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ABSTRACT 

The World Health Organization states that air pollution leads to 6.4 million premature deaths 

yearly and the number is increasing. Developing gas sensors that can measure air quality is 

therefore important. In this thesis, the potential for using a Capacitive Micromachined 

Ultrasonic Transducers (CMUTs) for air quality monitoring has been evaluated by comparing 

different technologies and commercial products. Especially as a supplement for more complex 

and stationary devices the CMUT stands out as a strong contender compared to more 

established technologies. Compared to other commercial sensors, the CMUT is documented to 

be more sensitive. In addition, the sensor is small-sized and easy to fabricate. The main 

challenge for the CMUT is developing selective layers so it can distinguish between different 

gases with a higher accuracy. 

Sensors can generate a vast amount of data. For the public, this information is nothing more 

than a chaos of numbers. For the CMUT to outcompete other sensors on the commercial 

market, the sensor must translate the data into comprehensive information answering two 

questions: 1) which gases are present and 2) at which concentration. As the second part of the 

thesis an algorithm (Auto-CMUT) was developed to answer these questions. The Auto-

CMUT is an automatic system for pre-processing, classifying and quantifying gases in the air 

based on a Machine Learning approach. Due to lack of data from the CMUT the Auto-

CMUT was applied to data from MOX sensors, which share several properties with the 

CMUT. The results showed that the algorithm performed substantially better on CO 

measurements than on NO2. Based on literature and findings when visualizing the dataset, it 

is likely that this difference is due to a poor selective layer on the MOX rather than the 

algorithm itself. The algorithm obtained scores as high as the best commercial sensors 

evaluated in the first part of the thesis with an R2-score of 0.80 for the CO measurements and 

0.43 for NO2. It was also shown that the regression part of the Auto-CMUT increased the R2-

score with 0.27 for CO and 0.43 for NO2. 

Obtaining extensive datasets for different real-world applications from CMUT sensors should 

be prioritized to increase the performance of the algorithm. In the future, the CMUT should be 

sold developed and sold for specific applications. Checking how chemical degradation 

affect the sensor over time should also be examined further. Overall, the CMUT technology 

combined with an automatic system for translating the sensor output seems like a potential 

competitor on the commercial E-nose market 
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SAMMENDRAG 

Ifølge Verdens Helseorganisasjon fører luftforurensing til 6.4 millioner premature dødsfall 

hvert år og tallet stiger. Utvikling av sensorer som kan måle luftkvalitet er derfor viktig. I denne 

oppgaven ble potensialet for å bruke kapasitive mikromaskinerte ultralyd transdusere (CMUT) 

for og måle luftkvalitet evaluert. I første del av oppgaven ble CMUT teknologien sammenlignet 

med andre teknologier og kommersielle produkter. CMUT står frem som en sterk konkurrent 

sammenlignet med mer etablerte teknologier. CMUT har dokumentert høyere sensitivitet enn 

andre produkter. Sensoren er i tillegg liten i størrelse og enkel å produsere.  Hovedutfordringen 

for CMUT teknologien er utviklingen av selektive lag som kan skille mellom ulike gasser med 

høy presisjon. 

Sensorer generer store mengder data.  For folk flest er denne informasjonen ingenting mer enn 

et kaos av tall.  For at CMUT sensoren skal kunne konkurrere på det kommersielle markedet 

må sensoren svare på to sentrale spørsmål: 1) Hvilke gasser er tilstede i luften, 2) Hva er 

konsentrasjonen til disse gassene. I andre del av oppgaven ble en algoritme (Auto-CMUT) 

utviklet for å svare på disse spørsmålene.  Auto-CMUT er et automatisk system for pre-

prosessering, klassifisering og predikasjon av konsentrasjon av gasser. Grunnet mangel på gode 

data fra CMUT sensoren ble algoritmen testet på et datasett fra en metal oksidert halvleder 

sensor (MOX), som har flere likheter med CMUT sensoren. Resultatene viste at algoritmen 

presterte bedre på CO målinger sammenlignet med NO2. Litteratur og visualisering av resultater 

indikerer at denne forskjellen mest sannsynlig skyldes en lavere selektivitet for NO2 enn CO og 

ikke algoritmen.  Videre viste resultatene at algoritmen oppnådde like gode resultater som de 

beste kommersielle sensorene evaluert i første del av oppgaven med en R2 verdi på 0.80 for 

CO og 0.43 for NO2. Det ble også vist at regresjonssteget i algoritmen økte R2 verdien med 

0.43 for NO2 og 0.27 for CO sammenlignet med rådata fra sensoren.  

For å forbedre sensorens resultater burde det i fremtiden prioriteres og skaffe datasett for ulike 

bruksområder slik at sensoren kan utvikles og selges for spesifikke bruksområder. Hvordan 

kjemisk degradering endrer sensoren over tid må også undersøkes nærmere. 

Hovedkonklusjonen i oppgaven er at CMUT sensoren sammen med et automatisert system for 

håndtering av rådataen har et potensial på det kommersielle markedet for elektroniske neser.  
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ABBREVIATIONS 

Electronic Nose – E-Nose 

CMUT – Capacitive micro machined 

ultrasonic transducer 

PZT – Piezoelectric Transducer 

FBAR - Film Bulk Acoustic Resonator 

SAW – Surface Acoustic Wave Resonator 

QCM – Quartz Crystal Microbalance 

MOX – Metal Oxide Semiconductor 

PCA- Principal Component Analysis 

ML – Machine Learning 

AutoML – Automated Machine Learning 

NN- Neural Networks 

HPO - Hyperparameter Optimization 

DL – Deep Learning 

AI – Artificial Intelligence 

LR – Logistic Regression 

OvR – One-versus-Rest 

RF – Random Forest 

SVM -Support Vector Machines 

RBF – Radial Basis Function 

AQC – Air Quality Control 

Mean Squared Error – MSE 

Proof of Concept – PoC 

NIPH – Norwegian Institute of 

Public Health 

WHO – World Health Organization 

EPA- United States Environmental 

Protection Agency 

AQ-SPEC – Air Quality Sensor 

Performance Evaluation Center 

NO2 – Nitrogen dioxide 

SO2 – Sulphur dioxide 

CO – Carbon monoxide 

CO2 – Carbon dioxide
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1 INTRODUCTION 

In future smart cities, the different sectors such as health, transport, power and surveillance will 

be connected using technology [1, 2]. An important part of this connectivity will consist of 

sensors [3, 4]. Sensors can be used for monitoring air quality both in private homes and 

factories, monitoring food degradation and self-driving cars [5]. These applications are just a 

few examples of the broad use and field of sensors. WHO has stated air pollution to pose a 

critical environmental and human health risk at all parts of the world[6]. Improving systems for 

gas sensing and making them available for a larger part of the population is therefore of great 

importance.  

Throughout history air quality monitoring has been performed by expensive and complex 

technologies including gas chromatography and infrared absorption as these devices have 

yielded the best performances and lowest error estimates. Today, a market for using a higher 

number of sensors for covering bigger areas has emerged. These sensors are intended to be used 

as an addition to the more complex devices, and do not need the same accuracy.  As a result, 

the size, price, and the number of sensors becomes more important [7]. When it comes to price 

and size, several Electronic Nose sensors (E-noses) have shown a considerable advantage over 

the more complex devices.   

Within the field of E-noses, there is a wide range of technologies: Quartz Crystal Microbalance, 

Electrochemical, Thermal Conductivity Detectors and Metal Oxide sensors. This study aims to 

evaluate the commercial potential for capacitive micromachined ultrasonic transducers 

(CMUT).  

The increasing number of sensors will create vast amounts of data. For most people the amount 

of data is overwhelming, and the information is often lost in the chaos. In the last decades, 

machine learning has become the go-to solution when working with big volumes of data [8]. 

This thesis aims to develop and test an algorithm able to translate raw data from chemical 

microsensors into  gas concentration in the air for the end user by using a Machine Learning 

approach.  
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1.1 PROJECT DETAILS 
 Goals 

The goal of the CMUT project is to develop a commercially available air quality sensor based 

on a machine learning approach. This thesis will consist of two parts: 

1: Perform an extensive comparison of different gas sensing technologies and commercial 

Electronic-noses: This part aims to evaluate if the CMUT technology can compete with other 

technologies and sensors on the commercial market. In addition, this section aims to identify a 

reference framework for testing the Auto-CMUT algorithm developed in part two of the thesis, 

by gathering results from commercial sensors. 

2:  Develop an algorithm for handling data from the CMUT sensor: The CMUT will 

generate big data volumes. The sensor needs software that can handle large data volumes in all 

phases of the project. To handle big data volumes a machine learning approach is suggested, 

the algorithm should be capable of: 

1. Pre-processing the data 

2. Classify the gas type when given a sample 

3. Predicting the concentration 

4. Evaluate the model against the the commercial sensors found in part one of the thesis. 

This algorithm is a “Data Scientist in a box” which will work as an automated system handling 

raw data by picking the system architecture with highest performance. The automated system 

will reduce the labour cost in the project along with the number of human induced errors. To 

keep the computational cost low the thesis focuses on developing several simple models with 

different parameter values instead of one algorithm with a high degree of complexity. The 

algorithm developed is further referred to as the Auto-CMUT. 
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Objectives for first part of thesis:  

I) Evaluate the commercial potential for the CMUT technology. 

o Compare the CMUT technology to other technologies on the market. 

o Perform a comparison between different commercial sensor.  The comparison 

should later be used as a benchmark for the CMUT. 

Objectives for second part of thesis:  

II) Develop an algorithm for pre-processing and predicting the concentrations of gases for 

a CMUT sensor in a real-world application. 

o Implementing some of the methods studied in the literature study using python. 

o Make an algorithm that works as automatic as possible. 

o A Proof of Concept will be performed 

o Identify an air quality data repository that can be applied as an early benchmark 

test. 

o Test the algorithm on a dataset obtained from a chemical microsensor 

Secondary goals: 

• Identify and suggest future work in the CMUT project. 

• Suggest ways for improving data quality. 

 

 Limitations 

• Since the samples are collected over a short period of time it’s not possible to know how 

chemical degradation will affect the performance. 

• A limited number of samples. 

• A limited number of gases is forwarded to the algorithm (CO and NO2). 

• The research on CMUT as a gas monitor is limited. 

• The algorithm developed in this thesis is limited to the use of methods for pre-

processing, classification and prediction that are already implemented in Python 
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1.2 THE PROJECT GROUP 

The thesis is part of a development project in collaboration with the Khuri-Yakub research 

group at Stanford University. The group is led by a professor in electrical engineering, Butrus 

T. Khuri-Yakub. This group work with the development of the CMUT sensor for use in various 

applications and is meant as an alternative to the conventional piezoelectric transducers.  

The project is funded by Fluenta, a company that focuses on sensors for gas measurements. The 

company was founded in 1985 and is a global leader in sensors used for flare gas measuring 

with over 75 % of the market [9]. 

A team at NMBU has for the past 2 years performed field tests, produced several feasibility 

studies and is currently working to improve and develop algorithms for pre-processing and 

prediction of the data from the CMUT.  

From autumn of 2018, Frauenhofer Institute for Interfacial Process engineering in Stuttgart 

joined the project group. Frauenhofer has responsibility for coating and testing the second batch 

of CMUTs in a controlled environment 

 Earlier work 

Master Thesis spring 2018: In January – May 2018 the thesis: “CMUT based chemical 

sensor for classification and quantification with machine learning in a real-world application” 

was written by Maureen Byrne.  The thesis was based on data from a field-test performed at 

NMBU in the fall/winter of 2017/2018.  Due to drift in data, and high variability in testing 

conditions this led to a dataset of poor quality which resulted in predictions with high error 

estimates. Due to the poor quality of this dataset it was not used in this thesis. Instead a 

dataset from a MOX sensor with higher data quality was used to perform a Proof of Concept 

on the Auto-CMUT. 
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1.3 AIR QUALITY 

The CMUTs has today sensing layers with selectivity towards SO2, NO2, CO2 and CO. As there 

is no standard for air quality, suggested guidelines from various sources are presented. An 

introduction to the different gasses is given. Carbon Dioxide is not a pollutant and is therefore 

not included in the guidelines. 

Air Quality 

WHO states that air pollution poses a critical environmental and human health risk. This risk 

affects everyone in all countries. In 2016 air pollution was estimated to cause 4.2 million 

premature deaths due to ambient air and 2.2 million due to household air pollution [10]. The 

risk of experiencing air pollution is highest in low and middle income countries [6]. A Broad 

selection of publicised work supports the claim of health risks linked to air pollution [6, 10-12]. 

Despite an increase in deaths related to air pollution, few countries and cities uphold the 

guidelines for pollution from organizations like WHO [12]. 

With the increasing degree of air pollution, interest in air quality measurement has also 

increased. Progress in embedded system and low-cost gas monitors have expanded to the use 

of microsensors in gas monitoring [13]. 

Target gases: An introduction 

Nitrogen dioxide (NO2) has a characteristic brown colour and strong odour. Most of the NO2

appearing in the air is formed as NO and O3 reacts in the air. The main source for NO2 is road 

traffic. Nitrogen dioxide can in some cases convert to nitrate, which is classified as particular 

matter. The gas is especially harmful to asthmatic patients, children and older people [14]. 

Sulphur dioxide is colourless, with a recognizable smell. Most of the SO2 gas originates from 

the burning of fossil fuels. In western countries in recent years the concentration has declined. 

For short-term exposure, an increase in respiratory diseases shown. Few studies have focused 

on the consequences of long-term exposure to SO2, but a correlation between high exposure 

and increased mortality has been shown [14]. 

Carbon monoxide (CO) is a colourless gas that mainly comes from improper combustion of 

organic matter.  Poisoning due to CO causes deaths in many countries, both suicidal and 
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unintentional [15]. Combustion of oil, gas and coal releases significant amounts of CO. The gas 

binds itself to haemoglobin in red blood cells and reduces the amount of oxygen carried in the 

blood [16]. 

Carbon dioxide (CO2) is not considered a pollutant but a greenhouse gas [12]. Increasing 

emissions of CO2 contribute to global warming. The main source for increasing emission come 

from the burning of fossil fuels [17]. As global warming has become an vital topic for many 

people, detecting and measuring CO2 has become important. 

 Recommended guidelines for air quality 

Around the world, there are different health standards regarding the concentration of pollutants 

in air. A comparison for different countries is presented in Table 1.  The Table shows a high 

degree of consensus among WHO and the other countries especially on the guidelines for 

carbon monoxide.  On guidelines for sulphur dioxide, only Norway follows the WHO 

recommendations while China has a limit that is 7.5 times higher. 
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Table 1: The recommended guidelines for SO2, NO2 and CO from various countries and 
organizations [9, 13-15] 

 

 

Pollutant CO NO2 SO2 

 Level Averaging 
time 

Level Averaging 
time 

Level 

 

Averaging 
time 

Europe 10 mg/m3 

(8.7 ppm) 

8 hours 50 µg/m3 

(27 ppb) 

24 hours 

 

125 µg/m3 

(48 ppb) 

24 hours 

USA (10.3 
mg/m3) 

9 ppm 

8 hours (100 µg/m3) 

53 ppb 

1 year (75 µg/m3) 

75 ppb 

1 hour 

China 4 mg/m3 

(4 ppb) 

24 hours 40 µg/m3 

21 ppb 

1 year 150 µg/m3 

(57 ppb) 

24 hours 

WHO 

 

(7mg /m3) 

7 ppb 

(indoor) 

24 hours 40 µg/m3 

(21 ppb) 

1 year 20 µg/m3 

(7.7 ppb) 

 

24 hours 

Norway (10 mg/m3) 

10 ppb 

8 hours 40 µg/m3 

(21 ppb) 

1 year 20 µg/m3 24 hours 
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2 COMPARISON OF TECHNOLOGIES AND COMMERCIAL SENSORS 

This section aims compare the CMUT technology to other E-nose technologies on the market. 

It also explains the working principle for a selection of technologies and how this combined 

with machine learning can give us an inexpensive microsensor with low error estimates. Lastly 

a comparison of commercial E- nose devices is conducted to set a benchmark for the CMUT. 

2.1 GAS SENSORS: E-NOSES 

The first design of an electronic nose sensor was published in 1982. The design combined 

several chemical sensors together with pattern recognition [18]. In literature, different 

definitions of E-noses can be found, but one of most well-known definitions comes from 

Gardner and Bartlett [19] 

“An electronic nose is an instrument, which comprises an array of chemical sensors with 

partial specificity and an appropriate pattern recognition system, capable of recognizing 

simple or complex odours.” 

E-noses are based on the definition an array with multiple sensor. These sensors are selective

to different chemical compounds [20]. To obtain information from the sensor output pattern

recognition techniques are used. These techniques often include the use of neural networks,

[21].

To attract molecules for the air a functionalizing layer is applied on the E-noses, also called 

sensing layer. Technologies like GC and IR do not use functionalization layers and are therefore 

not defined as E-noses [2].  By chemical interaction between the air and the functionalization 

layer, molecules are extracted from the air and onto the sensor. This interaction leads to a shift 

in output from the sensor, for example change in the electric signal from the sensor. A E-nose 

typically consists of an array with several sensors with different functionalization layers [22]. 

The enormous number of known chemical substances gives rise to the challenge of finding 

layers that are selective to one specific compound. One of the E-noses biggest challenges is that 

no functionalizing layers are perfectly selective, it will therefore be an overlap of information 

from different functionalization layers. This is referred to as cross-selectivity [23]. 
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Due to cross-selectivity predicting the concentration of a specific gas is a complex task. By 

using pattern recognition techniques, an algorithm is trained to recognize the pattern between 

the shift in signal to the amount of the gas or gas type, referred to as the target [2]. To learn 

patterns in data the algorithm is dependent on having the true concentration so the algorithm 

can learn from its mistakes. The true concentration is in Machine Learning referred to as the 

target value. To provide the target sensors with high accuracy, reference sensors are used. The 

working principle of E-noses is illustrated in Figure 1. 

E-noses have a wide range of applications: monitoring freshness of food [24, 25], medical

diagnostics [26, 27], agriculture [28] and air quality monitoring [29]. In this thesis, the focus is

on E-nose for air quality measurements.

