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While data science is battling to extract information from the enormous explosion of data, many estimators and
algorithms are being developed for better prediction. Researchers and data scientists often introduce new
methods and evaluate them based on various aspects of data. However, studies on the impact of/on a model with
multiple response variables are limited. This study compares some newly-developed (envelope) and well-
established (PLS, PCR) prediction methods based on real data and simulated data specifically designed by
varying properties such as multicollinearity, the correlation between multiple responses and position of relevant
principal components of predictors. This study aims to give some insight into these methods and help the
researcher to understand and use them in further studies.
1. Introduction

The prediction has been an essential component of modern data sci-
ence, whether in the discipline of statistical analysis or machine learning.
Modern technology has facilitated a massive explosion of data however,
such data often contain irrelevant information that consequently makes
prediction difficult. Researchers are devising new methods and algo-
rithms in order to extract information to create robust predictive models.
Such models mostly contain predictor variables that are directly or
indirectly correlated with other predictor variables. In addition, studies
often consist of many response variables correlated with each other.
These interlinked relationships influence any study, whether it is pre-
dictive modelling or inference.

Modern inter-disciplinary research fields such as chemometrics,
econometrics and bioinformatics handle multi-response models exten-
sively. This paper attempts to compare some multivariate prediction
methods based on their prediction performance on linear model data
with specific properties. The properties include the correlation between
response variables, the correlation between predictor variables, number
of predictor variables and the position of relevant predictor components.
These properties are discussed more in the Experimental Design section.
Among others, Sæbø et al. [26] and Almøy [2] have conducted a similar
comparison in the single response setting. In addition, Rimal et al. [25]
have also conducted a basic comparison of some prediction methods and
their interaction with the data properties of a multi-response model. The
main aim of this paper is to present a comprehensive comparison of
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contemporary prediction methods such as simultaneous envelope esti-
mation (Senv) [8] and envelope estimation in predictor space (Xenv) [7]
with customary prediction methods such as Principal Component
Regression (PCR), Partial Least Squares Regression (PLS) using simulated
dataset with controlled properties. In the case of PLS, we have used PLS1
which fits individual response separately and PLS2 which fits all the
responses together. Experimental design and the methods under com-
parison are discussed further, followed by a brief discussion of the
strategy behind the data simulation.

2. Simulation model

Consider a model where the response vector ðyÞ with m elements and
predictor vector ðxÞ with p elements follow a multivariate normal dis-
tribution as follows,�
y
x

�
� N

��
μy
μx

�
;

�
Σyy Σyx

Σxy Σxx

��
(1)

where, Σxx and Σyy are the variance-covariance matrices of x and y,
respectively, Σxy is the covariance between x and y and μx and μy are
mean vectors of x and y, respectively. A linear model based on (1) is,

y¼ μy þ βtðx� μxÞ þ ε (2)

where, βt
m�p

is a matrix of regression coefficients and ε is an error term
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such that ε � N ð0;ΣyjxÞ. Here, βt ¼ ΣyxΣ�1
xx and Σyjx ¼ Σyy � ΣyxΣ�1

xx Σxy .
In a model like (2), we assume that the variation in response y is

partly explained by the predictor x. However, in many situations, only a
subspace of the predictor space is relevant for the variation in the
response y. This space can be referred to as the relevant space of x and the
rest as irrelevant space. In a similar way, for a certain model, we can
assume that a subspace in the response space exists and contains the
information that the relevant space in predictor can explain (Fig. 1). Cook
et al. [7] and Cook and Zhang [8] have referred to the relevant space as
material space and the irrelevant space as immaterial space.

With an orthogonal transformation of y and x to latent variablesw and
z, respectively, by w ¼ Qy and z ¼ Rx, where Q and R are orthogonal
rotation matrices, an equivalent model to (1) in terms of the latent var-
iables can be written as,�
w
z

�
� N

��
μw
μz

�
;

�
Σww Σwz

Σzw Σzz

��
(3)

where, Σww and Σzz are the variance-covariance matrices of w and z,
respectively. Σzw is the covariance between z and w. μw and μz are the
mean vector of z and w respectively.

