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Abstract This paper investigates a peculiar case of thermal convection in a
vertical porous prism with impermeable and partially conducting walls. We
facilitate the analysis in the numerical finite element environment alongside
with analytical considerations, in special cases where direct solutions are fea-
sible. The present eigenvalue problem results in a non-normal mode behaviour
in the horizontal cross-sectional plane. Further, it is identified that the stagna-
tion points for the horizontal flow are displaced from the extremal points of the
temperature perturbation, for both symmetric and antisymmetric eigenfunc-
tions. In addition, the corresponding normal-mode counterparts are provided
from an analogy solution. We show that the critical Rayleigh number decreases
with increasing Robin parameter values for all of the investigated aspect ra-
tios. Finally, the influence of the aspect ratio on the critical Rayleigh number
for the fully conducting wall case is identified. An asymptotic benchmark case
of the Robin condition is validated from well known analytical solutions which
confirms the effectiveness of the predictions made in this paper. In fact, this is
the first contribution that reports a three-dimensional geometry with a two-
dimensional non-normal mode.
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1 Introduction

The Horton-Rogers-Lapwood (HRL) problem for the onset of convection in a
horizontal porous layer has a two-dimensional (2D) structure for the mathe-
matical solution, even though the physical problem is 3D. The general solution
is a superposition of individual 2D Fourier modes (Horton and Rogers [1], Lap-
wood [2]). Any Fourier mode of convection onset is 2D in a vertical (z, z) plane
aligned with its wave number vector. This is a trivial degeneracy in dimension
due to the lack of boundaries in the horizontal plane.

The HRL problem has two types of degeneracy. (i) The solution in the
vertical direction is a normal mode. (ii) A Fourier element of the solution in
the horizontal direction is by definition a normal mode. Since normal modes
are governed by a second-order equation, these degeneracies are essentially
reductions from 4th order to 2nd order for the full eigenvalue problem.

The challenges of bringing more generality and physical realism into the
HRL solution are two-fold: (1) To provide the need for a 3D solution, by con-
sidering a finite 3D porous medium. A vertical cylinder is a natural case to
consider (Wooding [3]). (2) To provide mathematical solutions that are not of
the normal-mode type. Any solution that is not of normal-mode type confirms
that the eigenvalue problem is a genuine fourth-order problem. As soon as a
normal-mode type of solution applies, the problem reduces to an essentially
second-order problem. A number of papers have been written on porous cylin-
ders, with normal modes as the natural starting point. Beck [4] and Zebib [5]
carried out the details of the theory by Wooding [3], for a rectangular box
and a circular cylinder, respectively. Wooding [3] had pointed out the neces-
sity of degeneration in the boundary condition, where thermal and mechanical
conditions coincide mathematically.

Tyvand and Storesletten [6] developed from first principles the restrictions
for the normal-mode class of solutions for vertical cylinders. They solved the
problem of a vertical cylinder with a triangular cross-section. Only the simple
case of a right-angle isosceles cylinder was considered. The equilateral triangle
is another cross-section for which exact analytical eigenfunctions can be found
of the Helmholtz equation. This more complicated solution is known from the
theory of vibrating membranes in elasticity. Barletta and Storesletten [7] have
written the only paper where a cylinder with an elliptical cross-section has
been studied. For mathematical convenience, they chose the Dirichlet condi-
tions of open/conducting cylinder walls instead of the classical case of imper-
meable/insulating cylinder walls.

There exists only a handful of papers that treat the onset problem in
a 3D porous medium where the normal-mode type of spatial dependence is
challenged. Haugen and Tyvand [8] wrote the first paper on a vertical porous
cylinder full-normal dependency in the radial direction of the circular cross-
section. This model was generalized by Nygard and Tyvand [9] to account
for partial conduction and partial penetration at the cylinder walls. In the
present paper, we study the same type of model for a triangular cylinder, with
the Robin-type condition of partially conducting cylinder walls.
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Our problem contrasts the circular cross-sections, where the azimuthal sep-
arability of the eigenfunctions restricts the non-normal mode dependency to
the 1D radial direction only. Non-normal modes in 1D can be studied analyti-
cally. Our triangular cross-section results in 2D non-normal modes that cannot
be separated in space, where no analytical methods are known.

