
Master’s Thesis 2019 30 ECTS
Faculty of Science and Technology

Environmental Sound Classification
on Microcontrollers
using Convolutional Neural Networks

Jon Nordby
Master of Science in Data Science

Abstract

Noise is a growing problem in urban areas, and according to the WHO is the second
environmental cause of health problems in Europe. Noise monitoring using Wireless
Sensor Networks are being applied in order to understand and help mitigate these noise
problems. It is desirable that these sensor systems, in addition to logging the sound
level, can indicate what the likely sound source is. However, transmitting audio to a
cloud system for classification is energy-intensive and may cause privacy issues. It is also
critical for widespread adoption and dense sensor coverage that individual sensor nodes
are low-cost. Therefore we propose to perform the noise classification on the sensor node,
using a low-cost microcontroller.

Several Convolutional Neural Networks were designed for the STM32L476 low-power
microcontroller using the Keras deep-learning framework, and deployed using the vendor-
provided X-CUBE-AI inference engine. The resource budget for the model was set at
maximum 50% utilization of CPU, RAM, and FLASH. 10 model variations were evaluated
on the Environmental Sound Classification task using the standard Urbansound8k dataset.

The best models used Depthwise-Separable convolutions with striding for downsampling,
and were able to reach 70.9% mean 10-fold accuracy while consuming only 20% CPU.
To our knowledge, this is the highest reported performance on Urbansound8k using a
microcontroller. One of the models was also tested on a microcontroller development
device, demonstrating the classification of environmental sounds in real-time.

These results indicate that it is computationally feasible to classify environmental sound
on low-power microcontrollers. Further development should make it possible to create
wireless sensor-networks for noise monitoring with on-edge noise source classification.

Contents

1 Introduction 6
1.1 Environmental noise . 6
1.2 Noise Monitoring with Wireless Sensor Networks 7

2 Background 10
2.1 Machine Learning . 10

2.1.1 Classification . 10
2.1.2 Training process . 11

2.2 Neural Networks . 12
2.2.1 Multi-Layer Perceptron . 12
2.2.2 Activation functions . 13
2.2.3 Training Neural Networks . 14
2.2.4 Convolutional layers . 15
2.2.5 Convolutional Neural Network . 16
2.2.6 Subsampling . 17
2.2.7 Spatially Separable convolution 17
2.2.8 Depthwise Separable convolution 18
2.2.9 Efficient CNNs for Image Classification 19

2.3 Audio Classification . 21
2.3.1 Digital sound . 21
2.3.2 Spectrogram . 21
2.3.3 Mel-spectrogram . 22
2.3.4 Normalization . 23
2.3.5 Analysis windows . 23
2.3.6 Weak labeling . 24
2.3.7 Aggregating analysis windows . 24
2.3.8 Data augmentation . 25
2.3.9 Efficient CNNs for Speech Detection 25

2.4 Environmental Sound Classification . 27
2.4.1 Datasets . 27
2.4.2 Spectrogram-based models . 28
2.4.3 Audio waveform models . 29
2.4.4 Resource-efficient models . 30

2.5 Microcontrollers . 31
2.5.1 Machine learning on microcontrollers 31
2.5.2 Hardware accelerators for neural networks 32

2

3 Materials 33
3.1 Dataset . 33
3.2 Hardware platform . 33
3.3 Software . 35
3.4 Models . 36

3.4.1 Model requirements . 36
3.4.2 Compared models . 37

4 Methods 39
4.1 Preprocessing . 39
4.2 Training . 40
4.3 Evaluation . 41

5 Results 42
5.1 On-device testing . 45

6 Discussion 46
6.1 Model comparison . 46
6.2 Spectrogram processing time . 47
6.3 Practical evaluation . 47

7 Conclusions 49
7.1 Further work . 49

Appendix 51

A Keras model for Baseline 52

B Keras model for Strided 54

C Script for converting models using X-CUBE-AI 57

References 61

List of Tables

2.1 Classes found in the Urbansound8k dataset 27
2.2 Examples of STM32 microcontrollers . 31

3.1 Existing methods and their results on Urbansound8k 36
3.2 Parameters of compared models . 38

4.1 Summary of preprocessing and training settings 40

5.1 Results for the compared models . 42

3

List of Figures

1.1 Health impacts of noise at different severity levels 6
1.2 Sounds of New York City noise monitoring system 7
1.3 Data transmission strategies for noise classification sensor 8

2.1 Splitting datasets into train/validation/test sets and cross-validation . . . 11
2.2 Relationship between training system and the predictive model during

training . 12
2.3 Multi-Layer Perceptron with 2 hidden layers 12
2.4 Computational principle of an artificial neuron 13
2.5 Commonly used activation functions . 13
2.6 Plot of log-loss for binary classification. 14
2.7 2D convolution for a single channel . 16
2.8 The LetNet-5 architecture . 16
2.9 Max pooling operation . 17
2.10 Strided convolution . 18
2.11 Spatially Separable 2D convolution versus standard 2D convolution . . . 18
2.12 Depthwise Separable Convolution versus standard 3x3 convolution 19
2.13 Convolutional blocks of Effnet, ShuffleNet and Mobilenet 20
2.14 Conversion of sound into a digital representation 21
2.15 Comparison of different filterbank responses: Mel, Gammatone, 1/3-octave. 22
2.16 Different spectrograms . 23
2.17 Audio stream split into fixed-length analysis windows without overlap . . 24
2.18 Common data augmentations for audio 25
2.19 Architecture of Piczak CNN . 28
2.20 EnvNet architecture . 29
2.21 CMSIS-NN code architecture . 32

3.1 Spectrograms from Urbansound8k dataset 33
3.2 SensorTile hardware module . 34
3.3 Development setup of SensorTile kit . 34
3.4 STM32CubeMX software application . 35
3.5 Complexity and accuracy scores of existing models 36
3.6 Architecture of compared models . 37

4.1 Full model pipeline . 39

5.1 Test accuracy of the different models . 42
5.2 Accuracy versus compute of different models 43
5.3 Confusion matrix on Urbansound8k . 44
5.4 Testing model on device . 45

4

1 | Introduction

1.1 Environmental noise

Noise is a growing problem in urban areas, and due to increasing urbanization more and
more people are affected. Major sources of noise include transportation, construction,
industry and recreational activities. The sum of all the noise is referred to as environmental
noise or noise pollution.

Noise pollution over sustained periods of time affects health and well-being in many ways.
Noise can be a source of annoyance and increased stress, cause sleeping disturbance and
increase risk of heart diseases. WHO has estimated that in Europe 1.6 million healthy life
years (Disability-Adjusted Life Years, DALY) are lost annually due to noise pollution[1].
This makes noise pollution the second environmental cause of health problems in Europe,
after air pollution.

Figure 1.1: Health impacts of noise at different severity levels [2]

In the EU environmental noise is regulated by Environmental Noise Directive
(2002/49/EC)[3]. The purpose of the directive is to:

• Determine people’s exposure to environmental noise
• Ensuring that information on environmental noise is available to the public
• Preventing and reducing environmental noise where necessary
• Preserving environmental noise quality where it is good

6

Member States of the EU are required to create noise maps and noise management action
plans every 5 years. These must cover all urban areas, major roads, railways and airports
over a certain size.

The noise maps are created using simulation of known noise sources (such as car traffic)
with mathematical sound propagation models, based on estimates for traffic numbers.
These maps only give yearly average noise levels for the day, evening and night.

1.2 Noise Monitoring with Wireless Sensor Net-
works

Several cities have started to deploy networks of sound sensors in order to better understand
and reduce noise issues. These sensor networks consist of many sensor nodes positioned in
the area of interest, transmitting the data to a central system for storage and reporting.

Examples of established projects are Dublin City Noise[4] with 14 sensors across the
city since 2016. The Sounds of New York City (SONYC)[5] project had 56 sound
sensors installed as of 2018[6], and the Barcelona Noise Monitoring System[7] had 86
sound sensors[8]. The CENSE[9] project plans to install around 150 sensors in Lorient,
France[10].

Figure 1.2: Illustration of how Sounds of New York City[11] system combines sensor
networks and citizen reporting with data analysis and to present city experts and agencies
with a visual interactive dashboard “Noise Mission Control”.

To keep costs low and support a dense coverage, the sensor nodes can be designed to
operate wirelessly. Communication is done using wireless radio technologies such as WiFi,
GSM, NB-IoT or 6LoWPAN. The sensor harvests its energy, often using solar power
or from streetlights powered at night. A battery backup allows the sensor to continue
operating also when energy is momentarily unavailable.

These sensor networks enable continuous logging of the sound pressure level, measured
in Decibel (dB SPL) over a reference pressure level (typically 20× 10−6Pa). Since the
sound pressure level is continuously varying, it is summarized over a specified time-period
using Equivalent Continuous Sound Level (Leq). Typical measurement resolutions are per
minute, per second or per 125 ms. Measurements often use A-weighting to approximate
the sensitivity of the human ear at different frequencies. In Europe, sound level sensors

7

are designed to specifications of IEC 61672-1 Sound Level Meters[12], and the standard
for North America is ANSI S1.4[13].

Sensors can also provide information that can be used to characterize the noise, for
instance to identify the likely noise sources. This is desirable in order to understand the
cause of the noise, identify which regulations the noise falls under, which actors may be
responsible, and to initiate possible interventions.

This requires much more data than sound level measurements, making it challenging to
transmit the data within the bandwidth and energy budget of a wireless sensor. The sensor
may also capture sensitive information and violate privacy requirements by recording and
storing such detailed data.

To address these concerns several methods for efficiently coding the information before
transmitting to the server have been developed. Figure 1.3 shows an overview of the
different approaches.

Figure 1.3: Different data transmission strategies for a noise sensor network with noise
source classification capability. A) Sensor sends raw audio data with classification on
server. B) Sensor sends spectrograms as a intermediate audio representation. Classification
on server. C) Sensor sends neural network audio embeddings as intermediate audio
representation. Classification on server. D) Sensor performs classification on device and
sends result to server. No audio or intermediate representation needs to be transmitted.

In [14], the authors propose a compressed noise profile based on lossy compression of
spectrograms. For 125ms time resolution, the bit-rate is between 400 and 1400 bits per

8

second, however this gave a 5 percentage points reduction in classification accuracy. This
is shown as case B) of Figure 1.3.

Others have proposed to use neural networks to produce an audio “embedding” inspired by
the success of word embeddings[15] for Natural Language Processing. This is shown as case
C) of Figure 1.3. In VGGish[16] model trained on Audioset[17] an 8-bit, 128-dimensional
embedding per 1 second, leading to a data rate of 1024 bits per second. L3 (Look, Listen,
Learn)[18] similarly proposed an embedding with 512 dimensions. The computation
of such an embedding generally requires very large models and lots of computational
resources. EdgeL3[19] showed that the L3 model can be compressed by up to 95%, however
the authors state that more work is needed to fit the RAM constraints of desirable sensor
hardware.

The minimal amount of data transmissions would be achieved if the detected noise category
was sent, requiring to perform the entire classification on the sensor. This is shown as
case D) of Figure 1.3. Such an approach could also eliminate the need to send personally
identifiable data to a centralized server.

This motivates the problem statement of this thesis:

Can we classify environmental sounds directly on a wireless and battery-
operated noise sensor?

9

2 | Background

2.1 Machine Learning

Machine Learning is the use of algorithms and statistical models to effectively perform a
task, without having to explicitly program the instructions for how to perform this task.
Instead, the algorithms learn to perform the desired function from provided data.

Supervised learning uses a training dataset where each sample is labeled with the correct
output. These labels are normally provided by manual annotation by humans inspecting
the data, a time-intensive and costly process. In unsupervised learning, models are trained
without access to labeled data. This is often used for cluster analysis (automatic discovery
of sample groups).

Supervised learning techniques can be used for regression and for classification. In regres-
sion where the goal is to predict a continuous real-valued variable, and for classification a
discrete variable.

2.1.1 Classification
Classification is a machine learning task where the goal is to train a model that can
accurately predict which class(es) the data belongs to. Examples use-cases could be to
determine from an image which breed a dog is, to predict from a text whether it is positive
or negative towards the subject matter - or to determine from audio what kind of sound
is present.

In single-label classification, a sample can only belong to a single class. In closed-set
classification, the possible class is one of N predetermined classes. Many classification
problems are treated as single-label and closed-set.

Metrics are used to evaluate how well the model performs at its task. Common metrics
for classification include Accuracy - the ratio of correct predictions to total predictions,
Precision - the number of correct positive results divided by the total number of positive
predictions, Recall (Sensitivity) - the number of correct positive results divided by the
number of predictions that should have been positive.

For a given model there will be a tradeoff between Precision and Recall. For binary
classification, the range of possible tradeoffs can be evaluated using a Receiver-Response
Curve (ROC).

10

2.1.2 Training process

The goal of the classification model is to make good predictions on unseen data. The
samples available in the dataset only represent some particular examples of this underlying
(hidden) distribution of data. Care must be taken to avoid learning peculiarities that are
specific to the training samples and not representative of general patterns. A model that
fails this generalization criteria is often said to be overfitting, while a model that fails to
learn any predictive patterns is said to be underfitting.

To address this challenge the dataset is divided into multiple subsets that have different
purposes. The training set is data that the training algorithm uses to optimize the model
on. To estimate how well the model generalizes to new unseen data, predictions are made
on the validation set. The final performance of the trained model is evaluated on a test
set, which has not been used in the training process. To get a better estimate of how the
model performs K-fold cross-validation can be used, where K different training/validation
splits are attempted. K is usually set to a value between 5 and 10. The overall process is
illustrated in Figure 2.1.

