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Abstract  19 

Genomic selection can increase genetic gain in aquaculture breeding; however, its implementation 20 

is hindered by a high genotyping cost due to large individuals to genotype. Within-family genomic 21 

selection, which could utilize low-density markers and pedigree information, is suggested as a 22 

cost-effective way of implementing genomic selection in these species. In this study, a single trait 23 

genomic model (STGM) is compared with a multi-trait genomic model (MTGM) for prediction of 24 

within-family genomic breeding values in a simulated sib-evaluated aquaculture breeding scheme. 25 

Two traits, one with lower heritability (h1
2=0.05) and another with higher heritability (h2

2=0.5) 26 

were simulated. Three genetic correlations (rg=0.2, rg=0.5 and rg=0.8) and zero residual correlation 27 

were assumed between these two traits. Given these assumptions, genomic and phenotypic data 28 

were simulated for 100 full-sib families of size 100. From each family, 10 individuals were 29 

randomly selected as selection candidates and the number of tested sibs varied from 10 to 90 per 30 

family. Two scenarios were investigated: in scenario I, all reference sibs were measured for both 31 

traits, whereas in scenario II half of the reference sibs measured for trait I and the remaining half 32 

were measured for trait II. 33 

For both STGM and MTGM, prediction accuracies increased as the number of tested sibs per 34 

family increased from 10 to 90, however, the rate of increase was higher for STGM. Compared to 35 

STGM, use of MTGM increased the accuracy by up to 71% in scenario II and by up to 58% in 36 

scenario I for the low heritability trait when the genetic correlation between the traits was 0.8. The 37 

highest improvement in accuracy was observed in scenario II when only 10 sibs were genotyped 38 

per family with 10 SNP/Chr.  As the magnitude of genetic correlation between the traits decreased, 39 

the relative gain in accuracy by implementing MTGM was reduced. The relative importance of 40 

MTGM also declined with the increase of number of tested sibs per family and a similar trend, but 41 
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with lesser magnitude, was observed with the increase of marker density. The results indicate that 42 

MTGM performs better than STGM for low heritability traits that are genetically correlated with 43 

high heritability traits. The advantage of multi-traits model was greater when both traits are not 44 

measured on the same group of individuals. 45 

 46 

Keywords: aquaculture, genomic selection, within-family, single trait, multiple traits, sib-based 47 
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1. Introduction  49 

Genomic selection (GS) is a novel method that uses genetic markers information for selecting 50 

parents of the future generation (Meuwissen et al., 2001). Currently, it is increasingly applied in 51 

livestock breeding programs particularly in dairy cattle (Goddard et al., 2007; Hayes et al., 2009; 52 

Goddard et al., 2010; Meuwissen et al., 2013). The benefits of GS are greater when traits of interest 53 

are not measured directly on selection candidates. In this regard, it is shown to have a very big 54 

potential in aquaculture breeding schemes because breeding goals in these species include many 55 

traits that are measured on sibs and not directly on the selection candidates (Sonesson, 2007; 56 

Sonesson et al., 2009; Sonesson et al., 2010; Odegard et al., 2014). A typical sib-based GS scheme 57 

in aquaculture involves estimation of marker effects in the sib of the candidates and the candidates 58 

are selected on breeding values estimated based on marker effects (Sonesson, 2007; Sonesson et 59 

al., 2009). 60 

Application of conventional (full scale) GS in aquaculture species is very expensive due to the 61 

very large number of selection candidates and test-sibs to genotype. An alternative to overcome 62 

this particular challenge is to implement a combination of traditional BLUP for pre-selection of 63 

potential families and then estimate within-family genomic breeding values based on a low marker 64 

density (Lillehammer et al., 2013). This approach, referred as within-family (WF) genomic 65 

selection, can reduce genotyping cost without significant reducing selection accuracy because the 66 

low density markers can be used to trace inheritance within a family with a reasonable accuracy 67 