Here, the elements of w and z are the principal components of re-
sponses and predictors, which will respectively be referred to respec-
tively as “response components” and “predictor components”. The
column vectors of respective rotation matrices Q and R are the eigen-
vectors corresponding to these principal components. We can write a
linear model based on (3) as,

w¼ μw þ αt
�
z� μz

�þ τ (4)

where, αt
m�p

is a matrix of regression coefficients and τ is an error term

such that τ � N ð0;ΣwjzÞ.
Following the concept of relevant space, a subset of predictor com-

ponents can be imagined to span the predictor space. These components
can be regarded as relevant predictor components. Naes and Martens
[22] introduced the concept of relevant components which was explored
further by Helland [11], Næs and Helland [21], Helland and Almøy [13]
and Helland [12]. The corresponding eigenvectors were referred to as
relevant eigenvectors. A similar logic is introduced by Cook et al. [7] and
later by Cook et al. [5] as an envelope which is the space spanned by the
relevant eigenvectors [4, pp. 101].

In addition, various simulation studies have been performed with the
model based on the concept of relevant subspace. A simulation study by
Almøy [2] has used a single response simulation model based on reduced
regression and has compared some contemporary multivariate estima-
tors. In recent years Helland et al. [15], Sæbø et al. [26], Helland et al.
Fig. 1. Relevant space in a regression model.
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[14] and Rimal et al. [25] implemented similar simulation examples
similar to those we are discussing in this study. This paper, however,
presents an elaborate comparison of the prediction using multi-response
simulated linear model data. The properties of the simulated data are
varied through different levels of simulation-parameters based on an
experimental design. Rimal et al. [25] provide a detailed discussion of
the simulation model that we have adopted here. The following section
presents the estimators being compared in more detail.

3. Prediction methods

Partial least squares regression (PLS) and Principal component
regression (PCR) have been used in many disciplines such as chemo-
metrics, econometrics, bioinformatics and machine learning, where wide
predictor matrices, i.e. p (number or predictors)> n (number of obser-
vation) are common. These methods are popular in multivariate analysis,
especially for exploratory studies and predictions. In recent years, a
concept of envelope introduced by Cook et al. [6] based on the reduction
in the regression model was implemented for the development of
different estimators. This study compares these predictionmethods based
on their prediction performance on data simulated with different
controlled properties.

Principal Components Regression (PCR): Principal components are
the linear combinations of predictor variables such that the trans-
formation makes the new variables uncorrelated. In addition, the varia-
tion of the original dataset captured by the new variables is sorted in
descending order. In other words, each successive component captures
maximum variation left by the preceding components in predictor vari-
ables [18]. Principal components regression uses these principal com-
ponents as a new predictor to explain the variation in the response.

Partial Least Squares (PLS): Two variants of PLS: PLS1 and PLS2 are
used for comparison. The first one considers individual response vari-
ables separately, i.e. each response is predicted with a single response
model, while the latter considers all response variables together. In PLS
regression, the components are determined so as to maximize a covari-
ance between response and predictors [10]. Among other, there are three
main PLS algorithms NIPALS, SIMPLS and Kernel Algorithm all of which
removes the extracted information through deflation and makes the
resulting new variables orthogonal. The algorithms differ in the deflation
strategy and computation of various weight vectors [1] and here we have
used the kernel version of PLS. R-package pls [20] is used for both PCR
and PLS methods.

Envelopes: The envelope, introduced by Cook et al. [6], was first used
to define response envelope [7] as the smallest subspace in the response
space and must be a reducing subspace of Σyjx such that the span of
regression coefficients lies in that space. Since a multivariate linear
regression model contains relevant (material) and irrelevant (immate-
rial) variation in both response and predictor, the relevant part provides
information, while the irrelevant part increases the estimative variation.
The concept of the envelope uses the relevant part for estimation while
excluding the irrelevant part consequently increasing the efficiency of
the model [9].

The concept was later extended to the predictor space, where the
predictor envelope was defined [5]. Further Cook and Zhang [8] used
envelopes for joint reduction of the responses and predictors and argued
that this produced efficiency gains that were greater than those derived
by using individual envelopes for either the responses or the predictors
separately. All the variants of envelope estimations are based on
maximum likelihood estimation. Here we have used predictor envelope
(Xenv) and simultaneous envelope (Senv) for the comparison. R-package
Renvlp [19] is used for both Xenv and Senv methods.

