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1 Abstract

The Norwegian forest habitat inventory (Miljoregistrering i skog, MiS), is a
system used to classify different forest key habitats for use in forestry planning.
The purpose of the system is to localize and map habitats in managed forests
that are of particular importance for biodiversity. The purpose is to take better
care of the biodiversity in the forest of landowners, something that is important
for sustainable forest management.

Today the work with identifying MiS habitats is largely based on fieldwork
and does only to a small degree use information from remote sensing data.
Creating a probability map of the location of MiS habitats can be a method
of utilizing remote sensing data. One reason to make this map is giving field
workers aid when determining what area of the forest to survey. Work can then
be done more efficiently and targeted. This is because field workers spend their
time searching the forest for the many different habitats. Therefore, a probability
map of the different habitats can reduce the search time, by excluding certain
areas where the possibility of finding MiS habitats is low.

Remote sensing data, like aerial photographs, can be a useful tool when creat-
ing a probability map of MiS locations. Aerial imagery is in studies shown to be a
useful tool for finding objects in the forest. For example, aerial photographs have
been used to classify different tree species. Utilising more of the information in
remote sensing data can be a smart way to improve MiS mapping. Convolutional
neural networks, a form of machine learning, have been successfully applied to
a wide array of tasks including image recognition. Making a model learn how
to recognize features and find patterns in data on their own, is the idea behind
machine learning. A model can differentiate, for example, a dog image from a
cat image, by using features it has learned by looking at many other cat and
dog images. The idea behind this thesis was that if machine learning can be
used successfully on many different image recognition tasks, could it also be used
to find MiS habitats in aerial images? Could a useful probability map of MiS
locations be created?

In an attempt to find MiS habitats in the study area, a convolutional neural
network was created. This network used small sections of aerial images, image
tiles, as input and output a prediction on what habitats it thinks is in the tile.
Data from the fieldwork was used to label each image tile. The model was trained
and validated on a training dataset before being tested on an independent test
dataset. Several different models were tested, both multilabel and binary. In the
end, it proved difficult to create a model that gave good and meaningful results.
The best model managed to classify 61% of the test images correctly. This is
a score too low to make this a method useful for field workers. It created a
probability map of the different MiS habitats. This map was not useful because
large parts were classified incorrectly, i.e. as MiS habitats when being something
else, compared to the survey done in the field work.

How could the results of this work been improved? Model performance could
have improved with more knowledge about input data. Knowing what features
characterises the different MiS habitats may have helped tailor the model to
be more suitable for this specific problem. Another advantage is knowing what
parts of the data is valuable, and how to separate it from noise. Trying different
approaches would also change the performance of the model; instead of using the
image tiles, using bigger or smaller part of the aerial photographs would effect



how the model behaves. The conclusion is that this thesis used a method that
did not work with the procedure that was used. It is belived that more domain
knowledge and a different approach may have given different and better results.
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2 Samandrag

MiS (miljgregistrering i skog) er eit system som blir brukt til & klassifisera ulike
ngkkelbiotopar til bruk i skogbruksplanar. Formalet med systemet er a lokalisera
og kartlegga habitat i skog som er sarleg viktige for biologisk mangfald. Malet
er a ta betre vare pa mangfaldet i skogen til kvar grunneigar, noko som er viktig
for berekraftig skogforvaltning.

I dag er arbeidet med & identifisera MiS-habitat i stor grad basert pa feltarbeid,
og brukar i liten grad informasjon fra fjernméling. A laga eit sannynligheitskart
over plasseringa til MiS-habitata kan vera ein méate & bruka slike fjernmalingsdata
pa. Ein grunn til & laga dette kartet er a gi feltarbeidarar hjelp til a avgjerda kva
omrade av skogen som skal saumfarast. Arbeidet kan da gjerast meir effektivt
og malretta. Dette er fordi ein feltarbeidar elles brukar mykje tid pa & leita i
skogen etter dei mange MiS-habitata. Difor kan eit sannynligheitskart som viser
MiS-habitata redusera tida ein brukar pa leita ved & utelukka visse omrade der
det er lite sannsynleg & finna MiS-habitat.

Fjernmalingsdata, som flyfoto, kan vera eit nyttig verktgy for & laga eit
sannsynligheitskart over MiS-habitat. Ulike studiar har vist at flyfoto kan
vera eit godt reiskap for & finna ulike objekt i skog. For eksempel har flyfoto
blitt brukt til & klassifisera ulike treslag. A utnytta meir av informasjonen
fra fjernmalingsdata kan vera ein smart méate & forbetra MiS-kartlegginga pa.
Konvolusjonelle nevrale nettverk, ei form for maskinlaering, har blitt brukt i
ei rekke oppgaver, inkludert bildegjenkjenning. A laga ein modell som pa eiga
hand lzrer & gjenkjenna eigenskapar og & finna mgnster i data, er ideen bak
maskinlaering. FEin slik modell kan skilja for eksempel eit hundebilde fra eit
kattebilde ved & bruka mgnster han har laert seg ved a sja mange bilde av kattar
og hundar. Tanken bak denne oppgava er at viss maskinleering kan brukast med
suksess pa mange ulike bildegjenkjenningsoppgaver, kan det da brukast til &
finna MiS-habitat i flyfoto? Kan det lagast brukande sannsynligheitskart for
MiS-habitat?