Figure 2.1: Splitting datasets into train/validation/test sets and cross-validation

One common style of supervised learning processes is to: start with a base model and
initialize its parameters (often randomly), then make predictions using this model, compare
these predictions with the labels to compute an error, and then update the parameters in
order to attempt to reduce this error. This iterative process is illustrated in Figure 2.2.

Hyperparameters are settings for the training process. Hyperparameters can be chosen by
trying different candidate settings, training model(s) to completion with these settings,
and evaluating performance on the validation set. When performed systematically this is
known as a hyperparameter search.

Once training is completed, the predictive model with the learned parameters can be used
on new data.

11

Figure 2.2: Relationship between training system and the predictive model during training

2.2 Neural Networks
Artificial Neural Networks are a family of machine learning methods, loosely inspired by
the biological neurons in the brains of humans and other animals. Some of the foundations
such as the Perceptron[20] dates back to the 1950s, but it was not until around 2010
that neural networks started to become the preferred choice for many machine learning
applications.

2.2.1 Multi-Layer Perceptron
A basic and illustrative type of Neural Network is the Multi-Layer Perceptron (MLP),
shown in Figure 2.3. It consists of an input layer, one or more hidden layers, and an
output layer.

Figure 2.3: Multi-Layer Perceptron with 2 hidden layers

Each layer consists of a number of neurons. The neurons of one layer are connected to
each of the neurons in the preceding layer. This type of layer is therefore known as a
fully-connected, or densely-connected layer. The input to the network is a 1-dimensional
vector. If the data is multi-dimensional (like an image) is to be used, it must be flattened
to a 1-D vector.

Each neuron computes its output as a weighted sum of the inputs, offset by a bias and
followed by an activation function f , as illustrated in 2.4. In the simplest case, the
activation function is the identity function. This lets the layer express any linear function.

12

Figure 2.4: Computational principle of an artificial neuron

Making predictions with a neural network is done by applying the data as inputs to the
first layer, then computing all the following layers until the final outputs. This is often
called forward propagation.

2.2.2 Activation functions

To be able to express non-linear relationships between input and output, non-linear
activation functions are applied. When non-linearity is used, a neural network becomes a
universal function approximator[21].

Commonly used general-purpose non-linear activation functions are Tanh and ReLu[22].
Sigmoid and softmax are commonly used at the output stage of a neural network for
classification, as they convert the input to a probability-like (0, 1) range. Sigmoid is used
for binary classification and Softmax for multi-class classification. To get a discrete class
from these continuous probability values, a decision function is applied. The simplest
decision function for single-label multi-class classification is to take the largest value, using
the argmax function.

An illustration of the mentioned activation functions can be seen in Figure 2.5.

Sigmoid

Tanh

ReLU

Leaky ReLU

Figure 2.5: Commonly used activation functions in neural networks. Input shown along
X-axis, output along Y. Range for Sigmoid is (0,1) and for Tanh (-1,1).

Increasing the number of neurons and the number of hidden layers increases the capacity
of the network to learn more complex functions.

13

2.2.3 Training Neural Networks
Neural Networks are trained through numerical optimization of an objective function (loss
function). For supervised learning, the standard method is mini-batch Gradient Descent
with Backpropagation.

For classification, the cross-entropy (log loss) function is often applied. As the predicted
probability of the true class gets close to zero, the log-loss goes towards infinity. This
penalizes wrong predictions heavily, see Figure 2.6.

Figure 2.6: Plot of log-loss for binary classification.

Categorical cross-entropy is an extension of binary cross-entropy to multiple classes. Other
loss functions are Logistic Loss, Mean Squared Error and Mean Absolute Error.

Making predictions with a forward pass of the neural network and computing the loss
function allows estimating how well or how poorly the current model performs. In order
to find out how the model parameters should be changed in order to perform better,
Gradient Descent is applied. The gradient of a function expresses how much and in which
direction its output varies with small changes to its inputs. This is computed as the
partial derivative of the function.

The key to calculating the gradients in a multi-layer neural network is backpropagation[23].
Backpropagation works by propagating the error in the last layers “back” towards the
input, using the partial derivative with respect to the inputs from the layer before it. This
makes it possible to compute the gradients for each of the weights (and biases) in the
network[24]. Once the gradients are known, the weights are updated by taking a step in
the negative direction of the gradient. The step is kept small by multiplying with the
learning rate, a hyperparameter in the range of 10−7 to 10−2. Too small learning rates can
lead to the model getting stuck in bad minima, while too large learning rates can cause
training to not converge[24].

In mini-batch Gradient Descent, the training data is processed in multiple fixed-size
batches of data, and the loss function and model parameters updates are computed per

14

batch. This means that not all the training data has to be kept in memory at the same
time, which allows training on very large datasets. The batch size is a hyperparameter
and has to be set high enough for the batch loss to be a reasonable estimate of the loss on
the full training set, but small enough for the batch to fit into memory.

One pass through the entire training set is called an epoch, and training normally consists
of many epochs.

The mini-batch Gradient Descent optimization with backpropagation can be summarized
in the following procedure:

1. Sample a mini-batch of data
2. Forward propagate the data to compute output probabilities, calculate the loss
3. Backpropagate the errors to compute error gradients in the entire network
4. Update each weight by moving a small amount against the gradient
5. Go to 1) until all batches of all epochs are completed

Gradient Descent is not guaranteed to find a globally optimal minimum, but with suitable
choices of hyperparameters can normally find local minima that are good-enough. It has
also been argued that a global optimum on the training set might not be desirable, as it
is unlikely to generalize well[25].

2.2.4 Convolutional layers
Convolutional layers are an alternative to fully-connected layers that allows for 2D input
and that can exploit the spatial relationship in such data.

In addition to the width and height, the input also has a third dimension, the number
of channels. The different channels can contain arbitrary kinds of data, but common for
the first layer would be 3 channels with an RGB color image or 1 channel for grayscale
images or audio spectrogram.

To perform 2D convolution, a filter (or kernel) of fixed size KwxKh is swept across the
2D input of a channel. For each location, the kernel multiplies the input data with the
kernel weights and sums to a single value that becomes the output value. This is shown
in Figure 2.7.

This convolution process allows expressing many useful transformations on 2D data, by
simply selecting different weights in the kernel. Simple examples are edge detection
(horizontal/vertical/diagonal) or smoothening filters (mean/Gaussian). And since the
kernels weights in a convolutional layer are trained, they learn to detect local features
specific to the training data.

With multiple input channels, the same kernel is applied over all the input channels,
and all the results at one location, and the bias, are summed together to become the
output. Multiple convolution filters are normally used per layer, to produceM new output
channels with different features from the N input channels.

In Figure 2.7 each location of the kernel has the entire kernel inside the input area. This
is called convolution with “valid” padding, and the resulting output will be smaller by
dk/2e on each side, where k is the kernel size. If the input is instead padded by this
amount when moving the kernel, the output will be the same size as the input. This is
called convolution with “full” padding.

15

Figure 2.7: 2D convolution for a single channel. Red outlines show how the filter moves
across the input image. Filter weights shown in red numbers, input numbers in blue.
Green dots illustrate locations of outputs with respect to inputs.

The number of learnable parameters in a 2D convolutional layer with bias is Pconv =
M(KwKh + 1), with M filters and a kernel of size KwxKh. Commonly used kernel sizes
are 3x3 to 7x7.

In the fully-connected layer, there were (N + 1) ×M parameters for N inputs and M
neurons. For 2D images N = height×width×channels, so even for small image grayscale
inputs (N=100x100x1=10000) a convolutional layer has much fewer parameters.

The computational complexity of a Neural Network is often measured in the number of
Multiply-Accumulate operations (MACC).

The computational complexity of a 2D convolution is Oconv = WHNKwkhM , with input
height H, input width W , N input channels, M output channels$ and a 2D kernel of size
KwxKh.

2.2.5 Convolutional Neural Network

Figure 2.8: The LeNet-5 architecture illustrated. From the original paper[26]

A Convolutional Neural Network (CNN) is a neural network that uses convolutional layers
in addition to (or instead of) fully-connected layers. One of the early examples of a
CNN model was LeNet5 (1998)[26], which was successfully applied to the recognition of
handwritten digits. As seen in Figure 2.8, the architecture uses two convolutional layers
(with subsampling after each), followed by two fully-connected layers and then the output
layer.

16

Architectures with more layers based on very similar structures have been shown to
work well also on more complex tasks, like VGGNet (2014)[27] on the 1000-class image
recognition task ImageNet[28].

2.2.6 Subsampling
Besides the convolution filters, the other critical part that makes CNNs effective is to
gradually subsample the data as it moves through the convolutional layers. This forces
the model to learn bigger (relative to the original input space) and more complex features
(patterns of patterns) in later layers.

A pooling layer is one way to accomplish this, and was used in the LeNet5 and VGGNet
architectures. A 2D pooling operation has KwxKh sized filter and scans over the image
width and height. The stride is normally set to the same size of the operation. Each
channel is processed independently. It outputs 1 element for each scanned location in the
image. With average pooling, the output is the average value of the input. With max
pooling, the output is the maximum value of the input (Figure 2.9).

Figure 2.9: Max pooling operation. Different positions of the filter are colorized, with the
maximum value in each position circled.

Another way of subsampling is by increasing the stride of the convolutions[29]. If a kernel
has a stride of 2 (as in Figure 2.10), then the output of the convolution will be reduced by
half. Striding is usually applied in the first convolution in a layer and reduces the number
of computations compared to pooling because fewer inputs need to be computed.

Striding was used to replace most of the pooling operations in ResNet[30] (2015), which
beat human-level performance on the ImageNet task.

2.2.7 Spatially Separable convolution
While CNNs have a relatively low number of parameters, compared to fully-connected
layers, the convolutional kernels still require a lot of computations. Several alternative
convolution layers have been proposed to address this.

In a spatially separable convolution, a 2D convolution is factorized into two convolutions
with 1D kernels. First, a 2D convolution with a 1xKh kernel is performed, followed
by a 2D convolution with a Kwx1 kernel, as illustrated in Figure 2.11. The number of
operations is

Oss = HWNMKw +HWNMKh = HWNM(Kw +Kh)

17

Figure 2.10: Strided convolution. The kernel input (marked in red) moves by stride=2,
effectively subsampling the input image

The number of computations and parameters compared with regular 2D convolutions is
(KwKh)/(Kw + Kh) times fewer. For example with Kw = Kh = 3, 9/6 = 1.5 and with
Kw = Kh = 5 = 25/10 = 2.5.

Figure 2.11: Spatially Separable 2D convolution versus standard 2D convolution

2.2.8 Depthwise Separable convolution
While a standard convolutional layer performs a convolution over both channels and the
spatial extent a Depthwise Separable convolution splits this into two convolutions: First a
Depthwise Convolution over the spatial extent only, followed by a Pointwise Convolution
over the input channels. The difference is illustrated in Figure 2.12.

The pointwise convolution is sometimes called a 1x1 convolution since it is equivalent to a
2D convolution operation with a 1x1 kernel.

18

Figure 2.12: Input/output relationship of standard 3x3 convolution versus Depthwise
Separable convolution. The image is based on illustrations by Yusuke Uchida[31]

Opw = HWNM

Odw = HWNKwKh

Ods = Opw +Odw = HWN(M +KwKh)

This factorization requires considerably fewer computations compared to full 2D convo-
lutions. For example, with kernels size Kw = Kh = 3 and M = 64 channels, it takes
approximately 7.5x fewer operations.

2.2.9 Efficient CNNs for Image Classification
The development of more efficient Convolutional Neural Networks for image classification
has received a lot of attention over the last few years. This is especially motivated by the
ability to run models that give close to state-of-the-art performance on mobile phones
and tablets. Since spectrograms are 2D inputs that are similar to images, it is possible
that some of these techniques can transfer over to Environmental Sound Classification.

SqueezeNet[32] (2015) focused on reducing the size of model parameters. It demonstrated
AlexNet[33]-level accuracy on ImageNet challenge using 50x fewer parameters, and the
parameters can be compressed to under 0.5MB in size compared to 240MB for AlexNet. It
replaced most 3x3 convolutions in a convolution block with 1x1 convolutions, and reduce
the number of channels using “Squeeze” layers consisting only of 1x1 convolutions. The
paper also found that a residual connection between blocks increased model performance
by 2.9% without adding parameters.

Mobilenets[34] (2017) focused on reducing inference computations by using Depthwise
separable convolutions. A family of models with different complexity was created using
two hyperparameters: a width multiplier α (0.0-1.0) which adjusts the number of filters
in each convolutional layer, and the input image size. On ImageNet, MobileNet-160
α = 0.5 with 76M MACC performs better than SqueezeNet with 1700M MACC, a 22x
reduction. The smallest tested model was 0.25 MobileNet-128, with 15M MACC and 200k
parameters.

19

Figure 2.13: Convolutional blocks of Effnet, ShuffleNet, and Mobilenet. Illustration based
on Effnet paper[35]

Shufflenet[36] (2017) uses group convolutions in order to reduce computations. In order to
mix information between different groups of convolutions, it introduces a random channel
shuffle.

