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Summary

Global electricity grids, and especially the distribution grids, encounter new chal-
lenges during the transmission to a sustainable energy chain. Decarbonization
involves electrification and a massive deployment of variable renewable energy
sources, which ultimately increase the complexity at the demand-side of the grid.
There is a growing need to promote demand-side flexible power and to actively
utilize it to deal with an anticipated increase of local congestions and ramping
problems. Local flexibility markets have emerged to provide a platform where the
distribution grid operator or another flexibility buyer can activate demand-side
flexibility that is offered by prosumers, e.g. balance the grid.

In order for a prosumer to make its flexible power accessible on markets, new meth-
odologies are needed. The main goal of this thesis is to develop a methodology for
assessing short-term flexible power in a demand-side asset. Such a methodology
has been developed for a generic flexible asset and consists of four stages: (1)
load forecasts (2) physical asset models (3) estimation of available flexibility and
at last (4) the shaping of a flexibility bid for flexibility markets. The thesis gives
conceptual descriptions on how the methodology is implemented for each of five
different flexible assets. Python is used as a tool for implementing the methodo-
logy, using the package Keras to make RNN forecast models and object-oriented
programming to create an Asset class framework.

The methodology is applied on a real use-case scenario where multi-step RNN
forecast models are created, using real consumption data for an asset that powers
a cooling storage. Data are provided by ASKO (end-user) and eSmart (smart
grid company). The forecast results seems promising even with relative short
data, but must be optimized, tested on multiple test sets and include explanatory
variables. Many assumptions had to be made for the asset parameters and the
final hypothetical flexibility estimates were shown to be sensitive to these choices.
Nevertheless, the methodology has been proven to work and is applied to a full
demonstration of a bid procedure. Applied examples are also given for other assets,
such as water heater and a battery.

The conclusion is that the methodology itself is stable and applicable to many
different assets. Its results however, being the flexibility estimates, are prone to be
very wrong if the constitutional stages in the methodology are weakly implemen-
ted. A strength is that each stage is flexible to be changed or improved without
disturbing the flow of the methodology. For the methodology to work successfully,
it is of utmost importance that accurate load (or production) forecasts and correct
asset parameters are provided.
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Sammendrag

Overgangen til et bærekraftig energisystem fører meg seg nye utfordringer for
kraftnettet. Distribusjonsnettet vil oppleve en mer kompleks strømflyt som følge
av elektrifisering og en massiv utrulling av uregulerbar, og til dels distribuert,
strømproduksjon. Det er forventet en økning i lokale nettutfordringer i form av
overbelastning og hurtig ramping, noe som gir et økt behov for å fremme og aktivt
ta i bruk fleksibel effekt hos sluttbrukeren i operasjonen av distribusjonsnettet.
Nye lokale fleksibilitetsmarkeder er i fremmarsj og har som mål å tilby en åpen
plattform der sluttbrukere kan selge sin fleksibilitet til en nettoperatør eller andre
kjøpere som trenger denne fleksibiliteten, eksempelvis for å avlaste nettet.

For å frigjøre sluttbrukerfleksibilitet til slike markeder, er det nødvendig med ny
metodikk. Hovedmålet med denne oppgaven er å utvikle en metodikk for å es-
timere kortsiktig fleksibilitet i en distribuert strømkomponent, ogs̊a kalt asset. En
slik metodikk har blitt utviklet for en generell asset og best̊ar av fire trinn: (1) last-
prediksjoner (2) fysisk modell av en asset (3) estimering av tilgjengelig fleksibilitet
og (4) utforming av et bud mot et fleksibilitetsmarked. Oppgaven tar videre for
seg hvordan metodikken kan implementeres for fem ulike asseter. Python brukes
som et verktøy for å implementere metodikken, ved å bruke pakken Keras for å
lage RNN-modeller og objektorientert programmering for å lage en Asset-klasse.

Metodikken har blitt anvendt p̊a en reell asset som brukes til å kjøle et kjølelager.
Forbruksdata er gitt av ASKO (sluttbruker) og eSmart (smart grid-selskap), og
er brukt for å utvikle RNN-modeller til å prediktere assetens fremtidige forbruk.
Modellene virker lovende, men må optimaliseres, testes p̊a flere testsett og inkludere
flere features. Det er gjort flere antagelser for asseten som har vært utslagsgivende
for fleksibilitetsestimatene. Det har blitt vist at metodikken fungerer og den har
blitt anvendt videre i en hypotetisk budprosedyre. Eksempler for implementering
av metodikken p̊a andre relevante assets er ogs̊a gitt, nemlig en elektrokjele og et
batteri.

Sluttkonklusjonen er at selve metodikken er stabil og anvendelig for mange forskjel-
lige asseter, men fleksibilitetsestimatene kan bare bli like gode som parameterene og
prediksjonene. Styrken til metodikken stegene kan endres uten å forstyrre flyten
i metodikken, eksempelvis benytte en bedre lastprediksjonsmodell eller justere
parameterene. For at metodikken skal fungere vellykket, s̊a trenger den nøyaktige
lastprediksjoner og riktige parametere for asseten.
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Chapter 1

Introduction

This first chapter creates the framework, presenting the background and motiv-
ation behind the work of this thesis. Then a problem statement is formulated
by means of one main goal and several sub goals. The tools, data, methods and
use-case that are used to address the goals are presented at last.

1.1 Background

Understanding our timeline of energy can be helpful for understanding the energy
situation of today. Energy is a real evolutionary drug. Humans did once go from
being wanderers to evolve around agriculture, a ”hack” of food supply enabling us
to grow metropoles. Humans invented machines at a point, resulting in horses be-
ing replaced by horsepower. Suddenly, this ”hack” of energy made a lot of cheap
work available for us, through fossil fuels. From that point, energy usage only
escalated. Industry and cities could expand remotely from the rivers and electri-
city was invented. Electricity, goods, transport, house appliances, and followingly
improved health and wealth became achievable for many. Today, humankind has
developed a very vulnerable relationship with the energy chain, which concern all
sides of the globalized human society such as transport, health, water, food and
communication to mention some. There are no doubts that we have built great
societies, however they depend upon a stable and secure source of energy supply
to maintain their vital functions.

1
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In our age, the consensus about global warming is clear. There are huge social
forces, demonstrations in the streets which demand immediate climate action now
and the world leaders are taking responsibility, more or less. The reason lies in that
around 80% of world energy consumption is fossil-based (per 2018, electricity sector
excluded) [1]. Of the world’s electricity production, around 66% is fossil-based
[2]. This results in greenhouse gas emissions. Analyses estimate that postponing
climate action will end up several times more expensive than immediate focus and
investments in low-carbon solutions [3][IEA through [4]]. EU as an example has
committed to cut greenhouse gas emissions by 80-95% by 2050, compared to 1990
levels, making it the fastest cutter [3].

Within the energy chain, two options are - to reverse our energy dependency by
reducing energy demand - or to break the bond between energy and greenhouse
gas emissions. Both are valid solutions and both are being pledged. Electrifica-
tion is an example of reducing overall energy usage, since electrical technology is
more energy efficient than fossil. Another plus of the electrification is that sectors
are given access to clean electricity from renewable energy sources (RES). Thus
electrification plays a vital role for cutting the bond between to greenhouse gases
and the energy chain. World electricity demand is expected to rise by 62% by
2050 [2]. The fossil share of electricity production is expected to decrease from
current 66% to around 31% by 2050, where solar and wind will constitute 48%
[2]. Especially in Europe, wind and solar is expected to account for 80% of the
electricity mix within 2050 [2]. This illustrates the massive deployment of new
variable renewable energy sources (VRES) to come. On the downside, introducing
new electricity demand and increasing the VRES share of electricity production
will induce trouble for power grids, in many ways new to traditional power grid
operation, outlined in the next paragraph. One prominent solution is to deploy
smart grid technology with smart local flexibility markets. The work of this thesis
falls in under these categories.

A new energy era for power grids
Power grids face increased intermittency and at the same time an increased sens-
itivity to intermittency [5]. At the supply side, power grids worldwide encounter
an increased share of variable power production related to RES, where a signi-
ficant share of it is at decentralized level unlike before [6]. On the demand side,
we expect an increased high-intensive decentralized demand of electricity due to
electrification and increased energy usage. All in all, these are good actions for
our sustainable, carbon-neutral future, however they impose new issues for the
electricity grid, issues that disturb the security of supply [5]. The complexity
of the future electricity system will increase rapidly, particularly at distribution
level, and this will result in more local congestions [7]. An increased VRES on
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demand-side introduces a two-way power flow in the grid topography. In addition,
the magnitude of the demand peaks are likely to increase, which initially anticip-
ates grid capacity upgrades [6]. Quick changes in the power supply or demand
which disturb the balance is also known as ramping. The new power grid trends
will cause more frequent and intense ramping situations because of variable pro-
duction, both at national level and more at local level - which will cause costly
damages and blackouts unless the grid is made more flexible to handle it.

Balancing the grid have thus far been handled with traditional regulation methods.
Regulation at the transmission level has many smart market-based mechanisms
with a variety of backups, called reserves. A reserve is just another term for a
major flexible source that can offer up- or down-regulation at transmission level
when needed. Reservation and use of flexible reserves has mainly been a privilege
for transmission system operators (TSOs) [8]. This have worked so far, but the
new trends and the fact that the power flow changes from one-directional to bi-
directional, requires more active approaches from the distribution grid operator
(DSO) as well [8].

DFS markets
More local problems give rise to the idea that local problems must be solved locally.
With digitization and new methodologies, the intelligent market-based operation
methods at transmission level can be extended into the distribution grid and to the
end-users. EU know this and has declared market-based congestion management
as default for future operation of the grids, both for the TSO and for DSOs [3].
There are now many pilots and working cases on the rise in the field of market-
based distribution grid operation. New smart flexibility market initiatives for DFS
aim at offering local flexibility to DSOs for regulation of the grid and to others
in need of flexibility [9]. NODES [10] and GOPACS [11] are two examples of
platforms for such local flexibility markets. Utilizing DFS through local flexibility
markets can be a key to shift and shed demand, providing a tool for solving local
congestions and extreme ramping [4]. Demand-side flexibility can either regulate
power up or down when it is necessary and the fine locational granularity of DFS
is of uttermost importance [12]. The need for new DFS is well-documented. One
nice and comprehensive article to read about this is Flexibility in the 21st Century
by Cochran et al. [13]. Markets for decentralized flexibility that have the rightful
design will both give added value to already existing DFS out there in addition to
give incentives to further flourish DFS [8]. It is of importance that the design and
development of such platforms are purposefully designed and is valuable for ALL
participants. In addition to deploying smart and efficient marked-based operation
methods, new capacity will be built in order to increase the shared pool of reserves
which is a way of increasing the overall flexibility of a grid [4]. This in turn, will
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expand the reach of flexible resources and probably add value to DFS with the
right trade-off.

Management of decentralized flexibility in a building and trading on local flexibility
markets requires expertise on the field. This is a task that smart grid companies
often are engaged for. The smart grid company is called an aggregator if they trade
DFS volumes on flexibility markets on behalf of a prosumer. It is of importance
that the smart grid company has a methodology for assessing a building’s flexibility
in a precise manner. Being able to monitor and control flexible assets is necessary
as well. eSmart is such a smart grid company, and ASKO is an owner of a building
with flexible assets. In a reliable fashion, the smart grid company will offer the
building’s flexibility on a potential flexibility market on behalf of the building.
NODES is an example of such a flexibility market platform.

1.2 Motivation

The recently mentioned need for distributed flexibility and flexibility markets
makes this an interesting and new-born field to dig deeper into. The overarched
goal is to identify and assess flexibility in demand-side assets so that it becomes
accessible for smart regulation of the distribution grid. For that to happen, new
methodologies are needed, a need confirmed by eSmart. The core motivation of
the work in this thesis originates from this need. The success of flexibility markets
depends on flexibility bids that are precise. Precise flexibility bids require pre-
cise flexibility estimates. In addition to estimation, there are challenges related to
shaping of flexibility bids and verification of deliverance.

There are many who has done work on quantifying flexibility. An article by De
Coninck & Helsen from 2015 [14] showed that there were no common metric or
indicator for quantifying flexibility. They proposed a method to do so, using cost
curves which indicate costs for deviating from the planned load. Barth et al. [15]
proposed an optimization algorithm for quantifying flexibility by simulating all
valid paths for the consumption throughout a day, but the bidding considerations
are left out. Ottesen et al. [16] has proposed optimization models for bidding and
scheduling of flexible demand-side loads. Much of the literature propose optimiza-
tion algorithms and optimization models for intelligent load control. To my present
knowledge, no literature looks into directly estimating short-term flexibility by us-
ing load forecasts with flexibility markets and bid shaping in mind. Although
optimization methods may very well work, my motivation is to investigate a novel
approach.
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The work in this thesis is aimed at finding a methodology for assessing demand-side
flexibility for flexibility markets, where some parts of the work can be beneficial
to other applications. Accurate load forecasts are of great value not only for the
methodology developed here, but also for cost-optimization problems. Estimates
on available demand-side flexibility are of interest to anyone who might use it.

1.3 Problem statement

In an attempt to address some of the necessary technical challenges related to
assessing flexibility, most of the focus in this thesis is to develop a methodology
for estimating short-term flexibility in assets for the making of flexibilioty bids.
As a reference for the work in this thesis, ASKO is used regarding which flexible
assets to look at and NODES is used for the formalities around the local flexibility
platform. The goals in the problem statement are formed in joint discussions with
my supervisors Stig and Heidi, whose knowledge in the field and about research
has been of great value. A bullet list with the main goal and sub goals of this
thesis are presented below, in order to summarize the scope of this master thesis.

The main goal for the work of this thesis is as following:

(M) Develop a methodology to assess short-term flexibility for a set of various
flexible assets in a building, in order to generate a flexibility bid in conformity
with a local flexibility market platform. NODES and ASKO are used as point
of references.

The main goal has been analysed and is divided into several sub goals:

(S1) Conceptualize the workflow and steps required to achieve the main goal.

(S2) Develop load forecast models that enable accurate predictions of asset con-
sumption.

(S3) Develop a method to model an asset, its properties and constraints regarding
flexibility.

(S4) Identify the flexibility of a flexible asset. Model and estimate their flexibility
up to 6 timesteps ahead.

(S5) Suggest a bidding procedure, discuss the advancement in time and concep-
tualize a bid activation procedure.
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1.4 Tools, data, case and methods

A methodology for assessing short-term flexibility in five selected assets have been
developed. A lot of experimenting was done during this development process.
Many of the choices throughout the work of this thesis is based on a use-case.

The use-case is a cooling storage for storing cold groceries in Vestby, Norway, which
is drifted by ASKO. eSmart is a smart grid company which intend to analyse and
utilize the flexibility in ASKOs flexible assets. ASKO has multiple flexible assets
such as a cooling system for the storage, PV panels and a water heater. Data on
historic consumption for these three assets are provided with a temporal resolution
of at least 15 minutes. In addition, ASKO has a backup diesel generator at idle
and do perhaps plan to invest in a battery bank.

The foundation is now set for which assets to look into at a conceptual level. The
flexible assets listed in table 1.1 will stay in the spotlight for the rest of the thesis.
A walkthrough on how to implement the developed methodology for each asset
specifically, is included. Then a use-case will test the feasibility of the methodology
on real data of ASKO’s cooling consumption.

Table 1.1: List of flexible assets in the scope of this thesis.

Asset Abbreviation Type

Water heater WH Consumption

Machine room (for cooling a storage) MR Consumption

PV panels PV Production

Diesel generator DG Production

Battery BA Storage

An important fact-finding was that the flexibility of an asset is expressed by the
magnitude it can deviate from its original load. Since we want to predict the future
flexibility, the logical line of thinking is that forecasts of the load are needed. Re-
current neural networks (RNN) is a type of machine learning models and has been
experimented with to make load forecasts. Python is used as the programming
language and the Python packages Keras and TensorFlow are used to implement
RNN forecast models. A variety of RNN settings have been tested and experi-
mented with. In addition, there are four different strategies for making multistep
forecasts, whereas the one called direct multistep forecasting has been implemen-
ted. A variety of hyperparameters for the RNN architecture is tested, however due
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to computational complexity, the main focus is not to optimize them.

For modelling of an asset, a simplistic physical model of an asset with an energy
storage has been made. During the implementation process, many assumptions on
asset parameters must be done, because the information is unavailable or empirical
tests was not possible to conduct. Object-oriented programming in Python is used
to implement asset parameters in an asset class. The class is also used for flexibility
estimates and to make proper visualizations of the estimated flexibility and the
level of energy in the asset’s storage.

før bakgrunnen kommer, bør intro sammenfatte klart målet med oppgave, hva som
gjøres og hvordan. og hvilke verktøy som er brukt.hvilke ulike deler som best̊ar av
hva.
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Chapter 2

Theory

The theory chapter is structured in three parts. The first part is about the physical
power grid and will present definitions on flexibility. The second part presents
existing energy markets and the concept of novel flexibility markets, including
NODES. The third part contains all theory for load forecasting and practical
implementation of recurrent neural networks.

2.1 Electrical grids, power and energy

2.1.1 The physical power system

The pure purpose of power grids is to make sure electricity is transported from
wherever it is produced to wherever it is consumed. It consists of a complex inter-
connected system of generators (or producers/supply) and loads (or consumers/de-
mand). Some are even both producing and consuming power, named prosumers.
Everything is interconnected through a system of high-voltage (HV) and low-
voltage (LV) power grids and voltage transformation stations.

Power grid topology
The power grid consists of different voltage levels such as high voltage (HV) and
medium/low voltage (MV/LV), associated with the transmission grid and distri-
bution grid respectively. The transmission grid covers a large geographical area,
typically a country or large state, with high voltage to reduce losses and ensure
high transmission capacity. Distribution grids operate at lower voltage levels to

9
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ultimately supply the end-user. This grid system forms a hierarchic system, with
transmission grids on top, followed by distribution grids, buildings and assets, as
illustrated in fig 2.1. For the rest of this thesis, the positive power flow is defined to
go in the direction of decreasing voltage, indicating consumption. In general, neg-
ative power, or negative consumption, is regarded production. Transmission grids
are operated by a Transmission System Operator (TSO), which is Statnett in Nor-
way, while each distribution grid is operated by a Distribution System Operator
(DSO), e.g. Hafslund in Norway.

Figure 2.1: Illustration of a typical national power grid, including definitions of positive
power flow direction, consumption and production.

A distribution grid contains several buildings beneath it, whereas each building
usually connects through a metering device. These were all smart meters in Norway
as per 1st of January 2019 [17]. A smart meter measures two-way power flow of
what the building consumes and/or produces, used for quantifying bought and
sold electricity. Digging deeper, a building could have several energy units below
the smart meter, called assets. Each asset can be monitored by sensors, and such
technology together with smart meters, ICT and control technology is a part of
the digitization that enables intelligent DFS utilization.

Law of balance and inertia
The fundamental law of power systems is that net generation has to equal net
consumption at all times, or at least over an averaging window. This is in order
to maintain the system frequency, which is 50 Hz in most of the world. System
frequency will rise or decrease in case of imbalance and it is the system operator’s
responsibility to keep it within an allowed deviation, e.g. ± 0.1 Hz. If this limit
is exceeded, it can cause damage to equipment or even lead to blackouts. How
sensitive a power system is to sudden balance disturbances, e.g. major errors in
the power grid, can be characterized by inertia. A high inertia indicates a higher
capability for the system to keep doing what it is currently doing, also referred to as
transient frequency stability [18], which leads to a slower reaction to disturbances.
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Rotating generators, such as hydro or thermal power plants, contribute with inertia
to a grid with their momentum, whilst solar power does not. System inertia is good
to have, but even grids with high inertia will eventually face frequency trouble in
case of a sustained system imbalance, albeit in a less urgent manner. One of the
downsides of a power system with a high share of VRES is the low inertia and the
variability. Frequency is mostly balanced by the TSO, whereas the DSOs mostly
ensure a stable voltage level and a reliable power flow in the LV grid. This has
thus far been handled through good regulation of the HV grid.

2.1.2 Regulating the power balance

Having presented the importance of system balance, there is a logical necessity for
every grid to have mechanisms for regulating the power balance. Such mechanisms
are reflected by the flexibility of a grid. Flexibility in a power grid in general can be
many things. It revolves around the inherited ability of a grid to handle unforeseen
incidents and imbalances, e.g. sudden ramping. This ability can be possessed by
all participants in the grid. Ulbig & Andersson [19] has proposed a definition on
operational flexibility:

”Operational flexibility is the technical ability of a power system unit to modulate
electrical power feed-in to the grid and/or power out-feed from the grid over time.”

High flexibility will cause a grid system to withstand major error events or ramp-
ing situations, thus sustaining a stable system balance. Power flexibility is not
something new, but some may recognize it as regulation power or reserves. How-
ever, the relatively new term decentral flexibility has received a lot of focus in
later time. Traditionally, regulation of the system was mostly done by centralized
generators, which matched supply against demand. That was usually sufficient for
operation of the entire power grid, but does not withstand the new complexity at
distribution level. Centralized flexibility will still play a major role in the future,
however the need for intelligent operation methods at the distribution level with
use of DFS is evident.

The location of flexible sources matters, as electricity needs to be transported
through connections with capacity limits. Upgrading infrastructure, such as ca-
pacity of transmission cables and transformers, is an effective countermeasure to
increase overall flexibility of a grid. The reason for this is that transmission ca-
pacity become higher and the reach of reserves is extended. It adds options for
balancing the grid. A wider group of participants in need of or offering flexibility
gets access to a larger shared pool of flexible reserves. On the downside, upgrading
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infrastructure is expensive, and will furthermore only serve a minority of incidents
having extreme peaks and not add value to the normal operation. This fact res-
ults in a worse capacity factor and is not a very socio-economical and acceptable
operation of the grid.

Interconnectors
The power infrastructure in Europe has come a long way, and power grids in differ-
ent countries are interconnected. The undersea cable NordLink between Norway
and Germany is soon finished, and UK will have cables to both Denmark and
Norway by 2022 (Viking Link [20] and North Sea Link [21] respectively). If most
renewable production can be regarded variable and dependent in weather, such
interconnectors will increase production capacity, the share of loads and stabil-
ity. Better connections will increase the variety of both power source types and
geographical location. As a result, the probability of coexistent production will
decrease which in turn provides stable generation. As a simple example, suppose
the northern Germany has a high demand of electricity and that their only power
source, namely wind, is absent. With great interconnection, the demand would be
covered by wind outside the British coast, south-German solar power and some
French nuclear power, all well-balanced by Norwegian hydro power. This describes
a scenario where grid management is done at transmission level, from the top.
Good connections will be essential in the future, however there are opportunities
growing from the bottom.

Pulsating end-users
The share of decentralized flexibility grows in speed with the demand-side com-
plexity. The future consists of active use and integration of DFS, where the lack
of wind power in northern Germany potentially could be covered from flexible
prosumers within northern Germany. Interconnecting transmission capacity seeks
to match the supply to the demand. The new and necessary tool is to control
demand and match it against supply with pulsating and dynamic end-users. The
idea is that prosumers regulate power in the grid with innovative integration of
their flexible prosumption, which is one of the visions of smart grids. Smart grids
provides a cost-effective alternative to infrastructure upgrades and aims at optim-
izing already built capacity. This results in raising the capacity factor of existing
transmission lines and a more efficient operation of the grid.

Many of the traditional regulation mechanisms at transmission level are already
market-based. Energy markets are considered cornerstones for maintaining balance
between supply and demand in liberalized grid systems. They can be characterized
as intelligent. However, they are restricted to the TSO only and not for the
distribution grids. Distribution grids in past did not need such mechanisms in the
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traditional ”one-way power flow, centralized production, simple end-users”-grid.
EU has declared marked-based solution as the standard operation method in the
in the future, for distribution grids as well [3]. Before taking a dive into energy
markets and novel flexibility markets, some definitions for flexible power must be
settled.

2.1.3 Flexible assets and definitions

All use of the term flexibility will refer to demand-side flexibility for a building
and its assets. Assets in a building, represented in figure 2.1, are flexible if they
inherit the ability to deviate from their baseline. The baseline must be defined
before flexibility can be quantified. The baseline is what would be ”the plan” in
the work of Peterson et al. [22]. The baseline is ”the reference” in the work of
Coninck & Helsen [14], suggesting it to be the load schedule solution taken from
a cost optimization model. FLexible assets must be monitored with sensors and
their power must be controllable. Some definitions regarding the flexibility of a
flexible asset are now presented. The definitions are inspired by Coninck & Helsen
[14] and Pinto et al. [23] with some modifications to fit the methodology in this
thesis. Note that power is described in terms of consumption, whereas negative
power, or negative consumption, is production.

• Flexibility: The magnitude of power the asset can deviate with from its
baseline consumption.

• Baseline consumption: Referring to the originally planned consumption
of an asset for the next H timesteps. This can be a load forecast or an
optimized load schedule.

• Positive flexibility: The ability to increase power consumption relative to
the baseline, thus providing positive flexible power. The upper boundary is
denoted maximum positive flexible power. Upward flexibility is an optional
term.

• Negative flexibility: The ability of an asset to reduce power consumption
from its baseline (or increase production), thus providing negative flexible
power. The lower boundary is denoted maximum negative flexible power.
Downward flexibility is an optional term.

• Flexibility space: The feasible set of allowed choices of flexible power.
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2.2 Energy markets

Energy markets are considered a cornerstone for maintaining balance between sup-
ply and demand for power. The shared Nordic power system has several energy
markets to ensure system balance, such as the Day-Ahead (DA) market, Intra-
Day (ID) market and reserve markets. In the markets, producers and consumers
sell and buy their way into achieving balance, ranging from days to milliseconds
before operation. These markets represent intelligent regulation systems. The re-
serve markets offer close to real-time power regulation with trade and activation
of balance reserves. These tools are however currently limited to the transmission
system level. With rising complexity on demand-side, there is a need for more
active, intelligent regulation at distribution level as well. There are new local
flexibility markets on the rise with a goal to expand intelligent market-based op-
erations into the distribution grids. The goal is to integrate unrealized demand
side flexibility for more precise regulation at distribution level. Upgrades of in-
frastructure, curtailment of RES generation and shedding high-intensity industry
are local options to achieve local system balance. However, smart solutions with
smart grids and ICT, along with connected energy markets will yield higher system
efficiency, stability and reliability, and fill the gap between supply and demand.
This enables the transition into a low-carbon society in the future [4].

2.2.1 Current power markets

Day-Ahead market (spot market) is the main market for most of the physical
volumes that are traded in the physical electricity grid. Before 12:00, all major
participants need to place bids and schedules of production and consumption for
each hour the next day [24]. Then, NordPool settles a system clearing price, which
is determined by a trade-off between demand and supply. Individual area prices
based on bottlenecks will add or subtract to the system price for each affected area
[25]. They apply to large regional areas, hence do not take local grid problems into
account. The ID market is a power trading platform which is closer to the real-
time operation than the DA market. Participants left in personal imbalance after
the DA market closure, can achieve balance through ID market trading. The ID
market closes an hour before operation time [24]. Further imbalances that occur
in the hour prior to the operation time are settled in the reserve/balance markets.
Here, participants with flexibility offer regulation power that can be activated from
within 15 minutes or even seconds before operation time. Hence, reserve markets
are essential for securing the temporarily balance between supply and demand. The
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reserve markets can be divided further into primary market, secondary and tertiary
markets, in which reserves must be activated automatically within seconds or
manually within minutes or 15 minutes respectively [24]. Participants outside the
market will be able to offer their reserves and be remunerated for their regulation
services [26]. Reserve markets are merely platforms developed for TSOs with tools
to tackle predicted and unforeseen critical grid events.