I eit forsgk pa & finna MiS-habitat i eit vald studieomrade blei det laga ein
maskinleringsmodell. Dette nettverket brukte smé utsnitt av flyfoto, bildefliser,
som input og gav ut eit mal pa kva habitat det trudde var i bildeflisa. Data fra
feltarbeid vart brukt til & kategorisera bildefliser. Modellen vart trena og validert
pa eit treningsdatasett for han blei testa pa eit separat testdatasett. Fleire ulike
modellar blei testa, bade multilabel og bingere. Til slutt viste det seg vanskeleg
a laga ein modell som ga gode og meiningsfulle resultat. Den beste modellen
klarte berre & klassifisera 61% av testbilda rett. Dette er eit for darleg resultat
til & bli ein nyttig metode for ein feltarbeidar. Nar ein brukte dette til & laga
sannsynligheitskart for Mis-habitata vart det ikkje brukande fordi store deler av
bildeflisene vart klassifisert feil, dvs som MiS-habitat utan & vera det, i forhold
til registreringane fra feltarbeidet.

Korleis kunne resultata av dette arbeidet ha blitt betre? Modellytinga
kunne blitt betre med meir kunnskap om inndata. A forsta kva eigenskapar
som karakteriserer dei ulike MiS-habitata kunne ha blitt brukt til & skreddarsy
modellen slik at han er meir eigna for & lgysa dette spesifikke problemet. Ein
annan fordel er & vita kva delar av datamaterialet som er verdifulle og korleis skilje
dette fra stgy. Andre tilnsermingar ville ogsé ha endra resultatet til modellen; i
staden for & bruka bildefliser, vil stgrre eller mindre utsnitt av flyfotoa paverke
korleis modellen presterer. Konklusjonen er at denne oppgava brukte ein metode
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som ikkje virka med den framgangsméaten som blei brukt. Likevel er det truleg
at meir fagkunnskap og ei endra tilnserming kan gi eit anna og betre resultat.
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3 Introduction

The Norwegian forest habitat inventory (Miljoregistrering i skog, MiS), is a
system used to classify different forest key habitats for use in forestry planning
[1], [2]. The purpose of the system is to localize and map habitats in managed
forests that are of particular importance for biodiversity. This information is
used when making forestry plans. The purpose is to improve the environmental
considerations of each landowner, making it a basis for sustainable forest man-
agement. Examples, where these maps are used, is when planning new forest
roads, deciding what forest areas that are scheduled for cutting, and when and
how they are cut. Today the work with identifying MiS habitats is largely based
on fieldwork and does only to a small degree use information from remote sensing
data.

Creating a map of the location of MiS habitats can be a method to utilize
remote sensing data. Such a map could provide field workers with information
determining what area of the forest to survey. Thus, field work can then be done
more efficiently and targeted, reducing the time a field worker spends searching
the forest for the different habitats. Therefore, a probability map of the different
habitats can be used to exclude certain areas where the possibility of finding
key habitats is low and hence cut down the search time. This means that the
field worker can survey a forest in a shorter amount of time, since his search
area is reduced. Cost saving is an additional benefit of streamlining the search,
reducing man-hours spent in the forest. Another advantage of using this kind of
tool is the reduction of human error. Field workers ability to be objective can
be affected by many different factors like the weather, fatigue, and experience.
For example, rain can negatively affect the mood of a field worker, making the
person rush through an area. By reducing the search area in the forest the
objectiveness of the survey may improve and areas of interest is not left out
or forgotten. For example, a study by Eriksen et al. [3] found that individual
observers often classified the same area differently. From this, one could argue
that a tool like a MiS probability map could reduce the effect of the individual
observer and improve objectiveness.

Remote sensing data, like aerial photographs, can be a useful tool when
creating a probability map of MiS locations. A method of aerial photography
often used is hyperspectral imaging. This method collects more spectral in-
formation than ordinary images, making identification of objects in the image
easier. Examples by [4] and [5] shows that remote sensing data can be used to
find standing dead wood. Standing dead wood is one of the 12 MiS categories,
see figure 1 for the different categories. Another MiS habitat thought to be
easy to find is recently burned forest [6]. It is understandable that these two
habitats are possible to identify. Looking at aerial images it is easy to spot
brown dead trees or the big scars burnt areas leave in the terrain. On the other
hand, habitats like lying dead wood can be harder to identify [7]. They may not
be immediately visible from photographs, but indicators like specific habitats or
structures where lying dead wood often can be found can give information that
can be utilized to identify such areas [7]. For example, it can be logical to think
that there is a correlation between standing dead wood and laying dead wood [§].
Another example is ground vegetation in the forest. It is like laying dead wood



difficult to see from the air but could be found looking at other indicators. Aerial
photographs can be used to classify different tree species [9]. This can make
it possible to identify specific habitats based on the dominant tree type in the area.

The development in machine learning algorithms has accelerated greatly since
the world gained interest in 2012 [10]. Making a model learn how to recognize
features and patterns in data, by itself, is the idea behind machine learning.
Manually creating good general features by hand is difficult, and takes a long
time. Justification for using machine learning on this problem compared to
other methods is the ability to extract features and information from images.
A machine learning model can differentiate, for example, a dog image from a
cat image, by using features it has learned by looking at many other cat and
dog images [11]. An example of a machine learning model’s ability to classify
images is the ImageNet [12] classification challenge. Here modern models can
distinguish between hundreds of different classes, like dogs and cats but also
car and football. Thus, the successfull use of machine learning on ImageNet to
distinguish hundreds of classes, provide a foundation to use such methods to
identify the 12 different MiS habitats. In theory, a model looking at many aerial
images of MiS habitats could learn how to find MiS habitats in a forest. A study
done by the Norwegian computing center found that using a tool like machine
learning could increase the classification accuracy when classifying tree species
compared to other techniques [13].