(Ødegård et al., 2014). Simulation studies confirmed that within-family genomic selection 68 

substantially improved prediction accuracies compared with conventional selection methods 69 

(Lillehammer et al., 2013; Ødegård et al., 2014). 70 
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Genetic correlations exist among traits included in many breeding goals and are indicators of 71 

measurement from one trait carries information about other correlated traits. Prediction accuracies 72 

could be improved by jointly evaluating these genetically correlated traits (Henderson et al., 1976; 73 

Pollak et al., 1984; Schaeffer, 1984). The advantage of jointly modeling multiple traits compared 74 

to analyzing each trait separately is that the inference process appropriately accounts for the 75 

correlation among the traits, which helps to increase prediction accuracy and reduce trait selection 76 

bias. In the context of genomic selection, studies reported that joint evaluation of multiple traits 77 

benefits from genetic correlation between the traits and significantly improved prediction 78 

accuracies (e.g. Calus and Veerkamp, 2011, Guo et al., 2014, Jiang et al., 2015). This is 79 

particularly the case for lower heritability traits that are genetically correlated with higher 80 

heritability trait. Jia and Jannink (2012) also reported that when phenotypes are not available for 81 

all individuals and traits, better prediction accuracy is obtained for multiple traits genomic models 82 

(MTGM) than for single trait genomic models (STGM). 83 

Currently, within-family genomic selection models are tested only using single phenotype trait. 84 

Therefore, the aim of this paper is to investigate the benefits of implementing multi-trait genomic 85 

model in within-family genomic selection breeding schemes. Breeding schemes with different 86 

number of tested sibs per family and different heritabilities of the traits under selection were 87 

compared using computer simulation. In addition, different genetic correlation between traits was 88 

investigated. Single and multi-trait genomic models were compared based on the accuracy of 89 

selection. 90 

 91 

2. Methods 92 

2.1. Simulation of population and phenotypes 93 
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Datasets were simulated to compare single and multi-trait within-family genomic selection 94 

methods. A genomic data was simulated assuming an effective population size of 1000 (Ne), 500 95 

males and 500 females, and was kept for 4000 generations to achieve mutation-drift-LD balance. 96 

The simulated genome consisted of 10 chromosomes each 1M (Morgan) length and 11,000 bi-97 

allelic loci across the genome. At generation 4001, ~ 1,100 marker loci and ~ 30 QTL segregated 98 

with minor allele frequency (MAF) of above 5% at each of 10 chromosomes (i.e. a total of 1,100 99 

per chromosome). In 4001 generation, a pedigree structure of 50 males and 100 females was used 100 

to create 100 full-sib families of family size 100 giving 10150 individuals including the base 101 

generation. A schematic description of the simulation is presented in Figure 1. 102 

2.2. Data structure  103 

True breeding values were obtained as the sum of all QTL additive effects for each individual. 104 

Phenotypes were defined as the sum of true breeding values and random residuals sampled form 105 

standard normal distribution. Two traits were simulated: Trait I with heritability h1
2 = 0.05 and 106 

Trait II with heritability h2
2 = 0.5. Three datasets were generated assuming different genetic 107 

correlation between Trait I and Trait II. The simulated genetic correlations were rg = 0.2, rg = 0.5 108 

and rg = 0.8 and the residual correlation between the two traits was assumed zero. 109 

2.3.  Marker density  110 

Four different marker densities containing 10, 20, 50 and 100 marker per chromosome were 111 

generated by uniformly sampling markers from the complete dataset. The within-family genomic 112 

relationship matrix (G) was constructed based on linkage analysis (Luan et al., 2012). Genotype 113 

inheritance probabilities were estimated using Linkage Disequilibrium Multi-locus Iterative 114 

Peeling (LDMIP) program (Meuwissen et al., 2010) based on information from markers and the 115 

pedigree. The output was then used to calculate the genome-wide relationship matrix.  116 
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2.4.  Breeding value estimation  117 