The emerging complexity at demand-side cause local problems at distribution level,
which must be addressed by the DSO. The current market design with DA, ID
and reserve markets are not aimed at operating distribution grids. In addition,
the current, intelligent market-based operation methods at transmission level are
simply not granular enough to solve the arising local problems[12]. To solve local
congestions and other management issues related to the distribution grid require
more active approaches from the DSO [8]. Local problems must be solved locally.

2.2.2 Mechanisms for solving emerging local problems

Innovative operation methods at distribution level is a highly active research field.
There are alternatives which shows that deploying novel local flexibility markets
is not the only solution. There are various ways to utilize DFS. USA as an ex-
ample has had many years of experience with distribution grid operation methods.
There is demand response management (DRM) which aim at controlling demand-
side consumption. Two subcategories of DRM would be direct control or indirect
control, both being so-called top-bottom approaches. The first, direct control gives
the DSO full access to control a flexible asset at demand-side, even shed its con-
sumption, under given constraints. An example of such a mechanism is to include
a contract module for dispatchable consumption, where the end-user is remuner-
ated by a DSO that gain full access to shred/control their asset. Direct DRM
can be implemented in flexibility market platforms as well. Assessing short-term
flexibility is important for direct DRM as well, as it will give the DSO knowledge
on how much flexible power they have dispatched. The second sub category of
DRM, indirect or intelligent control, nudge the end-user to change the consump-
tion behaviour by means of price signals. Price signals may be added as tariff
modules in the electricity contract between the DSO and building. A building is
given incentives to actively exploit price variations, through a cost-optimized load
control system of their DFS. The indirect method has some limitations because it
requires planning and predictions of grid problems, at least a day but often weeks
in advance. Indirect DRM may therefore have trouble to respond to more urgent
grid events. In addition, price signals may not give sufficient incentives for end-
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users to invest in added flexibility in their assets. It is important to find solutions
which also promotes more DFS, because that is needed in the future. It is believed
that flexibility markets will add value to DFS and flourish it.

EU has declared market-based congestion management as default for future real-
time operations. Their reasoning is that, the alternative apporach, which is admin-
istrative and cost-based where participants are obliged to help and remunerated
for costs and forgone profits, is difficult to apply for DFS. The estimates that are
needed for costs and profits, for a vast amount of prosumers at demand-side, is too
complex to get accurate and highly case-specific [9]. Such a top-bottom approach
is hence favoured for the bottom-up approach where the slogan is to let the market
do the job.

Local flexibility markets
From now on, local flexibility markets are the focus. When presenting the concept
of novel local flexibility markets, the reader may notice it draws parallels to reserve
markets. Flexible markets aim at extending intelligent marked-based operation
methods all the way into the distribution grid and end-users, which now has smart
control opportunities due to smart metering, IoT and digitization. The idea is that
buildings bid their flexible power to the flexibility market platform. Here, DSOs
and others who might need to buy local flexibility can activate that flexible power.
In some cases, larger regions and even a TSO might need such flexibility as well,
as with the example on northern Germany lacking wind production. DFS reserves
are however small in volume, which could be unpractical on the market. Therefore,
some smart grid companies specialize in aggregating small flexible volumes into
bigger ones, e.g. a whole neighbourhood. A smart grid company possessing such a
role is called an aggregator. Aggregator is also a term used in general for a smart
grid company that assess and trade a building’s flexibility on markets.

All the pilots and initiatives in the field of local flexibility markets are results of
the rising complexity at distribution level. Local granularity is a key word. As
mentioned, reserve markets are limited to the transmission level, in addition to be
restricted to major flexible volumes. DFS has a precise location in the distribution
grid, which is important. Active use of DFS provide finer granularity for DSOs to
solve local problems.

Initiatives in Europe
There are many initiatives in Europe that investigate flexibility markets as a tool
for local grid operations. Some are pilots, however some have already been de-
ployed at national level, such as GOPACS in the Netherlands, which is already
proved valuable. Radecke, 2019 gives a nice overview of pilots and working cases
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of market-based DFS solutions in Europe [9]. Many of the proposed markets also
create incentives to utilize unused potential DFS. Some examples of pilots and
operative flexibility markets in Europe are

• NODES (universal, pilots in Germany, Norway and soon U.K.)

• GOPACS (operative in the Netherlands)

• Bne Flexmarkt (Germany)

• SINTEG (multiple projects in Germany)

• Piclo (U.K.)

In the future, there could probably be many more market operators in competition
with each other. In addition, each scenario probably requires a specialized market
design in order to be optimal for the case. However, the general concept of a
flexibility market platform seems to be set. NODES, one of the many solutions
for flexibility markets, is used further as a point of reference for the formalities
around flexibility market design, operation and flexibility bids.

2.2.3 NODES - A fully integrated marketplace for flexib-
ility

NODES emerged as an initiative by NordPool and Agder Energi to address the
concurrent challenges that impact distribution grids. The information in this sec-
tion is based on a NODES white-paper [12], unless other references are cited.

NODES is ”an universal platform for local, flexible electricity markets with features
allowing for connecting to other markets”. It aims to increase the use of decentral-
ized flexibility, as the European ID and DA markets alone do not provide sufficient
granularity for local congestion management nor allow integration of DFS. It also
aims at increasing the amount of available DFS by adding value to it. A NODES
platform puts local flexibility as products on a shelf - up for take for buyers.
The product, or a flexibility bid, is tagged with a location and includes a price, a
baseline, the amount of offered flexible power and a duration.

The market-design

The design of the NODES marketplace and its market players is illustrated in
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Figure 2.2: NODES marketplace and its various market players, mainly the flexibility
providers on the right, and the ones who would need the flexibility on the left. Graphic
from NODES whitepaper [12].

figure 2.2. The platform, as it is universal and meant to fit many scenarios, must
be tailored to fit each unique scenario, in close cooperation with some thought
market players. Fundamentally, the platform needs someone who can offer and
someone who needs flexibility, e.g. prosumers and DSOs/TSOs respectively. A
flexibility provider can be a smart grid company (or aggregator), with access to
the flexible assets of a prosumer. They create a flexibility product and bid it into
the platform. The product can then be bought by either of the flexibility buyers.
If bought and activated, the flexible power should be dispatched accordingly by
the provider. It could be positive of negative flexibility. Verification of delivered
flexibility happens through the same platform.

The relevant market players included in the scope of this thesis are the DSO,
aggregator and a prosumer. These are shown as circles in the figure. A setup with
these market players is relevant for the use-case in this thesis, with the prosumer
being a medium-sized industrial building possessing flexible assets. A piloting
NODES platform often start out this simple, before it eventually incorporates
more market players and extend the platform, in everyone’s interest.

The aggregator will be important to bring DFS to the market. Aggregating smal-
ler DFS volumes makes DFS more accessible. In addition, the aggregator will be
responsible for flexibility estimation, bidding to the NODES market platform, dis-
patching of activated flexibility and verifying the delivered flexible power. NODES
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will be operating the market platform and offer an Application Programming In-
terface (API) for trading. Both the flexibility buyer and the provider must be able
to communicate with the API.

Advantages of NODES
The NODES market platform, as well as other similar platforms, serves multiple
benefits. The first big advantage is that anticipated costly grid investments can
be avoided. Secondly, local congestions can be solved more precisely. Although
many of the new consumption assets impose problems, such as EVs, high-intensive
appliances and demand-side RES, they also provide possibilities which can be taken
into full advantage by flexibility aggregators and NODES.

NODES, in addition to other flexibility markets, claim to give incentives for build-
ings to promote and make use their potential flexibility, by giving their flexibility
and increased value. Suppose that a building uses DFS for their internal use to
exploit price variations. With NODES in addition, the building has more options
to make profit from their flexibility. In addition, NODES platform want to expand
local flexibility products into the reach of TSOs and other buyers that might need
decentralized flexibility, thus further raising the value of DFS. A broader set of
buyers means a higher value for the DFS. Different buyers also often need flexib-
ility at different times. If the need would be coincidental, the flexibility will be
used where it is of most value - ideally where it is most needed. Many possibilities
for making profit of DFS will make it lucrative for prosumers to further realize
unused, potential flexibility.

Another important feature of the NODES market platform is that it can connect
to other markets in the future, such as the ID-, DA- and reserve markets. That
would mean that a flexibility provider can access reserve markets more easily,
so that they may buy back some balance. Suppose a flexibility provider is left in
imbalance due to activation of its flexibility. The idea is that they should be able to
automatically re-balance their portfolio through cheaper trading in other markets
and still make profit. NODES, as an operator of the market, will make sure that
all bids and activations do not cause new troubles elsewhere in the grid. All in
all, NODES do not aim to replace any excising markets, but merely complement
them to fully sustain a flexible smart grid all the way to the prosumers.

Working use-cases
The market-design of NODES is highly adaptable to different situations, locations
and conditions to resolve a diversity of cases. The platform has already proven
to be beneficial in real use-cases deployment both in Norway and Germany [27].
In Germany, NODES is used to relief an overloaded 110kV line, using flexibility
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that is localized and exploited on the LV grid. In Norway, a potential overloaded
transformer has postponed new investments, thanks to the NODES platform using
flexible resources beneath the transformer.

Market flexibility products
Most of the market-based flexibility platform initiatives in Europe, including NODES,
define a flexibility product to be the deviation from the baseline, either by consum-
ing more or less than what was planned. Some have remuneration by availability,
where flexibility providers get paid to have their flexibility at standby, similar to
direct DRM. Others have remuneration by activation, where providers get paid
per single flexibility activation. NODES and a few others, offer both remuneration
methods [9].

NODES does not provide a specific product shape. Bids can look different for
different flexibility buyers and for different use-cases. However, NODES suggests
a modular design of a flexibility product. NODES support a contract to offer direct
control of flexible asset, however the scope of this thesis focus on the competitive
flexibility market platform. A product on this platform must at least consist of
a baseline, offered flexible power, a time indicator, a price and the grid location
of the prosumer. Resolution of the bid offers can be adjusted, but 15 minute
resolution is often used. The focus of the work in this thesis will be on estimating
the baseline and offered flexible power.

The forecasted baseline and the flexible power are constituted of several timeslots,
denoted h. They indicate different times in the bidding horizon H. The bids in
each timeslot could have several bid shapes. Some traditional bid shapes in the
traditional energy markets can be linear, stepwise or block-based. A block bid
consist of a constant volume and price, allowing for no deviation (also referred to
as full activation), whereas a step-wise bid consists of multiple block bids. A linear
bid consist of a continuous range of flexible power that can be bought.

2.3 Modelling

This section will present theory for timeseries, sequence forecasting models and
especially recurrent neural networks. It will focus on practical implementation
and application of RNNs for timeseries forecasting in Python.
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2.3.1 Timeseries modelling

Sequences
A sequence, including timeseries, is data that are structured in a certain or-
der, where the order matters. Moreover, a timeseries is data structured along
a time axis, where a value is most likely to depend on prior values and to af-
fect successive values. Timeseries can be represented mathematically as ~x =
x0, x1, . . . , xt, . . . , xT−1, xT starting at 0 in order to be Python index friendly. xt

represent a value of the sequence at timestep t, for a total of T timesteps. If there
are multiple timeseries in the dataset, they can be distinct by a subscript, starting
at 0 and counting, ~xt0, ~x

t
1, . . . , ~x

t
i, . . . , ~x

t
n where n is total number of timeseries. Such

a dataset containing multiple sequential features will form a multivariate dataset
and can be nicely structured in a matrix, such showed in figure 2.3. The figure
also gives some basic terminology for multivariate datasets, often used in machine
learning, for later reference. Here, timestamps are optionally included in the index,
in practise by using pandas DataFrames in Python. y also represents a timeseries
and is the target we want to forecast in the future.

Figure 2.3: The terminology of a dataset used for creating machine learning mod-
els, here presented in a dataframe. This multivariate dataset has n features along the
columns and has timestamps as instances along the rows, making it a timeseries. The
figure also shows how the data is usually divided into train, test and validation splits.

From sensors to timeseries
Timeseries are not continuous because they stem from sensors that measure dis-
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crete signals. How well they represent a continuous measurement depends on the
temporal resolution, ∆t, of the measured timeseries. Power is originally an in-
stantaneous value, measured in W or kW. If power is measured each minute, these
measurements could either be momentaneous measurements at each minute or the
sensor could be sophisticated enough to provide an averaged value over the minute.
Either way, the power is not momentaneous as it is assumed to represent a whole
minute. The unit becomes kWh/h, as in an averaged power.

Downsampling is an expression that means to resample the temporal resolution of
a timeseries to a lower resolution. For example, a timeseries of 1 minute resolution
can be downsampled to 15 minute resolution. That is done by taking the average
of each of the 15 1-minute measurements.

Sequence forecasting
Sequence forecasting, or sequence predictions, can be done by the means of various
methods. ARIMA models is a well-established and widely used timeseries forecast-
ing method. Another option is to make use of a multiple linear regression method
(MLR) for forecasting [16]. More novel methods are deep learning methods in the
field of machine learning (ML), such as neural networks, where especially recurrent
neural networks (RNNs) are specifically designed for sequences.

According to Shi et al [28], RNN models have been shown to perform better at
load forecasts compared to state-of-the-art techniques of ARIMA and SVM models.
Others may mention they are equally good, which conforms with the well-known
fact that there is no outstanding ML model to each unique forecasting problem.
The promising potential of RNNs and the fact that it is a quite novel approach
for forecasting load is the motivation for further exploring RNNs to perform the
forecasting tasks in this thesis. The next sections present the process of building
machine learning models, followed by RNN theory.

2.3.2 General machine learning

ML is a field of data science, which differ from traditional programming algorithms
in one specific way. Instead of making rules to use on input data in the quest of
finding answers, ML aims at using data and answers, in order to learn the rules.
These rules can later be used to forecast future values.

The literature usually divide ML into three main subfields: supervised learning,
unsupervised learning and reinforcement learning. Supervised learning is the relev-
ant subfield for the work in this thesis, e.g. for making load forecasts. It describes
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modelling machine learning models that are trained on datasets where the target
is known, in order to predict future targets.

Supervised learning
One of the main goals of supervised learning is to learn patterns in a historic
dataset such that we can make correct predictions and decisions in the future.
To learn these patterns, the algorithm needs to have features and the solution
(target) as input. It learns trends between the feature dataset and the target, ref
x1, x2, ..., xn and y respectively in figure 2.3. Once the model is correctly trained,
predictions can be made for the test set target, or unknown target, e.g. a future
timestep. The features in the test set must be known in order to predict the final
target.

There are several models in the field of supervised learning, such as multi-linear
regression (MLR), logistic regression, artificial neural networks (ANN), recurrent
neural networks (RNN), decision trees, random forests, etc.

Steps to creating a model
Figure 2.4 illustrates the steps in creating a supervised machine learning model.

Figure 2.4: The process of building a machine learning model. Figure from book
Python Machine Learning, s. Raschka, V. Mirjalili [29].

Preprocessing of raw data and quick analyses
After data has been gathered, one would very much like it to be perfect. However,
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this is rarely the case. It either contains holes or errors - meaning that there
are missing values for some periods and variables or that the observations are be
wrong, respectively

As a data scientist, understanding the data, making sure that it is correct and
preprocessing it is as important as making machine learning models itself. Garbage
in usually means garbage out. There are many different tools to analyse the raw
data; by the means of correlation plots, pair plots, histograms, checking against
physical relations and checking against assumed statistical distributions.

Regarding missing data, there are several techniques that can fix it. Neither tech-
nique is outperforming another. Depending on the problem, the data scientist
should investigate which technique yields the best results. One technique is to
remove rows (instances) or features (columns) which has missing values. Another
technique would be to predict the missing values, by the means of imputation,
interpolation or others.

Lagged values as features:
When creating lagged values as new features to the model, the target sequence is
taken, and shifted k timesteps ahead, xtlag−k = xt−k, for all t. One problem will
arise, namely that the new lagged feature lack values for the k first timesteps. This
is easily solved by removing the first k observations. This process can be done for
several ks.

Exogenous time variables:
These are features based on the timestamp of an observation, and i.e. the year,
month, day, hour, minute, the day of the week, week of the year and so on. It could
provide valuable structural information of seasonal and time-dependent trends, if
any.

Learning
Preprocessed data is split into a train and test set, perhaps a validation set before
input to the learning process. The model is trained with a learning algorithm.
This step lays the foundation for which model should be selected and what model
parameters should be chosen, based on model performance. Cross-validation is a
method for assessing the performance of each model, by validating each model to
unseen validation data to avoid overfitting. Learning is individual for each and
one machine learning type.

Evaluation
Evaluation for model is done to measure the performance of the model and how
good its forecast results are. Evaluation metrics are provided later in the multi-step
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forecasts section.

Overfitting
Overfitting is the case when a machine learning model is not generalized enough
to perform well on new unseen data. This happens when a model is trained very
well to training data, often prone to its noise, but results in bad forecasts for test
data.

Final prediction
This is the step for real-time forecasting. The model is fully trained and in oper-
ation. When new data become available, the model could be retrained with the
new observations.

2.3.3 Recurrent neural networks

This section presents theory for RNN with focus and practical application. RNNs
can be implemented in Python with the packages Keras and TensorFlow. The
theory includes a high-level explanation of model architecture and the different
parameters of the model in addition to how the training and test data should be
set up for training and forecasting.

All of the theory on recurrent neural networks in this subsection is based on the
two books Python Machine Learning by S. Raschka and M. Vahid [29] and Deep
Learning with Python by F. Chollet [30], unless else is mentioned.

Recurrent neural networks (RNNs) are widely used in many sequence applications,
such as:

• classification of documents or timeseries, e.g. determine topics or authors of
books

• comparison of timeseries, e.g. investigate the relations

• sequence-to-sequence learning, much used in language translation

• analysing sentiments, e.g. classify the mood of a text or music (happy or
sad)

• timeseries forecasting, e.g. predict electricity consumption

RNNs can be quite complex with advanced mathematical relations. The process
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and architecture of learning and prediction in RNNs do require time and effort to
understand. Yet, RNNs can be fast and easy to develop in Python using developed
packages such as Keras 1. The tools offer a kind of ”plug-n-play” for building neural
networks with set standards, while still offering access to advanced modification
settings. In this way, packages in Python require little in-depth knowledge about
neural networks, yet offering their power.

Figure 2.5: Architecture of a multilayer RNN, where the arrows indicate flow of data.
Figure from book Python Machine Learning, s. Raschka, V. Mirjalili [29].

This explanation of RNNs and how they work is meant to avoid the complicated
equations. More technical and thorough information on the topic may be found
in the ML books suggested above. The following theory focuses on the practical
application of RNNs for timeseries forecasting. As an example, the architecture of
an RNN model with two layers is illustrated in figure 2.5. Here, x represents the
input, being the features fed into the network which consist of two layers, h1 and
h2, which makes the architecture. y is the output, or the target. All nodes are
connected with weights, through functions and so on, where the weights are learned
accordingly during training, just like an ANN. The most important difference with
RNN over an ANN is the connections from prior timesteps, t− 1, t− 2, . . . to the
current timestep, t, which allow the model to have memory from past results, to
influence the next results.

All in all, the framework for an RNN is to build a dataset containing features and
a target, construct the RNN architecture with optimal number of hidden layers,
consisting of layers such as LSTM, GRU or Dense. Choosing between either of
those results in different properties of the architecture. The layers are explained
here:

1https://keras.io/getting-started/sequential-model-guide/stacked-lstm-for-sequence-
classification (accessed 12/12/2019)
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LSTM (Long-short-term-memory) unit: Type of node unit, designed to over-
come the vanishing gradient problem. It designed to carry information across many
timesteps and preventing older signals to completely vanish, hence it contributes to
the network by giving it a longer memory of the past. It is complex and combines
different functions with different input and output combinations.

GRU (Gate Recurrent Units): A bit simpler architecture than LSTM, and
is more computational efficient, due to fewer parameters. GRU layers may have
better performance on smaller datasets.

Dense layer: Ultimately takes in all inputs from the previous layers and outputs
a forecast, which is either a value or an array of values in the case of a multi-output.

Hyperparameters
In addition to building the architecture, there are hyperparameters such as batch
size, number of epochs to train on and learning rate that influence model per-
formance. The construction of data is of much importance as well. As with much
else in the field of machine learning, there is no superior model to all problems,
regarding choice of model, its architecture, its hyperparameters, data preparation
etc. Therefore, finding a good model is experimentation itself and unique to each
problem.

Optimizers
An optimizer is needed for training an RNN model and needed for finding optimal
weights of a model during learning. Various optimizers can be chosen, such as
adam and RMSprop. A brief introduction to optimization, with a comparison
between adam and RMSprop can be found on the webpage in the footnote 2.
RMSprop is a simpler version of adam. Adam has been most used in the thesis
and the standard optimizer for RNNs in Keras for Python 3. More on the adam
optimizer can be read in the article by Ruder [31]. Optimizers affect the success
of the learning process and whether or not the optimal solution is found. It also
affects the time of the learning.

Preparing the dataset for RNN training
During training of an RNN model in Python, the Keras model expects the training
input data to have the following 3-dimensional shape:[

samples, timesteps, features
]

This 3-dimensional matrix must be generated from the basis 2-dimensional dataset,

2https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/ (accessed
12/12/2019)

3https://keras.io/optimizers/ (accessed 12/12/2019)
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like the one shown in figure 2.3, which has the shape
[

samples, features
]

. The
basis 2-dimensional dataset represents the whole training and test data foundation
which has been prepared and preprocessed. When the RNN model is trained in
Keras, the timesteps dimension is introduced. This dimension represent how long
the memory of the RNN network should be.

During training, many smaller batches of the training data, having the 3-dimensional
shape, is fed into the network. Each batch generates a line of predictions in the
train set. The amount of samples is set by the sequence length parameter and the
amount of timesteps to form is set by the N lOOKBACK parameter.

As an example, a batch with input shape [1100, 7, 1] means that a training batch of
1100 observations from the training set is chosen, in a kept sequential order, is fed
into the training network. It has 1 feature in the training set, e.g. the consumption.
7 timesteps mean that the model shall use all 7 steps in the foundation for learning
and predicting.

Each training batch fed into the learning algorithms, results in a forecast being
made. This is compared against the true value. Based on this comparison, the
learnable weights of the RNN model are adjusted in order to improve the next
forecasts, through backpropagation.

When making a prediction for the test set, Keras wants only on batch with the
3-dimension shape. For final prediction, sample=1 and the input data shape is
namely [1, timesteps, features]. The output forecast will be [1, 1]. If the model
is created so to output a multi-output forecast of H steps, the shape of this input
matrix would have to be [H, timesteps, features]. It will then output an array
of forecasted values of dimension [H, 1]. This array is a forecast for the forecast
timestep made for all timesteps, t+ 1∀t ∈ {testset}.

In order to create many batches for iterative learning for the whole train set and to
finally make predictions for the whole test set, various batch-generators are used.
In the work of this thesis, a batch generator has been borrowed from an open Git
repository 4, and the others are included in Keras, named TimeseriesGenerator.

Scaling:
In order to improve model performance, RNNs benefit from having data scaled
to the range between 0 and 1 or standardized. This can be done using MinMax-
Scaler() provided by the sklearn package for Python.

4https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/23 Time-Series-
Prediction.ipynb



2.3. MODELLING 29

Encoding categorical features to dummies:
Dummies are needed to avoid letting the model think that a Sunday (value 6)
has a higher value than Monday (value 0), and such, dummies is needed to be
made, by constructing a new feature for all of the values in the old feature, i.e.
Monday,...,Sunday are the new dummy features which have values 0 or 1, where
a 1 assigns this feature to the given observation. Dummy creation can be done
easily with pandas in Python.

2.3.4 Multi-step forecasting

As to this point, models were thought to predict only one timestep ahead. The
goal is to make forecasts for multiple successive steps ahead. That means forecasts
each of the forecast timesteps, t+1, t+2, ..., t+H, that we would like to forecast.
A summary of various strategies for multi-step time series forecasting is given by
Bontempi et al. [32] and reviewed here:

1 Direct Multi-step Forecast Strategy: One unique model is made for each
forecast timestep.

2 Recursive Multi-step Forecast Strategy: The same one-step model is used
recursively, where the prediction for the prior time step is used to predict
the next one.

3 Direct-Recursive Hybrid Multi-Step Forecast Strategies: Combines the two
above strategies, e.g. creating individual models for each timestep ahead,
where each model also uses predictions from models for prior timesteps.
This may help overcome limitations of (1) and (2).

4 Multiple Output Forecast Strategy: Only one model is created and trained to
make a forecast for all timesteps at once.

(1) Direct Multi-step Forecast Strategy
For the work in this thesis, only the direct strategy has been implemented properly.
For this strategy, multiple models are created in order to specialize on each of the
lead timesteps that are to be forecasted, h. This happens relatively straightfor-
ward. Many one-step models are used. Each model will use the same train set, X.
There will however be different targets array per model, that are shifted one and
one timestep from each other in lead time.
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Evaluating multi-step forecasts
These evaluation metrics are used on regression problems, which is relevant for this
thesis. The most common ones are Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Mean Square Error( MSE), Root Mean Square Error
(RMSE) and R Squared. The ones used in this thesis are mathematically expressed
as following:

MAE =
n∑

i=1

|ŷi − yi|
n

(2.1)

MSE =
∑

i = 1n (ŷi − yi)2

n
(2.2)

A lower MSE or MAE value is a better score. Computing the score for each fore-
casted timestep is often helpful. It gives valuable information on how a model
performed on each seperate forecasted timestep. A summarized score can be com-
puted as the average score across all forecasted steps.

2.3.5 Techniques for fighting overfitting

Some popular techniques to fight overfitting in neural nets are as following.

Validation data:
During each training iteration, the model performance can be checked against
unseen data, named validation set, as seen in figure e2.3. Validating the training
on an unseen validation set rather than the train set, will cause to model to not
try overfit parameters for the train set.

Early stopping:
This technique is applied during model training. It monitors the validation score
of each epoch, and if the validation score has not improved during a number of
successive training epochs, called patience, it stops the training. Early stopping is
often used together with model checkpoints, which stores the latest best model.
Using early stopping and model checkpoint enables us to reload the best model
from the point it stopped improving with respect to validation loss.

Dropout:
Dropout is a technique to randomly drop a certain share of units (and learnable
weights) in a layer and in such way ”thinning” the neural network. Their aim
is to prevent units to be prone to overfitting. In Keras, the Dropout method is
applied by adding a Dropout layer after a layer that shall be thinned, e.g. after a
LSTM layer. Correspondingly, a share of some random units will be dropped by
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setting their unit output weights to 0, thus forcing use of other weights. The Dro-
pout technique has in one case shown clear improvement over other regularization
techniques [33].