SqueezeNext[37] (2018) is based on SqueezeNet but uses spatially separable convolution
(1x3 and 3x1) to improve inference time. While the MACC count was higher than
MobileNet, they claim better inference time and power consumption on their simulated
hardware accelerator.

Effnet[35] (2018) also uses spatial separable convolutions, but additionally performs the
downsampling in a separable fashion: first a 1x2 max pooling after the 1x3 kernel, followed
by 2x1 striding in the 3x1 kernel. Evaluated on CIFAR10 and Street View House Numbers
(SVHN) datasets it scored a bit better than Mobilenets and ShuffleNet.

20

2.3 Audio Classification
In Audio Classification, the predictive models operate on audio (digital sound). Example
tasks are wake-word or speech command detection in Speech Recognition, music genre or
artist classification in Music Information Retrieval - and classification of environmental
sounds.

2.3.1 Digital sound
Physically, sound is a variation in pressure over time. To process the sound with machine
learning, it must be converted to a digital format. The acoustic data is first converted
to analog electric signals by a microphone and then digitized using an Analog-to-Digital-
Converter (ADC), as illustrated in Figure 2.14.

Figure 2.14: Conversion of sound into a digital representation

In the digitization process, the signal is quantized in time at a certain sampling frequency,
and the amplitude quantized at a certain bit-depth. A typical sampling frequency is 44100
Hz and a bit-depth 16 bit, as used in the Audio CD format[38]. With such parameters,
the majority of human-perceivable information in the acoustic sound is captured. In this
representation sound is a one-dimensional sequence of numbers, sometimes referred to as a
waveform. This is the format utilized by case A) in Figure {figure:sensornetworks-coding}
from the introduction.

Digital sound can be stored uncompressed (example format: WAV PCM[39]), using
lossless compression (FLAC[40]) or using lossy compression (MP3[41]). Lossy compression
removes information that is indistinguishable to the human ear and can compress better
than lossless. But lossy compression can add compression artifacts, and is best avoided
for machine learning tasks.

Recordings can have multiple channels of audio but for machine learning on audio single-
channel data (mono-aural) is still common.

2.3.2 Spectrogram
Sounds of interest often have characteristic patterns not just in time (temporal signature)
but also in frequency content (spectral signature). Therefore it is common to analyze
audio in a time-frequency representation (a spectrogram).

A common way to compute a spectrogram from an audio waveform is by using the
Short-Time Fourier Transform (STFT)[42]. The STFT operates by splitting the audio up
in short consecutive chunks and computing the Fast Fourier Transform (FFT) to estimate
the frequency content for each chunk. To reduce artifacts at the boundary of chunks, they

21

are overlapped (typically by 50%) and a window function (such as the Hann window) is
applied before computing the FFT. With the appropriate choice of window function and
overlap, the STFT is invertible[43].

There is a trade-off between frequency (spectral) resolution and time resolution with the
STFT. The longer the FFT window the better the frequency resolution, but the poorer
the temporal resolution. For speech, a typical choice of window length is 20 ms. Similar
frame lengths are often adopted for acoustic events. The STFT returns complex numbers
describing the phase and magnitude of each frequency bin. A spectrogram is computed
by squaring the absolute of the magnitude and discarding the phase information. This is
called a linear spectrogram or sometimes just spectrogram. The lack of phase information
means that the spectrogram is not strictly invertible, though estimations exist[44][45]. A
linear spectrogram can be on top in Figure ??.

2.3.3 Mel-spectrogram
The more complex the input to a machine learning system is, the more processing power
is needed both for training and for inference. Therefore one would like to reduce the
dimensions of inputs as much as possible. A linear spectrogram often has considerable
correlation (redundant information) between adjacent frequency bins and is often reduced
to 30-128 frequency bands using a filter-bank. Several different filter-bank alternatives
have been investigated for audio classification tasks, such as 1/3 octave bands, the Bark
scale, Gammatone, and the Mel scale. All these have filters spacing that increases with
frequency, mimicking the human auditory system. See Figure 2.15.

Figure 2.15: Comparison of different filterbank responses: Mel, Gammatone, 1/3-octave.

The Mel scaled filters are commonly used for audio classification[46]. The spectrogram
that results for applying a Mel-scale filter-bank is often called a Mel-spectrogram.

Mel-Filter Cepstral Coefficients (MFCC) is a feature representation computed by per-
forming a Discrete Cosine Transform (DCT) on a mel-spectrogram. This further reduces
dimensionality to just 13-20 bands with low correlation between each band. MFCC
features have been very popular in speech recognition tasks[46], however in general sound
classification tasks mel-spectrograms tend to perform better[47][48].

22

Figure 2.16: Different spectrograms showing birdsong. Top: Linear spectrogram. Middle:
Mel-spectrogram. Bottom: Normalized mel-spectrogram after mean-subtraction and
standard scaling. The Mel-spectrograms in this example had the first filter set to 1kHz,
eliminating a lot of the low-frequency noise seen in the linear spectrogram.

2.3.4 Normalization

Audio has a very large dynamic range. The human hearing has a lower threshold of
hearing down to 20µPa (0 dB SPL) and a pain threshold of over 20 Pa (120 dB SPL), a
difference of 6 orders of magnitude[49, Ch. 22]. A normal conversation might be 60 dB
SPL and a pneumatic drill 110 dB SPL, 4 orders of magnitude difference. It is common
to compress the range of values in spectrograms by applying a log transform.

In order to center the values, the mean (or median) of the spectrogram can be removed.
Scaling the output to a range of 0-1 or -1,1 is also sometimes done. These changes have
the effect of removing amplitude variations, forcing the model to focus on the patterns of
the sound regardless of amplitude.

2.3.5 Analysis windows

When recording sound, it forms a continuous, never-ending stream of data. The machine
learning classifier however generally needs a fixed-size feature vector. Also when playing
back a finite-length recording, the file may be many times longer than the sounds that are
of interest. To solve these problems, the audio stream is split up into analysis windows of
fixed length, which are classified independently. The length of the window is typically
a little longer than the longest target sound. The windows can follow each-other with
no overlap, or move forward by a number less than the window length (overlap). With
overlap, a target sound will be classified a couple of times, at a slightly different position
inside the analysis window each time. This can improve classification accuracy.

23

Figure 2.17: Audio stream split into fixed-length analysis windows without overlap

A short analysis window has the benefit of reducing the feature size of the classifier, which
uses less memory and possibly allows to reduce the model complexity, and in turn allow
to make better use of a limited dataset.

When the length of audio clips is not evenly divisible by length of analysis windows, the
last window is zero-padded.

2.3.6 Weak labeling

Sometimes there is a mismatch between the desired length of the analysis window, and
the labeled clips available in the training data. For example, a dataset may consist of
labeled audio clips with a length of 10 seconds, while the desired output is every second.
When a dataset is labeled only with the presence of a sound at a coarse timescale, without
information about where exactly the relevant sound(s) appears it is referred to as weakly
annotated or weakly labeled data[50].

If one assumes that the sound of interest occurs throughout the entire audio clip, a
simple solution is to let each analysis window inherit the label of the audio clip without
modification, and to train on individual analysis windows. If this assumption is problematic,
the task can be approached as a Multiple Instance Learning (MIL) problem. Under MIL
each training sample is a bag of instances (in this case, all analysis windows in an audio
clip), and the label is associated with this bag[51]. The model is then supposed to learn
the relationship between individual instances and the label. Several MIL techniques have
been explored for audio classification and audio event detection[52][53][54].

2.3.7 Aggregating analysis windows

When evaluating a test-set where audio clips are 10 seconds, but the model classifies
analysis windows of 1 second the individual predictions must be aggregated into one
prediction for the clip.

A simple technique to achieve this is majority voting, where the overall prediction is the
class that occurs most often across individual predictions.

With soft voting or probabilistic voting, the probabilities of individual predictions are
averaged together, and the output prediction is the class with the highest probability
overall.

24

2.3.8 Data augmentation
Access to labeled samples is often limited because they are expensive to acquire. This can
be a limiting factor for reaching good performance using supervised machine learning.

Data Augmentation is a way to synthetically generate new labeled samples from existing
ones, in order to expand the effective training set. A simple form of data augmentation can
be done by modifying the sample data slightly. Common data augmentation techniques
for audio include Time-shift, Pitch-shift, and Time-stretch. These are demonstrated in
Figure 2.18.

Figure 2.18: Common data augmentations for audio demonstrated on a dog bark (“woof
woof”). Figure shows log-scaled linear spectrograms before and after applying the aug-
mentation. Parameters are exaggerated to show the effects more clearly.

Mixup[55] is another type of data augmentation technique where two samples from different
classes are mixed together to create a new sample. A mixup ratio λ controls how much
the sample data is mixed, and the labels of the new sample are mixed in the same way.

x̃ = λxi + (1− λ)xj where xi, xjare raw input vectors
ỹ = λyi + (1− λ)yj where yi, yjare labels one-hot encoded

The authors argue that this encourages the model to behave linearly in-between training
examples. It has been shown to increase performance on audio tasks[56][57][58].

Data augmentation can be applied either to the raw audio waveform or to preprocessed
spectrograms.

2.3.9 Efficient CNNs for Speech Detection
Speech detection is a big application of Audio Classification. A lot of research has been
focused on efficient models for use in smartwatches, mobile devices and smart-home devices
(Amazon Alexa et.c.). In the Keyword Spotting (KWS) the goal is to detect a keyword
or phrase that indicates that the user wants to enable speech control. Being an audio
classification task that is often done on low-power microcontrollers, some of the explored
techniques may transfer over to the Environmental Sound Classification task.

25

In [59] (2015) authors evaluated variations of small-footprints CNNs for keyword spotting.
They found that using large strides in time or frequency could be used to create models
that were significantly more computationally effective.

In the “Hello Edge”[60] paper (2017), different models were evaluated for keyword spotting
on microcontrollers. Included were most standard deep learning model architectures such
as Deep Neural Networks (DNN), Recurrent Neural Networks and Convolutional Neural
Networks. They found that Depthwise Separable Convolutional Neural Network (DS-
CNN) provided the best accuracy while requiring significantly lower memory and compute
resources than other alternatives. Models were evaluated with three different performance
limits. Their “Small” version with under 80KB, 6M ops/inference achieved 94.5% accuracy
on the Google Speech Command dataset. A DNN version was demonstrated on a high-end
microcontroller (ARM Cortex M7 at 216 Mhz) using CMSIS-NN framework, running
keyword spotting at 10 inferences per second while utilizing only 12% CPU (rest sleeping).

FastGRNN[61] (2018) is a Gated Recurrent Neural Network designed for fast inference
on audio tasks on microcontrollers. It uses a simplified gating architecture with residual
connection and a three-stage training schedule that forces weights to be quantized in
a sparse and low-rank fashion. When evaluated on Google Speech Command Set (12
classes), their smallest model of 5.5 KB achieved 92% accuracy and ran in 242 ms on a
low-end microcontroller (ARM Cortex M0+ at 48 Mhz).

26

2.4 Environmental Sound Classification
Environmental Sound Classification, or Environmental Sound Recognition, is the task of
classifying environmental sounds or noises. It has been researched actively within the
machine learning community at least since 2006[62].

2.4.1 Datasets
The Urbansound taxonomy[63] is a proposed taxonomy of sound sources, developed based
on analysis of noise complaints in New York City between 2010 and 2014. The same authors
also compiled the Urbansound dataset[63], based on selecting and manually labeling content
from the Freesound[64] repository. 10 different classes from the Urbansound taxonomy
were selected and 1302 different recordings were annotated, for a total of 18.5 hours of
labeled audio. A curated subset with 8732 audio clips with a maximum length of 4 seconds
is known as Urbansound8k.

Samples Duration (avg) In foreground
class
air_conditioner 1000 3.99 s 56 %
car_horn 429 2.46 s 35 %
children_playing 1000 3.96 s 58 %
dog_bark 1000 3.15 s 64 %
drilling 1000 3.55 s 90 %
engine_idling 1000 3.94 s 91 %
gun_shot 374 1.65 s 81 %
jackhammer 1000 3.61 s 73 %
siren 929 3.91 s 28 %
street_music 1000 4.00 s 62 %

Table 2.1: Classes found in the Urbansound8k dataset

YorNoise[65] is a collection of vehicle noise. It has a total of 1527 samples, in two classes:
road traffic (cars, trucks, buses) and rail (trains). The dataset follows the same design as
Urbansound8k, and can be used standalone or as additional classes to Urbansound8k.

ESC-50[66] is a small dataset of environmental sounds, consisting of 2000 samples across 50
classes from 5 major categories. The dataset was compiled using sounds from Freesound[64]
online repository. A subset of 10 classes is also proposed, often called ESC-10. Human
accuracy was estimated to be to 81.30% on ESC-50 and 95.7% on ESC-10[66, Ch. 3.1].
The Github repository for ESC-50[67] contains a comprehensive summary of results on the
dataset, with over 40 entries. As of April 2019, the best models achieve 86.50% accuracy,
and all models with over 72% accuracy use some kind of Convolutional Neural Network.

AudioSet [17] is a large general-purpose ontology of sounds with 632 audio event classes.
The accompanying dataset has over 2 million annotated clips based on audio from Youtube
videos. Each clip is 10 seconds long. 527 classes from the ontology are covered.

In the DCASE2019 challenge (in progress, ends July 2019) task 5[68] audio clips containing
common noise categories are to be tagged. The tagging is formulated as a multi-label
classification on 10-second clips. The dataset[69] has 23 fine-grained classes across 8
categories with 2794 samples total. The data was collected from the SONYC noise sensor
network in New York City.