Machine learning was used by researchers to find and label four different tree
species in forest imagery [14]. This resulted in a segmentation where nearly 4/5
of the trees were correctly classified.

A third example is how sickness in trees was found using machine learning
[15]. Researchers used the spectral signatures of leaves to differentiate between
sick and healthy trees with high precision.

3.1 MiS, miljgregisteringer i skog

MiS (miljoregisteringer i skog) [1] is a scientifically based registration procedure.
The methodology was developed based on a project where the goal was to find
areas in the forest particularly important for vulnerable species. Based on the
results of this study, a registration method was developed for recording different
environmental habitats in the forests.

The MiS registrations are based on field registrations based on instructions
where criteria for design and content are determined. The registration is stan-
dardized but may be adapted to the local area. The registrations take place
primarily in old forest and in areas where the forest is being cultivated. Twelve
main habitat types were selected for the inventory, and they were delimited
in the field according to specified criteria, either by using densities of habitat
elements or by using vegetation or topographic criteria. The goal is to find and
register habitats that are of particular importance for biodiversity [2]. Example
of these habitats is old trees, dead standing trees, and ravines.

After the forest is mapped, the habitats are ranked and prioritized by value
in a process where local considerations are taken into account. The process
is set up to involve forest owners, and the most valuable habitats enter the
forest owner’s forest management plan. Municipal and regional authorities can



use the information in their planning activities. The selected MiS registrations
are the main basis for establishing the key habitats that will be managed in
accordance with the guidelines in the forest industry. MiS is a tool used to
maintain sustainable forestry.

The MiS registration method was created in collaboration with many different
research institutions and have since 2004 been one of the standards used in
Norwegian forest management planning. MiS data is open to the public.

Figure 1: The 12 MiS habitats. Image source: [2]

Twelve important habitats for biodiversity in managed forests

1 Snags (insects, fungi, birds, bats) 7 Hollow deciduous trees (insects, bats, birds)

2 Logs (fungi, insects, bryophytes) 8 Recently burned forest (fungi, insects, plants)

3 Trees with nutrient-rich bark (lichens, bryophytes) 9 Luxuriant ground vegetation (plants, insects, fungi, snails)
4 Trees with pendant lichens (insects, spiders, mites, lichens) 10 Rock walls (bryophytes, lichens)

5 Late successions of deciduous trees (insects, fungi, birds) 11 Clay ravines (lichen, bryophytes)

6 Old trees (insects, spiders, mites, lichens) 12 Stream gorges (bryophytes, lichens)

3.2 Hyperspectral imaging

Hyperspectral imaging [16], is a method that collects image information from
across a broader, and higher spectral resolution, range of the electromagnetic
spectrum than ordinary imagery. Each image represents a narrow wavelength
range of the electromagnetic spectrum, also known as a spectral band. These
'images’ are combined to form a three-dimensional (x,y,A) hyperspectral image
cube for processing and analysis, where x and y represent two spatial dimensions
of the scene, and A represents the spectral dimension (comprising a range of
wavelengths). This is shown visually in figure 2).

Whereas ordinary cameras captures the color of visible light in mostly three
broad bands, spectral imaging divides the spectrum into multiple contiguous



narrow bands, often more than 100 bands. Hyperspectral images contains more
spectral information compared to ordinary images, witch makes finding objects,
identifying materials, or detecting processes easier.

Certain objects leave unique ’patterns’ in the electromagnetic spectrum. Such
patterns are known as spectral signatures. These patterns enable identification
of the materials that make up a pictured object. It is these kinds of patterns
this thesis hopes to find and use to distinguish between the 12 MiS habitats.

Figure 2: Example of a hyperspectral image cube. [17]
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3.3 Artificial neural networks

Artificial neural networks (ANN) [18] is a system that processes data vaguely
inspired by biological neural networks that make up an animal brain. A neural
network is simply put a collection of neurons and connections between them. A
‘neuron’ is a function with a bunch of inputs and one output. Its task is to take
a number as input, perform a function on it and output the result. See figure 3.



Figure 3: Example of a neuron in a artificial neural network. [19]
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Neurons are connected to each other in layers. Neurons in a layer connect to
the next and previous layers in a network and are not interconnected in the same
layer. Data travels through the network in one direction, from the inputs of the
first layer to the outputs of the last. A network with many layers is called a deep
neural network. Each neuron connection has only one parameter called weight.
These weights tell the neuron to respond more to one input and less to another.
Weights are adjusted when training the network, that’s how the network learns.
An ANN is used in this thesis as a tool to predict the MiS classes.