Some techniques work better than others in certain cases, and sometimes the best
result comes from a combination of them. Various techniques should be used with
prudence in order to find the optimal method for the specific problem.
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Chapter 3

Preliminary methodology for
assessing short-term demand-side
flexibility

This chapter explains the concept of the developed methodology for assessing
short-term flexibility for an asset. It starts with a light explanation to let the
reader get familiar with the overall methodology. Then, the methodology and its
constitutional stages is thoroughly explained for a generic asset, including a bid
event line example to demonstrate its uaage during time advancement. The last
part involves more specific descriptions on how the methodology is thought to be
implemented for each of the five chosen flexible assets that were presented in table
1.1.

33
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3.1 Presenting the methodology

To this point, various theory has been presented, which is now finally stitched
together into a streamlined workflow, which is the proposed result to the main
goal (M) described in the introduction. The methodology proposed in this chapter
aims at assessing the short-term flexibility in flexible assets in a building, where
the ultimate purpose is to construct valid flexibility bids into a flexibility market.
The process ends the bid being either activated or not, before the methodology
repeats. For this methodology, the NODES flexibility market platform serves as a
point of reference. An illustration of the workflow for the preliminary methodology
is shown in figure 3.1. This figure will be referred to frequently. As illustrated, the
workflow is composed of four distinct stages.

Figure 3.1: Workflow and the stages of the preliminary methodology for assessing
short-term flexibility in a flexible asset.
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A brief description of the stages

A generic, high-level description of the preliminary methodology will now be
presented, before each stage is explained in detail later. The methodology involves
the use of timeseries data, forecasting models such as RNNs, physical models of
the assets, object-oriented asset modelling in Python and bid formulations.

As we will see, and as previously defined, the flexibility is based on the baseline
consumption, and therefore a load forecast model (stage 1) is the first stage in
making flexibility estimates. The load forecast model output a forecasted baseline.
In some exceptions, an asset does not require a complicated forecasting model in
order to know its future baseline. An example is an optimized load schedule for
battery, where the forecasted baseline is simply a schedule or the plan. In other
cases, the future baseline must be forecasted. The electrical consumption is in
many occasions influenced by external parameters, e.g. temperature or building
activity. A load forecast model uses historical timeseries data as input, in addition
to any explanatory parameters which may improve predictive power of the forecast
model. The goal is a model with high predictive accuracy for unseen data points,
especially the first H timesteps in the bidding horizon, e.g. H = 6. A forecast
model is developed and once a good model has been chosen, it outputs a forecasted

baseline, ~̂y or ~̂b .

Flexibility itself lies all in the asset and its characteristics, thus calling for an asset
model (stage 2) . The asset has either flexible consumption, generation, storage
or a combination of the three. In addition to a baseline forecast provided from
stage 1, it is necessary to investigate and quantify the inherited properties and
constraints of the asset regarding its power (2a) and energy storage (2b). The
maximum, minimum and steady state power, Pmax, Pmin and Pcons,SS respectively,
are important for determining the magnitude of flexible power. Energy storage
constraints puts limits to the available flexibility regarding time and volume. Pro-
vision of an energy level estimate, SoC, and the energy capacity limits, Emin and
Emax, are necessary. This methodology does not provide a method to quantify
such asset parameters, which may be a complex task to do. The asset parameters
are nevertheless crucial input for the asset model in the task of estimating flexib-
ility. A State-of-Charge (SoC) modelling framework is used to physically model a
flexible asset with its parameters, power flows and states. Implementation is done
by means of object-orientated programming in Python.

Until this point, all necessary values are provided in order to calculate flexibility
estimates (stage 3). The forecasted baseline is input to the asset model and
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combined with the asset parameters, in order to calculate of the flexibility forecast.
A simple, yet effective way to assess the complete range of available flexibility is
to calculate the upper and lower flexibility limits, denoted maximum positive and
maximum negative flexibility respectively. When this stage is done, the maximum

positive and negative flexibility, F̂p

(h)
and F̂n

(h)
respectively, is estimated for each

timestep in the bidding horizon. Simulation of the energy content levels reveal if
the energy capacity limits are reached when activating Fn or Fp. The estimated
flexibility is therefore shredded accordingly, if energy storage limits are reached.
This stage also visualizes the flexibility estimates and the possible energy storage
trajectories different choices of flexibility activations.

After available flexibility has been estimated, the next process is to format a
flexibility bid (stage 4) to be offered on the market. Formulation of a bid
has many alternatives and should be developed with close cooperation with the
respective participants. One choice is for the DSO to fully activate all negative
flexibility at once, which will probably completely discharge the assets energy
storage. Another choice could be that the DSO activates just a portion of a bid,
and thereby extending the duration. Another choice is for the building itself to
withhold their flexibility fully or by parts, which they can freely do, for example
if they believe the revenue is higher a couple of hours later. Since there are many
opportunities, the bid formulation stage must be done with prudence in order
to find the optimal solution for all parts. The bi-directional arrow between bid
formatting and the Local flexibility market indicate that the flexibility buyer can
give feedback to the aggregator regarding the bids.

When a flexibility product has been offered to the market platform, there are two
possible outcomes. An ignored bid means that the bid is not bought by any
flexibility buyer and the building must prepare new flexibility estimates for the next
bidding period. t++ symbolize incrementation of time, indicating advancement
to the next bidding period. Pathway B represent an update of flexibility estimates
without retraining of the forecast model, whereas pathway A represent a full update
of flexibility estimates including retraining of the forecast model. Typically, the
frequency of model retraining needs to be found by experimentation and is limited
by computational complexity. In the case of an activated bid, the building is
committed to dispatch the bought amount of flexible power. The success of this
dispatch process relies on the asset control system. As the dispatch process goes
on, no bids are made until the end of the dispatch period. The process of making
new flexibility bids then starts over with a repeated workflow cycle. One exception
is in the case of rebound effects and rest time, which mean that the flexible asset
must recover from the dispatch process. Monitoring of the dispatch process will
be used in the aftermath to determine the level of dispatch success and potential



3.2. IN-DEPTH EXPLANATION OF THE METHODOLOGY 37

penalty fees.

Side notes:
Aggregation: Currently, it is unknown whether the flexibility buyers at the
NODES market platform would like individual flexibility products from each asset
or an aggregated offer of available flexible power frmo mutliple assets. It could
also be that different participants are in need of different bid aggregation levels,
thus reflecting the need for multiple bid offers to NODES tailored for different
flexibility buyers. Whether or not an aggregation must be done by the flexibility
provider itself or on the NODES platform is currently an open question.

Optimised load control: It should be mentioned that this model does not
provide any decision-support nor instructions for smart control system. The work-
flow has as a goal to generate bids from flexibility forecasts, conducted from com-
bining high-accuracy load forecast model forecasts together with information about
asset properties and state. If the building is subject to an optimized smart control
system, the baseline in stage 1 could be replaced with the optimized load schedule.

3.2 In-depth explanation of the methodology

3.2.1 Preparation

Parameters such as the temporal resolution of a timeslot, ∆t, and the amount
of timeslots in the bidding horizon H, should be defined first. ∆t could be one
hour or less. The bidding horizon decides the total number of timesteps, or time
slots, in a bid such that h ∈ [1, H]. The temporal resolution determines the time
between each timestep, or time duration of each time slot. The product of ∆t
and H is the total time duration of the whole bid (in hours). Temporal resolution
could in theory be set freely, however a lower limit is in practice set by sensor
delays, computational time and the temporal resolution of the timeseries. Unless
anything else is mentioned in this short-term bidding methodology, ∆t = 1h and
H = 6 timesteps as standard.
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3.2.2 Forecast models (stage 1)

This methodology will proceed with a direct multistep RNN model, which was
presented in the theory chapter. All data is preprocessed in order to comply with
a temporal resolution of 1 hour and the model is set to forecast 6 steps ahead.

Equations
The goal is to predict the baseline consumption of the asset. Historical timeseries
of baseline consumption is used as a target ~y when training an RNN forecast model
and its lags and additional explanatory variables are included in the feature set.

The model outputs a vector of forecasted consumption values, ~̂y, which is hence-
forth denoted as the forecasted baseline, expressed as following,

~̂
b =

[
ˆb(h)
]H
h=1

=
[

ˆb(1), ˆb(2), . . . , ˆb(t), . . . , ˆb(H)
]

(3.1)

The vector of true consumption values ~y is henceforth denoted as the true baseline,
expressed as following,

~b =
[
b(h)
]H
h=1

=
[
b(1), b(2), . . . , b(t), . . . , b(H)

]
(3.2)

Units are kWh/h. The true baseline is available in historical data, in both test
and train set. In real-time operation, the true baseline will tick in as datapoints if
bids keep getting ignored, however that is not the case with bid activation. In the
time after bid activation, it is impossible to know what the true baseline would
be because there is a flexibility dispatch going on. That should kept in mind for
later.

Visualizing multistep forecast plots

Multistep forecasts can be visualized as in figure 3.2. It may take some time to
fully understand what it represents; therefore, a thorough explanation is given.
The plot shows multi-step forecasts, t + h with h ∈ {1, 2, ..., H} with H=6, made
at all possible timesteps in the timeseries, ∀t. Ergo, there is one plotline for each
forecast horizon step h. Each of the red lines represent different forecasted steps,
t+1, t+2,..., t+6. All the forecast lines aim at replicating the true line. They do
however have different data foundations. Each forecasted value on the t+1 graph
is based on all previous data points. Each forecasted value on the t+6 graph
does not have its 5 prior values available for forecasting, thus yielding a different
forecast foundation. Ideally, all the forecast lines should thus be identical to each
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Figure 3.2: An example of a multistep forecast plot. One line represents forecasts at
all current timesteps, t. Each line represents each forecast step in the bidding horizon,
t + h,∀h. To get an idea of how this plot is made, refer to the text and figure 3.3.

other and equal the true baseline in blue. The following figures may provide a
more clarifying explanation.

Each of the graphs in figure 3.3 shows a multistep forecast made at one single
timestep, in contrary to the previous figure. This is how forecasts look like in real
time forecasting. A single multistep forecast lays the foundation for estimating
flexibility. Start at figure 3.3 (a) with t=800. Forecasts, b̂(h), are being made
for each of the timesteps in the bidding horizon h ∈ {1, 2, ..., 6}, here step 801
through 806. They are each represented by red dots. The true baseline, b(h)∀h, is
also shown. As time advance from figure 3.3 (a) to 3.3 (b), the forecasted red dots
are updated on new available data, but still represent forecast for t+1, t+2,...,t+6,
but with t=804. Trajectories for each of the red dots are drawn as time continues
to advance from 3.3 (a) through 3.3 (d). The drawn trajectories illustrate nicely
how figure 3.2 was made.
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Figure 3.3: Real-time multistep forecast plots for different points in time. The red dots
represent the forecasted values in the bidding horizon. True baselines are also plotted.
current timestep= (a) 800 (b) 804, (c) 808 and (d) 818. As time advance, trajectories
for each of the red dots that represent each forecast timestep, h, has been drawn to give
an idea of how the multi-step forecast in figure 3.2 is made.

3.2.3 Asset model (stage 2)

Asset model with a State-of-Charge framework
A State-of-Charge (SoC) model framework is introduced as an unite framework for
measuring the current charge level of an energy storage. The SoC approach has
borrowed inspiration from Ottesen [16], Barth et al. [15] and Ulbig & Andersson
[19]. The concept is introduced in order to avoid the confusion regarding positive
and negative energy in energy storages, e.g. cold versus heat reservoirs. The SoC
model normalize an assets energy capacity and current energy level to the SoC
range between [0, 1]. Normalization is not implemented in this work. The normal-
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ization factor provides a conversion factor, n, between ∆SoC and absolute energy
∆E. Along with the use of SoC, the terms charging and discharging will be used
instead of increasing and decreasing energy content. Charging of an asset will in-
crease the SoC, and vice versa for discharging. The asset consumption which leads
to a stable unchanged SoC level is defined as the steady state consumption, de-
noted Pcons,SS. An increase or decrease of consumption relative to the steady state
consumption results in charging or discharging the storage respectively. Cooling
storages are charged when they actually decrease their energy content, because of
added electrical consumption. That is the purpose of the SoC framework.

The normalization factor, n, is defined to be

n =
∆SoCrange

∆Erange

SoC∈[0,1]−→ 1

∆Erange

(3.3)

where ∆Erange = Emax−Emin is the allowed range of energy levels in the storage.
If the energy storage is thermal, then ∆Erange will be provided by equation 3.20
by inserting the maximum and minimum allowed temperatures. For a cooling
storage, ∆Erange will be negative and n < 0. In this thesis, n is set to be either
+1 or -1, which means that SoC is still measured in kWh and not normalized to
the range [0, 1]. Further in this work, a n = −1 is used for the cooling storage and
n = +1 is used for the other assets.

Figure 3.4: A sketch of a general physical model of a flexible asset with a flexible energy
storage. The green arrows, and not the light red, indicates positive power direction.

A generic physical model of a flexible asset with a flexible energy storage is shown
in figure 3.4. The SoC level and the relevant power flows are indicated. Pcons

represents the electrical power consumption of the asset. The share of consumption
that interacts with the storage is expressed

Pin = ePcons (3.4)
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with e > 0 being a power conversion efficiency factor and can be lower or greater
than 1. Pin can be electrical or thermal power depending on the energy storage
being chemical (battery) or thermal respectively. Often, e > 1 for heat pumps or
compressor systems, then often called coefficient of performance (COP). Or e < 1
for chemical or direct thermal power conversion. A positive Pin will in isolation
increase the SoC level. In case of a cooling storage, a positive Pin do actually
represent a negative power flow pure physically, but this confusion is now avoided.
Another factor is the power losses, Plosses, which in isolation cause the SoC level
to decrease. The loss power could represent an intended outgoing power flow to
an external purpose, e.g. heating offices. It also includes unwanted energy storage
power losses, for example heat losses. Plosses exclude electricity that flows back
to the grid, as this is included in Pin/Pcons. The physical model also includes an
option to have an alternative power production source, e.g. diesel generator or PV
panels.

The net power flow into the energy storage is denoted as the charging power,
P(dis)charge. It is defined as the net power flow that interacts with the energy
storage’s system borders, expressed as following

P(dis)charge = Pin + Plosses

= ePcons + Plosses

(3.5)

The charge power is important for the evolution of the energy storage level. A
change in the SoC and energy level over time happens when the charge power is
either positive or negative, expressed

dSoC

dt
= nP(dis)charge (3.6)

Integrating at both sides from one discrete timestep to the next timestep yields

∆SoC = n

∫ t+∆t

t

P(dis)charge(t)dt (3.7)

which for discrete timeseries simplifies to

∆SoC(t) = nP
(t)
(dis)charge∆t (3.8)

where ∆SoC(t) is denoted the change in SoC level at the timestep t, due to the
charge power at that timestep, P

(t)
(dis)charge. ∆t is the temporal resolution, the

duration of a timestep (in hours).
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Table 3.1: Table of asset parameters that must be determined in order to fulfill stage
2 of the methodology.

Symbol Parameter Unit Description

∆t Temporal resolution, positive
integer

hour example: ∆t=0.25 imply
15min resolution

~Pmin a minimum possible asset
power (2a), array of length H

kW
(kWh/h)

~Pmax a maximum possible asset
power (2a), array of length H

kW
(kWh/h)

Emax Maximum energy capacity, in-
teger

kWh

Emin Minimum energy capacity, in-
teger

kWh

SoC0 An initial SoC value, ∈ [0, 1] -
~̂
b Forecasted baseline, array of

length H
kWh/h provided from stage 1

Pcons,SS Steady state consumption, ar-
ray of length H

kWh/h is equal to for ex. 0 or the
baseline

Having P(dis)charge = 0 will have the following implication

P(dis)charge = 0 =⇒ Pcons = Pcons,SS =⇒ ∆SoC = 0 (3.9)

where Pcons,SS is the steady state consumption, defined to be the consumption that
leads to an unchanged energy storage level. A steady state situation will according
to eq. 3.5, lead to

Plosses,SS = −Pin,SS = −ePcons,SS

The losses are assumed to not be dependent on the consumption, namely Plosses,SS =
Plosses. Using the above equation with a reformulation of eq. 3.5, P(dis)charge can
also be expressed

P(dis)charge = ePcons − ePcons,SS (3.10)

Asset model parameters
During the development of the methodology, it is found that the asset parameters
given in table 3.1 must be determined. In order to determine some of these para-
meters, it may be necessary to conduct experiments and tests of the asset, e.g.
step-tests.
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The forecasted baseline, ref eq. 3.1, is provided by the forecast model in stage
1. The minimum power ~Pmin sets a lower limit for the minimum possible power
consumption of the asset. It can vary for different timeslots and is expressed

~Pmin =
[

ˆ
P

(h)
min

]H
h=1

(3.11)

Similarly, the maximum power ~Pmax sets an upper limit for the power consumption
of the asset, and is defined as

~Pmax =
[

ˆ
P

(h)
max

]H
h=1

(3.12)

The upper and lower power limits are found empirically or provided by the re-
spective asset. Note that negative values always indicate production and not
consumption. The charge power is calculated according to equation 3.10.

Object-oriented programming for asset modelling
For the implementation of an asset model, a class called Asset has been made in
Python. Making a class is beneficial, because one can create multiple objects from
it, e.g. many assets. The asset parameters defined in table 3.1 are provided as input
to the asset class, and will constitute the initial attributes (class variables) of the
asset object. The class consists of many attributes and methods (class functions).
The first important method, add energystorage() involves the possibility to attach
an energy storage to the asset model, if it has any. The inputs to this method is
the energy storage parameters of the asset. The second and last important method
is make flexplot() which makes the final flexibility estimates and creates a flexplot.
The flexplot is presented shortly.

The whole Python script for the class Asset, with commentaries and documenta-
tion, is included in Appendix B.2. The bottom of the script show some example
usage of the class, used for the making of the flexplots throughout this thesis.

Further work yet to be done is to implement a class for an aggregated group
of assets, e.g. Building, in order to provide aggregated flexplots and flexibility
estimates.

3.2.4 Flexibility estimation (stage 3)

Flex equations
The flexibility lies in the ability to deviate from the baseline. Based on the baseline
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forecasts
~̂
b, the forecasted maximum positive flexible power ~Fp is defined to be

~̂
Fp = ~Pmax − ~̂b =

[
P (h)
max − ˆb(h)

]H
h=1

(3.13)

Similarly, the forecasted maximum negative flexible power is denoted

~̂
Fn = ~Pmin − ~̂b =

[
P

(h)
min − ˆb(h)

]H
h=1

(3.14)

These values represent the estimated flexibility at each forecast timestep, h, in the
bidding horizon H. Units are in kWh/h.

So far, the flexibility estimates do not take into consideration any limits set by
the energy storage or potential time restrictions. In the implementation program
in Python, the ultimate estimated available flexible power is restrained by energy
storage capacity limits, as soon illustrated.

Flexplot - visualizing available flexibility and energy storage trajectories
Visualization provide better understanding for humans and is the first stage of
decision support, on the road to a fully intelligent and automatized system. Plots
have been developed to visualize the estimated available flexibility and all possible
impacts on the energy storage for all possible estimated outcomes. Simulations
for the energy storage trajectories will reveal when activation of flexible power
will result in hitting any energy storage limits. That is taken into consideration
and the estimated available flexible power is shredded if simulations indicate that
energy storage limits are reached. The plot is henceforth referred to as a flexplot,
and an example flexplot is shown in figure 3.5.

Passive charge schedule

For the explanation of this flexplot, a Pixii battery [34] with the following specific-
ations and assumptions is used:

• Temporal resolution is 15 minutes, ∆t = 0.25

• Max og min power, Pmax = −Pmin = 30kW

• Energy storage has a capacity of Emin = 0kWh and Emax = 65kWh

• Steady state consumption equals zero, since there are no power losses in
battery, ~PSS = ~0

• Forecasted baseline = inactive load schedule,
~̂
b = ~0
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Figure 3.5: An example of a flexplot, here using a Pixii battery as reference, with a
passive load schedule.

• There are no conversion losses, e=1

• The battery has an initial SoC of 0.5 (32.5 kWh)

Explanation of the flexplot
The flexplot consists of four subplots which all share the same time axis shown
at the bottom. The values on the time axis indicate time from the start of the
bidding period for this estimate, with hours as unit. The units on the y axis
are kWh/h for power and kWh for energy storage. The upper subplot is of the
forecasted baseline power along with maximum and minimum power. The second
subplot shows calculated planned charging power of the energy storage, based
on the forecasted baseline, using eq. 3.10. If it is zero, it means the SoC level
is planned to be unchanged. A positive or negative charge power will lead to an
increase or decrease in the energy storage level respectively. The plot also indicates
the maximum and minimum limits for charging of the energy storage, based on
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the max and min power. The first and second subplots do in this case look similar,
because of the chosen example (no storage losses), but this does not have to be
the case (as examples will show).

The third subplot is of importance to visualize what will happen with the energy
storage level. The y axis represents stored energy. The limits of the energy storage
are indicated. The graph reveals what is going to happen with the energy storage
level for different choices of asset consumption. The blue solid line shows the
planned energy trajectory, Eplan(t), which is a simulation of energy level when
following the forecasted baseline consumption. It is the path when choosing not to
activate any estimated available flexibility. For this specific example, the planned
energy storage trajectory remains constant, because of the planned charging power
being zero. However, the planned baseline could very well involve charging, as
shown later. Explaining the remaining content of this subfigure is postponed to
after explaining the fourth subplot.

The fourth subplot ultimately reveals the estimated flexibility, represented by the
estimated max positive flexible power in striped cyan and estimated max negative
flexible power in solid purple. The estimates correspond to the difference between
the forecasted baseline and the power limits, as stated by the equations 3.13 and
3.14. The estimated flexibility here are symmetric because of the chosen symmetric
case. It is 30 kWh/h both in the negative and positive direction. After timestep
1.00 it sinks to 10 kWh/h and then to zero even, despite that the asset still has
a lot of choices to deviate from its baseline consumption, according to the first
subplot. The reason is that the energy storage limits are reached and impose a
shredding of the estimated flexibility.

Choosing to activate either Fp(t) or Fn(t) results in a change to the planned con-
sumption, planned charging and the energy content. Referring to the energy stor-
age subplot, the resulting energy trajectories of activating either all Fp(t) or all
Fn(t) is plotted in green or red respectively. These trajectories are represented by
E(t, Fp(t)) and E(t, Fn(t)) respectively. The fact that the energy storage limits
are reached at timestep 1.00 is what impose the reduced flexibility seen in fourth
subplot. The dashed light grey line in the third subplot shows how the trajectories
would be without considering energy storage limits.

Code snippets for creating this flexplot is found at the bottom of the Asset class
script in Appendix B.2, with EXAMPLE 1 as reference.
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Active charge schedule

Figure 3.6: An example of a flexplot, here using a Pixii battery as reference, with an
active load schedule.

Now, a flexplot for a battery with an active planned energy storage charging is
showcased, and is shown in figure 3.6. The exact same battery as above is used
as an example. The battery does not however have a passive plan, but instead a
planned active load schedule, as followed

• Forecasted baseline = active load schedule,
~̂
b =

[
+ 30,+30,+30,−30,−30,−30

]
kWh/h

The load schedule could be for any reason, e.g. cost optimization or needs. For
this case, the baseline power still equals charge power, as the first and second
subplot indicate. As the blue solid line indicates, the planned energy trajectory
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looks different now, due to planned charging. In addition, the flexibility estimates
are different. The forecasted baseline that is entered to the flexibility platform is
what lays the basis for calculating the flexible power. Therefore, the estimated
flexible power is now -60 kWh/h in the first 3 timeslots. The plan was to charge
the battery with +30 kWh/h, while there is still an opportunity to discharge -30
kWh/h. The resulting negative flexible power is the difference of - 60 kWh/h.
There is no available positive flexibility for the first 3 slots, because the maximum
possible power/charge is already planned. This can be seen in the energy plot as
well, where the planned trajectory already follows the path of maximum positive
flex, which is 0. The last 3 slots offers positive flexible power. The fourth slot
is +60kWh/ and the fifth has been imposed restrictions on because energy limits
are reached. Still, after the limits are reached, the sixth slot contain +30kWh/
of offered flexible power. That is because the battery can have a consumption of
0kWh/h, when -30kWh/h is planned.

Code snippets for creating this flexplot, figure 3.6, is found in Appendix B.2, with
EXAMPLE 2 as reference.

3.2.5 Bid formatting (stage 4)

Based on the estimated flexible power, the ultimate bid is entered to the flexibility
market platform. It consist of H timeslots, each slot containing both a bid for
positive and negative flexible power, as seen in figure 3.7. The bid should com-
ply with the flexibility product presented in the section underNODES Flexibility
product. Pricing of each flexibility bid slot is important, but is left out of the scope
of this thesis.

The bid in each slot could be linear, absolute or even contain a minimum activation,
e.g. an absolute value above 30kWh/h. For the estimations in this thesis it is
assumed an activation of the maximum bidded available flexible power, referred
to as a full activation. Later, some alternatives will be briefly discussed, e.g.
activating half the power of a bid.
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Figure 3.7: Example of a how a flexibility bid that is entered into the flexibility
platform, may be illustrated. It is constituted of several slots in the bidding horizon
h ∈ [1, H], here with H = 6.

3.2.6 Aftermath and error measures

There are two different outcomes after the bid is formatted and entered into
the flexibility market platform. When a bid is ignored, we expect the realized
consumption to follow the forecasted baseline,

P̂ (h)
cons = b̂(h) (3.15)

The realized consumption, however, does in fact become

P (h)
cons = b(h) (3.16)

These values enables us to calculate the error of the baseline forecast, using either
of the evaluation metrics mentioned in the section Evaluating multi-step forecasts.

When a bid is activated, the bought flexible power can be denoted F
(h)
committed.

The realized consumption is anticipated to be equal to the forecasted baseline
power with the added committed flexible power that is expected to be dispatched,
expressed

ˆPcons

(h)
= b̂(h) + F

(h)
committed (3.17)

During the influence of the activated flexible power, the realized baseline, ~b, will
not become available, but the realized consumption P

(h)
cons will be. That enables us

to calculate the delivered flexibility, F
(h)
delivered, which is expressed

F
(h)
delivered = P (h)

cons − b̂(h) (3.18)

The failed deliverance, or error of flexibility deliverance, can then be expressed

R
(h)
delivered = F

(h)
delivered − F

(h)
committed (3.19)

where the delivered flexibility is found with eq. 3.18 and the estimated flexibility
is the flexible power that is bought and committed.
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There is a distinction between two situations - backtesting and real-time use of the
model. During backtesting, the true realized baseline is available, and assumptions
on flexibility activation is done. This is opposed to real-time usage where the
forecasted load never will see its true realization play out. Everything of this
thesis must be based on backtesting, because of the lack of opportunity to conduct
practical tests and real application of the methodology. Therefore, the results will
be hypothetical. The generic explanation of the methodology is finished. Now, its
usage during time advancement will be demonstrated.

