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Abstract: We introduce a mathematical model to describe the tritrophic interaction between crop,
pest and the pest natural enemy where the release of Volatile Organic Compounds (VOCs) by crop is
taken into account. The VOCs may be considered as an indirect defence mechanism of the plant as
they attract the pest natural enemies toward the attacked plants. The model dynamics is studied through
qualitative analysis and numerical simulations. The factors that may enhance pest disappearance are
identified. In particular, we show that VOCs may have a beneficial effect on the environment since
their release may be able to stabilize the model dynamics. Specifically, for the parameter values that
we have explored, this effect can arise only when both the phenomena of VOCs basic plant release and
VOCs plant release due to pest attack are present.
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oscillations

1. Introduction

In agronomy, tritrophic interactions between crop, herbivores and their natural enemies are one of
the drivers of the crop yield. Understanding and manipulating these interactions in order to produce
food more sustainably is the basic principle of biological control of pest. Plants continuously emit a
blend of different Volatile Organic Compounds (VOCs). Among them, some are induced or produced
in a higher quantity when the plant is attacked by an herbivore [1–4]. They may be considered as an
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indirect defence mechanism of the plant as they attract natural enemies toward the attacked plants and
therefore to the pests themselves [1,2,5,6]. This ecological process is widely common since the range
of natural enemies reacting to different plants VOCs includes many diverse predators, such as insect
and mites, and many diverse parasites such as parasitoid wasps or flies, and even parasitoid nematods
[1]. One specific example of pest-natural enemy is the interaction between aphids and ladybirds. For
example, Coccinella septempunctata has been shown to be attracted by VOCs emitted by (i) barley
Hordeum vulgare when infected by the bird cherry oat aphid Rhopalosiphum padi [7] and (ii) several
cruciferous vegetables Brassica spp. when infected by the peach potato aphid Myzus persicae [8].

Mathematical modelling of tritrophic interactions may be dated back to the seventies when three–
species food chains were studied by means of ordinary differential equations (ODEs) as extensions of
two–species interactions of predator–prey type [9, 10]. Later on, in a very famous paper that inspired
a wealth of subsequent research, Hastings and Powell [13] used such kind of models to describe the
interaction between a resource, a consumer and a predator. Their model (say, HP model) was an
evolution of the very well known two–dimensional Rosenzweig–MacArthur model [11]. An important
outcome of the HP model is that nonlinear responses (in particular a Holling type II (HTII) functional
response was used) in the long–term behavior may favor the onset of chaotic dynamics. This result was
somehow criticized by McCann and Yodzis [12] who argued that the parameter values used in [13] were
‘rather improbable’ biologically. However, McCann and Yodzis also indicated new parameters that
also produce chaos. Therefore, a general conclusion gained from these studies was that even relatively
simple ODE food chains model may show a very rich dynamics. These models are able, in particular,
to describe natural food webs chaotic dynamics that ‘ought to be quite common when the resource
productivity is sufficiently high’ [12]. Since then, chaos in multi–species systems has been the subject
of many investigations (see e.g. the extensive review of chaotic models in ecological systems contained
in [14]). The HP model itself has been studied through bifurcation theory [15, 16] and numerical
simulations [17]. On the other hand, the HP model has been later revisited to represent many different
scenarios. This was done, for example, by Maiti and co-workers [18] who studied the interaction
of tea plant, pest and predator. Pal and co-workers [19] used that model to prove that omnivory in
tritrophic food chain stabilizes the system from chaos to order. Zhang and Georgescu [20] used an
HP–like model coupling the within-pest virus dynamics with the crop-pest virus dynamics. Gakkar and
Singh [21] extended the HP model to a four dimensional model by introducing an additional predator
in the top prey. Through numerical simulations they showed that for a given set of parameter values
the modified food web model exhibits stable dynamics in contrast to chaotic dynamics occurring in the
three species HP model. The HP model with more general functional responses has also been studied
in both deterministic [15, 22] and stochastic enviroments [23].