Figure 1: Working principle of E-noses. Different colours refer to different sensing layers. The 
problem with cross selectivity is illustrated. E-noses usually measure temperature and humidity which 
is illustrated with H and T. Raw data from the sensing layers are forwarded into Neural Networks.  
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2.2 USE OF E-NOSES IN AIR MONITORING 
Historically, air quality monitoring has been done by government authorities and experts.  The 

methods used for monitoring is dominated by governmental approved instruments, these 

instruments are often stationary due to their size. In addition to being heavy they are in the price 

range between €5000 and €30 000 per device and are dependent on frequent calibrations. Since 

the stations are not portable the area covered by them is limited-. Often only big cities with 

good economy have stations at all [30]. 

Currently there is a trend to increase the volume of measurements regarding air quality.  To 

acquire these volumes of data the need for more low-cost, simple to use and portable sensors is 

necessary [7, 30, 31]. Portable E-noses introduces an opportunity to obtain measurements from 

a network of sensors, that can be distributed to cover larger geographical areas(parks, cities and 

even countries) [29]. It should be noted that the E-nose technology has challenges with 

obtaining data of high quality so that meaningful information can be obtained from these 

sensors [31]. Even though these sensors have not fully been tested, or currently being regulated 

by standards, the use of them is rapidly increasing. This rapid increase highlights the need for 

a system that defines expectations and requirements for E-nose used in air monitoring [29]. 

The European Commission is currently working on setting standards for low-cost sensors, they 

are positive, but highlight the fact that the biggest challenge  for E-noses is the  stability of the 

selective layer [32]. 

2.3 GUIDELINES FOR PORTABLE E-NOSES 

There are no guidelines for portable devices used in air quality monitoring.  Due to the 

increasing market for portable E-noses the European Committee of Normalization on Air 

Quality has created a working group to define such guidelines. As no guidelines has been 

published this thesis evaluates technologies and products against the recommended guidelines 

from the United States Environmental Protection Agency (EPA) [33].  The recommendations 

are defined in Table 2. 
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                   Table 2: Overview of recommended criteria for portable E-noses from EPA 

Criteria Recommended by EPA 

Small-size < 2 kg 

Low- cost < $2500 

Selectivity Not given 

Sensitivity Not given 

Detection Limit CO 0.1 ppm 

SO2 10 ppb 

NO2 10 ppb 

CO2 100 ppm 

Error >20 % 

Data completeness <80% 

Capable of continuous measurements Seconds à 5 minutes 

 

It should be noted that the weight requirement for portable E-noses was set based on the 

weight of other portable devices, and is not given as a criterion from EPA. 
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Sensitivity measures how sensitive the sensor is to changes. For sensors measuring 

frequency shift based on changes in mass the sensitivity says how small changes in mass 

that lead to a change in frequency. 

Selectivity measures how effective a sensor is to distinguish between different gases. 

Sensing layers with high selectivity would be able to absorb only NO molecules, while a 

layer with low selectivity would absorb NO, NO2 and CO measurements. 

It should be noted that although a requirement for selectivity and sensitivity is not defined, 

better selectivity and sensitivity will lead to a lower error. Aiming towards a better 

selectivity and sensitivity should therefore always be prioritized. 

Data completeness is the amount of measurements obtained compared to the expected 

amount. 

Error tells how much a measurement from a E-nose should maximally deviate from the 

measurements performed by the reference sensors. To measure this the thesis uses the R2 

score. 

Detection limit is the lowest concentration a sensor can measure. 

Continuous measurements say how frequent the sensor can take measurements. 
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2.4 SENSOR TECHNOLOGIES 

Currently much work is being done in the field of sensors for gas detection, it should be noted 

that some of these technologies are currently only used in research. In Figure 2 an overview of 

different sensor types is shown. In this thesis, the CMUT potential compared to other E-noses 

is evaluated.  

 

Figure 2: The Table gives and overview over sensor technologies that could be used for gas detection. 
Conducmetric, chemical and gravimetric sensors are E-noses.  

 

Gravimetric sensors are mostly found in research and academia as few sensors have reached 

the commercial market [2, 34]. The working principle of the gravimetric sensor is that mass 

change on the sensor surface leads to a change in some electric property, this change is 

measured. This is illustrated in Figure 3.  To obtain a change in mass a selective layer must be 

applied to the sensor. Obtaining layers that only are selective to one gas is the biggest challenge 

for using gravimetric sensors for gas detection. Common factors that make gravimetric sensor 

well suited for gas detection are: small size, consume little power and are  low-cost [35]. There 

are also big similarities between fabrication for metal oxide semiconductors and gravimetric 

sensors [2, 36].   
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Figure 3: Illustrates the working principle of a gravimetric sensor: The absorption of specific 
molecules give a higher mass. Higher mass gives a lower frequency. 

 

Optical sensors are traditionally used for application where a high accuracy is needed. Optical 

sensors have the advantage that they do not need a selective layer. Since this types of sensors 

are big , highly priced as well as having a long response time, they are not discussed further for 

application of E-noses [2]. 

Conductometric sensors measure the electric conductivity. For use in E-nose application they 

have several of the same advantages as gravimetric sensors: small-size, low-cost, simplicity in 

fabrication and use. In addition to the possibility to measure a range of gases. For gas sensing 

the metal oxide semiconductor(MOX) has gotten most attention. [37]. 

Chemical Sensors produce a change in output signal due to a change in some chemical 

property. In section 3.7 Electrochemical sensors stand out as the chemical sensor that is mostly 

used among commercial sensors. 

An overview of different technologies is presented in Figure 2.  Technologies marked in red 

do not fulfill the E-nose requirements. The four types marked in green are further explained 

and presented in the next sections. Sensor types given in grey are not explained in the next 

sections as they have substantial similarities with at least one technology marked in green. 

The MOX and electrochemical sensor are further explained as they frequently appeared among 

commercial sensors (section 2.5). The QCM is further explained to compare CMUT to other 

gravimetric sensor. 
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 Metal oxide semiconductor sensor 

The sensor consists of a semiconductor and metal oxides as selectivty layers. As the selectivity 

layer absorbs molecules from the air, the conductivity changes. Depending on the sensing layers 

a wide range of gases can be detected [38]. The MOX sensor fulfils most of the requirements 

for the portable E-noses, it is low-cost, small size, simple to both use and fabricate, long lifetime 

and able to detect a wide range of gases [39]. Due to its characteristics, it is among the most 

studied group of gas sensors [37]. Main drawbacks of the technology are varying selectivity for 

different gases. The sensor also experiences a change in chemical and physical properties over 

time due to oxidation in the sensing layer [40].  The sensors can also respond differently at 

different temperatures and humidity levels [37]. 

 QCM 

Quartz crystal microbalance is traditionally used for precise gravimetrical measurements. 

Figure 4 illustrates the working principle of a QCM. 

 

Figure 4: The working principle of the QCM sensor.  Made by: Byrne Maureen 

 

The QCM sensors are based on the piezoelectric properties of the quartz crystal. The quartz 

crystal is placed between two electrodes. By sending an alternating current through the bulk of 

the sensor, the frequency is measured.  As more molecules are attracted to the chemical layer 

on the sensor the mass and frequency changes. The relationship between change in frequency 

and mass is proportional and the sensor works in both liquids and air [41]. Drawbacks of the 

QCM is are complicated fabrication process, varying response time and sensitivity for noise 

due to surface interference [42]. The sensitivity for QCM is substantially lower than the CMUT, 
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and  the fabrication method is more complex. In his  work Mølgaards states that  the QCM  is 

least suitable for use as a gas detection device among all the gravimetric sensors listed in Figure 

2 [2]. 

 CMUT 

The first Capacitive Micromachined Ultrasonic Transducer(CMUT) was first presented in 1994 

[43]. Originally the transducers were used to transmit or receive ultrasound. Ultrasound is 

defined as sonic waves with a frequency over 15 kHz. The working principle of CMUTs used 

as a transmitter is illustrated in Figure 5. The CMUT is mostly used in medical imaging, but in 

recent years several publications have focused on using CMUT for gas detection [2, 44-46]. 

Most of the publications for using CMUT for chemical sensing is published by the Khuri-Yakub 

research group at Stanford University.  

 

Figure 5: Working principle For CMUT as a transmitter, by applying a voltage between the top 
electrode and the bottom the plate vibrates with a frequency. Frequency shift is outputted from the 
sensor. Modified from [47] 

 

The CMUT consists of a conductive plate over a gap of vacuum. To achieve selectivity towards 

different chemical compounds a chemical coating is applied on top of the plate. By applying a 

voltage over the plate, it starts to vibrate. When applying a selective layer onto the plate the 

plate absorbs molecules from the air. As the mass increases the frequency decreases. The 

CMUT continuously measures the frequency shift [43]. 
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Since the coating of the sensors ideally are selective to one gas, the CMUT sensor should consist 

of an array of sensors with different coatings. This gives a product that can measure several 

different gases [48]. CMUTs are easily fabricated into arrays as shown in Figure 6. 

 

 

Figure 6: a) complete sensor chip with 9 sensor, illustrates the small-size of the CMUT chip. b) Shows 
one sensor consisting of 271 plates covered with the same chemical coating. 

 

In Mølgaards work he present results showing sensitivities as low as 0.83 Hz/ag. This result is 

similar with results published by Khuri-Yakub research group of 0.49 Hz/ag [2, 45].  The mass 

sensitivity of 0.49 Hz/ag is to the knowledge of the author the lowest published result for the 

sensitivity among CMUTs. 

As mentioned about gravimetric sensors the CMUT advantages in addition to excellent 

sensitivity are: low-cost, easy fabrication and small-size. Advances in obtaining functionalizing 

layers with higher selectivity will make the sensor capable of measuring more gas types. Like 

other gravimetric sensors, MOXs and electrochemical sensors the CMUTs biggest challenge is 

obtaining a higher selectivity for different gasses. 
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2.5 COMMERCIAL SENSORS 

As no universal strategy for testing or other benchmarking for chemical microsensor exist, this 

section will present sensors tested by EPA and AQ-SPEC. These sensors are tested and 

evaluated in an objective way and therefore the results are considered more trustworthy. Lastly, 

a summary of the findings is provided. Sensors evaluated by iScape will not be presented in this 

work, as they have not performed the testing themselves. 

 Benchmarking air sensors 

During the literature study, no testing system to validate different air sensors was found.  As a 

result, companies can sell sensors for gas and air monitoring without providing any quality 

assurance. However, there are projects and companies that evaluate sensor to inform the public. 

Environmental Protection Agency U.S(EPA): Through research EPA wants to accelerate the 

development of air monitoring devices that are low-cost, portable and user friendly for the 

public. With an increasing interest in air quality, a growing number of sensors are made 

commercially available. Often limited or no information of the performance over longer periods 

of time in real-world application or lab is provided. EPA performs an objective evaluation and 

testing of a selection of different air sensors commercially available. Over a longer period with 

continuously measurements the different sensors are evaluated against measurements from 

federal used monitors. The results can be found on EPA’s website [49]. 

iScape project:  The iScape project is funded by the European Community(EU).  The project 

aims to advance the control of air quality and carbon emissions in European cities. Part of the 

project is to give scientific guidance to the end user [50]. This is done by checking literature 

and testing done on low cost sensors in the range 100 - 500$.  Sensors with a price over 100$, 

software for data collection/handling is required. The recommendations from iScape are be 

based on testing done by other parties, but the scientific credibility is evaluated by the iScape 

team [50]. 
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AQ-SPEC: The Air Quality Sensor Performance Evaluation Center aims to perform evaluation 

and testing of currently available low-cost sensors under laboratory conditions and real-world 

applications.  This research seeks to inform the public about the actual performance of 

commercially available sensors. The cost must be lower than 2000$ and provide real-time 

measurements [51]. 

Note: Having a sensor that has undergone evaluation from an objective third party as iScape, 

EPA or AQ-SPEC increases a sensors credibility.  

 General about EPA and AQ-SPECs testing 

EPA: EPA has performed a selection of sensor test trials. The sensors are tested in labs, and if 

they obtain good results in lab tests, some of the sensors undergo a pilot test in a real-world 

application. All tests are performed in a collaboration with the sensor developers [52]. 

Generally power requirements vary widely between different sensors. Collection and storage 

of data also varied. Some sensors directly output values that easily can be interpreted like 

concentration while others give information about change in voltage, electricity, conductivity, 

etc. When obtaining the latter type of output the results are translated into concentration through 

EPAs own algorithms. It is preferred that the developers provide an algorithm for translating 

output. When selling commercial products, software should be included so the output is given 

in concentration [52].  

AQ-SPEC:  Sensors are first tested in the field for roughly two months. The measurements 

given by the tested sensor is compared to measurements from a federal reference monitor [51].  

Sensors showing certain degrees of performance are further tested in a laboratory. The test 

subjects the sensor to known gas concentration under controlled temperatures and humidity 

levels [53]. 

Linearity: Both EPA and AQ-spec ranks the tested sensors performance with a correlation 

measure, the R2 score between the low-cost sensor and a reference sensor. The R2 score tells 

how much the output from the tested sensor deviates from the reference value.  The max score 

is 1, higher correlation meaning higher similarity between the tested sensor and the reference 

[54]. 
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 Different commercial sensors 

In this section, several sensors tested by AQ-SPEC are presented. In the end a table 

summarizing the characteristics of each sensor is presented. Only sensors measuring one or 

several of the gases NOx, NO2, CO, CO2 and SO2 are looked at as these are the target gases for 

the CMUT sensor. 

Air Quality Egg Version: The Air Quality Egg take real-time measurements and can be 

accessed through web, mobile app or manual download. The Egg can measure NO2, CO, CO2, 

SO2, PM and O3. One Egg can measure up to two gases in addition to PM [55]. The Air Quality 

Egg uses a SGX Sensortech MICS-4514 metal oxide sensor to measure NO2, CO, CO2, SO2 

[56]. 

Vaisala AQT410: Electrochemical sensors that can measure NO2, CO, SO2, H2S and O3. Each 

sensor can measure up-to four gases. The sensor is intended for stationary use[57].  The sensor 

does not fulfil the cost requirements for a E-nose, but is presented due to its good results in 

field. 

AQ Mesh version 4.0:  Is a stationary sensor system measuring NO2, CO, CO2, SO2, and O3. 

The system uses electrochemical sensors. The evaluation performed by AQ-SPEC was stopped 

by the developer of AQMesh after the field test [58]. The system does not fulfil the cost 

requirements for a portable E-nose but obtained good results in field. 

CairPol Cairsens: CairPol offer sensors for measuring NO2, CO, SO2, H2S, PM and O3. 

Cairpol use electrochemical sensors.  One sensor can measures one gas [59].  

Unitec-SENS-IT:  the Unitec SENS sensor uses MOX sensor for measuring NO2, CO and O3. 

Each sensor weighs around 200 grams and a price of around $2000 [60]. 

In Table 3 an overview of the results obtained from the AQ-SPEC tests are presented 
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  Table 3: Shows test results obtained by AQ-SPEC for the sensors: Air Quality Egg, CairPol 
Cairsens, Unitec, Vaisala AQT410 and AQMesh. Used with permission from AQ-SPEC 

 

Sensor Cost Size Type Linearity Data Recovery Response 

time 

Air Quality 

Egg version 

1 

$200 0.2 kg MOX CO: 0.0  

NO2:0.33-0.40  

CO: 100 % 

NO2:100%  

1 min 

CairPol  

Cairsens 

$1243 

$1198 

0.06 kg Electro-

Chemical 

CO: 0.93-0.94 

NO2: 0.05-0.12 

CO: 92% 

NO2: 4.3 

1 min 

Unitec 

SENS-IT 

$2200                

(O3, NO2 and 

CO included) 

0.2 kg MOX CO: 0.33-0.43 

NO2: 0.59-0.62 

CO: 99%            

NO2: 99% 

1 min 

Vaisala 

AQT410 

v.1.15 

$3700 

(NO2,SO2, CO, 

O3) 

0.69 kg Electro-

Chemical 

CO: 0.78-0.80 

NO2: 0.43-61 

CO: 96% 

NO2: 96% 

1 min 

AQMesh 

c.4.0 

$10 000 
 
 

 (NO, NO2, 
CO, O3, SO2 

included) 

 

< 2 kg Electro-

Chemical 

CO: 0.41-0.80   

NO2: 0.1-0.46 

 

 

CO:90-100%         

NO2: 90-100% 

 

1 min 
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2.6 COMPARING DIFFERENT TECHNOLOGIES 

In Table 4 different sensor technologies are ranked against the E-nose requirements presented 

in section 2.5. 

Table 4: Ranks different sensor technologies against requirements set for E-noses: e: excellent, g: good, p: 
poor, b: bad. Modified with permission from: [37] 

 CMUT MOX Electro 

chemical 

TCD Infrared 

absorption 

Small size e e e b b 

Low-cost e e g g b 

Lifetime - g p g e 

Sensitivity e p g b e 

Selectivity p p P g e 

Error - p p g e 

Continuous 

measurements 

e e e g b 

 

It should be noted that the error criteria for electrochemical and MOX sensors was ranked as 

poor since the commercial sensors presented in section 2.5 showed high variability in R2 score 

between the same gases. Even though the CO in some cases obtain a lower error rate than 20%, 
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this is not always the case. For NO2 the commercial E-noses seldom obtain error rates lower 

than 20%. 

The weights of MOX and Electrochemical has some products with higher weight than 2 kg, but 

due to several products with lower weight it is possible to make E-nose products with lower 

weight than 2 kg. 

Among gas sensors infrared absorption is a device that generally obtains the highest accuracy 

and is often used for application where the accuracy is highly important along with gas 

chromatography. However, this device does not fulfil the requirements for E-noses, with a big 

size, high price and low capability for performing continuous measurements. Both electro 

chemical and TCD perform well on most points except sensitivity. The MOX and CMUT sensor 

obtains the highest average ranking over all requirements. However, little information is found 

on the CMUTS lifetime. Based on literature presented earlier the CMUTs outperforms both the 

MOX and Electrochemical sensors on sensitivity. 

 Summary Commercial Sensor 

In section 2.6 three different projects testing or evaluation commercial sensors have been 

presented: the iScape project, EPAs testing of low-cost sensors in laboratory and AQ-SPECs 

testing and evaluation. Additionally, some sensors tested by AQ-SPEC were presented along 

with testing results. 