3.1. Modification in envelope estimation

Since envelope estimators (Xenv and Senv) are based on maximum
likelihood estimation (MLE), it fails to estimate in the case of wide
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matrices, i.e. p > n. To incorporate these methods in our comparison, we
have used the principal components ðzÞ of the predictor variables ðxÞ as
predictors, using the required number of components for capturing
97.5% of the variation in x for the designs where p > n. The new set of
variables zwere used for envelope estimation. The regression coefficients
ðbαÞ corresponding to these new variables z were transformed back to
obtain coefficients for each predictor variabl

bβ ¼ ekcαk

where ek is a matrix of eigenvectors with the first k number of compo-
nents. Only simultaneous envelope allows to specify the dimension of
response envelope and all the simulation is based on a single latent
dimension of response, so it is fixed at two in the simulation study. In the
case of Senv, when the envelope dimension for response is the same as
the number of responses, it degenerates to the Xenv method and if the
envelope dimension for the predictor is the same as the number of pre-
dictors, it degenerates to the standardmultivariate linear regression [19].

4. Experimental design

This study compares prediction methods based on their prediction
ability. Data with specific properties are simulated, some of which are
easier to predict than others. These data are simulated using the R-
package simrel, which is discussed in Sæbø et al. [26] and Rimal et al.
[25]. Here we have used four different factors to vary the property of the
data: a) Number of predictors (p), b) Multicollinearity in predictor var-
iables (gamma), c) Correlation in response variables (eta) and d) position
of predictor components relevant for the response (relpos). Using two
levels of p, gamma and relpos and four levels of eta, 32 sets of distinct
properties are designed for the simulation.

Number of predictors: To observe the performance of the methods
on tall and wide predictor matrices, 20 and 250 predictor variables are
simulated with the number of observations fixed at 100. Parameter p
controls these properties in the simrel function.

Multicollinearity in predictor variables: Highly collinear pre-
dictors can be explained completely by a few components. The parameter
gamma (γ) in simrel controls decline in the eigenvalues of the predictor
variables as (5).

λi ¼ e�γði�1Þ; γ > 0 and i ¼ 1; 2;…; p (5)

Here, λi; i ¼ 1; 2;…p are eigenvalues of the predictor variables. We
have used 0.2 and 0.9 as different levels of gamma. The higher the value
of gamma, the higher the multicollinearity will be, and vice versa. In our
simulations, the higher and lower gamma values corresponded to the
maximum correlation between the predictors equal to 0.990 and 0.709,
respectively, in the case of p ¼ 20 variables. In the case of p ¼ 250 the
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corresponding values for the maximum correlation were 0.998 to 0.923.
Correlation in response variables: Correlation among response

variables has been explored to a lesser extent. Here we have tried to
explore that part with four levels of correlation in the response variables.
We have used the eta (η) parameter of simrel for controlling the decline in
eigenvalues corresponding to the response variables as (6).

κj ¼ e�ηðj�1Þ; η > 0 and j ¼ 1; 2;…;m (6)

Here, κj; i ¼ 1;2;…m are the eigenvalues of the response variables
and m is the number of response variables. We have used 0, 0.4, 0.8 and
1.2 as different levels of eta. The larger the value of eta, the larger will be
the correlation will be between response variables and vice versa. In our
simulation, the different levels of eta from small to large correspond to
the maximum correlation of 0, 0.442, 0.729 and 0.878 between the
response variables respectively.

Position of predictor components relevant to the response: The
principal components of the predictors are ordered. The first principal
component captures most of the variation in the predictors. The second
captures most of the remainder left by the first principal component and
so on. In highly collinear predictors, the variation captured by the first
few components is relatively high. However, if those components are not
relevant for the response, prediction becomes difficult [13]. Here, two
levels of the positions of these relevant components are used as 1, 2, 3, 4
and 5, 6, 7, 8.

Moreover, a complete factorial design from the levels of the above
parameters gave us 32 designs. Each design is associated with a dataset
having unique properties. Fig. 2, shows all the designs. For each design
and prediction method, 50 datasets were simulated as replicates. In total,
there were 5 � 32� 50, i.e. 8000 simulated datasets.