3.4 Convolutional neural networks

In deep learning, a convolutional neural network (CNN, or ConvNet) is a class
of deep neural networks, commonly applied to analyzing images [20]. A CNN
consists of one or more convolutional layers and a deep neural network. The
convolutional layer consists of a set of learnable filters. Every filter is a small
'window’ looking at the image. During the training of a filter, we slide (convolve)
each filter across the input image and compute dot products between the weights
of the filter and the image. As we slide the filter over the image it produces an
activation map that gives the responses of that filter. When training a layer, the
filters will learn to recognize simple features like, for example, edges. Stacking
multiple convolutional layers give the filters the ability to recognize more complex
features by combining simpler features from earlier layers. See figure 4.



Figure 4: Example of CNN feature extraction.
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Convolutional layers with their weights can be reused in new models by
using a process called transfer learning [21]. With transfer learning, instead of
starting the learning process from scratch, the model already knows patterns
that have been learned when solving a different problem [22]. This way one
can use previous learnings from an already trained model, to build upon and
improve a new model. A pretrained model is a model that was trained on a large
dataset to solve a problem like the one that we want to solve. One example of
a pretrained model is DenseNet that is trained on a large collection of images
called ImageNet [12]. ImageNet contains hundreds of image classes like plants,
animals, furniture, and vehicles.

Since filters are trained on input images, CNN’s use relatively little pre-
processing compared to other image classification algorithms. This means that
the network learns the filters that in traditional algorithms were made by hand.
This independence from prior knowledge and human effort in feature design is
a major advantage. MiS habitats can therefore, in theory, be found without
domain knowledge.

3.5 Objectives

The goal of this thesis is to evaluate the potential to provide a probability map
of the location of forest key habitats using remote sensing data. This thesis is
going to use a CNN to try to classify different MiS habitats using only images.
The high grade of information in a hyperspectral image, combined with a CNN’s



ability to automatically extract features from images, is the foundation of why
this method may succeed in classifying the different MiS habitats.

Three different objectives are explored in this thesis. The main difference
between the objectives is what data is available to the model and how this data
is processed. Each objective is made to explore different machine learning models
ability to solve the MiS classification problem. The map made from each model
could give different information based on what the models value. Below are the
three objectives:

1. Find out if a model manages to differentiate between the 12 different MiS
habitats in a multilabel classification task.

2. Find out if a model manages to differentiate between MiS areas and
non-MiS areas in a binary classification.

3. Find out if the model improves by reducing the variation in the dataset.

4 Materials

4.1 Study area

The study area in this project is located near Biri, in Gjgvik municipality,
Norway. (6756907, 585477, EUREF89 UTM-zone 32N). The size of the area is
approximately 16 km2. The area consisting mostly of boreal forest and some
farmland and is dominated by managed spruce forest. The area was split into
two sub-areas used to train and test the model. See figure 5.

4.2 Field data collection

A field inventory was carried out in the area in 2017 to map MiS areas according
to the standard field protocol. There was found nine of the twelve MiS categories,
in an area covering about 6 % of the total study domain. Habitat distribution
can be seen in table 1. Figure 5 shows the resulting MiS areas overlaid on the
study area.

Table 1: MiS habitats found inside the study area.

Habitat count percentage
Staende dgd ved 36.0 30.3
Liggende dgd ved 54.0 45.4
Rikbarkstraer 3.0 2.5
Treer med hengelav 1.0 0.8
Eldre lauvsuksesjoner 5.0 4.2
Gamle treer 4.0 3.4
Hule lauvtreer 0.0 0.0
Brannflater 0.0 0.0
Rik bakkevegetasjon 5.0 4.2
Bergvegger 6.0 5.0
Leirraviner 0.0 0.0
Bekkeklgfter 5.0 4.2




Figure 5: The study area in Biri shown with the location of MiS key habitats.
Outlined are the two separate areas used to train and test the models.

Rena

Lillehammer

Biri

Study area

[] MiS habitats
[ MiS habitats
a Training_area
a Test_area

0 750 1500 2250 3000m

I T ]

4.3 Hyperspectral data

The hyperspectral data were collected in the summer of 2018 using two HySpex
[23] hyperspectral sensors from Norsk Elektro Optikk. One image sensor operates
in the short-wave infrared spectrum (SWIR) and the other sensor operates in
the visible and near-infrared spectrum (VNIR). Together the sensors cover a
spectral range from 400nm to 2500nm. Flight data and specification is listed in
table 2.

Table 2: Flight data and sensor specification

Contractor Terratec AS
Altitude above ground 900 meters
Area covered 15.9 km2
Datum WGS84 UTM32
SWIR sensor HySpex SWIR-384
SWIR bands 288

SWIR spectral range 400nm to 1000nm
VNIR sensor HySpex VNIR-1800
VNIR bands 186

VNIR spectral range 1000nm to 2500nm

The sensors collected data at 900m above the terrain giving the SWIR sensor
a pixel size, GSD [24], of 0.7 meters and the VNIR sensor a pixel size of 0.3 meters.
Initial calibration and processing of the image data were done by TerraTec. The



data was delivered in several overlapping image stripes.

5 Methods

The Python programming language with the libraries Keras [25] and GDAL
[26] was the main tool used in this thesis to process the raw data into the
finished result. All code used the thesis can be found on GitHub: https:
//github.com/JonHidlePedersen/Master-thesis-Jon-Hidle-Pedersen.

In an attempt to classify the different MiS habitats, a CNN was created. This
network used small sections of aerial images, image tiles, as input and output a
prediction on what habitats the model thought was in the tile. Data from the
fieldwork, marking the location of the different habitats, was used to label each
image tile. The model was trained and validated on a training dataset before
being tested on a separate test dataset. Several different models were tested,
both multilabel and binary. Using the predictions made on the test dataset it
created a map showing where it was likely to find the different MiS habitats.
The generalised version of the workflow is shown in figure 6.