In Table 4 the results for various sensors is provided. The dominating type of sensors tested by 

AQ-SPEC are Electrochemical and MOX sensors. The sensors gave varying results. AirQuality 

Egg performed overall poorly on both NO2 and CO, but is sold at a low price. CairPol performed 

very well on CO, but useless on NO2. Unitec performed satisfactory on CO and a little better 

on NO2.  Both Vaisala and AQMesh performed good, but have a price higher than the 

recommended price from both EPA and AQ-SPEC 

The findings for evaluating a sensors performance showed that companies/organization  like 

EPA and AQ-SPEC ranks sensor against a linearity score [51]. Based on these results the 

algorithm developed in the second part of the thesis should calculate the R2 score. Using the R2 

score will make it easier to compare the results from the Auto-CMUT against sensors on the 

commercial market. 
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3 MACHINE LEARNING CONCEPTS AND METHODS 

General concepts in machine learning will be presented to give basic background in the field.  
The relationship between Artificial Intelligence, Machine Learning and Deep Learning is 
explained. The section will further focus on pre-processing techniques and methods for 
classification and regression 

 What is it? 

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are among the 

most frequent buzzwords in technology. The words are often used interchangeably even though 

it is not quite the same. Easiest explained is that machine learning and deep learning are 

branches of the broader concept AI. This is illustrated I Figure 7. AI can be defined as a system 

that can interact with its environment [4]. 

 

 

 

 

 

 

 

 

 

Machine learning creates systems or algorithms that can improve its predictions through 

experience, especially when introduced to big volumes of data [8]. ML offers an efficient way 

for obtaining information from data and discovering patterns in this data. The ML subfield 

Figure 7: Illustrates the relation between artificial intelligence, 
machine learning and deep learning. 



 
- 25 - 

contains a vast amount of applications: detecting spam, voice recognition, translation, image 

analysis, predictions from sensor and other electronic devices etc. In coming years the range of 

application will increase further [61]. 

Deep learning is a class of algorithms within ML. All these algorithms are based on the basic 

building block in the human brain, neurons. For decades’ researchers have tried to understand 

the building blocks of intelligence. There is consensus among scientists that the brain generates 

information based on a complex network of neurons. By electric connection between these 

neurons information for movement, breathing and thinking is generated [62]. By using neural 

networks deep learning uses the basic concept of how the neuron in the human brain works. 

These networks can be taught to classify information and identify more complex patterns [61]. 

Neural Networks (NN) are further discussed in section 3.4.  

 Applications for AI 

Even though artificial intelligence has been frequently used for decades, it is nothing compared 

to the amount of applications that has occurred in recent years. The technology is advancing 

much quicker today than 10 years ago. In addition to this the ordinary guy in the street is now 

aware that artificial intelligence exists and often has some insight in what it is and can how it 

be used. Today, people are surrounded by AI: Each time you log into Netflix a bunch of 

machine learnings algorithms gives suggestions of which movie to play next based on your 

previous choices and ratings, Siri on iPhones is nothing more than a network of machine 

learning algorithms [63]. All Google’s search engines are based on AI techniques,  increased 

use of ML in medical imagining can detect sick patients quicker than a doctor [64], [65]. These 

are only a few examples of the AI people use every day. 

In the future, the complexity of task assigned to AI will increase. In a decade, maybe your 

automated car will drive you to your appointment with your doctor, and the doctor is probably 

a super computer that in few second could analyze symptoms together the results from blood 

test and blood pressure to predict a diagnosis [66]. In addition,  portable biometric sensors will 

most likely be able to monitor breathing, temperature and blood pressure continuously and give 

an alarm if there is a high likelihood that a person is about to get sick [67]. 
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3.2 MACHINE LEARNING CONCEPTS 

The section will further focus on pre-processing techniques and algorithms for predicting the 

target gas and concentration. The section will give a theoretical overview of the different 

algorithms and techniques used in this work. Because of the amount of techniques and method 

available in the field of machine learning only a selection of methods are applied to the dataset 

in this thesis.  

 Supervised and unsupervised learning 

In machine learning tasks often get divided into two categories supervised and unsupervised 

learning, this is illustrated in Figure 8. In supervised learning the desired output of the algorithm 

is known a priori and is called the target. Supervised learning tries to find a function that best 

can represent the relationship between features and the target. When features are forwarded the 

into the algorithm it should be able to predict the corresponding target label or value [61]. For 

a chemical microsensor, the features would be the output from the sensor while the target is the 

true answer given from a reference sensor. It is important to point out that the target may be 

wrong due to noise, inaccurate measurements. Logistic regression, support vector machines, 

neural networks and random forest are examples of supervised learning techniques [61] . 

 

Figure 8: Explains the difference between supervised and unsupervised learning. 
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Unsupervised learning does not have a known target value or label, the structure of the data is 

unknown. The goal is to detect the structure in the data and extract meaningful information 

without depending on a known target value. Usual examples of this is clustering where the goal 

is to find how a bunch of samples are grouped together, or dimensionality reduction of data 

[61]. As this thesis is based on supervised learning, unsupervised learning will not be discussed 

further. 

 Cost functions 

A cost function measures an algorithms ability to estimate the relationship between features 

and targets. The higher values of the cost function, the higher difference between the algorithms 

prediction and target. Minimizing the value of the cost function in supervised learning is crucial 

[61]. 

The cost function is minimized by adjusting the parameter values (for cost functions referred 

to as weights). During the learning process the algorithms learns to adjust the weights of the 

cost function in a way that minimizes the output from the cost function. 

 

 Training and testing 

The method of training and testing the algorithm is central in supervised learning. The data is 

normally divided into train and test sets. During the training process, the algorithm tries to 

detect patterns in the data by predicting the target and then checking it against the true target. 

If the prediction is correct nothing is done, if the prediction is wrong the algorithm adjusts is 

weights. When an accepted accuracy is obtained or maximum number of epochs is reached, the 

algorithm is used on the test data.  On the test set the algorithm predicts based on the features. 

The performance is calculated as the difference between prediction and target. The test score is 

the first test for how the algorithm will perform on unseen data as the training set normally is 

seen several times during the training process. The challenge of obtaining a high test score and 

a low difference between the two scores is a critical challenge in supervised learning [61]. 
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 Overfitting vs under fitting 

Overfitting is characterized by a high training score and a low test score. This occurs when a 

model is too complicated or the model has been trained so many times that the model has 

memorized the training data instead of finding a general pattern. When applying to simple 

models the data is underfitted, and the model is not complex enough to discover the general 

pattern in the data. Underfitting leads to a low training and test score but a low variance between 

them [61]. The case of overfitting is known as the high variance case and the underfitting as the 

high bias case [68]. A challenge in machine learning is finding a good trade-off between over 

and underfitting. These three cases are visualized in Figure 9.  

 

 

 

 

 

 

 

Figure 9: The accuracy as a function of number of training samples for the high bias and high variance 
case. A graph for a good trade-off between the two cases is also shown. Obtained from [69] 
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Overfitting can be avoided by getting more data. When getting more data is not possible, then 

restrictions on the amount data the model can store or what information the model can 

remember should be restricted. This type of restrictions is in machine learning known as 

regularization techniques. Regularization techniques forces the model to remember the most 

prominent patterns. Applying less complex models will also reduce overfitting. To prevent 

underfitting the opposite methods can be applied [61]. 

Validation methods 

A normal approach in machine learning is splitting data into training and test data. The models 

are trained and tuned on the training set. When the accuracy is high enough the model is tested 

on the test data. Often in machine learning the models are trained and tested many times with 

different choices of hyper parameters to obtain a high accuracy, eventually the test set becomes 

a part of the training set as the model favored is the one performing best on the test set. This 

can lead to a poor generalization for future data as it favors a specific test set and not necessarily 

a model that on average performs well on different test sets. Therefore, the test set should only 

be used one time after the final model is chosen. To achieve a higher generalization validation 

methods are used [61]. 

The holdout method divides the data into training, validation and test set. During the training 

the validation set is used as test for all models computed. Approximately 2/3 of the data is used 

for training and validation. The final model is chosen as the model with best results based on 

the training and validation scores. The drawback of the holdout method is its sensitivity to how 

the data is partitioned [61]. 

The k-fold cross validation reduces the sensitivity by randomly splitting the training data into 

k folds. k-1 of these folds are then used for training and the last one is used for validation. The 

data is then trained k times, so all folds are used k-1 for training and one time for validation. 

For the final model the data is trained on all k folds and tested on the unseen test set [70]. 

Validation methods increases the robustness of the model and reduces bias in the model 

selection [61]. 
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 Evaluation metrics 

Evaluation metrics gives information about the performance of a model and are important to 

obtain the optimal model. There are many metrics available depending on the data and problem 

in hand. For classification, accuracy and confusion metrics are used. For regression problems 

mean absolute error or R2 can be used. Below the toolbox of evaluation metrics used in this 

thesis is presented. 

Classification accuracy is defined as the ratio of correct predictions to the total number of 

predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	

		 1  

The metrics gives the best result when used on evenly distributed class data, uneven class 

distribution can lead to false interpretation. Classification accuracy is the most used evaluation 

metric for classification problems [71]. In literature, the metric is often referred to as accuracy. 

Confusion matrix: The confusion matrix compares the predicted class to the actual class and 

gives a visual representation of how the misclassifications are distributed.  The method can be 

applied to multiclass problems as well [72]. An explanation of the different entries in the matrix 

is presented in Figure 10. 

 

 

 

 

 

Figure 10: Explains the different entries for a confusion matrix applied to a two-class 
problem.  
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Mean Squared Error (MSE) is commonly used as a standard statistical evaluation metric in 

regression problems. The method assumes the error in the samples being unbiased. And is given 

by: 

𝑀𝑆𝐸 = 	
1
𝑛

𝑒;<
=

;>?

					(2) 

Where n is the total number of samples and ei is the error between the actual target value and 

the prediction. MSE performs well on normally distributed data. The drawback of the metric is 

its sensitivity to outliers . 

R2 score is a goodness-of-fit measure for linear regression. Linear regression calculates the 

equation resulting in the smallest sum of squared errors that is possible for a given dataset. The 

R2 score calculates the proportion of variance in the response variable which is explained by 

the feature. In machine learning, the R2 score can be used to determined how close the predicted 

value is to the target value. If the prediction is 100% correct the R2 score would be 1. When a 

model is evaluated the R2 score for the whole dataset is calculated as the average R2-score 

between al target- prediction pair in the dataset. In Excel the R2  is calculated as [54]: 

𝑅< =
(𝑦; − 𝑦)<

(𝑦; − 0)<

=

;>F

		(3) 

Where 𝑦; is the data points and 𝑦 is the average of all data points. 
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 Optimization 

Machine learning consists of a big selection of methods, these methods have a variety of 

parameters to tune. Finding the best method with the best parameter values is called 

hyperparameter optimization(HPO). HPO is crucial for optimizing the model’s performance. 

The large variety of methods and possible parameter values makes the tuning process 

computationally expensive and time demanding [73]. 

In 1997 Wolpert and Macready presented the “No free lunch theorem”(NLFT) [69]. NLFT 

states that finding a universal optimization strategy that works best on all problems are 

impossible [74]. The NLFT implies that optimization strategies must be tuned for each problem 

individually for a model to perform as good as possible as no model is superior on all problems 

and datasets. Due to the statement in NLFT optimization of parameters should be prioritized. 

The increased use and demand for machine learning in general, has sparked the interest for 

commercially available hyperparameter optimization strategies [75]. These strategies should be 

able to perform an optimization among many different machine learning methods and a grid of 

different parameter values [73]. 

Due to a vast number of methods and parameters the HPO is computationally expensive. Other 

challenges are: parameters vary between integers, floats or categorical lead to a complex space, 

limited training size limits the generalization ability. Commercial products must also have the 

ability recalibrate after the product is shipped to the end user. This requires an embedded 

optimization system, or the possibility for optimization through the cloud [73]. 

Several HPO methods have been developed, in the thesis the most prominent will be discussed. 

Grid search is the most used method for optimizing hyper parameters [73]. The method uses a 

brute-force exhaustive search. The programmer defines a grid of parameters with a range of 

different values and the search evaluates all combinations within the grid. Grid-search  often 

provides high performances, but it also computational expensive when testing several 

algorithms with multiple parameters.[61]. 

Random search is emerging as an alternative to the grid search and has in some applications 

proved more efficient, with a fraction of the computation time. Random search draws randomly 

chosen combinations of parameter and parameter values from a predefined value space. 
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Random search is often effective as a baseline as it gives a good overview of different 

hyperparameter values within a shorter timeframe than the grid-search [76]. For information on 

several HPO methods, the reader is recommended [73]. 

Neural Architecture Search (NAS): 

Increasing use of neural networks has initiated the field of automating the architecture 

selections for neural networks. The field overlaps with the HPO. NAS consists of three building 

blocks. 1) Search space containing the possible architectures that can be evaluated in the search.  

This Introduces a bias toward the person defining the space. 2) Search strategy: How the search 

is conducted. 3) Performance estimation is the strategy for evaluating the performance [77]. 

Examples of performance metrics are given in 3.2.6 Evaluation Metrics. As most NAS 

strategies developed are used for image classification they are not presented in this thesis. 

During the literature study, no algorithm or approach for NAS on output from sensors was 

found. 

Benchmarking: 

In the machine learning community, no general benchmark requirements are set for HPO 

methods. Comparing different methods in an objective manner is therefore complicated task. 

Feurer and Hutter states that the community need to set clearly defined metrics, but that 

different method works best on different problem which makes this hard. Further they suggest 

that the performance requirements should not be set, but rather set a standard for how the 

methods should be evaluated [73]. 
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 Automated Machine Learning 

The number of companies and private persons interested in implementing and using machine 

learning is increasing. To be able to satisfy all the demands and tasks the field of automated 

machine learning (AutoML) is quickly developing. ML problems that consist of both selection 

of best algorithm and hyperparameter optimization are referred to as CASH problems [78] . 

Automated machine learning aims to automate the whole machine learning pipeline, including 

data collection, pre-processing, prediction and evaluation. The pipeline will be able to test 

several models and choose and exhaust the best model without orders from the user. By 

automating the entire pipeline, the technology and possibilities within machine learning are 

made available for people with low technical experience and knowledge. The automated 

pipeline will make decisions in an objective and effective manner [78]. 

 Benchmarking in machine learning 

As mentioned earlier there is a large variety of classification algorithms, hyperparameter 

optimization techniques and a nearly infinite number of NN architectures. This leads to a 

practically impossible task of calculating and comparing all possible models. Even when having 

a limited number of models that are calculated ranking them can be difficult [73]. As models 

can be ranked according to different criteria's: 

III) Performance: How many classifications are correct or for regression how low the 

estimated error is. 

IV) Computational Complexity: Time consumption of the model. 

V) Overfitted/ underfitted: If the model is overfitted the performance will most likely plum 

when exposed to data in the future, and should therefore not be ranked high even though 

it has a high performance. 

In some applications, the performance accuracy is prioritized before computational complexity 

(time consumed). When predicting if someone has a severe diagnosis a high accuracy is 

preferred compared to low time consumption. When calculating the CO2 concentration in a city 

the possibility of measuring on many sites at once and many times a day is more important than 

knowing if the concentration is 407 or 411 ppm. The Auto-CMUT developed in the thesis ranks 

the model after performance. 



 
- 35 - 

 Pre-Processing  

Reduction of noise and removal of outlier is crucial to obtain a well generalized model. 

Reducing noise and preparing the data for prediction is done during pre-processing.  Due to the 

vast number of methods to pre-process and alter the data it can be a time demanding process 

[79]. The pre-processing steps looked at in this thesis are: 

Ø Data visualization 

Ø Data cleaning 

Ø Feature selection/ extraction 

Ø Visualization 

 Data Cleaning  

Data cleaning deals with missing values, abnormal values(outliers) to improve data quality [80]. 

In this section frequent used methods for data cleaning is presented. 

Missing values 

In real world applications, the datasets are often noisy and often contain missing values [36]. 

These value can lead to misinterpretation and inaccurate predictions [80]. In this section, the 

most frequent strategies for dealing with missing values is presented. 

Remove missing values: A popular method is removing all samples with one or more missing 

values. Especially popular for datasets with many samples. The method can lead to loss of 

information in a dataset with many missing values. If many values are missing the validity of 

data should be discussed [36]. 

Inserting values: This method consists of inserting a value for the missing value. Examples is 

inserting the mean value for that feature or inserting the most common value. [36] 

Missing values as an own value: Instead of trying to discover the true value, the missing value 

is an own value and treated as other values. [36] 

The methods mentioned in the thesis are traditional methods for missing values. Traditional 

methods for missing values can lead to biased results [81]. The problem of bias when handling 
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missing values will not be discussed further in this thesis. In addition, the problem on missing 

values specifically in time-series problems are not looked at, but should be investigated in a 

later stage of the project. 

Outlier detection 

Outliers are defined as data points that strongly deviates from the rest of the samples in the data 

set [82]. Typically, the threshold for strong deviation is defined as three standard deviation 

away from the mean. Outliers normally form a small part of the data set, but ignoring them may 

cause the findings in the work to be invalid [4]. Outliers are mostly considered to be noise, but 

can contain important information [82]. Because of lack of time outlier removal was not 

implemented into the Auto CMUT. 

 Feature Selection 

Feature selection refers to the process of choosing the best subset of features. In cases where 

the dataset consists of many features the model can often consist of redundant information. 

Redundant information can confuse the model and making it harder to detect the most 

prominent patterns in the data. In such cases, the model can improve by removing some of the 

features or by combining some of the features to decrease the dimensionality of the data. By 

reducing the dimensionality of the data, the computation cost and degree of overfitting is also 

reduced [61]. 

In machine learning, Principal Component Analysis (PCA) is widely used for choosing the best 

subset of features. PCA reduces the dimensionality of the data by creating features in the data 

based directions in the data. The directions or Principal Components are computed as the 

features that capture most of the variance in the data [61] the working PCA is illustrated in 

figure 11.  
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Figure 11: PCA finds the direction that capture most of the variance in the data. PC 2 finds the 
direction that is orthogonal to PC 1 and capture the second most variance. 
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3.3 CLASSIFICATION ALGORITHMS 

In this section, the classification methods tried in the thesis are introduced. Classification 

algorithms aim to predict a samples class membership. When used on CMUT sensor the 

algorithm should classify which gas a sample belongs to. 