The study of 1D non-normal modes for the HRL problem started with Nield
[10] who solved the onset problem with all possible Dirichlet and/or Neumann
conditions for the temperature perturbation and the vertical velocity at the
lower and upper boundaries. Barletta et al. [11] extended Nield’s analysis for
the HRL problem by allowing general Robin conditions at the lower and upper
boundaries. 2D non-normal modes for the HRL problem is a new challenging
topic. Tyvand et al. [12] has solved a 2D problem of non-normal modes in a
vertical rectangle. In the present paper, we carry this type of analysis further
by considering a fully 3D problem of a vertical cylinder, with normal-mode
dependency in the vertical direction. By spatial separation, we will have a
non-normal modes dependency the horizontal cross-section plane.

The significance of the present paper is that it is the first theoretical study
of a three-dimensional Darcy-Bénard eigenvalue problem with full non-normal
dependency over the horizontal cross-section of a cylinder. The present type of
modeling has the disadvantage that no analytical solution methods are known.
The advantage is that more physical realism can be included in the boundary
conditions, compared with the implicit degeneracy of the existing models based
on normal modes.

2 Mathematical formulation

A three-dimensional porous medium is bounded by horizontal planes z = —h /2
and z = h/2. The porous medium is homogeneous and isotropic. Cartesian
coordinates (x,y, z) are introduced. The z axis is directed vertically upwards.
We will consider a vertical cylinder, noting that the linear theory has been
established both for impermeable insulating walls (Wooding [3]), and for open
conducting walls (Barletta and Storesletten [7]). We will here develop the
general linear theory for vertical cylinders with impermeable and thermally
conducting walls, and we will perform calculations for the case of an isosceles
triangular cylinder. We will allow a thermal Robin condition for the cylinder
wall, whereby the standard case of impermeable adiabatic walls (Wooding [3])
arises as a limit case.

The velocity vector v has Cartesian components (u, v, w). The temperature
field is represented as T'(x,y, z,t) with ¢ denoting time. In the undisturbed
state, the lower plane z = —h/2 is kept at a constant temperature 7' = T,
and the upper plane z = h/2 is kept at a constant temperature T' = Ty — AT
Here AT is a positive temperature difference. The gravitational acceleration
g is written in vector form as g.
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The standard Darcy-Boussinesq equations for free thermal convection in a
porous medium can be written

VP + %V +poB (T —To)g =0, (1)
V.v=0, (2)

oT
(Pcp)ma + (pCp)f v -VT = )\mV2T, (3)

In these equations, P is the dynamic pressure, 3 is the coefficient of thermal
expansion, p = pg is the fluid density at the reference temperature Ty, u
is the dynamic viscosity of the saturating fluid, K is the permeability, c, is
the specific heat at constant pressure, and )\, is the thermal conductivity of
the saturated porous medium. The subscript m refers to an average over the
solid/fluid mixture, while the subscript f refers to the saturating fluid alone.

The lower and upper boundaries support a given temperature difference
AT across the porous layer. The undisturbed basic state of pure conduction
has the boundary temperatures

T =Ty+ AT, at z=0—h/2, (4)

T="Ty, at z=h/2. (5)

Ty is a reference temperature. These boundary temperatures will be main-
tained also when the basic state is disturbed with infinitesimal perturbations.
The kinematic conditions for the impermeable lower and upper boundaries

are
w=0, at z=—h/2, (6)

w=0, at z=~h/2. (7)

Figure 1 shows definition sketches for a vertical enclosure with the trian-
gular cross-section which will be our calculated example.
2.1 Dimensionless equations

From now on we work with dimensionless variables. We reformulate the math-
ematical problem in dimensionless form by means of the transformations

1 h
B(x,z) = (x,2), —(u,v,w)—= (y,v,w), hV =V,
Rm
1 K (pcp) plim
— (T — T, T — (P — P, P — t
AT( 0) — 4, Mﬁm( 0) — I (pcp)th — 1,

(8)

where K, = Ap/(pocp)s is the thermal diffusivity of the saturated porous
medium. We denote the vertical unit vector by k, directed upwards.
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Fig. 1 Definition sketch of a vertical porous enclosure with triangular cross-section. The
investigated mid plane is indicated.

The dimensionless governing equations can then be written

v+ VP —-RTk =0.

(9)
V-v=0

(10)
oT
— VT =V*T
5tV VT =V°T,

(11)
with the boundary conditions of impermeable and conducting lower and upper
horizontal planes

w=T—-1=0, z=-1/2, (12)
w=T=0, z=1/2.
Here the Rayleigh number R is defined as

R — 70 .