Figure 6: Flowchart showing the steps to transform the raw observations into a
MiS probability map.
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https://github.com/JonHidlePedersen/Master-thesis-Jon-Hidle-Pedersen
https://github.com/JonHidlePedersen/Master-thesis-Jon-Hidle-Pedersen

5.1 Processing raw data

To get a manageable image size out of the big hyperspectral image stripes, it
was decided to split each aerial stripe into tiles of 50x50 pixels. This gave each
tile a real-world area of 250m? when using the 0.3-meter GSD of VNIR. An
area of 250 m? is often used when doing fieldwork. Processing the large aerial
photographs into small tiles were done using GDAL’s retile function. It was
planned to merge the images from the SWIR and VNIR sensor to create a single
image containing all the bands from both sensors. This was not done because
the computation took too long to finish. Therefore, tiles were only made from
the VNIR sensor. The 13 raw VNIR stripes could not be merged together to one
big image. Some methods were tried with varying success and in the end the
raw image stripes were used to create tiles. This caused some overlapping tiles
and the MiS probability maps, therefore, have stripe artifacts. Having merged
the image stripes would have removed these artifacts.

5.2 Labeling of data

Next step in the process was to label each tile using MiS data collected during
the fieldwork. The location of each tile was compared to the location of the
different MiS habitats. If a tile was inside a MiS habitat it was given the label
corresponding to the habitat. Tiles not contained in any of the habitats was
labeled as a new ‘empty’ class. This meant that each tile could be labeled as one,
or multiple, of 13 (12 MiS + 1 empty) different classes. Tiles were also labeled as
either test- or training tiles to ensure an unbiased evaluation of the final model
performance, see figure 5. All tiles were also labeled using a forest mask. The
labels were stored in a text file containing the tile name and the different labels.
Labeling resulted in a total of about 2400 MiS tiles in the training dataset and
about 1200 tiles in the test set. A model can thus be trained and evaluated on
the study area using the existing MiS locations as a ground truth. Not all of the
twelve classes were found in the dataset. The class distribution is shown in table
1. Balancing of the classes was done to ensure that the model did not favour any
class more than the others. The twelve MiS classes were balanced using a weight
matrix. The model was evaluated on the test set containing 1100 MiS tiles and
24000 non-MiS tiles. Note that the test set is predominantly non-MiS tiles. It is
an imbalanced classification problem. This can make the model appear more
capable than it is in reality because it can categorise everything as non-MiS and
still get a good accuracy score. We are on the other hand interested in how
good it is at finding MiS locations/tiles. Therefore, a few evaluation metrics is
considered to get a better picture of the model performance.

5.3 Convolutional neural network

The image tiles could now be used in a CNN model created in Keras, and objective
one could be tried. Importing the hyperspectral multilabel data into the model
was more challenging than previously thought because some helper functions
in Keras could not be used. The helper tools were made for ordinary image
types, like a standard RGB image, and did not work on multiband hyperspectral
images. Therefore, feeding images into the model, splitting data into training-
validation datasets, and data argumentation had to be done by custom functions.
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Making the custom functions took some time and did not end up as advanced
and feature-rich as the functions provided by Keras. Nevertheless, the custom
functions worked and gave the model image data and labels.

Two types of models were tried out, multilabel and binary. The design of
each model was made using an iterative process of trial and error. First training
and validating the current model, noting its performance, then tweaking the
model before repeating the training process. During training, the model was
saved during its best each training step, epoc, to ensure that the model was not
overfitting. Only the model from the best training step was evaluated. What
modifications should be made to the model was mainly decided by looking at
the loss and accuracy plots made during the training process. MiS habitats are
not mutually exclusive which meant that the first models were made to handle
multilabel input and output. The performance of the model using the criteria
from objective one is studied in the results chapter.

In objective two binary classification was tried. Binary classification was
defined as MiS habitat or no MiS habitat. All 12 MiS classes were gathered into
one. It was hoped that the binary model would score better than the multilabel
model since it must only take a binary choice. The balancing of the two classes
was done by reducing the number of non MiS tiles the model was trained on.
This meant the model was trained on an equal amount of MiS and non MiS
tiles. By reducing the 12 classes into one, the dataset is also made bigger on a
class basis. Here the idea to use transfer learning was tried out. The pretrained
model used in this thesis was DenseNet201 because it could handle the resolution
of the 50x50 pixel tiles. One problem with using DenseNet was that it was
pretrained on a large collection of images called ImageNet [12]. Imagenet consists
mostly of three band images, not hyperspectral images with hundreds of bands.
DenseNet therefore only accepts image types similar to what it was trained on,
not hyperspectral images. This meant that the hyperspectral image tiles had to
be changed from their hyperspectral form to a three-band image. The converted
three-band tiles could be imported into the pretrained model. This was done
using the built inn Keras helper functions. The performance of the model using
the criteria from objective two is studied in the results chapter.

The last objective was to test a model on a reduced dataset. A forest mask
was applied to the dataset witch limited the image tiles to only contain forest.
This was done in an attempt to improve the accuracy score of the models by
removing noisy images containing houses and roads. After all the model is
trying to find MiS habitats, and filtering out disturbing objects could improve
performance. The same model and procedure as in objective two were tried
on the reduced dataset. The performance of the model using the criteria from
objective three is studied in the results chapter.