27

Several earlier DCASE challenge tasks and datasets have been on related topics to
Environmental Sound Classification, such as Acoustic Scene Detection[70], general-purpose
tagging of sounds[71], and detection of vehicle-related sounds[72].

2.4.2 Spectrogram-based models
Many papers have used Convolutional Neural Networks (CNN) for Environmental Sound
Classification. Approaches based on spectrograms and in particular log-scaled Mel-
spectrogram being the most common.

PiczakCNN[73] in 2015 was one of the first applications of CNNs to the Urbansound8k
dataset. It uses 2 channels of log-Mel-spectrograms, both the plain spectrogram values
and the first-order difference (delta spectrogram). The model uses 2 convolutional layers,
first with size 57x6 (frequency x time) and then 1x3, followed by two fully connected
layers with 5000 neurons each. The paper evaluates short (950 ms) versus long (2.3
seconds) analysis windows and majority voting versus probability voting. Performance on
Urbansound8k ranged from 69% to 73%. It was found that probability voting and long
windows perform slightly better[73].

Figure 2.19: The architecture of Piczak CNN, from the original paper [73]. The model
input has two channels: the spectrogram magnitude (light blue) and a first-order difference
“delta” of the spectrogram (purple))

SB-CNN[74] (2016) is a 3-layer convolutional with uniform 5x5 kernels and 4x2 max
pooling. The paper also analyzes the effects of several types of data augmentation on
Urbansound8k. including Time Shift, Pitch Shift, Dynamic Range Compression and
Background Noise. With all augmentations, performance on their model raised from 72%
to 79% classification accuracy. However time-stretching and pitch-shifting were the only
techniques that consistently gave a performance boost across all classes.

D-CNN[75] (2017) uses feature representation and model architecture that largely follows
that of PiczakCNN, however, the second layer uses dilated convolutions with a dilation

28

rate of 2. With additional data augmentation of time-stretching and noise addition, this
gave a performance of up to 81.9% accuracy on Urbansound8k. LeakyRelu was found to
perform slightly better than ReLu which scored 81.2%.

A recent paper investigated the effects of mixup for data augmentation[56]. Their model
uses 4 blocks of 2 convolutional layers each, with each block followed by max pooling.
The second block and third block together form a spatially separated convolution: the
second block uses two 3x1 convolutions, and third block uses two 1x5 convolutions. On
Mel-spectrograms the model scored 74.7% on Urbansound8k without data augmentation,
77.3% with only mixup applied, and 82.6% when time stretching and pitch shift was
combined with mixup. When using Gammatone spectrogram features instead of Mel-
spectrogram performance increased to 83.7%, which seems to be state-of-the-art as of
April 2019.

2.4.3 Audio waveform models
Recently approaches that use the raw audio waveform as input have also been documented.

Figure 2.20: EnvNet[76] architecture, using raw audio as input.

EnvNet[76] (2017) used 1D convolutions in order to learn a 2D spectrogram-like represen-
tation which is then classified using standard 2D convolutional layers. The architecture
is illustrated in Figure 2.20. They show that the resulting spectrograms have frequency
responses with a shape similar to mel-spectrograms. The model achieves a 66.3% accuracy
score on Urbansound8k[77] with raw audio input.

In [78], the authors evaluated a number of deep CNNs using only 1D convolutions. Raw
audio with 8 kHz sample rate was used as the input. Their 18 layer model (M18) got a
71% accuracy on Urbansound8k, and the 11 layer version (M11) got 69%.

EnvNet2[77] (2018) is like EnvNet but with 13 layers total instead of 7, and using 44.1
kHz input sample-rate instead of 16 kHz. Without data augmentation, it achieves 69.1%
accuracy on Urbansound8k. When combining data augmentation with Between-Class
examples, a technique similar to Mixup, the model is able to reach 78.3% on Urbansound8k.

29

2.4.4 Resource-efficient models
There are also a few studies on Environmental Sound Classification (ESC) that explicitly
target making resource-efficient models, measured in number of parameters and compute
operations.

WSNet[79] is a 1D network on raw audio designed for efficiency. It proposes a weight
sampling approach for efficient quantization of weights to reach an accuracy of 70.5% on
UrbandSound8k with 288 K parameters and 100 M MAC.

LD-CNN[80] is a more efficient version of D-CNN. In order to reduce parameters the early
layers use spatially separable convolutions, and the middle layers used dilated convolutions.
As a result, the model has 2.05MB of parameters, 50x fewer than D-CNN, while accuracy
only dropped by 2% to 79% on Urbansound8k.

AclNet [57] is an end-to-end CNN architecture. It uses 2 layers of 1D strided convolution
as a learned filterbank to create a 2D spectrogram-like set of features. Then a VGG style
architecture with Depthwise Separable Convolutions is applied. A width multiplier allows
to adjust model complexity by changing the number of kernels in each layer, and a number
of model variations were tested. Data augmentation and mixup was applied, and gave up
to a 5% boost. Evaluated on ESC-50, the best performing model gets 85.65% accuracy,
very close to state-of-the-art. The smallest model had 7.3 M MACC with 15 k parameters
and got 75% accuracy on ESC-50.

eGRU[81] demonstrates a Recurrent Neural Network based on a modified Gated Recurrent
Unit. The feature representation used was raw STFT spectrogram from 8Khz audio. The
model was tested using Urbansound8k, however it did not use the pre-existing folds and
test-set, so the results may not be directly comparable to others. With full-precision
floating-point the model got 72% accuracy. When running on device using the proposed
quantization technique the accuracy fell to 61%.

As of April 2019, eGRU was the only paper that could be found for the ESC task and the
Urbansound8k dataset on a microcontroller.

30

2.5 Microcontrollers
A microcontroller is a tiny computer integrated on a single chip, containing CPU, RAM,
persistent storage (FLASH) as well as peripherals for communicating with the outside
world.

Common forms of peripherals include General Purpose Input Output (GPIO) for digital
input/output, Analog to Digital (ADC) converter for analog inputs, and high-speed serial
communications for digital inter-system communication using protocols like I2C and SPI.
For digital audio communication, specialized peripherals exist using the I2S or PDM
protocols.

Microcontrollers are widely used across all forms of electronics, such as household electron-
ics and mobile devices, telecommunications infrastructure, cars, and industrial systems.
In 2017 over 25 billion microcontrollers were shipped and shipments are expected to grow
by more than 50% over the next 5 years[82].

Examples of microcontrollers (from ST Microelectronics) that could be used for audio
processing are shown in Table 2.2. Similar offerings are available from other manufacturers
such as Texas Instruments, Freescale, Atmel, Nordic Semiconductors, NXP.

Name Architecture Flash (kB) RAM (kB) CPU (MHz) Price (USD)
STM32F030CC Cortex-M0 256 32 48 1.0
STM32L476 Cortex-M4 1024 128 80 5.0
STM32F746 Cortex-M7 1024 1024 216 7.5
STM32H743ZI Cortex-H7 2048 1024 400 9.0

Table 2.2: Examples of available STM32 microcontrollers and their characteristics. Details
from ST Microelectronics website.

2.5.1 Machine learning on microcontrollers
For sensor systems, the primary use case for Machine Learning is to train a model
on a desktop or cloud system (“off-line” learning), then to deploy the model to the
microcontroller to perform inference. Dedicated tools are available for converting models
to something that can execute on a microcontroller, usually integrated with established
machine learning frameworks.

CMSIS-NN by ARM is a low-level library for ARM Cortex-M microcontrollers imple-
menting basic neural network building blocks, such as 2D convolutions, pooling and
Gated Recurrent Units. It uses optimized fixed-point maths and SIMD (Single Instruction
Multiple Data) instructions to perform 4x 8-bit operations at a time. This allows it to be
up to 4x faster and 5x more energy efficient than floating-point[83].

uTensor[84] by ARM allows running a subset of TensorFlow models on ARM Cortex-M
devices, designed for use with the ARM Mbed software platform[85].

TensorFlow Lite for Microcontrollers is an experimental port of TensorFlow[86], announced
at TensorFlow Developer Summit in March 2019[87]. Its goal is to be compatible with
TensorFlow Lite (for mobile devices et.c.), and to support multiple hardware and software

31

Figure 2.21: Low level functions provided by CMSIS-NN (light gray) for use by higher-level
code (light blue)[83]

platforms (not just ARM Cortex). They plan to reuse platform-specific libraries such as
CMSIS-NN or uTensor in order to be as efficient as possible.

EdgeML by Microsoft Research India[88] is a research project and open-source code
repository which contains novel algorithms developed especially for microcontrollers, such
as Bonsai[89], ProtoNN[90] and FastGRNN[61].

Emlearn[91] by the author is a Python library that supports converting a subset of Scikit-
Learn[92] and Keras[93] models and run them using C code designed for microcontrollers.

X-CUBE-AI[94] by ST Microelectronics provides official support for performing infer-
ence with Neural Networks on their STM32 microcontrollers. It is an add-on to the
STM32CubeMX[95] software development kit, and allows loading trained models from var-
ious formats, including Keras (Tensorflow[86]), Caffe[96] and PyTorch[97]. In X-CUBE-AI
3.4, all computations are done in single-precision float. Model compression is supported by
quantizing model weights by 4x or 8x, but only for fully-connected layers (not convolutional
layers)[98]. X-CUBE-AI 3.4 does not use CMSIS-NN.

2.5.2 Hardware accelerators for neural networks
With the increasing interest in deploying neural networks on low-power microcontrollers,
dedicated hardware acceleration units are also being developed.

STMicroelectronics (ST) has stated that neural network accelerators will be available for
their STM32 family of microcontrollers[99], based on their FD-SOI chip architecture[100].

ARM has announced ARM Helium, an extended instruction set for the Cortex M family
of microcontrollers that can be used to speed up neural networks[101].

Kendryte K210 is a microcontroller based on the open RISC-V architecture that includes
a convolutional neural network accelerator[102].

GreenWaves GAP8 is a RISC-V chip with 8 cores designed for parallel-processing. They
claim a 16x improvement in power efficiency over an ARM Cortex M7 chip[103].

32

3 | Materials

3.1 Dataset
The dataset used for the experiments is Urbansound8K, described in chapter 2.4.1. Figure
3.1 shows example audio spectrograms for each of the 10 classes.

Figure 3.1: Spectrograms of sound clips from Urbansound8k dataset. Audio clips were
selected for each class to give clear,representative spectrograms.

The dataset comes prearranged into 10 folds for cross-validation. A single fold may contain
multiple clips from the same source file, but the same source file is not used in multiple
folds to prevent data leakage.

The target sound is rarely alone in the sound clip and might be in the background, partially
obscured by sounds outside the available classes. This makes Urbansound8k a relatively
challenging dataset.

3.2 Hardware platform
The microcontroller chosen for this thesis is the STM32L476[104] from STMicroelectronics.
This is a mid-range device from ST32L4 series of ultra-low-power microcontroller. It has
an ARM Cortex M4F running at 80 MHz, with hardware floating-point unit (FPU) and
DSP instructions. It has 1024 kB of program memory (Flash), and 128 kB of RAM.

33

For audio input, both analog and digital microphones (I2S/PDM) are supported. The
microcontroller can also send and receive audio over USB from a host computer. An
SD-card interface can be used to record samples to collect a dataset.

To develop for the STM32L476 microcontroller the SensorTile development kit STEVAL-
STLKT01V1[105] was selected. The kit consists of a SensorTile module, an expansion
board, and a portable docking board (not used).

Figure 3.2: SensorTile module with functional blocks indicated. Module size is
13.5x13.5mm

The SensorTile module (see Figure 3.2) contains in addition to the microcontroller:
a microphone, Bluetooth radio chip, and an Inertial Measurement Unit (accelerome-
ter+gyroscope+compass). The on-board microphone was used during testing.

An expansion board allows to connect and power the microcontroller over USB. The
ST-Link V2 from a Nucleo STM32L476 board is used to program and debug the device.
The entire setup can be seen in Figure 3.3.

Figure 3.3: Development setup of SensorTile kit

34

3.3 Software

The STM32L476 microcontroller is supported by the STM32CubeMX[95] development
package and the X-CUBE-AI[94] neural network add-on from ST Microelectronics. Version
3.4.0 of X-CUBE-AI was used.

Figure 3.4: STM32CubeMX application with X-CUBE-AI addon after loading a Keras
model

A Python command-line script was created to streamline collecting model statistics using
X-CUBE-AI, without having to manually use the STM32CubeMX user interface. It is
attached in appendix C. This tool provides required Flash storage (in bytes), RAM usage
and CPU usage (MACC operations) as JSON, and writes the generated C code to a
specified directory.

The training setup is implemented in Python. The machine learning models are imple-
mented in Keras using the Tensorflow backend. To perform feature extraction during
training the librosa[106] Python library was used. Numpy and Pandas libraries were used
for general numeric computations and data management.

The training setup has automated tests made with the pytest testing framework, and uses
Travis CI to execute the tests automatically for each change.

All the code is available at https://github.com/jonnor/ESC-CNN-microcontroller/
tree/thesis-submitted. Experiments for the reported results were ran on git commit
b49efa5dde48f9fd72a32eff4c751d9d0c0de712.