 Logistic Regression 

Logistic regression is one of the most common algorithms used for binary classification in 

machine learning. In the sklearn package used in this thesis the method is extended for use in 

multi-class problems. Logistic regression calculates the probability that a sample belong to one 

class and not any of the others(multiclass). For predicting class membership, a cost function is 

used. The function takes a linear combination of the input values x and the corresponding 

weights for each of the x values: 

𝑧 = 𝑤J𝑥J + 𝑤?𝑥? + ⋯+ 𝑤=𝑥= (4) 

 

z is a linear combination of the input values x and the weights, w for each input. 

During training these weights are updated to minimize the cost function. In logistic regression, 

the following cost function is used: 

𝜑 𝑧 = 	
1

1 + 𝑒OP
							(5) 

Where 𝜑  is the probability for z belonging to a certain class, and z is the net input. The 

probability lies in the range 0 à 1. 

The advantages are it’s is ease of implementation, computationally efficiency and it does not 

assume any distribution of the data. The drawback is that is has a linear decision border and is 

mainly applicable for linear problems [61]. 
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 Decision trees and Random Forest 

Decision trees are used both for classification and regression tasks. When used for classification 

the method will predict a target label for each of the final nodes. The algorithm divides the data 

into several nodes by performing a series of binary splits until a certain criterion is met, as 

illustrated in Figure 12 [4]. If a maximum number of splits isn’t specified the algorithm will 

split until there is only one sample in each node, which lead to overfitting. Therefore, the 

maximum depth of each tree should be specified. To increase the robustness of the model an 

ensemble of trees that individually suffer from high variance is used to gain a better 

generalization performance. This ensemble of trees is called random forest. The algorithm 

averages the results from many trees to make a final prediction [61]. 

 

Figure 12: RF consists of individual decision trees. In each tree the information is split to maximize a 
criterion. The final prediction is computed as a majority vote between all individual trees.  

 

Random forest has become a popular choice because of their high performance, scalability and 

simplicity. Random forest is quite robust against noise from the individually trees. Decision 

trees can produce complex decision boundaries and is therefore not limited by linearly separable 

classes. The disadvantages RF is the possibility for overfitting, and deep trees can lead to long 

computation time [61, 83]. 
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 Support vector machines (SVM) 

Support vector machine have in recent years gotten increasing attention in the applications of 

classification, regression and detection of outliers. The objective of the algorithm is to 

maximize the margin. The margin is the distance between the samples closest to hyperplane 

that separates the data into different classes. These samples are called support vectors. Larger 

margins lead to a lower generalization error, lower risk of overfitting and lower probability for 

misclassification [84]. 

 

Figure 13 : a) shows the wide range of hyperplanes that can separate the two classes (dark and light 
blue dots) b) Tthe hyperplane that maximizes the margin. Made by Byrne, Maureen 

 

For nonlinear problems, the kernel trick is usually used. The kernel method deals with nonlinear 

problems by combining the original features in a nonlinear way and projecting them onto a 

higher dimensional feature space using a mapping function. In the higher dimensional feature 

space, the data becomes linearly separable. Depending on the data different kernels can be used, 

which all are based on the calculations of the inner product between all the samples. The kernel 

functions can all be interpreted as a similarity function between all the samples [61]. Figure 14 

shows the most used kernel functions and how they separate the data. 
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SVM has become popular especially in classification task because of the high performance on 

nonlinear problems, it can also use different functions locally on the data. This gives the model 

a high degree of flexibility. In addition, no assumption about the distribution of the data is 

needed. As the model focuses on the support vectors, it robust to outliers. The outliers will gain 

low importance for the prediction. A drawback with the SVM becoming computationally 

expensive when having a high dimensional space [4].   

Figure 14:  How the data is separated by the different kernels in 
SVC.  
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 Boosting algorithms 

Boosting algorithms in general combines several classifiers with individually low accuracy into 

a meta classifier with higher accuracy [61]. 

Adaboost: In 1997 the AdaBoost algorithm was put forth by Freund and Schapire [85].  The 

AdaBoost starts by fitting one weak classifier and then checks it performance. The weight or 

importance of the misclassified samples are then increased and passed into the next classifier. 

Again, the misclassified samples receive a higher weight. All classifiers compute a score value. 

The final meta classifier is computed as a linear combination of all weak classifiers [86].The 

boosting algorithm has gotten especially high performance on two-class problems, when used 

in multiclass problems the performance has a tendency to obtain lower values [87]. Adaboost 

is special case of the boosting algorithm gradient boosting that aim to minimize some error 

function [61]. 

Figure 15: working principle of a boosting algorithm. The results from each individual classifier is 
combined to a final classifier.  Modified from[61] 
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3.4 ARTIFICIAL NEURAL NETWORKS 

One of the primary goals in this thesis is to develop a neural network with the ability to predict 

concentration after the initial classification. This section will introduce the branch of machine 

learning called deep learning that includes neural networks. 

 Artificial Neurons 

Artificial neurons are the building block of all neural networks. The workings of an artificial 

neuron are derived from studies done on the human brain and tries to mimic its behavior. 

Neurons are often referred to as nodes in neural networks [88]. 

The input variables are weighted before they are forwarded into core of the neuron. In the core 

the inputs and weights are combined according to an activation function. Depending on the 

calculations of this activation function the network decides if the information obtained should 

be forwarded further into the network or not. For example, if the values from the activation 

function is higher than a certain threshold the information is passed further into the system. The 

activation function in the network may be both linear and nonlinear. Figure shows the workings 

of a neuron [88]. 

 

Figure 16: The Figure shows how the information flows through an artificial neuron. Modified from 
[84] 
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In Figure 16 xn are the input values, wn are the weights, the transfer function sums all the 

products between xn and wn and the activations function decides whether the information should 

be forwarded further. 

Whether a neuron is activated or not is decided by the activation function. Using different 

activations enables the possibility to discover both linear and unlinear relationships in the data. 

The activation function calculates some value based on the weights and biases. This value can 

activate aa neuron [61]. In Appendix A, an overview of different activation functions is given. 

 Neural Networks 

Earlier the information thorough an artificial neuron was explained. Next, the organization of 

the neurons into a network is discussed. Neural networks try to combine the advantages of both 

computers and the human brain. The computer is far better at crushing numbers at high speed 

while the brain quickly recognizes a face from different angles and position or recognize a 

sound. The goal with neural networks is to combine the number crushing capacity of the 

computer with the brain ability to easily recognize patterns [4]. 

Neural networks consist of three main layers: 

1. Input layer: All the inputs are received and normalized within the range of the 

activation function. 

2. Hidden layers: There can be one layer for a simple network or several hidden layers 

for deep neural networks. Hidden layers do most of the processing of data and aims to 

extract patterns from the data. 

3. Output layer: The output values are presented. In classification problem, the final 

activation function must give a discrete value and consist of one node for each class. 

Regression problems must have a continuous value as output [4]. 

The architecture of neural networks can be divided into feedforward networks, recurrent 

network and mesh networks. Feedforward networks has as its only criteria that the information 

flows from the input layer to the output layers without any loops. Feedforward are generally 

simpler to train, but not sensitive to the history of the network. Recurrent networks can send 

information in both directions using loops. Normally used if values for previous inputs are of 

importance [89]. In Figure 17 the difference between feedforward and recurrent are showed.  
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As effects of chemical degradation in the sensing layer are outside the scope of the thesis only 

feed-forward networks was implemented in the Auto CMUT. 

There are several different activation functions being used in neural networks. If only using 

linear function in the hidden layers of the model, the resulting network will never be more than 

a simple linear regression model. By adding non-linear functions the network can learn more 

complex relations. Within the same layer all neurons use the same activations function, but 

between different layers the activation function can vary [4]. In Appendix A an overview of 

different activation functions is given. 

Figure 17: Shows the difference in information flow between feed-forward networks and 
recurrent networks. Reused from [113]
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 Multi-layer perceptron 

A fully-connected feed-forward network with multiple hidden layers is in deep learning called 

a Multi-Layer Perceptron(MLP)[61]. In this thesis MLP will be used as both a classifier and 

regression method. Figure 18 shows the architecture of a MLP 

 

Figure 18: Shows how a MLP is organized. If used on a classification task the number of output nodes 
matches the number of classes. If used on a regression task the output is a continuous value. Modified 
from [90] 
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4 METHOD 

In this section, the four main steps in the Auto-CMUT are described. The steps are illustrated 

in Figure 19. In step 1 the datasets used in the thesis are presented. For the CMUT dataset the 

test setup for data collection is also described and illustrated. In step 2 the pre-processing steps 

in the algorithm are described. The pre-processing step aims to prepare the data for prediction 

by dealing with missing values and select the best set of features. Step 3 puts forth the 

classifiers, the neural networks used and present the structure of the algorithm. The classifiers 

are used to determine which gas each sample belongs to. In the last step, the evaluation 

techniques and structure are presented. By using different evaluation metrics, the performance 

of the algorithms is evaluated. 

Figure 19:  Organization of the Auto-CMUT. 

It is important to note that due to the high number of machine learning techniques and 

algorithms available in Python, it is out of the scope of this thesis to test them all. The selection 

of techniques and algorithms covered in this thesis is based on the literature study done in 

January. 

4.1 LITERATURE STUDY 

The main part of the study was performed during the first 3 weeks of January 2019. The 

methods implemented in this thesis are methods that frequently appeared in relevant literature. 

The literature used was mostly found using the scientific databases Google Scholar, Web of 

science and Oria. 
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4.2 AIR QUALITY DATASET 

To obtain a benchmark for the CMUT to be tested against the Auto-CMUT is applied to a 

dataset from a MOX sensor.  This test will also work as a Proof of concept on how the algorithm 

performs on a larger dataset. 

The air quality dataset contains 9358 measurements of 6 gases. CO, NMHC, NOx and NO2 has 

one measurement from the MOF sensor and one measurement from a reference sensor. The 

reference measurement will be used as the ground truth in this work. O3 and C6H6 has no 

reference measurement and will therefore be removed from the dataset. Missing values in the 

dataset are tagged with the value -200. The device consists of 5 metal oxides sensors embedded 

into one device.  The measurements are performed on an hourly basis from February 2003 to 

March 2004 to in addition to gas measurements the device measures temperature, relative and 

absolute humidity. 

4.3 SOFTWARE 

The algorithm developed during this work is implemented in Python 3.6. In addition, parts of 

the libraries matplotlib, talos, scikit-learn, missingno, numpy, pandas, keras and seaborn are 

used [91-97]. Both the classification algorithm and regression step of the Auto-CMUT outputs 

tables in excel. The regression figures are also plotted in excel.  
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4.4 PRE-PROCESSING 

Before forwarding data into the prediction algorithms the dataset was visualized and processed. 

To ensure that the best feature set was used, the original features were compared to 

transformations by evaluating the feature importance. Missing values were removed to 

eliminate noise from the dataset. Figure 20 show the structure of the pre-processing. 

Figure 20: Pre-processing steps for the Auto CMUT. 

For both datasets missing values were located and visualized by using matrix and bar plots from 

the missingno package in Python . The values were all removed from the dataset. 

The final feature set was selected based on comparing feature importance’s for original features 

and principal components. By using pair plots the difference between the feature sets was 

visualized. 

All features and target values were scaled to prevent some of the features or the target to 

dominate the prediction during the classification and prediction part. 
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4.5 PREDICTION

In this section methods for both classification and regression are presented. During 

classification, the algorithm aims to recognise the gas type of each measurement.  After 

performing a classification regression is used to make a prediction of the concentration of the 

sample. A flowchart for the prediction step is shown in Figure 21. 

Figure 21: The different prediction steps. 

4.6 CLASSIFICATION 

The classification algorithms aim is to determine a samples class membership. In this thesis, 

the classes consist of different gases. The higher selectivity against a specific gas, the better the 

results. In this thesis SVC, logistic regression, Random Forest, AdaBoost, GradientBoosting 

and Multilayer-perceptron was implemented. By using gridsearchCV() from 

sklearn.model.selection all parameters combination was calculated with values decided by the 

programmer. The results from the different classifiers was summarized in a table. 

During the tuning process, 70% dataset was used for training and 30% for testing. The testing 

data is forwarded into the model after the training and tuning of parameter. This ensures an 

unbiased result of how the model will perform on unseen data. During training, random subsets 

of the training data is used for training and test. By testing and training on random subsets 

several times, the model gives an overall performance based on many combinations of training 

and test subsets. 
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 Implementing different classifiers 

Random forest was implemented by using the sklearn.ensemble.RandomForestClassifier() in 

Python. Without restriction, the algorithm continues to split the nodes until each sample have 

their own node, this will lead to overfitting which is prevented by setting a maximum number 

of splits. The number of splits is restricted by the depth parameter. To prevent high variance 

from individual trees, the performance from many trees are averaged. The number of trees is 

set by the parameter number of trees. The impurity parameter defines the function used for 

splitting data [98]. 

Support vector machines The method was implemented using the package 

sklearn.svm.SVC().	Using	the	grid	search	function	in	python	the	polynomial,	radial	basis	

function	and	linear	kernel	was	tried	with	a	selection	of	values	for	the	parameter	C	and	g.	Low	

C	values	mean	a	low	penalty for misclassification and therefore a wider margin, while a high 

C leads to large misclassification penalty and a narrower margin. The g	parameter	is	used	for	

the	rbf	kernel.	A	high	value	means	a	that	the	samples	have	a	high	influence	and	often	a	

bumpier	decision	border	between	classes	[99]. 

Logistic regression was implemented using the function Sklearn.linear_model- 

.LogisticRegression(). Grid search is used for tuning the C value. The C parameter defines 

how strictly misclassifications are penalized. A high C value gives a high penalty for 

misclassifications [100]. 

Adaboost was implemented using sklearn.ensemble.AdaBoostClassifier(). The number of 

classifiers was set by the n_estimators parameter. To restrict the influence of the misclassified, 

sample a learning rate is set. The learning rate ensures that the global minima are not overshot. 

By using Grid search different combinations of values was tested [101]. 

Multi-Layer Perceptron was implemented using sklearn.neural_network.MLPClassifier() 

function. The MLP classifier include a high number of parameters. To prevent overfitting and 

too complex models a selection of parameters was chosen. The activation parameter was used 

to determine the activation being used in the hidden layers. The learning_rate regulates how 

much the weight of the activation function are updated per epoch. The number of hidden layers 

in the network is set by the hidden_layers parameter [102]. 
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Development of multiple classifier model 

The algorithm developed in this thesis implements a multiple classifier selector. The model 

evaluates multiple classifiers and performs a grid search over several parameter values, which 

are manually decided before running the algorithm. The results are automatically sorted by the 

highest mean test score. The results from all the tested classifiers with their parameter values 

and scores are summarized and converted into an excel file. The finalized model then 

implements the classifier with the highest mean accuracy score with the best choice of 

parameters and trains on the whole training set. The finalized model predicts the test data and 

sort them into one dataset for the NO2 measurements and one for the CO measurements. These 

datasets are forwarded into the Neural Network. 

For the thesis, the classifiers: Random Forest, Gradient Boosting, Ada Boost, Logistic 

Regression, SVC and Multi-Layer Perceptron are all from the sklearn package in python. For 

future use the classifiers can easily be changed by a programmer with basic knowledge of 

machine learning and python. 

Development of neural network for regression 

The concentration is predicted by tuned neural networks. To implement the model the Keras-

package was used [103]. Keras is python library specialized on neural networks. The Keras 

package is run on top on Tensorflow and is easier in use [4]. To perform a randomized grid 

search Talos was used. Talos is a Python-package for hyperparameter optimization with Keras 

[104]. 

The regression step aims to try a selection of simple models. By obtaining an error estimate the 

model with the lowest scores are selected and applied to the test data. Error estimates calculates 

how much the predicted concentration differs from the true concentration. In this thesis, the 

mean squared error(MSE) and R2 score are used. 

Because of the wide range of possible tuning choices only the ones used in the best grid search 

are presented in this thesis. For further documentation on other methods and possibilities in 

Talos, check the Talos user manual [105].  In Table 5 and overview of the different parameters 

and layers included in the grid search is presented and the values tried. Information for the 

Table was found in Keras user documentation [106]. 
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Table 5: Presents the parameters used in the final neural network along with its grid of parameters. 

Layer / 

hyperparameter: 

Explanation Values / functions 

Dropout Sets a fraction of the nodes in the NN to zeros. 

Prevents overfitting. 

0,0.2,0.4,0.5,0.1 

Hidden layers Decides the number of layers between the input and 

output layer. 

1,9,100 

Activation 

function 

The value calculated from the activation function 

decides if a neuron/node should be activated or not. 

In keras several activation functions is supported 

Relu, Elu, 

Sigmoid, Lineaer 

Loss functions The function used to calculate the error between the 

predicted 

Mean-Squared 

Error and R2-score 

Batch size The number of samples being trained before 

updating the node values. 

20, 50 

Epochs Number of times the samples are used during 

training 

40,60 

Optimizer Optimizers update the model in response to the 

output from the loss function. 

Adam 

Learning rate The learning rate regulates how much the weight of 

the activation function is updated per epoch 

0.1,0.2,0.3 
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 Automated Pipeline 

Most end users and buyers have both limited experience and knowledge in implementing 

machine learning models and dealing with sensor output. An automated pipeline for the CMUT 

should therefore be included in the product package. An automated pipeline for handling sensor 

data will make chemical micro sensors more suitable for commercial purposes and reduce the 

manual labor and the costs associated this work. 

First the pre-processing step, classification step and regression step were implemented in 

separate scripts and was run chronologically. Further work was put in to automating the whole 

process so all steps could be run in one single script. An overview of the pipeline is presented 

in Figure 22.  

  

 

 

 

 

 

Figure 22 Overview over the steps included in the Auto CMUT 
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 Similar work 

Historically manual machine learning approach has dominated. In the manual ML approach, 

lots of tuning and manual work is put in when training the models. AutoML is a new subfield 

of machine learning and there is limited systems or implementation routines available in 

literature. In this section, similar work is presented in Figure 22. 

WEKA: 

The WEKA workbench was first launched in 1994 [107]. Since then it has been improved and 

extended. The WEKA workbench proved a collection of different machine learning algorithms. 

