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◼ ABSTRACT 18 

Use of classical mixture toxicity models to predict the combined effects of environmental stressors based on 19 

toxicogenomics (OMICS) data is still in its infancy. Although several studies have made attempts to implement 20 

mixture modeling in OMICS analysis to understand the low-dose interactions of stressors, it is not clear how 21 

interactions occur at the molecular level and how results generated from such approaches can be better used to inform 22 

future studies and cumulative hazard assessment of multiple stressors. The present work was therefore conducted to 23 

propose a conceptual approach for combined effect assessment using global gene expression data, as illustrated by a 24 

case study on assessment of combined effects of gamma radiation and depleted uranium (DU) on Atlantic salmon 25 

(Salmo salar). Implementation of the independent action (IA) model in re-analysis of a previously published 26 

microarray gene expression data was performed to describe gene expression patterns of combined effects and identify 27 

key gene sets and pathways that were relevant for understanding the interactive effects of these stressors. By using 28 

this approach, 3120 differentially expressed genes (DEGs) were caused by additive effects, whereas 279 (273 29 

synergistic, 6 antagonistic) were found to deviate from additivity. Functional analysis further revealed that multiple 30 

toxicity pathways, such as oxidative stress responses, cell cycle regulation, lipid metabolism and immune responses 31 

were enriched by DEGs showing synergistic gene expression. A key toxicity pathway of excessive reactive oxygen 32 

species (ROS) formation leading to enhanced tumorigenesis signaling is highlighted and discussed in detail as an 33 

example of how to take advance of the approach. Furthermore, a conceptual workflow describing the integration of 34 

combined effect modeling, OMICS analysis and bioinformatics is proposed. The present study presents a conceptual 35 

framework for utilizing OMICS data in combined effect assessment and may provide novel strategies for dealing with 36 

data analysis and interpretation of molecular responses of multiple stressors. 37 

 38 

Key Words: Multiple stressor, Mixture modeling, Gene expression, Independent action, Synergy 39 

 40 
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◼ INTRODUCTION 42 

A multitude of environmental stressors (multiple stressors) may co-exist in the environment, thus creating complex 43 

exposure scenarios and potentially causing cumulative hazard and risk to organisms. Studies on multiple stressors 44 

have been increasing rapidly in the past decades (reviewed in ref1-3). Development of prediction models for combined 45 

(joint) toxicity has facilitated the assessment of multiple stressor effects, especially for mixtures of chemical 46 

contaminants.4, 5 Prediction models such as concentration addition (CA), which often assumes two or more stressors 47 

having similar mode of action (MoA) and affecting common biological targets,6, 7 or independent action (IA), which 48 

assumes dissimilar MoA of stressors, and multiplicative responses at the target sites,8 have been successfully 49 

implemented in the hazard assessment of chemical mixtures utilizing both in vitro and in vivo experimental 50 

approaches.9-11 The CA model often requires extensive data support derived from dose/concentration-response 51 

relationships, whereas the IA model can be applied based on effects observed from each single stressor without full 52 

knowledge on the dose/concentration-response relationships.12 Therefore, the IA model is usually suitable for 53 

predicting the combined effects of stressors with distinct toxicological properties. 54 

In the past decades, ecotoxicological research on multiple stressors and cumulative risk has shifted the focus more 55 

towards effects occurring at environmentally realistic low-exposure levels and long-term ecosystem impacts.13 In 56 

concordance with this, inclusion of sensitive toxicological endpoints at lower levels of biological organization (e.g. 57 

molecular/cellular level) in routine toxicity testing and better mechanistic understanding are becoming increasingly 58 

important. Use of toxicogenomics (OMICS) approaches (e.g. transcriptomics, proteomics, metabolomics and 59 

epigenomics) in combination with advanced biostatistics/bioinformatics for identifying key molecular/cellular events 60 

and toxicity pathways fits this purpose well. Among all OMICS approaches, transcriptomics is the most frequently 61 

used in various multiple stressor studies and has proven to be a powerful tool for MoA characterization and toxicity 62 

pathway identification (e.g. ref14, 15). Altenburger and co-workers12 critically reviewed the use of OMICS in 41 mixture 63 

toxicity studies in the period of 2002 to 2011 and reported that half of the studies employed transcriptomics for 64 

elucidating the combined toxicity at the molecular level. However, they12 also pointed out that most of the studies 65 

only used qualitative assessment (i.e. comparison between single stressors and the mixture based on the presence or 66 

absence of a gene or pathway in order to demonstrate the differences in toxic mechanisms), whereas only a small 67 

portion of the studies attempted to apply quantitative mixture modeling (i.e. comparison based on a combined effect 68 

prediction model) to the OMICS data (e.g. ref16-19). It has become increasingly evident that lack of quantitative 69 
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assessment in such mixture studies are predominantly due to the high number of single data generated, the complexity 70 

of the response patterns observed and the lack of ability to interpret the responses at the functional level. First, the 71 

OMICS technologies typically generate thousands of data points, where the sheer handling of statistical treatment and 72 

correction for potential errors (e.g. type I and II errors)20 may introduce bias in identifying the relevance of single 73 

responses. Second, difficulties in determining the maximal level of a molecular response, bi-directional regulation 74 