35

https://github.com/jonnor/ESC-CNN-microcontroller/tree/thesis-submitted
https://github.com/jonnor/ESC-CNN-microcontroller/tree/thesis-submitted

3.4 Models

3.4.1 Model requirements
The candidate models have to fit the constraints of our hardware platform and leave
sufficient resources for other parts of an application to run on the device. To do so, a
maximum of 50% of the CPU, RAM, and FLASH capacity is allocated to the model.

ST estimates that an ARM Cortex M4F type device uses approximately 9 cycles/MACC[98].
With 80 MHz CPU frequency, this is approximately 9 M MACC/second at 100% CPU
utilization. 50% CPU capacity is then estimated as 4.5 M MACC/second. 50% of RAM
and FLASH of the microcontroller in use is 64 kB RAM and 512 kB FLASH memory.

For each of these aspects, it is highly beneficial to be well below the hard constraints.
If the FLASH and RAM usage can be reduced to half or one-fourth, the cost of the
microcontroller is reduced by almost 2/4x. If CPU usage can be reduced to one-tenth,
that can reduce power consumption by up to 10 times.

Models from the existing literature (reviewed in chapter 2.4.2) are summarized in Table
3.1 and shown with respect to these model constraints in Figure 3.5. Even the smallest
existing models require significantly more than the available resources.

Accuracy (%) MACC / second Model parameters
name
Dmix-CNN-mel 82.6 298M 1180k
D-CNN 81.9 458M 33000k
SB-CNN 79.0 25M 432k
LD-CNN 79.0 10M 580k
PiczakCNN 75.0 88M 25534k

Table 3.1: Existing methods and their results on Urbansound8k

Figure 3.5: Model complexity and accuracy scores of existing CNN models using log-mel
features on Urbansound8k dataset. Green area bottom left shows the region which satisfies
our model requirements.

36

3.4.2 Compared models
SB-CNN and LD-CNN are the two best candidates for a baseline model, being the only
two that are close to the desired performance characteristic. SB-CNN utilizes a CNN
architecture with small uniformly sized kernels (5x5) followed by max pooling, which is
very similar to efficient CNN models for image classification. LD-CNN, on the other hand,
uses less conventional full-height layers in the start and takes both mel-spectrogram and
delta-Mel-spectrogram as inputs. This requires twice as much RAM as a single input and
the convolutions in the CNN should be able to learn delta-type features if needed. For
these reasons, SB-CNN was used as the base architecture for experiments.

The Baseline model has a few modifications from the original SB-CNN model: Max
pooling is 3x2 instead of 4x2. Without this change the layers become negative sized due to
the reduced input feature size (60 Mel filter bands instead of 128). Batch Normalization
was added to each convolutional block. The Keras definition for the Baseline model can
be found in appendix A.

Conv2d

CONV

CONV

Flatten

24

36

54

Dense 64

Dense 10

Conv2d

CONV

CONV

Flatten

24

48

48

Dense 64

3,2

MaxPool2d 3,2

MaxPool2dBaseline
ReLu

BatchNorm

10Dense

Dropout

ReLu

BatchNorm

BatchNorm
ReLu

Dropout
ReLu

Stride
2,2

2,2

2,2

ReLu
BatchNorm

ReLu
BatchNorm

BatchNorm
ReLu

Softmax Softmax

Dropout
ReLu

Dropout

F FD D

Figure 3.6: Base architecture of the compared models: Baseline and Stride. In Stride the
MaxPooling2d operation (blue) has been removed in favor of striding the convolutional
blocks. F=Filters D=Downsampling. CONV means a generic convolution block, replaced
with the convolution type for different variations

From the baseline architecture, several model variations are created in order to evaluate
the effects of using different convolutional blocks and as well as replacing max-pooling
with strided convolutions. First, the Baseline was modified with just Depthwise-Separable
convolutions (nicknamed Baseline-DS) or striding (nicknamed Stride). Since the stride
height and width in Keras/Tensorflow must be uniform, 2x2 is used instead of 3x2 from
max-pooling. Figure 3.6 illustrates the two architectures.

37

Three different convolution blocks are tested on top of the Stride model: Depthwise
Separable (Stride-DS-*), Bottleneck with Depthwise Separable (Stride-BTLN-DS) and
Effnet block (Stride-Effnet). For EffNet, LeakyReLU was with ReLu since LeakyReLU
is not supported by X-CUBE-AI, version 3.4. Additionally, a version of strided with
Depthwise-Separable convolution with 3x3 kernel size (Stride-DS-3x3) was tested. The
Keras definition the strided model(s) can be found in appendix B.

Strided-DS showed promising results in early testing on a single fold. Therefore a few
variations with fewer number of filters were also tested, to get an idea for the possible
performance/complexity tradeoffs. In addition to the maximum of 24 filters, 20, 16 and
12 filters were tested. For all other Strided models, the number of layers and filters were
set as high as possible without violating any of the device constraints.

This results in 10 different models, as summarized in Table 3.2.

Model Downsample Convolution L F MACC RAM FLASH
Baseline maxpool 3x2 standard 3 24 10185 K 35 kB 405 kB
Baseline-DS maxpool 3x2 DS 3 24 1567 K 55 kB 96 kB
Stride stride 2x2 standard 3 22 2980 K 55 kB 372 kB
Stride-BTLN-DS stride 2x2 BTLN-DS 3 22 445 K 47 kB 80 kB
Stride-DS-12 stride 2x2 DS 3 12 208 K 27 kB 88 kB
Stride-DS-16 stride 2x2 DS 3 16 291 K 36 kB 118 kB
Stride-DS-20 stride 2x2 DS 3 20 380 K 45 kB 149 kB
Stride-DS-24 stride 2x2 DS 3 24 477 K 54 kB 180 kB
Stride-DS-3x3 stride 2x2 DS 4 24 318 K 54 kB 95 kB
Stride-Effnet stride 2x2 Effnet 3 22 468 K 47 kB 125 kB

Table 3.2: Parameters of the compared models. L=Number of convolution layers, F=Filters
in each convolution layer, DS=Depthwise Separable, BTLN=Bottleneck

Residual connections were not tested, as the networks are relatively shallow. Grouped
convolutions were not tested, as they are not supported by X-CUBE-AI version 3.4.

38

4 | Methods

The method for experimental evaluation of the models follows as closely as possible the
established practices for the Urbansound8k dataset.

Figure 4.1 illustrates the overall setup of the classification model.

Figure 4.1: Overview of the full model. The classifier runs on individual analysis windows,
and predictions for the whole audio clip is done by voting over predictions from all the
analysis windows.

4.1 Preprocessing
Mel-spectrograms are used as the input feature. The most compact and most compu-
tationally efficient feature-set in use by existing methods was by LD-CNN, which used
windows of 31 frames @ 22050 Hz (720 ms) with 60 Mel-filter bands. This has achieved
results near the state-of-art, so the same overall settings were used. However, the delta
mel-spectrograms were dropped to reduce RAM consumption.

During preprocessing, Data Augmentation is also performed. Time-stretching and Pitch-
shifting was done following [74], for a total of 12 variations per sample. The preprocessed
mel-spectrograms are stored on disk as Numpy arrays for use during training.

39

value
setting
Samplerate (Hz) 22050
Melfilter bands 60
FFT length (samples) 1024
FFT hop (samples) 512
Classification window 31
Minibatch size 400
Epochs 100
Training samples/epoch 30000
Validation samples/epoch 5000
Learning rate 0.005
Nesterov momentum NaN

Table 4.1: Summary of preprocessing and training settings

During training time each window of Mel-spectrogram frames is normalized by subtracting
the mean of the window and dividing by the standard deviation.

4.2 Training

The preassigned folds of the Urbansound8k dataset were used. One of the folds was used
as a validation set, and one fold was held-out as the test set.

Training was done on individual analysis windows, with each window inheriting the label
of the audio clip it belongs to. In each mini-batch, audio clips from the training set are
selected randomly. And for each audio clip, a time window is selected from a random
position[74]. This effectively implements time-shifting data augmentation.

In order to evaluate the model on the entire audio clip, an additional pass over the
validation set is done which combines predictions from multiple time-windows as shown
in Figure 4.1.

As the optimizer, Stochastic Gradient Decent (SGD) with Nesterov momentum set to 0.9
is used. The learning rate was set to 0.005 for all models. Each model is trained for up to
100 epochs. A complete summary of experiment settings can be seen in Table 4.1.

Training was performed on an NVidia GTX2060 GPU with 6GB of RAM on a machine
with an Intel i5-9400F CPU, 16 GB of RAM and a Kingston A1000 M.2 SSD. However
the models can be trained on any device supported by TensorFlow and a minimum of
2GB RAM.

In total 100 training jobs were ran for the experiments, 10 folds for each of 10 tested
models. Jobs were processed with 3 jobs in parallel and took approximately 36 hours in
total. GPU utilization was only 15%, suggesting that the training process was bottlenecked
by the CPU or SSD when preparing the training batches for the GPU.

40

4.3 Evaluation
Once training is completed, the model epoch with the best performance on the validation
set is selected for each of the cross-validation folds. The selected models are then evaluated
on the test set in each fold.

In addition to the standard cross-validation for Urbansound8k, the model performance is
evaluated on also by separating foreground and background sounds.

The SystemPerformance application skeleton from X-CUBE-AI is used to record the
average inference time per sample on the STM32L476 microcontroller. This accounts for
potential variations in number of MACC/second for different models, which would be
ignored if only relying on the theoretical MACC number.

Finally, the trained models were tested running on the microcontrollers using live audio on
the microphone. The on-device test used the example code from the ST FP-SENSING1[107]
function pack as a base, with modifications made to send the model predictions out over
USB. The example code unfortunately only supports Mel-spectrogram preprocessing
with 16 kHz sample-rate, 30 filters and 1024 samples FFT window with 512 hops, using
max-normalization for the analysis windows. Therefore a Strided-DS model was trained
on fold 1-8 to match these feature settings.

The on-device testing was done ad-hoc with a few samples from Freesound.org, as a
sanity-check that the model remained functional when ran on the microcontroller. No
systematic measurement of the performance was performed.

41

5 | Results

Figure 5.1: Test accuracy of the different models. State-of-the-art averages (SB-CNN/LD-
CNN and D-CNN) marked with green dots. No-information rate marked with black
dots.

Model CPU use Accuracy FG Accuracy BG Accuracy
Baseline 971 ms 72.3% ±4.6 78.3% ±7.1 60.5% ±7.7
Baseline-DS 244 ms 70.2% ±4.7 76.1% ±7.5 58.6% ±8.2
Stride 325 ms 68.3% ±5.2 74.1% ±6.6 56.6% ±8.0
Stride-BTLN-DS 71 ms 64.8% ±7.1 69.5% ±8.2 55.3% ±8.9
Stride-DS-12 38 ms 66.0% ±6.0 72.6% ±6.5 53.3% ±9.1
Stride-DS-16 51 ms 67.5% ±5.6 73.3% ±7.7 56.2% ±8.3
Stride-DS-20 66 ms 68.4% ±5.2 75.0% ±7.4 55.2% ±10.0
Stride-DS-24 81 ms 70.9% ±4.3 75.8% ±6.3 61.8% ±6.8
Stride-DS-3x3 59 ms 67.2% ±6.5 73.0% ±7.4 55.8% ±9.1
Stride-Effnet 73 ms 60.7% ±6.6 66.9% ±7.9 48.7% ±8.3

Table 5.1: Results for the compared models. CPU usage as measured on microcontroller.
FG=Foreground samples only, BG=Background samples only.

As seen in Table 5.1 and Figure 5.1 the Baseline model gets 72.3% mean accuracy. This
is the same level as SB-CNN and PiczakCNN without data-augmentation (73%)[74],
but significantly below the 79% of SB-CNN and LD-CNN with data-augmentation. As
expected, the Baseline uses more CPU than our requirements with 971 ms classification
time per 730 ms analysis window.

42

Figure 5.2: Accuracy versus compute of different models. Green section is the area inside
our model requirements. Red section is not possible to to classification in real-time.
Variations of the same model family have the same color. Strided- has been shortened to
S- for readability.

Stride-DS with 70.9% mean accuracy is able to get quite close the baseline performance,
despite having (from Table 3.2) 10185/477 = 21x fewer multiply-add operations (MACC).
The practical efficiency gain in CPU usage is however only 971/81 = 12x.

Stride-BTLN-DS and Stride-Effnet performed very poorly in comparison. This can be
most clearly seen from Figure 5.2. Despite almost the same computational requirements
as Stride-DS-24, they had accuracy scores that were 6.1 and 10.2 percentage points lower,
respectively.

As seen in Figure 5.3, class accuracies vary widely. The most accurately predicted classes
were Gun Shot (96%), Car Horn (86%), Siren (82.7%) and Dog Bark (81.7%). The poorest
performance was on the Air Conditioner class (47% accuracy), which was misclassified as
almost all the other classes. Drilling (60% accuracy) was often thought to be Jackhammer
(20% of the time). Engine Idling (59.9%) was also often thought to be Jackhammer (19%
of the time). The remaining classes, Street Music, Children Playing and Jackhammer had
around average performance.

43

Figure 5.3: Confusion matrix on Urbansound8k. Correct predictions along the diagonal,
and misclassifications on the off-diagonal. Normalized to shows percentages.

44

5.1 On-device testing

Figure 5.4: Model being tested on device. Sound is played back via headphones and
classified on the microcontroller. Predictions are sent to computer and visualized on
screen in real-time.