The workbench quickly tries different algorithms for the user. It contains algorithms for 

classification, regression and clustering [108]. The workbench is a stand-alone system and is 

not a module that can be run from python. 

Auto-WEKA: 

In 2013 an automated pipeline for pre-processing and classification was published [109]. It was 

the first algorithm to tackle the CASH problem. The CASH problem addresses 1) That no 

method work best on all datasets and 2) Some methods are sensitive to the choice of 

hyperparameter values [75]. The Auto-WEKA package is available open source and version 

2.0 was published in 2017 [110]. The system is to be used together with the WEKA workbench. 

Auto-sklearn: 

In 2015 an algorithm for pre-processing and classification was presented [75]. The algorithm 

is based on scikit-learn in contrast to WEKA and Auto-WEKA. The algorithm is also intended 

for a broad selection of datasets with a high generalization performance. The algorithm aimed 

to improve the efficiency and robustness of Auto-WEKA and WEKA [75]. 
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 The Auto-CMUT 

The Auto-CMUT algorithm developed in this thesis is based on scikit-learn, but differs on 

several points from the Auto-sklearn. In contrast to the Auto-sklearn, it is specifically intended 

for use on data from CMUT sensors, but should be easy to use on similar datasets. In addition 

to pre-processing and classification, the Auto-CMUT algorithm includes a regression step by 

using Neural Networks in Keras in contrast to the Auto-sklearn. 

 

4.7 EVALUATION 

During evaluation, the models with the best training performances was calculated with use of 

the test set. The results were then compared to the true answer, and finally summarized using 

different evaluation techniques. For the classification task accuracy and confusion matrix were 

used. For the regression MSE was used during the training of the network while R2 was used to 

evaluate the predicted test set values. R2 scores used on the test set were used to perform a 

benchmark test against the commercial sensors in section 2.5. 
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5 RESULTS 

In this section, the results performed from the Auto-CMUT are presented. The results from the 

classification and regression part will be presented separately as the two parts give different 

information and are based on different grid searches. In addition, some visualization of the 

data is provided. 

5.1 VISUALIZATION 

The automated pipeline is meant to provide information of class presence and gas 

concentration. As the user of the pipeline should not need a computer and evaluating data plots, 

any visualisation of the data is excluded from the pipeline. However, during the work writing 

the algorithm the data was studied and visualized to decide on elements like feature importance 

as well as getting to know the data at hand. These visualisations are presented in the following 

section. 

Principal Components vs original features: 

To decide whether a transformation of the features combined with a dimension reduction was 

preferred, the principal component and original features were presented in pair plots. The results 

are shown in Figure 23. 

The pair-plots show how the classes are distributed between two features. From Figure 23 the 

feature pairs giving some difference between classes are PC3- PC1, PC3- PC2 and PC3-PC4. 

For the original features, some separability can be seen between the MOX sensor and all the 

other features (RH, AH and T). 

By looking at the pair plots it seems like there is little difference when using the PCs or original 

features. Due to the low number of original features most algorithms won’t have problems 

dealing with the dimensionality of the MOX and CMUT datasets. As the dimension is low, and 

there is a small difference between PCA and original features, only the original features were 

used in this thesis. 
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Figure 23: Shows the separability of classes when plotting two features against each other 
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5.2 PRE-PROCESSING 

Missing values 

In the thesis, the most common strategy of removing missing values was used. To investigate 

the source of missing values some plots from the missingno package in python are presented in 

Figure 24 

Figure 24: The first figure is showing that most of the missing values appear in in the reference sensors, 
and not the MOX sensor. The second figure shows the total number of measurements for each of the 
features and targets. 

Figure 24 illustrates that most of the missing value come from the reference sensor for both 

NO2 and CO measurements and not the MOX sensor. After performing a counting, 2416 

values are removed. 7674 CO measurements and 7715 NO2 measurements remain for the 

classification. 

Before forwarding the data into the classification and regression task, all values were scaled 

to prevent dominating features and the features being in the same range as the target. 
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5.3 CLASSIFICATION 

In the classification step grid search on multiple classifiers was performed. The models were 

ranked after the highest mean score. Classification step was performed several times with 

different parameter grids, the results presented is from the run with highest scores. The excel 

file with all models is provided in Appendix B. In Table 6 the best model for each classifier is 

presented. 

Table 6: Shows the best model from each classifier with its parameter values and scores. 

Classifier Parameters: Max_score Mean score Standard score 

Multi-layer 
Perceptron 

Activation=tanh  
Solver=adam 
Learning_rate_init=0.01 
Hidden_layer_size= 8 

0.782 0.777 0.0032 

Random Forest Maxdepth=8
Criterion=entropy  
n_estimators= 200 

0.772 0.768 0.0042 

SVC C=0.005
Kernel= linear 

0.764 0.762 0.0013 

AdaBoost n_estimators = 32 0.759 0.757 0.00082 

Gradient 
Boosting 

Learningrate=0.005 
n_estimators = 100 

0.757 0.757 0.0011 

ExtraTree 
Classifier 

n_estimators =100 0.738 0.732 0.0056 
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According to Table 6, the MLP Classifier performed be with a mean accuracy of 78% while 

the extra tree classifier performed worst with 73%. It should be noted that the MLP classifier 

takes longer time to compute.  

In Figure 25 a confusion matrix was implemented to identify how the misclassification were 

distributed.  According to the matrix, 1380 measurements were correctly classified as CO and 

702 of the CO measurements were classified as NO2. For NO2 1661 measurements were 

correctly classified as NO2,  while 422 were wrongly classified as CO. 

Figure 25: Shows how many measurements were correctly and wrongly classified. 
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5.4 REGRESSION 

During the regression step a grid search for various parameters in a neural network was tested. 

The MSE loss function was used to rank models. The algorithm was run successfully multiple 

times. In Table 7 results from some models are shown for both NO2 and CO.  For a full overview 

of the results, the excel file with all the models are given in appendix C. The best model was 

later used on the test set and the R2-score was calculated.  

Table 7: Present regression results and the models rank. 

Table 7 shows a substantial difference in performance for the NO2 and CO measurements. The 

CO measurements obtained a lower error with 0.205 compared to the NO2 with 0.637. To 

analyse if the difference was due to the algorithm or the selective layer, a scatterplot of the 

MOX values against the reference sensor is computed in Figure 26. 

Rank of model CO dataset NO2 dataset 

Validation 

MSE 

Training 

MSE 

Validation 

MSE 

Training MSE 

1 0.228 0.187 0.550 0.540 

2 0.230 0.223 0.562 0.557 

10 0.233 0.192 0.612 0.644 

100 0.248 0.246 0.748 0.759 



- 63 -

The plot shows a clear linear relationship between the MOX value and the reference value for 

CO. However, between the MOX sensor and reference for the NO2 measurements no linear 

relation is clear. In Figure 27 correlation plots were calculated to further investigate the relation 

between features and reference values.  

Figure 26: Scatterplot of raw output from the MOX value on the X axis and reference values on the Y axis. 

Figure 27:  the correlation values between the features and reference sensor. CO(GT) and NO2(GT) are the 
reference values while PT08.S4(NO2) and PT08.S1(CO) are the MOX values. 
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From Figure 27 a strong positive correlation of 0.88 between the MOX value for CO and the 

reference value is shown. The correlation between MOX and the NO2 reference is substantially 

smaller with a positive correlation of 0.14. However, for the NO2 measurements there is a clear 

negative correlation between the temperature and absolute humidity features against the 

reference value of -0.21 and -0.35. This implies that for NO2 measurements information about 

temperature and humidity can lead to important information about the reference values. 
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Comparing Auto-CMUT and commercial sensors 

After training 216 models with different parameter values the best model was used to predict 

values based on the test-set. The predicted test values were compared to the target value by 

using the R2- score.  The results from the test set are shown in Table 8 together with the R2 score 

for commercial sensors found in section 2.5.  

Table 8: Compares the R2 score of CO and NO2 from the MOX data used in the Auto-CMUT against the 
R2 score from the commercial sensors presented in section 2.5 The average R2 score is also calculated. 

Sensor R2 score CO R2 score 

NO2

𝑹𝟐𝑨𝒗𝒆𝒓𝒂𝒈𝒆 

Auto-CMUT 0.80 0.43 0.80 + 0.43
2

= 0.62 

AQ Mesh 0.80 46 0.80 + 0.46
2

= 0.62 

UniTec 0.43 0.62 0.43 + 0.62
2

= 0.53 

Air Quality Egg 0.0 0.03 0.0 + 0.03
2

= 0.015 

CairPol 94 0.12 0.94 + 0.12
2

= 0.53 

Vaisala 0.80 0.61 0.80 + 0.61
2

= 0.71 
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The results from the Auto-CMUT combined with the MOX sensor studied in this thesis shows 

higher performance than the UniTec, Air Quality Egg and the CairPol sensors and the same as 

the AQ Mesh if looking at the average score. The sensor from Vaisala performs slightly better. 

It should also be noted that the Vaisala has a price of $3700 and AQ Mesh $10 000. It should 

also be noted that the MOX dataset forwarded into the Auto-CMUT was obtained over a period 

of 13 months, while the commercial sensor was tested for a 2 month period.  

Change of R2 due to regression 

In the previous section predictions from the Auto-CMUT showed good results for both CO and 

NO2 measurements compared to the commercial sensors.  Furthermore, the results on how the 

regression part of the Auto-CMUT contributed to the R2 score are presented. In Figure 28 the 

regression line between the scaled output from the MOX sensor against the reference is plotted 

for both CO and NO2. The Figure shows a linear trend for the CO measurements, but with clear 

variance between many samples, the obtained R2-score is 0.53. For the NO2 measurements no 

linear trend between the MOX value and reference value is visible, giving a R2 score of 0.002. 

There are also several sample on the left that clearly deviates from the other measurements.  

Figure 28: Regression line and R2 score for CO and NO2 measurements before the regression step of the 
Auto-CMUT.
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Figure 29 shows the fitted regression line between the predicted values from the Auto-CMUT 

against the reference values. Compared to the regression lines plotted in Figure 26, the linear 

trend for both the CO and NO2 is stronger. For CO, the R2 score increased from 0.53 à 0.80 

and for NO2 t from 0.002 à 0.43. Applying the regression part of the Auto-CMUT clearly 

increased the R2 score for both gases.  

Figure 29 Shows the fitted regression line and R2 score between the values predicted by the Auto-
CMUT values and reference sensor.
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5.5 RESULT SUMMARY 

To visualize the data pair plots, correlation plots and scatterplots were used to get an overview 

of the features and the relation between them before applying the Auto CMUT. 

The Auto-CMUT was run successfully several times and results from the pre-processing, 

classification and regression was obtained. Visualizing missing values showed that the lack in 

measurements mainly originated from the reference sensor and not the MOX. The classification 

task obtained a max accuracy of 78% percent with the Multilayer Perceptron. Appendix B 

showed that MLP and Random Forest dominates among the models with highest performance. 

However, 60 models obtained an accuracy between 74% – 78%. 

The regression task showed a clear difference in results for the CO and NO2
 measurements. To 

further investigate the reason for this difference scatter plots and correlation plots were 

calculated. The plots showed a clear linear relation between MOX values and reference value 

for the CO measurements and a more chaotic relation when looking at the NO2 relation. 

Correlation plots validated the finding from the scatterplots and showed a substantial stronger 

correlation between the MOX value and reference value for CO measurements compared to the 

NO2 measurements. It should be noted that temperature and humidity had significant correlation 

values against the NO2 measurements. The R2 -score for the MOX data increased from 0.002 

to 0.43 for the NO2 and from 0.053 to 0.80 for the CO after running the regression part of the 

Auto-CMUT compared to the R2-score for the scaled values. The neural network model 

therefore strongly contributed to an increase in the R2-score.  With an R2-score for 0.43 and 

0.80 the results from the Auto-CMUT is better than the Air Quality Egg, CairPol and Unitec 

sensor presented in section 2.5 In addition, the sensors yield similar results as more expensive 

sensors like Vaisala and AQ Mesh sensors. 
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6 DISCUSSION  

During this thesis, an algorithm for dealing with output from chemical micro sensors called 

Auto-CMUT was developed. Due to lab delays no data from the CMUT sensor was obtained 

and the algorithm was therefore tested on data from a MOX sensor. The relevance of testing 

the Auto-CMUT on data obtained from the MOX sensor and its results are discussed. 

Evaluating the algorithm developed in the thesis must be discussed due to lack of universal and 

approved standards in machine learning. A discussion of the CMUTs relevance and 

commercial possibilities are addressed based on the research done in part one of the thesis. At 

last, thoughts about the projects challenges and the thesis limitations are highlighted. 

6.1 COMPARING CMUT TO OTHER E-NOSE TECHNOLOGIES 

The technology comparison in the first part of the thesis compared the CMUT to other sensor 

technologies. Based on Table 4 the MOX stands out as the biggest competitor for the CMUT 

sensor. The MOX technology scores high on most E-nose requirements except sensitivity and 

selectivity. However, based on the literature study, development of selective layers with high 

sensitivity is a challenge for all E-nose technologies. The MOX sensors biggest advantage over 

the CMUT technology is the amount of research and number of sensors already on the 

commercial market. 

The CMUT has documented excellent sensitivities. If a company can produce a CMUT product 

with a competing selectivity at a slightly lower price it is likely that the CMUT can take a 

substantial part of the commercial E-nose market. To obtain quality assurance, the CMUT 

should also undergo an objective evaluation from AQ-SPEC as described in section 2.5 

Many sensors available are sold without software that can translate the information from the 

sensor into meaningful information. The CMUT will be a more interesting product for all types 

of buyers if sold with software to answer the questions of which gases that are present and their 

concentration. In this thesis results show that the R2 score increased substantially with the use 

of the Auto-CMUT. 
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6.2 COMMERCIAL SENSORS 

Findings in section 2.6 give an objective evaluation of several commercial sensors on the 

market. The results showed big variation in performance between different commercial sensors.  

Both EPA and AQ-SPEC evaluate sensors based on the R2-score between the tested sensors 

output and the reference value.  Based on these findings the R2-score should be used to evaluate 

the final performance of the Auto-CMUT. It should be noted that the AQ Mesh with a price of 

$10 000 obtained the same overall R2-score as the predicted values from the Auto-CMUT. If 

the CMUT sensor succeeds in obtaining similar selectivity as the MOX sensor, it is likely that 

the CMUT will obtain similar results with the Auto-CMUT due to the similarities between the 

two sensors.  

6.3 DATA SCIENTIST IN A BOX 

Future smart cities will generate a vast amount of data and a substantial part of this data will 

come from sensors. For most people this data is nothing more than an overwhelming chaos of 

numbers. Implementing strategies and systems that can deal with and translate the information 

is crucial. 

The Auto-CMUT algorithm developed in this thesis aims to translate data obtained from 

chemical micro sensors into information the average person can understand. The algorithm 

translates information about frequency shifts, temperature and humidity to answer two 

questions; which gasses are present in the air right now and what is the concentration of these 

gases. By answering these questions the algorithm and sensor together work like a specialized 

data scientist. In time the Auto-CMUT can reduce labour cost and number of human induced 

errors.  
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6.4 LACK OF CMUT DATA 

This thesis developed an algorithm for the CMUT sensor. Due to unexpected delays in lab, no 

data from the CMUT sensor was obtained. Instead, results were obtained by testing the Auto-

CMUT on the Air Quality dataset obtained from a MOX sensor. The Air Quality dataset has 

several similarities with the CMUT sensor. The main difference between the MOX sensor and 

CMUT is that the MOX gives values representing conductivity shift and the CMUT frequency 

shifts.  Machine Learning only care about finding relation between features and does not care 

if features represent frequency or conductivity. Therefore, the algorithm is likely to give similar 

results when applied to the CMUT sensor if it obtains a similar selectivity.  

In addition, results from the MOX sensor give an indication of competing technologies 

performance. These results can be used as a benchmark for the CMUT. The aim of the Auto-

CMUT is to be specialized for the CMUT, but also could be used on similar technologies. By 

testing the algorithm on the Air Quality dataset, the generalization aspect of the algorithm is 

shown and a Proof of Concept (PoC) for the algorithm is conducted. Only minor details must 

be applied in the beginning of the algorithm  in order to use the algorithm for data from the 

CMUT. 
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6.5 DATA QUALITY 

The algorithm is important for obtaining high performances, but in the end a good algorithm 

cannot perform well if the data quality is neglected. Research has also been done to define a 

benchmark to define high data quality. A common definition is [111]: 

“Data is of high quality when it satisfies the requirements of its intended use” 

When using this definition for high data quality the argument for finding a universal benchmark 

model for data quality disappears, as different data in most cases are intended for different use. 

This fact can be combined this fact with a common expression in machine learning: “A model 

can only be as good as the data it is trained on”. Better data will in other words yield better 

models. Instead of focusing on defining a general score for data quality, the focus should 

therefore be to always aim towards better data quality for your specific problem. In machine 

learning, there are several methods and strategies to boost the quality of data: 

1) Knowing the data: Storing data with unnecessary information leads to noise and is

computationally expensive. Being aware of the content in the data is important.

2) Automatically validation: Validating data includes dealing with missing values and

removing unnecessary data automatically.

3) Data from a sensor will only be as good as the reference data it is evaluated towards.

Sticking a micro sensor on a stationary gas monitor with high accuracy will yield good data.

Comparing the data to another low-cost sensor can prove to be useless.

4) The more data the algorithm deals with, the better. Therefore, testing the sensor in different

applications and increase the number of measurements should be prioritized.

I machine learning a common misconception is that machine learning is a magical box that 

solves all problems. This misconception rarely discusses the quality of the data, but simply 

focuses on the complexity of the algorithm. The truth is that the quality is of great importance, 

the best algorithms in the world cannot give useful information if the data forwarded to the 
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algorithm is useless. The fact that the CO measurements obtained higher results than the NO2 

was clearly due to a difference in data quality.  

6.6 MULTIPLE CLASSIFIER 

The Auto-CMUT was successfully applied to the Air Quality dataset. Multiple classifiers with 

a wide range of parameter values are tested and the results are converted to an excel file. For 

the classification task the algorithm managed to correctly classify 78% of the CO and NO2 

measurements. The misclassification may be due to several things:  

1) The MOX sensor may utilize similar values for the CO and NO2 measurements, making it

hard for any algorithm to separate the two gasses.