(e.g. up- or down-regulation), and presence of non-monotonic concentration (dose)-response relationships may 75 

challenge the generation of comparable thresholds across different molecular responses. Third, the integration and 76 

interpretation of multiple responses into functional understanding with relevance to a given biological, biochemical 77 

or toxicity pathway may not be straight forward to identify and is furthermore complicated by temporal changes often 78 

occurring dramatically at the molecular level. Although several attempts have been made in recent years to address 79 

these issues, such as critically evaluating different biostatistical approaches21, developing high-throughput 80 

concentration-response analysis of OMICS data21, using various functional and pathway analyses22 and performing 81 

analyses using the IA model for predicting transcriptional changes after binary exposure to stressors,18, 23  a clear 82 

strategy to maximize the output from such types of studies to inform hazard assessment of multiple stressors is still 83 

lacking. 84 

The present work was therefore conducted as a case study to illustrate a conceptual approach for integrating mixture 85 

modeling, transcriptomics and bioinformatics in combined effect assessment of multiple stressors. This study re-86 

analyzed the transcriptomic data generated from a previously published study on combined effects of gamma radiation 87 

and depleted uranium (DU) in Atlantic salmon (Salmo salar).14 The two stressors studied herein may co-occur in the 88 

environment naturally or after anthropogenic activities such as uranium mining and nuclear accidents (e.g. nuclear 89 

power plant accident in Chernobyl),24 thus representing a realistic exposure scenario for combined effects of 90 

radionuclides such as uranium (e.g. metal properties and alpha radiation) and external ionizing radiation. Gamma 91 

radiation and uranium (i.e. DU in this case) are known to induce reactive oxygen species (ROS) and cause oxidative 92 

damage to macromolecules as a common MoA.14, 25-29 However, these stressors have distinct properties and display 93 

differences in their response at the molecular scale. Previous studies also suggest that gamma radiation and DU may 94 

have multiple MoAs and affect the same endpoint in salmon through dissimilar toxicity mechanisms.14, 27-29 In addition, 95 

transcriptomic analysis is a relatively untargeted analysis which investigates global gene expression responses without 96 

presumption of the MoAs of a stressor. Therefore, the IA model is considered more appropriate in this case. The 97 
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objectives of the current study were to: 1) characterize different types of transcriptional responses as consequences of 98 

additive, synergistic and antagonistic responses of the stressors using the IA prediction model; 2) identify key toxicity 99 

pathways associated with differentially expressed genes (DEGs) displaying synergistic effects; 3) propose a 100 

conceptual workflow for quantitative mixture modeling with the transcriptomic data. 101 

 102 

 103 

◼ MATERIALS AND METHODS 104 

    Design and Data Acquisition. The detailed exposure experiment has been published elsewhere.14 A simple 105 

“a+b” design (i.e. same concentration/dose of single stressors as used in the mixture) was used in the binary exposure. 106 

Briefly, juvenile (parr) Atlantic salmon were exposed to 14 mGy/h gamma radiation from a cobalt-60 source (FIGARO, 107 

NMBU, Ås, Norway) for the first 5h (total dose: 70 mGy) of a 48h period (referred to as Gamma), 0.25 mg/L 108 

waterborne DU (uptake: 5.5 µg U/kg in liver) for a continuous period of 48h (referred to as DU) and the combination 109 

of these (referred to as Combined). Single-color microarray gene expression analysis was performed using total RNA 110 

isolated from dissected fish liver (n=4), as previously described.14 The microarray data was deposited in Gene 111 

Expression Omnibus (GEO, accession number: GSE74012) and re-analyzed in the present study. 112 

Combined Effect Modeling. The raw microarray data was downloaded from GEO and corrected for background 113 

signal, flagged for low quality and missing features and log2 transformed for normalization (quantiles) using 114 

GeneSpring GX v11.0 (Agilent Technologies) prior to combined effect modeling. 115 

Differentially expressed genes were determined using the linear models implemented in the LIMMA package 116 

(Bioconductor, R statistical environment),30 with modifications.31 Contrasts were defined over the linear model in the 117 

statistical test to identify transcriptional responses as a consequence of single and/or combined exposure to the 118 

stressors by two-way analysis of variance (two-way ANOVA), as previously described.18, 23 The two-way ANOVA 119 

examines the effect of each independent variable (Gamma and DU) and the interaction between them, on basis of 120 

variance between treatment replicates. No multiple testing correction was applied to avoid loss of biologically relevant 121 

genes for the functional analyses. 122 

To assess the combined effects of Gamma and DU, the IA model8, 32 was adapted to the gene expression data to 123 

determine whether the observed transcriptional responses were in agreement or deviated from the assumption of 124 

additivity, as previously described:18, 23  125 
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 126 

𝑌𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑) =
𝑌𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎) × 𝑌𝑜𝑏𝑠 (𝐷𝑈)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
                                                                                                                               (1) 127 

