Rahnella spp. are commonly isolated from onion (Allium cepa) bulbs and are weakly pathogenic.

Journal:	Applied Microbiology
Manuscript ID	JAM-2019-0362.R1
Journal Name:	Journal of Applied Microbiology
Manuscript Type:	JAM - Original Article
Date Submitted by the Author:	15-May-2019
Complete List of Authors:	Asselin, Jo Ann; Cornell University, Plant Pathology and Plant-Microbe Biology Eikemo, Håvard ; Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health Perminow, Juliana; NIBIO, Norsk institutt for bioøkonom, Division of Biotechnology and Plant Health Nordskog, Berit; NIBIO, Norsk institutt for bioøkonom, Division of Biotechnology and Plant Health Brurberg, May; NIBIO, Norsk institutt for bioøkonom, Division of Biotechnology and Plant Health Brurberg, May; NIBIO, Norsk institutt for bioøkonom, Division of Biotechnology and Plant Health; Norwegian University of Life Sciences, , N-1432 Ås,, Department of Plant Sciences Beer, Steven; Cornell University, Plant Pathology and Plant-Microbe Biology
Key Words:	Plant diseases, Plant pathology, PCR (polymerase chain reaction), Pathogenesis, Infection

This is a post-peer-review, pre-copyedit version of an article published in Journal of Applied Microbiology.	
The final authenticated version is available online at: http://dx.doi.org/10.1111/jam.14340	

1	Rahnella spp. are commonly isolated from Onion (Allium cepa) bulbs and are weakly
2	pathogenic
3	
4	Jo Ann E. Asselin ¹ , Håvard Eikemo ² , Juliana Perminow ² , Berit Nordskog ² , Mav Bente
E	Prurberg ² ³ Steven V/ Peor ¹
3	Bruiberg ^{2,0} , Sleven V. Beer
6	
7	Abbreviated running title: Rahnella spp. in onion (Allium cepa)
8	
9	¹ Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant
10	Sciences, Cornell University, Ithaca, NY, USA
11	² NIBIO, The Norwegian Institute of Bioeconomy Research, Division of Biotechnology
12	and Plant Health, N-1431, Ås, Norway
13	³ Norwegian University of Life Sciences, Department of Plant Sciences, N-1432 Ås,
14	Norway; Telephone 1-607 255-7870
15	
16	Corresponding author: Steven V. Beer, Section of Plant Pathology and Plant-Microbe
17	Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA;
18	Telephone: 1-607-255-7870; E-mail: svb1@cornell.edu
19	
20	Abstract
21	Aims: Bacterial decays of onion bulbs have serious economic consequences for
22	growers, but the <mark>etiologies</mark> of these diseases are often unclear. We aimed to determine
23	the role of Rahnella, which we commonly isolated from bulbs in the USA and Norway, in
24	onion disease.
25	Method and Results: Isolated bacteria were identified by sequencing of housekeeping
26	genes and/or fatty acid methyl ester (FAME) analysis. A subset of Rahnella spp. strains

were also assessed by multilocus sequence analysis (MLSA); most onion strains

28 belonged to two clades that appear closely related to *R. aquatilis*. All tested strains

29 from both countries caused mild symptoms in onion bulbs but not leaves. PCR primers

30 were designed and tested against strains from known species of *Rahnella*. Amplicons

31 were produced from strains of *R. aquatilis*, *R. victoriana*, *R. variigena*, *R. inusitata*, and

32 *R. bruchi*, and from one of the two strains of *R. woolbedingensis*.

33 **Conclusions:** Based on binational testing, strains of *Rahnella* are commonly

34 associated with onions, and they are capable of causing mild symptoms in bulbs.

35 Significance and Impact of the Study: While *Rahnella* strains are commonly found

36 within field-grown onion<mark>s and they are able to cause mild symptoms</mark>, the economic

37 impact of *Rahnella*-associated symptoms remains unclear.

38

39 **Keywords**: Plant diseases, Plant pathology, PCR (polymerase chain reaction), Pathogenesis,

40 Infection

41

42 Introduction

43 Onions (*Allium cepa*) are susceptible to damage by a number of pests and

44 pathogens, including insects, nematodes, fungi, and bacteria. Decays of onion bulbs

45 caused by bacteria can cause serious economic losses. Bacterial decays can develop

46 in the field during the growing season or in post-harvest storage of the bulbs. Numerous

47 bacteria have been described as onion bulb pathogens, including strains from genera

48 Burkholderia, Enterobacter, Pantoea, Pseudomonas, Pectobacterium, Lactobacillus,

49 and *Leuconostoc* (Schwartz and Mohan, 2007; Bonasera *et al.* 2017).

50 Onion bulbs with bacterial decay may have any combination of discoloured,

51 water-soaked, macerated, or shrunken scales. In disease caused by macerating

52 bacteria, for example *Burkholderia* spp. or *Dickeya* sp. (Mahenthiralingam *et al.* 2005;

Palacio-Bielsa *et al.* 2007), rotten bulbs can often be identified by visual inspection of
intact bulbs or by manually assessing bulb firmness, especially at the bulb neck. In New
York State and in Norway, growers often employ skilled workers to hand-sort bulbs and
cull any with discernible symptoms of decay.
While macerating bacteria often cause significant damage to bulbs and affect
bulb integrity, non-macerating bacteria, for example *Pantoea ananatis* or *Enterobacter*

59 sp. (Carr et al 2010; Schroeder and du Toit 2010), may cause internal discolouration of scales. They may slightly reduce the firmness of the bulb neck, but often cause no 60 61 external symptoms, making them indistinguishable from healthy bulbs during grading. 62 When shipments of bulbs are received by potential buyers, a random sample of bulbs 63 typically is cut and inspected. If inspection reveals unacceptable numbers of 64 symptomatic bulbs, the entire shipment may be rejected. Manual sorting and rejected lots add to the economic impact of bacterial decays of onions on grower profits. 65 In both New York State and Norway, onion bulbs may be stored for several 66 67 months after harvest before they are sorted and marketed. In 2010, bacteria were recovered from more than 500 bulbs that had been culled during hand-sorting from cold 68

storage in western New York State. Strains putatively identified as *Rahnella* spp. were recovered from more than 25% of culled bulbs. Also, in Norway, similar surveys yielded *Rahnella* spp. from more than 20% of symptomatic bulbs. In the current work, we determined that strains of *Rahnella spp.* were widely distributed geographically as onion-associated bacteria, and they elicited mild symptoms in artificial inoculation experiments. We isolated several species of *Rahnella* from onions. Most strains clustered into two clades that appear to be closely related to *R. aquatilis*. To facilitate

76	further work detecting	Rahnella strains,	we developed	specific primers and an
----	------------------------	-------------------	--------------	-------------------------

associated protocol for a polymerase chain reaction (PCR) test.

78

79 Materials and methods

80

81 Bacterial growth and maintenance (USA)

82 Bacteria were routinely grown on Luria-Bertani (LB) agar plates and incubated for

1-2 days at 28°C for use in colony PCR or for inoculations of bulbs. For storage of

84 strains, bacteria were transferred from freshly grown plates using sterile cotton-tipped

applicators into sterile-filtered 15% glycerol. Bacteria were stored at -80°C.

86

87 Bacterial growth and maintenance (Norway)

88 Bacteria were routinely grown on Nutrient Glucose Agar (NGA) (Lelliott and

Stead, 1987). NGA plates were incubated for 1-3 days at room temperature for colony

90 PCR or inoculations of bulbs. For storage of identified strains, bacteria were transferred

91 from freshly grown plates to "protect" vials (Technical Service Consultants, Lancashire,

92 UK) containing ceramic beads. Bacteria were then stored at -80°C.

93

94 **Isolation of bacteria from onion and environmental samples (USA)**

95 In 2010, growers in western New York State set aside onions with suspected

96 bacterial decay during hand-sorting in cold storage prior to marketing. Approximately

97 500 bulbs, mostly symptomatic, were sampled at this time. In the winter of 2011-2012,

98 one wooden crate of onions (approximately 400 kg) was selected for sampling from

99	each of three growers' cold storages in the Elba, NY region. Approximately 100 onions
100	were randomly chosen from those crates three times over the storage season, in
101	October, January, and March. In New York, onions are typically harvested in late
102	August through mid-October. Bulbs were refrigerated until processed by lab personnel.
103	Other samples were occasionally received from onion growers suspecting rot in growing
104	onion plants or recently harvested or stored bulbs. Plants were typically sent to the lab
105	by overnight mail and processed immediately or refrigerated and processed within a few
106	days of arrival.
107	For onion plants from the field, roots were trimmed, and plants were rinsed with
108	distilled water to remove soil particles. Symptomatic tissues or disease margins were
109	probed with sterile wooden applicators and streaked onto onion extract medium (OEM)
110	(Zaid <i>et al.</i> 2012) directly. When dealing with bulbs, they were bisected longitudinally,
111	photographed and assessed for symptoms, and bacterial isolations were made from
112	each bulb. Representatives of the various colony types growing on OEM plates were
113	dilution streaked to purity on LB agar. All incubations were carried out at 28°C.
114	Strain FC061912-K was isolated from a creek flowing adjacent to an onion field
115	in Western New York. A volume of 400 ml of creek water was centrifuged at 5500 x g
116	for 15 minutes. The resulting pellet was resuspended in 1/100 volume of autoclaved
117	high-purity water, and 100 μI were plated on OEM agar. Colonies of different
118	morphologies were picked and purified by dilution streaking.
119	

120 Isolation of bacteria from onions (Norway)

Page 6 of 45

121	The majority of putatively diseased onions were collected from the southeastern
122	part of Norway, in the counties Vestfold, Østfold and Oppland. A smaller number of
123	samples originated from the counties Hedmark, Rogaland and Nord-Trøndelag.
124	Samples were collected from the field during the growing season, directly after harvest,
125	or after storage. In addition, samples were collected from field trials where pathogen
126	control measures with various compounds were being investigated. A total of 368
127	samples, each consisting of one to 20 onions, typically three to five, were collected
128	during the project period (2012 to 2015), and stored at 5°C until processed.
129	For onion plants from the field, roots were trimmed, and plants were rinsed with
130	distilled water to remove soil particles. For both growing plants and mature bulbs,
131	symptomatic tissues or the margins between symptomatic and healthy tissue were
132	sampled. Bacteria were released from the sampled tissue by either soaking for 30
133	minutes in sterile 10 mM phosphate buffered saline, pH 7.2 (PBS) (Anonymous, 2006)
134	or crushing in sterile water. Resulting suspensions were dilution streaked onto NGA.
135	Onion tissue samples were homogenized in 10-15 ml SPCB buffer (120 mM
136	sodium phosphate, 2 % CTAB, 1.5 M NaCl, pH 8.0) using a Bioreba homogenizer. DNA
137	was isolated from the crude extract using the Kingfisher Duo Prime with KingFisher Cell
138	and Tissue DNA kit, according to the manufacturer's (Thermo Fischer Scientific,
139	Waltham, MA) instructions.