5.3.1 Preprocessing of images

Converting the hyperspectral tiles to three band images was done using two
methods. The first method tried was to stack each band side by side three bands
deep creating a long narrow image. This method did not alter any information
from the original image, but in testing, it did not perform well. The second
method was to use principal component analysis. PCA is a technique used to
emphasize variation and bring out strong patterns in a dataset [27]. PCA was
used to reduce the image dimensionality down to the three most important
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PCA-components. The three first components accounted for about 80%, 10%
and 3% of the total variation in the images. The remaining 183 components
totaling 7% of the variation in the images where discarded. PCA processing
does reduce the information in the image tile, compared to the original tile, but
using this conversion method worked better than the band stacking. The tiles
used in training and testing were converted and stored as three-band images.

5.4 Predication

Finally three MiS probability maps of the test area were made using the model
predictions. When a image tile from the test area was given to a model a
prediction was returned. This value was stored together with the bounding
box of the image tile. Using Python and the GDAL library this information
was used to create a polygon. Performing this prosses over all the image tiles
creates a collection of polygons with individual MiS predictions. This collection
is then stored as the resulting MiS probability map. QGIS [28], a geographic
information system (GIS), was used to make the maps. The resulting map looks
like a heatmap showing the possible occurrence of MiS habitats.

5.5 Evaluating model performance

To evaluate the performance of the model the following evaluation metrics where
used: accuracy score, precision, recall, f1-score, confusion matrix and Cohen’s
kappa.

The accuracy score explains what percentage of tiles are correctly classified.
Precision and recall help us understand how well our model is capturing informa-
tion and how much it is leaving out. Precision tells us from all the test examples
that were assigned a label, how many actually were supposed to be categorized
with that label. Recall tells us, from all the test examples that should have had
the label assigned, how many were actually assigned the label. In other words,
precision is a measure of result relevancy while recall is a measure of how many
truly relevant results are returned. A precision and recall score close to one is
wanted, but a low score shows that the model is not very good at classifying
tiles. The precision-recall curve shows the trade-off between precision and recall
of different thresholds. A high area under the curve represents both high recall
and high precision. High scores for both show that the classifier is returning
accurate results (high precision), as well as returning a majority of all positive
results (high recall). A system with high recall but low precision returns many
results, but most of its predicted labels are incorrect when compared to the
training labels. A system with high precision but low recall is just the opposite,
returning very few results, but most of its predicted labels are correct when
compared to the training labels. An ideal system with high precision and high
recall will return many results, with all results labeled correctly [29].

The fl-score is the harmonic mean of precision and recall. Cohen’s kappa
coefficient is an evaluation metric which measures how much homogeneity, or
consensus, there is in the ratings given by multiple judges. It is generally thought
to be a more robust measure than simple percent agreement calculation, as
Cohen’s kappa takes into account the possibility of the event occurring by chance.
A kappa score is wanted as high as possible. The confusion matrix is a table
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describing the performance of a classification model by looking at how it correctly
and incorrectly classifies data.

6 Result

Models made using criteria specified in the three objectives were evaluated on
the test dataset. All results from each of the tree objectives are presented below.
A comparison of the results is presented at the end of the chapter. Note that
the test set is predominantly non-MiS tiles, it is an imbalanced classification
problem.

6.1 Evaluating objective one

The multilabel models provided classification results with low accuracy. The
best model provided an accuracy score of about 5 % on the test data, it gave no
meaningful results. By looking at the multilabel model’s evaluation metrics it
seems that the model overfitted by ignoring several of the MiS classes, and only
cared about the most frequent MiS class and the ‘empty’ class. To mitigating this
problem a balancing of the classes and weighted labels were tested. This did not
work and the multilabel approach was rejected in favor of binary classification.
The accuracy score on the test set was 5 % correctly classified tiles. The
classification report lists the precision, recall, and fl-score of the two classes the
model uses. See table 3. A high score for the MiS class is wanted but a low score
shows that the model is not very good at finding MiS habitats. See figure 7.

Table 3: Evaluation metrics for the multilabel classification.
Classification report:

precision recall fl-score support

Standing dead wood 0.03 0.07  0.04 530
Lying dead wood 0.02 0.65 0.04 471
Trees with nutrient-rich bark 0.00 0.00 0.00 0
Trees with pendant lichens 0.00 0.00 0.00 83
Late successions of deciduous trees 0.00 0.00 0.00 0
Old trees 0.00 0.00  0.00 0
Hollow deciduous trees 0.00 0.00 0.00 0
Recently burned forest 0.00 0.00  0.00 0
Luxuriant ground vegetation 0.00 0.00  0.00 63
Rock walls 0.00 0.00  0.00 0
Clay ravines 0.00 0.00  0.00 0
Stream gorges 0.00 0.00  0.00 394
Not MIS 0.96 0.13 0.22 24104
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Figure 7: The precision-recall curve to the multilabel model. It shows how bad
the model is at finding the correct classes, its average precision being only 0.09.
Ideally the graph should be a horizontal line with a high area under the curve.
This graph shows the opposite with having a low area under the curve. Notice
how fast the line declines!
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Cohen’s kappa gave a result close to zero indicating that the model gives no
useful information. The confusion matrix shows that the multilabel model favors
only two classes. This may be explained by the fact that many of the image tiles
contain one of the two classes. A possible explanation for this is that the model
does not manage to separate the different classes, and therefore uses the most
frequent classes as the default answer to be correct most often. See figure 8.