Common parameters: Each dataset was simulated with n ¼ 100
number of observation and m ¼ 4 response variables. Furthermore, the
coefficient of determination corresponding to each response components
in all the designs is set to 0.8. The informative and uninformative latent
components are generated according to (3). Since Σww and Σzz are di-
agonal matrices, the components are independent within w and z, but
dependence between the latent spaces of x and y are secured through the
non-zero elements of Σwz with positions defined by the relpos and ypos
parameters. The latent components are subsequently rotated to obtain
the population covariance structure of response and predictor variables.
In addition, we have assumed that there is only one informative response
component. Hence, the informative response component after the
orthogonal rotation together with three uninformative response com-
ponents generates four response variables. This spreads out the infor-
mation in all simulated response variables. For further details on the
simulation tool, see Ref. [25].

An example of simulation parameters for the first design is as follows:



Fig. 2. Experimental Design of simulation parameters. Each point represents a unique data property.

Fig. 3. (left) Covariance structure of latent components (right) Covariance structure of predictor and response.
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The covariance structure of the data simulated with this design in
Fig. 3 shows that the predictor components at positions 1, 2, 3 and 4 are
relevant for the first response component. After the rotation with an
orthogonal rotation matrix, all predictor variables are somewhat relevant
for all response variables, satisfying other desired properties such as
multicollinearity and coefficient of determination. For the same design,
Fig. 4 (top left) shows that the predictor components 1, 2, 3 and 4 are
relevant for the first response component. All other predictor compo-
nents are irrelevant and all other response components are uninforma-
tive. However, due to the orthogonal rotation of the informative response
component together with uninformative response components, all
response variables in the population have similar covariance with the
relevant predictor components (Fig. 4 (top right)). The sample co-
variances between the predictor components and predictor variables
with response variables are shown in Fig. 4 (bottom left) and (bottom
right) respectively.

A similar description can be made for all 32 designs, where each of
the designs holds the properties of the data they simulate. These data are
used by the prediction methods discussed in the previous section. Each
prediction method is given independently simulated datasets in order to
give them an equal opportunity to capture the dynamics in the data.

5. Basis of comparison

This study focuses mainly on the prediction performance of the
13
methods with an emphasis specifically on the interaction between the
properties of the data controlled by the simulation parameters and the
prediction methods. The prediction performance is measured based on
the following:

a) The average prediction error that a method can give using an arbi-
trary number of components and

b) The average number of components used by the method to give the
minimum prediction error

Let us define,

P E ijkl ¼ 1
σ2
yijjx

E
h�
βij � bβijkl

�tðΣxxÞi
�
βij � bβijkl

�iþ 1 (7)

as a prediction error of response j ¼ 1;…4 for a given design i ¼ 1;2;…
32 and method k ¼ 1ðPCRÞ;…5ðSenvÞ using l ¼ 0;…10 number of
components. Here, ðΣxxÞi is the true covariance matrix of the predictors,
unique for a particular design i and σ2

yjjx for response j ¼ 1;…m is the true

model error. Here prediction error is scaled by the true model error to
remove the effects of influencing residual variances. Since both the

expectation and the variance of bβ are unknown, the prediction error is
estimated using data from 50 replications as follows,



Fig. 4. Expected Scaled absolute covariance between predictor components and response components (top left). Expected Scaled absolute covariance between
predictor components and response variables (top right). Sample scaled absolute covariance between predictor components and response variables (bottom left).
Sample scaled absolute covariance between predictor variables and response variables (bottom right). The bar graph in the background represents eigenvalues
corresponding to each component in the population (top plots) and in the sample (bottom plots). One can compare the top-right plot (true covariance of the pop-
ulation) with bottom-left (covariance in the simulated data) which shows a similar pattern for different components.
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dP E ijkl ¼ 1
σ2

X50 h�
βij � bβijklr

�tðΣxxÞi
�
βij � bβ ijklr

�iþ 1 (8)

yijjx r¼0

where dP E ijkl is the estimated prediction error averaged over r ¼ 50
replicates.