[hm

(14)
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Fig. 2 Illustration of the governing equations and corresponding boundary conditions of
the 2D coupled eigenvalue problem.

2.2 Basic solution

The stationary basic solution of eqs. (9)-(13) is given subscript ”b”.

1 1
VbZO, Tb:§—z, Pb:§RZ(1—Z). (15)

This basic state has a linear temperature profile.

2.3 Linearized perturbation equations
In our stability analysis we disturb the basic state (15) with perturbed fields
v=vy+v, T=Ty(2)+6, P=Py(2)+p. (16)

where the perturbations v, @, p’ are functions of z,y, z and t. Linearizing egs.
(9)-(11) with respect to perturbations and eliminating the pressure gives

V2w = RV36, (17)
68—(;) —w = V?6. (18)

We assume that the preferred flow at onset of convection is non-oscillatory.
Then the heat equation (18) reduces to

—w = V?0. (19)

Since the vertical component of the vorticity is zero, and the flow is incom-
pressible, one single scalar function ¥(x,y, z) is sufficient for representing the
entire 3D thermomechanical vector field. The velocity field is

v=Vx(Vxk?), (20)
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where k is the unit vector in the vertical direction. The components of this
vectorial relationship are
02w 9w 9
u,v,w) = =—,=——,—Vi¥ |, 21
( ) (8%82 Oy0z ! ) 1)

where the operator Vi = (9/0x,0/0y) has been introduced. The perturbation
temperature is given by

0 =-R V. (22)

2.4 Degeneracy separating out the vertical direction

The thermomechanical conditions in the vertical direction makes the general
cylinder problem degenerate in the vertical direction, as pointed out by Tyvand
and Storesletten [6]. We can therefore write

U(xz,y,2) = (x,y)cos(rz), (23)

O(z,y,2) = 0(x,y) cos(m2), (24)

already before we introduce the homogeneous boundary conditions at the ver-
tical cylinder walls. Here we have picked only the most unstable mode in the
vertical direction. The degeneracy in the vertical direction induces a common
cosine variation which is the solution of the second-order Helmholtz equation
for the vertical direction, replacing the full non-degenerate fourth-order dif-
ferential equation. This degeneracy is a necessity to allow separability of the
vertical dependency from the horizontal eigenfunction that we will study, with
a full fourth-order dependency in the horizontal plane, not separable in x and
Y.

From egs. (23) - (24) the thermomechanical eigenfunctions are expressed
by the separated relationships

(u,v,w) = — (ﬂ' sin(ﬂz)g—ﬁ,ﬂ'sin(ﬂ'z)g—zj,cos(ﬂz)Vf > , (25)
0 =R (7% — Vi), (26)

after inserting the leading vertical normal mode (n = 1) into egs. (21)-(22).
It is physically consistent that the vertical variation of the horizontal veloc-
ity components have their maxima at the lower and upper boundaries. The
corresponding maxima for the vertical velocity and the temperature pertur-
bation are of course located in the middle of the layer, at z = 1/2. The theory
that is developed so far, allows any mathematically consistent homogeneous
thermomechanical condition to be posed at the cylinder walls.
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2.5 Boundary conditions at cylinder walls

We will now introduce a choice of thermomechanical conditions at the vertical
cylinder walls, without specifying the shape of the cylinder cross-section. As
thermal boundary condition we take a general Robin condition

0+amn-VO=0, atthe cylinder contour, (27)

where a > 0 is a dimensionless parameter of partial conduction. This condi-
tion was derived by Nygard and Tyvand [13], assuming that there is a thin
cylindrical layer separating the thermoconvective flow domain of the porous
cylinder from a surrounding medium that is perfectly conducting. As kinematic
condition we take the simple condition of impermeable walls

n-v =0, at the cylinder contour, (28)

where n is the horizontal unit normal vector on the cylinder surface, pointing
out from the porous cylinder.

