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Unlike most unit processes in drinking water treatment, the performance of deep-bed filtration pro-
cesses vary systematically on short time-scales; the particle removal capacity changes with time since the
previous backwash, even when the influent water quality is stable. For microorganisms, the removal
efficiency may vary by orders of magnitude. In this note, the potential impact of such dynamics on
microbial risk estimates is studied, using representative experimental filtration data for viruses and
bacteria in conjunction with single-hit dose-response models for microbial infection.

Assuming that filtration is the only source of variation in pathogen concentrations on the time-scale of
a single filter cycle, it is concluded that such variations are unlikely to substantially affect risk estimates,
except possibly in an outbreak situation with extremely high pathogen concentrations; it is generally
sufficient to know the mean pathogen concentrations. Future studies should include concurrent variation
in the performance of other unit processes and raw water pathogen concentrations. Experimental work
should focus on capturing the variation in filtration performance in order to correctly estimate mean
removal rates.

© 2019 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A treatment train involving some combination of coagulation,
flocculation, sedimentation and deep-bed filtration is common in
water treatment plants throughout the world. While designed for
removing particles and/or natural organic matter (NOM) in general,
coagulation-filtration processes also account for a significant
portion of the overall microorganism removal, including pathogens
(Hijnen and Medema, 2010).

There are several sources of variation in the microbial removal
efficiency of filtration processes. Variation among plants exists due
to differences in design, raw water quality and operational prac-
tices. There may be slow variations in time, e.g. because of a
changing raw water composition throughout the year (Westrell
et al., 2006), or there may be rapid and more random variations
as a result of raw water contamination events (Signor et al., 2005;
Åstr€om et al., 2013) or failures in the treatment processes (Hijnen
and Medema, 2010; Huck et al., 2002; Emelko et al., 2003).

However, superimposed on the variations already mentioned,
there may be systematic short-term variations in removal efficiency
Ltd. This is an open access article
originating from the inherently dynamic character of the deep-bed
filtration process during normal operation, even if influent water
quality characteristics remain constant. Typically, as measured by
filter effluent turbidity, there is an initial period of improvement in
performance as the filter begins to collect particles (the ripening
period), followed by a period of relatively stable performance until
the performance eventually deteriorates (the breakthrough phase
when the particle collection capacity is exhausted). The filter must
then be taken out of service to be backwashed so that the particle
collection capacity can be restored to its initial state (i.e. the process
is discontinuous and essentially periodic). These dynamic charac-
teristics distinguish the filtration process from other typical unit
processes in conventional treatment (sedimentation, flotation,
chlorination, UV irradiation), that are comparatively stable and
uninterrupted during normal operation and when subjected to a
constant influent water quality.

Turbidity removal dynamics during filtration is not entirely
representative of microbial filtration dynamics, though, since
turbidity measurements lump the contribution of all particle types
into a single parameter. Several studies have shown that the
ripening and breakthrough behavior is dependent on e among
several physico-chemical properties e particle size (Clark et al.,
1992; Kim and Lawler, 2008; Moran et al., 1993), with smaller
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particles typically taking longer to both ripen and break through as
compared to larger particles. Some studies have shown a marked
reduction in microorganism removal early and late in the filter
cycle (Robeck et al., 1962; Harrington et al., 2003; Emelko et al.,
2003; Templeton et al., 2007). Still, studies that aim to charac-
terize microbial removal rates of filtration processes are usually
focused on “typical” removal rates, i.e. removal rates during periods
of stable effluent turbidity, often employing sampling regimes that
are unable to capture the full variation in treatment efficiency
throughout the filter cycle.

Recently, we undertook a pilot-scale dual-media contact-
filtration study in an attempt to generate a high-resolution sam-
ple of such microbial filtration dynamics during an entire filter
cycle (Nilsen et al., 2019). The instantaneous removal efficiency of
model viruses and bacteria varied by a factor of about 50 and 200,
respectively, during the period when effluent turbidity was less
than 0.1 NTU, indicating that the dynamic character of filtration
processes should not a priori be overlooked in risk assessment.