140

141 **Preliminary Identification of bacteria (USA)**

In New York, bulbs harvested from the same field and sampled at the same time
were treated as batches. Strains from the same batch of bulbs were grouped based on

- 144 similar colony morphologies, digest patterns of amplicons from the DNA gyrase subunit
- 145 B gene (gyrB) as described by Bonasera et al. (2014), and by results of indole tests,
- 146 nitrate reductase and oxidase activities (Schaad *et al.* 2001) and by fluorescence on
- 147 King's B agar (King et al. 1954), modified to contain 0.4 g instead of 1.5 g of
- 148 MgSO₄·7H₂O per liter. Representative strains were chosen from each group, and gyrB
- 149 amplicons obtained by using the 1480F/2242R primer pair (Bonasera et al. 2014) were
- 150 sequenced: amplicons were cleaned using the Clean & Concentrator-5 kit (Zymo
- 151 Research Corp., Irvine, CA) and sequenced using the gyrB 1480F primer, at the Cornell
- 152 University Biotechnology Resource Center. Resulting sequences were used to search
- 153 the NCBI Nucleotide collection (nr/nt) database via blastn
- 154 (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Strains with gyrB fragment sequences that were
- 155 most similar to *Rahnella* strains were pursued further.
- 156

157 **Preliminary Identification of bacteria (Norway)**

158 Isolates were identified initially by fatty acid methyl ester (FAME) analysis 159 (Sasser, 1990). Of 431 isolates, 130 isolates were also identified by sequencing of a 160 hypervariable region of the 16S ribosomal gene, using primers F985PTO and R1378 161 and conditions as described previously (Heuer et al. 1999, Table 1). Templates were 162 from bacterial colonies supended in 500 µl sterile H₂O and incubated for 10 min at 163 96°C. Purified PCR amplicons were sequenced in both directions at GATC Biotech, 164 Germany, using the same primer set as for the PCR amplification. Sequences were 165 assembled, manually edited and aligned using the CLC Main Workbench.

Page 8 of 45

167 **Onion bulb inoculations with** *Rahnella* **strains**

168	Yellow onion bulbs were purchased from a local grocery store and prepared as
169	described by Schroeder <i>et al.</i> (2009). Strains C1b and A66, isolated in North America,
170	were grown on LB agar for 1-2 days at 28°C and swabbed from plates using sterile
171	cotton-tipped applicators into autoclaved high-purity water. Bacterial suspensions were
172	adjusted to OD_{600} of 0.2. Four to five bulbs per strain were injected with 100-500 μ l of
173	inoculum using a syringe and 18 gauge needle. Bulbs were incubated at 28-30°C for
174	10-17 days, after which they were cut longitudinally and assessed for symptoms.
175	Bacteria were recovered from inoculated onion bulbs using LB agar and assessed with
176	Rah 3783 F1/R1 primers or by production of a PCR amplicon using gyrB1480 F/R
177	primers followed by sequencing of the amplicons. Inoculation and re-isolation
178	experiments were completed for strain C1b and A66 three times each, with bacteria
178 179	experiments were completed for strain C1b and A66 three times each, with bacteria recovered from one or two bulbs per assay.
178 179 180	experiments were completed for strain C1b and A66 three times each, with bacteria recovered from one or two bulbs per assay. To compare pathogenicity of <i>Rahnella</i> strains isolated from Europe and North
178 179 180 181	experiments were completed for strain C1b and A66 three times each, with bacteria recovered from one or two bulbs per assay. To compare pathogenicity of <i>Rahnella</i> strains isolated from Europe and North America, eight isolates of <i>Rahnella spp.</i> that had also been included in MLSA (four from
 178 179 180 181 182 	 experiments were completed for strain C1b and A66 three times each, with bacteria recovered from one or two bulbs per assay. To compare pathogenicity of <i>Rahnella</i> strains isolated from Europe and North America, eight isolates of <i>Rahnella spp.</i> that had also been included in MLSA (four from Norway and four from the USA) were compared in a pathogenicity test as described
 178 179 180 181 182 183 	experiments were completed for strain C1b and A66 three times each, with bacteria recovered from one or two bulbs per assay. To compare pathogenicity of <i>Rahnella</i> strains isolated from Europe and North America, eight isolates of <i>Rahnella spp.</i> that had also been included in MLSA (four from Norway and four from the USA) were compared in a pathogenicity test as described above (Figure 2), and scored based on the degree of symptoms (Figure 3). Data were
 178 179 180 181 182 183 184 	experiments were completed for strain C1b and A66 three times each, with bacteria recovered from one or two bulbs per assay. To compare pathogenicity of <i>Rahnella</i> strains isolated from Europe and North America, eight isolates of <i>Rahnella spp.</i> that had also been included in MLSA (four from Norway and four from the USA) were compared in a pathogenicity test as described above (Figure 2), and scored based on the degree of symptoms (Figure 3). Data were analysed by analysis of variance, and significant differences were separated using
 178 179 180 181 182 183 184 185 	experiments were completed for strain C1b and A66 three times each, with bacteria recovered from one or two bulbs per assay. To compare pathogenicity of <i>Rahnella</i> strains isolated from Europe and North America, eight isolates of <i>Rahnella spp.</i> that had also been included in MLSA (four from Norway and four from the USA) were compared in a pathogenicity test as described above (Figure 2), and scored based on the degree of symptoms (Figure 3). Data were analysed by analysis of variance, and significant differences were separated using Tukeys pairwise comparison (Minitab).
 178 179 180 181 182 183 184 185 186 	experiments were completed for strain C1b and A66 three times each, with bacteria recovered from one or two bulbs per assay. To compare pathogenicity of <i>Rahnella</i> strains isolated from Europe and North America, eight isolates of <i>Rahnella spp.</i> that had also been included in MLSA (four from Norway and four from the USA) were compared in a pathogenicity test as described above (Figure 2), and scored based on the degree of symptoms (Figure 3). Data were analysed by analysis of variance, and significant differences were separated using Tukeys pairwise comparison (Minitab).

188 Onion plants were grown in an environmental growth chamber as described 189 previously (Bonasera *et al.* 2017). Six leaves of twelve plants were inoculated with

- 190 strains C1b or A66 or water by dipping sterile toothpicks in bacterial suspensions or
- 191 water. These strains were chosen as strains that were isolated early in the study and,
- 192 based on preliminary analysis of sequencing data from their gyrB1480F/2242R
- amplicons, both were *Rahnella* and were clearly distinct from each other. Bacterial
- suspensions were prepared as for onion bulb inoculations. Six plants inoculated with
- each strain or sterile water were placed in an incubator set to 30°C and six others were
- 196 placed at room temperature in the laboratory.
- 197

198 Partial gyrB sequencing 1480F/2242R

199 In order to place the Norwegian *Rahnella* strains in context with strains isolated 200 from New York, six strains from Norway were sequenced using the gyrB 1480F/2242R 201 primers. Additionally, twelve strains from five different species of Rahnella and the 202 closely related bacterium *Ewingella americana* were sequenced with the same primers 203 for use as references. For most strains, these sequences were generated by a single sequencing reaction. Sequences were aligned in Megalign (DNAStar, Madison, WI), 204 205 and were trimmed to eliminate ambiguous base calls and gaps resulting from poor-206 guality sequence occurring at the beginning or end of amplicons. Quality of the 207 remaining sequences were then assessed by viewing trace files using FinchTV 1.4.0 208 (Geospiza, Inc.; Seattle, WA, USA; http://www.geospiza.com). For several strains, 209 additional PCR and sequencing was performed to obtain good-quality sequence over 210 the whole alignment. Sequences generated for this work were deposited in Genbank 211 under accession numbers MK391682-MK391746 and MK408759 (Table S1).

Page 10 of

213 Multilocus sequence analysis (MLSA)

214 Seven strains from the USA and four strains from Norway that were putatively 215 identified as Rahnella spp. were further analysed by MLSA, using partial sequences of 216 four conserved housekeeping genes, gyrB, rpoB (RNA polymerase β subunit), infB 217 (translation initiation factor IF-2), and *atpD* (ATP synthase subunit beta). In an effort to 218 place Rahnella onion isolates in context with existing sequence data of Rahnella spp., 219 amplicons with coverage that included the sequence positions used in the MLSA 220 published by Brady et al. (2014) were obtained. Consequently, a combination of 221 previously published and new primers were used (Table 1), as not all primer pairs from 222 Brady et al. (2014) worked well with the conditions used in this study. PCRs to generate 223 amplicons for sequencing were generally performed in 24 µl volumes, using 12.18 µl of 224 water, 4.8 µl 5x OneTag GC buffer (New England Biolabs, Ipswich, MA), 2.4 µl 2.5 mM 225 dNTPs, 1.25 µl each of the forward and reverse primers, 0.12 µl of OneTag (New 226 England Biolabs), and 2 µl template. For each novel sequence used in the MLSA 227 (GenBank accession nos. MK387392-MK387415, Table S2), two amplicons produced in 228 separate reactions were sequenced as described above. Contigs were assembled using 229 SeqMan Pro version 12.2.0 or 13.0.0 (DNAStar). Groups of sequences were aligned in 230 MegAlign or using the "align two or more sequences" option for the blastn tool 231 (https://blast.ncbi.nlm.nih.gov/). Sequences were trimmed to match the coverage of 232 previously reported Rahnella MLSA sequences (Brady et al. 2014) and concatenated in 233 the following order: gyrB, rpoB, infB, and atpD. The gyrB sequences used in MLSA are 234 upstream of and do not overlap with the sequences obtained from the gyrB 235 1480F/2242R amplicons.