3 The 2D eigenvalue problem

We will now formulate and solve the 2D eigenvalue problem for the horizontal
perturbation temperature field (z,y) as it is coupled to the poloidal vector
potential ¥(x,y). The set of second-order governing equations is

(VP—m ) +R6O=0, (29)

V2 = (V? — 12)6. (30)

which can be decoupled to give a fourth-order problem in ¢(x,y) alone.
(V2 = 72)2 + RV?)p = 0, (31)

where we now have omitted the subscript on the horizontal operator V =
(0/0x,0/0y). We introduce the notation d/0n = n - V. For the numerical
solution procedure, it is preferable to keep the couplings between the eigen-
functions ¥ (z,y) and 6(z,y).

The thermal Robin condition is

<1 + a(f) 6 =0, at the cylinder contour, (32)
n

while the kinematic condition of impermeable cylinder walls is

0
% =0, at the cylinder contour. (33)

Hereby the general formulation is completed, before looking at a given cross-
section shape. The circular shape with conducting wall has been treated by
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Haugen and Tyvand [8], and extended to mixed (Robin-type) thermomechani-
cal wall conditions by Nygard and Tyvand [9]. Bringedal et al. [14] have treated
the case where the cylinder cross-section is a hollow circle. We are not aware of
any previous publications that have analyzed non-circular cross-sections, with
wall conditions that are incompatible with normal modes.

Figure 2 provides a definition sketch for the coupled eigenvalue problem
that is valid in the 2D cross-section. The dimensionless parameters (aspect
ratio L and Robin number a) are indicated in the sketch. Our analysis spans
a wide variety of values for L and a, allowing physical realism for the non-
degenerate fourth-order problem, in contrast to the inherent limitations of the
previous normal-mode solutions. In particular, the conducting wall (a = 0) is
the physically most important case, but we include other values of the Robin
parameter (a), which also shows the transition to a case where the analytical
solutions are well-known. Initially, we concentrate on the intermediate case
L = 1 because it represents the preferred length scale of the classical HRL
problem and highlights the differences between normal modes and non-normal
modes.

4 Triangular cross-section

So far, we have developed a theory for the onset of convection in porous cylin-
ders where the cross-section shape has not been specified. We are most inter-
ested in cases where analytical solutions exist for certain limit values of the
Robin parameter a. Such solutions are of normal-mode type, and require that
the fourth-order eigenvalue problem in the horizontal direction degenerates to
a second-order problem governed by the Helmholtz equation. With the present
model, this is possible only for the limit a — oo, where the wall conditions
become compatible with normal modes. There are several classes of triangular
cylinders where the Helmholtz equation has analytical solutions, but here we
will consider only one case.

The thermal eigenfunctions show warm upwelling domains and cold down-
welling domains of the cross-sectional plane. Strict upwelling as well as strict
downwelling occur in stagnation points for the horizontal flow, defined by

V| =0, (34)

which represents points with vanishing absolute value of the horizontal velocity
vector. Graphically we introduce small green circles around the points where
the velocity is purely vertical, as defined by eq. (34). The points of strict
upwelling points must be located in the warm domains of positive temperature
perturbation, but as we will see, pure upwelling does not coincide with a
local maximum for the temperature perturbation. Only a normal-mode type
solution will have strict upwelling or downwelling coinciding with extremal
points for the temperature, which is implied by the eigenfunctions for the
perturbation temperature and the vertical velocity being identical. Degeneracy
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of the fourth-order eigenvalue problem to an essentially second-order problem
is necessary to allow normal modes.

In the present paper, we will only study the right-angle isosceles triangle,
which has simple analytical solutions of the Helmholtz equation, constituting
normal modes, which in our case will be the valid limit solution for the limit
of adiabatic walls a — oco.

The case of an equilateral cylinder can also be solved analytically for the
normal-mode limit case a — o0o. Such mathematical solutions have been es-
tablished in the context of oscillating membranes.

4.1 The right-angle isosceles triangle

Tyvand and Storesletten [6] developed the simple normal-mode solutions for
the right-angle isosceles triangle with boundary conditions that lead to de-
generacy. The corners of the triangle in the z,y plane are termed O, A and
B, with dimensionless coordinates (0,0) (the origin), (L,0) and (0, L), re-
spectively. Here L serves as the aspect ratio of the cylinder with a triangular
cross-section.