A special application of the tritrophic models is concerned with the effects of chemicals released
by populations involved in the tritrophic interaction. Mandal and co-workers considered the release of
toxins in an aquatic ecosystem [24], while Liu and co-workers proposed a model where allelochemicals
are released by plant species as a protection against herbivores or pests [25]. Later on, this model has
been revisited by Fergola and Wang [26].

In this paper, we consider a model given by three ordinary differential equations describing the
tritrophic interaction between crop, pest and the pest natural enemy, in which the release of Volatile
Organic Compounds (VOCs) by crop to attract the pest natural enemy is explicitly taken into account.
The model we propose is an extension of the HP model [13], in the sense that an extra nonlinear
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term is added to the equation ruling the dynamics of the highest trophic level to describe the effects of
VOCs. On the other hand, it is also a more complex variant of the plant–herbivores–enemies considered
in [25, 26], where the interspecific interactions are described by bilinear mass–action terms.

The rest of the paper is organized as follows: the model is introduced in Section 2. In Section 3
we present the equilibria analysis for feasibility and local stability. Section 4 is devoted to numerical
simulations to assess the VOCs effects on the model dynamics. Conclusions are given in Section 5.

2. The model

We assume that the size of the interacting populations, i.e. the crop, the pest/aphid and the pest
natural enemy, are represented by the time-dependent functions x(t), y(t) and z(t), respectively. As
possible example of a concrete tritrophic interaction including VOCs we consider barley, H. vulgare
(x), the aphid R. padi (y) and the ladybird C. septempunctata (z).

Unlike the model proposed in [26] we assume that the production of volatiles by the plants in the
unit time is limited. To this end, we replace the mass action terms used in [26] by HTII responses. As
a consequence, the dynamics is ruled by the following three ODEs, where all the parameters, whose
meaning and baseline values are summarized in Table 1, are positive except b ≥ 0 and c ≥ 0:

dx
dt

= rx
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x
K

)
− a

xy
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,
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= y
(
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(
pq
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)
.

(2.1)

In (2.1) the first equation rules the crop dynamics. The crop is assumed to grow logistically with net
reproduction rate r and carrying capacity K. The crop is attacked by the aphids population, an action
that is modeled in the last term of the first equation by means of an HTII response function, to account
for feeding satiation of the insects. The dynamics of the aphid is ruled by the second equation, where
the conversion coefficient e is introduced in the uptake of the consumed crop. Further, the aphids die
with natural mortality rate m; they are also attacked by their natural enemies, i.e. the C. septempunctata
population, at rate p, again using an HTII function. Finally, the third equation describes the dynamics
of pest natural enemy. The first two terms represent, respectively, the pest enemy attraction due to: i)
VOCs basic plant release, at rate b; ii) VOCs plant release due to pest attack, at rate c. As mentioned
above, the latter process is modelled by an HTII function. Pest-enemy reproduces by feeding on the
aphids, with conversion factor q, and dies with mortality rate n. Note that the input of new pest natural
enemies, expressed by the first two terms in the last equation, implies the existence of an unlimited
external reservoir of aphid-natural-enemies which is not explicitly modelled in (2.1).

A conceptual diagram of the model structure is shown in Figure 1, where the state variables and the
related processes are represented.
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Table 1. Model variables and parameters: notation, biological description and baseline
values used in the simulations.

Symbol Description Baseline value
x crop population size 0.2 initial value
y aphid population size 0.2 initial value
z aphid-natural enemy population size 0.2 initial value
r crop growth rate 0.1
K crop carrying capacity 1
a maximal harvesting rate of crop by aphids 0.1
e crop to aphids conversion (yield) 0.4
m aphids’ natural mortality rate 0.01
p maximal uptake rate of aphid by aphid-natural enemy 0.01

h, k, ` half saturation constants 0.5
b attraction constant due to VOCs 0.25

c
enhanced attraction rate of aphid-natural enemy by VOCs
released by crops under aphid attack

0.5

q aphids to aphid-natural enemy conversion (yield) 0.5
n aphid-natural enemy mortality rate 0.3