In quantitative microbial risk assessment (QMRA; Haas et al.,
2014), variations in removal rates may be modeled by fitting
appropriate probability distributions to data from filter influent and
effluent samples (Teunis et al., 1999, 2009; Smeets et al., 2008).
Such fitted distributions may be used together with data on raw
water quality and other treatment processes to estimate the
exposure of water consumers to pathogens. Data on exposure is
subsequently used as input to dose-response models (Haas, 1983;
Nilsen and Wyller, 2016a) for estimating microbial risks associated
with drinking water consumption.

The effect of short-term systematic variations in microbial
filtration efficiency, that are present during normal operation, has
received comparatively less attention in the microbial risk litera-
ture. In this note, we will use our example high-resolution dataset
(Nilsen et al., 2019) to

e compute probability distributions for microorganism removal in
a single filter during one filter cycle

e evaluate the effect on risk estimates when assuming that con-
centration variations from filtration persist until a point of
consumption and there are no other sources of variation

e discuss the overall relevance of filtration dynamics for QMRA

In most water supply systems, variation in filter effluent con-
centrations will be subject to smoothing by e.g. storage tanks and
mixing of effluents from filters operating in parallel. Thus, the
assumption that variations in concentration actually reach the
consumer is a limiting case e I will return to this issue in the
discussion.

2. Data and methods

2.1. Example data

The filtration experiment that generated the example data is
reported in full elsewhere (Nilsen et al., 2019). The experimental
setup was representative of Norwegian filtration practice
(Ødegaard et al., 2010). Three model microorganisms were used;
bacteriophage MS2 (icosahedral, 27 nm), bacteriophage Salmonella
Typhimurium 28B (icosahedral, 60 nm) and indicator bacterium
E.coli (rod-shaped, approx. 1 mm � 3 mm). These were chosen
mainly because more data on virus removal has been sought in
Norway and it was relatively simple to include E.coli as an addi-
tional organism. The approach velocity was constant. Fig. 1 shows
the logarithm of p, the instantaneous probability of passage, for
each organism as a function of elapsed time in the filter cycle, t.
More precisely,
pðtÞ¼ coutðtÞ
cinðtÞ

(1)

Here, cout and cin are, respectively, the effluent and influent con-
centrations (as number of microorganisms/unit volume) of the
filter. The commonly used log-removal rate is simply � log10ðpÞ.
Note that in formulating (1), we ignored the travel time between
filter inlet and outlet, which is short compared to the time-scale of
changes in p. The strict interpretation of p as the probability of
passage of a single organism requires p to be independent of both
influent and attached microorganism concentrations; see Nilsen
et al. (2019) for further details.

The data shows that bacteria were generally removed better
than viruses, and the results are also consistent with expectations
based on the size-difference between the organisms: ripening for
bacteria occurred more rapidly than for viruses, and bacteria broke
through before viruses. We define breakthrough here as the onset
of persistently increasing passage. Both organisms broke through
before turbidity, though, confirming that there are limitations in
using turbidity as a surrogate for microorganism removal. It is
noted that the breakthrough of viruses is rather abrupt compared to
the more gradual breakthrough of bacteria. Computations reported
in this note were performed directly on the experimental data,
interpolating linearly between data points to construct a contin-
uous function pðtÞ.

The most important implication for risk assessment related to
filtration dynamics is probably the challenge it poses to correctly
estimating mean removal efficiencies over a full filter cycle. This
part of the problemwas studied in Nilsen et al. (2019), where it was
shown that true mean removal efficiencies may deviate from mid-
cycle instantaneous removal efficiencies by more than one log10
unit. The present note explores further the impact of filtration
dynamics itself for QMRA, given that the mean removal is already
known.

2.2. Probability distribution for P from pðtÞ

Filtration dynamics may induce systematic variations, but these
must be treated as random from a consumer’s point of view, since a
consumer essentially samples a random volume from the water
supply. For use in risk assessment applications, it is of interest to
derive a proper probability distribution for a random variable P
representing the observed variation in microbial removal efficiency
during filtration.