We will now solve numerically the problem where the cylinder walls are im-
permeable with thermal Robin condition. No analytical solution exists for finite
values of a, and we apply the commercial finite-element code Comsol Multi-
physics. An eigenvalue solver with search algorithm estimates a pre-selected
number of the adjacent eigenvalues around zero based on their convergence,
and they are then classified based on their absolute eigenvalue number. The
value a = 0 for the Robin parameter represents conducting cylinder wall. Fig-
ures 3 and 5 show the thermal eigenfunctions in the horizontal cross-section
plane for L = 1, ordered according to their Rayleigh numbers of marginal
stability. Figure 3 shows modes that are symmetric with respect to the mid-
line that cuts the isosceles triangle in two smaller isosceles triangles. Figure 5
shows modes that are antisymmetric with respect to the same mid-line. We
have not included full plots for the eigenfunctions of the flow, but we pick only
the stagnation points for the horizontal flow, which are marked with small
green circles. These circles represent points where the velocity field has only a
vertical component. A green circle in a red domain represents a spot of strict
upwelling, while a green circle in a blue domain represents a spot of strict
downwelling. These green circles give hints concerning the physical signifi-
cance of non-normal modes because any normal-mode solution for a vertical
cylinder will give strict upwelling/downwelling exactly at the extremal points
for the temperature perturbation.

Figures 4 and 6 provide immediate comparisons with the corresponding
analogy solutions of the normal-mode type. These analogy solutions of the
normal-mode type were derived by (Tyvand and Storesletten 2018), and are
given by
nmw mn(L—y) . nn(L—x)

® sin Ty — sin 7 sin 7 . (35)

O (z,y) = sin
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a)R=129.27

Fig. 3 Symmetric isotherms for conducting impermeable cylinder where L = 1. Plots are
given in the order of increasing Rayleigh numbers (R). Green circles indicate points with
zero horizontal velocity.

N

a) R=71.065 b) R = 148.82 c)R=188.12

Fig. 4 Symmetric normal-mode eigenfunctions with Dirichlet wall conditions (L=1). The
pair of horizontal mode numbers (m,n) are specified in each case. Green circles indicate points
with zero horizontal velocity. a) (m,n) = (1,2), b) (m,n) = (2,3), ¢) (m,n) = (1,4), d)
(m,n) = (3,4)

where the mode numbers m and n are positive integers with m # n. Figure 4
gives the symmetric thermal eigenfunctions that are the normal-mode analo-
gies of the symmetric non-normal mode solutions of Figure 3. Figure 6 gives
the antisymmetric thermal eigenfunctions that are the normal-mode analogies
of the antisymmetric non-normal mode solutions of Figure 5. These normal-
mode solutions represent a conducting cylinder wall that is open to free flow
in and out from a surrounding reservoir. See Barletta and Storesletten [7],
who derived such normal-mode solution for a cylinder with an elliptical cross-
section, where the cylinder walls are open and thermally conducting cylinder.
The analogy solution (35) is a degenerate solution for a 4th order eigenvalue
problem, in contrast to our numerical non-normal mode solution for an irre-
ducible 4th order problem. The thermal conditions are the same for the exact
problem and its analogy problem, which indicates that the respective ther-
mal eigenfunctions may be comparable. There are no other differences than
the mechanical conditions for the flow. The exact problem has impermeable
cylinder walls, while the analogy problem of the normal-mode type has open
cylinder walls where there is free flow in and out from a surrounding reservoir.

Each normal-mode type thermal eigenfunction 6,,, given in eq. (35) has
the same shape as the corresponding eigenfunction for the vertical velocity
distribution ws,, (x,y) over the cross-section area, where the degeneracy rep-
resents cylinder walls that are open to a surrounding reservoir so that the w
cancels along the triangular cylinder contour. The subscripts m and n refer
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a) R=143.33 b) R = 237.95 c) R =296.34 d)R=37277

Fig. 5 Antisymmetric isotherms for conducting impermeable cylinder where L = 1. Plots
are given in the order of increasing Rayleigh numbers (R). Green circles indicate points with
zero horizontal velocity.

% %

a)R = 119.43

b) R =217.65 c)R=276.78 d) R =355.68

Fig. 6 Antisymmetric normal-mode eigenfunctions with Dirichlet wall conditions (L=1).
The pair of horizontal mode numbers (m,n) are specified in each case. Green circles indicate
points with zero horizontal velocity. a) (m,n) = (1, 3), b) (m,n) = (2,4), ¢) (m,n) = (1,5),
d) (m,n) = (3,5)

to the two wave-number components in the x and y direction from which the
normal-mode type solution is constructed.