Breeding values were estimated as a combination of family breeding values and genomic within-118 

family breeding values. 𝐸𝐵𝑉 = 1 2⁄ 𝑎𝑠 + 1 2⁄ 𝑎𝑑 + 𝑢, where 𝐸𝐵𝑉 was a vector of combined 119 

breeding values, 𝑎𝑠 and 𝑎𝑑 were vectors of conventional BLUP estimated breeding values of the 120 

sire and dam of an individual respectively, and 𝑢 was the within-family genomic breeding values 121 

of individuals. 122 

Family breeding values were estimated using conventional BLUP methodology. Two different 123 

models were used to estimate within-family genomic breeding values. The single trait genomic 124 

model (STGM) was: 125 

𝑦 = 𝜇 + 𝑍𝑢 + 𝑒, 126 

Where 𝑦 is a vector of phenotypes, µ is the overall mean, 𝑍 is a design matrix linking animals to 127 

the observation, 𝑢 is a vector of estimated within-family genomic breeding values and 𝑒 is a 128 

vector of random residuals. It is assumed that 𝑢~𝑁(0,
1

2
𝐺𝜎𝑢

2), where 𝐺 is a genomic relationship 129 

matrix for the animals in a full-sib family and 𝜎𝑢
2 is the additive genetic variance; and 130 

𝑒~𝑁(0, 𝐼𝜎𝑒
2), where 𝐈 is an identity matrix and 𝜎𝑒

2 is residual variance. The 𝐺 was calculated 131 

based on linkage analysis performed using the LDMIP program (Meuwissen et al., 2010).  This 132 

method uses an iterative peeling step for each genotype locus to account for family information. 133 

The G matrix was calculated for each full-sib family.  134 

The general form of the multi-trait genomic models (MTGM) was:  135 

[
𝑦1

𝑦2
] = [

1 0
0 1

] [
𝜇1

𝜇2
] + [

𝑍1 0
0 𝑍2

] [
𝑢1

𝑢2
] + [

𝑒1

𝑒2
] 136 

Where [
𝑦1

𝑦2
] is a vector of phenotypes for traits I and II, 1 is a vector of ones, [

𝜇1

𝜇2
] is a vector of 137 

overall means for traits I and II, 𝑍1 and 𝑍2 are design matrices linking animals to the observation, 138 
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[
𝑢1

𝑢2
] is a vector of estimated within-family genomic breeding values for the two traits, and [

𝑒1

𝑒2
] is 139 

a vector of random residuals for the two traits. It is assumed that [
𝑢1

𝑢2
] ∼140 

𝑁([
0
0

] ,
1

2
[

𝜎𝑢1
2 𝜎𝑢12

𝜎𝑢21
𝜎𝑢2

2 ] ⊗ 𝐺), where [
𝜎𝑢1

2 𝜎𝑢12

𝜎𝑢21
𝜎𝑢2

2 ] is the additive genetic variance and covariance 141 

structure; and [
𝑒1

𝑒2
]  ∼ 𝑁([

0
0

] , [
𝜎𝑒1

2 0

0 𝜎𝑒2
2 ] ⊗ 𝐼), where [

𝜎𝑒1
2 0

0 𝜎𝑒2
2 ] is the residual variance and 142 

covariance structure. Other model components are as defined previously. For both STGM and 143 

MTGM, the within-family genomic breeding values were predicted from a single trait and multi-144 

trait models in WOMBAT (Meyer, 2007), respectively. The genomic relationship matrix, G, 145 

calculated based on the marker and pedigree information using LDMIP was fit in WOMBAT.  146 