Figure 1. Schematic representation of the inter-specific interactions between plant, herbivore
pest and pest-natural enemy. The solid lines represent the feeding processes (1,2), the dotted
lines represent the increase of volatile compounds due to: basic plant release (3) and plant
release during pest attack (4). The volatile compounds attract the pest-natural enemy from the
external reservoir, which is not explicitly modeled in the dynamical system (2.1), whose state
variables x, y and z are represented by the rectangular boxes. Note, however, that volatiles
are not explicitly modeled as system variables.
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3. Equilibria and stability

Possible equilibria are only the ecosystem collapse E0 = (0, 0, 0), the aphid-free point
E1 = (x1, 0, z1) and coexistence E∗ = (x∗, y∗, z∗). In particular

x1 = K, z1 =
b
n

K.

It follows that the point E1 always exists. For coexistence we can find some sufficient conditions for
its existence as follows.

We find y from the first equilibrium equation,

y(x) =
1
a

[
r
(
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x
K

)
(h + x)

]
. (3.1)

Note that this is a quadratic function in x, which is nonnegative only for 0 ≤ x ≤ K. Solving directly
for z, from the second equilibrium equation we find
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This function is nonnegative for aex ≥ m(h + x). Let x̄ be the unique solution of the equation

ae
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.

The conditions for which z ≥ 0 are therefore:

x ≥ x̄, if ae > m; (3.3)
x ≤ x̄, if ae < m. (3.4)

We need to take an interval in which both y ≥ 0 and z ≥ 0. Therefore, for (3.3) we need x̄ ≤ K, while
for (3.4) it follows x̄ ≤ 0 and no feasible interval can arise. Imposing that x̄ lies in the interval of
interest [0,K] we obtain from (3.3)

aeK ≥ m(h + K). (3.5)

Define now a new function f (x) by the right hand side of the third equilibrium equation in which both
y and z are substituted with the above expressions (3.1) and (3.2). Explicitly,
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It is then easily checked that

f (x̄) = x̄
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in view of the fact that x̄ ≤ K. On the other hand,
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)
,

so that f (K) ≤ 0 if we impose
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≥ m + b

K p
`n
, (3.7)

and by its continuity, the function f must have a zero x∗ in the interval [0,K]. The remaining
coordinates of E∗ are obtained then from (3.1) and (3.2). Thus sufficient conditions for the existence
of the equilibrium at which all populations coexist are (3.5) and (3.7).

For stability we need the Jacobian of (2.1):
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Evaluation at E0 shows that this point is unconditionally unstable, in view of the positive eigenvalue
r > 0. At E1 instead, two eigenvalues are negative, −r and −n, while from the third one, the condition
for local stability is obtained,

aeK
h + K

< m+
bK p
`n
. (3.9)

Comparing (3.7) and (3.9), if b = 1 there would be a transcritical bifurcation for which a coexistence
equilibrium would arise when E1 would become unstable.

The local stability condition of E1, (3.9), shows that the disappearance of aphids is enhanced by their
larger natural mortality m, by a more effective basic release of volatiles b, lower C. septempunctata’s
natural mortality n and aphids attack rate on crops a.

The role of the crops size, expressed by their carrying capacity is not clear and therefore we turn to
simulations to try to elucidate it.

In Figure 2 we show the equilibria and oscillations in the e− K parameter space. It can be seen that
the aphid population R. padi vanishes in a large portion of the parameter space, except for the lower
values of the conversion coefficient e and with growing values of the crops carrying capacity K. In
this range coexistence of the whole ecosystem occurs through sustained oscillations. Their amplitudes
appear to increase with increasing values of the conversion coefficient e. Here we used the set of initial
conditions x(0) = 1.7, y(0) = 2.8, z(0) = 3.0, but another run, not reported, with x(0) = 0.2, y(0) = 0.2,
z(0) = 0.2 (which we will use in the next section) does not lead to any significant change in the plots
of these surfaces. Also, we see that the C. septempunctata population tends to grow with the size of
the crops K. This of course assumes that this species is not a specialist predator on R. padi, because it
thrives also when the pest disappears. In nature, in Europe C. septempunctata can live on other aphid
species that also feed on cereals such as Sitobion avenae and Methopolophium dirhodum, [27]. To
achieve eradication the upper portion of the parameter space must therefore be used.
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Figure 2. Equilibria and oscillations in the e − K parameter space. The other parameter
values are given in Table 1. Initial conditions: x(0) = 1.7, y(0) = 2.8, z(0) = 3.0. The single
surface denotes the value of the population at equilibrium. When two surfaces appear, they
represent the minimum and maximum values of the population persistent oscillations.