236	
237	Generation of phylogenetic trees
238	Separate phylogenetic trees were constructed for the gyrB 1480F/2242R
239	amplicon sequences (Table S1, Figure S1) and for the concatenated MLSA sequences
240	(Table S2, Figure 1). Sequences were aligned using the ClustalW method according to
241	default parameters, and phylogenetic trees were generated using MEGA version 7.0.26
242	(Kumar <i>et al.</i> 2016). There were no gaps in the alignments. The evolutionary history
243	was inferred using the Maximum Likelihood method based on the Tamura-Nei model
244	(Tamura and Nei, 1993). Initial tree(s) for the heuristic search were obtained
245	automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise
246	distances estimated using the Maximum Composite Likelihood (MCL) approach, and
247	then selecting the topology with superior log likelihood value.
248	
249	Design of <i>Rahnella</i> -specific primers
250	The genomes of <i>Rahnella aquatilis</i> CIP 78.65 = ATCC 33071 (GenBank
251	accession no. CP003244.1) (Martinez et al. 2012a) and Serratia proteamaculans568
252	(CP000826.1) were aligned using Progressive Mauve, Mauve version 2.3.1 build 173
253	(Darling <i>et al.</i> 2010). Strains of <i>Serratia</i> are relatively close relatives to <i>Rahnella</i> , and
254	are occasionally isolated from onions. The Serratia strain was included in the
255	comparison in order to exclude genes that are conserved outside of the genus
256	Rahnella. Genes annotated as "hypothetical proteins" and present in the Rahnella strain
257	but not in the Serratia strain were used to search the NCBI Genomes database using
258	blastn. Genes present in the three <i>Rahnella</i> genomes available at the time, <mark>R.</mark> aquatilis

Page 12 of

259 ATCC 33071, Rahnella sp. Y9602, and R. aquatilis HX2, but not in other available 260 genomes were used to search the NCBI Whole Genome Shotgun (WGS) database and 261 filtered based on length (at least 300 bp). Putative genes that appeared to be unique to 262 the three sequenced Rahnella strains were considered good target regions for 263 designing specific primers. Similar sequences from strains ATCC 33071, Y9602, and 264 HX2 were aligned using MegAlign, and well-conserved portions of three genes, 265 Rahag2 0130, Rahag2 3783, and Rahag2 3707, were selected for primer design. Target regions were manually chosen, and annealing temperature and predicted 266 267 annealing sites within the target genes were assessed using PrimerSelect (DNAStar). 268 Potential primers were checked for specificity to Rahnella by searching specifically 269 genomes from the Enterobacteriaceae (taxid:543), Pseudomonadales (taxid:72274), 270 and Burkholderiaceae (taxid:119060) using the Primer-BLAST tool from NCBI 271 (https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi). Primer pair Rah 3783 F1/R1 272 (Table 1), designed to amplify part of the gene designated Rahag2 3783 in strain ATCC 273 33071, yielded single amplicons of the expected size, 525 base pairs (bp), from six 274 Rahnella strains in preliminary experiments. This pair was further assessed for 275 specificity and sensitivity.

276

277 Assessment of Rahnella-specific primers

Bacterial suspensions for use in colony PCR were prepared by touching sterile
wooden applicators five times to ribbons of bacterial growth on LB agar plates and
swirling the applicator into 200 µl of sterile high-purity water. The resulting suspensions
were slightly cloudy and used as templates in PCR directly.

Each 12 µl reaction contained 5.09 µl water, 2.4 µl 5x OneTaq GC buffer (New
England Biolabs, Ipswich, MA), 1.2 µl 2.5 mM dNTPs, 0.625 µl 10 µM Rah 3783 F1
primer, 0.625 µl 10 µM Rah 3783 R1 primer, 0.06 µl OneTaq DNA Polymerase (New
England Biolabs), and 2 µl of template. Amplification was performed with one cycle at
95°C for 10 min; 45 cycles of: 95°C for 30 s, 57°C for 45 s, 72°C for 50 s; and a cycle of
72°C for 10 min. PCR products were analysed following electrophoresis through a 1%
agarose gel.

To assess specificity of the Rah3783 F1/R1 primer pair, 19 strains of Rahnella 289 290 spp. isolated from onions, selected from different branches of a phylogenetic tree based 291 on partial gyrB sequence, were used for testing. In addition, 11 strains from 8 other 292 genera documented as onion pathogens (Xanthomonas axonopodis pv. allii, 293 Pseudomonas viridiflava, Pectobacterium carotovorum subsp. carotovorum, Pantoea 294 ananatis, two strains of Pantoea agglomerans, Erwinia rhapontici, Enterobacter sp., 295 Dickeya dadantii, Burkholderia gladioli pv. alliicola, and Burkholderia cepacia) were included in the primer testing, as well as 10 reference strains of Rahnella spp. and two 296 297 of *E. americana*. This experiment was repeated three times. 298 Primer sensitivity of the Rah3783 F1/R1 primer pair was determined against

bacterial suspensions of *Rahnella* sp. Y9602 in sterile water. Bacterial suspensions
were adjusted to an optical density at 600 nm (OD₆₀₀) of 0.2 (approximately 10⁸ CFU/ml)
and were serially diluted in 10-fold steps ranging approximately 10⁸ to 10¹ CFU/ml.
Volumes of 5 µl from each dilution were spotted five times each onto LB agar and
incubated overnight at 28°C to obtain colony counts of viable bacteria. PCRs of 12 µl
were prepared as stated above. Undiluted, 10⁻¹, 10⁻², 10⁻³, 10⁻⁴, and 10⁻⁵ dilutions of

Page 14 of

305 bacterial suspension and water were used as templates. This experiment was repeated306 three times.

307

308 Results

309 Recovery of *Rahnella spp.* from naturally infected onion bulbs and plants

310 Rahnella strains were frequently recovered from onions in both the USA and 311 Norway. In western NY in 2010, Rahnella strains were recovered from 136 of 508 culled 312 bulbs assessed (27%). This initial survey prompted an additional study of bacteria from 313 onion bulbs. In the winter of 2011-2012, onion bulbs were randomly sampled from 314 growers' overwinter storage in western NY. Bulbs were sampled early (late October), 315 midway (late January), and late (mid-March) in the storage season. Rahnella strains 316 were recovered from both healthy and symptomatic bulbs at low levels. Bulbs from 317 which Rahnella strains were isolated ranged from nonsymptomatic to completely 318 discoloured with severe maceration (Figure S2). Rahnella strains were recovered from 9 319 of 748 (1%) of healthy-appearing and 25 of 150 (17%) of symptomatic bulbs (Table S3). 320 Rahnella strains were often isolated together with other genera of bacteria. In Norway 321 Hafnia sp. and Serratia sp. were most often isolated together with Rahnella, while in the 322 USA Pseudomonas spp. were most often isolated together with Rahnella strains. 323 In a 4-year Norwegian survey of 368 samples of groups of one to twenty 324 symptomatic bulbs, 109 isolates were identified as R. aquatilis by FAA and/or 16S 325 sequencing. The FAA similarity index was > 0.8 for *R. aquatilis*. These were confirmed 326 with 16S rRNA sequences, which were 100% similar to a number of different R. 327 aquatilis isolates.

349

328	
329	Pathogenicity of Rahnella strains
330	Attempts to infect onion leaves using Rahnella strains C1b and A66 were not
331	successful. Currently, there is no evidence that Rahnella strains are capable of causing
332	leaf lesions (data not shown).
333	Artificially inoculated yellow onion bulbs showed symptoms ranging from mild
334	discolouration along the inoculation site to water-soaking and discolouration of one or a
335	few internal scales, but the bulbs generally remained firm and without signs of
336	maceration. Symptoms were distinct from sterile water-injected negative controls
337	Severity of symptoms were not completely consistent, sometimes resulting in more
338	severe symptoms (Figure S3). Bacteria recovered produced an amplicon of appropriate
339	size with <i>Rahnella</i> -specific primers or produced gyrB 1480F/2242R amplicons with
340	identical sequences to those of the inoculated strains.
341	Additional inoculations were performed to compare pathogenicity of Rahnella
342	strains recovered from the USA and Norway. The results showed water-soaking and
343	discolouration (from light to dark brown); in some cases, scale shrinkage was observed.
344	In a side-by-side comparison of strains from USA and Norway, there were no significant
345	differences in virulence (Figure 3).
346	
347	Phylogenetic analysis
348	In the routine course of identifying bacteria from onions, we generated sequence

350 utility of these sequences in identifying strains of Rahnella to species level, partial gyrB

for the gyrB 1480F/2242R amplicon from numerous strains of Rahnella. To assess the

Page 16 of

351	sequences generated for verified strains of R. aquatilis, R. victoriana, R. variigena, R.
352	inusitata, R. bruchi, R. woolbedingensis, and E. americana, or downloaded from
353	GenBank. Phylogenetic trees were generated and showed that most isolates from
354	onions (originating from both North America and Europe) formed a group containing
355	three major clades. Six strains clustered tightly with <i>R. aquatilis</i> , 17 strains formed a
356	separate clade with <i>R. aquatilis</i> as its nearest neighbor, and 27 strains clustered with
357	Rahnella sp. Y9602 (Figure S1).
358	MLSA was performed on a subset of Rahnella strains isolated from the USA and
359	Norway to conclusively identify them. Strains were placed into context with different
360	Rahnella species based on sequence data available in GenBank (Brady et al. 2014),
361	using the MLSA scheme designed by Brady et al. (2008). Of the ten Rahnella strains
362	isolated from onions and used in MLSA, one strain (AR25a) clustered tightly with <i>R</i> .
363	aquatilis, three additional strains (L57-1-12, SL6, and A66) formed a separate clade
364	near <i>R. aquatilis</i> , four strains (L31-1-12, L172-1A, C1b, F57b) clustered with Rahnella
365	sp. Y9602, one strain (G37d) clustered with <i>R. victoriana</i> strains, and one (H11b) did
366	not cluster well with any of the reference strains. An additional strain (FC61912-K) was
367	isolated from a creek flowing adjacent to an onion field; it clustered loosely with R.
368	<i>inusitata</i> (Figure 1 <mark>). Strains from onion that were represented in both the MLSA and</mark>
369	gyrB tree grouped to the same previously-characterized Rahnella strains in both trees.
370	
371	Rahnella-specific primers
372	The Rah3783 primer pair produced amplicons of approximately 500 bp (expected

