the stated aims – and to test it in a

defined region. This could for example be a county or one or some protected areas, depending on

the stated objectives.
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Appendices

Simplified national non-native species maps

Figure A-1: Natural species distributions map pine (simplified version).The map shows different

sources of information on the native distribution of pine in Norway. The current distribution is

derived from a combination of a litterature-based administrative distribution, and conifer

dominated pixels from the SAT-SKOG map product. 
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Figure A-2: Natural species distributions map spruce (simplified version). The map shows different

sources of information on the native distribution of spruce in Norway. The current distribution is

derived from a combination of a litterature-based administrative distribution, and conifer

dominated pixels from the SAT-SKOG map product. Some additional adjustments and decisions

have been taken to arrive at the depicted current distribution. See text for details.
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Detailed non-native spruce species maps for selected areas

These maps show the areas that  are mapped as being dominated by non-native spruce species.

These are detailed excerpts from the map given in Figure 2-5.

Figure A-3: Stavanger – non-native spruce species distribution map.
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Figure A-4: Stavanger/Jæren area– non-native spruce species distribution map.
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Figure A-5: Bergen – non-native spruce species distribution map .
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Figure A-6: Bergen area – non-native spruce species distribution map.
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Figure A-7: Førde – non-native spruce species distribution map.
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Figure A-8: Molde – non-native spruce species distribution map.
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Figure A-9: Molde area – non-native spruce species distribution map.
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Figure A-10: Bodø area – non-native spruce species distribution map.
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Figure A-11: Svolvær area – non-native spruce species distribution map.
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Table of selected relevant studies

Table A-1. Overview of selected relevant studies.
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