The model used on the device (with 16kHz model with 30 mel filters) scored 72% on the
associated validation-set, fold 9. When running on the device, the model execution took 43
ms per analysis window, while preprocessing of the Mel-spectrogram took approximately
60 ms.

Figure 5.4 shows a closeup of the on-device testing scenario. When playing back a few
sounds the system was able to correctly classify classes such as “dog barking” most of
the time. The classes “jackhammer” and “drilling” were confused several times (in both
directions), but these were also often hard to distinguish by ear. The system seemed to
struggle with the “children playing” class. When not playing any sound, the GPU fan
noise from the nearby machine-learning rig was classified as “air conditioner” - which the
author can agree sounded pretty close.

45

6 | Discussion

6.1 Model comparison

The lower performance of our Baseline relative to SB-CNN/LD-CNN may be a result
of the reduced feature representation, or the reduced number of predictions for one clip.
Compared to LD-CNN the delta-Mel-spectrogram features are missing, which might have
made it easier to learn some patterns - at a cost of twice the RAM and CPU for the first
layer. Compared to SB-CNN the analysis window is shorter (720 ms versus 1765 ms),
also a 2x reduction in RAM and CPU. Since no overlap is used there are only 6 analysis
windows and predictions to be aggregated over a 4 second long clip. In SB-CNN on the
other hand, the hop size during validation and test is 1 frame, giving over 100 predictions
over a 4 second long clip. This can improve performance, but requires a much higher
CPU usage. However, it is also possible that with a more powerful training setup with as
transfer learning or stronger data augmentation scheme, that this performance gap could
be reduced.

The poorly performing Strided-BTLN-DS and Strided-Effnet both have a bottleneck 1x1
convolution in the start of each block, reducing the number of channels used in the spatial
convolution. This hyperparameter was set to a seemingly conservative reduction of 2x
(original Effnet used 8x[35], ShuffleNet used 4x[36], albeit on much bigger models). It is
possible that this choice of hyperparameter is critical and that other values would have
performed better, but this has not been investigated.

Of the models compared it looks like the Strided-DS family of models give the highest
accuracy relative to model compute requirements. The largest model, Strided-DS-24, was
able to achieve near Baseline performance while utilizing 12x less CPU. The CPU usage of
this model is 11%, well within the 50% set as a requirement. The fact that speedup (12x)
was not linear with the MACC reduction (21.5x) highlights the importance of measuring
execution time on a real device.

The smaller models (with 20,16,12 filters) in the Strided-DS family with less compute
requirements had correspondingly lower accuracies. This suggests that a the tradeoff
between model complexity and performance can be adjusted. The Strided-DS-3x3 variation
with 4 layers with 3x3 convolutions instead was close in performance to the Strided-DS
models with 3 layers of 5x5. This could be investigated closer, there may exist variations
on this 3x3 model that would perform better than 5x5.

From a one-fold spot check the on-device model trained on 16 kHz sample-rate with 30 Mel
filters, looked to perform similarly to those with the full 22 kHz and 60 Mel filters. This

46

may suggest that perhaps the feature representation (and thus compute requirements)
can be reduced even further without much reduction in performance.

6.2 Spectrogram processing time
On-device testing showed that the Mel-feature preprocessing took 60 ms, which is on the
same order as the most efficient models during inference (38-81 ms). This means that the
CPU bottleneck is not just the model inference time, but that the spectrogram calculation
must be also optimized to reach even lower power-consumption. In the FP-SENSING1
example used, the spectrogram computation already uses ARM-specific optimized code
from the CMSIS library, albeit with floating-point and not fixed-point.

Taking into account the preprocessing time the Stride-DS-24 model would consume
approximately 20% CPU. The microcontroller would be able to sleep for the remaining
80% of the time even when classifications are performed every 720 ms analysis window
(real-time).

This is an opportunity for end-to-end models that take raw-audio as input instead of
requiring preprocessed spectrograms (ref section 2.4.3), as they might be able to do
this more efficiently. When low-power hardware accelerators for Convolutional Neural
Networks becomes available, an end-to-end CNN model will become extra interesting, as
it would allow also the filterbank processing to be offloaded to the CNN co-processor.

6.3 Practical evaluation
Deployment of noise monitoring systems, and especially systems with noise classifica-
tion capabilities, are still rare. Of the 5 large-scale research projects mentioned in the
introduction, only the SONYC deployment seems to have integrated noise classification
capability, using state-of-the-art classification algorithms[6]. They argue that such a
system addresses shortcomings of current monitoring and enforcement mechanisms by
quantifying the impact of construction-permits, providing historical data to validate noise
complaints, and allow better allocation of manual noise inspection crews[6, Ch. 7].

In principle the system proposed here should support the same kind of workflow, and
whether the reduced accuracy of 70.9% versus state-of-the-art of 79-83%, impacts the
practical use would have to be evaluated on a case-by-case basis.

From a critical perspective, 70.9% on Urbansound8k is likely below human-level perfor-
mance: While no studies have been done on human-level performance on Urbansound8k
directly, it is estimated to be 81.3% for ESC-50 and 95.7% on ESC-10[66, Ch. 3.1], and
PiczakCNN which scored 73% on Urbansound8k scored only 62% on ESC-50 and 81% on
ESC-10[73].

From an optimistic perspective, the vast majority of cities do not make widespread use
of noise monitoring equipment today. So any sensor with sound-level logging and even
rudimentary classification capabilities would be providing new information that could
be used to improve operations. But as with any data-driven system, making use of this
information would have to also take into account the limitations of the system.

47

From table 5.1 it can be seen that the accuracy for foreground sounds is around 5
percentage points better than overall accuracy, reaching above 75%. Background sounds,
on the other hand, have a much lower accuracy. The best models score under 62%
accuracy, an 8 percentage point drop (or more). This is expected since the signal to noise
ratio is lower. If the information of interest is the predominant sound in an area close
to the sensor, one could maybe take this into account by only classifying loud (probably
closer) sounds, in order to achieve higher precision. Of course, the reduced ability to
classify sounds that are far away would require a higher density of sensors, which may be
cost-prohibitive.

The accuracy for Urbansound8k classification is based on 4-second intervals. In a noise
monitoring situation this granularity of information may not be needed. For example to
understand temporal patterns across a day or week, or analyze a noise complaint about
a persistent noise, information about the predominant noise source(s) with 15 minute
resolution might be enough. For sound-sources with a relatively long duration (much more
than 4 seconds), such as children playing, drilling or street music it should be possible
to achieve higher accuracy by combining many predictions over time. However, this is
unlikely to help for short, intermittent sounds (“events”) such as a car horn or a gun-shot.
Thankfully performance of the model on these short sounds is considerably better than
on the long-term sounds.

Given multiple sensors covering one area, it may also be possible to fuse the individual
sensor predictions in order to improve overall predictions.

Finally, for a particular deployment it may be realistic to limit classification to only a
few characteristic sound classes. For example in [108], the authors describe doing a 3-way
classification on sensor nodes near a rock crushing plant.

48

7 | Conclusions

Based on the need for wireless sensor systems that can monitor and classify environ-
mental noise, this project has investigated performing noise classification directly on
microcontroller-based sensor hardware. This on-sensor classification makes it possible to
reduce power-consumption and privacy issues associated with transmitting raw audio or
detailed audio fingerprints to a cloud system for classification.

Several Convolutional Neural Networks were designed for the STM32L476 low-power
microcontroller using the vendor-provided X-CUBE-AI inference engine. The models
were evaluated on the Environmental Sound Classification task using the standard Urban-
sound8k dataset, and validated briefly by testing real-time classification on a SensorTile
device. The best models used Depthwise-Separable convolutions with striding, and were
able to reach up to 70.9% mean accuracy while consuming only 20% CPU, and staying
within predefined 50% RAM and FLASH storage budgets. To our knowledge, this is the
highest reported performance on Urbansound8k on a microcontroller.

This indicates that it is computationally feasible to classify environmental sound on
affordable low-power microcontrollers, possibly enabling advanced noise monitoring sensor
networks with low costs and high density. Further investigations into the power consump-
tion and practical considerations for applying on-edge Environmental Sound Classification
using microcontrollers seems to be worth pursuing.

7.1 Further work

Quantization of the models should further reduce CPU, RAM and FLASH usage. This
could be used to fit slightly larger models or to make existing models more efficient. The
CMSIS-NN library[83] utilizes 8-bit integer operations and is optimized for the ARM
Cortex M4F. However it has also been shown that CNNs can be effectively implemented
with as little as 2 bits[109][110][111], and without using any multiplications[112][113].

Utilizing larger amounts of training data might be able to increase performance of the
models. Possible techniques for this are transfer learning[114] or applying stronger data
augmentation techniques such as Mixup[55] or SpecAugment[115].

In a practical deployment of on-sensor classification, it is still desirable to collect some
data for evaluation of performance and further training. This could be sampled at random,
but an on-sensor implementation of Active Learning[116][117] could be able to make this
process more power-efficient.

49

It is critical for overall power consumption to reduce how often on-sensor classification is
performed. This should also benefit from an adaptive sampling strategy. For example
to primarily do classification for time-periods that exceed a sound level threshold, or to
sample less often when the sound source changes slowly.

50

Appendix

51

A | Keras model for Baseline

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization
from keras.layers import Convolution2D, MaxPooling2D, SeparableConv2D
from keras.regularizers import l2

def build_model(frames=128, bands=128, channels=1, num_labels=10,
conv_size=(5,5), conv_block='conv',
downsample_size=(4,2),
fully_connected=64,
n_stages=None, n_blocks_per_stage=None,
filters=24, kernels_growth=2,
dropout=0.5,
use_strides=False):

"""
Implements SB-CNN model from
Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification
Salamon and Bello, 2016.
https://arxiv.org/pdf/1608.04363.pdf

Based on https://gist.github.com/jaron/5b17c9f37f351780744aefc74f93d3ae
but parameters are changed back to those of the original paper authors,
and added Batch Normalization
"""
Conv2 = SeparableConv2D if conv_block == 'depthwise_separable' else Convolution2D
assert conv_block in ('conv', 'depthwise_separable')
kernel = conv_size
if use_strides:

strides = downsample_size
pool = (1, 1)

else:
strides = (1, 1)
pool = downsample_size

block1 = [
Convolution2D(filters, kernel, padding='same', strides=strides,

input_shape=(bands, frames, channels)),
BatchNormalization(),
MaxPooling2D(pool_size=pool),
Activation('relu'),

]
block2 = [

Conv2(filters*kernels_growth, kernel, padding='same', strides=strides),
BatchNormalization(),

52

MaxPooling2D(pool_size=pool),
Activation('relu'),

]
block3 = [

Conv2(filters*kernels_growth, kernel, padding='valid', strides=strides),
BatchNormalization(),
Activation('relu'),

]
backend = [

Flatten(),

Dropout(dropout),
Dense(fully_connected, kernel_regularizer=l2(0.001)),
Activation('relu'),

Dropout(dropout),
Dense(num_labels, kernel_regularizer=l2(0.001)),
Activation('softmax'),

]
layers = block1 + block2 + block3 + backend
model = Sequential(layers)
return model

53

B | Keras model for Strided

import numpy as np
from keras.models import Model
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization, Input
from keras.layers import MaxPooling2D, SeparableConv2D, Conv2D, DepthwiseConv2D, ZeroPadding2D

def add_common(x, name):
x = BatchNormalization(name=name+'_bn')(x)
x = Activation('relu', name=name+'_relu')(x)
return x

def conv(x, kernel, filters, downsample, name,
padding='same'):

"""Regular convolutional block"""
x = Conv2D(filters, kernel, strides=downsample,

name=name, padding=padding)(x)
return add_common(x, name)

def conv_ds(x, kernel, filters, downsample, name,
padding='same'):

"""Depthwise Separable convolutional block
(Depthwise->Pointwise)

MobileNet style"""
x = SeparableConv2D(filters, kernel, padding=padding,

strides=downsample, name=name+'_ds')(x)
return add_common(x, name=name+'_ds')

def conv_bottleneck_ds(x, kernel, filters, downsample, name,
padding='same', bottleneck=0.5):

"""
Bottleneck -> Depthwise Separable
(Pointwise->Depthwise->Pointswise)

MobileNetV2 style
"""

if padding == 'valid':
pad = ((0, kernel[0]//2), (0, kernel[0]//2))
x = ZeroPadding2D(padding=pad, name=name+'pad')(x)

x = Conv2D(int(filters*bottleneck), (1,1),
padding='same', strides=downsample,
name=name+'_pw')(x)

add_common(x, name+'_pw')

54

x = SeparableConv2D(filters, kernel,
padding=padding, strides=(1,1),
name=name+'_ds')(x)

return add_common(x, name+'_ds')

def conv_effnet(x, kernel, filters, downsample, name,
bottleneck=0.5, strides=(1,1), padding='same', bias=False):

"""Pointwise -> Spatially Separable conv&pooling
Effnet style"""

assert downsample[0] == downsample[1]
downsample = downsample[0]
assert kernel[0] == kernel[1]
kernel = kernel[0]

ch_in = int(filters*bottleneck)
ch_out = filters

if padding == 'valid':
pad = ((0, kernel//2), (0, kernel//2))
x = ZeroPadding2D(padding=pad, name=name+'pad')(x)

x = Conv2D(ch_in, (1, 1), strides=downsample,
padding=padding, use_bias=bias, name=name+'pw')(x)

x = add_common(x, name=name+'pw')

x = DepthwiseConv2D((1, kernel),
padding=padding, use_bias=bias, name=name+'dwv')(x)

x = add_common(x, name=name+'dwv')

x = DepthwiseConv2D((kernel, 1), padding='same',
use_bias=bias, name=name+'dwh')(x)

x = add_common(x, name=name+'dwh')

x = Conv2D(ch_out, (1, 1), padding=padding, use_bias=bias, name=name+'rh')(x)
return add_common(x, name=name+'rh')

block_types = {
'conv': conv,
'depthwise_separable': conv_ds,
'bottleneck_ds': conv_bottleneck_ds,
'effnet': conv_effnet,