373 size 525 bp) from 22 of 23 *Rahnella* strains isolated from onions, including all strains

374	from the clades containing most onion isolates. Among these 23 strains, six were from
375	Norway, fourteen from New York, and three from Oregon. The strain (H11b) that did not
376	produce an amplicon with the Rah3783 primer pair did not cluster with the majority of
377	onion isolates and did not cluster tightly with any reference strains of Rahnella.
378	Additionally, reference strains from <i>R. aquatilis</i> , <i>R. victoriana</i> , <i>R.variigena</i> , <i>R. inusitata</i> ,
379	R. bruchi, R. woolbedingensis, and E. americana were tested. All Rahnella strains
380	produced a fragment of the expected size except one of the two strains of <i>R</i> .
381	woolbedingensis. The E. americana strains did not produce a fragment (Figure 4, Table
382	2).
383	None of the 11 strains from other bacterial genera documented as onion
384	pathogens (X. axonopodis pv. allii, P. viridiflava, P. carotovorum subsp. carotovorum, P.
385	ananatis, P. agglomerans, E. rhapontici, Enterobacter sp., D. dadantii, B. gladioli pv.
386	alliicola, and B. cepacia) produced amplicons (Table 2).
387	The minimum amount of Rahnella sp. strain Y9602 that could be reliably
388	amplified using the Rah3783 primer pair was an average of 7,600 CFU/reaction. A ten-
389	fold dilution of that template yielded no band or only faintly discernible bands.
390	The PCR assay was also tested on onion samples from Norway that had varying
391	degrees of symptoms. Of 88 samples tested, 64 were positive, 5 were weakly positive
392	and 19 were negative for <i>Rahnella</i> spp. Samples with no symptoms were used as
393	controls and did not give any PCR product with the Rahnella-specific primers. The
394	assay successfully detected Rahnella sp. in onion samples, and hence may prove to be
395	a valuable tool for identification, detection and epidemiological studies of the bacterium.
396	

Page 18 of

397 Discussion

398 "Bacterial decay" in onions is an umbrella term describing onion bulb disease 399 symptoms consistent with bacterial infection, in the absence of detectable fungal or 400 insect problems. The symptoms caused by the various known bacterial decay pathogens are not easily distinguishable, with many pathogens causing water-soaking 401 402 and discolouration of bulb scales and several causing maceration (Schwartz and 403 Mohan, 2007). Similar conditions are favorable for multiple bacterial decay pathogens, 404 such as wounded leaves, high relative humidity, free water, and high temperatures 405 (Schwartz and Mohan, 2007). Loss of plant tissue integrity associated with infection can 406 also make onions more vulnerable to additional colonization by secondary invaders 407 (Brewster, 2008). Finally, endophytic bacteria that may exist in relatively low numbers in 408 otherwise healthy onion bulbs may grow more rapidly in stressed or compromised 409 tissue, resulting in opportunistic infection (Cother and Dowling, 1986). Examples of 410 opportunistic bulb diseases are known: Enterobacter bulb decay and internal brown rot 411 of onions (caused by Pseudomonas aeruginosa) have been described as opportunistic 412 infections or as only occurring under special conditions. (Bishop and Davis 1990; Cother 413 et al. 1976)

Growers describe bacterial decays in growing onions and harvested bulbs as a problem that has caused increasing losses in the last 15-20 years. The reasons behind the increased losses are unknown but may involve a combination of factors, including emergence of new pathogens, changing cultural practices, the introduction of new onion cultivars, and changing climate. Because of the increased problems with bacterial decays and because of the possibility of identifying emerging pathogens in onion-

growing regions, researchers in the USA and Norway separately investigated which
bacteria were commonly associated with diseased onion bulbs in their regions and
whether these commonly-detected bacteria represented substantial threats to onion
production.

424 Rahnella strains were some of the most commonly isolated bacteria from 425 diseased onion bulbs in both the USA and Norway. A subsequent survey of randomly 426 chosen onion bulbs from growers' storage revealed that Rahnella strains could be 427 isolated from both symptomatic and healthy-appearing bulbs. Recently, researchers in 428 Nova Scotia, Canada also detected *Rahnella* strains from both healthy and symptomatic 429 bulbs from growers' storage (Yurgel et al. 2018). In our study, the frequency with which 430 Rahnella strains were isolated from symptomatic bulbs was 17% versus only 1% for 431 healthy bulbs. The relatively greater abundance of Rahnella strains suggests a 432 relationship between the growth of *Rahnella* in onion bulbs and the presence of disease 433 symptoms. However, it was unclear whether Rahnella strains were involved in the 434 disease process directly or whether Rahnella strains are particularly capable of 435 colonizing or multiplying within diseased onion bulbs.

In this study, *Rahnella* strains were isolated from onion bulbs exhibiting a range
of symptoms, from mild discolouration of one or a few scales to water soaking and
maceration of entire bulbs. However, in laboratory inoculations of healthy-appearing
bulbs, pure cultures of *Rahnella* strains typically caused mild symptoms, indicating that
additional bacteria or fungi were probably responsible for the most severe symptoms in
bulbs from which *Rahnella* strains were isolated. *Rahnella* strains may therefore exist as
endophytes that are opportunistically pathogenic to onion bulbs, and their ability to

Page 20 of

cause mild symptoms, including scale discolouration and shrinkage, may predispose
bulbs to disease caused by other pathogens. <u>Alternatively</u>, *Rahnella* strains may be
particularly adept at colonizing bulbs with symptoms caused by other pathogens. More
work is needed to tease apart these possibilities, which are not mutually exclusive.

447 A number of factors may influence the composition of the viable microbes in an onion bulb, including susceptibility of the host to infection, inter-species competition, 448 449 antibiosis, and external environmental factors. Onion storage facilities are designed to keep bulbs at low temperature, either by refrigeration, or by use of louvers that allow 450 451 cold winter air into the storage facility. Onion bulb storage at low temperature may be 452 particularly favorable for Rahnella strains compared to other bacteria. Strains of 453 Rahnella are considered psychrotrophic and have previously been described as 454 spoilage bacteria for foods stored under refrigerated conditions of 4-5°C (Jensen et al. 455 2001; Ercolini et al. 2006). During cold growing seasons or in growers' storage during 456 the winter months, *Rahnella* strains might be expected to survive or multiply better than 457 other bacteria, including virulent onion pathogens. The conditions under which onion 458 bulbs were stored may have contributed to the frequent isolation of *Rahnella* strains 459 from bulbs in this study.

In addition to being tolerant of a wide range of growth temperatures, strains of the genus *Rahnella* are able to occupy many niches successfully. *Rahnella* spp. strains have been isolated from many different substrates, including soil, water, insects, plants, and people (Brady *et al.* 2014). Some species of *Rahnella* have also previously been described as commonly associated with diseased plant tissue. *R. victoriana* in particular is commonly associated with trees suffering from acute oak decline in the UK, but the

466 disease appears to be caused by a complex of species and the particular role of R. 467 victoriana in the disease is not clear (Denman et al. 2017). This acute oak decline situation bears some resemblance to observations in this study, in which strains of 468 469 Rahnella were more commonly isolated as a component of the bulb microbiome from 470 diseased, rather than healthy plant tissue, yet Rahnella strains produced only mild 471 symptoms in pathogenicity tests in the laboratory. Indeed, the difficulty in isolating 472 known virulent pathogens from many symptomatic bulbs, and the existence of onion 473 diseases that become problematic under particular storage conditions and are caused 474 by bacteria that can frequently be isolated from healthy bulbs (for example, 475 Enterobacter bulb decay), suggests that bulb decays may sometimes be caused by 476 complexes of opportunistically pathogenic endophytic bacteria. 477 While multiple species of Rahnella were isolated from onions in the course of these studies, the majority of strains belonged to a monophyletic group consisting of 478 479 three clades represented by the type strain of *R. aquatilis, the genome-sequenced* 480 strain Rahnella sp. Y9602, and a branch that may represent an undescribed species 481 cluster. This group of strains from onions collected in different years and from across 482 vast geographic distances suggests that these strains share features that allow 483 successful colonization and survival within onions that strains outside of this group lack. 484 This work suggests that this particular group of *Rahnella* strains, specifically *R. aquatilis* 485 and two closely-related species, have diseased onion bulbs as a niche. In the future, 486 comparison of genomes from onion-associated Rahnella strains might suggest suites of 487 genes involved in successful colonization of onion tissues. Primers developed in this

Page 22 of

work should help to advance future studies by aiding in the rapid screening for onion-associated *Rahnella* strains.