No mode numbers exist for the non-normal mode solutions. It is therefore
interesting to try to associate each non-normal mode with a corresponding
normal-mode analogy. When we compare the symmetric modes in Figures 3
and 4, we find that only the first three modes are comparable. The antisym-
metric modes in Figures 5 and 6 are more closely linked since each of the
four displayed non-normal modes is reasonably analogous to its normal-mode
counterpart. The analogy solution (35) is not useful for benchmarking. The
comparisons in Figures 3-6 between non-normal modes and the normal modes
of eq. (35) are merely analogies, without any benchmarking.

However, there is another normal-mode limit solution that we can use for
quantitative benchmarking (Tyvand and Storesletten [6]),
mr(L—y)x  nn(L—x)

T eos MY 1 cos cos , (36)

Orn (2, y) = cos T T 7 T

where the mode numbers m and n are non-negative integers, where m—+m > 0.
The legal solutions where either m or n is zero while the other one is a positive
integer were erroneously excluded from the family of solutions displayed by
Tyvand and Storesletten [6], so they are reintroduced in the present paper.
This analytical normal-mode limit solution represents adiabatic impermeable
walls, and it applies to our limit case a — co. We will pick a number of values
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a)a=0.03 b)a=0.3 c)a=3.0 d)a=00
R =128.69 R =79.81 R =46.64 R =39.48

Fig. 7 Antisymmetric isotherms for conducting impermeable cylinder where L = 1. Plots
are given in the order of increasing Robin number (a). Green circles indicate points with
zero horizontal velocity.

for a to see how the thermal eigenfunctions gradually approach the known
analytical limit solution (36) as a increases.

Benchmarking for the thermal eigenfunctions are visualized in Figures 7
and 8. Here we show the two eigenfunctions with the lowest Rayleigh number
for L = 1, increasing the Robin parameter a, The value a = 0 is omitted here
since it has already been displayed in Figure 3 (symmetric) and Figure 5 (an-
tisymmetric). We display the eigenfunctions for the values a = 0.03,0.3,3 and
a = oo, where the last case is the normal-mode solution (36). Figure 7 shows
the antisymmetric eigenfunction with the lowest value for R for each choice of
a. Figure 8 shows the symmetric eigenfunction with the lowest eigenvalue for
R, and it is smaller than the eigenvalue for the antisymmetric eigenfunction
when a is small. When a is large, the situation changes so that the antisymmet-
ric eigenfunction has the smallest eigenvalue for R and represents the preferred
mode for the onset of convection.

Figures 7 and 8 show how the thermal eigenfunctions gradually change their
nature with increasing Robin parameter a. At ¢ = 0 we have the Dirichlet
condition of zero perturbation temperature, while the limit a = oo is the
Neumann-type adiabatic wall condition. The important qualitative change is
that the isotherms are tangents to the boundary of the triangle at the lower
(Dirichlet-type) limit a = 0 for the Robin parameter, while the isotherms are
perpendicular to the boundary at the upper (Neumann-type) limit a = co.

As a increases, the green circles of upwelling/downwelling move from being
off-centre of the local temperature maxima to coincide with these temperature
maxima at a = oo, which is the mathematically degenerate limit case where
the solution is of normal-mode type. The Neumann condition of adiabatic
walls causes all these temperature maxima to be located along the boundary
of the triangle, as far as the two lowest modes are concerned.

We note that the type of onset eigenfunction that gives the critical Rayleigh
number will vary when we vary the parameter a. It is known from earlier work
that the shape of the eigenfunction will also vary with the horizontal side
length L.
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OGN

a)a 0.03 b)a=0.3 c)a=3.0 d)a= 00
R =122.03 R =82.52 R =50.10 R=44.42

Fig. 8 Symmetric isotherms for conducting impermeable cylinder where L = 1. Plots are
given in the order of increasing Robin number (a). Green circles indicate points with zero
horizontal velocity.

4.1.1 The Rayleigh number at marginal stability

The critical Rayleigh number R. as a function of L and a will now be calcu-
lated, for the chosen cross-section of a right-angle isosceles triangle. We have
an analytical formula only for the asymptotic limit a — oo, given by

\/Ezw%ig \/ ++<\/ )1 : (37)

being derived by Tyvand and Storesletten [6]. Again we must correct their
application of this formula, noting that all nonzero combinations of the integers
m and n are legal, as long as they are not both zero. This also means that
the onset criterion (37) coincides exactly with the criterion for the onset of
convection in cylinders with a square cross-section, which was given by Beck
[4] as a subset of his general solution for a rectangular cylinder.