4. Numerical Simulations

We perform a few further simulations to study the model behavior. Unfortunately, there is a lack of
full data sets representing our specific biological system. Therefore in order to highlight the various
possible dynamics shown by model (2.1) in the numerical simulations we use hypothetical parameter
values, as has been previously done in similar investigations [9, 13, 26]. The biological meaning of
each parameter can be obtained from the model, as reported in Table 1. Even though the model is
theoretical and not yet related to field data, a concrete example of this ecosystem is represented, as
mentioned in Section 2, by the H. vulgare, R. padi and C. septempunctata interactions. In this case,
since the H. vulgare is an annual plant, the system (2.1) models only the vegetative growth phase of
the plant. Indeed, recall that in the absence of interaction with the pest, the crop growth is logistic.

The first investigation deals with the effects of the conversion coefficient e appearing in the aphids
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Figure 3. Dynamics of model (2.1) for e = 0.4. The other parameter values and initial
conditions are given in Table 1. The state variables approach a steady state.
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Figure 4. Dynamics of model (2.1) for e = 0.42. The other parameter values and initial
conditions are given in Table 1. Oscillations occur.

equation (the second equation of (2.1)) on the model dynamics. It can be seen that increasing the value
of e destabilizes the model and oscillations arise as shown in Figures 3 and 4. The threshold value in
this case is approximately ec = 0.42. A further increase of e causes an increase in the amplitude of the
oscillations, Figure 5.

When b = c = 0, i.e. no pest natural enemies are attracted either by basic crops release or by VOCs
enhancement due to the presence of the aphids attacking the crops. The natural-pest enemy rapidly
disappears and an oscillatory dynamics involving just crops and aphids arises, Figure 6. Note that in
this case the model reduces to the classical HP model.

Then, we explore the effects due to the increase of the enhanced volatile release rate c when crops are
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Figure 5. Dynamics of model (2.1) for e = 0.5. The other parameter values and initial
conditions are given in Table 1. Compared with the dynamics shown in Figure 4, here
oscillations increase their amplitudes.

time

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

s
ta

te
 v

a
ri
a

b
le

0

0.2

0.4

0.6

0.8

1

1.2
X plant

Y Herbivore pest

Z Pest-natural enemy

Figure 6. Dynamics of model (2.1) for b = c = 0. The other parameter values and initial
conditions are given in Table 1. The model becomes the classical HP model in the regime of
sustained oscillations. The natural-pest enemy rapidly disappear and an oscillatory dynamics
involving only barley crops and aphids arises.

under aphids attack in the ladybird equation (the third equation of (2.1)). This is shown in Figures 6–
8. When c = 0.25 the system shows an oscillatory behavior involving all the three state variables
(Figure 7), while a coexistence equilibrium of all the three interacting populations can also be achieved
as it can be observed for c = 0.44 (Figure 8).