490

491 Acknowledgements

- 492 We are grateful to Jean Bonasera for technical support, including propagation of onion
- 493 plants. We are grateful to the Norwegian Agricultural Extension Service for providing
- 494 samples of onions; I.-L. Akselsen, Eva Borowski. E. Gauslå and M. Skogen for
- 495 assistance in sample preparation and PCR. The Norwegian study was supported by the
- 496 Research Council of Norway, and Norwegian onion growers. We would also like to
- 497 thank Robert Martinez and Carrie Brady for generous gifts of strains. Studies in the USA
- 498 were supported by the Onion Research and Development Program of New York State,
- the New York Specialty Crops Block Grant Research Program, and the New York Farm
- 500 Viability Institute. We appreciate the gifts of onions from many growers in New York
- 501 State and the assistance of Cornell Cooperative Extension Associates who assisted in
- 502 gathering samples, and River Point Farms in Oregon.
- 503

504 Conflict of Interest

- 505 No conflict of interest declared.
- 506

507 References

- 508 Anon. (2006) Commission Directive 2006/56/EC of 12 June 2006 amending the
- 509 Annexes to Council Directive 93/85/EEC on the control of potato ring rot. Official
- 510 Journal of the European Union L 182/1

511	Bishop, A. L. and Davis, R. M. (1990) Internal decay of onions caused by <i>Enterobacter</i>
512	cloacae. Plant Dis 74 , 692-694.
513	Bonasera, J. M., Asselin, J. E. and Beer, S. V. (2014) Identification of bacteria
514	pathogenic to or associated with onion (Allium cepa) based on sequence
515	differences in a portion of the conserved gyrase B gene. J Microbiol Methods
516	103 , 138-43.
517	Bonasera, J. M., Asselin, J. E. and Beer, S. V. (2017) Lactic acid bacteria cause a leaf
518	blight and bulb decay of onion (Allium cepa). Plant Dis 101 , 29-33.
519	Brady, C., Cleenwerck, I., Venter, S., Vancanneyt, M., Swings, J. and Coutinho, T.
520	(2008) Phylogeny and identification of Pantoea species associated with plants,
521	humans and the natural environment based on multilocus sequence analysis
522	(MLSA). Syst Appl Microbiol 31 , 447-60.
523	Brady, C., Hunter, G., Kirk, S., Arnold, D. and Denman, S. (2014) Rahnella victoriana
524	sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov.,
525	classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov.
526	and Rahnella inusitata sp. nov., respectively and emended description of the
527	genus Rahnella. Syst Appl Microbiol 37 , 545-52.
528	Brewster, J. L. (2008) Onions and Other Vegetable Alliums. 2 nd edn. Cambridge, MA:
529	CABI.
530	Carr, E. A., Bonasera, J. M., Zaid, A. M., Lorbeer, J. W., and Beer, S. V. First report of
531	bulb disease of onion caused by <i>Pantoea ananatis</i> in New York. <i>Plant Dis</i> 94 ,
532	<mark>916.</mark>

533	Cother, E. J., Darbyshire, B., and Brewer, J. (1976) Pseudomonas aeruginosa: Cause
534	of internal brown rot of onion. <i>Phytopathology</i> 66. 828-834.
535	Cother, E. J. and Dowling, V. (1986) Bacteria associated with internal breakdown of
536	onion bulbs and their possible role in disease expression. <i>Plant Pathol</i> 35 , 329-
537	<mark>336.</mark>
538	Darling, A. E., Mau, B. and Perna, N. T. (2010) progressiveMauve: multiple genome
539	alignment with gene gain, loss and rearrangement. PLoS One 5, e11147.
540	Denman, S., Doonan, J., Ransom-Jones, E., Broberg, M., Plummer, S., Kirk, S.,
541	Scarlett, K., Griffiths, A. R., Kaczmarek, M., Forster, J., Peace, A., Golyshin, P.
542	N., Hassard, F., Brown, N., Kenny, J. G. and McDonald, J. E. (2017) Microbiome
543	and infectivity studies reveal complex polyspecies tree disease in Acute Oak
544	Decline. <i>ISME J</i> 12 , 1-14.
545	Ercolini, D., Russo, F., Torrieri, E., Masi, P. and Villani, F. (2006) Changes in the
546	spoilage-related microbiota of beef during refrigerated storage under different
547	packaging conditions. Appl Environl Microbiol 72, 4663-4671.
548	Heuer, H., Hartung, K., Wieland, G., Kramer, I. and Smalla, K. (1999) Polynucleotide
549	probes that target a hypervariable region of 16S rRNA genes to identify bacterial
550	isolates corresponding to bands of community fingerprints. Appl Environ
551	<i>Microbiol</i> 65 , 1045-1049.
552	Humann, J. L., Wildung, M., Cheng, CH., Lee, T., Stewart, J. E., Drew, J. C., Triplett,
553	E. W., Main, D., and Schroeder, B. K. (2011) Complete genome of the onion
554	pathogen Enterobacter cloacae EcWSU1. Stand Genomic Sci 5, 279-286.

555	Jensen, N., Varelis, P. and Whitfield, F. B. (2001) Formation of guaiacol in chocolate
556	milk by the psychrotrophic bacterium Rahnella aquatilis. Lett Appl Microbiol 33,
557	339-343.
558	King, E. O., Ward, M. K. and Raney, D. E. (1954) Two simple media for the
559	demonstration of pyocyanin and fluorescin. J Lab Clin Med 44, 301-307.
560	Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary
561	Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33, 1870-1874.
562	Lelliott, R. A. and Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of
563	plants, Oxford Oxfordshire; Boston, Published on behalf of the British Society for
564	Plant Pathology by Blackwell Scientific Publications.
565	Mahenthiralingam, E., Urban, T. A., and Goldberg, J. B. (2005) The multifarious,
566	multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3, 144-156.
500	
567	Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B.,
567 568	Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R.,
567 568 569	Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of <i>Rahnella</i>
567 568 569 570	Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of <i>Rahnella</i> <i>aquatilis</i> CIP 78.65. <i>J Bacteriol</i> 194 , 3020-3021.
567 568 569 570 571	 Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of <i>Rahnella aquatilis</i> CIP 78.65. <i>J Bacteriol</i> 194, 3020-3021. Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B.,
 567 568 569 570 571 572 	 Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of <i>Rahnella</i> <i>aquatilis</i> CIP 78.65. <i>J Bacteriol</i> 194, 3020-3021. Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R.,
 567 568 569 570 571 572 573 	 Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of <i>Rahnella</i> <i>aquatilis</i> CIP 78.65. <i>J Bacteriol</i> 194, 3020-3021. Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012b) Complete genome sequence of <i>Rahnella</i>
567 568 569 570 571 572 573 574	 Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of <i>Rahnella</i> <i>aquatilis</i> CIP 78.65. <i>J Bacteriol</i> 194, 3020-3021. Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012b) Complete genome sequence of <i>Rahnella</i> sp. strain Y9602, a gammaproteobacterium isolate from metal- and radionuclide-
567 568 569 570 571 572 573 574 575	 Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of <i>Rahnella</i> <i>aquatilis</i> CIP 78.65. <i>J Bacteriol</i> 194, 3020-3021. Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012b) Complete genome sequence of <i>Rahnella</i> sp. strain Y9602, a gammaproteobacterium isolate from metal- and radionuclide- contaminated soil. <i>J Bacteriol</i> 194, 2113-2114.
567 568 569 570 571 572 573 574 575	 Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of <i>Rahnella</i> <i>aquatilis</i> CIP 78.65. <i>J Bacteriol</i> 194, 3020-3021. Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012b) Complete genome sequence of <i>Rahnella</i> sp. strain Y9602, a gammaproteobacterium isolate from metal- and radionuclide- contaminated soil. <i>J Bacteriol</i> 194, 2113-2114.

- 576 Palacio-Bielsa, A., Cambra, M. A., and López, M. M. (2007) First report of bacterial soft
- 577 rot of onion caused by *Dickeya* sp. (ex *Pectobacterium chrysanthemi*) in Spain.

578 *Plant Pathol* **56**, 722.

- 579 Sasser, M. (1990) Identification of bacteria by gas chromatography of cellular fatty
- 580 acids. MIDI Technical Note 101. Newark, DE: Microbial ID Inc.
- Schaad, N. W., Jones, J. B. and Chun, W. (2001). Laboratory Guide for Identification of
 Plant Pathogenic Bacteria, St. Paul: APS Press.
- 583 Schroeder, B. K., du Toit, L. J. and Schwartz, H. F. (2009) First report of *Enterobacter*
- *cloacae* causing onion bulb rot in the Columbia Basin of Washington State. *Plant*
- 585 *Dis* **93**, 323.
- 586 Schroeder, B. K. and du Toit, L. J. (2010) Effects of postharvest onion curing

587 parameters on Enterobacter bulb decay in storage. *Plant Dis* **94**, 1425-1430.

- Schwartz, H. F. and Mohan, S. K. (2007). Compendium of Onion and Garlic Diseases
 and Pests, St. Paul: APS Press.
- 590 Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in
- the control region of mitochondrial DNA in humans and chimpanzees. *Mol Biol Evol* 10, 512-526.
- 593 Yurgel, S. N., Abbey, L., Loomer, N., Gillis-Madden, R. and Mammoliti, M. (2018)
- 594 Microbial communities associated with storage onion. *Phytobiomes* **2**, 35-41.
- 595 Zaid, A. M., Bonasera, J. M. and Beer, S. V. (2012) OEM—a new medium for rapid
- isolation of onion-pathogenic and onion-associated bacteria. *J Microbiol Methods* **91**, 520-526.
- 598

Table 1 Primers used in this study

	Sequence	Annealing temperature used	Amplicon size	Reference
Primers for multilocu	us sequence analysis (MLSA)			
gyrB 01-Fs	TAA RTT YGA YGA YAA CTC YTA YAA AGT	45°C	071 hn	Brady <i>et al</i> . (2008)
gyrB 02-R	CMC CYT CCA CCA RGT AMA GTT	4J C	971 DP	Brady <i>et al</i> . (2008)
infB 01-F	ATY ATG GGH CAY GTH GAY CA	48°C	1171 hn	Brady <i>et al</i> . (2008)
infB 02-R	ACK GAG TAR TAA CGC AGA TCC A	48 C	1124 bp	Brady <i>et al</i> . (2008)
rpoB 2522-2543 R	TCA GGC CCT AAC TTG GTG TCA C	F.2°C	1 5 14 bo	this study
rpoB 1030-1049 F	GGC GCG TAC ATG TCC GAG AC	53 C	1514 bp	this study
atpD 922-943 R	GAG CGA AGG TGG TAG CTG GAG A	F.2°C	007 hr	this study
atpD 37-57 F	GTG GTG GAC GTC GAG TTC CCT	53 C	907 bp	this study
atpD 58-81 F	CAG GAT GCA GTA CCG AAC GTG TAC	N/A	N/A	this study
atpD 900-921 R	TGG GTC AGT CAA GTC ATC CGC A	N/A	N/A	this study
rpoB 1307-1325 F	GTA ACG GCC AGG GCG AAG T	N/A	N/A	this study
rpoB 2138-2159 R	CGT TTG GCT ACG GCA GTC ACA C	N/A	N/A	this study
infB 1236-1257 F	CTC ATT GCT TGA CTA CAT TCG T	N/A	N/A	this study
infB 2092-2116 R	CCT GAA CGT CTG ACT TCA GAA CAA T	N/A	N/A	this study
Primers to amplify g	yrB fragments for preliminary identification o	f strains		
gyrB 1480F	GGC ATC ATC ATC ATG ACC GA	FORC	700 ha	Bonasera <i>et al</i> . (2014)
gyrB 2242R	GTS GTT TCC CAS AGC TG	50 C	788 nh	Bonasera <i>et al</i> . (2014)
Rahnella-specific pri	mers			
Rah 3783 F1	CGG GAT CGT CCG TTA TAA AGG CA 🗸 🖊	F7°C	524 hr	this study
Rah 3783 R1	ACG GTG CGT CCG TTC AGA TCA CC	57 C	524 DP	this study
16S rDNA primers				
F985PTO	AAC GCG AAG AAC CTT AC	55°C	434 bp	Heuer <i>et al</i> . (1999) - modified
R1378	CGG TGT GTA CAA GGC CCG GGA ACG			Heuer <i>et al</i> . (1999)