Some precision is needed in describing this mathematically. In
general, a consumer is assumed to sample uniformly from the total
volume produced (flow proportional sampling) which, if the flow
rate qðtÞ is non-constant, is not equivalent to sampling uniformly in
time. The flow rate was constant in our filtration experiment, but
that is not always how filters are operated. The accumulated vol-
ume of water vðtÞ produced in the time interval ½0; t� is given by

vðtÞ¼
ðt

0

qðtÞ dt ⇔
dv
dt

¼ qðtÞ (2)

Since qðtÞ is positive, vðtÞ is one-to-one and may be inverted to give
a function tðvÞ. When pðtÞ is given, we may therefore express p as a
function of v, p½tðvÞ�, and use the theory of functions of random
variables (Appendix A) to obtain the probability distribution for the
random variable P½tðVÞ� when V is a uniformly distributed random
variable on ½0; v�. It is assumed here that the sample volume is so
small that we may treat pðtÞ as constant during the time interval
needed to sample a small volume.



Fig. 1. Data from the filtration experiment described in Section 2.1. After backwash, the filter was run briefly with raw water to displace the backwash water and t ¼ 0 corresponds
to the first arrival of coagulated water at the filter surface. The theoretical clean bed retention time in the filter was approx. 7 min.
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2.3. The effect of variation in p on risk estimates

In QMRA, data on pathogen concentrations (with variations) are
used as input to dose-response models to estimate the probability
of infection from drinking water. Since dose-response models are
non-linear in the dose variable, knowing the mean dose is generally
insufficient; the full dose distribution is required for a precise
calculation of risk. It is therefore of interest to study the effect of
variations in p from filtration (as it affects the dose distribution) on
risk estimates from dose-response models.

The single-hit dose-response framework (Haas, 1983; Nilsen and
Wyller, 2016a), of which the exponential and beta-Poisson models
are examples, has served as the de facto standard modeling
approach for drinking water. A generic formulation is given by

PI ¼1�
ð1

0

GXð1� rÞfRðrÞ dr (3)

where PI is the probability of infection, GX is the probability
generating function (pgf) of the dose variable X (number of or-
ganisms ingested), and fR is the probability density function (pdf) of
the so-called single-hit probability R, which may vary between
hosts, but variation between individual pathogens is integrated out
(Fazekas de St Groth and Moran, 1955; Haas, 2002; Schmidt et al.,
2013; Nilsen and Wyller, 2016b)).

In the simplest case of constant pathogen concentration, the
dose X is taken to be Poisson distributed with mean l ¼ cvs,
where vs is the sample volume. If concentrations vary, X is typically
constructed as a mixed Poisson distribution with random Poisson
parameter L ¼ Cvs. Furthermore, if one assumes that, on the time
scale of a filter cycle, the only source of variation in concentrations
is filtration performance, one may write L ¼ kP, where k is a
constant with units of dose. For such mixed Poisson dose
distributions, Equation (3) can be written

PI ¼1�
ð1

0

MLð� rÞfRðrÞ dr ¼ 1�
ð1

0

MPð� krÞfRðrÞ dr (4)

where M is a moment-generating function (mgf) and the latter
equality applies when L ¼ kP. The evaluation of (4) using exper-
imental data is treated in Appendix A.

In order to gain an understanding of the potential effects of
filtration dynamics on risk estimates, the following risk ratio may
be evaluated where, for simplicity, we have assumed a constant
single-hit probability r:

PI;dist
PI;mean

¼1�MPð�rkÞ
1� e�rkEðPÞ (5)

The numerator is the single-exposure risk computed with the full
distribution of L ¼ kP. The denominator is the single-exposure
risk computed with the exponential model with mean dose EðLÞ ¼
kEðPÞ, i.e. the mean dose is the same in both cases. The risk
computed with a mixed Poisson dose distribution is always less
than the risk computed with a Poisson distribution with the same
mean (Nilsen and Wyller, 2016b, Proposition 2).