3.2.7 Bid event line - time advancement

Figure 3.8: Example of a how a line of bidding events may look like during time
advancement. Each subfigure represents successive events of bidding, where each event
involves assessing flexibility estimates by means of the methodology. The flexibility bids
in (a) and (b) are ignored. In (c), a part of the bid is thought activated, followed by (c)
the dispatch process.

This section is dedicated to explaining the methodology in action during time
advancement and in a line of bid events. When a flexibility bid is entered to
the flexibility market, it is either ignored or activated. As time advance, the
methodology will repeat itself in order to make flexibility estimates for new bidding
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horizons.

To demonstrate how the methodology works during time advancement, a concep-
tual demonstration of the bidding procedure has been designed. It is designed to
show what happens in both outcomes of the methodology. For this purpose, 4
successive bid events are created. Figure 3.8 shows 4 flexibility bids in the bidding
procedure. Each bid represents an event, where each event involves the use of the
methodology for estimating flexibility to create the illustrated bids. Each event is
as follows:

• Event (a): According to the methodology, a flexibility bid is made and
entered into the platform, but the bid is ignored. We proceed to the next
timestep.

• Event (b): Flexibility estimates are yet again formulated into a flexibility
bid and ignored again. We proceed to the next timestep to prepare for the
next bidding period.

• Event (c): The new flexibility bid that is entered is bought. As an example,
the four first 4 slots for negative flexibility are activated, however this is only
illustrative. The activated flexibility must match the given time and energy
constraints. We follow path bid activated in figure 3.1.

• Event (d): According to the methodology, the dispatch will try to deliver
the committed flexible power in its best fashion, however it may fail. The
values in the dark brown coloured slots, representing delivered flexible power,
may therefore differ from the values of the activated flexibility. As the dis-
patch period soon comes to an end, there are some alternatives. Either, new
flexibility estimates are done right away or there is a rest or rebound period.

• The same process goes on and the methodology is repeated.

This set-up is used as a standard for later practical examples.
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3.3 Implementation of the methodology for se-

lected assets

This is the third and last section of the chapter and will present specific descriptions
on how the methodology can be implemented for the five following assets: Battery,
diesel generator, PV panels, water heater (with heat tank or with alternative
energy source) and machine room.

3.3.1 Thermal energy storages and heat losses

Before presenting the conceptual methodology for assets with thermal energy stor-
ages, some theory on thermal physics must be presented. Equations for the energy
level and how heat transfer mechanisms change the energy level of a heat stor-
age will therefore be presented. This section is aimed to support the modelling
framework for flexible assets whose behaviour relies on underlying thermal physical
processes, such as a cooling storage and a water-based heat storage. Knowledge
about heat losses will also provide information on which heat loss parameters to
include as explanatory variables in load forecast models.

Most of following theory on thermodynamics is from the book by Sonntag & Bor-
gnakke [35].

Heat and transfer mechanisms
Heat is thermal energy and everything that have atoms with a temperature above
0 Kelvin possess heat. In practice, one focus on relative change of heat in an
object. The change of thermal energy ∆Q (Wh) of an object with mass m (kg)
subject to a temperature change ∆T (K), can be expressed

∆E = ∆Q = cpm∆T (3.20)

where cp ( Wh
kgK̇

) is the material-specific heat capacity of the object. The new thermal

energy in an object subject for a change in thermal energy would simply be E0 +
∆E, where E0 usually is a constant that is set freely. Wh is a practical unit for
energy because electricity also uses this unit.

In order to change the thermal energy of an object, it needs to exchange heat power
with the surroundings. Heat exchange happens through three heat transfer mech-
anisms: conduction, convection and radiation. These mechanisms are presented
below, except for radiation, which can be neglected in the further work.
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Heat conduction Q̇cond (W) is heat that transfer through a material, i.e. wall, and
can be described by Fourier’s law of heat conduction,

Q̇cond = −kA∆T

∆x
(3.21)

where k ( Wm
Km2 ) is heat conductivity of the material, ∆T (K) is the linear temper-

ature gradient through the material, A (m2) the cross section and ∆x (m) the
thickness of material.

Convection is heat transfer by motion of a fluid itself and is very complex to
describe in a mathematical way. The driver for convective heat flow is temperature
gradients in a fluid, which cause particle movement due to pressure differences. A
great temperature gradient will cause high convective heat transfer until at last,
when all air is mixed up and shares a common steady state temperature. As an
aimed example, consider two enclosed rooms filled with air, having a difference in
temperature ∆T . They are connected with a closed gate. When the gate opens,
the temperature difference, ∆T , will be a driver for heat convection through the
door, qconv, which can be expressed

Q̇conv ∝ ∆T (3.22)

A thermal energy storage raises or lowers its energy content by interacting with
the environments. In order to provide flexible electrical power, it is needed that
Plosses > 0 ⇒ Pcons > 0. The reason is that stored thermal energy itself cannot
be transformed back into providing electricity to grid. The asset can only deviate
its consumption of there is a natural drainage of the thermal storage. Unwanted
storage heat losses stem from a warmer or colder environment to which heat is
transferred according to the equations 3.22 and 3.21. Thermal energy storages are
therefore often insulated to avoid unwanted heat losses, reducing the coefficient
of heat conduction. There should be mechanisms to avoid unwanted convective
heat losses as well. Ideally, power losses should fully be going to its purpose, e.g.
heating offices.

3.3.2 Implementation for batteries

Batteries big advantage of being charged and discharged with ease and precision,
makes them the most ideal resource for flexibility and grid balancing purposes,
when ignoring costs. From now on, a high-capacity battery will be considered. Al-
though still being a more expensive alternative to other flexibility sources, utility-
scale batteries are a serious competitor for offering flexibility services in the energy
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chain. By 2050, around 360 GW of batteries are expected to be a part of the world’s
power grids, and they expect to become a cost-competitive choice for load shifting
from the mid 2020’s [2]. A commercial battery available on today’s market can
offer 65 kWh of electrical energy storage with a 30 kW power conversion, packed
in a half-tonne fridge-sized cabinet [34]. As batteries degrade over time with dif-
ferent use patterns, current research is being done to gain a better understanding
of operational related costs. For this thesis, a simplistic battery model is to be
used, as presented in methodology chapter.

Batteries do perhaps offer the simplest and easiest source of flexibility and has
a smooth implementation of the conceptual model. A battery was chosen as an
example for the flexplot explanation.

Figure 3.9: Simplistic physical model of a battery as a flexible asset.

A physical model of a battery is shown in figure 3.9. A battery is subject to
decisions, and the load schedule must be actively set, for example in order to
minimize operational costs. The forecasted baseline is therefore set by a load
schedule. Steady state consumption is always equal to 0 for batteries, by assuming
it has no storage losses. The charge power, Pcharge will thus be equal to the Pin,
which transform power from the grid with a certain efficiency, e ∈ [0, 1]. The
charging and discharging of a battery can be expressed

P(dis)charge = Pin = ePcons (3.23)

The action of storing energy in the battery for later extraction is associated with
an efficiency loss, expressed by applying the above equation twice

Pcons,extraction = e2Pcons,storing (3.24)
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Inserting the given parameters into eq. 3.8 yields an expression for increasing the
energy level, or SoC

∆SoC(t) = n∆E(t) = nP
(t)
in ∆t = neP (t)

cons∆t (3.25)

When a battery is charging, it is consuming power, Pcons > 0 and ∆SoC would
have to be positive. If they are negative, they indicate discharging and power
production. The maximum and minimum power of the battery is usually provided
by the manufacturer. Estimation of flexibility is next. It has already been demon-
strated and was shown for the case of both a passive and an active load schedule,
figure 3.6 and 3.5 respectively.

As with the passive battery, the figure reveals that fully activating the maximum
amount of either positive or negative flexibility, results in hitting the boundaries
of the energy storage limit within 5 hours. The flexibility the last hour is then
shortened from this fact.

3.3.3 Implementing a diesel generator

A diesel generator generates electricity from running a combustion engine fuelled
by diesel. It is ideal as a power backup, in case of power outages. Many diesel
generators can also be fuelled by other liquid energy carriers, such as gasoline, bio
diesel and colza oil, with different efficiencies.

Figure 3.10: Simplistic physical model of a diesel generator or of a PV panel.

A physical model of a diesel generator is shown in figure 3.9. A diesel generator
is always at backup to provide the alternative energy source as electricity to the
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grid. It could have a minimum and maximum run time, and perhaps a rest time
between runs. The forecasted baseline that is entered into the flexibility platform
is simply equal to 0. The maximum power is determined by the specifications of
the engine and how much electrical power it can deliver. The negative flexibility
is directly quantified as the maximum power and this information could therefore
be directly used to make bids. All the first stages of the methodology model could
be skipped, and bids are entered directly to the platform. The diesel generator
may have a minimum power, thus the negative flexible power is

−Fn ∈
[
Pmax, Pmin

]

3.3.4 Implementing PV solar panels

Photovoltaic solar panels (PV panels) have the unique ability to transform irradi-
ance to electrical power. They do so when they get lit by both direct solar rays
and diffuse light. A typical commercial PV panel has an efficiency around 15-19
% [36]. Solar power cannot be controlled, except from curtailing the production
which could provide positive flexibility, for example in the case of an extreme grid
emergency. However, smart and interconnected flexibility markets aim at avoiding
such curtailment. Alternatives to curtailment should always be sought, such as
charging other flexible assets in the building instead.

PV solar panels could provide flexible generation and their flexibility lies in cur-
tailment of production. In the use-case, solar production assist to supply cooling
power which correlates with temperature and mostly sun. PV curtailment may
therefore lead to a high net building consumption that exceeds power tariff limits,
thus resulting in a very high cost of the flexibility.

The PV panel asset can be modelled the same way as a diesel generator, as seen in
figure 3.10. The forecasted production is entered to the flexibility platform as the
baseline. The maximum negative flexibility is to curtail all solar production. For
this reason, the solar power production must be forecasted. This is somewhat easy
on sunny and complete shaded days, but become tough on days with clouds that
come and go. That applies to the flexibility estimates as well. This asset does not
have an energy storage or asset models, and the flexible power could directly be
used to make flexibility bids. PV panel is not further investigated in this thesis.
The implementation is clarified.
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3.3.5 Implementing a water heater

A water heater consumes electricity to heat up an energy carrier, often water. It
could have a tank for the energy carrier that stores thermal energy. Pipes transport
the energy carrier to ultimately heat up whatever needs to be heated externally.
If the thermal energy storage is of a significant size, energy-wise, one can expect
it to provide flexibility. Another source of flexibility can also be if the electrical
consumption has the opportunity to be replaced with another energy source. A
heat tank consisting of water can store a lot of energy. The specific heat capacity
of water is around 4.2 kJ/kgK, in the liquid phase range, at 1 atm pressure [35].

We look at two cases. The first case is to look at a water heater whose consumption
can be totally replaced by an alternative energy source. The second case is to look
at a water heater with a flexible thermal energy storage, which is providing the
flexibility. In practice, the both can be combined. Using an alternative energy
source will not result in any rebound effects, whereas discharging a thermal storage
will lead to a rebound effect to recover after activation period.

The first stage, settling the baseline forecast, must be done for either case. Water
heaters use electrical power to provide a heat power flow to an external purpose,
which is considered a part of Plosses. From now on, it is assumed that the con-
sumption equals steady state consumption

Predicting the baseline may require the creation of a load forecast model or, if the
consumption is very stable, an average or repeated value can be used. One can
expect the consumption to be influenced by the things that influence Plosses, such
as conduction losses through the isolated walls and parameters behind its external
purpose, e.g. office space heating. Investigation of such processes may therefore
be helpful.

The ability to deviate from the consumption must be determined, which sets Pmin

and Pmax. The successive stages will differ for the case of an alternative energy
source versus a heat reservoir. The case with a thermal storage will be treated
first, followed by the case with an alternative energy source.
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Water heater with thermal storage

Figure 3.11: Simplistic physical model of a water heater with a thermal energy storage
as a flexible asset.

A physical model of the water heater system with the heat reservoir can be seen
in figure 3.11. Pmax would be some maximum value, most probably a constant
and will make up the possibilities for charging the energy storage. Pmin can be
assumed to be zero from now on, which means total consumption shut off. The
drainage of the energy storage is thereby totally dependent on Plosses > 0.

The flexible range of energy levels in the heat storage is given by the equation

∆Erange = n∆SoC = cm∆T (3.26)

where ∆T = Tmax − Tmin is the allowed range of temperatures(K), c is the heat
capacity (kJ/kgK) and m is the mass (kg), of the medium. The latter can altern-
atively be expressed m = ρV with ρ being the density (kg/m3) and V being the
volume (m3) of the medium. It is assumed no phase transitions. Temperature re-
strictions, such as a minimum and maximum allowed temperature, Tmin and Tmax,
sets a lower and upper boundary for the thermal energy content, Emin and Emax

respectively. The level of energy in the storage cannot exceed these limits.

An approach is to set Emin = 0 and let the maximum allowed energy level be
expressed

Emax = Emin + ∆Erange (3.27)

Now, all is set to estimate the flexibility.
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Some notes
If Pmin = 0 and the asset consumption is shut off, the asset will provide negative
flexible energy and also discharge. As mentioned, the drainage will totally depend
on Plosses. If the bottom energy level is reached, then the electrical consumption
must be turned back on. From this fact, it is important to have good forecasts
of the electrical consumption, assumed steady state. The forecasted baseline will
only be able to provide a forecast of the potential new energy level after activation
and the time of a completely empty energy storage. A problem is that, if the
baseline forecast is wrong, especially when it has underestimated the forecasted
steady state consumption, it will thereby underestimate the losses. This would
result in an overestimated flexibility. It means that activation of that flexibility is
expected to drain the storage in a certain manner, but the energy storage will in
practice drain faster than anticipated. As a result, the flexibility activation will
not be able to last as long as committed, as the consumption must be turned back
on when the bottom energy limit is reached before time.

Some ways to avoid this to happen is to provide more accurate, or even overestim-
ated, forecasts or subtract a share of the estimated flexibility as a safety margin.
That may help prevent failed deliverance of flexibility.

The rebound effect is a consideration that should be investigated. The rebound
must be analysed through experiments, and the rebound strength could perhaps
be controlled. Notes on implementation of rebound effects are for the discussion
later.

Water heater with alternative energy source

Figure 3.12: Simplistic physical model of a water heater with the opportunity to
replace electrical consumption with an alternative energy source, as a flexible asset.



3.3. IMPLEMENTATION OF THEMETHODOLOGY FOR SELECTED ASSETS61

A simple sketch of the water heater system with an alternative energy source is
shown in figure 3.12. A twist in this case is that Pmax is equal to the baseline
consumption of the asset. That yields no positive flexible power. Pmin is simply
zero. Thus, the negative flexibility lies in shutting off the electrical power. The
alternative energy source still provides everything that is needed of power for the
water heater to continue delivering its functions, in Plosses. If there are any time
constraints for the alternative energy source, regarding max runtime or rest time
after activation, this can easily be implemented. All is set to estimate the negative
flexible power and make flexibility bids.

Some notes:
The alternative energy source may have time constraints, which are taken care of
in the flexibility estimation or bid formulation. Rebound effects are not present,
however there might be a rest time, in which a resting period must pass before the
alternative energy source is yet again ready.

Aftermath:
The realized baseline will not be available and the asset has not any energy storage
than can be drained. Therefore, the delivered flexibility is concluded to be perfectly
fulfilled.

3.3.6 Implementing a machine room for cooling storage

A complete conceptual description for implementing the preliminary methodology
on a machine room asset is now presented, including the steps for the making of
a forecast model. Figure 3.13 shows a simplistic model of the machine room asset
with its power flows and the SoC level of the cooling storage.

The first stage in the methodology is to create a load forecast model that can make
predictions for the future baseline consumption. Step one is in many ways the same
as forecasting the heat losses, since the baseline is assumed to be the steady state
power, Pcons = Pcons,SS ⇒ P(dis)charge,SS = 0. The ability to be flexible is to either
blow up or ease down on electricity consumption from the forecasted baseline,
thus charging or discharging the thermal storage respectively. According to the
methodology, the second step would be to quantify the potential to deviate from
the baseline. This must be done by analysing the ability to control the electrical
consumption and finding Pmax and Pmin. In addition, the storage parameters Emin

and Emax must be determined.



62CHAPTER 3. PRELIMINARYMETHODOLOGY FORASSESSING SHORT-TERMDEMAND-SIDE FLEXIBILITY

Figure 3.13: Simplistic physical model of the machine room and cooling storage as a
flexible asset.

Settling the storage losses
Since understanding heat losses will increase predictive power for electrical con-
sumption, heat losses for the cooling storage will now be analysed in the coming
paragraphs.

Figure 3.13 is now referred to. The cooling power, represented by Pin (W), must
equal the net losses, Plosses (W) to maintain the set-temperature and SoC level
of the storage. There is convection losses through a potential open gate and
conduction losses through the walls, roof and closed gates. The power loss is solely
constituted by heat losses that can explained by the two heat transfer mechanisms,
equations 3.22 and 3.21. Combined, this yields

− Pin = Plosses = Q̇cond + Q̇conv (3.28)

One unit of electricity consumption Pcons (W) that is needed to create one unit
of storage cooling Pin (W) is in fact lower, due to a usually high Coefficient of
Performance (COP) of above 4, e > 4 . Combined with the latter equation, this
can be expressed

Pcons =
Pin

e
(3.29)

To conclude, the electrical consumption becomes dependent on heat losses

Pcons =
1

e
(Q̇cond + Q̇conv) (3.30)

The variables of the respective heat transfer mechanisms indicate that outside
temperature will play a key role in both heat loss mechanisms. In addition, the
frequency of open gates will be essential for the presence of convective heat losses.
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Thus, these variables should be included as explanatory features in a forecast
model in order to improve the performance and predictions of the consumption.
e must not be determined, because it will be found by the RNN model. If the
frequency of the gates can be modelled, this would be a valuable feature. Once
a good forecast model is realized, good forecasts gives a good foundation for the
estimating flexibility. Note that the load forecast also is a forecast of the steady
state consumption.

stage 2 Next step in the methodology is to determine the asset parameters. A
cooling storage for groceries needs to maintain a desired air temperature, called
the set-temperature, Tset, which can be manipulated within an allowed deviation.
Temperature restrictions are set for food safety regulations, under strict laws. The
range of allowed temperatures will yield a range of a flexible energy storage levels.
This makes the asset possess flexible power. One needs to decide the range of
allowed temperatures. The lower and upper temperature limits, Tmin and Tmax

will define the maximum and minimum allowed energy storage capacity, Emax and
Emin respectively, according to equation 3.20. The other variables in the equation,
heat capacity and mass, could be assumed constant or be variables. If they are
variable, it is because groceries are moved in and out of the cooling storage. The
resulting range of allowed energy levels will be a function of the grocery volume and
perhaps other variables. One could create physical models incorporating grocery
volume, but this may be a complex task. For the rest of this thesis, the combined
heat capacity is assumed constant. Finding this constant must be done by experts,
however, step-tests have been proposed to investigate how the storage energy level
reacts to charging and discharging.

Even though the COP is not necessary to know in RNNs as they learn the weights
between the relations automatically, it may nevertheless be beneficial to have real-
time information on a changing COP value as a feature, if it is known.

Analysing the ability to deviate and storage properties may be a complex task
to do. A suggested method is to carry out step-response tests, where temperat-
ure set points are manipulated in order to monitor the response of the electrical
consumption. Then, a known change in electrical consumption will provide a meas-
ured change in temperature. The heat capacity can be calculated and the assets
maximum ability to deviate from its baseline can be mapped and provide Pmin

and Pmax. Step-down and step-up responses may look different in both time and
amplitude. Charging of a cooling storage may probably take longer as opposed to
discharging, since compressors often are dimensioned to maintain a temperature
and not to boost it.
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A simplification
Without practial analysis and knowledge on the asset parameters, some reasonable
simplifications must be made. From now on, a constant heat capacity and a
constant mass is assumed. Combined, they are referred to as a constant combined
heat capacity. Different assumptions for Pmax and Pmin will be looked at. First, it
could be assumed that Pmax and Pmin are purely defined out of the baseline and
equals the baseline plus or minus a constant respectively. Another assumption
that is looked into is that Pmax and Pmin are defined from a rolling mean of the
baseline. Then, a rolling mean over 3 timesteps is made from the baseline. Adding
or subtracting a constant to this yield Pmax and Pmin respectively.

Once the asset parameters have been determined, stage 3 will calcualte and es-
timate the available flexibility and create a flexplot. Based on this, a flexibility
product has to be shaped at stage 4. Eventual error margins are considered in
the bid before the forecasted baseline and the flexibility bid is entered into the
NODES platform.



Chapter 4

Use-case: Flexibility at a grocery
warehouse

4.1 Introduction

This entire chapter is about applying the aforementioned theory and methodology
on a real-case scenario building. The goal is to investigate the feasibility of the
preliminary methodology for assessing short-term flexibility in a flexible asset and
to demonstrate the use of the methodology with some real numbers and examples.

The structure of this chapter is as follows. Information about the use-case will be
given at first. The main part of the use-case is application of the methodology on a
machine room asset for a cooling storage with real consumption data. The dataset
is explored for correlations and then preprocessed before forecast models are built.
The results from one-step and multi-step RNN forecast models are a major part of
the use-case. Then, these baseline forecasts will lay the foundation for the further
stages in the implementation of the methodology. Some assumptions has to be
done. Each stage will be explained, before a demonstration of a bid event line
finishes the whole use-case for the machine room asset. At end, some other short
relevant examples for some of the other assets are shown, for the case of diversity.
Figure 4.1 shows that assets in this use-case building, along with the internal power
flows.

65
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Figure 4.1: The system of ASKOs building and its considered assets. Power flows and
explanations are included in the figure. The main meter connects to the grid.

About the use-case

The considered use-case involves a grocery warehouse in Vestby belonging to ASKO
ØST AS. Their main task is storage and distribution of groceries in the food
transport chain. In other words, groceries - room-tempered, chilled or frozen -
arrive here, get temporarily stored until they are sent away. In the era of smart
grids and the fact that ASKO ØST is a major power consumer in the local grid,
has made them pay attention to demand response management and utilizing their
flexibility. This is both of their own economic interest and of interest for the local
DSO in order to operate the local grid efficiently. The local DSO is Hafslund
AS and operates the distribution grid. They have interest in the digitization age
and are exploring new innovative ways to operate the grid, including NODES and
flexibility markets. A third party, the smart grid company eSmart, plays the role
as the aggregator for ASKO. Their task is to analyse and optimize the use of
flexible resources within ASKO and potentially to a future local flexibility market,
thought to be NODES.

ASKO already has incentives to utilize their flexibility to make profit by exploiting
price variations and the power tariffs. A proposal is to investigate a flexibility
market platform with NODES as the operator, where the DSO, Hafslund, is a
thought flexibility buyer. ASKO is thought of as a flexibility provider with eSmart
in the aggregator role.

All in all, the overarched goal for this use-case is to provide a methodology for
eSmart and ASKO to assess short-term flexibility in their flexible assets. The use-
case focus mainly on making flexibility bids according to the NODES flexibility
market. However, parts of the applied methodology in this use-case may be ad-



4.1. INTRODUCTION 67

vantageous for other scenarios as well. For example, precise RNN load forecasts
and asset models are also needed in the process for exploiting price-variations with
cost-optimization methods. Good short-term flexibility estimates are needed in the
case of direct DRM as well.

Shortly about the electricity contract
The first layer of the electricity price is the area price set by NordPool the day
ahead. Power tariff modules comes in addition, and they intend to punish ASKO
for extra consumption during the periods where Hafslund wants lower consump-
tion. One power tariff module adds an additional power cost at certain times
during the day. Another power tariff does give incentives for ASKO to not exceed
a certain monthly peak, where exceeding it involves a penalty power price that
applies to all consumption of that month. Shaving of peaks and load shifting is
therefore already in ASKOs interest because of the contract.

The NODES flexibility market platform will only add to the incentives for ASKO
to use their flexibility. In addition, it will increase the intelligence and preciseness
of Hafslunds grid operation. The above-mentioned contractual incentives are still
in place, but with a flexibility market in place, ASKO will have more opportunities
to revenue from their DFS.

Assumptions
There are some restrictions for fully applying a practical implementation of the
methodology to the use-case. In lack of data and practical experiments, many sim-
plifications must be made for the asset parameters and for the dispatch process.
For the machine room asset especially, that means that important information
about its behaviour, storage parameters, etc. is not available, which call for as-
sumptions. A second effect from the lack of experiments is that the dispatch
process itself cannot be measured. The results for the success of delivered flex-
ibility is therefore hypothetical and based on the assumptions. Nevertheless, the
application is conducted and will show that the methodology to work.

Building assets and parameters
Figure 4.1 gives a nice overview of the building with its assets, showing their place
in the hierarchical structure and the power flows. The main meter measures net
building power, and represents the bought and sold power with the grid contractor
respectively. The building contains the same assets as the selected assets which
were presented in the methodology chapter. The following list will further describe
each asset for this specific use-case.
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• Machine room: a complex cooling system, consisting of compressors,
pumps, valves etc. to provide cooling for the frozen and chilled section of
the warehouses, where the rest-heat is reused for comfort heating in offices
etc. These components are placed in a machine room, whose net consump-
tion is referred to as machine room consumption. It is a power demanding
process which could provide 2-way flexibility, if carefully studied. Flexibil-
ity potentials, max and minimum power, energy storage capacity and other
parameters are currently unknown.

• Electrical water heater, whose warm water is used to either defrosting or
heating of office space. The asset can replace its electricity consumption
by an alternative energy source. It may also consist of a significantly sized
flexible thermal energy storage, however its parameters are unknown during
the work of this thesis. Both alternative energy source and a flexible thermal
storage will both provide negative flexibility, whereas positive flexible power
could only be provided with a heat storage.

• PV panels on the rooftop, which produces electricity during a sunny day.
It produces electricity when the need for cooling is most likely present. The
positive flexibility lies in curtailment of production and does therefore depend
on solar irradiance forecasts.

• A diesel generator, serves as a back-up power source, and need to be test
run once each month. It can provide negative flexibility that is limited by a
maximum power of 2 MW and an unknown minimum power, for a maximum
of unknown hours. Rest time is unknown.

• A high-capacity battery bank is still at the planning stage and may be
built in order to provide flexibility. For the purpose of this use-case, a Pixii
battery is relevant, which has 65kWh of energy capacity and maximum of
30 kW of charging/discharging power. Multiple batteries can be stacked in
order to upscale these parameters.