 128 

Where 𝑌𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑)  is the predicted absolute gene expression in Combined (i.e. Gamma + DU) under the 129 

assumption of no interaction, 𝑌𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎) is the measured absolute gene expression after exposure to Gamma alone, 130 

𝑌𝑜𝑏𝑠 (𝐷𝑈) is the measured absolute gene expression after exposure to DU alone. Gene expression is defined as an M-131 

value, in which a treatment is expressed relative to a control treatment, referring to up- or down-regulation. Therefore, 132 

equation (1) can be transformed to (2), in which all observations are normalized relative to the control treatment, (i.e., 133 

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙), the measured absolute gene expression in the control). Equation (1) can be transformed to: 134 

 135 

𝐿𝑜𝑔2 (
𝑌𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
) = Log2 (

𝑌𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
×  

𝑌𝑜𝑏𝑠 (𝐷𝑈)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
) =  Log2 (

𝑌𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
) + Log2 (

𝑌𝑜𝑏𝑠 (𝐷𝑈)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
)   (2) 136 

 137 

M-value is defined as the log2 value of the absolute gene expression in each treatment relative to the control. 138 

Therefore, each component in equation can be rewritten as follows: 139 

 140 

𝑀𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑) =  𝐿𝑜𝑔2 (
𝑌𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
) 141 

𝑀𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎) =  𝐿𝑜𝑔2 (
𝑌𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
) 142 

𝑀𝑜𝑏𝑠 (𝐷𝑈) =  𝐿𝑜𝑔2 (
𝑌𝑜𝑏𝑠 (𝐷𝑈)

𝑌𝑜𝑏𝑠 (𝐶𝑡𝑟𝑙)
) 143 

 144 

Equation (2) can then be written as: 145 

𝑀𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑) =  𝑀𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎) + 𝑀𝑜𝑏𝑠 (𝐷𝑈)                                                                                                                         (3) 146 

 147 
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Therefore, if 𝑀𝑜𝑏𝑠 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑) = 𝑀𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑) =  𝑀𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎) + 𝑀𝑜𝑏𝑠 (𝐷𝑈) , the combined effect on gene 148 

transcription is considered additive. Then the transcriptional interactive effect (𝑀𝐼𝑛𝑡) that deviates from additivity can 149 

be defined as: 150 

 151 

𝑀𝐼𝑛𝑡 =  𝑀𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑)−𝑀𝑜𝑏𝑠 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑) = 𝑀𝑜𝑏𝑠 (𝐺𝑎𝑚𝑚𝑎) + 𝑀𝑜𝑏𝑠 (𝐷𝑈)−𝑀𝑜𝑏𝑠 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑)                                            (4) 152 

 153 

    Based on equation (4), genes regulated as consequence of interaction (referred to as Interact) were defined as genes 154 

whose M-values of interaction (𝑀𝐼𝑛𝑡) were significantly different from zero (p-value<0.05) and when no overlap of 155 

the 95% confidence intervals of the predicted M-value (𝑀𝑝𝑟𝑒𝑑 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑)) and observed M-value (𝑀𝑜𝑏𝑠 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑)). 156 

The expression of genes displaying synergistic (𝑀𝐼𝑛𝑡  >0) or antagonistic (𝑀𝐼𝑛𝑡  <0) patterns were considered the 157 

consequence of interactions between the stressors. Venn diagram analysis was performed using Venny 158 

(http://bioinfogp.cnb.csic.es/tools/venny/) to classify gene sets with different response patterns.  159 

Functional Enrichment Analysis. To understand the toxicological functions of the gene sets, gene ontology 160 

enrichment (GO, hypergeometric test, p<0.05) and pathway enrichment (Fisher’s Exact test, p<0.05) analyses were 161 

performed using Bingo v2.433 in Cytoscape v334 and Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 162 

www.qiagen.com/ingenuity), respectively. No multiple testing correction was applied to avoid loss of biologically 163 

relevant functions. As IPA is predominantly based on mammalian centric gene and pathway knowledge, ortholog 164 

genes between Atlantic salmon and mammalian species were used for pathway analysis. Orthologs were identified 165 

using a two-pass BLAST approach in Inparanoid 4.1,35 as previously described.14  166 

 167 

 168 

◼ RESULTS AND DISCUSSION 169 

   Response Classification. A total of 3460 (1484 up- and 1976 down-regulated) genes were identified as DEGs in 170 

Atlantic salmon after combined exposure, of which 3124 were initially predicted as additive, 323 as synergistic and 171 

13 as antagonistic by the IA model (SI, Table S1). To get more insight into different types of joint actions, DEGs were 172 

categorized into two major groups on basis of the direction of transcriptional regulation compared to the control (i.e. 173 

up- or down-regulation). Genes that were monotonically up-regulated or down-regulated in all groups (i.e. Gamma, 174 

http://bioinfogp.cnb.csic.es/tools/venny/
http://www.qiagen.com/ingenuity
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DU and Combined) were considered one-directional, whereas DEGs that were non-monotonically regulated (e.g. up-175 

regulated by Gamma, down-regulated by DU, and up-regulated by Combined, etc.) were considered bi-directional. 176 