The following section focuses on the data for the estimation of these
prediction errors that are used for the two models discussed above in a)
and b) of this section.

6. Data preparation

A dataset for estimating (7) is obtained from simulation which con-
tains a) five factors corresponding to simulation parameters, b) predic-
tion methods, c) number of components, d) replications and e) prediction
error for four responses. The prediction error is computed using predictor
components ranging from 0 to 10 for every 50 replicates as,

� dP E ∘
�
ijklr

¼ 1
σ2
yijjx

h�
βij � bβijklr

�tðΣxxÞi
�
βij � bβ ijklr

�iþ 1

Thus there are 32 (designs) � 5 (methods) � 11 (number of com-
ponents) � 50 (replications), i.e. 88000 observations corresponding to
the response variables from Y1 to Y4.

Since our discussions focus on the average minimum prediction error
that a method can obtain and the average number of components they
use to get the minimum prediction error in each replicates, the dataset
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discussed above is summarized as constructing the following two smaller
datasets. Let us call them Error Dataset and Component Dataset.

Error Dataset: For each prediction method, design and response, an
average prediction error is computed over all replicates for each
component. Next, a component that gives the minimum of this average
prediction error is selected, i.e.,

l∘ ¼ argmin
l

"
1
50

X50
i¼1

ðP E ∘Þijklr
#

(9)

Using the component l∘, a dataset of ðP E ∘Þijkl∘r is used as the Error
Dataset. Let uð8000�4Þ ¼ ðujÞ for j ¼ 1;…4 be the outcome variables
measuring the prediction error corresponding to the response number j in
the context of this dataset.

Component Dataset: The number of components that gives the mini-
mum prediction error in each replication is referred to as the Component
Dataset, i.e.,

l∘ ¼ argmin
l

�
P E ijklr

	
(10)

Here l∘ is the number of components that gives minimum prediction
error ðP E ∘Þijklr for design i, response j, method k and replicate r. Let
vð8000�4Þ ¼ ðvjÞ for j ¼ 1;…4 be the outcome variables measuring the
number of components used for minimum prediction error correspond-
ing to the response j in the context of this dataset.



Fig. 5. Scores density corresponding to first principal component of error dataset (u) subdivided by methods, gamma and eta and grouped by relpos.
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7. Exploration

This section explores the variation in the error dataset and the
component dataset for which we have used Principal Component Analysis
(PCA). Let tu and tv be the principal component score sets corresponding
to PCA run on the u and v matrices respectively. The scores density in
Fig. 5 corresponds to the first principal component of u, i.e. the first
column of tu.

Since higher prediction errors correspond to high scores, the plot
shows that the PCR, PLS1 and PLS2 methods are influenced by the two
levels of the position of relevant predictor components. When the rele-
vant predictors are at positions 5, 6, 7, 8, the eigenvalues corresponding
to them are relatively smaller. This also suggests that PCR, PLS1 and PLS2
depend greatly on the position of the relevant components, and the
variation of these components affects their prediction performance.
However, the envelope methods appeared to be less influenced by relpos
in this regard.

In addition, the plot also shows that the effect of gamma, i.e., the level
of multicollinearity, has a lesser effect when the relevant predictors are at
positions 1, 2, 3, 4. This indicates that the methods are somewhat robust
for handling collinear predictors. Nevertheless, when the relevant pre-
dictors are at positions 5, 6, 7, 8, high multicollinearity results in a small
variance of these relevant components and consequently yields poor
prediction. This is in accordance with the findings of Helland and Almøy
[13].

Furthermore, the density curves for PCR, PLS1 and PLS2 are similar
for different levels of eta, i.e., the factor controlling the correlation be-
tween responses. However, the envelope models have been shown to
have distinct interactions between the positions of relevant components
(relpos) and eta. Here higher levels of eta have yielded higher scores and
clear separation between two levels of relpos. In the case of high multi-
collinearity, envelope methods have resulted in some large outliers
indicating that in some cases that the methods can result in giving an
unexpected prediction.