2) The reference used as the target value is not of high enough quality and therefore provide an

inaccurate target.

3) The number of measurements are too low. The algorithm still provides high accuracy, but

with further work on obtaining several measurements and with a quality assured reference the

accuracy is likely to increase.

It should also be mentioned that 60 models obtained a mean accuracy between 74 -75,6%. 

Therefore, many classifiers with different parameter values can obtain high results. Appendix 

B shows that Random Forest classifier and the Multilayer Perceptron on average obtains higher 

performances on this dataset than other classifiers. To avoid error propagation in the regression 

step it is recommended that the classification step and regression step are run individually until 

a classification accuracy of 90% is reached. If over 10% of the measurements are classified 

wrong regression step will likely get confused by the misclassified measurements and result in 

a lower performance.  
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6.7  REGRESSION 

During the regression step a grid search for multiple parameters in neural networks was 

successfully performed. The CMUT automatically provides an excel file with loss function 

values along with values for all parameters in each model. Table 7 and Appendix  shows that 

Auto-CMUT performs substantially better on the CO measurements with a validation loss of 

0.22 compared to a validation loss of 0.77 for the NO2 measurements. For R2 –score CO 

obtained a score of 0.80 while the NO2 had a score of 0.43. Based on the correlation plots there 

is a higher correlation between the CO measurements and the reference than for the NO2 

measurements. Therefore it is likely that the difference between the NO2 and CO measurements 

are due to a less selective layer for the NO2 compared to the CO layer. In order to increase the 

score for NO2 the focus should be on the selective layer rather than tuning the Auto-CMUT. 

The results from the Auto-CMUT also show that the MOX sensor combined with the Auto-

CMUT obtain good results compared to a selection of commercial sensor.   

6.8 PRE-TRAINING CMUT FOR DIFFERENT APPLICATIONS 

Based on the work in this thesis a two-step training process for the CMUT is suggested. To 

obtain high performance the CMUTs should be sold for pre-trained applications. For instance, 

if the end-user intends to use the sensor in a greenhouse, the algorithm would likely perform 

better if pre-trained on a dataset obtained from a greenhouse and not an office. During pre-

training the performance and not the computation time should be in focus, allowing the 

algorithm to run many models with some complexity. The Auto-CMUT developed is intended 

for step one in the suggested two-step training process.  

Step two in the training process should be an embedded solution. The embedded solution should 

provide a continuous adjustment in parameters when used by the buyer. This step will perform 

the fine-tuning of the algorithm. The sensor will then be tuned for that specific location. For the 

embedded solution, the ranking criteria should be implemented changed: Simpler models with 

lower computational time should be preferred compared to the pre-training algorithm.   
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6.9 NO FREE LUNCH THEOREM 

No free lunch theorem states that no model will perform perfectly on all problems and all 

datasets. The results in this thesis confirm this theorem. Both the classification and regression 

step of the Auto-CMUT was run several times, and the ranking among the possible models 

varied. It should be emphasized that these variations appeared when applying the algorithm on 

the same dataset. 

The various rankings show that an algorithm with several simple models should be preferred 

over one complex algorithm. In addition, it is likely that different models will perform well on 

different applications (office, greenhouse, etc). Complex models will also likely suffer from 

overfitting as the algorithm starts finding patterns that only exist between a small subset of the 

measurements. 
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6.10 CHALLENGES AND LIMITATIONS 

No CMUT measurements: Due to delays at Frauenhofer no data from the CMUT was obtained 

and the Auto-CMUT was not tested on CMUT data. It is therefore hard to estimate how well 

the algorithm will perform on data from the CMUT compared to the MOX sensor. Still, the 

only difference between the sensors will be that CMUT measures frequency change and MOX 

measures change in conductivity, the number of features will be the same. 

Few features: The output from both the Air Quality dataset and the CMUT sensor will give 

few features to work with. Each CMUT array will measure the frequency shift for up to 7 

different sensing layers in addition to temperature and humidity. This leads to one frequency 

value per gas in addition to temperature and humidity. To avoid overfitting this limits the depth 

and complexity of the NN’s. 

Few samples: The Air Quality dataset contains a limited number of measurements. As 

mentioned in the thesis the more measurements the better the model. 

Chemical degradation:  In literature the drawbacks of chemical degradation in the sensing layer 

of E-noses is often mentioned. Therefore, the CMUT should be tested over a longer period, 

preferably a year. Furthermore, work should be put in to analyse the effect of chemical 

degradation, and an algorithm to compensate for sensor drift should be implemented. 

No standards for micro sensors: As there are no standard criteria for testing micro sensors it 

will be hard to compare the CMUT to competing technologies. In the future, a standard for 

testing micro sensor may be a required. It is hard to know if the CMUT will pass such a standard 

test. In this thesis, the CMUT has been compared to recommended guidelines from EPA. 
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7 CONCLUSION 

7.1  RECOMMENDED FUTURE WORK 

Compensating for drift in CMUT 

Developing an embedded algorithm for real-time compensation for first-order drift should be 

implemented. This work should be based on data collected over a long period, preferably one 

year. 

Remove outliers 

Based on the regression plots in Figure 28 and Figure 29 the plots indicate some outliers for 

both the NO2 and CO. Due to lack of time outlier removal was not implemented in this thesis.  

Removal of these outliers might lead to a slight increase in the R2-score. 

Predefined applications for different CMUT configurations 

The CMUT product should be recommended for specific applications. Giving the buyer the 

possibility to order a CMUT specialized for a specific application. Suggested applications are 

gas measurement inside homes/offices, outside and greenhouses. Before shipping the product 

to the buyer, the CMUT is recommended trained on a large dataset from its chosen application. 

Example, greenhouse CMUTs are trained on dataset obtained from greenhouse 

Specializing the CMUT on specific applications will lead to a higher performance as it limits 

the expected range of values from the CMUT. As the CMUT is expected to have a low cost it 

would be possible to buy one for a greenhouse and one for measuring gas concentrations 

outside. 

Field test inside and outside lab 

The CMUT is suggested to be tested over a longer period inside a controlled environment. 

Field-test in lab will indicate how the sensor will perform under ideal conditions. 

To test the CMUT in a real-life application the CMUT should be tested outside the lab. In the 

finalized commercial product, the CMUT should be trained on data obtained in a similar 

application and environment as the buyer intend to use it in. 
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By applying the sensor in a similar environment, it will recognize the patterns faster and will 

obtain a higher accuracy compared to a sensor only trained on an idealized dataset. 

Testing the sensor in a real-life application over a longer period will also give indications of 

how the electronics and chemical sensing layer perform over time. 

Embedded Machine Learning 

The possibility of embedding a machine learning algorithm into the device itself should be 

researched. For future use, it is suggested that all CMUT are trained for a specialized application 

on a larger dataset and more time-consuming script. When shipped to the buyer the CMUTs 

also include an embedded algorithm. The embedded algorithm should have the ability to further 

tune the algorithm to aim for a higher performance. 

Managing data from a network of sensors 

Due to the low price of the CMUT’s it is likely that some buyers will buy a network of sensor. 

Organizing the data from a network of sensor and logging the information in an organized and 

effective manner is crucial. 

Extracting and combining data from many sensors is a complex task. Having a strategy and 

software to extract and combine information from a network of sensors would be positive 

purchase argument compared to others low-cost sensors. Further work on this could be done 

through a master thesis. 
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7.2 CONCLUSION SUMMARY 

In the first part of this thesis a comparison between the CMUT technology and other E-nose 

technologies for use in portable E-nose applications was conducted. Based on the comparison 

in this thesis the CMUT obtained the highest average ranking along with the MOX technology. 

If the CMUT sensor succeeds in obtaining a competing lifetime and a slightly better selectivity 

to a lower price than the MOX sensors, the CMUT is likely to take a substantial part of the 

commercial E-nose market. Results from fieldtests performed by AQ-SPEC on a selection of 

commercial E-noses was also presented. 

In the second part of the thesis an algorithm for handling output from chemical sensors was 

developed, the Auto-CMUT.  Due to lack of data from the CMUT a similar dataset from a 

MOX sensor was forwarded to the algorithm. Due to the similarities between dataset from 

MOX and CMUT, only minor changes must be applied to the code before using the Auto-

CMUT on CMUT data. The algorithm removes missing values and translates information about 

humidity, temperature, frequency or conductivity shifts to identify and quantify the 

concentration of different gasses. The results from the Auto-CMUT gave competing results 

with the commercial E-nose sensors evaluated in the thesis. It was also showed that the 

regression step of the Auto-CMUT increased the R2-score between the MOX output and the 

reference sensors with 27% for CO and 43% for NO2.  
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APPENDIX 

APPENDIX A: OVERVIEW OF DIFFERENT ACTIVATION FUNCTIONS 

Figure 30: An overview of different activation functions commonly used in neural networks or 
classifiers. Obtained with permission from [112] 
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APPENDIX B: RESULTS FROM THE MULTIPLE CLASSIFIER IN THE AUTO-
CMUT  

 Table 9: Results from the best run of multiple classifier. In the original excel file the values of 
different parameters are also included. Parameter values are excluded from appendix due to space. 

Rank Nr estimator max_score mean_score min_score std_score 
1 MLPClassifier 0,782 0,777 0,774 0,00323 
2 MLPClassifier 0,781 0,775 0,771 0,00395 
3 MLPClassifier 0,779 0,774 0,770 0,00384 
4 MLPClassifier 0,783 0,773 0,766 0,00697 
5 MLPClassifier 0,778 0,772 0,768 0,00415 
6 MLPClassifier 0,773 0,772 0,772 0,00068 
7 MLPClassifier 0,774 0,772 0,768 0,00276 
8 MLPClassifier 0,774 0,772 0,766 0,00368 
9 MLPClassifier 0,780 0,772 0,766 0,00618 
10 MLPClassifier 0,773 0,771 0,770 0,00131 
11 MLPClassifier 0,774 0,771 0,769 0,00226 
12 MLPClassifier 0,779 0,771 0,765 0,00613 
13 MLPClassifier 0,773 0,770 0,768 0,00231 
14 MLPClassifier 0,774 0,770 0,768 0,00240 
15 MLPClassifier 0,773 0,770 0,765 0,00390 
16 MLPClassifier 0,775 0,770 0,763 0,00501 
17 MLPClassifier 0,772 0,770 0,768 0,00187 
18 MLPClassifier 0,771 0,769 0,768 0,00149 
19 MLPClassifier 0,774 0,769 0,766 0,00325 
20 MLPClassifier 0,775 0,769 0,764 0,00460 
21 MLPClassifier 0,773 0,769 0,764 0,00358 
22 MLPClassifier 0,778 0,769 0,763 0,00662 
23 MLPClassifier 0,772 0,769 0,767 0,00232 
24 MLPClassifier 0,774 0,768 0,760 0,00613 
25 MLPClassifier 0,772 0,768 0,765 0,00276 
26 MLPClassifier 0,773 0,768 0,760 0,00601 
27 MLPClassifier 0,777 0,768 0,762 0,00613 
28 MLPClassifier 0,773 0,768 0,764 0,00349 
29 MLPClassifier 0,772 0,768 0,765 0,00289 
30 RandomForestClassifier 0,772 0,768 0,762 0,00423 
31 MLPClassifier 0,775 0,768 0,761 0,00553 
32 MLPClassifier 0,771 0,767 0,763 0,00331 
33 RandomForestClassifier 0,774 0,767 0,762 0,00532 
34 MLPClassifier 0,769 0,767 0,762 0,00297 
35 MLPClassifier 0,773 0,766 0,761 0,00520 
36 RandomForestClassifier 0,773 0,766 0,762 0,00494 
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37 RandomForestClassifier 0,771 0,766 0,762 0,00393 
38 MLPClassifier 0,777 0,765 0,755 0,00875 
39 RandomForestClassifier 0,770 0,765 0,763 0,00338 
40 MLPClassifier 0,767 0,765 0,763 0,00192 
41 MLPClassifier 0,771 0,765 0,762 0,00419 
42 RandomForestClassifier 0,768 0,765 0,762 0,00238 
43 MLPClassifier 0,770 0,765 0,762 0,00334 
44 RandomForestClassifier 0,768 0,765 0,762 0,00257 
45 MLPClassifier 0,765 0,765 0,764 0,00040 
46 MLPClassifier 0,772 0,765 0,761 0,00518 
47 RandomForestClassifier 0,768 0,765 0,759 0,00398 
48 RandomForestClassifier 0,770 0,765 0,759 0,00479 
49 MLPClassifier 0,766 0,764 0,763 0,00129 
50 RandomForestClassifier 0,770 0,764 0,761 0,00437 
51 MLPClassifier 0,767 0,764 0,761 0,00226 
52 RandomForestClassifier 0,770 0,764 0,759 0,00476 
53 MLPClassifier 0,767 0,764 0,760 0,00293 
54 RandomForestClassifier 0,764 0,764 0,762 0,00094 
55 RandomForestClassifier 0,768 0,764 0,762 0,00293 
56 MLPClassifier 0,766 0,764 0,758 0,00370 
57 MLPClassifier 0,764 0,764 0,762 0,00101 
58 RandomForestClassifier 0,765 0,764 0,762 0,00122 
59 RandomForestClassifier 0,765 0,764 0,762 0,00100 
60 RandomForestClassifier 0,766 0,763 0,762 0,00170 
61 RandomForestClassifier 0,765 0,763 0,762 0,00155 
62 RandomForestClassifier 0,769 0,763 0,759 0,00413 
63 RandomForestClassifier 0,771 0,763 0,754 0,00670 
64 MLPClassifier 0,766 0,763 0,761 0,00205 
65 RandomForestClassifier 0,764 0,763 0,761 0,00101 
66 MLPClassifier 0,767 0,762 0,759 0,00345 
67 RandomForestClassifier 0,767 0,762 0,757 0,00431 
68 MLPClassifier 0,765 0,762 0,760 0,00218 
69 SVC 0,764 0,762 0,760 0,00132 
70 RandomForestClassifier 0,769 0,762 0,755 0,00586 
71 MLPClassifier 0,768 0,762 0,756 0,00480 
72 MLPClassifier 0,769 0,762 0,758 0,00522 
73 RandomForestClassifier 0,768 0,762 0,757 0,00450 
74 RandomForestClassifier 0,762 0,762 0,762 0,00022 
75 MLPClassifier 0,764 0,762 0,760 0,00148 
76 RandomForestClassifier 0,769 0,762 0,757 0,00546 
77 RandomForestClassifier 0,766 0,762 0,755 0,00448 
78 RandomForestClassifier 0,764 0,761 0,758 0,00240 
79 RandomForestClassifier 0,766 0,761 0,756 0,00402 
80 MLPClassifier 0,767 0,761 0,757 0,00432 
81 MLPClassifier 0,768 0,761 0,757 0,00497 
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82 MLPClassifier 0,765 0,761 0,758 0,00288 
83 RandomForestClassifier 0,766 0,761 0,758 0,00348 
84 RandomForestClassifier 0,764 0,761 0,756 0,00369 
85 MLPClassifier 0,761 0,761 0,760 0,00061 
86 MLPClassifier 0,767 0,761 0,754 0,00541 
87 RandomForestClassifier 0,768 0,761 0,752 0,00646 
88 SVC 0,762 0,760 0,760 0,00087 
89 SVC 0,761 0,760 0,759 0,00089 
90 SVC 0,761 0,760 0,760 0,00047 
91 SVC 0,765 0,760 0,755 0,00375 
92 MLPClassifier 0,765 0,760 0,755 0,00399 
93 MLPClassifier 0,762 0,760 0,758 0,00192 
94 RandomForestClassifier 0,767 0,760 0,753 0,00576 
95 MLPClassifier 0,761 0,760 0,758 0,00130 
96 MLPClassifier 0,763 0,760 0,755 0,00338 
97 MLPClassifier 0,766 0,760 0,756 0,00448 
98 MLPClassifier 0,768 0,759 0,753 0,00604 
99 MLPClassifier 0,763 0,759 0,756 0,00265 
100 MLPClassifier 0,766 0,759 0,754 0,00525 
101 MLPClassifier 0,765 0,759 0,753 0,00491 
102 MLPClassifier 0,761 0,759 0,755 0,00285 
103 MLPClassifier 0,761 0,759 0,755 0,00244 
104 MLPClassifier 0,762 0,759 0,756 0,00246 
105 MLPClassifier 0,760 0,759 0,757 0,00148 
106 MLPClassifier 0,760 0,758 0,757 0,00102 
107 MLPClassifier 0,760 0,758 0,755 0,00267 
108 MLPClassifier 0,765 0,758 0,751 0,00581 
109 MLPClassifier 0,760 0,758 0,757 0,00147 
110 MLPClassifier 0,760 0,758 0,755 0,00227 
111 MLPClassifier 0,759 0,758 0,757 0,00088 
112 AdaBoostClassifier 0,759 0,757 0,757 0,00083 
113 MLPClassifier 0,763 0,757 0,754 0,00401 
114 MLPClassifier 0,760 0,757 0,754 0,00246 
115 MLPClassifier 0,759 0,757 0,755 0,00178 
116 MLPClassifier 0,759 0,757 0,756 0,00121 
117 MLPClassifier 0,759 0,757 0,754 0,00230 
118 MLPClassifier 0,763 0,757 0,754 0,00413 
119 MLPClassifier 0,759 0,757 0,755 0,00156 
120 MLPClassifier 0,758 0,756 0,755 0,00135 
121 MLPClassifier 0,761 0,756 0,754 0,00305 
122 MLPClassifier 0,759 0,756 0,753 0,00217 
123 MLPClassifier 0,760 0,756 0,751 0,00368 
124 MLPClassifier 0,762 0,756 0,753 0,00423 
125 MLPClassifier 0,759 0,756 0,752 0,00275 
126 MLPClassifier 0,760 0,756 0,754 0,00316 
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127 MLPClassifier 0,761 0,756 0,749 0,00514 
128 MLPClassifier 0,757 0,756 0,753 0,00213 
129 GradientBoostingClassifier 0,757 0,756 0,754 0,00112 
130 GradientBoostingClassifier 0,757 0,756 0,754 0,00112 
131 MLPClassifier 0,758 0,755 0,750 0,00346 
132 MLPClassifier 0,759 0,755 0,750 0,00357 
133 MLPClassifier 0,756 0,755 0,754 0,00121 
134 SVC 0,758 0,755 0,751 0,00285 
135 MLPClassifier 0,758 0,755 0,752 0,00268 
136 MLPClassifier 0,765 0,754 0,747 0,00762 
137 GradientBoostingClassifier 0,757 0,754 0,752 0,00228 
138 GradientBoostingClassifier 0,757 0,754 0,752 0,00228 
139 GradientBoostingClassifier 0,757 0,754 0,751 0,00259 
140 MLPClassifier 0,759 0,753 0,746 0,00557 
141 RandomForestClassifier 0,756 0,753 0,747 0,00458 
142 GradientBoostingClassifier 0,757 0,753 0,749 0,00331 
143 GradientBoostingClassifier 0,757 0,753 0,749 0,00331 
144 RandomForestClassifier 0,755 0,753 0,749 0,00224 
145 RandomForestClassifier 0,754 0,753 0,751 0,00149 
146 RandomForestClassifier 0,756 0,753 0,747 0,00383 
147 GradientBoostingClassifier 0,753 0,752 0,751 0,00070 
148 GradientBoostingClassifier 0,753 0,752 0,751 0,00070 
149 GradientBoostingClassifier 0,753 0,752 0,751 0,00068 
150 GradientBoostingClassifier 0,753 0,752 0,751 0,00068 
151 LogisticRegression 0,754 0,752 0,750 0,00193 
152 GradientBoostingClassifier 0,753 0,752 0,752 0,00035 
153 GradientBoostingClassifier 0,753 0,752 0,752 0,00035 
154 GradientBoostingClassifier 0,753 0,752 0,752 0,00042 
155 GradientBoostingClassifier 0,753 0,752 0,751 0,00061 
156 GradientBoostingClassifier 0,753 0,752 0,751 0,00061 
157 LogisticRegression 0,754 0,752 0,749 0,00231 
158 RandomForestClassifier 0,754 0,752 0,748 0,00284 
159 LogisticRegression 0,754 0,751 0,749 0,00231 
160 LogisticRegression 0,754 0,751 0,749 0,00231 
161 LogisticRegression 0,754 0,751 0,749 0,00231 
162 LogisticRegression 0,754 0,751 0,749 0,00231 
163 RandomForestClassifier 0,753 0,750 0,747 0,00245 
164 AdaBoostClassifier 0,754 0,749 0,746 0,00327 
165 RandomForestClassifier 0,755 0,749 0,745 0,00431 
166 RandomForestClassifier 0,752 0,748 0,744 0,00353 
167 ExtraTreesClassifier 0,742 0,736 0,725 0,00773 
168 SVC 0,738 0,734 0,732 0,00256 
169 ExtraTreesClassifier 0,738 0,733 0,725 0,00562 
170 ExtraTreesClassifier 0,737 0,732 0,721 0,00728 
171 SVC 0,737 0,705 0,689 0,02272 
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172 SVC 0,737 0,579 0,500 0,11175 
173 SVC 0,605 0,535 0,500 0,04973 
174 SVC 0,605 0,535 0,500 0,04973 
175 SVC 0,605 0,535 0,500 0,04973 
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APPENDIX C: RESULTS FROM REGRESSION STEP IN THE AUTO-CMUT  