Provided data:
eSmart and ASKO has provided a dataset that contains timeseries of historic
consumption for all of the above assets and for the main meter, except the battery.
The timeseries has a temporal resolution of at least 15 minutes. The consumption
for machine room is used. In addition, inspiration of water heater consumption is
taken from the dataseries. Temperature data is gathered from Yr.
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4.2 Methodology applied to the machine room

asset

About the cooling storage
Understanding the building physics would be helpful for understanding the ma-
chine room consumption. A simplified illustration of the cooling storage is in
figure 4.2, where the outer gate represents many gates. The gates connects gro-
cery trucks to the cooling hall, with a sealing around to prevent heat losses. The
sealing is however not completely sealed and cause heat losses, however there is a
thin express gate which closes within 19 seconds of inactivity, which reduce this
heat loss. When there is no truck connected, a main well-isolated gate is closed.
With reasoning in the equations for heat losses, the machine room consumption
depends on outside temperatures and the gate activity.

Figure 4.2: Simplified illustration of the cooling storage setup, which is relevant for the
machine room asset. The daily sunpath and cardinal directions are indicated as well.

4.2.1 Data investigation, analyses and preprocessing

Historical data reveals that the machine room consumption is a highly volatile
time-series, as seen in figure 4.3. The volatile line represents the highest available
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resolution; 5 min. Between 12 and 15 o’clock, the minimum consumption is ap-
proximate 60 % of the maximum, and this volatility can be observed throughout
the day. The smooth line is a downsampled version of the consumption, and shows
hourly aggregated consumption, in which a peak can be observed in the day during
work hours when there is gate activity.

Figure 4.3: Plot showing historical consumption for the machine room asset for Sept
26th, 2019. The volatile red line is the original timeseries with 5-min temporal resolution
and the blue averaged line is a downsampled timeseries with 1-hour resolution.

Missing data
The period of Aug 13th to Sept 30th 2019 is chosen as the dataset in this use case.
Missing data was found and taken care of with the following steps, illustrated by
figure 4.4, showing consumption plots for the whole dataset length. Step one is
to find the periods with missing data. They are observed as values equal to zero
in figure 4.4(a). Values in the missing periods are set equal to NaN, which we
see the result of in figure 4.4(b). Still, some values seem oddly low, which can
be due to error during downsampling near to the missing data. The oddly low
values have been removed (set to NaN) and all the NaNs are imputed using linear
interpolation between the known data points. The end result is seen in 4.4(c).
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(a) First step in fixing miss-
ing data.

(b) Second step in fixing
missing data.

(c) Third and last step in
fixing missing data.

Figure 4.4: Plots of machine room consumption for different stages during the process
of fixing missing data. Y-axis is consumption in kWh/h, x-axis indicates time in the
range from Aug 13th to Sept 30th, 2019.

4.2.2 Correlations

The goal is to find good explanatory variables for a baseline forecast model. There-
fore, some test to find correlation between consumption and outside temperature
has been carried out.

Outside temperatures and machine room
The temperature outside the warehouse is expected to influence the machine room
consumption. Outside temperature data from Ås (NMBU) is collected from yr.no,
which is the nearest accessible weather station to ASKO. A quick check with
Google Maps’ measure tool reveals that approx. 8 km sets them apart. As a first
correlation test, the machine room consumption is aggregated to each day, and
plotted against daily temperature statistics, such as maximum, minimum, mean
and normal temperature. The second test checks hour-by-hour correlation on a
specific day.

Correlation plots for daily values of temperatures and machine room consumption
are presented in figure 4.5. The y axis shows temperature in ◦C and the x axis
power for machine room consumption. 2d, 3d and 4d represent corresponding
rolling means of 2, 3 and 4 days of the consumption respectively. The results
are supporting the hypothesis, as there seems to be strong positive correlations
between machine room consumption and the temperature. Especially note the
’max’ temperature, which would be the highest temperature of the day. This
temperature most likely represent the middle of the day, when the warehouse has
most activity. If all the points were on a straight line, then daily machine room
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Figure 4.5: Correlation plots between outside temperatures near Vestby and machine
room consumption and its rolling means over 2, 3 and 4 days (represented by ’2d’, ’3d’,
and ’4d’ respectively). The used timeseries are daily values from Aug 13th to Sep 30th,
2019. Units on x-axis is kWh/day, y-axis is ◦C.

consumption could be explained purely from temperatures in Ås. However, it is
obvious that there are some missing explanatory variables to fully explain machine
room consumption or that temperatures in Ås do not represent temperatures out-
side ASKOs building. Nevertheless, temperature seems to be important, but it is
necessary to also consider other parameters, e.g. gate activity or PV production.

Another interesting investigation would be to check the same correlation in higher
time resolution. Figure 4.6 shows plot of machine room consumption and tem-
peratures 1 in Ås on the days Sept 22 till Sept 29th with hourly resolution. In
addition, a correlation plot between the temperature and consumption is included
on the right of the figure. The temperature is upscaled with a factor of 25 in
order to align. There seem to be a strong correlation during the week, and not so
much during the weekend. Two important findings are found. First one is that the
temperature seems to actually lag behind the consumption. The anticipation was

1accessed Oct 1st, 2019 from https://www.yr.no/sted/Norge/Akershus/Vestby/Vestby
/almanakk.html?dato=2019-09-29
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opposite because the causality is that high temperatures lead to high consumption,
not opposite. Consumption actually rises each day to a peak independently before
the temperature has risen. The second one is that the first and the two last orange
spikes, which represent a weekend with less activity, are far off the consumption
relatively to the rest.

Figure 4.6: Plots of hourly values of machine room consumption and nearby out-
side temperatures (which is upscaled by factor 25), from Sept 22nd till Sept 29th. A
corresponding correlation plot is found on the right.

The conclusion is that temperatures seem to explain some of the consumption,
however, there have to be other important variables that are important for ex-
plaining the consumption. The expectation is that port activity plays a major
role and that convection losses are an important parameter. Pure physically, con-
vection losses are anticipated to be higher than conduction losses through well
isolated walls. Nevertheless, the effect of convection losses when the gate is open,
are intensified by temperature differences.

Machine room versus inside temperature of cooling storage
Another correlation test is based on the suspicion that the inside temperature of
the cooling storage itself would be directly connected to the machine room power.
However, a correlation analysis reveals that this is not the case, as seen in figure
4.7. In the figure, machine room consumption is plotted against inside temperature
and also against lagged values of temperature values, none of which show any sign
of correlation.

Temperatures 8km away may be inaccurate. A recommendation is to use historical
and forecasted outside temperatures next to the building. Then, correlation can
be investigated.
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Figure 4.7: Correlation plots between the machine room consumption and inside stor-
age temperatures and its lagged values. The (+) and (-) indicate the forward lead
respectively backward lagged values of inside temperature.

Gate activity
The port activity is by hypothesis believed to play a major role to explain real-time
machine room consumption. Altering of gate activity data is currently not done
during the work of this thesis.

4.2.3 One-step RNN forecasts

The RNN models in this work only use consumption data in addition to created
time-features as a features set. They do not include any explanatory variables.
A complete list of one-step RNN forecast models with corresponding prediction
scores are found in Appendices A.1 and A.2, tables A.1 and A.2. Model parameters
and architecture are included as well. Forecast plots for each model is also included
in the respective appendices, ref. figures A.1 to A.8. One of these models, the one
with name 10292019 1715 is showcased here.

RNN model with GRU, one-step forecast

The RNN forecast model has been trained to forecast machine room consumption
one hour ahead, using only lagged values of machine room consumption, time
features and lagged values of time series as well. The architecture consists of two
layers, first a GRU layer of 512 units, then a Dense layer with a sigmoid activation
function to output a single value. It was trained with timeseries having temporal
resolution of 1 hour, using batches with batch size of 256 and each sequence with
length of 168 (24*7). Extra features were generated, using lagged values of machine
room consumption with 1, 2, 3, 4, 5, 6, 24, 48 and 168 hour lag. Dummy binary
variables of all categorical features were created, based on week of the year, day of
the week and hour of the day. A train size of 90 % were used. A warmup period of
12 timesteps is used to improve overall model performance, which means that the
12 first timesteps of prediction will not count in MSE train validation, indicated
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with grey area in the figures below.

Figure 4.8 and 4.8 show the forecast plots, for both train and test set data, re-
spectively. The MSE is printed in the title. The loss value in the test set was
0.0071550351.

Figure 4.8: Forecast plot for machine room consumption, made with the one-step RNN
model 10292019 1715, on the train (upper) and test set (lower) respectively.

4.2.4 Multi-step RNN forecasts

Table A.3 in Appendix A.3 provides a full score table for 6 multi-step RNN forecast
models. Model parameters and architecture are indicated as well. In addition to
this table, forecast plots for each of the models in the table are presented in
Appendix A.3 as well.

As the table and forecast plots reveal, the results are very different regarding their
forecasting success. This is a good illustration that model settings and parameters
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must be experimented with in order to get the desired results for the unique
problem. Model D is now chosen to be showcased. It took a few hours to train.
The forecast results from this model are also chosen to constitute the foundation
for the rest of the use-case.

RNN model with LSTM, direct multi-step forecast
Model D and its forecast results is chosen as a foundation for the baseline forecasts
used in the rest of this use-case. The model parameters are found in table A.3.
Forecast plots are found in Appendix A.3 but are also re-shown here in figure 4.9,
for train and test data respectively. In the plots, MSE scores are included for each
of the forecast steps, h, whereas the average MSE is found in the table.

Figure 4.9: Forecast plot for train set and test set respectively, using the multi-step
RNN model Model D.
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Assumptions for the machine room asset
In lack of knowledge for the power and energy storage parameters for the ma-
chine room asset, some assumptions must be done in order to succeed with the
demonstration. The assumptions are as following

• Temporal resolution is 1 hour, ∆t=1

• The baseline equals steady state consumption, b = Pcons,SS

• The estimated maximum power Pmax and minimum power Pmin used for cal-
culating flexibility is +50 kW and -80 kW relative to the forecasted baseline
respectively. The estimated flexible power is therefore also +50 kW and -80
kW from the forecasted baseline.

• The actual realized consumption is assumed to be the true baseline plus
the activated flexibility (and not the forecasted baseline plus the activated
flexibility).

• Initial SoC = 0.6

• ∆Erange is arbitrarily picked to be 600 kWh, so that the time frame seems
reasonable.

• Emax is arbitrarily set to be 8000 kWh.

4.2.5 Example demonstration of a bidding event line

A demonstration is created to follow exactly the design of the conceptual bidding
event line demonstration presented in the methodology chapter, figure 3.8. To
repeat, the goal is to demonstrate the a line of bidding events with both possible
bid outcomes. Referring to figure 3.1, the creation of a bid is made by following
stages 1-4 of the methodology and is followed by two possible outcomes - ignored
bid with pathway A or B or activated bid. The demonstration is designed so to
show both outcomes. The final figure of bid events is illustrated in figure 4.12.
Each sub figure indicate successive events of bidding, where the red arrow indicates
current time.

The RNN forecast model that was recently showcased, model D, is used to provide
forecasted baselines for each bid event. ’2019-09-26 07:00’ is chosen as the starting
current time of the demonstration, and for the first event (a) in figure 4.12. That
corresponds to timestep 9 in the test set. The corresponding bidding horizon is
then timestep 10 through 15. That represents the first peak seen in fig. ??.
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The reason for choosing this starting point is two folded. Firstly, using predictions
close to the train set in time is more realistic approach because the model most
likely will be retrained regularly as new observations become available with time,
e.g. each morning. Secondly, the predictions at the chosen current timestep seem
significantly better than the rest of the test set, which is partly explained by the
first reason. Test data that are less distant from the train set will probably relate
more with the train set, and therefore conform better with the trends learned by
the model. However, whether or not the forecasts in the beginning of a test are
consistently better is later investigated in the section Investigating online training.

Briefly about the bid event line
Figure 4.12(a) of illustrate the entered bid for event (a). It is for the bidding
period 08:00-14:00 and is entered into the flexibility platform at 07:45. This bid
is not bought and the bid is ignored. We proceed to the next timestep where
new flexibility bids are made, as illustrated in figure 4.12(b). The bid is again
ignored. For event (c), the bid seen in figure 4.12(c) has been made by following
the methodology. This time, a part of the bid is bought and must be activated.
In event (d), the dispatch process goes on, the realized dispatch will be monitored
and the delivered flexible power will be measured as seen in figure 4.12(d). Prior
to the end of activation, new bid estimates could be made, but for this asset, it
seems appropriate to have a rebound period in order for the cooling storage to
recover its SoC level.

4.2.6 Behind the curtains of the bid event line

A stepwise explanation is now to be given for the creation of each flexibility bid
event seen in figure 4.12, including the underlying processes. The figures 4.12,
4.10 and 4.11 are going to referred to frequently. These figures contain real-time
forecast plots, flexplots and the flexibility bid for each event. The letters for each
sub-figure correspond to each other and to the events with same letter: event
(a), (b), (c) and (d). In addition, table 4.1 contains the forecasted baseline for
the bidding horizon in each event, along with true values. The table and all the
figures are now shown, followed by the walkthrough.

In the table, each row represents the current timestep and contains the true load
on that current timestep and forecasted values for each of future timesteps h. To
clarify, the cells (step=10,h=2) and (step=11, h=1) are both a prediction for the
realized true value at cell (step=12,h=0). The rows at timestep 9, 10, 11 and 15
correspond with each respective event in the demonstration and to the forecast
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plots in figure 4.10, respectively

Figure 4.10: Corresponding real-time load forecast plots for events (a) to (d) for
the machine room. Each subfigure corresponds to the events of the bidding event line
demonstration. Table 4.1 provides corresponding forecast results for each event.
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Table 4.1: Table of forecasted baselines and true values for machine room consumption
on Sept 23th 2019. The table does provide relevant results corresponding to the events
of the bidding event line demonstration. Each row in the table represent one current
timestep and contains the true value for that current timeslot, h = 0, and forecasted

values for the future timeslots in the bidding horizon, h ∈
[
1, H

]
.

fig 4.12 fig 4.10 True Forecasted

event time step h=0 h=1 h=2 h=3 h=4 h=5 h=6

(a) 07:00 9 512.9 596.1 673.2 704.5 663.3 681.0

(b) 08:00 10 524.3 577.5 650.3 692.8 697.9 694.1 696.8

(c) 09:00 11 542.3 646.9 670.6 683.0 713.2 715.5 683.5

10:00 12 583.9 676.7 670.9 697.0 721.4 702.5 641.0

11:00 13 696.5 668.3 704.5 707.2 698.6 664.1 582.3

12:00 14 693.5 683.6 731.0 687.7 657.5 600.0 525.9

(d) 13:00 15 676.9 692.1 716.8 655.3 597.5 532.0 493.0

14:00 16 701.9 - - - - - -

15:00 17 641.8 - - - - - -

16:00 18 609.9 - - - - - -

17:00 19 606.4 - - - - - -

18:00 20 496.7 - - - - - -

19:00 21 482.4 - - - - - -

units: [kWh/h]
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Figure 4.11: Corresponding flexplots for the events (a), (b), (c) and (d).
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Figure 4.12: Bidding event line plot. Example demonstration of a bid procedure
for the machine room asset, on Sept 26th, 2019. Real forecast baselines are used, but
assumptions on asset parameters are made. The bid event in each subfigure represent
successive bidding horizons where the current time equals (a) 07:00 (b) 08:00 (c) 09:00
and (d) 10:00 → 13:00.
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Python implementation
A complete script for creating and training the used RNN model, including the
forecasts, is found in Appendix B.1. In the bottom of the same script, under
Animation, is code for creating the real-time forecast plots seen in figure 4.10. The
assumed asset parameters and the forecast results are entered into the Python asset
modelling framework, event by event. The asset class Asset presented in appendix
B.2 is used for the purpose. The complete Python script used for simulating each
event and for creating the flexplots in fig. 4.11 is found in appendix B.3 and uses
the baseline forecast results found table 4.1.

Event (a)
The forecasted baseline (for timestep 10 through 15) is found in table 4.1 where
step=9. The corresponding real-time forecast plot is shown in figure 4.10 (a) with
red dots. The forecast is input as baseline to the asset model which together with
all asset parameters estimate the available flexibility and energy storage trajector-
ies. These estimations are visualized in its flexibility plot, figure 4.11 (a), revealing
that the energy storage cannot handle more than 4 hours of full flexible activation.
The estimated positive and negative flexibility is formulated as a flexibility bid.
The forecasted baseline and the flexibility bid are sent to the flexibility market, as
seen in figure 4.12(a). The reader may notice that the +50kWh/h and -80kWh/h
is bidded for all slots, in contradiction to the constraints set by the energy storage
limits. This is done only to illustrate the freedom in bidding. Suppose that the
flexibility buyer does not have to buy the first timeslot, but that they can choose
freely. Then, here, while the energy storage still impose constraints on flexibility,
is reflected by a maximum and minimum activated energy quota as a part of the
bid.

The bid is not activated by anyone at this point. According to the methodology bid
ignored, time increment as the methodology is reset for new flexibility estimates.

Event (b)
Time has incremented and we are now at step 10, prior to the bidding period for
timesteps 11 through 16. The forecasted baseline is the row with step=10 in table
4.1 and plotted in figure 4.10 (b). In a similar fashion to event (a), the flexibility
is estimated and a flexplot is made, found in figure 4.11(b). A bid is made and
entered into NODES, shown in figure 4.12(b). The bid is ignored this time as well.
Flexibility estimates for the next bidding period is prepared.

Event (c) - activation
We are now at timestep 11, and the methodology stages are done exactly as in
previous events. In table 4.1, the forecasted baseline is indicated by the numbers
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in bold. The true baseline, which we only know because this is a hypothetical
demonstration on historical data, is indicated by numbers in bold and italic. Real-
time plot of the forecast is shown in figure 4.10(c). The forecast both overestimates
and underestimate slightly at different points, but this we do not actually ”know”
yet in a real-life application. Based on the forecasted baseline, the flexibility is
estimated and the energy storage level is simulated, shown in flexplot figure 4.11(c).
A bid is created an presented in figure 4.12(c).

As opposed to previous events, the event (c) is subject to a bid activation from
a flexibility buyer. They want to buy maximum negative flexibility for the first
four timeslots. The corresponding summed energy is -320 kWh. This is all right,
because it is below the energy limit of -340 kWh and will not exceed the energy
storage limits. The building has now committed to deliver the bought amount of
flexible power at each timeslot. It is measured relatively to the forecasted baseline,
which is important to keep in mind.

According to the methodology, bid activation leads to a dispatch of the flexible
power and we do now proceed to event (d) in figure 4.12.

Event (d) - dispatching
The process of the dispatch is out of the scope of this thesis, and without further
intel, the assumptions made regarding the dispatching ability must be followed.
The assumption is a perfect dispatch from the real baseline, which is known in this
hypothetical backtest. Because of that, the errors in of the flexibility estimates of
this demonstration depend purely on the load forecast precision.

The building has now committed to deliver flexibility relative to the forecasted
baseline. The delivered flexible power is by assumption based on the true baseline,
but the error of deliverance is measured from the forecasted baseline that was
entered to NODES. With some math, the resulting delivered flexibility relative to
the forecasted baseline, is shown in the event line, figure 4.12(d).

Using equation 3.19, the error of delivered flexible power is[
− 63.0,−25.9,+10.5,−36.3

]
kWh/h.

Summing up, the integrated delivered flexible power is -382.9 kWh, which is more
than what was anticipated and bought by the flexibility buyer. This is most
probably not a problem, since the buyer most likely suffer most with too little
than to much of what they desire. Hence, the delivered flexibility for timeslots
between 11:00 and 13:00 are most likely a more serious crime, because of too low
deliverance. Accurate deliverance is nevertheless ideal.

What will be the new state after activation? Although the integrated delivered
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flexibility is above the limits, the discharge of the storage is still -80 kWh/h, as this
was the main assumption. The total integrated discharged energy of the energy
storage equals the bought energy of -320 kWh. This leads to a change in SoC of

∆SoC =
−320kWh

600kWh
= −0.533

leading to a new SoC of 0.600− 0.533 = 0.067. Before the activation period ends,
the methodology will rerun to make new flexibility estimates. Considering the new
SoC, the methodology will be repeated according to the methodology. The new
situation with updated flexibility estimates leads to the flexplot shown in figure
4.11(d). The period after the activation period is however denoted as rest/rebound
time and is subject for discussion later in the thesis. There is no rest time for the
machine room asset, but a rebound effect which results in extra high consumption
in order to recover the SoC level is expected.

Another example flexplot for machine room
Now, an example is presented to illustrate how the flexplot may look like with other
assumptions for Pmax and Pmin. Considerations that are made for the flexplot
shown in figure 4.13 is as following:

• Pcons = Pcons,SS =
[

696, 693 ↓ 676, 701, 641, 609, 606, 496, 482, 521
]

kWh/h, where the arrow indicates current timestep.

• The maximum power Pmax and minimum power Pmin is +100 kW and -200
kW relative to a rolling average (3h) of the baseline consumption.

• SoC is assumed to stay at 0.6, ∆E is arbitrarily picked to be 1000 kWh, so
that the time frame seems reasonable.

• Emax is arbitrarily set to be 9000 kWh.
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Figure 4.13: Another example flexplot of machine room flexibility where Pmax and
Pmin are defined from a rolling mean of the baseline.

Code snippets for creating the flexplot (fig. 4.13) is found in the bottom of Ap-
pendix B.2, with EXAMPLE 4 as reference.

In contrary to the other case with the first assumption on Pmax and Pmin, this
plot looks quite different than the ones in figure 4.11. The estimated flexibility
is now different due to a different assumed ability to deviate from the baseline.
Note that these estimates are not quite estimates, because the input baseline is
historic data and is not forecasted. The goal was to illustrate a different case which
might be more realistic. It is not known yet what is more realistic before the asset
parameters have been found.
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Investigation of online training
The goal of this investigation can be comprehended as:

Does online retraining of a forecast model increase predictive performance of short-
term forecasts, relative to the exact same model that is not retrained?

As aid for addressing this question, three identical forecast models are created.
The models do have a slightly dataset foundation that differs in time. The models
are trained on different time periods but all mak forecasts for the same given
point in time, in order to check if prediction for the given point is changed. More
importantly, do the forecasts become better as the training period moves closer to
the given time point?

The comparison is best understood by presenting the plot of the forecast results,
presented in figure 4.14. Each subfigure presents each model, having a train-test
split at slighly different occations. The respective solid and dashed arrows in all
the graphs, points at the same point of time and are used for the comparison. Do
not get confused by the timestep axis, it can be ignored.

The dashed arrow actually refer to the same peak that was subject for the above
bidding event line demonstration. In figure 4.14 (a), the forecasted values do seem
to have a clear positive bias, it overestimates. In addition, it seems to lag a bit
behind. The results in figure 4.14 (b) us achieved by moving a day ahead and
using the observations of that day in the training foundation for new forecasts.
The results for the dashed arrow are considerably better. It seems to not have a
clear bias and hits very well. The dashed arrow is not included in figure 4.14 (c).

Next comparison is the peak pointed at by the solid arrow. Starting at figure
4.14 (a), the forecast seems to be consequently overestimating, also for the whole
test set. In figure 4.14 (b), it seems like the model has learned some important
trends, as the forecasts for that peak look better. The interesting thing ti check
is whether the model will yield better results for that point with fresher training
data. As figure 4.14 (c) shows, there are no visible improvements, except for a
slightly smoother forecast. It is hard to conclude anything instantly.



88 CHAPTER 4. USE-CASE: FLEXIBILITY AT A GROCERY WAREHOUSE

(a) train set size equal to 0.85

(b) train set size equal to 0.90

(c) train set size equal to 0.925

Figure 4.14: Multistep forecast plots from the use of three identical models that have
used a slightly different train test split size. The solid and dotted arrows in each figure
indicate the same point of time, in order to make a comparison.
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4.3 Application for other assets

The following examples are not directly use-cases. The reason for this is they do not
directly use data from the use-case, with one exception, and are merely hypothet-
ical demonstrations. However, they are highly relevant, because the considered
assets belong to ASKO, although many asset parameters are picked arbitrarily.
The data foundation for the water heater consumption is much inspired by data
provided by ASKO.

4.3.1 Battery

Flexplot examples for both an active and a passive battery were presented in the
Methodology chapter. The two following bid event line examples consider a passive
battery with the same parameters as the one in the flexplot figure 3.5.

Bidding event line example 1
For this example it assumed that the flexibility buyer must activate all of either
the positive or negative flexibility if it wants to buy anything. The bid event line
example is shown in figure 4.15. The flexibility bid is designed accordingly and is
directly restricted by the energy capacity limits. When the negative flexibility bid
is bought in (c), the battery will dispatch it during the two hours, followed by a
rebound period of two hours to recover the SoC level and bid again.

Bidding event line example 2
Another bidding event line example is found in figure 4.16. The exact same situ-
ation as above is assumed, except that the bid formulation now offers a free se-
lection of bid slots. In addition, the flexibility buyer can choose anything in the
offered range of flexible power. As seen in (a) and (b), the flexibility bids are
always at maximum, not directly limited by any energy storage limits. The im-
portant aspect in this case, is overall energy restrictions, here ±32.5 kWh. As
long as total net activated flexible power does not exceed the energy restrictions
during any point of the dispatch period, the bid shall be accepted. In (c), some
arbitrarily flexibility bid slots are chosen to be activated by a flexibility buyer,
and each flexibility slot is not fully activated. The first three bought slots are -10
kWh/h out of the available -30 kWh/h. Thus, -30 kWh of the energy quota is
used. The fourth and fifth slot contain +20 kWh/h of bought flexible power each.
That sets our energy quota back and up to +10 kWh. The sixth and final slot
is full negative activation. In end, the energy quota is -20 kWh. This is checked
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Figure 4.15: Example bidding event line for a battery, example 1.

against the restrictions and confirmed. In (d), dispatching of the bought flexibility
shall be completed, followed by a rebound period.

Figure 4.16: Example bidding event line for a battery, example 2.
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4.3.2 Water heater w/ alternative energy source

Example bidding event line
Figure 4.17 shows an example bidding event line for a water heater that can replace
its consumption with an alternative energy source. As a foundation, real consump-
tion data for the asset has been collected from Sept 4th, 2019. It is assumed that
the alternative energy source can run maximum 5 hours and it has a rest time of
2 hours. No forecast is used for this example, or it is assumed perfect forecasts.
The flexibility bids for (a) and (b) are ignored, but the first four flexibility bid
slots in (c) are bought from a flexibility buyer. 4 hours of activation is within the
restriction and the trade is accepted. Since the estimated flexibiltiy was based
on the asset to shut off electrical consumption and it will do that perfectly, the
delivered flexible power is a success. Any errors that might occur are errors in the
forecasted baseline that is entered into the platform, something that should have
consequences. Such errors must be detected for ignored bid periods whree the true
baseline is known. After the dispatch process in (d), there is a rest time of 2 hours
and no rebound effects before new flexibility bids are generated.

Figure 4.17: Example bidding event line for a water heater that has an alternative
energy source.

Example flexplot
The water heater with alternative energy source is now subject to a flexplot demon-
stration. The available negative flexibility power depends totally on the consump-
tion. In the example, the following assumptions is made:
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• Alternative energy source has a max runtime of 4 hours.