2.5.  Scenarios compared 147 

Two different scenarios were compared to investigate the performance of the models to predict 148 

within-family genomic breeding values. In scenario I, all tested sibs had phenotypes for both traits 149 

and in scenario II, half of the tested-sibs had phenotype for trait I and the other half had phenotype 150 

for the second traits. Scenario II emulates a practical situation where some group of sibs of 151 

selection candidates are challenged for a certain disease and the remaining sibs are used to obtain 152 

measurements for other traits. Furthermore, the effect of the number of genotyped and phenotyped 153 

sibs was investigated by varying the number of tested sibs per family (animals with both genotype 154 

and phenotype). Of the 100 sibs in each family, 10 sibs were chosen randomly as selection 155 

candidates (non-phenotype validation animals) and the number of tested sibs varied from 10 to 90. 156 

Each scenario was also tested under different marker densities. 157 

2.6.  Criteria of comparison 158 
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The predictive abilities of STGM and MTGM was investigated by masking the phenotypes of 10 159 

randomly selected candidates from each family (validation sibs) and predict their breeding values. 160 

The evaluation was based on 30 replicates for each tested scenario and the average of the replicates 161 

was reported. The performance of STGM and MTGM were evaluated using the accuracy of 162 

prediction and the bias of the estimates. Accuracy of prediction was calculated as the Pearson’s 163 

correlation between true (i.e. simulated) and estimated breeding values. 164 

 165 

3. Results  166 

3.1.  Effect of family size and heritability 167 

The effect of family size on prediction accuracy was tested by varying the number of tested sibs 168 

from 10 to 90 per family. Table 1 presents prediction accuracies of STGM and MTGM under 169 

scenarios I and II for marker density of 100 SNP/Chr (the results of the other marker densities are 170 

not presented here, but similar trends are observed). For the STGM, prediction accuracies for both 171 

traits are reported, however, for the MTGM, prediction accuracies for only trait I is reported for 172 

the three genetic correlations between the two traits. Across both scenarios and heritabilities, the 173 

prediction accuracy increased as the number of tested sibs per family increased from 10 to 90 174 

(Table 1). The table also shows the effect of family size on prediction accuracy is less pronounced 175 

on the higher heritable trait compared to the lower heritable trait. The effect of number of tested 176 

sibs on accuracy was less on MTGM compared to STGM. For instance, in scenario I, for trait I, 177 

the increase in accuracy was 69% under STGM as the size of tested sibs increased from 10 to 90, 178 

however, for the MTGM it was 63%, 42% and 28.5% when the genetic correlation between the 179 

traits was 0.2, 0.5 and 0.8 respectively. A similar trend but more pronounced effect of family size 180 

was observed for trait I in scenario II (Table 1). The highest increase in accuracy was observed (up 181 
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to 78%) for the lower heritability trait (i.e. trait I) in scenario II for STGM when the number of 182 

tested sibs increased from 10 to 90 (Table 1). 183 

3.2.  Effect of marker density 184 

Four marker densities, 100, 50, 20 and 10 SNP/Chr were studied to test the effect of marker density 185 

on prediction accuracies of WF breeding values. Figure 2 plots the prediction accuracies for trait 186 

I (h2=0.05) and trait II (h2=0.5) based on STGM and MTGM for scenario I. The figure shows that 187 

the lower heritability trait under STGM is more sensitive to the marker density and to family size 188 

than the higher heritability trait (Figure 2 top right). It is also showed that compared to STGM 189 

(Figure 2 top right), the use of multi-trait model has reduced the sensitivity to marker density for 190 

trait I (Figure 2 bottom right). However, less marker density sensitivity was observed for trait II 191 

for both STGM and MTGM (Figure 2 left top and bottom). 192 

3.3. Effect of genetic correlation 193 

Three genetic correlations between traits (i.e. 0.2, 0.5 and 0.8) were tested to investigate the effect 194 

of it on the prediction ability of MTGM. Figures 3 and 4 present relative gain in accuracy for using 195 

MTGM instead of STGM for trait I under scenario I and II, respectively. In general, as the genetic 196 

correlation between the two traits increased, the relative gain in accuracies also improved for the 197 

lower heritability trait (Figures 3 and 4). When the genetic correlation between trait I and II was 198 

0.2, the gain in accuracy for trait I was under 6% in scenario I (Figure 3) and under 13% in scenario 199 