Table 10:   Results from the best regression for both NO2 and CO. In the original excel file the 
parameters with their values are also given. Parameter values are excluded from this table due to lack 
of space. 

 Validation MSE 
CO 

Training MSE 
CO 

Validation MSE 
NO2 

Training MSE 
NO2 

0 0,228 0,187 0,550 0,540 
1 0,230 0,223 0,562 0,557 
2 0,230 0,190 0,587 0,579 
3 0,230 0,207 0,590 0,638 
4 0,231 0,204 0,591 0,597 
5 0,231 0,191 0,592 0,624 
6 0,232 0,226 0,598 0,634 
7 0,232 0,191 0,600 0,604 
8 0,233 0,192 0,609 0,598 
9 0,233 0,192 0,612 0,644 

10 0,233 0,193 0,614 0,672 
11 0,234 0,194 0,615 0,646 
12 0,234 0,194 0,616 0,618 
13 0,234 0,193 0,621 0,662 
14 0,234 0,231 0,636 0,702 
15 0,234 0,228 0,637 0,691 
16 0,237 0,220 0,638 0,655 
17 0,238 0,214 0,639 0,642 
18 0,238 0,213 0,639 0,713 
19 0,238 0,233 0,640 0,689 
20 0,238 0,231 0,642 0,684 
21 0,238 0,202 0,644 0,638 
22 0,238 0,207 0,644 0,687 
23 0,238 0,207 0,645 0,697 
24 0,238 0,209 0,647 0,706 
25 0,238 0,202 0,649 0,723 
26 0,238 0,215 0,650 0,716 
27 0,238 0,207 0,652 0,723 
28 0,238 0,206 0,655 0,678 
29 0,238 0,206 0,658 0,661 
30 0,238 0,208 0,661 0,663 
31 0,238 0,202 0,668 0,738 
32 0,238 0,206 0,670 0,672 
33 0,238 0,206 0,673 0,693 
34 0,238 0,207 0,674 0,697 
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35 0,238 0,202 0,678 0,696 
36 0,239 0,215 0,679 0,708 
37 0,239 0,207 0,679 0,720 
38 0,239 0,208 0,682 0,712 
39 0,239 0,207 0,682 0,682 
40 0,239 0,204 0,687 0,733 
41 0,239 0,206 0,688 0,688 
42 0,239 0,202 0,689 0,739 
43 0,239 0,208 0,689 0,694 
44 0,239 0,214 0,691 0,689 
45 0,239 0,206 0,691 0,740 
46 0,239 0,213 0,691 0,690 
47 0,239 0,202 0,691 0,696 
48 0,239 0,206 0,691 0,694 
49 0,239 0,201 0,691 0,694 
50 0,239 0,206 0,691 0,706 
51 0,239 0,215 0,692 0,698 
52 0,239 0,214 0,692 0,699 
53 0,239 0,210 0,692 0,711 
54 0,239 0,212 0,692 0,692 
55 0,239 0,214 0,692 0,693 
56 0,239 0,240 0,693 0,707 
57 0,239 0,207 0,693 0,694 
58 0,239 0,214 0,693 0,695 
59 0,239 0,209 0,693 0,700 
60 0,239 0,261 0,694 0,710 
61 0,239 0,242 0,694 0,751 
62 0,239 0,214 0,694 0,697 
63 0,240 0,270 0,694 0,697 
64 0,240 0,226 0,695 0,693 
65 0,240 0,217 0,695 0,721 
66 0,240 0,279 0,695 0,716 
67 0,240 0,216 0,696 0,713 
68 0,240 0,240 0,696 0,713 
69 0,240 0,238 0,697 0,693 
70 0,240 0,244 0,697 0,703 
71 0,241 0,205 0,702 0,706 
72 0,241 0,202 0,702 0,718 
73 0,241 0,240 0,703 0,715 
74 0,241 0,275 0,705 0,715 
75 0,242 0,259 0,706 0,721 
76 0,242 0,232 0,706 0,763 
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77 0,242 0,238 0,708 0,754 
78 0,242 0,258 0,708 0,731 
79 0,242 0,262 0,708 0,735 
80 0,242 0,257 0,712 0,758 
81 0,243 0,240 0,713 0,732 
82 0,243 0,260 0,715 0,775 
83 0,243 0,237 0,718 0,744 
84 0,244 0,221 0,719 0,741 
85 0,244 0,277 0,728 0,734 
86 0,244 0,300 0,732 0,743 
87 0,245 0,238 0,732 0,785 
88 0,245 0,267 0,733 0,755 
89 0,245 0,235 0,734 0,744 
90 0,245 0,245 0,735 0,745 
91 0,246 0,286 0,736 0,802 
92 0,246 0,210 0,737 0,797 
93 0,247 0,211 0,739 0,766 
94 0,247 0,263 0,739 0,751 
95 0,247 0,249 0,741 0,801 
96 0,247 0,208 0,746 0,760 
97 0,248 0,249 0,746 0,773 
98 0,248 0,210 0,747 0,784 
99 0,248 0,246 0,748 0,759 

100 0,248 0,279 0,749 0,808 
101 0,249 0,252 0,751 0,762 
102 0,249 0,255 0,751 0,762 
103 0,250 0,287 0,751 0,763 
104 0,250 0,249 0,752 0,764 
105 0,251 0,307 0,759 0,772 
106 0,251 0,215 0,759 0,799 
107 0,251 0,307 0,767 0,779 
108 0,252 0,262 0,769 0,828 
109 0,252 0,260 0,770 0,823 
110 0,253 0,274 0,771 0,818 
111 0,254 0,218 0,772 0,784 
112 0,254 0,284 0,772 0,829 
113 0,254 0,292 0,775 0,802 
114 0,255 0,302 0,778 0,828 
115 0,256 0,298 0,778 0,820 
116 0,256 0,273 0,788 0,837 
117 0,256 0,262 0,789 0,807 
118 0,256 0,299 0,790 0,830 
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119 0,259 0,324 0,794 0,808 
120 0,259 0,330 0,796 0,841 
121 0,259 0,289 0,799 0,815 
122 0,260 0,303 0,801 0,822 
123 0,260 0,276 0,803 0,814 
124 0,261 0,309 0,803 0,817 
125 0,263 0,226 0,805 0,844 
126 0,263 0,311 0,806 0,821 
127 0,264 0,309 0,807 0,828 
128 0,264 0,321 0,809 0,869 
129 0,265 0,319 0,810 0,864 
130 0,265 0,318 0,812 0,826 
131 0,265 0,229 0,814 0,869 
132 0,266 0,229 0,815 0,834 
133 0,266 0,277 0,816 0,831 
134 0,270 0,306 0,817 0,854 
135 0,275 0,342 0,823 0,848 
136 0,275 0,344 0,826 0,841 
137 0,277 0,355 0,827 0,877 
138 0,277 0,268 0,833 0,880 
139 0,278 0,347 0,835 0,896 
140 0,278 0,331 0,836 0,859 
141 0,279 0,357 0,840 0,886 
142 0,279 0,339 0,840 0,881 
143 0,280 0,298 0,844 0,881 
144 0,280 0,362 0,845 0,888 
145 0,280 0,277 0,847 0,871 
146 0,281 0,244 0,848 0,869 
147 0,281 0,274 0,851 0,894 
148 0,282 0,246 0,854 0,898 
149 0,284 0,248 0,855 0,881 
150 0,287 0,378 0,855 0,871 
151 0,290 0,255 0,857 0,904 
152 0,291 0,378 0,858 0,876 
153 0,292 0,364 0,863 0,903 
154 0,293 0,395 0,867 0,893 
155 0,294 0,292 0,868 0,893 
156 0,295 0,324 0,872 0,914 
157 0,296 0,392 0,873 0,906 
158 0,299 0,411 0,875 0,898 
159 0,299 0,403 0,877 0,895 
160 0,302 0,330 0,879 0,921 
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161 0,304 0,405 0,881 0,909 
162 0,306 0,410 0,881 0,900 
163 0,307 0,333 0,882 0,901 
164 0,310 0,374 0,883 0,903 
165 0,311 0,378 0,884 0,908 
166 0,321 0,289 0,886 0,920 
167 0,323 0,390 0,888 0,917 
168 0,325 0,292 0,889 0,908 
169 0,332 0,418 0,889 0,927 
170 0,333 0,424 0,890 0,918 
171 0,334 0,396 0,890 0,914 
172 0,334 0,459 0,891 0,921 
173 0,334 0,399 0,892 0,912 
174 0,335 0,423 0,892 0,929 
175 0,335 0,425 0,894 0,927 
176 0,337 0,329 0,894 0,916 
177 0,339 0,330 0,899 0,925 
178 0,341 0,336 0,900 0,921 
179 0,342 0,467 0,900 0,927 
180 0,345 0,432 0,900 0,924 
181 0,346 0,436 0,904 0,930 
182 0,350 0,363 0,905 0,932 
183 0,357 0,444 0,906 0,933 
184 0,358 0,438 0,908 0,936 
185 0,362 0,372 0,911 0,939 
186 0,373 0,350 0,914 0,940 
187 0,374 0,351 0,916 0,941 
188 0,399 0,377 0,916 0,943 
189 0,405 0,449 0,921 0,947 
190 0,406 0,416 0,922 0,937 
191 0,408 0,451 0,922 0,937 
192 0,412 0,421 0,928 0,945 
193 0,423 0,492 0,928 0,946 
194 0,424 0,476 0,928 0,946 
195 0,429 0,488 0,930 0,952 
196 0,434 0,413 0,931 0,949 
197 0,439 0,514 0,931 0,946 
198 0,444 0,477 0,931 0,956 
199 0,465 0,468 0,931 0,949 
200 0,465 0,485 0,931 0,958 
201 0,547 0,597 0,934 0,955 
202 0,594 0,643 0,937 0,951 
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203 0,612 0,589 0,937 0,957 
204 0,625 0,612 0,938 0,965 
205 0,625 0,611 0,940 0,962 
206 0,637 0,624 0,941 0,963 
207 0,638 0,627 0,943 0,963 
208 0,657 0,658 0,953 0,969 
209 0,663 0,719 0,954 0,968 
210 0,674 0,673 0,956 0,972 
211 0,683 0,691 0,958 0,977 
212 0,698 0,708 0,960 0,976 
213 0,698 0,698 0,960 0,974 
214 0,711 0,709 0,961 0,977 
215 0,718 0,712 0,961 0,977 
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APPENDIX D: CODE PREPROCESSING AND MULTIPLE CLASSIFIER FROM AUTO-CMUT 

Script for performing classification in python, returns an excel file with all models tested and 
their scores, the scroe of the final model which is applied to the test. Lastly a confusion matrix 
with the result from the final model is computed. 

Python code: 

1. # Load General Modules
2. import pandas as pd
3. import numpy as np
4. import matplotlib.pyplot as plt
5. import seaborn as sns
6. 
7. #import classifiers
8. from sklearn.ensemble import ExtraTreesClassifier
9. from sklearn.neural_network import MLPClassifier
10. from sklearn.ensemble import RandomForestClassifier
11. from sklearn.ensemble import AdaBoostClassifier
12. from sklearn.ensemble import GradientBoostingClassifier
13. from sklearn.svm import SVC
14. 
15. from sklearn import linear_model, decomposition, datasets
16. 
17. from sklearn.linear_model import Perceptron, LogisticRegression
18. 
19. #Preprocessing
20. from sklearn.preprocessing import StandardScaler
21. from sklearn.decomposition import PCA
22. from sklearn.model_selection import train_test_split
23. import missingno as msno
24. import missingno
25. 
26. # Other imports
27. from statistics import mean
28. from sklearn.preprocessing import LabelEncoder
29. from sklearn.utils import shuffle
30. from sklearn.metrics import accuracy_score as accuracy
31. from tabulate import tabulate
32. 
33. from sklearn.model_selection import GridSearchCV
34. 
35. # Import dataset
36. All_data  = pd.read_excel('AirQuality.xlsx')
37. 
38. # Change all Mox vlues to microgram/m3
39. All_data.iloc[:,9] *= 10^-3
40. 
41. 
42. #Divide dataset to featuresets and targetsets for both NO2 and CO
43. y_CO = pd.DataFrame(All_data.iloc[:,2])
44. X_CO = pd.DataFrame(All_data.iloc[:,[3,12,13,14]])
45. y_NO2 = pd.DataFrame(All_data.iloc[:,9])
46. X_NO2 = pd.DataFrame(All_data.iloc[:,[10,12,13,14]])
47. 
48. 
49. # Change column names
50. X_CO.rename(columns = {'PT08.S1(CO)':'MOF'}, inplace = True)
51. X_NO2.rename(columns = {'PT08.S4(NO2)':'MOF'}, inplace = True)
52. X_CO['category'] = 'CO'
53. X_NO2['category']= 'NO2'
54.
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55. 
56. 
57. index = pd.DataFrame(list(range(0, len(X_CO))))
58. index.rename(columns = {0:'index'}, inplace = True)
59. frames= [X_CO, X_NO2]
60. 
61. #Defining missing values as nan
62. result = pd.concat(frames)
63. result = result.replace(-200, np.nan)
64. 
65. #Visualize  missing values
66. msno.matrix(result, figsize =(8,7))
67. msno.bar(result.sample(len(result)), figsize=(8,7))
68. 
69. result = result.dropna(axis=0)
70. print( ' Number of samples after removing Nan', len(result))
71. 
72. 
73. #Shuffle the dataset and reset index
74. result = shuffle(result)
75. result = result.reset_index(drop=True)
76. 
77. 
78. 
79. # Separating features and targets
80. features = pd.DataFrame(result.iloc[:,:4])
81. target = pd.DataFrame(result.iloc[:,4])
82. target_values = target
83. 
84. # Give NO2 and CO a value instead of categorical variable
85. labelencoder = LabelEncoder()
86. target.iloc[:, 0] = labelencoder.fit_transform(target.iloc[:, 0])
87. 
88. print('CO is given the class label :', labelencoder.transform(['CO']))
89. print('NO2 is given the class label:', labelencoder.transform(['NO2']))
90. 
91. 
92. #Scale all feature values
93. scaler = StandardScaler()
94. features_scaled = scaler.fit_transform(features)
95. 
96. 
97. 
98. #Divivde datasets into trainin and testing
99. X_train , X_test, y_train, y_test = train_test_split(
100.  features_scaled, target, test_size=0.3

, 
101.  random_state=1, stratify=target) 
102. 
103. y_train = y_train.iloc[:,0].values
104. 
105. #Checking correlaion betwen the target and the different features.
106. plt.figure(figsize=(6,5))
107. cor = result.corr()
108. sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
109. plt.show()
110. 
111. 
112. 
113. # The multiple classifier
114. class EstimatorSelectionHelper:
115. 
116. def __init__(self, models, params):
117.  if not set(models.keys()).issubset(set(params.keys())): 
118.  missing_params = list(set(models.keys()) - set(params.keys())) 
119.  raise ValueError("Some estimators are missing parameters: %s" 
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120.  % missing_params) 
121.  self.models = models 
122.  self.params = params 
123.  self.keys = models.keys() 
124.  self.grid_searches = {} 
125. 
126. def fit(self, X, y, cv=3, n_jobs=3, verbose=1, scoring=None, refit=False)