Figure 8: Confusion matrix for the multilabel model. Here it becomes clear how
the model favours two of the classes and outright ignores other.
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The resulting map made from the model predictions is shown in figure 9.
One of the 12 classes is picked to show the random predictions made using this
model. The other classes displayed similar random patterns but are not shown
here. There is no pattern or grouping of the MiS habitat. A pattern would have
been expected since each image tile is only 250 m2.

Figure 9: MiS probability map made from the model in objective one. This map
shows the predicted MiS tiles in the test area, and the outline of the reference
MiS habitats. Ideally the predictions should only fall inside these lines. Notice
the random pattern of predicted MiS habitats.
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6.2 Evaluating objective two

The model was evaluated on the test dataset. Classification score during testing
of 61%, combined with the result shown in the confusion matrix, made this
the best performing model in this thesis. During training this model achieved
an accuracy of 78%, but this result was probably caused by overfitting. This
performance increase may be attributed to using a pretrained model already
knowing some general features, which it found in the tiles. Using only a binary
classification method may also have increased the model’s performance. The
classification report lists the precision, recall, and fl-score of the two classes the
model uses. See table 4. The low recall and precision of the MiS class shows
that the model is not very good at finding MiS tiles. See figure 10. The fl-score
shows that the classifier is not good at finding the MiS tiles, only having an
f1-score of 0.15.

Table 4: Evaluation metrics
Classification report:

precision recall fl-score support
MiS 0.08 0.79 0.15 1121
Not MiS 0.98 0.60 0.74 24104

Figure 10: The precision-recall curve to the model. This curve looks much better
than the curve in objective one. The curve tapers off slower and therefore shows
that the model is more usable. On the other hand, notice how low the recall
has to be to obtain a precision above 80%. This could mean that only obvious
image tiles are classified reliably.
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Cohen’s kappa does give a result of 0.07, like random guessing, not good.
The confusion matrix shows that 85 % of the MiS tiles are classified correctly.
This is good but we also see that almost half of the non-MiS tiles are classified
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as MiS. This makes the model very inaccurate because the total amount of MiS
tiles is five times less than what the model finds! See figure 11.

Figure 11: Confusion matrix of the model in objective two showing both raw
and normalized data.
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The resulting map made from the model predictions is shown in figure 12.
Big parts of the MiS habitats are predicted correctly as seen in the map, although
large parts of the map are also classified as MiS habitats. This means that the

value of this map to a field worker is low since it does only to a small degree
narrow down the search space.
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Figure 12: MiS probability map made from the model in objective two. Here
groups and patters of MiS-habitats form. This map shows the predicted MiS
tiles in the test area, and the outline of the reference MiS habitats. Ideally the
predictions should only fall inside these lines. This could be interpreted as the
model is not randomly guessing, like in objective one, but have a understanding
for what it is looking for.

[ MiS area
[ MiS area
Predicted MiS areas

I Predicted MiS areas
) Boundary of test area

6.3 Evaluating objective three

The third objective was to restrict the dataset to only include tiles containing
forest. This restriction resulted in a test accuracy of 61%, similar to the model in
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objective two. During training, this model achieved an accuracy of 75%. Looking
at the confusion matrix shows that the amount of correctly classified MiS tiles it
finds have decreased compared to the previous model. Therefore removing the
'noise’ from the training data does not create a better model.

The classification report lists the precision, recall, and fl-score of the two
classes the model uses. See table 5. The low recall and precision of the MiS
class shows that the model is not very good at finding MiS tiles. See figure 13.
The fl-score shows that the classifier is not good at finding the MiS tiles, only
having an fl-score of 0.12. Lower than the model from objective two.

Table 5: Evaluation metrics objective three
Classification report:
precision recall fl-score support
MiS 0.07 0.60  0.12 1121
Not MiS 0.97 0.61  0.75 24104

Figure 13: The precision-recall curve to the forest mask model in objective three.
This curve shows that although the accuracy score of the models in objective
two and three are close the model in objective three is worse. Here the area
under the curve is lower and the average precision only is 0.6 compared to 0.8.
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Cohen’s kappa does give a result of 0.05, like random guessing, not good.
The confusion matrix shows that 60 % of the MiS tiles are classified correctly.
This is worse than the model in objective two. Here are also almost half of the
non-MiS tiles classified as MiS. This makes the model very inaccurate because
the total amount of MiS tiles is much less. See figure 14.
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Figure 14: Confusion matrix with both raw and normalized data for objective

three.
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The resulting map made from the model predictions is shown in figure 15.
Big parts of the MiS habitats are predicted correctly as seen in the map, but

large parts are also predicted wrongly.
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Figure 15: MiS probability map made from the model in objective three. This
map shows the predicted MiS tiles in the test area, and the outline of the
reference MiS habitats. Ideally the predictions should only fall inside these lines.
It seems the model wrongly classifies a bigger area as MiS-habitats compared to

the model in objective two.
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6.4 Comparison of the objectives

Comparing the three different models one can conclude that the models are
bad at predicting MiS tiles. Each objective changed the data that were given
to the models, and although it did change the outcome slightly, the quality of
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the predictions were bad. See the comparison in table 6. Not one of the MiS
probability maps can be said to give any aid to a potential user. This thesis goal
of creating a usable MiS probability map failed.