II (Figure 4). However, when the genetic correlation increased to 0.5, the relative gain in accuracy 200 

increased up to 29% in scenario I (Figure 3) and up to 37% in scenario II (Figure 4). The accuracy 201 

of prediction for trait I was improved by 58% in scenario I (Figure 3) and by 71.2% in scenario II 202 

(Figure 4) by using MTGM when the genetic correlation between trait I and II was increased to 203 

0.8. There is little or no relative benefit in accuracy was observed by using MTGM in place of 204 
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STGM for trait II (results not presented). Regardless of the marker density, the relative gain in 205 

accuracy for using MTGM decreased as the number of tested sibs increased from 10 to 90 per 206 

family and the extra gain beyond family size of 60 was minimal in both scenarios. 207 

3.4. Effect of missing phenotype 208 

In scenario I all the test sibs were measured for the two traits (i.e. trait I and II), whereas in scenario 209 

II one half of the test sibs were measured for trait I and the remaining half of sibs were measured 210 

for trait II. The relative importance of MTGM was greater in scenario II, where not all tested sibs 211 

are phenotyped for both traits. Up to 71.2% relative gain in accuracy was observed in scenario II 212 

(Figure 4) compared to up to 58% in scenario I (Figure 3) for trait I when the genetic correlation 213 

between the traits was 0.8. As the genetic correlation between traits decreased, the relative 214 

importance of MTGM also reduced. The highest relative gain in accuracy by using MTGM was 215 

observed when marker density was 10 SNP/Chr and only 10 sibs per family were tested in scenario 216 

II (Figure 4). When marker density increased from 10 SNP/Chr to 100 SNP/Chr, the relative gain 217 

in accuracy for using MTGM decreased gradually in both scenarios. For instance, in scenario I 218 

when only 10 sibs are tested, the % gain in accuracy was 58 for 10 SNP/Chr and it reduced to 48.4 219 

when the marker density increased to 100 SNP/Chr (Figure 3). The reduction in % of gain in 220 

accuracy was from 71.2 to 55.7 in scenario II when the marker density increased to 100 SNP/Chr 221 

(Figure 4). Furthermore, it is also observed that as the number of tested sibs per family increased 222 

from 10 to 90, the relative importance of MTGM over STGM decreased in both scenarios (Figures 223 

3 and 4). 224 

 225 

4. Discussion  226 
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Most of existing aquaculture breeding schemes are family-based where within-family additive 227 

genetic variation is hardly exploited for selection. Thus, selection methods allowing within-family 228 

selection are of importance. Within-family genomic selection is a strategy where genomic 229 

information is used to account for within-family variation component (Lillehammer et al., 2013; 230 

Ødegård et al., 2014). It is complementary with the existing family selection breeding schemes 231 

where the between family component of the breeding values are estimated by pedigree based 232 

method (Lillehammer et al., 2013). Studies reported that a substantial increase in accuracy 233 

obtained through implementation of WF genomic selection based on sparse marker density 234 

(Lillehammer et al., 2013; Ødegård et al., 2014). Sparse marker densities are sufficient in WF 235 

genomic selection because of the large family sizes in fish breeding. Previous studies have 236 

compared the prediction accuracies of within-family genomic breeding values using single 237 

phenotypes. In the current study, we have compared the performance of STGM and MTGM to 238 

predict the WF genomic breeding values. 239 

The benefit of multi-trait models over single trait models comes from the fact that it uses an extra 240 

information from genetically correlated traits. Genetic correlation is a key factor determining the 241 

advantage of multi-trait models over single trait models. The current study showed that MTGM 242 

improved prediction accuracies for the lower heritability trait, which was genetically correlated 243 

with higher heritable trait (Table 1, Figures 3 and 4). The importance of MTGM was higher when 244 

not all test individuals measured for the two traits studied (Figure 4). Guo et al., (2014), reported 245 

that more accurate breeding values were obtained with MTGM than STGM for traits that had 246 

missing data and are genetically correlated with higher heritability trait. The level of genetic 247 

correlation determined the degree of improvement obtained from MTGM. Figures 3 and 4 showed 248 

that with lower genetic correlation (i.e. rg= 0.2) the gain from MTGM was minimal (under 6% and 249 
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13% for scenario I and II respectively). This is in agreement with results reported in other studies 250 