Figures 9-11 show how the Rayleigh number R at marginal stability de-
creases with increases Robin parameter a for increasing values of L. The nu-
merical search looks for the five lowest Rayleigh numbers at each aspect ratio,
and they are classified based on their absolute value. As a result, the curves will
never overlap (even though the individual eigenfunctions switch between the
different classifications). A general trend is that the Rayleigh number always
decreases with increasing a, which is plausible since increasing a represents an
enhanced loss of heat by conduction through the impermeable cylinder walls.
Loss of heat reduces the buoyancy that drives the flow, which explains why
the marginal Rayleigh number decreases with increasing a.

Figure 9 represents a slender cylinder with L = 1/3, where the Rayleigh
numbers are large when the wall is highly conductive (small a). Figure 10 shows
the case L = 1, which has served as a reference case in our investigations above.
We know from Tyvand and Storesletten [6] that the classical value R, = 472
appears for L = 1, but only in the limit a — oo, for the lowest mode. This
result is confirmed in Figure 7 (d). Figure 11 shows a short cylinder with
L = 3, where the Rayleigh number is small for a number of modes since the
modes become almost periodic when the length scale of the triangle exceeds
the length scale of the preferred modes.
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Fig. 9 Numerical search of the 5 lowest Rayleigh numbers as a function of the Robin number
with aspect ratio L = 1/3. The x-axis has a logarithmic scale.
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Fig. 10 Numerical search of the 5 lowest Rayleigh numbers as a function of the Robin
number with aspect ratio L = 1. The x-axis has a logarithmic scale.

Figures 12-14 show how the Rayleigh number at marginal stability varies
with the aspect ratio L for three given values of the Robin parameter of partial
conduction (a). Figure 12 represents a = 0, which is the case of a conducting
cylinder wall. The same condition for a circular cylinder was studied by Haugen
and Tyvand [8], and we note the important differences between the circle and
our triangle. The circular case allows separation of variables in the azimuthal
and radial directions. The ordinary differential equation in the radial direction
is solvable analytically for circular geometry, while no analytical methods are
known for the same eigenvalue problem for the triangle.

Haugen and Tyvand [8] found that the axisymmetric mode is preferred for
all aspects ratios when the cylinder cross-section is circular. Our correspond-
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Fig. 11 Numerical search of the 5 lowest Rayleigh numbers as a function of the Robin
number with aspect ratio L = 3. The x-axis has a logarithmic scale.
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Fig. 12 Numerical search of the 5 lowest Rayleigh as a function of the aspect ratio (L) at
zero Robin number, a = 0 (fully conducting impermeable wall).

ing Figure 12 does not have a similar possibility since there is no such thing
as axisymmetry for a triangular cross-section. Therefore, the type of mode
that is preferred will vary with the parameter values of a and L, which is
revealed in Figures 9-14. The numerical method does not track the individual
onset modes when L varies in Figures 12-14, but picks the five lowest modes
for each parameter choice. Therefore we see that individual solution branches
cross one another several places, even though this fact is disguised by trunca-
tion errors in the numerical method. Tyvand et al. [12] misinterpreted these
numerical truncation errors, and stated that the individual modes do not cross
one another in the diagrams of the marginal Rayleigh number as a function of
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Fig. 13 Numerical search of the 5 lowest Rayleigh numbers as a function of the aspect ratio
(L) at unity Robin number, a = 1 (partially conducting impermeable wall).
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Fig. 14 Numerical search of the five lowest Rayleigh numbers as a function of the aspect
ratio (L) at infinite Robin number, a = co (fully insulating impermeable wall). Comparison

is made with coinciding analytical solutions (Tyvand and Storesletten 2018), which extend
the curves of the numerical solutions.

L. Figure 13 gives a clear indication of the individual curves for non-normal
modes will cross one another, for the case of partial conduction where a = 1.
The final case of Figure 14 is a = oo, which coincides with the second case
(Neumann condition) of the normal-mode solutions displayed by Tyvand and
Storesletten [6]. The calculated cases of the five lowest eigenmodes are com-
plemented with dashed curves from Tyvand and Storesletten [6], represented
in the present paper by eq. (37). Again we make the correction that all com-
binations of non-negative integers m and n where the sum m +n > 0 must
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be included. With this correction, the present results agree almost fully with
Tyvand and Storesletten [6], apart from the small gaps that arise in these plots
at the points where the graphs of individual normal modes cross one another.
The analytical theory has proven that these individual curves cross one an-
other. Since the dependency of a is smooth as far as the Rayleigh number is
concerned, we find it likely that individual non-normal modes also cross one
another in many occasions.