Finally, in order to analyze the separate effects of basic plant release and plant release during the
pest attack, we perform different simulations by varying the values of the parameters b and c. The
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Figure 7. Dynamics of model (2.1) for c = 0.25. The other parameter values and initial
conditions are given in Table 1. Oscillatory behavior involving all the state variables.
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Figure 8. Dynamics of model (2.1) for c = 0.44. The other parameter values and initial
conditions are given in Table 1. The state variables approach a coexistence equilibrium.

simulations show that in the absence of release of volatiles by the crops (i.e. b = 0) the solution
is a periodic solution of period one, see Figure 9 left panel. Similarly, when c = 0, the solution is
qualitatively similar to the previous case with (possibly stable) oscillations, see Figure 9 right panel.
Instead, considering both effects (b , 0 and c , 0) the populations achieve a coexistence equilibrium,
see Figures 8 and 10.
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Figure 9. The figure shows the phase space of (2.1). Left panel: b = 0; right panel: c = 0.
The other parameter values and initial conditions are given in Table 1. In both cases, period
one oscillations are observed.
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Figure 10. Phase space of (2.1) for b = 0.25, and c = 0.44, while the other parameter values
and initial conditions are given in Table 1.

5. Conclusions

In this paper we have introduced a mathematical model to describe the tritrophic interaction between
crop, pest and the pest natural enemy, in which the release of Volatile Organic Compounds (VOCs) by
crop is explicitly taken into account. The VOCs have the role of attracting the pest natural enemy. Our
model fits in the model scheme proposed by Hastings and Powell [13] and is a particular variant of the
model proposed by Fergola and Wang [26].

Specifically, compared to [26], there are here two novel features. First, we consider saturation in
feeding by the two insects, population pest and pest-natural enemy. Second, although recruitment of
new pest-natural enemies is already present in [26], we assume that it is enhanced by the presence of
aphids on crop. As a consequence, the modification introduced in the first term of the last equation
entails that the crop-only equilibrium found in [26] is not possible here anymore.

The dynamics of the model is then clear, as only either the aphids-free equilibrium E1 is allowed,
when (3.9) holds, or coexistence of the whole ecosystem. In addition, the latter is seen to bifurcate,
for instance by an increase of the conversion factor e of crop into new aphids. These oscillations may
drive the population close to zero at certain times, see e.g. the central frame of Figure 2 for the smaller
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values of e. In this way thus, theoretically, the oscillations may in principle threaten the survival of the
ecosystem. Indeed possible stochastic environmental perturbations may change the model parameter
values end entail the vanishing of some ecosystem population. From the biological point of view this
is unlikely, though, because the colonization of the crop by the aphids is a phenomenon that occurs
through the growing season of the crop.

The analysis of the local stability condition of the y–free equilibrium E1 shows that several factors
may enhance the disappearance of aphids as the larger natural mortality: a more effective release of
volatiles and lower C. septempunctata’s natural mortality and/or aphids attack rates on crops. Also, we
have shown that the C. septempunctata population tends to grow with the crops carrying capacity K.
Our analysis indicates that increasing the conversion coefficient e may destabilize the model dynamics
with the onset of sustained oscillations and that to ensure pest eradication a relatively high value of e
should be sought. However this is a rather difficult situation to achieve, as this is an intrinsic parameter
of the aphid population. It is therefore better to act on the remaining model parameters appearing in
the condition (3.9) to try to combat the pest.

Note further that C. septempunctata thrives also in the absence of the aphids R. padi because
although it may lack the food explicitly modeled in the system, there is a continuous replacement by
new incoming entries, attracted by the volatiles released by the plants, a fact that is expressed in the
model by the first recruitment term in the last equation.

As far as the role of volatiles by crop is concerned, VOCs have been shown to possess a beneficial
effect on the environment since their release may be able to stabilize the model dynamics. In particular,
this effect may occur, in the parameter range that has been explored, only when both the phenomena of
basic volatile release and volatile release during the pest attack are present, i.e. when b , 0 and c , 0.

Although the analysis and numerical simulations provide a satisfactory description of model
dynamics, we are aware that this is a preliminary study. First of all, we have used different sets of
hypothetical data. However, only field data, when available, will clarify the ‘right’ dynamics that can
be predicted from this model. From a mathematical point of view, the nonlinearities make difficult to
obtain a complete qualitative analysis. The nature of the oscillations, the occurrence of Hopf
bifurcation and the parameter values range ensuring possible chaotic dynamics will be the subject of
further investigations.
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