(Calus et al., 2011; Jia et al., 2012; Guo et al., 2014; Jiang et al., 2015). 251 

The difference between scenario I and II is that in scenario I all test sibs are phenotyped for both 252 

traits, whereas in scenario II only half of the test sibs were phenotyped for trait I and the other half 253 

were phenotyped for trait II. The current study showed that the benefit of MTGS was higher in 254 

scenario II (Table 1, Figures 3 and 4). Previous studies have also reported a greater advantage of 255 

multi-trait models for lower heritability traits that had missing data and are genetically correlated 256 

with higher heritability traits (Hayashi et al., 2013; Guo et al., 2014). In practical aquaculture 257 

breeding programs, phenotype measurements for all traits of interest are not often available for all 258 

test sibs. For example, in a typical sib-based breeding program, only subset of test sibs are 259 

phenotyped for traits that are difficult or expensive to measure such as filet quality and disease 260 

resistance traits. Accuracies obtained using STGM were lower for trait I especially when the 261 

number of tested sibs per family was under 50 (Table 1). These accuracies have improved greatly 262 

under MTGS by using information from the genetically correlated higher heritability trait (i.e. trait 263 

II with rg = 0.5 and rg = 0.8, Table 1). However, for the higher heritability trait, MTGS made no 264 

substantial difference in prediction accuracy as it is also reported in (Hayashi et al., 2013; Guo et 265 

al., 2014). 266 

In aquaculture breeding, considerable weight in the breeding goal is put on disease resistance traits. 267 

These traits are, however, expensive to measure and some of them have low to medium heritability 268 

(Guy et al., 2009; Drangsholt et al., 2011; Lhorente JP, 2014) hence are challenging to improve 269 

through traditional selective breeding. On the other hand, production traits such as growth rate, 270 

carcass yield and fillet yield have higher heritability (e.g. Rye and Refstie, 1995, Powell et al., 271 

2008) and selection is relatively more effective for these traits. Sonesson and Meuwissen (2009) 272 
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and Nielsen et al., (2009) observed that use of genomic selection could considerably increase 273 

accuracy of selection in aquaculture species, particularly for traits that are difficult to measure on 274 

selection candidates themselves, for instance, disease resistance traits. Lillehammer et al. (2013) 275 

presented WF genomic selection, a cost-effective implementation of GS in aquaculture breeding 276 

using low-marker density. The current study showed that the accuracy of WF genomic selection 277 

from single phenotype could be substantially improved by including multiple phenotypes in the 278 

genetic evaluation, particularly for lowly heritable traits (Figures 3 and 4). Genetic correlations 279 

exist between resistance against different diseases (e.g. in Atlantic salmon Gjøen et al., 1997) and 280 

between some disease resistance traits and harvest body weight traits (e.g. in Atlantic salmon 281 

Drangsholt et al., 2012). These correlations could be exploited in multi-trait genomic models to 282 

improve prediction accuracies in aquaculture breeding programs.  283 

Increasing marker density is expected to increase prediction accuracy of genomic breeding values 284 

(e.g., Solberg et al., 2008; Nielsen et al., 2009). The current study showed that marker density has 285 

a small effect on WF genomic breeding values prediction accuracies (Figure 2). This is in 286 

agreement with previous reports (Lillehammer et al., 2013; Ødegård et al., 2014; Ødegård et al., 287 