The one-directional group (Type 1) had a total of 2934 DEGs, of which 2847 were predicted to be consequences of 177 

additive, 82 as synergistic and 5 as antagonistic effects of the stressors (Table 1). The Type 1 joint actions are similar 178 

to that observed in combined effect assessment using conventional toxicological endpoints, such as survival, 179 

reproduction and growth. The bi-directional group (Type 2) had a total of 526 DEGs, of which 273 were predicted as 180 

consequences of additive, 191 as synergistic, 1 as antagonistic effects of the stressors (Table 1). It is also interesting 181 

to note that in the bi-directional group, the responses of 61 DEGs contradict the basic assumption of the IA prediction 182 

model (e.g. up-regulated in Gamma and DU but down-regulated in Combined, or vice versa) (SI, Table S1). The 183 

contradicting responses have also been frequently observed in multiple stressor studies based on individual (e.g. 184 

mortality and reproduction) and ecological endpoints.36 It is not clear how this “two negatives make a positive” type 185 

of response (or vice versa) occurred. However, several known factors may potentially affect the model predictions as 186 

well as combined effect classification, such as appropriate mixture design (e.g. a+b, n×n, ray or surface design), types 187 

of OMICS technology employed (e.g. qPCR, microarray or RNA sequencing), statistical analysis (e.g. t-test, LIMMA, 188 

ANOVA, with or without multiple testing correction) and mechanistic understanding (e.g. gene functions and 189 

regulatory networks). In this case, the fourth type of joint action (i.e. contradicted) observed may likely be due to 190 

activation of feedback loops to upstream regulators upon exceeding certain gene transcription thresholds,37 which 191 

ultimately cause modulation of downstream transcriptional regulation (e.g. from up-regulation to down-regulation, or 192 

vice versa). This is likely an adaptive response (compensatory mechanism) which has been commonly observed in 193 

organisms exposed to oxidative stressors.38 If this is the case, the assumption of the IA model is breached and 194 

improvement of the IA model parametrization may therefore be required (e.g. by adding a random variable to the 195 

model to capture the variation of data that fails to meet the assumption of IA). Although many factors can affect the 196 

data quality and interpretation, the current case study has successfully demonstrated the usefulness of this conceptual 197 

approach for classification of gene sets according to the conventional types of joint action (e.g. majority of DEGs 198 

reasonably predicted as additive), and the ability to detect unexpected (or novel) types of combined effects (e.g. 199 

contradicted action). 200 

 201 

 202 
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Table 1. Types of combined effects on gene/pathway regulation. 203 

Direction of transcriptional 

regulation 

Type of joint action Sub-type of joint action Illustration 

No. of 

DEG 

One-directional (84.8%) 

Type 1 Additivity (82.28%) 

Additive up-regulation (34.74%) (1)+(1)=2 1202 

Additive down-regulation (47.57%) (-1)+(-1)=-2 1645 

Type 1 Synergy (2.37%) 

Synergistic up-regulation (1.3%) (1)+(1)>2 45 

Synergistic down-regulation (1.07%) (-1)+(-1)<-2 37 

Type 1 Antagonism 

(0.14%) 

Antagonistic up-regulation (0%) 0<(1)+(1)<2 0 

Antagonistic down-regulation (0.14%) 

-2<(-1)+(-

1)<0 

5 

Bi-directional (15.2%) 

Type 2 Additivity (7.89%) 

Counteracted up-regulation (4.45%) (-1)+(2)=1 154 

Counteracted down-regulation 

(3.44%) 

(-2)+(1)=-1 119 

Type 2 Synergy (5.52%) 

Enhanced up-regulation (2.37%) (-1)+(1)>1 82 

Enhanced down-regulation (3.15%) (-1)+(1)<-1 109 

Type 2 Antagonism 

(0.03%) 

Reduced up-regulation (0.03%) 0<(-1)+(1)<1 1 

Reduced down-regulation (0%) -1<(-1)+(1)<0 0 

Contradicted (1.76%) 

Reversed up-regulation (1.01%) (-1)+(-1)>0 35 

Reversed down-regulation (0.75%) (1)+(1)<0 26 

 204 

   Function Analysis. To further understand the toxicological functions of the DEGs displaying different types of 205 

joint actions, enrichment analyses were performed with the three DEG sets (Type 1 & 2 merged to avoid loss of 206 

biologically significant information) displaying additive, synergistic and antagonistic effects. Both GO (Figure 1A) 207 

and pathway (Figure 1B) analysis showed that the majority of the enriched functions were unique when comparing 208 

different types of interactions. A relatively lower number of GO functions and pathways were found to be common 209 

between different types of joint action, indicating that genes in the same functional cluster may have dissimilar patterns 210 

of response to combined exposure, possibly due to their multiple roles in toxicological responses to different types of 211 
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stressors and pathway cross-talks. For example, for the same GO function “cellular responses to oxidative stress”, one 212 

set of supporting DEGs such as reactive oxygen species modulator 1 (c20orf52/romo1) and aryl hydrocarbon receptor 213 

nuclear translocator (arnt) were down-regulated and displayed Type 1 additivity, whereas another set of supporting 214 