• The load forecast of the water heater baseline is assumed to be perfectly

known, ~b =
~̂
b =

[
↓ 300, 280, 270, 290, 340, 310

]
kWh/h

• ∆t= 0.25

• Pmin = 0 kWh/h, Pmax = b

• Pcons,SS = 0 kWh/h

These assumptions yield the flexplot presented in figure 4.18. No energy storage
is added, but the max runtime is implemented in the Python script. The negative
flexibility is clearly equal to the forecasted baseline. Suppose the bid is activated
and the consumption is set to zero. What the actual baseline would be if not for
the activation is impossible to know. The baseline forecast may have missed.

Figure 4.18: An example flexplot for a water heater with an alternative energy source.

Code snippet for creating the flexplot (fig. 4.18) is found in Appendix B.2, with
EXAMPLE 3 as reference.
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4.3.3 Water heater w/ flexible heat storage

Example flexplot
A flexplot is now demonstrated for a water heater with a heat storage. In the
example, the following assumptions are made:

• Tmax = 90 ◦C = 363 K

• Tmin = 60 ◦C = 333 K

• The load forecast of the water heater baseline is assumed to be the same as
for the water heater with alternative energy source,

~b =
~̂
b =

[
↓ 300, 280, 270, 290, 340, 310

]
kWh/h

• The heat capacity of medium is cp,water = 4.18 kJ/kgK = 0.00161 kWh/kgK

• The mass of the water content is m = 4000 kg

• Steady state consumption still equals the baseline.

• Initial SoC is 0.5

• ∆t= 0.25

• Pmin = 0 kWh/h, Pmax = 400 kWh/h

Inserting the temperature range, heat capacity and mass into equation 3.26, yields
∆E = 193.2 kWh. Emin is set to 0. All in all, these assumptions yield the flexplot
presented in figure 4.19.

The negative flexibility is equal to the forecasted baseline, but gets quickly restric-
ted by the energy storage. There are some positive flexibility as well. Increasing
the Tmax might lead to higher heat losses from the storage, but neglected here.
To increase the flexibility, one can increase the mass or Pmax. Suppose the bid is
activated and the consumption is set to zero. What the actual baseline would be
if not for the activation is impossible to know.

Code snippet for creating the flexplot (fig. 4.18) is found in Appendix B.2, with
EXAMPLE 3 as reference.
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Figure 4.19: Water heater with heat storage used as an example to present an energy
and flexibility plot in a step of the conceptual model.



Chapter 5

Discussion

The discussion section is divided into three sections: Discussion of the RNN results,
the use-case and the methodology.

5.1 RNN results

Various RNN models have been experimented with in order to address problem
statement (S2). An extensive selection of RNN models with their results are found
in Appendix A. They will now be discussed.

In general, the models perform very differently regarding train scores, test scores,
whether or not they generalize well and how precise they seem to be where it
matters. In other words, the choice of model architecture and parameters yield
completely different outcomes. What the desired outcome actually is, is also a
discussion. A general weakness of these results is that they do not tell us how the
models would perform on other train and test sets than the ones used. A model
performing good on this chosen data set does not guarantee good performance on
future sets (real life forecasting), but will nevertheless give indications of what a
good model is.

Test set versus train set MSE scores
The test score versus train score is much about whether or not the model has
learned the correct trends between the real explanatory variables and target. If it
has, then both test and train MSE could be low, with the test MSE being slightly
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worse. A very good train score and a terrible test score strongly indicate overfitting
and is unsatisfying. If the test score is good and much better than the train score,
there is a good chance there was a good portion of coincidental luck with the given
test set.

Consistency between test MSE score and visual precision
Model predictions could seem better in a prediction plot than what the MSE score
indicate. An important topic to discuss is whether or not MSE scores provide a
meaningful metric for determining if a model does what we want them to do. First
of all, what we want the models to do can be different for different purposes. For
example, one would perhaps want a model to rather hit the peaks than the rest
of the set. Another example is that one wants to predict the first 6 or 24 hours in
the test set accurately and the rest is uninteresting. Second of all, the scores do
not tell anything about the volatility and stability of the forecasts. Such things
can be seen in a forecast plot and perhaps with statistical tools. In some cases,
it is desirable with smooth forecasts rather than very volatile ones. On the other
side, volatile forecasts could perhaps catch smaller trends, such as peaks, better,
but are perhaps more sensitive to noise in the data. A solid and accurate feature
set will give a good foundation for explaining every little trend in the target, but
a good model will actually be able to learn them properly and ignore any noise.

In this use-case, it is important to have stable forecasts which catches the peaks.
It is desirable to have good forecasts for the immideate future. Since Hafslund
probably is most interested in negative flexibility, it is better to overestimate the
consumption rather than underestimate it in order to not overestimate the avail-
able negative flexibility.

Discussion around the results For the results in One-step forecasts 1, table
A.1, the trend is that all the train scores are better than the test scores. The train
scores seem consistently good, but the test scores are very different. The worst test
score is 11656 for model 10302019 2000. It happens to be that this model also has
the best train score. That indicates it has overfitted on the training set and weren’t
able to generalize enough. It may have considered noise from the training set to
be important for explaining the test target, when it was actually not. However,
when looking at the forecast plots, they reveal that there is not much noise in
the forecasts. The forecasts are actually pretty smooth and the predictions for
the train set hit very well. Even though the test score was horrible, they seem
to have generalized well and catch the trends. It is consistently overestimating,
something that could be considered valuable to the specific use-case if there is a
lack of accurate models. In addition, if it was not for the bad forecast on the last
peak, the test MSE would have dropped considerably. This is a good example that
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the MSE is not representable for where we want good forecasts.

The two best models regarding test score are 10292019 1915 and 10302019 1110.
They have test scores of around 4800. The first has the worst train score of them
all, whereas the latter actually almost has the best train score of them all. For the
first, the forecast plot reveals that many of the peaks were not reached in the train
set, but they were in the test set. The second model (10302019 1110 ) does not
seem to have the same problem. It hits the peaks in the train set and performs
well on the test set. It has a relatively simple structure of two LSTM layers with
48 units each, as opposed to one single LSTM layer with 400 units. The models
with a Masking layer seem not to work well and only worsen all the test scores.
That could be explained by misuse and wrong implementation from my side. To
this point, it seems like a small model architecture of two LSTM layers with a
small amount of units, performs the best. Larger networks with techniques to
avoid overfitting are discussed for the multi-step forecasts.

For the results in One-step forecasts 2, table A.2, all models have much of
the same architecture: two LSTM layers with 400 units each, except for the last
one which has 200 units each. Other parameters have been varied. The test
scores are consistently worse than the train scores, except for one rare exception.
Model 12112019 1327 has the best test MSE and it is better than its train MSE.
This model has one distinct difference to the others, namely that it has a linear
activation function and not a sigmoid activation function. The reason of the good
test score and why it is better than train score is probably because of what we
see in the forecast plots, fig A.6. None of the peaks and valleys in the train set
are caught, as opposed to the test set. This fact tells more about the chosen test
set than about the model. First, the model is very weak, from what is seen in the
train set forecast plot. The test set seem to be a portion of the data where the
peaks and valleys are small. On this basis, it can be concluded that the choice of
the test set highly influence the scores. If a model is overall good or not, cannot be
concluded before it has been tested on various test sets. We can however conclude
that a premise for a good model is that the predictive performance for the train
set and the test set should be similar, and that the main trends both in the train
set and test set, such as peaks and valleys, are caught by the forecasts.

For the results in Multi-step forecasts, table A.3, the trend is good train scores
and bad test set scores. The MSE scores in the table is an average score of
the separate MSE scores for each forecast step, found in the forecast plots. In
general, the results look similar to the previous ones and the first two peaks in
the test set, a Thursday and Friday respectively, has considerably good forecasts.
The last peak, a Monday, does not. Relatively big architectures with overfitting
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techniques, such as Dropout, do not seem to drastically improve results relative to
the previous and simpler ones in the one-step forecast section. On the other side,
the forecasts for the train sets seem to be very precise and catch the peaks and
valleys well. That indicates that the trends of the target in the train set has been
learned. Thus, there might be some benefits in large architectures with overfitting
techniques. The test set MSE scores are not good, but from what the plots show,
they perform considerably well on the first two peaks. The predictions are however
unstable because of bad performance on the last peak. As later discussed, the cause
to this might be factors other than model architecture.

Model D was arbitrarily chosen from the fact that its forecasts were good for the
train set and it performed well on the beginning of the test set, thus giving a good
foundation for the use-case. For direct multi-step models, perhaps it could be
beneficial to optimize each model for each forecast step. Also, it is thought that a
recursive-direct strategy would overcome some of the limits of a direct strategy.

For the many models having bad forecasts for the last peak of the test set, it should
be mentioned that this last peak is a Monday of a new week. This day has a new
categorical week feature, which has not been part of the training data. These
forecasts therefore lack a part of its feature foundation for prediction. Skipping
the Monday during evaluation will provide more representable MSE scores. It
is also thought that replacing the categorical ’week of the year’ feature with an
alternative continuous and seasonal feature will provide more stable and better
forecasts.

Sources of error
The real world contains uncertainties and can never be modelled perfectly. Never-
theless, imperfect models can be important tools that are sufficient for the purpose.
Some errors for RNN models can be identified and minimized. A source of error
is wrong measurements in the dataset. The monitoring equipment itself can have
an error which means that it does not measure the values precisely. It could be
systematic errors (bias) or random errors. Such errors cause noise for the forecast
model.

In the use-case, it was found an error in the measured consumption of the machine
room components, which constituted the target. This was resolved by finding a
way to calculate the correct measurement based on the other assets which seemed
to be correct. However, the other measurements can still contain errors, and if
they do, there will be an error in the machine room consumption data as well.
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Weaknesses

What does the scores not tell us?
It does not tell us how the models would perform on different test set at other
data and periods. Therefore, as a further work, it is necessary to test a model on
many different train and test sets throughout time.

Length of input data
One important topic regarding predictive performance is the length of the training
data. The RNN models in this use case were provided one and a half months of
data. According to the literature, neural networks benefit from long and good
structured datasets, which may not have been the case here. It is discussed that it
could affect predictive performance negatively, however it may not be purposeful
to provide longer datasets.

Firstly, these models have been specialized in the trends of August and September.
They have most probably not been able learn the various trends throughout the
year. When the winter comes, new trends will occur and unless the models are
retrained with winter months, they will probably lose their predictive strength.
An exception, of course, is if the RNN model has been provided all explanatory
parameters (features) that completely explain the target, both through seasonal
and systematic changes.

As for the use-case, time features were made for ‘hour of the day’, ‘day of the
week’ and ‘week of the year’. The two first ones will repeat themselves frequently
throughout the year and catch daily and weekly trends well. The training founda-
tion for ‘hour of the day’ is good, there are around 50 observations for each category
(01:00, 02:00 . . . 23:00). The ‘day of week’ has a weaker training foundation, but
there are at least 7 weeks of observations for each day (Monday, Tuesday,...). The
latter, ‘week of the year’, has a lacking training foundation, because the training
set needs to be of at least one year, so that each week is iterated through. In
the use-case, the models were trained on a few weeks in the train set, but this
learning is not brought into the prediction of unseen weeks in the test set. Either,
the model must be trained for a whole year of systematic and structured data, or
another approach for implementing seasonal structure must be used. One altern-
ative, which does not demand a whole year of training to catch seasonal trends, is
to create a continuous sinus-cosines feature, as proposed by Gábor [37]. Another
alternative, as also concluded by the last paragraph, is to instead just have an
explanatory feature set which fully explains the target and all its seasonal trends,
such as port activity/work schedules and temperatures.
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It might not be purposeful to make a complete model for the whole year, because
the system can change.

Systematic changes
An RNN model based on historical data without explanatory variables performs
good when there is a clear structure in the data. What happens if there is a
structural change in the data foundation, such as changing the work plans or
changing the properties of the asset, e.g. expanding the cooling storage? An RNN
model without explanatory features would suffer from such systematic changes,
because previous trends get broken. A model that is trained on previous trends
does not work on a new situation where the correlations between the historical
data and the target have changed and a new model must be made.

On the other side, if the systematic change is caused by a change of the work plans,
then a model that uses work plans as a feature will be able to handle that. Also,
if the systematic change is caused by a change in storage size etc., again having
a model with such parameters as a part of the feature set will be able to handle
these changes. The same accounts for temperature trends.

Finding a good model is time consuming
Another setback for using RNN models, as with many other models, is that it is
time consuming, demands knowledge on the field and finding the best predictive
model is requiring. On the other side, this is a comprehensive work that is usually
required once in the initial process. Finding the optimal model can be done by
means of a grid search with cross-validation, which involve training and testing of
a vast amount of model parameter combinations and various test sets. It can be
run once. It requires a lot of time, memory and computational resources. Grid
search was however not done in this work, because optimizing model parameters
was not in the scope of this thesis, because it would be too time consuming and
demanding to perform with the available resources. A grid search will also reveal
which parameters have the most influence and also which parameter combinations
yield the best results.

Retraining of a model with new observations will also take some time. Retrain-
ing is done because we think that longer training data might improve predictive
performance and also that the model will learn new trends that are found in the
new observations. Computational time of retraining sets a restriction on how often
models like this can be retrained. The computation complexity can be reduced
by choosing a simpler model structure than those used. Simpler models may very
well perform as good or better. On the other side, it is perhaps not necessary to
retrain a model that often. 1 week could work very well as each day. Retraining
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every month could even work, but then it is probably important to have many
good explanatory parameters in the feature set, as already mentioned many times.

Black box
Another setback of using RNN model is that is hard to interpret the learned
trends and rules behind its results, as opposed to other simpler ML methods and
traditional statistical methods.

Missing explanatory features
The RNN models in this thesis did not use the explanatory variables that were
thought valuable for model performance. It is thought that including features
for port activity/work plan and outside temperatures will improve the stability
and performance of the forecast model significantly. Then, the model is thought
to also cope with structural and seasonal changes. This hypothesis has roots in
the physics of heat loss mechanisms, as presented in the theory and methodology
chapters and it must be further investigated and tested.

Strengths

Retraining catch new trends
It seems that the RNN models can catch trends and perform very well even on
short datasets without explanatory variables. Using RNNs as a load forecast mod-
els seem promising, but further work is to use explanatory features and to find
optimized model parameters.

Making forecasts is quick
Another pro of RNN models is that they are really quick at making new fore-
casts. Once the training process is finished, making real-time predictions with
new observations only take seconds.

Overcome input data errors
An RNN model might overcome sources of error in input data, because it will still
learn the trends between the dataset, although it contains errors, and the target
in order to explain the target. However, if the target contains errors, the model
will learn to output a target with similar errors, which should be avoided.
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Investigation of online training

An investigation was done to check whether or not model D had consistently better
forecasts for a point in time when it got retrained with new observations.

Weaknesses with the experiment
There are some clear weaknesses with this experiment. First of all, the test is not
very extensive and the answers that are possibly found, are not general at all. The
answers only tell us the case with this specific situation with these specific choices
of test sets.

Strengths with the experiment
There are however some strengths with the experiment. Figure 4.14 is now referred
to. The results clearly indicate that some new trends have been learned from figure
4.14 (a) to figure 4.14 (b) and the forecasts improve significantly for the whole
test set. How can this be explained? One explanation, that is slightly discussed
above, is the time feature ‘weak of the year’. Further investigation reveals that
the arrows point to the peaks of a Thursday and a Friday. The test set in figure
4.14 (a) starts with a Monday and indicates the beginning of a new week, which
is unseen for the model. Therefore, the model lacks some seasonal information
for this week. Moving on to figure 4.14 (b), the forecasts suddenly improve. This
could be explained by that fact that the model now has been trained on Monday
and Tuesday of that week. The model thus contains trained weights for that week,
which can be used for the forecasts in the rest of that week.

Although it seems like retraining with a new batch improves performance, it is hard
to conclude that online retraining works, before the categorical feature ‘week of the
year’ is excluded as a probable cause. Using better explanatory features is always
the best choice. Alternative ways to implement seasonal implementation should
also be considered. Further work for investigating the effect of online training is a
more thorough analysis.

Implications for the methodology

RNN models do very well in some of the cases and good forecasts are essential for
good flexibility estimates. Bad forecasts will implicate high errors in the flexibility
estimates. The upcoming discussion is about the use-case results, followed by a
discussion on the methodology itself.
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5.2 Use-case results

Weaknesses of the results

Many assumptions
One of the main weaknesses for the use-case is that the results are merely based
on assumptions, especially made for asset parameters at stage 2. The assump-
tions made for the parameters are crucial for the estimation of available flexibility.
Therefore, the weakness of the use-case lays in the choice of the assumptions and
whether or not they represent a real case well. It is hard to know which assump-
tions actually represent a real scenario in a good way, before practical tests are
done. Therefore, it is also hard to conclude what the results in real life would be.
It was more difficult to find good assumptions for some assets than others. The
machine room asset was perhaps the most complex one. Therefore, two cases for
the machine room were presented. Based on different assumptions, they did show
completely different results for the estimated flexibility and the delivered flexibility
as well. For the other assets, the task was simpler, and many of the assumptions
were logic.

The following discussion will be about the assumptions that were made for the
machine room use-case. Questions that are tried to be answered, are:

Were the assumptions realistic? What were the consequences of the assumptions?
Would different assumptions yield completely different results? Were the assump-
tions crucial for the workflow of the methodology itself or just for the results? Do
assumptions make up the pillars of the methodology?

The assumptions on steady state consumption for the thermal storages seemed
to be reasonably realistic. There is of course not a steady state situation all the
time, at a continuous level, but it seems to be a reasonable assumption over the
period of 15 minutes and especially 1 hour. The machine room use-case assumed
a constant combined heat capacity (constant grocery volume). In real life, there
would be groceries that are transported in and out, having different temperatures,
which will change the grocery volume and the energy of the storage. In real life,
the total flexible energy storage range ∆Erange would actually vary with a variable
grocery volume, referring to m in equation 3.26. Estimations on a varying Emax

and Emin could be implemented in a further work. In addition, if incoming or
outgoing groceries for example have a lower temperature than the storage, it will
add to or subtract to Plosses respectively, however this aspect should be handled
by a sufficiently good load forecast model. A perfect load forecast model will give
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perfect baseline forecasts, which in turn give perfect estimates on the steady state
consumption, given a steady state situation.

The assumption on a steady state situation seems to be an important foundation
for the rest of the assumptions. If the steady state assumption does not hold in
real life, it would throw away the validity of the use-case. Then, another approach
to find the steady state consumption must be found, e.g. an extensive physical
model.

For the results, assumptions made for the energy storage parameters are not as
important as the assumption made for the power parameters. If the energy storage
parameter would change, then this would only scale up or down the durability of
flexibility.

The two other main assumptions are for Pmax and Pmin. The estimated flexibility
depends directly on these parameters, in addition to the forecasted baseline which
already has been discussed. Look at figure 4.11 (a) versus figure 4.13. The im-
portant difference in the estimated flexibility between these flexplots, lays in the
assumption for max and min power. As illustrated, the choice of max and min
power yielded very different results for estimated flexibility.

Determining Pmax and Pmin in practice could be done with step-responses. It is
merely about mapping how much power the asset can deviate under many different
circumstances and potentially creating a function for Pmax and Pmin.

Look at figure 4.12 (d), showing the bid event line for the main machine room use-
case. It was assumed that the dispatching ability was perfect. Delivered flexible
power was assumed to be the true baseline in addition to the bought flexibility.
That means that the only source of a failed delivered flexibility is due to errors in
the forecasted baseline. All of these assumptions are arbitrarily and is chosen just
for demonstration. In real life, the dispatch abilities are not perfect and neither
will the true realized baseline be available. Whether or not the assumptions were
realistic or not is hard to conclude. The figure shows that the delivered flexibility is
very far from the committed, but this does not mean that the methodology is a flop.
The result is completely dependent on the choice of correct the asset parameters.
Another aspect of it all is that the dispatch system may have the intelligence
and ability to compensate and correct the dispatching according to match the
committed flexibility. The wrong numbers in the results of delivered flexibility do
not mean that the methodology is wrong, but merely that one needs better inputs
to the stages and conduct practical experiments to get correct parameter.

The discussion shows that the methodology itself is not weak, but that the results
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are very sensitive to the choices and assumptions for the asset parameters. Good
results relies on reliable parameters. Many of the choices do have a significant
impact on the resulting flexibility estimates. The dispatch process itself depends
on the control system. Good asset parameters will incorporate the abilities of this
control system. It is time to move onto discussing the strengths of the use-case.

Strengths of the result
The weaknesses reveal that that results are very fragile to the choices and assump-
tions made in the various stages. Baseline forecast precision affect the ultimate
results as well. The good thing is that they do not disprove anything about the
concept. The methodology itself is very certain and stable where its stages is very
flexible and can be improved to improve the end results. For example, RNN mod-
els could be replaced by other forecasting models in order to yield more precise
forecasts. The methodology does not really depend on any of the assumptions
and chosen parameters, although its success relies on them. Even if there is a
lot of uncertainty in the parameters, they do not affect the workflow. All of the
assumptions and parameters can be adjusted and improved in order to yield the
desired flexibility estimate accuracy.

The results that are seen in fig 4.12d) are highly dependent on the assumptions
and choices made, and the failed delivered flexibility is specifically due to unpre-
cise baseline forecast. The uncertainty lies in the choices of stage approaches,
assumptions, parameters, the control system and etc. It can be concluded that
the methodology itself has a minor uncertainty and do not depend on any assump-
tions. That is a major advantage of the methodology. Another pro, in case the
results are not satisfactory, then the stages or parameters can be changed for the
better.

5.3 Discussion of the methodology

In general, the weaknesses of the methodology are many of the ones discussed for
the use-case above. The methodology contains sources of errors for both flexibility
estimates and the dispatch process.

In general, the major sources that cause errors in the flexibility estimates have
been identified as:

1. Unprecise baseline forecasts
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2. Wrong estimates on the ability for an asset to deviate, regarding power

3. Wrong storage parameters

The first error source to flexibility estimates is unprecise baseline forecasts. Precise
load forecast provide valuable information on how the asset is going to behave and
do directly affect the flexibility estimates. The RNN forecast models are already
discussed above and will not be repeated.

The second error source is the power parameters of the asset. If the parameters
Pmin, Pmax and PSS does not represent the reality, the ultimate flexibility estimate
will neither. In general, if there are many external uncertainties, the parameters
may be impossible to determine perfectly. Practical experiments that can yield
sufficiently accurate estimates, will nevertheless be valuable for assessing the flex-
ibility. It is more difficult to find these parameters for some assets, especially the
machine room asset, than others.

For the machine room asset, the ability to dispatch flexible power must be meas-
ured reliably in order to provide representable parameters. For all the other assets,
the dispatch abilities, and thus the power parameters, seem to be easier to determ-
ine.

The third source of error is wrong energy storage parameters. If they are wrong,
we will have wrong information about the amount of flexible energy we can tweak
around with and for how long. Errors could lead to overestimating the durability
of a flexibility bid. First counteraction is to remove the primary error sources and
to actually yield good estimates of the energy storage level. For a thermal energy
storage, precise temperature measurements and exact knowledge on the combined
heat capacity (incl. masses) are essential. Nonetheless, considering that there
are some errors in the energy storage parameters, the methodology can add some
mechanisms to avoid overestimating the duration of flexibility. First is to reduce
the energy range with some safety margin. Second is to subtract a safety margin
from the estimated flexible power.

Another source of error to the methodology is uncertainties in the dispatch abilities
itself, which depend on the control system, or dispatch system. Errors in unprecise
dispatch systems are not errors of the methodology itself. They will however
lead to errors in the delivered flexibility, thus making the flexibility estimates
”wrong”. Uncertainties in the control system is an external uncertainty and is not
an uncertainty of the methodology itself and is out of the scope of this thesis.

When that has been mentioned, the methodology for assessing flexibility and the
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control system for dispatchment are two parallel systems that depend on each
other for the success of assessing available flexibility. They must interchangeably
exchange information in order to improve each other. This process is thought to be
iterative. For example, a wrong flexibility estimate may have wrongly estimated
the assets ability to deviate from the baseline, which ultimately leads to a failed
dispatch of the committed flexible power. Learnings from this error must be fed
back to the methodology by updating the parameters, which in turn yield a new
flexibility estimate and a new dispatch. The ball is thrown back and forth and it
may take time before the process achieve a balance.

Strengths with the methodology

In general, the methodology has been showed to be stable and uncertain itself. It
is designed to work on many various types of assets and can be used to calculate
both positive and negative flexible power. The success of the methodology is only
as good as each stage. The workflow of the methodology may provide accurate
flexibility estimates, if the sources of error are being dealt with. With the dis-
cussions provided here, it is hoped hope to provide sufficient insights on how the
errors can be dealt with.

Various discussion topics

Discussion on the bid format
Now, the bid formulation must be discussed. The available flexibility that is
estimated using the methodology does not have to make up the bid. ASKO could
for example hold back parts of the bid. They may do so for several reasons. They
might for example believe that the flexibility bid has a higher value 3 hours later.
More on that is discussed under “Where is the values of DFS?”. Another aspect
about the bid is the slots, and what slots the DSO can buy. Do they have to
buy the first slot and successive slots? Or can they choose to buy the second
and forth slot only? If they can only buy the first and any successive slot, and
they have to buy the maximum flexible power in each slot, that is what yields
the E(t, Fp/n(t)) pathways in the flex plots and is what impose restrictions on the
flexibility estimate. However, if the DSO have the ability to freely choose timeslots
and also the ability to choose among a range of flexible power within each slot,
this breaks down. In that case, none of the flexibility bid slot must be restricted
by potential energy limits. Instead, the bid should come with energy restrictions
that puts limits for the maximum activated energy quota. However, it may not be



108 CHAPTER 5. DISCUSSION

advantageous for neither the flexibility provider nor buyer to allow free choice of
slots, because the estimates may actually become more precise the closer they are
to operational time (which was the case here).

Aggregation
Aggregation of flexibility has been left out of the scope of this thesis. Some
thoughts on how to successfully aggregate bids, are that it is important to re-
assure that the flexibility estimates are not consistently biased all in one direction.
They should all even out. All estimates have errors, but it is important to make
sure these errors zero out so that they do not add up to one major error in the
aggregated estimate. The aggregated error can be calculated as a tool to identify
consistent bias and prevent it.

Rebound effects/rest time implementation
Rebound effects and rest times have been briefly introduced, but not properly
discussed. That is because there are many ways to solve it. One must remember
the overarch goal of our quest, and that is to help with grid balance, relief the
grid and to solve local congestions. Therefore, it is important that activation of
one flexible source for solving a local congestion does not lead to another local
congestion. Rebound effects might lead to that, and this must be considered.
Some suggestions are as following. To include estimates of the rebound effect as
a part of the bid, so that this information is available for the DSO when they
activate a bid. When they know the effects of a bid activation, they can either
seek alternatives, activate it and later buy more flexibility to avoid it causing
new problems or activate it and just confirm that it does not cause new trouble
elsewhere. Another solution is that the rebound effect is estimated and included as
a part of the bought bid itself. Another aspect to mention is that NODES and some
other flexibility platforms want to include an automatic rebalancing feature. The
idea is that a flexibility provider which is left out of balance with rebound effects
after activation, could rebalance their portfolio by trading from other markets
(ID/DA/reserve markets/other flexibility markets) that are connected to NODES.