Species	Strain	Icolated from	Received from	Rah 3783 F1/R1
Rahnella strains iso	lated from onions		/ Reference	amplicon
Rahnella sp.	A66	culled onion from storage NY, USA	this study	+
<i>Rahnella</i> sp.	A78	culled onion from storage NY, USA	this study	+
<i>Rahnella</i> sp.	AG1a	isolated from onion tplant, NY USA	this study	+
<i>Rahnella</i> sp.	AP10b	isolated from onion plant NY, USA	this study	+
Rahnella sp.	AR16b	isolated from onion bulb grown in OR, USA	this study	+
Rahnella sp.	AR20	isolated from onion bulb grown in OR, USA	this study	+
<i>Rahnella</i> sp.	AR25a	isolated from onion bulb grown in OR, USA	this study	+
Rahnella sp.	C10	culled onion from storage NY, USA	this study	+
Rahnella sp.	C1b	culled onion from storage NY, USA	this study	+
Rahnella sp.	E32Ma	culled onion from storage NY, USA	this study	+
Rahnella sp.	F57b	culled onion from storage NY, USA	this study	+
Rahnella sp.	G37d	culled onion from storage NY, USA	this study	+
Rahnella sp.	G4	culled onion from storage NY, USA	this study	+
Rahnella sp.	G42	culled onion from storage NY, USA	this study	+
Rahnella sp.	H11b	culled onion from storage NY, USA	this study	-
Rahnella sp.	H23	culled onion from storage NY, USA	this study	+
Rahnella sp.	150b	freshly harvested onion bulb NY, USA	this study	+
Rahnella sp.	L151-1a	onion from county of Østfold, Norway	this study	+
Rahnella sp.	L172-1A	onion from county of Vestfold, Norway	this study	+
Rahnella sp.	L173-1B	onion from county of Vestfold, Norway	this study	+
Rahnella sp.	L31-1-12	onion from county of Vestfold, Norway	this study	+
Rahnella sp.	L57-1-12	onion from county of Oppland, Norway	this study	+
Rahnella sp.	SL6	onion from county of Hedmark, Norway	this study	+
Rahnella strains isc	lated from other so	ources		
Rahnella sp.	FC61912-K	Creek water, NY, USA	this study	+
R. victoriana	FRB 225 [⊤]	<i>Quercus robur</i> , symptomatic inner bark, Suffolk, UK	Brady <i>et al</i> . (2014)	+
R. victoriana	USA 13	<i>Quercus kelloggii,</i> symptomatic inner bark, California, USA	Brady <i>et al</i> . (2014)	+
R. variigena	FOD 20/8	<i>Quercus robur</i> , wound response fluid, Gloucestershire, UK	Brady <i>et al</i> . (2014)	+
R. variigena	PFK 1/1C2a	<i>Quercus robur</i> , symptomatic inner bark, Sussex, UK	Brady <i>et al</i> . (2014)	+
R. inusitata	FOD 9/5a	<i>Quercus robur</i> , symptomatic inner bark, Gloucestershire, UK	Brady <i>et al</i> . (2014)	+
R. inusitata	FOD 9/21	<i>Quercus robur</i> , symptomatic inner bark, Gloucestershire, UK	Brady <i>et al</i> . (2014)	+
R. bruchi	FRB 226 [⊤]	Agrilus biguttatus, gut, Shropshire, UK	Brady <i>et al</i> . (2014)	+

603 Table 2 Detection of strains with Rahnella-specific primers

R. bruchi	ALN 45	Alnus glutinosa, inner bark, Surrey, UK	Brady <i>et al</i> . (2014)	+
R. woolbedingensis	FRB 227 [™]	Alnus glutinosa, inner bark, Surrey, UK	Brady <i>et al.</i> (2014)	+
R. woolbedingensis	WAL 10	Juglans regia, inner bark, Surrey, UK	Brady <i>et al.</i> (2014)	-
<mark>Other bacteria</mark>				
Ewingella americana	FOD 24/3b	Quercus robur, symptomatic inner bark, Gloucestershire, UK	Brady <i>et al.</i> (2014)	-
Ewingella americana	AT 14b	<i>Quercus robur</i> , symptomatic inner bark, Shropshire, UK	Brady <i>et al</i> . (2014)	-
Burkholderia cepacia	ATCC 25416	Onion, 1948	type strain of <i>B. cepacia</i>	-
<i>Burkholderia</i> gladioli pv. alliicola	ATCC 19302	Onion bulb rot, USA	type strain of <i>B. gladioli</i>	-
Dickeya dadantii	Dickey 151			-
Enterobacter sp.	EcWSU1	Onion, USA	Humann <i>et al</i> . (2011)	-
Erwinia rhapontici	ATCC 29283	Rhubarb, England	type strain of <i>E. rhapontici</i>	-
Pantoea agglomerans	SUH1	Onion, South Africa	Hattingh and Walters (1981)	-
Pantoea agglomerans	ATCC 27155	Knee laceration	type strain of <i>P.</i>	-
Pantoea ananatis	ATCC 33244; LMG 2665	Pineapple, Brazil	agglomerans type strain of <i>P. ananatis</i>	-
Pectobacterium carotovorum	ATCC 15713	Potato, Denmark	type strain of <i>P.</i>	-
Pseudomonas viridiflava	LMG 2352	Dwarf or runner bean, Switzerland	carotovorum type strain of P. viridiflava	-
Rahnella aquatilis	ATCC 33071	Drinking water, France	type strain of <i>R. aquatilis</i>	-
Xanthomonas axonopodis pv. allii	0274	Onion, CO, USA	H. Schwartz, Colorado State University	-

606

607	Figure 1 Multilocus sequence analysis tree of 11 Rahnella strains isolated from onion or
608	a creek running adjacent to an onion field shown in context with published Rahnella
609	strains. Strains isolated from onions are highlighted in yellow. The tree with the highest
610	log likelihood (-11128.21) is shown. The percentage of trees in which the associated
611	taxa clustered together is shown next to the branches. The tree is drawn to scale, with
612	branch lengths measured in the number of substitutions per site. The analysis involved
613	27 strains. There were a total of 2635 positions in the final dataset. Xenorhabdus
614	nematophila ATCC is used as an outgroup. Analysis was performed with concatenated
615	sequences from <i>gyrB</i> (gyrase subunit B gene), <i>rpoB</i> (RNA polymerase β subunit), <i>infB</i>
616	(translation initiation factor IF-2), and <i>atpD</i> (ATP synthase subunit beta) genes. There
617	were a total of 2636 positions in the dataset. N: Isolated from onions in Norway; OR:
618	Isolated from onions grown in OR, USA; NY: Isolated from onions grown in NY, USA;
619	W: Isolated from creek water adjacent to onion field, NY, USA.
620	Figure 2 Five onion bulbs each were inoculated with 8 Rahnella strains recovered from
621	Norway and the USA. Symptoms were generally mild. Strains from Norway (L31-1-12,
622	L57-1-12, SL6, and L172-1a,) and USA (A66, AR25a, F57b, and C1b).
623	Figure 3 Symptoms in bulbs from experiments with strains from the USA and Norway.
624	A. Three scoring categories were established (from left to right): 0 = no symptoms; 1 =
625	weak discolouration; 2 = darker discolouration and scale shrinkage. B. Results from
626	pathogenicity test of isolates from the USA and Norway.
627	Figure 4 Example of agarose gel with PCR products amplified using Rahnella specific

628 primers Rah 3783 F1/R1. L: 2-log ladder (New England Biolabs), 1: *R. victoriana* FRB

629	225T, 2: R. victoriana USA 13, 3: R. variigena FOD 20/8, 4: R. variigena PFK 1/1C2a, 5:
630	R. inusitata FOD 9/5a, 6: R. inusitata FOD 9/21, 7: R. bruchi FRB 226T, 8: R. bruchi
631	ALN 45, 9: R. woolbedingensis FRB 227T, 10: R. woolbedingensis WAL 10, 11: E.
632	americana FOD 24/3b, 12: E. americana AT 14b, 13: Rahnella sp. C1b, 14: water
633	control.

- 634
- 635 Supporting Information
- 636 **Table S1** Accession numbers for partial gyrase B sequence derived using the gyrB
- 637 **1480F/2242R primers**
- 638 **Table S2** Accession numbers for sequences used in multilocus sequence analysis

639 **Table S3** Numbers of bulbs from which particular genera of bacteria were recovered

640 from surveys of diseased and healthy onion bulbs in USA

Figure S1 Samples of bulbs from which *Rahnella* strains were recovered in screen of 642 random bulbs from growers' cold storage in NY. A. Examples of bulbs from which only 643 *Rahnella* strains were recovered. B. Examples of bulbs from which both *Rahnella* 644 strains and other bacteria were recovered.