The treatment above assumed that X is the mixed Poisson dose
distribution resulting from a single exposure. The risk resulting
from n doses, independent and identically distributed as X, is given
by (Nilsen and Wyller, 2016a):

PI ¼1�
ð1

0

½MLð � rÞ�nfRðrÞ dr (6)
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3. Analysis and results

3.1. Probability distribution for P from pðtÞ

For given start and end times of the production period (end of
filter-to-waste and initiation of backwashing, respectively), the
probability distribution of P may be derived from pðtÞ using the
relationships described in Section 2.2 and Appendix A. This has
been done with our example data to produce Fig. 2, which shows
cumulative distribution functions (cdf) for three different produc-
tion periods, for viruses and bacteria. For viruses, we have also
included a comparison with a cdf derived by Teunis et al. (2009).
They used data on F-specific coliphages from two plants in the
Netherlands to estimate a beta distribution for the removal during
coagulation-filtration, assuming paired influent and effluent sam-
ples and gamma-distributed influent concentrations.

As seen in Fig. 2, the distribution for bacteria is generally
Fig. 2. Cumulative probability distributions for passage probability P derived from
pðtÞ of the example data in Fig. 1, using the methods outlined in Section 2.2 and
Appendix A.
displaced to the left compared to the viruses, reflecting its better
removal, also seen in Fig. 1. The near vertical parts of the distribu-
tions stem from the near horizontal parts of the curves in Fig. 1.
Restricting the length of the production period displaces proba-
bility mass to the left. It is clear that the estimated beta cdf of Teunis
et al. (2009) is vastly more spread out than our empirical cdfs from
a single filter run, although themedian values ofP are close to each
other. However, the data that went into estimating the beta cdf was
of a very different nature (high volume sampling with a subsequent
concentration step, two different plants, only 17 samples in total)
than our experimental data, and there was no detailed information
on process characteristics or consideration of filtration dynamics.
The difference is nevertheless consistent with the observation that
highly variable virus removal efficiencies for filtration are reported
in the literature (Nilsen et al., 2019, Supplementary data). Such cdfs
as generated here from our filtration experiment, or perhaps some
smoother versions of them, may potentially be used as input for
Monte-Carlo simulations in detailed risk assessment models.
3.2. The effect of variation in p on risk estimates

Plots of the risk ratio in equation (5) are shown in Fig. 3a and b
for viruses (28B) and bacteria, respectively. They show the influ-
ence of 1) varying the production period by restricting the effluent
turbidity and 2) the parameter rk through its effect on the expo-
nential model risk (horizontal axes). Also shown in Fig. 3a is the risk
ratio computed with the beta distributed p from Teunis et al.
(2009), for which the mgf in equation (5) becomes 1F1ða;a þ b; �
rkÞ, where 1F1 is Kummer’s confluent hypergeometric function and
a and b are parameters of the beta distribution.

As dictated by theory, Fig. 3a and b shows that the ratio in
equation (5) is less than 1. We see that the effect of variation in p on
risk estimates tends to be more pronounced when lesser re-
strictions are placed on effluent turbidity. It should be noted that
under normal operating conditions, when the single-exposure risk
is typically less than 10�6, variation in p alone appears to have
negligible influence on risk estimates. This applies also when using
the very wide p-distribution from Teunis et al. (2009) . These ob-
servations are related to the well-known fact that single-hit models
become approximately linear at low doses. Variation in p only
seems to become important under severe outbreak conditions,
when the single-exposure risk is higher than 0.01 and somewhat
away from 1. For Fig. 3b for bacteria, we find the same tendencies as
for viruses, but slightly more pronounced due to the characteristics
of the p-variation.

As an example of an equivalent calculation using a model with a
variable single-hit probability r, Fig. 4 shows the following risk ratio
for norovirus:

PI;dist
PI;mean

¼
1�

ð1
0
1F1ða;aþ b;�kpÞfPðpÞ dp

1� 1F1ða;aþ b;�kEðPÞÞ (7)

The denominator is the risk computed using the ordinary exact
beta-Poisson model and the numerator is the risk computed with a
variable p. The norovirus parameters a ¼ 0:040 and b ¼ 0:055 are
taken from Teunis et al. (2008) and gives a very dispersed distri-
bution. The results are qualitatively similar to the results in Fig. 3.1

These figures apply to the single-exposure case. For the multiple
exposure case (n exposures), we have the corresponding ratio
1 No results are shown for the p-distribution from Teunis et al. (2009) as the
required numerical integration was problematic in MATLAB.