Problems with weak forecasts
Do weak baseline forecasts have any other negative effects than those already
mentioned? On aspect to consider is that the forecasted baseline is input to the
flexibility market platform and available for the DSO to see. It is very probable
that the DSO base their grid simulations on entered baseline forecasts. Should
there be any consequences on entered baseline forecasts that are very wrong?
There probably should, because the DSO might perform actions on a false basis.
Although uncertainties in RNN forecasts are left out of the scope of this thesis,
it should be included in the further work. Then, if a forecast is known to have
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a large amount of uncertainty, the uncertainty could be included as a part of the
entered baseline for the DSO to know.

Problems with weak dispatch systems
What are the consequences of weak and unprecise dispatch systems? It would
essentially lead to a failed deliverance of flexibility. However, a very good dispatch
system could potentially compensate for errors in the flexibility estimates in order
to yield a successful delivered flexibility.

Transfer value to other cases
The methodology itself and the RNN forecast model does have transfer value to
other scenarios and use-cases. It is thought that the methodology can have trans-
fer value to other industry buildings and even neighbourhoods. The methodology
is flexible for other buildings and assets. as the developed methodology is generic.
However, one must figure out how to implement it for new assets and find meth-
ods to determine the asset parameters. The developed simplistic physical asset
model is generic, but it could also be replaced with a more advanced one. For
neighbourhoods, aggregation techniques must be further looked into. Assessing
short-term flexibility, and especially a precise forecast model, is also thought to be
beneficial for load optimization models. The methodology is also thought to have
transfer value for other markets than NODES, such as GOPACS and other plat-
forms that need a methodology to assess short-term demand-side flexible power.
Short-term flexibility estimates are also valuable for market players who particip-
ates in a DRM direct control program. Lastly, as briefly mentioned, precise load
forecast will probably add value to grid simulations, which will help to predict
local congestion situations.

Expanded consequence thinking
Now comes some general high-level thoughts on what some broader consequences
of this methodology might be, for the building and for the DSO.

If the methodology is implemented in an unprecise manner, then both the building
and the DSO might get trouble to succeed using flexibility markets to reach the
overarched goal on local congestion management. That is because they wrongly
estimate available flexibility which may only worsen the congestion management
and not provide a reliable grid operation tool. However, if the methodology is
precise and provide accurate flexibility estimates coherent with the dispatch sys-
tem, then it is an essential tool for entering flexibility markets. The building will
get added value for their flexible resources. The DSO will get new grid operation
methods, with access to the building’s demand-side flexibility. However, it is given
that the building chooses to allocate their flexibility into the market, when the



110 CHAPTER 5. DISCUSSION

DSO actually need it. The next challenge for the building and the aggregator is to
decide a cost for their flexibility, and to find out where their flexibility is worth the
most – by internal use or in flexibility markets? The DSO has to make sure that
the building gets intel on when they desire their DFS, e.g. give signals on their
willingness to pay, so that they actually have access to the building’s flexibility
when needed.

What happens if all the end-users in a distribution grid make use of their DFS with
a methodology that is accurate, and enters the local flexibility market? Of course,
that would be of the DSO’s greatest interest. They will then be able to choose
the cheapest and best alternative for grid operation and even have backups. On
the other side, the flexibility providers will have higher competition, and overall
competition lead to overall reduction in flexibility costs and revenue. That might
make some flexibility providers to leave the game or to use their flexibility intern-
ally. It is fine trade-off, but many buildings do possess easily accessible flexibility
they did not utilize yet. In many cases, utilizing their flexibility only result in
revenues, so they might as well offer their flexibility if the cost for assessing it with
a methodology and enter flexibility markets is low. Therefore, aggregators play an
important role in bringing DFS into the markets, and as they gain more experience
and knowledge, their services will become cheaper. All in all, the grid could be
more flexible at demand-side, however there us a right time for everything. The
grid and participants must be mature for such an implementation and the grid
must perhaps firstly have a high share of VRES and high demand-side complexity.
That is anticipated to happen many places. Importantly, it needs to be valuable
for everyone who is participating.

Where is DFS most valuable for ASKO and for the grid?
The following discussion is on the problematic regarding where ASKOs flexible
power is worth the most. Do they revenue the most for using it internally, e.g.
exploit price variations and optimize against power tariffs, or when offering it at
the flexibility market? And to whom on the market is it worth the most? NODES
says that the value of flexibility could be different for different flexibility buyers,
e.g. DSO versus TSO. They want flexibility to have a higher value where it is
more needed for grid congestion. Deciding when and where their flexibility is most
worth is something the building and aggregator must be able to foresee, in order
to maximize their revenues.

Take the following example of a building which optimize the use of their flexibility
in order to minimize their costs. The optimized load schedule could be set day
before, or even again in the middle of the day. Even if the building has a load
schedule with active use of their own flexible assets, they can still estimate and
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offer the remaining flexibility using the methodology in this master thesis. But
that might lead to not being able to offer it on the market at a time when the
market is in need of it. Then the building will miss revenues, and the DSO will also
suffer from the lack of available flexibility. Hence, this must be planned, so that
the building maximizes their revenue, at the same time as the DSO have flexibility
available when they need it. NODES offer an availability contract, which force a
flexibility provider to have flexibility at idle.

For a building, there are costs involved when deviating from a cost-optimized load
schedule, because that is how the optimized load schedule is defined [14]. Knowing
that deviating from an optimal schedule could lead to loss of profit, ASKO and
eSmart must know that there is a higher pay-off when offering the flexibility on the
market instead. Therefore, they need to be able to predict what the remuneration
might be for their flexibility in the flexibility market at different times. If eSmart
and ASKO believe that there is a higher pay-off in the market at a point, they
will plan ahead and for example make sure their assets are fully charged, or even
hold back on their flexibility bidding if they are afraid to miss out a greater pay-
off shortly after. In the GOPACS platform in the Netherlands, the DSO sends
a message into the market platform with information on when and how much
flexibility they need. That gives all flexibility providers the ability to respond
to this message and plan accordingly. Communication and collaboration between
flexibility providers and the buyers are very important.
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Chapter 6

Conclusion and further work

6.1 Conclusion

To conclude, the main goal (M) has been addressed and has led to the development
of the core result of this thesis: A methodology that assesses short-term flexibility
for various assets for the making of flexibility bids into local markets. The flexibility
in a generic asset has been identified and involves the use of baseline forecasts and
asset parameters to model and estimate the flexibility for multiple timesteps ahead.
It takes into consideration the restrictions of a potential flexible energy storage.
Making bid formulations could be relatively straightforward and the ultimate bid
consists of many timeslots, each containing a positive and negative flexibility bid.
A demonstration of a bidding procedure has been developed and illustrates exactly
the methodology is used in real-time flexibility estimation.

Many RNN models has been developed to forecast the baseline consumption for
the machine room asset at ASKO and has proven to give a working foundation for
the methodology implementation. The models have used time-dependent features
and historical consumption with a relative short train set length, and the results
seem promising. It did learn the trends in the training data and to some degree in
the chosen test set. However, for these RNN models to become more accurate and
reliable, they have to be optimized, tested on various test sets, include explanatory
variables such as outside temperature and work schedules, and include alternative
time features. Accurate baseline forecasts will remove one source of error in the
flexibility estimates.
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The asset model that has been used is simple, yet effective for the purpose. It
can be applied for many different assets and constitutes an essential stage of the
methodology. It does however require correct inputs which represent the correct
properties and constraints of the respective asset. If not, it will lay a false founda-
tion regarding an assets ability to be flexible, and propagate errors to the flexibility
estimates. The task of determining correct parameters seem complex for a ma-
chine room asset, but easier for the other assets. With correct model inputs, the
second source of error to the flexibility estimates can be terminated.

In addition to a generic conceptual description of the methodology, its conceptual
implementation has also been thoroughly explained for five specific assets. Espe-
cially complex is the machine room asset. The use-case have presented some results
for a practical application to a real machine room asset with a cooling storage.
This use-case demonstration have successfully proved the methodology to work,
although its flexibility estimates were hypothetical because of the assumptions that
had to be made for its asset parameters. Its results, being the flexibility estimates,
were sensitive to different choices of assumed parameters, thus emphasizing the
need for the model to have accurate and representative inputs.

The methodology itself has proven its stability and certainty. It is flexible, with
application to many assets either they are consuming or producing, or both. It
provides estimates for both positive and negative power. Its results, namely the
flexibility estimates, are only as good as the implementation of its constitutional
steps. Therefore, provision of accurate load forecasts and asset parameters are cru-
cial for the success of providing accurate flexibility estimates. Nevertheless, if some
of its stages are not satisfying, they can be improved for the better, for example
changing the forecast model or changing the asset parameters or assumptions. An-
other crucial aspect is to have a proper dispatch system that have the ability to
dispatch the estimated flexible power accurately, preferably also compensate for
flexibility estimate errors.

All in all, the methodology seems to work well on paper, and the flexibility es-
timates are expected to be accurate if accurate forecasts and asset parameters are
provided. It is yet to be tested if it will bring success in a real life application,
hence the word ”Preliminary...”.
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6.2 Further work, summarized

The feasibility of the methodology was not shown the way it was thought concep-
tually, mostly due to lack of practical experiments and the many assumptions that
was needed to be done. Therefore, the first important work that must be done, is
to fully map the correct parameters of the assets and to test out the methodology
in practice. During practical tests, one also needs to measure the accuracy of the
methodology and address the sources of error, be it wrong asset parameters, the
dispatch system or the RNN baseline forecasts. For the RNN forecast model for
the machine room, further work is to implement the features for port activity/-
work schedule and outside temperatures as it was conceptually thought. That is
thought to improve the model performance and its stability during the year and
changes ranging from daily to seasonal patterns. Additionally, the model must be
optimized, e.g. grid search, in order to find the optimal forecast model. It would
be beneficial having a way to implement uncertainties in the future methodology.
That could be done either by having a compensating dispatch system or adjusting
the model parameters e.g. add safety margins.

Determining the price of a flexibility bid was left out of the scope of this thesis,
but is of uttermost importance. The price setting must be done by the building
or smart grid company (ASKO or eSmart). Further work is for them to determine
a cost of their flexibility bids. They also need to develop methods to determine
when they should offer the flexibility on the market, in order to maximize revenue.
Hafslund needs to join the conversation and give indications on their willingness
to pay and join the discussion on temporal resolution, aggregation levels and etc.
Investigating aggregation methods is also a further work. In the future, the ul-
timate goal is to automatize the whole process of estimation, bidding, activation
and dispatching.
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Appendix A

An extensive selection of RNN
model forecast results

This appendix contains a full overview of various tested RNN forecast models,
both one-step and multi-step. Architecture, parameters and prediction scores are
given in the tables. Corresponding forecast plots to each model are also attached.
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A.1 One-step forecasts 1

These one-step RNN forecast models were developed in the early phase of the
work in this master thesis. Therefore, in addition to creating a lagged timesteps
dimension dataset for Keras RNNs, the datasets used here also contain lagged
values of the time features as extra added features.

A.1.1 Table of scores

Table A.1: Model architecture, parameters and forecast scores for various RNN one-
step models, where lagged values of time features is created explicitly as new features.

NAME Model parameters. mse of train, test

10292019 1715 Layers: (GRU 512), lb=24*7, bs=256 2257, 6036

10292019 1851 Layers: (LSTM 100), lb=24*7, bs=256 1555, 8198

10292019 1915 Layers: (LSTM 400), lb=24*7, bs=256 2275, 4874

10302019 1110 Layers: (LSTM 48, LSTM 48), lb=24*8,
bs=256

1471, 4884

10302019 2000 Layers: (Masking, LSTM 48, LSTM 48),
lb=24*9, bs=256

1410, 11656

10312019 0900 Layers: (Masking, GRU 256, GRU 128),
lb=24*10, bs=256

1629, 7724

10312019 1000 Layers: (Masking, LSTM 256, LSTM 256),
lb=24*11, bs=256

1551, 7076

for all: Lagged values as features. act.fct.=sigmoid, loss-fct.=mse on train data,
optimizer=RMSprop(lr=1e-3), train size=0.9, epochs=20, s/e=100, es pat=5

lb = N LOOKBACK, bs= batch size, s/e=steps per epoch, es pat = early stop
patience

A.1.2 Forecast plots

Forecast plots corresponding to the models in table A.1 follows on the next pages.
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(a) Model 10292019 1715. Upper and lower plot is for train and test respectively.

(b) Model 10292019 1851. Upper and lower plot is for train and test respectively.

Figure A.1: Multi-step RNN forecast plots of model 10292019 1715 and model
10292019 1851
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(a) Model 10292019 1915. Upper and lower plot is for train and test respectively.

(b) Model 10302019 1110. Upper and lower plot is for train and test respectively.

Figure A.2: Multi-step RNN forecast plots of model 10292019 1915 and model
10302019 1110
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(a) Model 10302019 2000. Upper and lower plot is for train and test respectively.

(b) Model 10312019 0900. Upper and lower plot is for train and test respectively.

Figure A.3: Multi-step RNN forecast plots of model 10302019 2000 and model
10312019 0900
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Figure A.4: Multi-step RNN forecast plot of model 10312019 1000. Upper and lower
plot is for train and test respectively.
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A.2 One-step forecasts 2

These one-step RNN forecast models were developed in the mid-phase of the work
in this master thesis. For these models, the extra added lagged time features are
not present in the feature set as opposed to the previous models. However, a
timestep dimension according to input shape of Keras RNNs is used to provide
time memory to the models. The size of this memory of timesteps is determined
by N LOOKBACK.

A.2.1 Table of scores

Table A.2: Model architecture, parameters and forecast scores for various RNN one-
step models, where no features is made from algged time features, but instead, the lag
memory is represented as the timestep dimension that Keras in Python want for RNNs.

NAME Model parameters. mse of train, test

No lagged features*, act.fct.=sigmoid, loss-fct.=mse on test data, optim-
izer=adam, train size=0.9, steps per epoch=adapted to bs

11112019 1710 Layers: (LSTM 400, LSTM 400), lb=24*3,
act.fct.=linear, missing data not fixed, bs=
64, ep=50, no es, ts=0.9

1785, 7360

12112019 1327 Layers: (LSTM 400, LSTM 400), lb=24*3,
act.fct.=linear, bs=64, ep=50, es pat=5,
ts=0.9

5343, 4443

12112019 1344 Layers: (LSTM 400, LSTM 400), lb=24*3,
act.fct.=sigmoid, bs=64, ep=50, es pat=8,
ts=0.9

3007, 8119

12112019 1410 Layers: (LSTM 200, LSTM 200),
lb=24*3, act.fct.=sigmoid, bs=128,
ep=40, es pat=8, ts=0.9

2473, 8477

lb = N LOOKBACK, bs= batch size, s/e=steps per epoch

es ( pat)= early stop (patience)
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A.2.2 Forecast plots

Forecast plots corresponding to the models in table A.2 follows on the next pages.

Figure A.5: Multistep forecast plots from model 11112019 1710. Upper and lower
plot is for train and test respectively. As opposed to the coming models, this modesl
used input data that was not preprocessed for missing data points, as the dips to zero
indicate.
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Figure A.6: Multistep forecast plots from model 12112019 1327. Upper and lower plot
is for train and test respectively.

Figure A.7: Multistep forecast plots from model 12112019 1344. Upper and lower plot
is for train and test respectively.
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Figure A.8: Multistep forecast plots from model 12112019 1410. Upper and lower plot
is for train and test respectively.
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A.3 Multi-step forecasts

These models are direct multi-step models and was developed in the last phase of
the work in this master thesis. Models experimented with in the mid-phase are
extended into use in a direct strategy. In total, 6 models are presented, each with
various model architecture and parameters.

A.3.1 Table of scores

Table A.3: Model architecture, parameters and forecast scores for various RNN multi-
step models.

NAME Model parameters. mse of train, test

for all: s/e=100, act.fct.=sigmoid, loss fct.=mse on validation data

12112019 2252
or A

Layers: (LSTM 400, LSTM 400), lb=24*3,
bs=100, ep=50, es pat=8, ts=0.9

-, -

14112019 2020
or B

Layers: (LSTM 200, LSTM 200), lb=24*2,
bs=128, ep=50, es pat=8, ts=0.9

2015.8, 5936.67

C Layers: (LSTM 400, LSTM 400, Dropout
0.1), lb=24*4, bs=32, ep=70, es pat=10,
ts=0.9

2330.3, 7693

D Layers: (LSTM 100, LSTM 100, Dropout
0.1), lb=24*2, bs=64, ep=70, es pat=20,
ts=0.9

1187.67, 7157.8

E same as D, except for ts=0.925 1427.5, 8288

F same as D, except for ts=0.85 1531.3, 16228.5

lb = N LOOKBACK, bs= batch size, s/e=steps per epoch, ep=epochs,

es ( pat)= early stop (patience), ts=train size

A.3.2 Forecast plots

Forecast plots corresponding to the models in table A.3 follows on the next pages.
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(a) Model A. Upper and lower plot is for train and test respectively.

(b) Model B. Upper and lower plot is for train and test respectively.

Figure A.9: Multistep forecast plots for model A and for model B
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(a) Model C. Upper and lower plot is for train and test respectively.

(b) Model D. Upper and lower plot is for train and test respectively.

Figure A.10: Multistep forecast plots for model C and model D.
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(a) Model E. Upper and lower plot is for train and test respectively.

(b) Model F. Upper and lower plot is for train and test respectively.

Figure A.11: Multistep forecast plots for model E and model F.



Appendix B

Example Python Codes

B.1 RNN model with Keras - Example Code

The following code is the Python script used to make the direct multi-step forecast
model D. The latter part of the script is used for the making of the forecast plot
in ?? and the real-time forecast plots in figure 4.10.

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 MODEL_NAME = 'D' # name of model
4

5 #%% IMPORTS
6 import numpy as np
7 import matplotlib.pyplot as plt
8 import pandas as pd
9

10 from sklearn.preprocessing import MinMaxScaler
11 from sklearn.metrics import mean_squared_error , mean_absolute_error
12

13 from tensorflow.python.keras.models import Sequential
14 from tensorflow.python.keras.layers import Input , Dense , GRU , LSTM ,

Masking , Dropout
15 from tensorflow.python.keras.optimizers import RMSprop , SGD , Adam
16 from tensorflow.python.keras.callbacks import EarlyStopping ,

ModelCheckpoint , TensorBoard , ReduceLROnPlateau
17 from tensorflow.python.keras.preprocessing.sequence import

TimeseriesGenerator
18 np.random.seed (230) #random seed for reproducibility
19

135
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20 def mean_absolute_percentage_error(y_true , y_pred):
21 y_true , y_pred = np.array(y_true), np.array(y_pred)
22 return np.mean(np.abs(( y_true - y_pred) / y_true)) * 100
23

24 #%% IMPORT DATA
25 df = pd.read_excel('../../ data/processed/set04/data.xlsx', index_col

= 'ValueTime ', parse_date=True)
26 df = df[['Maskinrom ']]
27 # dealwith missing data
28 df = df.asfreq('30min')
29 df = df.groupby(pd.Grouper(freq='h')).sum(ignore_nan=True)
30 df.columns = ['target ']
31 df[df <300.0] = np.nan # most likely sources of error
32 df.loc['2019-08-20 04:00:00 ' ,:] = np.nan
33 df[df==0] = np.nan #masking value is 0
34 # missing value technique
35 FILL_METHOD = 'interpolate ' # ['0', '-1', 'average ', 'interpolate

', 'bfill ', 'ffill '] # use -1 or 0 for Masking layer
36 if FILL_METHOD in ['0','-1','average ','bfill ','ffill ']:
37 if FILL_METHOD in ['0', '-1', 'average ']:
38 fillvalue = int(FILL_METHOD) if FILL_METHOD in ['0', '-1']

else np.mean(df.values [˜np.isnan(df.values)])
39 df.fillna(value = fillvalue , inplace=True)
40 else:
41 df.fillna(method = FILL_METHOD , inplace=True)
42 elif FILL_METHOD in ['interpolate ']:
43 df.interpolate('linear ', inplace=True)
44 df.plot(fontsize=13)
45 # add potential other features , weather etc. here
46

47 #%% CREATING FEATURES
48 CREATE_TIMEFEATURES = True
49 CREATE_LAGGED_TIMEFEATURES = False # not needed , as done by

TimeSeriesGenerator
50 N_LAGSTEPS = 336 #14 days
51 N_FORECASTSTEPS = 6 #steps ahead to forecast
52

53 # Construct the input data , X
54 df_x = df.copy()
55

56 if CREATE_TIMEFEATURES:
57 # explicitly create time-dependent features
58 df_x['week'] = df_x.index.week.astype(str)
59 df_x['dayofweek '] = df_x.index.dayofweek.astype(str)
60 df_x['hour'] = df_x.index.hour.astype(str)
61

62 # create dummys for the time features
63 dummies = pd.get_dummies(df_x[['week', 'dayofweek ', 'hour']])
64 df_x = df_x.drop(['week', 'dayofweek ', 'hour'], axis = 1)
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65 df_x = pd.concat ([df, dummies], axis = 1)
66

67 if CREATE_LAGGED_TIMEFEATURES:
68 # create lagged values
69 lagsteps = np.arange(1, N_LAGSTEPS) #list of lag timesteps to

construct
70 for lag in lagsteps:
71 colname = 'target '+str(lag)
72 df_x[colname] = df_x[['target ']]. shift(lag)
73 df_x = df_x.dropna () #remove nans at start an end
74

75 # Construct output/target data , y
76 df_y = df.copy()
77 lead_steps = np.arange(1, N_FORECASTSTEPS+1)
78 for lead in lead_steps:
79 colname = 'target '+str(lead)
80 df_y[colname] = df_y[['target ']]. shift(-lead)
81 df_y = df_y.drop('target ', axis=1)
82 #removes last empty rows with nan
83 df_x = df_x.iloc[:-N_FORECASTSTEPS ,:]
84 df_y = df_y.iloc[:-N_FORECASTSTEPS ,:]
85 x = df_x.values
86 y = df_y.values
87 # save some dataset parameters
88 num_features = x.shape [1]
89 num_targets = y.shape [1]
90 num_obs = len(x)
91 # minmax scaling datasets
92 x_scaler = MinMaxScaler ()
93 x_scaled = x_scaler.fit_transform(x)
94 y_scaler = MinMaxScaler ()
95 y_scaled = y_scaler.fit_transform(y)
96

97 # train , test and prediction split
98 TRAIN_SIZE = 0.9
99 N_LOOKBACK = 24*2 # length of timestep dimension in Keras for

training batches
100 BATCH_SIZE_TRAIN = 64 #prøv 64 neste gang. 128
101 BATCH_SIZE_TEST = 1
102 num_train = int(num_obs * TRAIN_SIZE)
103 num_test = num_obs - num_train
104 #split to scaled test and train , and create validation dataset
105 x_train_scaled = x_scaled [0: num_train]
106 x_val_scaled = x_scaled[num_train :]
107 x_test_scaled = x_scaled[num_train -N_LOOKBACK :]
108 y_train_scaled_list = y_scaled [0: num_train]
109 y_val_scaled_list = y_scaled[num_train :]
110 y_test_scaled_list = y_scaled[num_train -N_LOOKBACK :] #for plotting

in end
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111

112 #%% Define model arcitecture
113 USE_DROPOUTLAYER = True #må sette meg inn i først
114 DROPOUT_SHARE = 0.1
115 N_UNITS = 100
116 N_EPOCHS = 70
117 STATEFUL = False
118 ACTIVATION = 'sigmoid ' # ['linear ', 'sigmoid ', 'Relu ', etc ...]
119

120 def build_model ():
121 model = Sequential ()
122 model.add(LSTM(units=N_UNITS ,
123 input_shape = (N_LOOKBACK , num_features),
124 return_sequences=True ,
125 stateful = STATEFUL))
126 model.add(LSTM(units=N_UNITS ,
127 stateful=STATEFUL))
128 if USE_DROPOUTLAYER:
129 model.add(Dropout(DROPOUT_SHARE))
130 model.add(Dense(1, activation=ACTIVATION))
131 return model
132

133 #prepare lists for direct multistep forecast strategy
134 models = [build_model () for _ in range(num_targets)]
135 scores = []
136 train_predictions = []
137 test_predictions = []
138

139 # Start training and prediction for process for model for each
forecast step

140 for i, model in enumerate(models):
141 print(i)
142 print(model)
143 y_train_scaled = np.reshape(y_train_scaled_list [:,0], newshape=(

y_train_scaled_list.shape [0],1))
144 y_val_scaled = np.reshape(y_val_scaled_list [:,0], newshape=(

y_val_scaled_list.shape [0],1))
145 y_test_scaled = np.reshape(y_test_scaled_list [:,0], newshape=(

y_test_scaled_list.shape [0],1))
146

147 #%% define timeseries batch generators for the chosen y's
148 def batch_generator(batch_size , sequence_length):
149 """
150 Generator function for creating random batches of training -

data.
151 """
152 # Alternative batch generator borrowed from Hvass Labs*
153 while True:
154 # Allocate a new array for the batch of input-signals.
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155 x_shape = (batch_size , sequence_length , num_features)
156 x_batch = np.zeros(shape=x_shape , dtype=np.float16)
157 # Allocate a new array for the batch of output -signals.
158 y_shape = (batch_size , sequence_length , 1)
159 y_batch = np.zeros(shape=y_shape , dtype=np.float16)
160 # Fill the batch with random sequences of data.
161 for i in range(batch_size):
162 # Get a random start-index.
163 # This points somewhere into the training -data.
164 idx = np.random.randint(num_train - sequence_length)
165 # Copy the sequences of data starting at this index.
166 x_batch[i] = x_train_scaled[idx:idx+sequence_length]
167 y_batch[i] = y_train_scaled[idx:idx+sequence_length]
168 yield (x_batch , y_batch)
169

170 generator = batch_generator(batch_size=BATCH_SIZE_TRAIN ,
sequence_length=N_LOOKBACK)

171

172 # Generators provided from Keras - TimeseriesGenerator
173 train_data_gen_shuffle = TimeseriesGenerator(x_train_scaled ,

y_train_scaled ,
174 length=N_LOOKBACK , sampling_rate=1,stride=1,
175 batch_size=BATCH_SIZE_TRAIN , shuffle = True)
176 train_data_gen = TimeseriesGenerator(x_train_scaled ,

y_train_scaled ,
177 length=N_LOOKBACK , sampling_rate=1,stride=1,
178 batch_size=BATCH_SIZE_TRAIN , shuffle = False)
179 val_data_gen = TimeseriesGenerator(x_val_scaled , y_val_scaled ,
180 length=N_LOOKBACK , sampling_rate=1,stride=1,
181 batch_size=BATCH_SIZE_TEST , shuffle=True)
182 test_data_gen = TimeseriesGenerator(x_test_scaled , y_test_scaled

,
183 length=N_LOOKBACK , sampling_rate=1,stride=1,
184 batch_size=BATCH_SIZE_TEST)
185