Figure S2 Maximum Likelihood tree using partial *gyrB* sequence. Strains isolated from onion are highlighted in yellow. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The tree is drawn to scale, and the units of branch lengths are the number of substitutions per site. The analysis involved nucleotide sequences from 71 strains. There were a total of 625 positions in the final dataset. N: Isolated from onions in Norway; OR: Isolated from onions grown in OR,

Page 32 of

- USA; NY: Isolated from onions grown in NY, USA; W: Isolated from creek wateradjacent to onion field, NY, USA.
- ⁶⁵³ **Figure S3** Bulbs syringe-inoculated with water (A), *Rahnella* sp. C1b (B), and
- 654 Enterobacter sp. EcWSU1 (C). Symptoms elicited by Rahnella are typically mild. The
- 655 bulbs presented in (B) had severe symptoms compared to other repetitions of the assay
- 656 (see Figure 2). The reasons for between-assay variations in severity are unknown but
- 657 could be due to variations in host susceptibility due to bulb age or genotype. Variation
- in the symptom severity between assays adds to the difficulties in assessing the real-
- world impacts of *Rahnella* spp. bacteria on onion production. Strains inoculated with
- 660 Enterobacter sp. EcWSU1 are included for comparison with a known opportunistic
- 661 pathogen of onion bulb.

ion policy

0.020

Figure 1 Multilocus sequence analysis tree of 11 *Rahnella* strains isolated from onion or a creek running adjacent to an onion field shown in context with published *Rahnella* strains. Strains isolated from onions are highlighted in yellow. The tree with the highest log likelihood (-11128.21) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 27 strains. There were a total of 2635 positions in the final dataset. *Xenorhabdus nematophila* ATCC is used as an outgroup. Analysis was performed with concatenated sequences from *gyrB* (gyrase subunit B gene), *rpoB* (RNA polymerase β subunit), *infB* (translation initiation factor IF-2), and <>atpD (ATP synthase subunit beta) genes. There were a total of 2636 positions in the dataset. N: Isolated from onions in Norway; OR: Isolated from onions grown in OR, USA; NY: Isolated from onions grown in NY, USA; W: Isolated from creek water adjacent to onion field, NY, USA.

Page 34 of 45

Figure 2 Five onion bulbs each were inoculated with 8 *Rahnella* strains recovered from Norway and the USA. Symptoms were generally mild. Strains from Norway (L31-1-12, L57-1-12, SL6, and L172-1a,) and USA (A66, AR25a, F57b, and C1b).

Figure 3 Symptoms in bulbs from experiments with strains from the USA and Norway. A. Three scoring categories were established (from left to right): 0 = no symptoms; 1 = weak discolouration; 2 = darker discolouration and scale shrinkage. B. Results from pathogenicity test of isolates from the USA and Norway.

L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 L

Figure 4 Example of agarose gel with PCR products amplified using *Rahnella* specific primers Rah 3783 F1/R1. L: 2-log ladder (New England Biolabs), 1: *R. victoriana* FRB 225T, 2: *R. victoriana* USA 13, 3: *R. variigena* FOD 20/8, 4: *R. variigena* PFK 1/1C2a, 5: *R. inusitata* FOD 9/5a, 6: *R. inusitata* FOD 9/21, 7: *R. bruchi* FRB 226T, 8: *R. bruchi* ALN 45, 9: *R. woolbedingensis* FRB 227T, 10: *R. woolbedingensis* WAL 10, 11: *E. americana* FOD 24/3b, 12: *E. americana* AT 14b, 13: *Rahnella* sp. C1b, 14: water control.

primers				
Species	Strain	Isolated from	Received from / Reference	Accession
<i>Rahnella</i> sp.	Y9602	soil at U.S. Dept. of Energy Oak Ridge Reservation in Oak Ridge, TN	Martinez <i>et</i> <i>al.</i> (2007)	CP002505.1
<i>Rahnella</i> sp.	Q73b	symptomatic red onion bulb from cold storage NY, USA	this study	MK391682
<i>Rahnella</i> sp.	R27c	symptomatic yellow onion bulb recovered from storage NY, USA	this study	MK391683
<i>Rahnella</i> sp.	R92a	symptomatic yellow onion bulb from storage NY, USA	this study	MK391684
<i>Rahnella</i> sp.	T11a	symptomatic yellow onion bulb from storage NY, USA	this study	MK391685
<i>Rahnella</i> sp.	T100a	symptomatic yellow onion bulb from storage NY, USA	this study	MK391686
<i>Rahnella</i> sp.	A12a	culled red onion from storage NY, USA	this study	MK391687
<i>Rahnella</i> sp.	A66	culled onion from storage NY, USA	this study	MK391688
<i>Rahnella</i> sp.	A78	culled onion from storage NY, USA	this study	MK391689
<i>Rahnella</i> sp.	AG6b	symptomatic bulb tissue from growing onion NY, USA	this study	MK391690
<i>Rahnella</i> sp.	AR20	onion bulb grown in OR, USA	this study	MK391691
<i>Rahnella</i> sp.	AR25a	onion bulb grown in OR, USA	this study	MK391692
<i>Rahnella</i> sp.	B18	culled onion from storage NY, USA	this study	MK391693
<i>Rahnella</i> sp.	C1b	culled onion from storage NY, USA	this study	MK391694
<i>Rahnella</i> sp.	C10	culled onion from storage NY, USA	this study	MK408759
<i>Rahnella</i> sp.	D36	culled onion from storage NY, USA	this study	MK391695
<i>Rahnella</i> sp.	E32Ma	culled onion from storage NY, USA	this study	MK391696
<i>Rahnella</i> sp.	F30a	culled onion from storage NY, USA	this study	MK391697

Table S1 Accession numbers for partial gyrase B sequence derived using the gyrB 1480F/2242R

 primers

<i>Rahnella</i> sp.	F35b	culled onion from storage NY. USA	this study	MK391698
<i>Rahnella</i> sp.	F57b	culled onion from storage NY, USA	this study	MK391699
<i>Rahnella</i> sp.	FC61912- K	creek water, NY, USA	this study	MK391700
<i>Rahnella</i> sp.	G4	culled onion from storage NY, USA	this study	MK391701
<i>Rahnella</i> sp.	G29a	culled onion from storage NY, USA	this study	MK391703
<i>Rahnella</i> sp.	G33b	culled onion from storage NY, USA	this study	MK391704
<i>Rahnella</i> sp.	G37d	culled onion from storage NY, USA	this study	MK391705
<i>Rahnella</i> sp.	G42	culled onion from storage NY, USA	this study	MK391702
<i>Rahnella</i> sp.	G43a1	culled onion from storage NY, USA	this study	MK391706
<i>Rahnella</i> sp.	H11b	culled onion from storage NY, USA	this study	MK391707
<i>Rahnella</i> sp.	H23	culled onion from storage NY, USA	this study	MK391708
<i>Rahnella</i> sp.	I50b	freshly harvested symptomatic onion bulb NY, USA	this study	MK391709
<i>Rahnella</i> sp.	J9a	non-symptomatic yellow onion from storage NY, USA	this study	MK391710
<i>Rahnella</i> sp.	J55b	non-symptomatic yellow onion from storage NY, USA	this study	MK391711
<i>Rahnella</i> sp.	K60d	symptomatic red onion from storage NY, USA	this study	MK391712
<i>Rahnella</i> sp.	L50a	symptomatic red onion from storage NY, USA	this study	MK391713
<i>Rahnella</i> sp.	L52e	symptomatic red onion from storage NY, USA	this study	MK391714
<i>Rahnella</i> sp.	L54a	symptomatic yellow onion from storage NY, USA	this study	MK391715
<i>Rahnella</i> sp.	L70b	symptomatic yellow onion from storage NY, USA	this study	MK391716
<i>Rahnella</i> sp.	L72c	symptomatic yellow onion from storage NY. USA	this study	MK391717
<i>Rahnella</i> sp.	N27b	non-symptomatic yellow onion from storage NY, USA	this study	MK391718

<i>Rahnella</i> sp.	N81a	symptomatic yellow onion	this study	MK391719
<i>Rahnella</i> sp.	N89b	symptomatic yellow onion from storage NY, USA	this study	MK391720
<i>Rahnella</i> sp.	L18a	symptomatic yellow onion from storage NY, USA	this study	MK391721
<i>Rahnella</i> sp.	AG1a	symptomatic onion transplant, NY USA	this study	MK391722
<i>Rahnella</i> sp.	P36c	symptomatic red onion bulb from storage NY, USA	this study	MK391723
<i>Rahnella</i> sp.	AP10b	symptomatic onion plant NY, USA	this study	MK391724
<i>Rahnella</i> sp.	AP11b	symptomatic onion plant NY, USA	this study	MK391725
<i>Rahnella</i> sp.	AR16b	symptomatic onion bulb grown in OR, USA	this study	MK391726
<i>Rahnella</i> sp.	C60	symptomatic red onion bulb from storage NY, USA	this study	MK391727
<i>Rahnella</i> sp.	C81a	symptomatic red onion bulb from storage NY, USA	this study	MK391728
<i>Rahnella</i> sp.	L31-1-12	onion from county of Vestfold, Norway	this study	MK391741
<i>Rahnella</i> sp.	L57-1-12	onion from county of Oppland, Norway	this study	MK391742
<i>Rahnella</i> sp.	L151-1a	onion from county of Østfold, Norway	this study	MK391743
<i>Rahnella</i> sp.	L172-1A	onion from county of Vestfold, Norway	this study	MK391744
<i>Rahnella</i> sp.	L173-1B	onion from county of Vestfold, Norway	this study	MK391745
<i>Rahnella</i> sp.	SL6	onion from county of Hedmark, Norway	this study	MK391746
Rahnella	ATCC	drinking water, France (type	Martinez <i>et</i>	CP003244.1
aquatilis	33071	strain)	<i>al</i> . (2012a)	
Rahnella	USA13	Quercus kelloggii,	Brady <i>et al.</i>	MK391729
victoriana		symptomatic inner bark, California, USA	(2014)	
Rahnella bruchi	ALN 45	<i>Alnus glutinosa</i> , inner bark, Surrey, UK	Brady <i>et al.</i> (2014)	MK391730
Rahnella bruchi	FRB 226 [⊤]	<i>Agrilus biguttatus</i> , gut, Shropshire, UK	Brady <i>et al.</i> (2014)	MK391740
Rahnella woolbedinensis	FRB 227	<i>Alnus glutinosa,</i> inner bark, Surrey, UK	Brady <i>et al.</i> (2014)	MK391731