DEGs such as peroxiredoxin 2 (prdx2) and Paxillin (pxn) were up-regulated by combined exposure and displayed 215 

Type 2 synergy. These findings suggest another level of gene set classification which may require substantial 216 

mechanistic understanding of individual gene functions and gene regulatory network. 217 

Differentially expressed genes displaying additive responses were mainly enriched in functions/pathways directly 218 

relevant for several main MoAs of Gamma and DU in salmon14, 26-28 and zebrafish (Danio rerio),25, 26 such as induction 219 

of oxidative stress responses, DNA damage responses, mitochondrial energetic dysfunctions and immune responses. 220 

Although similar pathways were also identified in the previous publication using MoA comparison-based qualitative 221 

approach, the comparative (qualitative) approach was not able to differentiate supporting DEGs displaying interactive 222 

or non-interactive (additive) actions of the stressors in the pathway.14 The results obtained from the current quantitative 223 

approach thus clearly suggests added benefits of using the prediction model to classify gene sets with the same type 224 

of joint action without losing the resolution of mechanistic understanding. 225 

The six DEGs displaying antagonistic effects were involved in a high number of functions mainly associated with 226 

metabolic processes, membrane integrity and DNA damage responses, which may also be relevant for the toxicity 227 

mechanisms of the stressors.14, 28, 29 Genes such as GRIP and coiled-coil domain-containing protein 2 (gcc2/gcc185, 228 

Type 1 antagonism), PTPRF interacting protein binding protein 1 isoform 1 (ppfibp1, Type 1 antagonism), protein 229 

PXR1 (pxr1, Type 1 antagonism) were down-regulated by both single and combined stressors, whereas neuroligin 3 230 

(nlgn3, Type 2 antagonism) was down-regulated by DU, up-regulated by Gamma and down-regulated by Combined. 231 

These are essential genes that are common for diverse types of biological functions in higher vertebrates, such as 232 

transmembrane protein activities, neuron development, cell organelle organization and nucleosome assembly.39-42 233 

Modulation of these genes by antagonistic action of Gamma and DU may potentially affect cellular signal transduction 234 

and development. However, due to the low number of DEGs in this category, it is difficult to obtain in-depth 235 

understanding of the MoAs and likely outcomes associated with the antagonistic action of the stressors. 236 

The functional characterization was focused more on DEGs displaying apparent synergistic regulation, as these 237 

may potentially lead to synergistic responses along toxicity pathways relevant for adverse effects of the stressors. In 238 

line with this assumption, GO analysis revealed that these DEGs were mainly enriched in biological functions, such 239 
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as oxidative stress responses, cell cycle regulation and immune responses (SI, Table S2), all being demonstrated to 240 

have high relevance for the toxicity of both Gamma and DU.14, 25, 26, 28, 29, 43 To further explore the toxicological 241 

functions based on curated pathways, the salmon DEGs were mapped to the mammalian orthologs (162 out of 275 242 

mapped) and analyzed by IPA (SI, Table S1). Gene network analysis showed that these DEGs were grouped into 6 243 

functional gene clusters, including 1) neurological disease, organismal injury and abnormalities, cancer; 2) 244 

developmental disorder, neurological disease, cell signaling; 3) cell death and survival, organ morphology, 245 

reproductive system development and function. These gene clusters are directly associated with the synergistic effects 246 

of the stressors as predicted by the IA model and highly relevant for the known effects of Gamma and DU in fish. 14, 247 

25, 26, 28, 29, 43 Pathway analysis showed that DEGs displaying synergistic effects were exclusively involved in the ATM 248 

signaling, p53 signaling, GADD45 signaling, SUMOylation pathway, calcium signaling, mTOR signaling and fatty 249 

acid β-oxidation III, thus highlighting the modulation of two major functions, DNA damage responses and cellular 250 

energy homeostasis (SI, Table S3 & S4) by the synergistic effects of the stressors. These pathways are relevant for the 251 

major MoAs of Gamma and DU in Atlantic salmon 14, 28, 29 and zebrafish.25, 26, indicating that the quantitative approach 252 

proposed herein is capable of capturing key mechanistic information based on small and highly related gene sets. 253 

In addition, the 61 DEGs displaying apparent contradicting responses were mainly involved in the SUMOylation 254 

pathway and several biosynthetic processes of sugar derivatives, pyrimidine nucleotide and reductants. Although the 255 

roles of these pathways in Gamma- and DU-mediated toxicological responses in fish have not been well investigated, 256 

evidence from the mammalian studies suggests that several of these pathways are likely involved in certain feedback 257 

loops to regulate physiological processes. For example, the SUMO proteases are involved in a negative feedback loop 258 

to regulate cell survival in response to genotoxic stress.44 The biosynthesis of nucleotides is also considered strictly 259 

regulated by certain feedback inhibition mechanisms.45 Therefore, it is possible that genes displaying contradicting 260 

responses in this study were regulated by certain feedback loops in response to different levels of stress induced by 261 

single and combined stressors. However, whether this leads to functional changes of relevance still needs to be 262 

investigated. 263 
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 264 

Figure 1. Venn diagram analysis of toxicologically relevant gene ontology (GO) functions (A) and canonical pathways (B) that 265 

were enriched by differentially expressed genes (DEGs) displaying additive, synergistic and antagonistic effects in Atlantic salmon 266 