}

def backend_dense1(x, n_classes, fc=64, regularization=0.001, dropout=0.5):
from keras.regularizers import l2
"""
SB-CNN style classification backend
"""

x = Flatten()(x)
x = Dropout(dropout)(x)
x = Dense(fc, kernel_regularizer=l2(regularization))(x)
x = Activation('relu')(x)

x = Dropout(dropout)(x)

55

x = Dense(n_classes, kernel_regularizer=l2(regularization))(x)
x = Activation('softmax')(x)
return x

def build_model(frames=128, bands=128, channels=1, n_classes=10,
conv_size=(5,5),
conv_block='conv',
downsample_size=(2,2),
n_stages=3, n_blocks_per_stage=1,
filters=24, kernels_growth=1.5,
fully_connected=64,
dropout=0.5, l2=0.001):

"""

"""
input = Input(shape=(bands, frames, channels))
x = input

block_no = 0
for stage_no in range(0, n_stages):

for b_no in range(0, n_blocks_per_stage):
last padding == valid
padding = 'valid' if block_no == (n_stages*n_blocks_per_stage)-1 else 'same'
downsample only one per stage
downsample = downsample_size if b_no == 0 else (1, 1)
first convolution is standard
conv_func = conv if block_no == 0 else block_types.get(conv_block)
name = "conv{}".format(block_no)

x = conv_func(x, conv_size, int(filters), downsample,
name=name, padding=padding)

block_no += 1
filters = filters * kernels_growth

x = backend_dense1(x, n_classes, fully_connected, regularization=l2)
model = Model(input, x)
return model

56

C | Script for converting models us-
ing X-CUBE-AI

"""
Convert a Keras/Lasagne/Caffe model to C for STM32 microcontrollers using ST X-CUBE-AI

Wrapper around the 'generatecode' tool used in STM32CubeMX from the X-CUBE-AI addon
"""

import pathlib
import json
import subprocess
import argparse
import os.path
import re
import platform

model_options = {
'keras': 1,
'lasagne': 2,
'caffee': 3,
'convnetjs': 4,

}

def generate_config(model_path, out_path, name='network', model_type='keras', compression=None):

data = {
"name": name,
"toolbox": model_options[model_type],
"models": {

"1": [model_path , ""],
"2": [model_path , ""],
"3": [model_path , ""],
"4": [model_path],

},
"compression": compression,
"pinnr_path": out_path,
"src_path": out_path,
"inc_path": out_path,
"plot_file": os.path.join(out_path, "network.png"),

}
return json.dumps(data)

def parse_with_unit(s):
number, unit = s.split()
number = float(number)

57

multipliers = {
'KBytes': 1e3,
'MBytes': 1e6,

}
mul = multipliers[unit]
return number * mul

def extract_stats(output):
regex = r" ([^:]*):(.*)"

out = {}
matches = re.finditer(regex, output.decode('utf-8'), re.MULTILINE)

for i, match in enumerate(matches, start=1):
key, value = match.groups()
key = key.strip()
value = value.strip()

if key == 'MACC / frame':
out['maccs_frame'] = int(value)
pass

elif key == 'RAM size':
ram, min = value.split('(Minimum:')
out['ram_usage_max'] = parse_with_unit(ram)
out['ram_usage_min'] = parse_with_unit(min.rstrip(')'))
pass

elif key == 'ROM size':
out['flash_usage'] = parse_with_unit(value)
pass

return out

def test_ram_use():
examples = [
("""
AI_ARRAY_OBJ_DECLARE(

input_1_output_array, AI_DATA_FORMAT_FLOAT,
NULL, NULL, 1860,
AI_STATIC)

AI_ARRAY_OBJ_DECLARE(
conv2d_1_output_array, AI_DATA_FORMAT_FLOAT,
NULL, NULL, 29760,
AI_STATIC)

""",
{ 'input_1_output_array': 1860, 'conv2d_1_output_array': 29760 }),

]

for input, expected in examples:
out = extract_ram_use(input)
assert out == expected, out

def extract_ram_use(str):
regex = r"AI_ARRAY_OBJ_DECLARE\(([^)]*)\)"
matches = re.finditer(regex, str, re.MULTILINE)

58

out = {}
for i, match in enumerate(matches):

(items,) = match.groups()
items = [i.strip() for i in items.split(',')]
name, format, _, _, size, modifiers = items
out[name] = int(size)

return out

def generatecode(model_path, out_path, name, model_type, compression):
Path to CLI tool
home = str(pathlib.Path.home())
version = os.environ.get('XCUBEAI_VERSION', '3.4.0')
platform_name = platform.system().lower()
if platform_name == 'darwin':

platform_name = 'mac'
p = 'STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/{version}/Utilities/{os}/generatecode'.format(version=version, os=platform_name)
default_path = os.path.join(home, p)
cmd_path = os.environ.get('XCUBEAI_GENERATECODE', default_path)

Create output dirs if needed
if not os.path.exists(out_path):

os.makedirs(out_path)

Generate .ai config file
config = generate_config(model_path, out_path, name=name,

model_type=model_type, compression=compression)
config_path = os.path.join(out_path, 'config.ai')
with open(config_path, 'w') as f:

f.write(config)

Run generatecode
args = [

cmd_path,
'--auto',
'-c', config_path,

]
stdout = subprocess.check_output(args, stderr=subprocess.STDOUT)

Parse MACCs / params from stdout
stats = extract_stats(stdout)
assert len(stats.keys()), 'No model output. Stdout: {}'.format(stdout)

with open(os.path.join(out_path, 'network.c'), 'r') as f:
network_c = f.read()
ram = extract_ram_use(network_c)
stats['arrays'] = ram

return stats

def parse():

parser = argparse.ArgumentParser(description='Process some integers.')
a = parser.add_argument

supported_types = '|'.join(model_options.keys())

59

a('model', metavar='PATH', type=str,
help='The model to convert')

a('out', metavar='DIR', type=str,
help='Where to write generated output')

a('--type', default='keras',
help='Type of model. {}'.format(supported_types))

a('--name', default='network',
help='Name of the generated network')

a('--compression', default=None, type=int,
help='Compression setting to use. Valid: 4|8')

args = parser.parse_args()
return args

def main():
args = parse()

test_ram_use()

stats = generatecode(args.model, args.out,
name=args.name,
model_type=args.type,
compression=args.compression)

print('Wrote model to', args.out)
print('Model status: ', json.dumps(stats))

if __name__ == '__main__':
main()

60

References

[1] W. R. O. for Europe, Burden of disease from environmental noise - quantification of
healthy life years lost in europe. 2018.

[2] W. Babisch, “The noise/stress concept, risk assessment and research needs,” Noise
and Health, vol. 4, no. 16, pp. 1–11, 2002.

[3] “EU directive 2002/49/ec.” [Online]. Available: http://ec.europa.eu/environment/noi
se/directive_en.htm.

[4] “Dublin city nosie website.” [Online]. Available: http://www.dublincitynoise.com.

[5] “Sound of new york (sonyc) homepage.” [Online]. Available: http://wp.nyu.edu/sonyc.

[6] J. P. Bello et al., “SONYC: A system for monitoring, analyzing, and mitigating urban
noise pollution,” Communications of the ACM, vol. 62, no. 2, pp. 68–77, Feb. 2019.

[7] J. C. Farrés, “Barcelona noise monitoring network,” in Proceedings of the euronoise,
2015, pp. 218–220.

[8] J. C. Farrés and J. C. Novas, “Issues and challenges to improve the barcelona noise
monitoring network,” 2018.

[9] “CENSE project homepage.” [Online]. Available: http://cense.ifsttar.fr/en/.

[10] J. Ardouin et al., “An innovative low cost sensor for urban sound monitoring,” in
INTER-noise and noise-con congress and conference proceedings, 2018, vol. 258, pp.
2226–2237.

[11] “Citizen scientists can help mitigate noise pollution,” 2019. [Online]. Available:
https://steinhardt.nyu.edu/site/ataglance/2019/02/citizen-scientists-can-help-mitigate-
noise-pollution.html.

[12] “IEC 61672-1 sound level meters, part 1: Specifications.” 2013.

[13] A. S. of America, “ANSI s1.4-2014, part 1: Specifications for sound level meters.”
2014.

[14] F. Gontier, M. Lagrange, P. Aumond, A. Can, and C. Lavandier, “An efficient audio
coding scheme for quantitative and qualitative large scale acoustic monitoring using the
sensor grid approach,” Sensors, vol. 17, no. 12, 2017.

[15] X. Rong, “Word2vec parameter learning explained,” arXiv preprint arXiv:1411.2738,
2014.

61

http://ec.europa.eu/environment/noise/directive_en.htm
http://ec.europa.eu/environment/noise/directive_en.htm
http://www.dublincitynoise.com
http://wp.nyu.edu/sonyc
http://cense.ifsttar.fr/en/
https://steinhardt.nyu.edu/site/ataglance/2019/02/citizen-scientists-can-help-mitigate-noise-pollution.html
https://steinhardt.nyu.edu/site/ataglance/2019/02/citizen-scientists-can-help-mitigate-noise-pollution.html

[16] S. Hershey et al., “CNN architectures for large-scale audio classification,” in Interna-
tional conference on acoustics, speech and signal processing (icassp), 2017.

[17] J. F. Gemmeke et al., “Audio set: An ontology and human-labeled dataset for audio
events,” in Proc. IEEE icassp 2017, 2017.

[18] R. Arandjelovic and A. Zisserman, “Look, listen and learn,” in Proceedings of the ieee
international conference on computer vision, 2017, pp. 609–617.

[19] S. Kumari, D. Roy, M. Cartwright, J. P. Bello, and A. Arora, “EdgeL3: Compressing
l3-net for mote-scale urban noise monitoring.”

[20] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[21] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics
of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[22] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th international conference on machine learning (icml-
10), 2010, pp. 807–814.

[23] D. E. Rumelhart, G. E. Hinton, R. J. Williams, and others, “Learning representations
by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[24] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural
networks: Tricks of the trade: Second edition, G. Montavon, G. B. Orr, and K.-R. Müller,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48.

[25] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, “The loss
surfaces of multilayer networks,” in Artificial intelligence and statistics, 2015, pp. 192–204.

[26] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, and others, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 ieee conference on computer vision and pattern
recognition, 2009, pp. 248–255.

[29] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity:
The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the ieee conference on computer vision and pattern recognition, 2016, pp.
770–778.

[31] Y. Uchida, “Why mobilenet and its variants (e.g. ShuffleNet) are fast.” [Online].
Available: https://medium.com/@yu4u/why-mobilenet-and-its-variants-e-g-shufflenet-
are-fast-1c7048b9618d.

62

https://medium.com/@yu4u/why-mobilenet-and-its-variants-e-g-shufflenet-are-fast-1c7048b9618d
https://medium.com/@yu4u/why-mobilenet-and-its-variants-e-g-shufflenet-are-fast-1c7048b9618d

[32] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,”
arXiv:1602.07360, 2016.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[34] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile
vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[35] I. Freeman, L. Roese-Koerner, and A. Kummert, “Effnet: An efficient structure
for convolutional neural networks,” in 2018 25th ieee international conference on image
processing (icip), 2018, pp. 6–10.

[36] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient con-
volutional neural network for mobile devices,” in Proceedings of the ieee conference on
computer vision and pattern recognition, 2018, pp. 6848–6856.

[37] A. Gholami et al., “SqueezeNext: Hardware-aware neural network design,” CoRR,
vol. abs/1803.10615, 2018.

[38] I. E. C. T. 100, “IEC 60908:1999 audio recording - compact disc digital audio system.”
1999.

[39] Microsoft, “WAVE specifications, version 1.0, 1991-08.” 1991.

[40] X. Foundation, “FLAC project homepage (free lossless audio codec).” [Online].
Available: https://xiph.org/flac/.

[41] I. E. C. J. 1/SC 29, “ISO/iec 11172-3:1993 coding of moving pictures and associated
audio for digital storage media at up to about 1,5 mbit/s – part 3: Audio.”.

[42] J. O. Smith, Spectral audio signal processing. //ccrma.stanford.edu/~jos/sasp/.

[43] J. Allen, “Short term spectral analysis, synthesis, and modification by discrete fourier
transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 25, no.
3, pp. 235–238, 1977.

[44] D. Griffin and J. Lim, “Signal estimation from modified short-time fourier transform,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no. 2, pp.
236–243, 1984.

[45] S. Ö. Arık, H. Jun, and G. Diamos, “Fast spectrogram inversion using multi-head
convolutional neural networks,” IEEE Signal Processing Letters, vol. 26, no. 1, pp. 94–98,
2019.

[46] M. Anusuya and S. Katti, “Front end analysis of speech recognition: A review,”
International Journal of Speech Technology, vol. 14, no. 2, pp. 99–145, 2011.