: 
127.  for key in self.keys: 
128.  print("Running GridSearchCV for %s." % key) 
129.  model = self.models[key] 
130.  params = self.params[key] 
131.  gs = GridSearchCV(model, params, cv=cv, n_jobs=n_jobs, 
132.  verbose=verbose, scoring=scoring, refit=refit, 

133.  return_train_score=True) 
134.  gs.fit(X,y) 
135.  self.grid_searches[key] = gs 
136. 
137. def score_summary(self, sort_by='mean_score'):
138.  def row(key, scores, params): 
139.             d = {   
140.                  'estimator': key,
141.  'min_score': min(scores), 
142.  'max_score': max(scores), 
143.  'mean_score': np.mean(scores), 
144.  'std_score': np.std(scores), 
145.  } 
146.  return pd.Series({**params,**d}) 
147. 
148.  rows = [] 
149.  for k in self.grid_searches: 
150.  print(k) 
151.  params = self.grid_searches[k].cv_results_['params'] 
152.  scores = [] 
153.  for i in range(self.grid_searches[k].cv): 
154.  key = "split{}_test_score".format(i) 
155.  r = self.grid_searches[k].cv_results_[key] 
156.  scores.append(r.reshape(len(params),1)) 
157. 
158.  all_scores = np.hstack(scores) 
159.  for p, s in zip(params,all_scores): 
160.  rows.append((row(k, s, p))) 
161. 
162.  df = pd.concat(rows, axis=1, sort=True).T.sort_values([sort_by], 
163.  ascending=False,) 
164. 
165.  columns=['estimator','min_score','mean_score', 'max_score','std_score

'] 
166.  columns = columns + [c for c in df.columns if c not in columns] 
167. 
168.  return df #[columns] 
169. 
170. #Defining the classifiers to be used in gridsearch
171. models = {   
172.     'ExtraTreesClassifier': ExtraTreesClassifier(),
173. 'RandomForestClassifier': RandomForestClassifier(),
174. 'AdaBoostClassifier': AdaBoostClassifier(),
175. 'GradientBoostingClassifier': GradientBoostingClassifier(),
176. 'LogisticRegression': LogisticRegression(solver='liblinear'),
177. 'SVC': SVC(),
178. 'MLPClassifier': MLPClassifier()
179. }
180. 
181. #Defining the parameter grid for each classifier
182. params = { 
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183. 'ExtraTreesClassifier': { 'n_estimators': [80, 100, 150] },
184. 'RandomForestClassifier' : { 'n_estimators': [80, 100, 150, 200],
185.  'max_depth': [5, 8,9, 10, 15], 
186.  'criterion':['gini','entropy']}, 
187. 'AdaBoostClassifier':  { 'n_estimators': [16, 32] },
188. 'GradientBoostingClassifier':{ 'n_estimators': [16, 32, 50 ,100],
189.  'learning_rate': [0.001, 0.005,0.005, 0.0001 ,]},

190. 'LogisticRegression' : {'C':[ 0.1, 1, 10, 50, 100, 200]},
191. 'SVC':[
192. {'kernel': ['linear'], 'C': [0.001,0.005, 0.1, 0.5,]},
193. {'kernel': ['rbf'], 'C': [0.00001, 0.005, 0.001, 0.1, ],
194.  'gamma': [ 0.001, 0.1, ]}], 
195. 'MLPClassifier': {'hidden_layer_sizes':[6,8],'activation':['relu', 'tanh'

], 
196.  'solver':['adam', 'sgd'], 'alpha':[0.001, 0.01, 0.1], 
197.  'max_iter':[1000], 'batch_size':[50,100], 
198. 'learning_rate': ['adaptive'], 'learning_rate_init': [ 0.0001, 0.01]}
199. }
200. 
201. # Callinga and fitting the model
202. model = EstimatorSelectionHelper(models, params)
203. model.fit(X_train, y_train)
204. summary = model.score_summary()
205. summary = pd.DataFrame(summary)
206. 
207. 
208. #Create excel file with all the results
209. print(tabulate(summary, headers='keys', tablefmt='psql'))
210. summary.to_excel("Results_Classifier_1.xlsx")
211. summary = summary.reset_index(drop=True)
212. 
213. 
214. # Picking out the best model and run it on the test set
215. models2 = {   
216. 'ExtraTreesClassifier': ExtraTreesClassifier(),
217. 'RandomForestClassifier': RandomForestClassifier(),
218. 'AdaBoostClassifier': AdaBoostClassifier(),
219. 'GradientBoostingClassifier': GradientBoostingClassifier(),
220. 'LogisticRegression' : LogisticRegression(),
221. 'SVC': SVC(),
222. 'MLPClassifier': MLPClassifier()
223. }
224. 
225. 
226. for key in models2:
227. if key == summary.iloc[0,1]:
228.  print('The best estimator is:', key) 
229.  print('With a max_score of', summary.iloc[0,6]) 
230.  classifier = models2.get(key) 
231. 
232.  if key == 'ExtraTreesClassifier' : 
233.  n__estimators = summary.loc[ 0 , 'n_estimators' ] 
234.  clf = ExtraTreesClassifier(n_estimators = n__estimators) 
235. 
236. 
237.  elif key == 'RandomForestClassifier': 
238.  max__depth = summary.loc[ 0 , 'max_depth' ] 
239.  n__estimators = summary.loc[ 0 , 'n_estimators' ] 
240.  criterion_ = summary.loc[ 0 , 'criterion' ] 
241.  clf = RandomForestClassifier(max_depth = max__depth, 
242.  n__estimators = n__estimators, 
243.  criterion=criterion_) 
244. 
245.  elif key == 'LogisticRegression': 
246.  c_ = summary.loc[ 0 , 'c' ] 
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247.  clf = LogisticRegression(C=c_) 
248. 
249. 
250.  elif key == 'GradientBoostingClassifier': 
251.  learning__rate = summary.loc[ 0 , 'learning_rate' ] 
252.  n__estimators = summary.loc[ 0 , 'n_estimators' ] 
253.  clf = GradientBoostingClassifier(learning_rate=learning__rate, 
254.  n_estimators= n__estimators) 
255. 
256. 
257.  elif key == 'AdaBoostClassifier': 
258.  n__estimators = summary.loc[ 0 , 'n_estimators' ] 
259.  clf= AdaBoostClassifier(n_estimators=n__estimators) 
260. 
261. 
262.  elif key =='SVC': 
263.  c = summary.loc[ 0 , 'c' ] 
264.  kernel_ = summary.loc[ 0 , 'kernel' ] 
265.  gamma_ = summary.loc[ 0 , 'gamma' ] 
266.  clf = SVC(C=c, gamma=gamma_,kernel=kernel_) 
267. 
268.  elif key == 'MLPClassifier': 
269.  activation_ = summary.loc[ 0 , 'activation' ] 
270.  hidden_layer_sizes_ =  summary.loc[ 0 , 'hidden_layer_sizes' ] 
271.  solver_ = summary.loc[ 0 , 'solver' ] 
272.  alpha_ = summary.loc[ 0 , 'alpha' ] 
273.  max_iter_ = summary.loc[ 0 , 'max_iter' ] 
274.  batch_size_ = summary.loc[0,'batch_size'] 
275.  learning_rate_ = summary.loc[ 0 , 'learning_rate' ] 
276.  learning_rate_init_ = summary.loc[ 0 , 'learning_rate_init' ] 
277. 
278.  clf = MLPClassifier(hidden_layer_sizes=hidden_layer_sizes_, 
279.  activation=activation_,solver=solver_, 
280.  alpha=alpha_, max_iter=max_iter_, 
281.  batch_size=batch_size_, 
282.  learning_rate=learning_rate_, 
283.  learning_rate_init=learning_rate_init_) 
284. 
285.  else: 
286.  print('key not found') 
287. 
288. 
289. y_train = pd.DataFrame(y_train)
290. clf.fit(X_train, y_train)
291. y_pred = pd.DataFrame(clf.predict(X_test))
292. print('The accuracy for the final model is: ', accuracy(y_test,y_pred))
293. 
294. 
295. 
296. # Plottin a confusion matrix wit theresults from the final Model
297. cm= confusion_matrix(y_test, y_pred, labels=None, sample_weight=None)
298. TargetNames = ['CO','NO2']
299. 
300. 
301. def plot_confusion_matrix(cm,
302.  TargetNames, 
303.  title='Confusion matrix', 
304.  cmap=None, 
305.  normalize=False): 
306. 
307. import matplotlib.pyplot as plt
308. import numpy as np
309. import itertools
310. 
311. accuracy = np.trace(cm) / float(np.sum(cm))
312. misclass = 1 - accuracy
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313. 
314. if cmap is None:
315.  cmap = plt.get_cmap('Blues') 
316. 
317. plt.figure(figsize=(8, 6))
318. plt.imshow(cm, interpolation='nearest', cmap=cmap)
319. plt.title(title)
320. plt.colorbar()
321. 
322. if TargetNames is not None:
323.  tick_marks = np.arange(len(TargetNames)) 
324.  plt.xticks(tick_marks, TargetNames, rotation=45) 
325.  plt.yticks(tick_marks, TargetNames) 
326. 
327. if normalize:
328.  cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] 
329. 
330. 
331. thresh = cm.max() / 1.5 if normalize else cm.max() / 2
332. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
333.  if normalize: 
334.  plt.text(j, i, "{:0.4f}".format(cm[i, j]), 
335.  horizontalalignment="center", 
336.  color="white" if cm[i, j] > thresh else "black") 
337.  else: 
338.  plt.text(j, i, "{:,}".format(cm[i, j]), 
339.  horizontalalignment="center", 
340.  color="white" if cm[i, j] > thresh else "black") 
341. 
342. 
343. plt.tight_layout()
344. plt.ylabel('True label')
345. plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format
346.  (accuracy, misclass

)) 
347. plt.show()
348. 
349. 
350. plot_confusion_matrix(cm, TargetNames,title='Confusion matrix')
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APPENDIX E: CODE FOR REGRESSION FROM AUTO-CMUT 

Script for performing the regression part of the Auto-CMUT in python, returns an excel file 
with all models tested and their  MSE scores. The Auto-CMUT implements the best model on 
the test set. On the best model the R2-score is calculated between the predicted test values and 
reference sensor 

Python code: 

1. #General inputs
2. import numpy as np
3. import pandas as pd
4. 
5. 
6. #Imports from sklearn
7. from sklearn.preprocessing import StandardScaler
8. from sklearn.metrics import r2_score
9. from sklearn.model_selection import train_test_split
10. 
11. #imports Keras
12. from keras.losses import mean_squared_error, mean_absolute_error
13. from keras.models import Sequential
14. from keras.layers import Dropout, Dense
15. from keras.optimizers import Adam, Nadam
16. from keras.activations import relu, elu,linear, sigmoid, linear, softmax
17. from keras.layers import Dropout
18. from keras.models import Sequential
19. from keras.layers import Dense
20. 
21. #Talos imports
22. import talos
23. import talos as ta
24. import wrangle as wr
25. from talos.metrics.keras_metrics import fmeasure_acc
26. from talos.metrics.keras_metrics import root_mean_squared_error as rmse
27. from talos import live
28. from talos.model.normalizers import lr_normalizer
29. from talos import Reporting
30. 
31. 
32. #Load Air Quality dataset
33. All_data  = pd.read_excel('AirQuality.xlsx')
34. All_data.iloc[:,9] *= 10^-3
35. 
36. 
37. 
38. #Sort CO and NO2 data in separate dataframes
39. CO = pd.DataFrame(All_data.iloc[:,[2,3,12,13,14]])
40. NO2 = pd.DataFrame(All_data.iloc[:,[9,10,12,13,14]])
41. 
42. #Change names
43. CO.rename(columns = {'PT08.S1(CO)':'MOF'}, inplace = True)
44. NO2.rename(columns = {'PT08.S4(NO2)':'MOF'}, inplace = True)
45. 
46. 
47. # Remove missing values
48. CO = CO.replace(-200, np.nan)
49. NO2 = NO2.replace(1800, np.nan)
50. CO = CO.dropna(axis=0)
51. NO2 = NO2.dropna(axis=0)
52. print( ' Number of CO samples after removing Nan', len(CO))
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53. print( ' Number of NO2 samples after removing Nan', len(NO2))   
54.    
55.    
56.    
57. #Reset index   
58. CO = CO.reset_index(drop=True)   
59. NO2 = NO2.reset_index(drop=True)   
60.    
61.    
62. #Separate features and target for both gases    
63. y_CO = pd.DataFrame(CO.iloc[:,0])   
64. X_CO = pd.DataFrame(CO.iloc[:,1:])   
65. X_NO2 = pd.DataFrame(NO2.iloc[:,1:])   
66. y_NO2 = pd.DataFrame(NO2.iloc[:,0])   
67.    
68. #Scale all values    
69. scaler = StandardScaler()   
70. X_CO_scaled = scaler.fit_transform(X_CO)   
71. X_NO2_scaled = scaler.fit_transform(X_NO2)   
72. y_CO_scaled = scaler.fit_transform(y_CO)   
73. y_NO2_scaled = scaler.fit_transform(y_NO2)   
74.    
75. #scaler2 = scaler.inverse_transform(scaler)   
76.    
77. #Splitt in both the CO and NO2 data into train, test and validation sets    
78.    
79. def  split_test_valid(X, y, test_ratio):   
80.     X_train, X_test, y_train, y_test =    
81.     train_test_split(X, y, test_size=test_ratio, random_state=1)   
82.     return X_train, X_test, y_train, y_test    
83.    
84.    
85. test_ratio= 0.2   
86.    
87. X_CO_train, X_CO_test,y_CO_train, y_CO_test= split_test_valid(X_CO, y_CO,   
88.                                                               test_ratio)   
89.    
90. X_CO_train, X_CO_valid,y_CO_train, y_CO_valid = split_test_valid(X_CO_train,    
91.                                                                  y_CO_train,    
92.                                                                  test_ratio)   
93.    
94. X_NO2_train, X_NO2_test,y_NO2_train,y_NO2_test = split_test_valid(X_NO2_scaled,    
95.                                                                   y_NO2_scaled,    
96.                                                                   test_ratio)   
97.    
98. X_NO2_train, X_NO2_valid,y_NO2_train,y_NO2_valid =split_test_valid(X_NO2_train,   
99.                                                                    y_NO2_train,    
100.                                                                    test_ratio

)   
101.    
102.    
103. #Define the Neural Network   
104. def regression_model(X_train, y_train, X_valid, y_valid, params ):   
105.     model = Sequential()   
106.     model.add(Dense(10, input_dim= X_train.shape[1],   
107.                     activation=params['activation'],   
108.                     kernel_initializer='normal'))   
109.        
110.     model.add(Dropout(params['dropout']))   
111.        
112.     #hidden_layers(model,params, 1)   
113.        
114.     model.add(Dense(1, activation=params['last_activation'],   
115.                     kernel_initializer=params['kernel_initializer']))   
116.                        
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117.     model.compile(optimizer=params['optimizer'](lr=lr_normalizer(params['lr']
,   

118.                   params['optimizer'])),   
119.                   loss=['mse'],   
120.                   metrics=['mse'])   
121.        
122.     history = model.fit(X_train, y_train,    
123.                         validation_data=[X_valid, y_valid],   
124.                         batch_size=params['batch_size'],   
125.                         callbacks=[live()],   
126.                         epochs=params['epochs'],   
127.                         verbose=0)   
128.        
129.     return history, model    
130.        
131.    
132. #Defining the parameter grid    
133. params = {'lr': [ 0.1,0.2,0.3],   
134.     'first_neuron':[2,8, 100],   
135.      'hidden_layers':[1,9,100,],   
136.      'batch_size': [ 50],   
137.      'epochs': [40],   
138.      'dropout': [0.2,0.4,0.5,0.1],   
139.      'kernel_initializer': ['normal'],   
140.      'optimizer': [Nadam],   
141.      # 'loss':[mse],   
142.      'activation':[relu, linear, sigmoid, softmax],   
143.      'last_activation':['linear']   
144.      }   
145.         
146. # Running the Neural Network with the chosen parameter grid   
147. t = ta.Scan(x=X_CO_train,   
148.             y=y_CO_train,   
149.             model= regression_model,    
150.             params=params,   
151.                
152.             grid_downsample=0.2,    
153.             #reduction_method='correlation',   
154.             #reduction_metric= rmse(),   
155.             dataset_name='Final_Results_CO',   
156.             experiment_no='1',   
157.          #   dataset_name = 'HPO',   
158.             print_params=True   
159.             )   
160. r = Reporting('CO_not_scaled')   
161. #df = pd.read_csv('Final_NO2_1.csv')   
162.    
163.    
164. from talos import Evaluate   
165. e = Evaluate(r)   
166.    
167.    
168. #Deploying model, to save results for later use    
169. from talos import Deploy   
170. Deployed_CO = Deploy(t, model_name='Final_CO', metric='val_loss',  asc=True) 

  
171.    
172. report_CO = talos.Reporting('HPO_NO2_2.csv')   
173.    
174. report_CO.plot_corr('val_loss')   
175.    
176. correlation_values_CO = abs(report_CO.correlate('val_loss'))   
177.    
178. typed_report_data_CO= report_CO.data.convert_objects(convert_numeric=True)    
179.    
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180. typed_report_data_CO = typed_report_data_CO.loc[typed_report_data_CO['loss'] 
   

181.                                         <= typed_report_data_CO['loss'].min()
]   

182.    
183. # Gettin id number for best model    
184. best_model_id_CO = typed_report_data_CO.iloc[0].name   
185.    
186. #Saving the best model    
187. best_model_CO = talos.utils.best_model.activate_model(t, best_model_id_CO)   
188.    
189. #Use best model on the testset    
190. y_CO_predict = pd.DataFrame(best_model_CO.predict(X_CO_test))   
191.    
192.    
193. #Computing the R2 score for the testset   
194. R2_test_CO = r2_score(y_CO_test, y_CO_predict, sample_weight=None,   
195.                       multioutput='uniform_average')   
196.    
197. e = Evaluate(t)   
198. e.evaluate(X_NO2_train,y_NO2_train,model_id=1,   
199.            folds=10,asc=True,metric='val_loss')   
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