(Salmo salar) after combined exposure to gamma radiation and depleted uranium.  267 

 268 
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Putative Synergistic Pathway Characterization. A number of molecular toxicity pathways were enriched 269 

by DEGs displaying synergistic effects and highly relevant for the toxicity mechanisms of Gamma and DU in fish, 270 

such as GADD45 signaling, nervous system and immune dysfunctions.14, 28, 29 To illustrate the quantitative aspect and 271 

novelty of the current approach, a putative synergistic toxicity pathway representing the major MoA of gamma 272 

radiation and DU was characterized in detail: excessive DNA damage leading to promoted cell cycle progression and 273 

carcinogenesis (Figure 2). This putative pathway was characterized as an illustration of using the results obtained from 274 

the proposed quantitative approach to guide follow-up studies on anchoring the effects at higher levels of biological 275 

organization. In contrast to the previous qualitative assessment which also identified this key toxicity pathway, the 276 

new approach described herein allows quantification and understanding of the changes and patterns of gene expression 277 

within the pathway. It is well-known that Gamma and DU can cause DNA damage in fish through direct actions, such 278 

as excitation and ionization of DNA molecules (Gamma) and formation of U-DNA adducts (DU), or most likely 279 

indirect actions such as induction of ROS and causing oxidative DNA damage.46, 47 Peroxiredoxin-2 (prdx2), an 280 

antioxidant encoding gene against oxidative stress, was synergistically up-regulated, potentially indicating excessive 281 

ROS formation and subsequent DNA damage.48 Between DNA damage and the activation of cancer signaling, the 282 

oncogene myc plays a key role. The myc gene was found to be up-regulated due to the synergistic effect of Gamma 283 

and DU in the present study. It is known that normal expression of this oncogene is involved in the cellular defensive 284 

mechanisms against DNA damage and tumorigenesis, whereas abnormal regulation or mutation of this gene can lead 285 

to completely opposite consequences.49, 50 Overexpression of myc by gamma radiation has been reported to suppress 286 

DNA repair, promote DNA damage and cell cycle progression from G1 to S phase, thus facilitating mutagenesis and 287 

tumorigenesis in mammals.51, 52 Studies on zebrafish (Danio rerio) also showed that overexpression of myc resulted 288 

in increased proliferation of cancer cells, and induction of T-cell acute lymphoblastic leukemia and hepatoma.53, 54 289 

Although detailed mechanism of myc overexpression leading to promoted cell cycle progression is not fully 290 

understood, recent mammalian studies suggested that myc may impede the function of tumor protein P53 (p53), a 291 

central transcription factor for activation of cell cycle arrest, DNA repair and programmed cell death, thus promoting 292 

cell cycle progression.55-57 The p53 gene per se was not identified as a DEG after combined exposure, likely due to 293 

large variations between individual replicates and limited induction potential.58 However, its downstream target, 294 

growth arrest and DNA-damage-inducible protein GADD45 gamma (gadd45g), an effector gene to mediate DNA 295 

damage associated S and G2/M cell cycle arrest,59 was highly down-regulated and displayed a synergistic response. 296 
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This transition from no effect to significant effect between upstream and downstream genes potentially shows a good 297 

example that synergy may occur along a pathway. In addition, another downstream target of p53, tumor protein p53-298 

inducible nuclear protein 1 (tp53inp1) which triggers P53-dependent apoptosis,60 was down-regulated but displaying 299 

additive effect of the stressors. The evidence taken together suggest that p53 was likely suppressed in salmon liver 300 

after combined exposure to the two stressors. The gadd45 gene is normally induced in response to low level of 301 

genotoxic stress to control cell cycle progression, DNA repair and initiation of apoptosis to eliminate damaged cells.61 302 

Repression of this gene promotes the expression of cyclin-dependent kinase inhibitors (e.g. cdkn1b), thus inhibiting 303 

the expression of cyclin-dependent kinases (e.g. cdkl1), a gene responsible for progression of the cell cycle.62 The 304 

cdkn1b gene was found to be down-regulated, whereas cdkl1 was up-regulated due to the combined effect in the 305 

present study, thus suggesting that cell cycle progression was enhanced beyond the expectation of additivity by the 306 

combined exposure. The key regulatory role of gadd45 in this molecular pathway is likely dependent on the level of 307 

stress. However, lack of temporal and dose-response data in the current study limits the possibility to investigate the 308 

expression dynamics of this gene. In mammals, deficiency in the GADD45 pathway has been associated with 309 

oncogenesis.59 Collectively, impaired DNA repair, suppressed apoptosis and promoted cell cycle progression may 310 

potentially facilitate the accumulation of mutated cells and activation of various carcinogenic signaling pathways, 311 

which are highly associated with tumor formation (Figure 2). Although it was not clear if the adverse outcome(s) of 312 

this toxicity pathway was also enhanced as result of combined exposure, due to lack of phenotypic anchoring, the 313 