Table 6: Comparison of the different models used in each objective. It shows
how the model made in objective two performs the best.
Objective one  Objective two  Objective three

Accuracy score 0.06 0.61 0.61
Cohens kappa 0 0.077 0.045
Precision MiS tiles - 0.08 0.07
Recall MiS tiles - 0.80 0.60

7 Discussion

The best model found in this thesis could not reliably be used to find MiS
habitats in the test area. The idea to use a CNN’s feature extracting ability on
forest imagery was rooted in previous results this kind of network had on other
image classification tasks. For example, the tree classification done by Trier et
al.; and the models trained on ImageNet where hundreds of different classes
could be classified correctly. Using tiles was thought to be better than only using
information from single pixels. This is because the forest may have a structure
containing information only found when looking at multiple pixels and their
surroundings. An example of structure is a gap in the forest cover which could
indicate a fallen tree. Using only single pixel-based models the pixels creating
the hole would probably be discarded as noise. A CNN looking at patterns could
use the pixels creating the hole as an indicator that it may be an area with fallen
trees. Another hypothetical example is finding lush ground vegetation in a forest.
Here the trees may have a greater distance between them, compared to other
areas, letting more light down to the ground vegetation. The bigger distance
between the trees is a structure a CNN could have found. A pixel-based classifier
could not have utilized this pattern, potentially losing important information. It
would have been interesting comparing the results from a pixel-based classifier
with the results from this thesis.

First off all machine learning models need lots of data to produce good results.
The hundreds of tiles given to the model during training may have been too
low to find a difference between MiS and non-MiS tiles. Here the number of
tiles could be increased by producing a bigger dataset, which is expensive, or
the tile size could be reduced. Halving the tile size from 50x50 pixels to 25x25
pixels produces four times the tiles to feed the model, but this needs a new
model and was not tried out. Secondly, the labels used and regarded as ground
truth is based on imperfect field work. Field workers could have missed MiS
habitats, classified wrongly or skipped parts of the forest. This is mentioned in
the introduction and could potentially confuse the model by giving it wrongly
labeled tiles. Finally, and arguably the most important factor in this model’s
performance, the domain knowledge plays a major role.
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7.1 Problems encountered

When working on this project multiple problems were encountered. One of the
first problems arose from the size of the image data. Originally the plan was to
use the bands from both the VNIR and the SWIR sensors. The raw data was
delivered as several stripes of image data from both sensors. Trying to merge the
stripes and sensors together into one turned out to be a time-consuming task.
Merging one of the thirteen image stripes took an ordinary desktop computer
over 30 hours to complete. The time consumption was probably caused by the
big file. Therefore, only the VNIR data, which was thought to contain the most
useful information, was used. Had more time or a more powerful computer been
available the SWIR imagery would be included. Information from this sensor
could have provided a better data foundation for the model.

Making the model accept image tiles were also a source of problems. Since
the early models were trained on hyperspectral multi-band images, helper func-
tions provided by Keras could not be used. The helper functions enabled easy
importing, data argumentation, splitting into training and validation, etc, but
does not work with images having more than four bands. This meant that these
functions had to be custom made. Time that could have been used creating a
better model. When the final models were made using three band tiles, from
the PCA dimensionality reduction, the Keras helper functions where used.

Continuing this work I would have investigated the laser data provided in
this project. Laser would give the model a different kind of information than
hyperspectral data. Knowing the terrain and vegetation structure of an area
could maybe give a new model a better chance of finding MiS habitats. Using
both laser- and hyperspectral data as input into a model is one possibility. I
would also have tried different tiles sizes. Maybe a bigger tile could contain more
information and patterns the model could have used. Or maybe it is the other
way that a small tile could have made the differences between habitats more
pronounced. Lastly, it would have been interesting to explore more what kind
of tiles the model managed to predict right. Do these tiles have something in
common?

8 Conclusion

The goal of this thesis was to explore the possibilities of using machine learning in
the form of a CNN, to find MiS habitats in hyperspectral images. Unfortunately,
the models created failed to produce meaningful results. During training, the
best performing model had an accuracy score of 61%, but when evaluated on the
test data it became clear its usability was bad. The confusion matrix showed
that 85% of the MiS tiles are classified correctly. This is good but we also
see that almost half of the non-MiS tiles are classified as MiS. This makes the
model very inaccurate because the total amount of MiS tiles is five times less
than what the model finds. This means that the value of this map to a field
worker is low since it does only to a small degree narrow down the search space.
The model did classify many of the MiS habitats correctly, but the problem
was that it classifies a lot more wrong. Giving the CNN more and varied data
could give better results. Better knowledge of the data could have improved the
model performance in several ways. Knowing what features characterises the
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different MiS habitats may have helped tailor the model to be more suitable for
this specific problem. Another advantage is knowing what parts of the data is
valuable, and how to separate it from noise. Trying a different approach would
also change the model performance. Instead of using the image tiles, using bigger
or smaller part of the aerial photographs would effect how the model behaves.
The conclusion of this thesis is that the method used here did not work, but
more domain knowledge and a different approach may give different and better
results.
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