Fig. 3. Plots of the risk ratio in equation (5).
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PI;nd
PI;d

¼1� ½MPð�rkÞ�n
1� e�nrkEðPÞ (8)

It is readily shown that this ratio increases towards 1 as n increases
since MPð� rkÞ> e�rkEðPÞ. Thus, the effect of variations in p only
tend to become less important as the number of exposures
increases.
4. Discussion

Here we will first address some limitations associated with our
example dataset and computational model before briefly discus-
sing the overall relevance of filtration dynamics for risk assessment.
Fig. 4. Plot of the risk ratio in equation (7) using removal data for viruses and dose-
response parameters for norovirus (Teunis et al., 2008).
4.1. Limitations of the example data and computations

4.1.1. Example data
The example dataset represents the most highly resolved char-

acterization of microbial removal in a single deep-bed filter cycle
that we are aware of, at least for viruses. The observed variation in
performance throughout the filter cycle was substantial, qualita-
tively as expected based on virus and bacteria relative sizes (Clark
et al., 1992; Moran et al., 1993), and is believed to represent real-
world phenomena occurring in water treatment plants. Still, the
data has been obtained under a single set of experimental condi-
tions, corresponding to common filtration practice in the Nordic
countries, and is not necessarily representative of filtration pro-
cesses that operate under different conditions. Specifically, onemay
wish to conduct high-resolution characterizations using pre-
sedimentation, dedicated flocculation steps, different filter rates,
declining-rate filtration, different filter materials, different co-
agulants, filter aids/polymers and more particle-rich raw water.
Furthermore, other surrogate organisms for pathogens should be
tested in future high-resolution characterizations.
4.1.2. Computations
Some of the limitations of the computational model that could

be investigated in future research efforts, include:

e Unaccounted-for variation. In our computations, the only varying
quantity on the time scale of a filter cycle was the filtration
passage probability. In reality, there may be random variations
in raw water concentrations and the performance of other unit
processes (e.g. because of operational failure) that are relevant
on similar time scales. If such variations are present and can be
taken as independent of the variation in filtration performance,
it will lead to increased variation in the dose distributions.

e Filters in parallel. Our example computations relied on the pas-
sage probabilities through a single filter. In a real water treat-
ment plant there will be a gallery of filters operating in parallel,
with the effluents from each filter being mixed at some down-
stream junction. The filters will be at different stages in their
filter cycles and the mixing of effluents will have a certain
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smoothing effect on the dose distribution. A rudimentary model
of such effects may be found in Nilsen (2016). Another effect to
consider is the hydraulic step: when one filter is taken out of
service for backwashing, the filtration rate through the
remaining filters may increase and may affect the removal
efficiency.

e The effect of distribution systems. The relevance of filtration dy-
namics depends on the extent to which the distribution system
disperses pathogens and smooths out the variations that exist at
the treatment plant. This will likely depend on the layout of the
pipe network and storage tanks in the system, the distribution
of water demands and the location of each individual consumer
within the network.

e Dose response models. Single-hit dose-response models are
routinely used for drinkingwater risk assessment and have been
shown to fit data well for medium-to-high doses. It is, however,
a remaining scientific challenge to verify their applicability for
low doses, so that extrapolations beyond the range of observa-
tions is typically necessary for drinking water studies. If the true
dose-response model is non-linear even for low doses, this will
affect the results of modeling efforts where variation in doses is
accounted for. Furthermore, we considered only one case of
variable single-hit probability r in our examples. Such models
are “flatter” than their constant-r counterparts (Nilsen and
Wyller, 2016a, Proposition 1), but qualitatively similar; we do
not expect the main conclusions to change with such models
and further calculations (not shown) using equation (7) with
combinations of a and b in the range 0.5e5 support this.

4.2. Filtration dynamics and risk assessment

The existence of filtration dynamics poses two main challenges
to microbial risk assessment: Correctly estimating the mean pas-
sage probability and hence mean pathogen concentrations and
doses, and the possibility that variations around the mean con-
centration may significantly affect risk estimates.