illustrative analysis conducted herein shows a strategy for extracting key information from the data and improved 314 

interpretation of the results for guiding follow-up studies.  315 

 316 
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 317 

Figure 2. An example illustrating synergistic toxicity pathways of DNA damage leading to reduced cell cycle arrest and enhanced 318 

carcinogenesis signaling in the liver of Atlantic salmon (Salmo salar) after combined exposure to gamma radiation and depleted 319 

uranium (DU). ROS: reactive oxygen species; prdx: peroxiredoxin; myc: c-myc; atm: p53: tumor protein P53; gadd45: growth 320 

arrest and DNA-damage-inducible protein GADD45; cdk inhibitor: cyclin-dependent kinase inhibitor; cdk: cyclin-dependent kinase. 321 

 322 

   Applications and limitations of the conceptual approach. As illustrated by the case study, a conceptual 323 

workflow for combined effect assessment using transcriptomic data is proposed (Figure 3). This conceptual approach 324 

integrates mechanistically-based comparative analysis (qualitative/descriptive), expression-based mixture toxicity 325 

modeling (quantitative) and biological pathway-based functional analysis (bioinformatics) to understand the 326 

underlying mechanisms of combined effects in a toxicodynamics context and maximize the knowledge output from 327 

such high-content OMICS analysis. This approach complies with the adverse outcome pathway (AOP) concept in 328 

predictive ecotoxicology, which describes a conceptual framework that causally links the molecular initiating event 329 

(MIE), a series of key events (KE) and the adverse outcome (AO) into a linear relationship that is relevant for risk 330 

assessment.63 By characterizing key molecular regulatory pathways, downstream KEs along an AOP potentially 331 

leading to adversity relevant for cumulative risk can be targeted and anchored to well characterized toxicity pathways 332 
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using functional bioassays (tissue/organ level) or standardized toxicity tests (individual/population level). The IA 333 

prediction model used in this conceptual approach is suitable for quantitatively assessing the combined effects of 334 

environmental stressors with distinct toxicological profiles and multiple MoAs, such as a combination of chemical 335 

contaminants and natural stressors (e.g. pH, temperature, UV, ionizing radiation). The IA model is also considered 336 

appropriate for analyzing data generated from such high-content and hypothesis-generating OMICS analysis which 337 

may lacks temporal and dose-response relationships due to relatively high costs of these technologies. Nevertheless, 338 

this approach has both advantages and limitations. On one hand, classification of DEG sets by type of interaction (e.g. 339 

additivity, synergy, antagonism) can reduce the complexity of high-dimensional OMICS data, thus facilitating the 340 

identification of key gene sets relevant for understanding the joint actions of the stressors. On the other hand, grouping 341 

of genes according to the response (expression) patterns may potentially limit the characterization of their biological 342 

significance at the functional (e.g. gene clusters or pathways identified by the enrichment analyses) level of certain 343 

genes when classified into different types of interactions. Alternative to the currently proposed approach is to classify 344 

DEGs by their functional clusters (e.g. pathway functions) first, then group supporting DEGs in the same functional 345 

cluster (pathway) by type of interactions. However, complexity for interpretation may still exist, as one pathway may 346 

be enriched by DEGs displaying multiple types of joint actions (e.g. 50% DEGs showing synergy whereas the rest 347 

showing antagonism). Therefore, choice of classification approaches is highly dependent on a combination of whether 348 

the biological functions of DEG sets are relevant for the MoAs of the stressors and resulting perturbations of key toxic 349 

pathways, and whether DEGs in the same functional cluster uniformly display the same of type of joint action of the 350 

stressors. It would be interesting to try both approaches described above to capture all information needed in future 351 

assessments.  352 

As clearly illustrated by the present case study, the proposed conceptual approach may also be limited by several 353 

key factors. First, mixture design is certainly an important aspect which may influence the overall conclusion. 354 

Although the simple “a+b” design employed in this case study has reasonably captured most patterns of combined 355 

effects, it has limitations to provide complete information due to lack of sufficient data points (e.g. dose-response 356 

relationships and temporal patterns of transcriptional responses) and may potentially introduce bias to the analysis. 357 

Altenburger and coworkers have reviewed appropriate mixture design for specific purposes and pointed out that use 358 

of dose-response and temporal gene expression data can refine the mixture design (e.g. by using appropriate 359 

concentration/dose in the mixture) and reduce uncertainties in combined effect modeling.12 Second, the OMICS data 360 
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quality may also be highly dependent on the analytical technologies. The microarray analysis used in this case study 361 

has been useful for identifying various types of transcriptional responses, but the technical limitations of this method 362 

may potentially introduce experimental artefacts (e.g. cross-hybridization),64 thus jeopardizing the identification of 363 

true DEGs. Nevertheless, the previously published qualitative assessment14 using the same dataset evaluated the 364 

responses of six biomarkers genes by quantitative real-time reverse transcriptional polymerase chain reaction (qPCR) 365 

and verified that results were in general consistent with that measured by microarray, thus suggesting that experimental 366 

artefact due to the technology employed may not be the most important factor affecting the conclusions of this study. 367 