2015). The impact of marker density is small because genomic relationship matrices are 288 

constructed within full sib families (i.e. equivalent to an effective population size of 2) and few 289 

markers are adequate to trace inheritance. However, the effect of marker density was stronger on 290 

the lower heritability trait than the higher heritability trait (Figure 2). The current study also found 291 

that the accuracy of selection increased as the number of genotyped sibs per family increased 292 

(Table 1). The relative gain in accuracy for using MTGM, however, decreased as the number of 293 

tested sibs increased from 10 to 90 per family and the extra gain beyond family sizes of 60 was 294 
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minimal (Figures 3 and 4). Nirea et al. (2014), also reported that genotyping more than 60 per 295 

family yields relatively little added value. 296 

The economic efficiency of WF genomic selection relies on two aspects of the design; pre-297 

selection of families to reduce genotyping cost and use of sparse dense marker to construct the 298 

within-family genomic relationship matrix (Lillehammer et al., 2013; Ødegård et al., 2014; 299 

Ødegård et al., 2015). However, unlike conventional genomic selection programs in other species, 300 

where reference population can be re-used, it requires re-building of reference population every 301 

generation. Consequently, if obtaining phenotype for a trait is expensive or difficult, WF genomic 302 

selection will have more challenges compared to conventional genomic selection. Hence, if 303 

phenotyping is limiting, as in the case of scenario II, analyzing genetically correlated traits together 304 

is more beneficiary WF genomic selection (Figure 3). 305 

The current study compared MTGS and STGS models for prediction of WF breeding values using 306 

a linear model (GBLUP) under a single genetic architecture. In previous studies, linear and non-307 

linear (Bayesian) multi-trait models were compared under a single genetic architecture (Calus et 308 

al., 2011; Jiang et al., 2015) and multiple genetic architectures (Jia et al., 2012; Montesinos-López 309 

et al., 2016). They reported that GBLUP gave relatively consistent performance across different 310 

genetic architecture and under a major QTL genetic architecture, the Bayesian models performed 311 

better than GBLUP in both single and multi-trait models. It is also reported that MTGS was 312 

strongly beneficial under a major QTL genetic architecture than under a polygenic genetic 313 

architecture (Jia et al., 2012). Hence, if a trait of interest is known to be affected by major genes, 314 

for instance, resistance to infectious pancreatic necrosis (IPN) in Atlantic salmon (Houston et al., 315 

2008; Moen et al., 2009), implementation of multi-trait non-linear models could  be considered. 316 

 317 
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5. Conclusion 318 

Results show that a MTGM can improve accuracy of within-family genomic prediction for lower 319 

heritability traits that are genetically correlated with higher heritability traits. The importance of 320 

multi-traits models were greater when both traits are not measured on the same group of 321 

individuals. On the other hand, there is little or no improvement in accuracy by choosing MTGS 322 

over STGM when the genetic correlation between traits is low. The prediction accuracy of within-323 

family breeding values increased as the number of tested sibs per family increased. The relative 324 

importance of MTGS over STGM, however, decreased as family size increased and was minimal 325 

beyond test sib size 60. Thus, when resources are limiting, genotyping 60 individuals per family 326 

would obtain a substantial benefit.  327 

 328 
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Figures 

Figure 1: A diagrammatic illustration of the simulated structure of the population 

Figure 2: Prediction accuracies of the two traits with heritabilites of 0.5 and 0.05 and different 

marker densities in Scenario I. For the MTGM, the genetic correlation between Trait I and II was 

0.8. 

Figure 3: Relative gain in accuracy in percentage by using MTGM instead of STGM for 

prediction of within-family genomic breeding values with different marker density under 

Scenario I 

Figure 4: Gain in prediction accuracy in percentage by using MTGM instead of STGM for 

prediction of within-family genomic breeding values with different marker density under 

Scenario II 

 

Tables  

Table 1: Prediction accuracies and standard error of STGM and MTGM under scenarios I and II. 

For the MTGM, prediction accuracies for only trait I is reported for the three genetic correlations 

between the two traits. The marker density is 100 SNPs/Chr. 
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