Figures 7 and 8 above have already identified such a case, where an anti-
symmetric onset mode takes over for the symmetric mode as the most unstable
onset mode as the Robin parameter a exceeds a value of order 0.1. We do not
give the exact value for a above which the antisymmetric non-normal mode
takes over, but find it sufficient to compute the marginal Rayleigh numbers
at a = 0.1: The symmetric mode gives R = 107.95, while the antisymmetric
mode R = 106.05. These numbers are fairly close to one another, showing that
the switch to antisymmetric has already taken place, at a value of a slightly
below 0.1.

5 Summary and conclusions

The topic of the present paper is the fourth-order Darcy-Bénard eigenvalue
problem for the onset of thermal convection in a vertical porous prism with
impermeable walls. The three-dimensional problem is analyzed numerically in
a reduced two-dimensional form. The conditions of impermeable upper and
lower boundaries kept at constant temperatures separate out the vertical de-
pendency, resulting in a 2D eigenvalue problem for the cross-section of the
enclosure. A Robin-type thermal boundary condition of partial conduction is
applied at the cylinder wall.

A general formulation is given for an arbitrary cross-section of the vertical
cylinder, but numerical computations are given only for a triangular isosce-
les right-angle cross-section. The non-normal mode eigenfunctions gradually
change their physical nature as the Robin parameter of partial conduction in-
creases. In the limit of infinite Robin parameter, the solution converges to the
normal-mode solution known from Tyvand and Storesletten [6]. This is the
standard Neumann condition of a thermally insulating wall, first investigated
by Wooding [3].

The non-normal mode behaviour of the thermal eigenfunctions for the tri-
angular porous cylinder displaces the horizontal stagnation points away from
the extremal points of the temperature perturbation. In fact, these displace-
ments are qualitatively significant, since a normal-mode dependency in the
horizontal cross-section domain will generate zero horizontal velocity exactly
at the extremal points for the temperature perturbation. Moreover, at these
stagnation points for the horizontal velocity, the velocity is vertical. They may
represent either a hot spot of upwelling or a cold spot of downwelling.

The critical Rayleigh number decreases with increasing value of the Robin
parameter value for all the cases investigated. This is plausible because enclo-
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sure walls with higher Robin parameter have the destabilizing effect of reduced
heat loss. The critical Rayleigh number varies smoothly with the aspect ratio
in the fully conducting wall case, but irregularities are observed as the Robin
parameter increases.

The presented results in this paper have been validated from two types of
cases where known analytical normal-mode solutions exist. First, a qualitative
comparison of the eigenfunctions for a conducting wall is provided. We high-
light them to cover the similarities with the discrete Fourier mode numbers
that constitute a normal mode solution. Next, a benchmarking comparison is
made with the normal-mode solution, which is asymptotically valid for infinite
Robin parameter.

Earlier work on vertical porous cylinders with fully or partly conduct-
ing boundaries have been restricted to circular geometries where the prob-
lem separates in space, leading to a one-dimensional eigenvalue problem in
the horizontal radial direction. With a triangular cross-section, the horizontal
eigenfunction is a non-normal mode.

The present analysis provides new scientific insights regarding the be-
haviour of non-normal modes of convection in a triangular cross-section of
a porous prism. This is one of the few geometries where normal modes have
a simple analytical form, while the convection problem is non-separable and
cannot be solved analytically. It proved useful to apply a thermal Robin con-
dition for utilizing the benchmarking possibilities of an analytical solution for
the 2D Helmholtz equation that constitutes normal modes.

In summary, the paper covers the following findings in this study of the
triangular porous enclosure:

— Displacements of the stagnation points in the non-normal mode regime.

— Critical Rayleigh number and eigenfunction dependence of the degree of
partial conduction at the wall boundaries for different aspect ratios.

— Critical Rayleigh number dependency of the aspect ratio of the cylinder

for different degrees of partial conduction at the wall boundaries.

Qualitative and quantitative validations from well known analytical theory.
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