To reduce potential experimental artefacts, use of state-of-the-art techniques (e.g. RNA sequencing) and inclusion of 368 

multiple analytical approaches verifying the transcriptional changes may increase data confidence. Third, different 369 

statistical analyses (e.g. t-test, LIMMA, ANOVA, with or without multiple testing correction) for determining DEGs 370 

and data filtering methods (e.g. fold change cutoff, p-value cutoff) may lead to gain or loss of information on key 371 

genes being highly relevant for key toxicity pathways. No multiple testing correction was applied in this study to 372 

preserve the low-abundant transcripts and marginally regulated genes with potential biological significance. As a side-373 

effect, the chance of identifying false positives may also increase and affect data interpretation. Standardized 374 

processing and reporting of OMICS data is therefore a prerequisite for reproducible output using the current approach 375 

and highly required for regulatory applications.65-68 Fourth, bioinformatics can also be a limiting factor for data 376 

interpretation which is highly required by the current approach. Poor genome/transcriptome annotation (e.g. non-377 

model species such as Atlantic salmon) and lack of sufficient knowledge on gene co-expression networks at the 378 

functional level (e.g. clusters and pathways) may thus become the bottlenecks for identification of key toxicity 379 

pathways relevant for the combined toxicity of the stressors. Finally, lack of mechanistic knowledge at the molecular 380 

and functional level may limit the understanding and interpretation of unexpected (or novel) responses which may be 381 

highly relevant for assessing cumulative hazards. The IA model may also have limitations in capturing all types of 382 

combined effects at the molecular level. For instance, if not being experimental artefacts or false positives, DEGs 383 

displaying contradicted type of joint action may violate the assumptions of the IA model and should be interpreted on 384 

a case-by-case basis. Although appropriate experimental design, biostatistics/bioinformatics, technology and 385 

mechanistic knowledge are clearly required, the current case study has successfully demonstrated that a combination 386 

of quantitative combined effects modeling and functional analyses may increase the ability to decipher and classify 387 

relevant combined effects at the gene level and quantify combined effects relevant for key toxicity pathways. 388 
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 389 

 390 

Figure 3. Proposed workflow for mechanistically-based assessment of low-dose interactive effects of combined stressors using 391 

transcriptomics data. Qualitative comparison: Mode of action (MoA)-based assessment; Quantitative assessment: Prediction 392 

model-based assessment; DEG: differentially expressed gene; CA: concentration addition; IA: independent action. qPCR: 393 

quantitative real-time reverse-transcription polymerase chain reaction. 394 

 395 

   Future Perspectives. A key question raised from the present study is whether additivity, synergism and 396 

antagonism of gene expression and pathways at the molecular level can be used to predict the corresponding joint 397 

action at the organismal or population level. Recent advance in gene co-expression network modeling showed that it 398 

is possible to quantitatively predict adverse effects at the organismal level by using gene expression data,19 which is a 399 

first step of extrapolation between different levels of biological organization. This is especially important as future 400 

regulatory toxicology requires reduced animal testing, better extrapolations from low to high biological levels (e.g. in 401 

vitro to in vivo), and increased predictability across taxa and stressors69 To answer this question, anchoring of 402 



19 

 

combined effects at multiple biological levels along a defined AOP or network of AOPs is needed. Anchoring of 403 

relevant toxicity pathways being perturbed by a set of single and multiple stressor to key components in the AOP 404 

continuum (i.e. the molecular initiating event and the key events) can help to identify more complex responses 405 

involving multiple AOPs (i.e. network of AOPs) which may mutually interact to cause adverse outcomes of ecological 406 

relevance.12, 70 Another important question is whether the proposed approach can also be used for an increased number 407 

of stressors. Although the principles outlined herein should ideally be applicable to an infinite number of stressors, 408 

proof-of-concept studies to demonstrate the applicability and robustness for a number of stressors and extended dose-409 

rate/concentration ranges reflecting ecologically-relevant exposure scenarios is highly warranted. For different types 410 

of studies, the choice of appropriate model is also important. A recent study by Schäfer and Piggott71 proposed a 411 

guideline for selecting the optimal null model (i.e. a prediction model assuming no interaction between the stressors) 412 

for prediction of multiple-stressor effect on individuals or populations, which may also be adapted for modeling the 413 

effects at the molecular level. Other modeling approaches in combination with the classical combined effect prediction 414 

models, such as machine learning-based classification techniques72 and advanced correlation/regression analysis73 415 

may provide additional options for combined toxicity assessment of multiple stressors. Moreover, the complexity of 416 

biological responses (i.e. directional responses) as observed in the present study as well as other studies (reviewed in 417 

ref36) needs to be taken into account in the next generation of cumulative hazard assessment of multiple stressors. 418 

Mechanistic knowledge on the MoAs of the stressors as well as molecular regulatory networks should be preferably 419 

obtained prior to conducting complex multiple stressor studies using the OMICS tools. Reconceptualizing the 420 

definitions for additivity, synergy and antagonism by considering more complex biological responses may be 421 

required.36 422 

 423 
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