[47] M. Huzaifah, “Comparison of time-frequency representations for environmental sound
classification using convolutional neural networks,” arXiv preprint arXiv:1706.07156, 2017.

[48] D. Stowell and M. D. Plumbley, “Automatic large-scale classification of bird sounds
is strongly improved by unsupervised feature learning,” PeerJ, vol. 2, p. e488, Jul. 2014.

63

https://xiph.org/flac/

[49] S. W. Smith and others, “The scientist and engineer’s guide to digital signal processing,”
1997.

[50] T. Virtanen, M. Plumbley, and D. Ellis, Computational analysis of sound scenes and
events. 2017, pp. 1–422.

[51] B. Babenko, “Multiple instance learning: Algorithms and applications,” View Article
PubMed/NCBI Google Scholar, pp. 1–19, 2008.

[52] A. Kumar and B. Raj, “Audio event detection using weakly labeled data,” in
Proceedings of the 24th acm international conference on multimedia, 2016, pp. 1038–
1047.

[53] B. McFee, J. Salamon, and J. P. Bello, “Adaptive pooling operators for weakly
labeled sound event detection,” IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), vol. 26, no. 11, pp. 2180–2193, 2018.

[54] V. Morfi and D. Stowell, “Data-efficient weakly supervised learning for low-resource
audio event detection using deep learning,” arXiv preprint arXiv:1807.06972, 2018.

[55] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empirical
risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[56] Z. Zhang, S. Xu, S. Cao, and S. Zhang, “Deep convolutional neural network with
mixup for environmental sound classification,” in Chinese conference on pattern recognition
and computer vision (prcv), 2018, pp. 356–367.

[57] J. J. Huang and J. J. A. Leanos, “AclNet: Efficient end-to-end audio classification
cnn,” arXiv preprint arXiv:1811.06669, 2018.

[58] K. Xu et al., “Mixup-based acoustic scene classification using multi-channel convolu-
tional neural network,” in Advances in multimedia information processing – pcm 2018,
2018, pp. 14–23.

[59] T. Sainath and C. Parada, “Convolutional neural networks for small-footprint keyword
spotting,” 2015.

[60] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword spotting on
microcontrollers,” arXiv preprint arXiv:1711.07128, 2017.

[61] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma, “FastGRNN:
A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network,” 2018.

[62] S. Chachada and C.-C. J. Kuo, “Environmental sound recognition: A survey,” APSIPA
Transactions on Signal and Information Processing, vol. 3, p. e14, 2014.

[63] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound
research,” in 22nd acm international conference on multimedia (acm-mm’14), 2014, pp.
1041–1044.

[64] F. Font, G. Roma, and X. Serra, “Freesound technical demo.” ACM; ACM, Barcelona,
Spain, pp. 411–412, 2013.

[65] F. Medhat, D. Chesmore, and J. Robinson, “Masked conditional neural networks for
environmental sound classification,” in International conference on innovative techniques
and applications of artificial intelligence, 2017, pp. 21–33.

64

[66] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” in Proceedings
of the 23rd Annual ACM Conference on Multimedia, 2015, pp. 1015–1018.

[67] K. J. Piczak, “Karoldvl/esc-50 on github.” [Online]. Available: https://github.com/k
aroldvl/ESC-50.

[68] “DCASE2019 task 5, urban sound tagging,” 2019. [Online]. Available: http://dcase.
community/challenge2019/task-urban-sound-tagging.

[69] M. Cartwright et al., “SONYC Urban Sound Tagging (SONYC-UST): a multilabel
dataset from an urban acoustic sensor network.” Mar-2019.

[70] “DCASE2017 task 1, acoustic scene classification,” 2017. [Online]. Available: http:
//www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-classification.

[71] “DCASE2018 task 2, general purpose audio tagging using audioset ontology,” 2018.
[Online]. Available: http://dcase.community/challenge2018/task-general-purpose-audio-
tagging.

[72] “DCASE2017 task 4, large-scale weakly supervised sound event detection for smart
cars,” 2017. [Online]. Available: http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-
large-scale-sound-event-detection.

[73] K. J. Piczak, “Environmental sound classification with convolutional neural networks,”
in 2015 ieee 25th international workshop on machine learning for signal processing (mlsp),
2015, pp. 1–6.

[74] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data augmenta-
tion for environmental sound classification,” CoRR, vol. abs/1608.04363, 2016.

[75] X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural network with leakyrelu
for environmental sound classification,” 2017, pp. 1–5.

[76] Y. Tokozume and T. Harada, “Learning environmental sounds with end-to-end
convolutional neural network,” 2017, pp. 2721–2725.

[77] Y. Tokozume, Y. Ushiku, and T. Harada, “Learning from between-class examples for
deep sound recognition,” arXiv preprint arXiv:1711.10282, 2017.

[78] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, “Very deep convolutional neural networks
for raw waveforms,” in 2017 ieee international conference on acoustics, speech and signal
processing (icassp), 2017, pp. 421–425.

[79] X. Jin et al., “WSNet: Compact and efficient networks through weight sampling,” in
Proceedings of the 35th international conference on machine learning, 2018, vol. 80, pp.
2352–2361.

[80] X. Zhang, Y. Zou, and W. Wang, “LD-cnn: A lightweight dilated convolutional neural
network for environmental sound classification,” in 2018 24th international conference on
pattern recognition (icpr), 2018, pp. 373–378.

[81] J. Amoh and K. Odame, “An optimized recurrent unit for ultra-low-power keyword
spotting,” arXiv preprint arXiv:1902.05026, 2019.

65

https://github.com/karoldvl/ESC-50
https://github.com/karoldvl/ESC-50
http://dcase.community/challenge2019/task-urban-sound-tagging
http://dcase.community/challenge2019/task-urban-sound-tagging
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-classification
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-classification
http://dcase.community/challenge2018/task-general-purpose-audio-tagging
http://dcase.community/challenge2018/task-general-purpose-audio-tagging
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection

[82] I. Insights, “MCUs sales to reach record-high annual revenues through 2022,” Nov-
2018. [Online]. Available: http://www.icinsights.com/news/bulletins/MCUs-Sales-To-
Reach-RecordHigh-Annual-Revenues-Through-2022/.

[83] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: efficient neural network kernels for
arm cortex-m cpus,” CoRR, vol. abs/1801.06601, 2018.

[84] N. Tan, “UTensor: AI inference library based on mbed and tensorflow.”.

[85] “ARM mbed project homepage.” [Online]. Available: https://www.mbed.com.

[86] “TensorFlow: Large-scale machine learning on heterogeneous systems.” 2015.

[87] P. Warden, “Launching tensorflow lite for microcontrollers,” Mar-2019. [Online].
Available: https://petewarden.com/2019/03/07/launching-tensorflow-lite-for-microcon
trollers/.

[88] “Edge machine learning by microsoft on github.”.

[89] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learning in 2 kb ram
for the internet of things,” in Proceedings of the 34th international conference on machine
learning-volume 70, 2017, pp. 1935–1944.

[90] C. Gupta et al., “Protomm: Compressed and accurate knn for resource-scarce devices,”
in Proceedings of the 34th international conference on machine learning-volume 70, 2017,
pp. 1331–1340.

[91] J. Nordby, “emlearn: Machine Learning inference engine for Microcontrollers and
Embedded Devices.” Mar-2019.

[92] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[93] F. Chollet and others, “Keras.” https://keras.io, 2015.

[94] “X-cube-ai: AI expansion pack for stm32cubemx,” 2019. [Online]. Available: https:
//www.st.com/en/embedded-software/x-cube-ai.html.

[95] “STM32CubeMX application homepage.” [Online]. Available: https://www.st.com/e
n/development-tools/stm32cubemx.html.

[96] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[97] A. Paszke et al., “Automatic differentiation in pytorch,” in NIPS-w, 2017.

[98] STMicroelectronics, “UM2526: Getting started with x-cube-ai expansion package for
artificial intelligence (ai).”.

[99] S. Microelectronics, “Demo ai slides @ stmicroelectronics nv 2018 capital markets
day,” 15-May-2018. [Online]. Available: http://investors.st.com/events/event-details/st
microelectronics-nv-2018-capital-markets-day.

[100] G. Desoli et al., “The orlando project: A 28 nm fd-soi low memory embedded neural
network asic,” in Advanced concepts for intelligent vision systems, 2016, pp. 217–227.

66

http://www.icinsights.com/news/bulletins/MCUs-Sales-To-Reach-RecordHigh-Annual-Revenues-Through-2022/
http://www.icinsights.com/news/bulletins/MCUs-Sales-To-Reach-RecordHigh-Annual-Revenues-Through-2022/
https://www.mbed.com
https://petewarden.com/2019/03/07/launching-tensorflow-lite-for-microcontrollers/
https://petewarden.com/2019/03/07/launching-tensorflow-lite-for-microcontrollers/
https://keras.io
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
http://investors.st.com/events/event-details/stmicroelectronics-nv-2018-capital-markets-day
http://investors.st.com/events/event-details/stmicroelectronics-nv-2018-capital-markets-day

[101] “Next-generation armv8.1-m architecture: Delivering enhanced machine learning and
signal processing for the smallest embedded devices,” 14-Feb-2019. [Online]. Available: ht
tps://www.arm.com/company/news/2019/02/next-generation-armv8-1-m-architecture.

[102] Kendryte, “K210 datasheet [english].” [Online]. Available: https://s3.cn-north-
1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte_datasheet_2018101116324
8_en.pdf.

[103] G. Technologies, “GAP8 performance versus arm m7 on embedded cnns.” [Online].
Available: https://greenwaves-technologies.com/gap8-versus-arm-m7-embedded-cnns.

[104] STMicroelectronics, “DS10198: STM32L476xx datasheet.”.

[105] STMicroelectronics, “STEVAL-stlkt01v1 product information.”.

[106] B. McFee et al., “Librosa/librosa: 0.6.3.” Feb-2019.

[107] STMicroelectronics, “FP-ai-sensing1 function pack.”.

[108] P. Maijala, Z. Shuyang, T. Heittola, and T. Virtanen, “Environmental noise moni-
toring using source classification in sensors,” Applied Acoustics, vol. 129, pp. 258–267,
2018.

[109] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An ultra-low power
convolutional neural network accelerator based on binary weights,” in 2016 ieee computer
society annual symposium on vlsi (isvlsi), 2016, pp. 236–241.

[110] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural networks using
logarithmic data representation,” arXiv preprint arXiv:1603.01025, 2016.

[111] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization:
Towards lossless cnns with low-precision weights,” CoRR, vol. abs/1702.03044, 2017.

[112] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural network:
Squeeze the last bit out with admm,” in Thirty-second aaai conference on artificial
intelligence, 2018.

[113] R. J. Cintra, S. Duffner, C. Garcia, and A. Leite, “Low-complexity approximate
convolutional neural networks,” IEEE transactions on neural networks and learning
systems, no. 99, pp. 1–12, 2018.

[114] B. McMahan and D. Rao, “Listening to the world improves speech command
recognition,” in Thirty-second aaai conference on artificial intelligence, 2018.

[115] D. S. Park et al., “SpecAugment: A simple data augmentation method for automatic
speech recognition,” arXiv preprint arXiv:1904.08779, 2019.

[116] Y. Wang, A. E. M. Mendez, M. Cartwright, and J. P. Bello, “Active learning for
efficient audio annotation and classification with a large amount of unlabeled data,” in
ICASSP 2019-2019 ieee international conference on acoustics, speech and signal processing
(icassp), 2019, pp. 880–884.

[117] E. A. R. Han Wenjing AND Coutinho, “Semi-supervised active learning for sound
classification in hybrid learning environments,” PLOS ONE, vol. 11, no. 9, pp. 1–23, Sep.
2016.

67

https://www.arm.com/company/news/2019/02/next-generation-armv8-1-m-architecture
https://www.arm.com/company/news/2019/02/next-generation-armv8-1-m-architecture
https://s3.cn-north-1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte_datasheet_20181011163248_en.pdf
https://s3.cn-north-1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte_datasheet_20181011163248_en.pdf
https://s3.cn-north-1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte_datasheet_20181011163248_en.pdf
https://greenwaves-technologies.com/gap8-versus-arm-m7-embedded-cnns

	Introduction
	Environmental noise
	Noise Monitoring with Wireless Sensor Networks

	Background
	Machine Learning
	Classification
	Training process

	Neural Networks
	Multi-Layer Perceptron
	Activation functions
	Training Neural Networks
	Convolutional layers
	Convolutional Neural Network
	Subsampling
	Spatially Separable convolution
	Depthwise Separable convolution
	Efficient CNNs for Image Classification

	Audio Classification
	Digital sound
	Spectrogram
	Mel-spectrogram
	Normalization
	Analysis windows
	Weak labeling
	Aggregating analysis windows
	Data augmentation
	Efficient CNNs for Speech Detection

	Environmental Sound Classification
	Datasets
	Spectrogram-based models
	Audio waveform models
	Resource-efficient models

	Microcontrollers
	Machine learning on microcontrollers
	Hardware accelerators for neural networks

	Materials
	Dataset
	Hardware platform
	Software
	Models
	Model requirements
	Compared models

	Methods
	Preprocessing
	Training
	Evaluation

	Results
	On-device testing

	Discussion
	Model comparison
	Spectrogram processing time
	Practical evaluation

	Conclusions
	Further work

	Appendix
	Keras model for Baseline
	Keras model for Strided
	Script for converting models using X-CUBE-AI
	References