186 #test the data generators
187 if False:
188 x_batch , y_batch = next(generator)
189 print(x_batch.shape)
190 print(y_batch.shape)
191 x_batch , y_batch = train_data_gen [0]
192 print(x_batch.shape)
193 print(y_batch.shape)
194 x_batch , y_batch = test_data_gen [0]
195 print(x_batch.shape)
196 print(y_batch.shape)
197

198 #%% define all callbacks for model imoprovance
199 USE_EARLYSTOPPING = True
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200 PATIENCE = 20
201 USE_REDUCELR = True
202

203 path_checkpoint = '24 _checkpoint.keras ' #save checkpoint
204 #monitor that saves the latest best model regards to validation

loss
205 callback_checkpoint = ModelCheckpoint(filepath=path_checkpoint ,
206 monitor='val_loss ',
207 verbose=1,
208 save_weights_only=True ,
209 save_best_only=True)
210 #early stopping will end an epoch/training if validation
211 # does not improve for PATIENCE amount of steps/epochs.
212 callback_early_stopping = EarlyStopping(monitor='val_loss ',
213 patience=PATIENCE ,

verbose=1)
214 #Mysterious module for feedback
215 callback_tensorboard = TensorBoard(log_dir='./24 _logs/',
216 histogram_freq=0,
217 write_graph=False)
218 #reduces learning rate to appropriate number for impr. learning
219 callback_reduce_lr = ReduceLROnPlateau(monitor='val_loss ',
220 factor=0.1,
221 min_lr=1e-4,
222 patience=2,
223 verbose=1)
224 callbacks = [] #collecting all callbacks in a list
225 if USE_EARLYSTOPPING: #add early stopping if chosen
226 callbacks.append(callback_early_stopping)
227 callbacks.append(callback_checkpoint)
228 #callbacks.append(callback_tensorboard)
229 if USE_REDUCELR: # add reduceLR if chosen
230 callbacks.append(callback_reduce_lr)
231

232 # Compile the model
233 model.compile(loss='mse',
234 metrics = ['mae','mse'],
235 optimizer='adam')
236

237 # Train the model with train set generator , while vaildating
against validation data

238 history = model.fit_generator(train_data_gen_shuffle ,
239 epochs=N_EPOCHS ,
240 steps_per_epoch = 100,
241 use_multiprocessing=False ,
242 callbacks=callbacks ,
243 validation_data=val_data_gen ,
244 verbose=1).history
245 #reload the best model from PATIENCE amount of epochs earlier
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246 try:
247 model.load_weights(path_checkpoint)
248 except Exception as error:
249 print("Error trying to load checkpoint.")
250 print(error)
251

252 #%% create and save loss plots
253 ax = pd.DataFrame(history)[['loss', 'val_loss ']]. plot(logy=True ,

figsize=(10,5))
254 fig = ax.get_figure ()
255 fig.savefig('direct '+ str(MODEL_NAME) + str(i) + '_losscurve1.

png')
256 ax = pd.DataFrame(history)[['mean_squared_error ', '

val_mean_squared_error ']]. plot(figsize=(10,5))
257 fig = ax.get_figure ()
258 fig.savefig('direct '+ str(MODEL_NAME) + str(i) + '_losscurve1.

png')
259

260 #%% after training , evaluate and do a final forecast
261 score = model.evaluate_generator(test_data_gen)
262 scores.append(score)
263 trainPredict = model.predict_generator(train_data_gen)
264 testPredict=model.predict_generator(test_data_gen)
265

266 train_predictions.append(trainPredict)
267 test_predictions.append(testPredict)
268

269 #checkpoint save of current prediction arrays as .npy files
270 np.save(str(MODEL_NAME)+'_test_predictions ', test_predictions)
271 np.save(str(MODEL_NAME)+'_train_predictions ', train_predictions)
272 np.save(str(MODEL_NAME)+'_scores ', scores)
273

274 #%% After finished training , create plots and calculate mse
275 test_predictions = np.array(test_predictions)
276 train_predictions = np.array(train_predictions)
277

278 # choice for loading externally stored predictions (.npy-files)
279 if False:
280 test_predictions = np.load('D_test_predictions.npy')
281 train_predictions = np.load('D_train_predictions.npy')
282

283 #%% Plotting tools
284 linestyle_tuple = [
285 '-','-.','--',
286 (0, (1, 1)),
287 ':',
288 (0, (1, 4)),
289 (0, (5, 10)),
290 (0, (5, 5)),
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291 (0, (5, 1)),
292 (0, (3, 10, 1, 10)),
293 (0, (3, 5, 1, 5)),
294 (0, (3, 1, 1, 1)),
295 (0, (3, 5, 1, 5, 1, 5)),
296 (0, (3, 10, 1, 10, 1, 10)),
297 (0, (3, 1, 1, 1, 1, 1))]
298 #inverse transform forecast results
299 trainPred = y_scaler.inverse_transform(np.array(train_predictions).

squeeze ().T)
300 testPred = y_scaler.inverse_transform(np.array(test_predictions).

squeeze ().T)
301 # get the true values
302 trainTrue = y[0: num_train ,0][-len(trainPred):]
303 testTrue = y[num_train :,0][-len(trainPred):]
304 # Changeable design parameters
305 figsize = (10,3)
306 dpi=110
307

308 plt.figure(figsize=figsize , dpi=dpi)
309 plt.plot(trainTrue , color = 'blue',label='true', linewidth=1)
310 for i, vec in enumerate(trainPred.T):
311 alph=1/((i/2)+1)
312 plt.plot(np.arange(i, len(vec)+i), vec , label='step t+'+str(i+1)

+ ' mse=' + str(int(mean_squared_error(vec , trainTrue))),
313 color='red', ls=linestyle_tuple[i], alpha = alph ,

linewidth=.7)
314 plt.title('Multistep forecast plot , train data')
315 plt.xlabel('Timestep ')
316 plt.ylabel('Load [kW]')
317 plt.ylim(None , max(trainTrue)+200)
318 plt.legend(loc=1, ncol=3, fancybox=True)
319 plt.show()
320

321

322 plt.figure(figsize=figsize , dpi=dpi)
323 plt.plot(testTrue , color = 'blue',label='true')
324 for i, vec in enumerate(testPred.T):
325 alph=1/((i/2)+1)
326 plt.plot(np.arange(i, len(vec)+i), vec , label='step t+'+str(i+1)

+ ' mse=' + str(int(mean_squared_error(vec , testTrue))),
327 color='red', ls=linestyle_tuple[i], alpha=alph ,

linewidth=1)
328 plt.title('Multistep forecast plot , test data')
329 plt.xlabel('Timestep ')
330 plt.ylabel('Load [kW]')
331 plt.ylim(None , max(testTrue)+300)
332 plt.legend(loc=1, ncol=3, fancybox=True)
333 plt.show()
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334

335 #%% STEP-WISE REAL-TIME FORECAST ANIMATION , step by step
336 if False:
337 import time
338 beginning = 0
339 step = beginning
340 figsize = (5,3)
341 dpi=110
342 PLOT_TEST = True #choose to animate train or test set forecasts
343

344 if PLOT_TEST:
345 while True:
346 xaxis = np.arange(0, len(testPred))
347 tmp_pred_array=[testPred[step+i,i] for i in range(

testPred.shape [1])]
348 plt.figure(figsize=figsize , dpi=dpi)
349 plt.plot(xaxis[:step+1], testTrue [:step+1], label='True

historic ')
350 plt.plot(xaxis[step:step+num_targets+5], testTrue[step:

step+num_targets+5], alpha = 0.5, label='True
baseline ')

351 plt.plot(np.arange(step , step+num_targets),
tmp_pred_array , 'r.-', label='Forecasted baseline ')

352

353 for i, vec in enumerate(testPred.T):
354 alph=0.5
355 plt.plot(np.arange(beginning+i+1, step+i+1), vec[

beginning+i+1:step+i+1], label='step t+'+str(i+
1),

356 color='red', ls=linestyle_tuple [1+i], alpha
= alph)

357

358 plt.xlim((step-15, step+num_targets+5))
359 plt.title('Forecasted VS True values - test set \

nTimestep: '+str(step-1))
360 plt.xlabel('Timestep ')
361 plt.ylabel('Load [kW]')
362 plt.legend(loc='center left')
363 plt.show()
364 time.sleep (0.1)
365 step+=1
366

367 if not PLOT_TEST:
368 import time
369 while True:
370 xaxis = np.arange(0, len(trainPred))
371 tmp_pred_array=[trainPred[step+i,i] for i in range(

trainPred.shape [1])]
372 plt.figure(figsize=figsize , dpi=dpi)
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373 plt.plot(xaxis[:step+1], trainTrue [:step+1], label='True
historic ')

374 plt.plot(xaxis[step:step+num_targets+5], trainTrue[step:
step+num_targets+5], alpha = 0.5, label='True
baseline ')

375 plt.plot(np.arange(step , step+num_targets),
tmp_pred_array , 'r.-', label='Forecasted baseline ')

376

377 for i, vec in enumerate(trainPred.T):
378 alph=0.5
379 plt.plot(np.arange(beginning+i+1, step+i+1), vec[

beginning+i+1:step+i+1], label='step t+'+str(i+
1),

380 color='red', ls=linestyle_tuple [1+i], alpha
= alph)

381

382 plt.xlim((step-15, step+num_targets+50))
383 plt.title('Forecasted VS True values - train set \

nTimestep: '+str(step-1))
384 plt.xlabel('Timestep ')
385 plt.ylabel('Load [kW]')
386 plt.legend(loc='center left')
387 plt.show()
388 time.sleep (0.1)
389 step+=1
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B.2 Asset class in Python

A modelling framework flexibility estimation and making
flexplots

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 import matplotlib.pyplot as plt #plot tool
4 import seaborn as sns #styles for plots
5 import numpy as np #Numpy arrays
6 sns.set_style('darkgrid ') # set plot style
7 class Asset():
8 """ A class used to model a flexible asset , estimate its

flexible power and create a flexplot. """
9 ### ----- Initializing function ----- ###
10 def __init__(self, name , power_min , power_max , power_baseline ,

power_steadystate , dt = 1, max_runtime = None):
11 """
12 Parameters
13 ----------
14 name : str
15 The name of the asset
16 power_min and power_max : array of lenght H
17 Sets the minimum respectively maximum allowed power

consumption for the asset
18 power_baseline : array of lenght H
19 Represents the baseline power consumption (e.g. a

forecast).
20 power_steadystate : array of lenght H
21 The electrical consumptipn that would lead to a steady

state situation (no charging of asset/no change in
energy/SoC level)

22 dt : float
23 Temporal resolution of the arrays. Indicate time between

each element , unit in hours.
24 max_runtime : float
25 A maximum runtime for the flexibility source that should

constrain the length of estimated flexibility (
default=None).

26 NOTES:
27 Each element in the arrays represent a value for consecutive

timesteps. Negative values means that the asset
produces power. Unit: kWh/h

28 """
29 #Assign input attributes
30 self.Name = name
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31 ##Zero is inserted to arrays because of later calculation
convenience

32 self.Power_max = np.hstack ([[0], np.array(power_max)])
33 self.Power_min = np.hstack ([[0], np.array(power_min)])
34 self.Power_baseline = np.hstack ([[0], np.array(

power_baseline)])
35 self.Power_ss = np.hstack ([[0],np.array(power_steadystate)])
36 self.dt = dt
37 self.max_runtime = max_runtime
38

39 #Assign calculated attributes
40 self.Power_charge = self.Power_baseline - self.Power_ss
41 self.Fneg = - self.Power_baseline + self.Power_min
42 self.Fpos = - self.Power_baseline + self.Power_max
43 self.timelineE = np.arange(0,len(power_baseline)*dt +dt, dt)
44 self.timelineF = self.timelineE - dt/2
45 self.__energystorage = False
46

47 ### ----- Methods ----- ###
48 def add_energy_storage(self, initial_SoC , E_delta=None , E_min=

None , E_max=None):
49 """
50 Assigns an energy storage to the asset.
51

52 Parameters
53 ----------
54 initial_SoC : str , optional
55 The sound the animal makes (default is None)
56 E_delta : str , optional
57 Range of allowed energy levels in the storage , units:

kWh
58 E_min : str , optional
59 The minimum allowed energy level for the energy storage ,

units: kWh
60 E_max : str , optional
61 The maximum allowed energy level for the energy storage ,

units: kWh
62 NB: 2 of either E_delta (scale), E_min and E_max must be

given.
63

64 Raises
65 ------
66 ValueError
67 If not 2 of the parameters E_delta (scale), E_min and

E_max
68 are given.
69 """
70 if initial_SoC < 0 or initial_SoC > 1:
71 print('NB!: SoC is out of allowed limits ')
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72 if E_delta and E_min!=None and not E_max:
73 self.E_delta = E_delta
74 self.E_min = E_min
75 self.E_max = E_min + E_delta
76 elif E_delta and not E_min!=None and E_max:
77 self.E_delta = E_delta
78 self.E_min = E_max - E_delta
79 self.E_max = E_max
80 elif not E_delta and E_min!=None and E_max:
81 self.E_delta = E_max - E_min
82 self.E_min = E_min
83 self.E_max = E_max
84 else:
85 raise ValueError('You must assign precisely 2 of the 3

parameters E_delta , E_min and E_max.')
86 self.SoC_state = initial_SoC
87 self.__energystorage = True
88 self.E_state = float(self.E_min + (self.SoC_state * self.

E_delta))
89

90 def __apply_storage_constraints(self):
91 """
92 Calculates the energy trajectories and constrains the

flexibilityestimates. Trajectories for different choices
of the consumption is calcualted , in the case of

choosing baseline , max pos flex and max neg. flex
activation. This method also updates the flexibility
estimates constrained by exceeding the energy storage
capacity limits.

93 """
94 #integration weights used for summing and visualizing energy

trajectories
95 integration_weights = np.full(len(self.Power_baseline), self

.dt)
96 integration_weights [0] = 0
97

98 #calculate energy storage level trajectories for baseline
and flex activation

99 self.E_traj_pos = self.E_state + np.add.accumulate(self.
Power_charge+self.Fpos) * integration_weights

100 self.E_traj_neg = self.E_state - np.add.accumulate(-self.
Power_min + self.Power_ss) * integration_weights

101 self.E_traj_baseline = self.E_state + np.add.accumulate(self
.Power_charge) * integration_weights

102

103 # constrain E trajectories that overshoot the energy storage
limits.

104 # save the original and set overshooting values equal to the
limit.
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105 self.E_traj_pos_overshoot = self.E_traj_pos.copy()
106 self.E_traj_neg_overshoot = self.E_traj_neg.copy()
107

108 index_pos_overshooting = np.where(self.E_traj_pos > self.
E_max)[0]

109 index_neg_overshooting = np.where(self.E_traj_neg < self.
E_min)[0]

110 self.E_traj_pos[index_pos_overshooting] = self.E_max
111 self.E_traj_neg[index_neg_overshooting] = self.E_min
112

113 # Constrain parts of Fpos/Fneg that led to overshooting
energy storage limits

114 self.Fpos[index_pos_overshooting] = +(self.E_traj_pos[
index_pos_overshooting] - self.E_traj_pos[
index_pos_overshooting -1])/self.dt - self.Power_charge[
index_pos_overshooting]

115 self.Fneg[index_neg_overshooting] = +(self.E_traj_neg[
index_neg_overshooting] - self.E_traj_neg[
index_neg_overshooting -1])/self.dt - self.Power_charge[
index_neg_overshooting]

116 self.Fpos[self.Fpos <0] = 0
117 self.Fneg[self.Fneg >0] = 0
118

119 def __apply_time_constraints(self):
120 self.Fpos[self.max_runtime+1:] = 0
121 self.Fneg[self.max_runtime+1:] = 0
122

123 def make_flexplot(self):
124 """ Vizualization of flexibility estimate results ,

consistent of four subplots. """
125 if self.max_runtime:
126 self.__apply_time_constraints ()
127 ### Create figure
128 if self.__energystorage:
129 fig , [ax2 ,ax3 ,ax,ax1] = plt.subplots(4, 1, figsize=(6*

0.95,8*0.95), dpi=100, sharex=True , gridspec_kw = {'
height_ratios ':[1,1,3,1]})

130 ax2.set_title('Asset: ' + str(self.Name) + ' | Current
SoC: ' + str(self.SoC_state) + '\n\n' + 'Forecasted
baseline/load schedule ')

131

132 #create the line arrays for the max and min energy
storage capacity

133 self.__apply_storage_constraints ()
134 E_max_curve = np.full(len(self.timelineE), self.E_max)
135 E_min_curve = np.full(len(self.timelineE), self.E_min)
136 elif not self.__energystorage:
137 fig , [ax2 ,ax1] = plt.subplots(2, 1, figsize=(6*0.95,3*

0.95), dpi=100, sharex=True , gridspec_kw = {'
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height_ratios ':[1 ,1]})
138 ax2.set_title('Asset: ' + str(self.Name) + '\n\n' + '

Forecasted baseline/load schedule ')
139

140 if self.__energystorage:
141

142 ## PLOT TWO - PLANNED CHARGING OF STORAGE
143 ax3.step(self.timelineF [1:], self.Power_charge [1:],

where='mid', color='b', label='$\hat{P}_{(dis)charge
}$')

144

145 #max and min power
146 ax3.step(self.timelineF [1:], self.Power_charge [1:] +

self.Fpos [1:], where='mid', label='$P_{(dis)charge ,
max}$', color='.5', ls='--')

147 ax3.step(self.timelineF [1:], self.Power_charge [1:] +
self.Fneg [1:], where='mid', label='$P_{(dis)charge ,
min}$', color='.5', ls='-.')

148 ax3.set_ylabel('Planned storage \ncharging [kWh/h]')
149 ax3.set_title('Forecasted plan of energy storage

charging ')
150 ax3.legend(loc = 'center left', bbox_to_anchor=(1.01,

0.5),ncol=1)
151

152 ## THIRD PLOT
153 # draw max and min energy storage limit lines
154 ax.set_title('Energy storage trajectories for baseline

and flex. options ')
155 ax.plot(self.timelineE , E_max_curve ,label='$E_{max}$',

color='k', ls='-.', marker='')
156 # positive
157 if self.E_max > self.E_state:
158 ax.plot(self.timelineE , self.E_traj_pos , color='g',

ls='-', marker='ˆ', label='$E(t, F_{p}(t))$')
159 ax.plot(self.timelineE , self.E_traj_pos_overshoot ,

color='0', ls=':', alpha=.3)
160 # planned route
161 ax.plot(self.timelineE , self.E_traj_baseline , color='b',

ls='-', label = '$E_{plan}(t)$')
162 # negative
163 if self.E_min < self.E_state:
164 ax.plot(self.timelineE , self.E_traj_neg , color='r',

ls='-', marker='v', label='$E(t, F_{n}(t))$')
165 ax.plot(self.timelineE , self.E_traj_neg_overshoot ,

color='0', ls=':', alpha=0.3)
166 ax.plot(self.timelineE , E_min_curve ,label='$E_{min}$',

color='k', ls='--', marker='')
167

168 # fill space with color
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169 ax.fill_between(self.timelineE ,self.E_traj_pos , self.
E_traj_baseline ,

170 color='green ', hatch='////', alpha=.25,
label='E space for \npositive flex.'
)

171 ax.fill_between(self.timelineE , self.E_traj_neg , self.
E_traj_baseline ,

172 color='red', hatch="\\\\\\\\", alpha=
.25, label='E space for \nnegative
flex.')

173 # details
174 ax.set_ylabel('Stored energy\n[kWh]')
175 ax.set_ylim ((self.E_min - self.E_delta/5, self.E_max+

self.E_delta /5))
176 ax.legend(loc = 'center left', bbox_to_anchor=(1.01,

0.5),ncol=1)
177

178 ## FIRST PLOT - PLAN/SCHEDULE
179 #forecasted baseline/plan/scheduled consumption
180 ax2.step(self.timelineF [1:], self.Power_baseline [1:], where='

mid', label='$\hat{P}_{baseline}$', color='darkorange ',
ls='-', marker='.')

181 #max and min power
182 ax2.step(self.timelineF [1:], self.Power_max [1:], where='mid'

, label='$P_{max}$', color='.5', ls='--')
183 ax2.step(self.timelineF [1:], self.Power_min [1:], where='mid'

, label='$P_{min}$', color='.5', ls='-.')
184 ax2.set_ylabel('Forecasted \nBaseline [kWh/h]')
185 ax2.legend(loc = 'center left', bbox_to_anchor=(1.01 , 0.5),

ncol=1)
186 ax2.set_xlim ((0, self.timelineE[-1]))
187 ax2.set_xticks(self.timelineE)
188

189 ## FOURTH PLOT - FLEXIBILITY
190 # plot bar charts
191 ax1.bar(self.timelineF , self.Fpos , width=self.dt, alpha=.5,

color='c', hatch='||', label='$F_{p}(t)$')
192 ax1.bar(self.timelineF , self.Fneg , width=self.dt, alpha=.5,

color='m', hatch='' ,label='$F_{n}(t)$')
193 # put values on the bar chart
194 for i in range(1, len(self.Fpos)):
195 if sum(self.Fpos) >0:
196 ax1.text(self.timelineF[i]-.04, max(self.Fpos)*.2,

str(self.Fpos[i]), fontsize=11, fontstyle='
normal ')

197 if sum(self.Fneg) <0:
198 ax1.text(self.timelineF[i]-.04, min(self.Fneg)*.4,

str(self.Fneg[i]), fontsize=11)
199 # details
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200 ax1.set_title('Estimated available flexibility ')
201 ax1.legend(loc = 'center left', bbox_to_anchor=(1.01 , 0.5),

ncol=1)
202 ax1.set_ylabel('Flexible power \n[kWh/h]')
203 ax1.set_xlabel('Forecast timestep [h]')
204

205 fig.show()
206 #%%
207 if __name__ == "__main__":
208 # EXAMPLE 1
209 ## Battery , passive schedule , constant planned SoC level
210 battery1 = Asset('Battery , passive ',[-30]*6,[30]*6, [0]*6, [0]*

6, dt =0.25)
211 battery1.add_energy_storage( 0.5, E_max = 65, E_min = 65*0.0)
212 battery1.make_flexplot ()
213

214 # EXAMPLE 2
215 ## Battery , active schedile , charging then discharging
216 battery2 = Asset('Battery , active ',[-30]*6,[30]*6, [30,30,30,-

30,-30,-30], [0]*6, dt =0.25)
217 battery2.add_energy_storage (0.5, E_max = 65, E_min = 65*0.0)
218 battery2.make_flexplot ()
219

220 # EXAMPLE 3
221 ## Water heater with alternative energy source
222 max_runtime = 4
223 wbaseline = np.array ([300, 280, 270, 290, 340, 310])
224 waterheater1 = Asset('Waterheater ', [0]*len(wbaseline),

wbaseline , wbaseline , wbaseline , 1, max_runtime=max_runtime)
225 waterheater1.make_flexplot ()
226

227 # EXAMPLE 4
228 ## Machine room
229 machineroom1 = Asset('machineroom ',
230 [538 ,540 ,523 ,501 ,469 ,420 ,378 ,350] ,
231 [838 ,840 ,823 ,801 ,769 ,720 ,678 ,650] ,
232 [676 ,701 ,641 ,609 ,606 ,496 ,482 ,521] ,
233 [676 ,701 ,641 ,609 ,606 ,496 ,482 ,521] , dt =1)
234 machineroom1.add_energy_storage( 0.6, E_max = 9000, E_delta =

1000)
235 machineroom1.make_flexplot ()
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B.3 Python Code for creating the flexplots in

machine room use-case

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 # CREATING THE FLEXPLOTS IN MACHINE ROOM USE-CASE
4

5 import numpy as np
6 from Asset import Asset # Import Asset class for usage
7

8 # Constructing baseline matrixes for the forecasts and true realized
values*

9 # drom 'RNN multistep forecast result ' table presented in the master
thesis

10 bl_pred=np.array ([607, 638, 692, 678, 710, 730])
11 bl_real=np.array ([574, 668, 737 ,673, 734, 768])
12

13 bl_pred=np.array ([[513 , 596, 673, 704, 663, 681],
14 [578, 650, 693, 698, 641, 697],
15 [647, 671, 683, 713, 715, 684],
16 [0,0,0,0,0,0],
17 [0,0,0,0,0,0],
18 [0,0,0,0,0,0],
19 [692,718, 655, 598, 532, 493]])
20

21 [524, 542, 584, 697, 694, 677, 702, 642, 610, 606, 497, 482]
22

23 bl_real=np.array ([[524 , 542, 584, 697, 694, 677],
24 [542, 584, 697, 694, 677, 702],
25 [584, 697, 694, 677, 702, 642],
26 [0,0,0,0,0,0],
27 [0,0,0,0,0,0],
28 [0,0,0,0,0,0],
29 [702, 642, 610, 606, 497, 482]])
30

31 # constants for the power the asset can deviate with from the
baseline.

32 plusmax = 50 #kWh/h
33 minusmax = -80 #kWh/h
34

35 #EVENT (a)
36 start=0
37 machineroom_stepA = Asset('machineroom (a)', bl_pred[start]+minusmax

, bl_pred[start]+plusmax ,
38 bl_pred[start], bl_pred[start], dt=1)
39 machineroom_stepA.add_energy_storage( 0.6, E_max = 8000, E_delta =

600)
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40 machineroom_stepA.make_flexplot ()
41 #EVENT (b)
42 start=1
43 machineroom_stepB = Asset('machineroom (b)', bl_pred[start]+minusmax

, bl_pred[start]+plusmax ,
44 bl_pred[start], bl_pred[start], dt=1)
45 machineroom_stepB.add_energy_storage( 0.6, E_max = 8000, E_delta =

600)
46 machineroom_stepB.make_flexplot ()
47 #EVENT (c)
48 start=2
49 machineroom_stepC = Asset('machineroom (c)', bl_pred[start]+minusmax

, bl_pred[start]+plusmax ,
50 bl_pred[start], bl_pred[start], dt=1)
51 machineroom_stepC.add_energy_storage( 0.6, E_max = 8000, E_delta =

600)
52 machineroom_stepC.make_flexplot ()
53 #EVENT (d) - activateD the four first negative bid slots.
54 #Anticipated decrease in SoC level: 80*4 /600 = 0.5333
55 #New SoC = 0.6- 0.5333 = 0.06667
56 start=6
57 machineroom_stepC = Asset('machineroom (d)', bl_pred[start]+minusmax

, bl_pred[start]+plusmax ,
58 bl_pred[start], bl_pred[start], dt=1)
59 machineroom_stepC.add_energy_storage( 0.067777 , E_max = 8000,

E_delta = 600)
60 machineroom_stepC.make_flexplot ()
61

62 # Delivered flex , based on the assumptions on dispatch ability ,
would be

63 F_delivered = bl_real [2][:4] -bl_pred [2][:4] -80
64 # and the real delivered flexible ENERGY would be
65 E_delivered = np.sum(F_delivered)
66

67 #The error of delivered flexibility is
68 error = [-80]*4 - F_delivered
69 print(error)
70 # result: [ 63 -26 -11 36]
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Thank you.
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