The plots in Figs. 3 and 4 indicate that concentration variations
around themean exert all but negligible influence in our risk model
with the example dataset, except possibly in a situation where
pathogen concentrations approach levels associated with extreme
risk and attack rates. This applies even when using the p-distri-
bution from Teunis et al. (2009), which is significantly more spread
out than our experimental p-distributions. We stress that this
result applies to a situation where we ignore other sources of
variation in the dose distribution on the time scale of a filter cycle.
The conclusion seems robust as several assumptions were made in
this study that will overexaggerate the variation in the dose dis-
tribution, including ignoring effects of parallel filters, ignoring
mixing in the distribution system and ignoring the effect of mul-
tiple exposures.

Correctly estimating and minimizing the mean passage proba-
bility of deep-bed filters therefore seems to be the more important
aspect of filtration dynamics for risk assessment and management.
This aspect was studied in detail in Nilsen et al. (2019). For long-
term risk assessments, it may still be useful to include empirical
distributions such as those given in Fig. 2 into Monte Carlo simu-
lations of risk. The distributions in Fig. 2 are available from the
author upon request.

5. Conclusions

In this note, we have studied the effect of short-term deep-bed
filtration dynamics on microbial risk estimates, using high-
resolution data on filtration performance that is believed to be
representative of real world effects under the given conditions,
together with a simplified conceptual model. Under the assump-
tion that filtration performance is the only variable quantity on the
time-scale of a single filter cycle, it was shown that concentration
variations induced by filtration are unlikely to affect risk estimates
when compared with a model that uses an equivalent mean con-
centration, except possibly in an outbreak situation with extremely
high pathogen concentrations. Future studies should probe this
result further by studying the effect of concurrent variation in
filtration performance and other unit processes, as well as raw
water concentrations. Until further studies along the suggestions
made above can be carried out, the main consequence for QMRA of
systematic, short-term dynamic effects in microbial filtration per-
formance, is to motivate filtration experiments to correctly esti-
matemean passage probabilities under a wider range of conditions.
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Appendix A. The transformation-rule for functions of
random variables

Assume that we have a random variable V with associated
probability density function fV ðvÞ and a differentiable function
g : R/R that induces a new random variable P ¼ gðVÞ. Assume
that the domain of the function g may be partitioned into n in-
tervals such that the function g is monotonic on each interval.
Denote the restriction of g to interval i by gi. Then the probability
density of P is given by

fPðpÞ¼
Xn
i¼1

fV
h
g�1
i ðpÞ

i�����
dg�1

i ðpÞ
dp

����� (A.1)

It is assumed here that Pr½g0ðVÞ ¼ 0� ¼ 0. If that is not the case,
the above rule can be generalized and the density fPðpÞ becomes a
mixed discrete-continuous probability distribution, i.e. it has some
point masses of probability.

When V is uniformly distributed on ½v1;v2�, the rule simplifies to

fPðpÞ¼
1

v2 � v1

Xn
i¼1

�����
dg�1

i ðpÞ
dp

����� (A.2)

This expressionmay be evaluated numerically from the example
experimental data in Fig. 1, from which the associated cumulative
distributions shown in Fig. 2 can be computed. In parentheses, it is
noted that this procedure closely parallels the construction of flow
duration curves in hydrology.

Now, introduce another function h : R/½0;1� that maps p to
hðpÞ. For the expected value E½hðPÞ�, we have according to (A.2) and
a change of variables

E½hðPÞ�¼
ð

P

hðpÞfPðpÞ dp¼ 1
v2 � v1

ðv2

v1

h½gðvÞ� dv (A.3)

Thus, expectations over P are equivalent to simple averages
over V when V is uniformly distributed, which is, of course, in
agreement with intuition.
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As stated in equation (4), when the dose variable L ¼ kP, the
single-hit dose-response model is constructed with the moment
generating function (mgf) ofP evaluated at � rk. Themgf ofP is an
expectation value on the form given in (A.3), with hðPÞ ¼ ezP.
When P ¼ gðVÞwith V uniformly distributed, the mgf of P may be
computed as

MPðzÞ¼EðezPÞ¼ 1
v2 � v1

ðv2

v1

ezgðvÞ dv (A.4)

This quantity can be straightforwardly evaluated numerically
from the example experimental data in Fig. 1.
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