Rahnella woolbedingensis	WAL 10	<i>Juglans regia,</i> inner bark, Surrey, UK	Brady <i>et al.</i> (2014)	MK391732
Ewingella americana	AT 14b	<i>Quercus robur</i> , symptomatic inner bark, Shropshire, UK	Brady <i>et al.</i> (2014)	MK391733
Ewingella	FOD	Quercus robur, symptomatic	Brady <i>et al.</i>	MK391735
americana	24/3b	inner bark, Gloucestershire, UK	(2014)	
Ewingella	ATCC	human throat, KY, USA (type		JMPJ01000067.1
americana	33852	strain)		
Rahnella	FRB 225	Quercus robor, symptomatic	Brady <i>et al.</i>	MK391736
victoriana		inner bark, Suffolk, UK	(2014)	
Rahnella	FOD	<i>Quercus robur,</i> wound	Brady <i>et al.</i>	MK391737
variigena	20/8	response fluid,	(2014)	
		Gloucestershire, UK		
Rahnella	PFK	Quercus robur, symptomatic	Brady <i>et al.</i>	MK391738
variigena	1/1C2a	inner bark, Sussex, UK	(2014)	
Rahnella	FOD	Quercus robur, symptomatic	Brady <i>et al.</i>	MK391739
inusitata	9/21	inner bark, Gloucestershire, UK	(2014)	
Rahnella	FOD	Quercus robur, symptomatic	Brady <i>et al.</i>	MK391734
inusitata	9/5a	inner bark, Gloucestershire, UK	(2014)	
Xenorhabdus	ATCC			FN667742.1
nematophila	19061			

- Brady, C., Hunter, G., Kirk, S., Arnold, D. and Denman, S. (2014) *Rahnella victoriana* sp. nov., *Rahnella bruchi* sp. nov., *Rahnella woolbedingensis* sp. nov., classification of *Rahnella* genomospecies 2 and 3 as *Rahnella variigena* sp. nov. and *Rahnella inusitata* sp. nov., respectively and emended description of the genus *Rahnella. Syst Appl Microbiol* **37**, 545-52.
- Martinez, R. J., Beazley, M. J., Taillefert, M., Arakaki, A. K., Skolnick, J. and Sobecky, P. A. (2007) Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. *Environ Microbiol* **9**, 3122-3133.
- Martinez, R. J., Bruce, D., Detter, C., Goodwin, L. A., Han, J., Han, C. S., Held, B., Land, M. L., Mikhailova, N., Nolan, M., Pennacchio, L., Pitluck, S., Tapia, R., Woyke, T. and Sobecky, P. A. (2012a) Complete genome sequence of *Rahnella* aquatilis CIP 78.65. J Bacteriol **194**, 3020-3021.

Strain	Source	gyrB	rроВ	infB	atpD
A66	culled onion from	MK387415	MK387404	MK387393	MK387382
	storage NY, USA				
AR25a	onion bulb grown	MK387416	MK387405	MK387394	MK387383
	in OR, USA				
C1b	culled onion from	MK387417	MK387406	MK387395	MK387384
	storage NY, USA				
F57b	culled onion from	MK387418	MK387407	MK387396	MK387385
	storage NY, USA				
FC61912	river water, NY,	MK387419	MK387408	MK387397	MK387386
-K	USA				
G37d	culled onion from	MK387420	MK387409	MK387398	MK387387
_	storage NY, USA				
H11b	culled onion from	MK387421	MK387410	MK387399	MK387388
	storage NY, USA				
L31-1-12	onion from	MK387422	MK387411	MK387400	MK387389
	county of				
157 4 4 2	Vestfold, Norway	NAV207422	N4V207442	N4V207404	N4V207200
L57-1-12	onion from	MK387423	MK387412	MK387401	MK387390
	County of				
1172 1 4	oppiand, Norway	NAKSOZASA	144207412	N4V207402	N4V207201
L1/2-1A	county of	WIN507424	WIK567415	WIN567402	IVIN201221
	Vestfold Norway				
516	onion from	MK38742	MK387414	MK387403	MK387392
510	county of	5	1011307414	1011307403	1011(307352
	Hedmark	-			
	Norway				
	Strain A66 AR25a C1b F57b FC61912 -K G37d H11b L31-1-12 L57-1-12 L172-1A SL6	StrainSourceA66culled onion from storage NY, USAAR25aonion bulb grown in OR, USAC1bculled onion from storage NY, USAF57bculled onion from storage NY, USAFC61912river water, NY, -KG37dculled onion from storage NY, USAH11bculled onion from storage NY, USAL31-1-12onion from county of Vestfold, NorwayL57-1-12onion from county ofL172-1Aonion from county of Vestfold, NorwaySL6onion from county of Hedmark, Norway	StrainSourcegyrBA66culled onion fromMK387415storage NY, USAstorage NY, USAAR25aonion bulb grownMK387416in OR, USAMK387417Storage NY, USAstorage NY, USAF57bculled onion fromMK387418storage NY, USAriver water, NY,MK387419-KUSAMK387420G37dculled onion fromMK387420storage NY, USAstorage NY, USAMK387420F11bculled onion fromMK387421storage NY, USAustorage NY, USAMK387421Storage NY, USAvestorage NY, USAMK387422L31-1-12onion fromMK387423county ofvestfold, Norwayvestfold, NorwayL172-1Aonion fromMK387424county ofvestfold, NorwaySL6SL6onion fromMK38742K38742county of5Hedmark, NorwaySL6Norway	StrainSourcegyrBrpoBA66culled onion from storage NY, USAMK387415MK387404AR25aonion bulb grown in OR, USAMK387416MK387405C1bculled onion from storage NY, USAMK387417MK387406F57bculled onion from storage NY, USAMK387418MK387407FC61912river water, NY, ulled onion from storage NY, USAMK387419MK387408-KUSAMK387419MK387409G37dculled onion from storage NY, USAMK387420MK387409H11bculled onion from storage NY, USAMK387421MK387410L31-1-12onion from county of Vestfold, NorwayMK387423MK387411L172-1Aonion from county of Vestfold, NorwayMK387424MK387413SL6onion from county of Vestfold, NorwayMK38742MK387414SL6onion from county of Vestfold, NorwayMK38742MK387414SL6onion from NMK38742MK387414Konway5Hedmark, Norway5	StrainSourcegyrBrpoBinfBA66culled onion from storage NY, USAMK387404MK387393AR25aonion bulb grown in OR, USAMK387416MK387405MK387394C1bculled onion from storage NY, USAMK387417MK387406MK387395F57bculled onion from storage NY, USAMK387418MK387407MK387396F57bculled onion from storage NY, USAMK387419MK387408MK387397-KUSAMK387419MK387408MK387398G37dculled onion from storage NY, USAMK387420MK387409MK387398H11bculled onion from storage NY, USAMK387421MK387409MK387398J11-12onion from county of vestfold, NorwayMK387423MK387411MK387400L57-1-12onion from county of vestfold, NorwayMK387424MK387413MK387402L172-1Aonion from county of vestfold, NorwayMK387424MK387414MK387403SL6onion from form county of vestfold, NorwayMK387422MK387414MK387403SL6onion from form county of vestfold, NorwayMK38742MK387414MK387403SL6onion from form form form formMK38742MK387414MK387403MK387404form form form form form form form formMK38742MK387414MK387403

Table S2 Accession numbers for sequences used in multilocus sequence analysis

	Cull Survey 508		<u>Random Surve</u> y <u>89</u> 8	
Total Number of Bulbs				
	Symptomatic	Non-Symptomatic	Symptomatic	Non-Symptomatic
Total Number of Bulbs	<mark>477</mark>	<mark>31</mark>	<mark>150</mark>	<mark>748</mark>
No bacteria isolated	<mark>63</mark>	<mark>21</mark>	<mark>12</mark>	<mark>564</mark>
<mark>Rahnella</mark> spp.	<mark>136</mark>	<mark>0</mark>	<mark>25</mark>	<mark>9</mark>
<mark>Enterobacter</mark> spp.	<mark>62</mark>	<mark>1</mark>	<mark>47</mark>	<mark>34</mark>
<mark>Pseudomonas</mark> spp.	<mark>138</mark>	<mark>2</mark>	<mark>53</mark>	<mark>28</mark>
<mark>Burkholderia</mark> spp.	<mark>52</mark>	<mark>0</mark>	<mark>31</mark>	<mark>77</mark>
Pantoea spp	<mark>3</mark> 6	<u>0</u>	<mark>4</mark> 1	<u>5</u> 5
Bacteria co-isolated with Rahnella				
Nothing or multiple <i>Rahnella</i> strains	<mark>55</mark>		<mark>7</mark>	<mark>2</mark>
Unidentified bacteria only	<mark>26</mark>	<mark>0</mark>	<mark>1</mark>	<mark>2</mark>
<mark>Pseudomonas</mark> spp. only	<mark>23</mark>	0	<mark>7</mark>	<mark>0</mark>
<mark>Enterobacter</mark> spp. only	<mark>6</mark>	0	1	1
<mark>Pantoea</mark> spp. only	<mark>2</mark>	<mark>0</mark>	<mark>1</mark>	<mark>0</mark>
<i>Burkholderia</i> spp. only	<mark>1</mark>	<mark>0</mark>		<mark>2</mark>
<mark>Citrobacter</mark> sp.	<mark>0</mark>	<mark>0</mark>	2	<mark>0</mark>
Klebsiella sp.	<mark>0</mark>	<mark>0</mark>		<mark>0</mark>
Multiple other bacteria Isolated	<mark>5</mark>	<mark>0</mark>	<mark>5</mark>	<mark>2</mark>

Table S3 Genera recovered from surveys of diseased and healthy onion bulbs in USA