In Fig. 6, the higher scores suggest that methods have used a larger
15
number of components to give minimum prediction error. The plot also
shows that the relevant predictor components at 5, 6, 7, 8 give larger
prediction errors than those in positions 1, 2, 3, 4. The pattern is more
distinct in large multicollinearity cases and PCR and PLS methods. Both
the envelopemethods have shown equally enhanced performance at both
levels of relpos and gamma. However, for data with low multicollinearity
(γ ¼ 0:2), the envelope methods have used a lesser number of compo-
nents on average than in the high multicollinearity cases to achieve
minimum prediction error.

8. Statistical analysis

This section has modelled the error data and the component data as a
function of the simulation parameters to better understand the connec-
tion between data properties and prediction methods using multivariate
analysis of variation (MANOVA).

Let us consider a model with third order interaction of the simulation
parameters (p, gamma, eta and relpos) and Methods as in (11) and (12)
using datasets u and v, respectively. Let us refer to them as the error model
and the component model.

Error Model:

uabcdef ¼ μu þ ðpa þ gammab þ etac þ relposd þMethodseÞ3 þ ðεuÞabcdef
(11)

Component Model:

vabcdef ¼ μv þ ðpa þ gammab þ etac þ relposd þMethodseÞ3 þ ðεvÞabcdef (12)

where, uabcdef is a vector of prediction errors in the error model and vabcdef
is a vector of the number of components used by a method to obtain
minimum prediction error in the component model.

Although there are several test-statistics for MANOVA, all are essen-
tially equivalent for large samples [17]. Here we will use Pillai's trace
statistic which is defined as,



Fig. 6. Score density corresponding to the first principal component of the component dataset (v) subdivided by methods, gamma and eta and grouped by relpos.
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Pillai statistic¼ tr
�ðEþHÞ�1H

	 ¼ Xm νi
1þ ν

(13)

i¼1 i

Here the matrix H holds between-sum-of-squares and sum-of-
products for each of the predictors. The matrix E has a within the sum
of squares and sum of products for each of the predictors. νi represents
the eigenvalues corresponding to E�1H [24].

For both the models (11) and (12), Pillai's trace statistic is used for
accessing the effect of each factor and returns an F-value for the strength
of their significance. Fig. 7 plots the Pillai's trace statistics as bars with
corresponding F-values as text labels for both models.

Error Model: Fig. 7 (left) shows the Pillai's trace statistic for factors of
the error model. The main effect of Method followed by relpos, eta and
gamma have the largest influence on the model. A highly significant two-
factor interaction of Method with gamma followed by the relpos and eta
clearly shows that methods perform differently for different levels of
these data properties. The significant third order interaction between
Method, eta and gamma suggest that the performance of a method differs
for a given level of multicollinearity and the correlation between the
responses. Since only some methods consider modelling predictor and
response together, the prediction is affected by the level of correlation
between the responses (eta) for a given method.

Component Model: Fig. 7 (right) shows the Pillai's trace statistic for
factors of the component model. As in the error model, the main effects of
the Method, relpos, gamma and eta have a significantly large effect on
the number of components that a method has used to obtain minimum
prediction error. The two-factor interactions of Method with simulation
parameters are larger in this case. This shows that the Methods and these
interactions have a larger effect on the use of the number of component
than the prediction error itself. In addition, a similar significant high
third-order interaction as found in the error model is also observed in this
model.

The following section will continue to explore the effects of different
levels of the factors in the case of these interactions.
16
8.1. Effect analysis of error model

The large difference in the prediction error for the envelope models in
Fig. 8 (left) is intensified when the position of the relevant predictor is at
5, 6, 7, 8. The results also show that the envelope methods are more
sensitive to the levels of eta than the rest of the methods. In the case of
PCR and PLS, the difference in the effect of levels of eta is small.

In Fig. 8 (right), we can see that the multicollinearity (controlled by
gamma) has affected all the methods. However, envelope methods have
better performance on low multicollinearity, as opposed to high multi-
collinearity, and PCR, PLS1 and PLS2 are robust for high multi-
collinearity. Despite handling high multicollinearity, these methods have
higher prediction error in both cases of multicollinearity than the enve-
lope methods.

8.2. Effect analysis of the component model

Unlike for prediction errors, Fig. 9 (left) shows that the number of
components used by the methods to obtain minimum prediction error is
less affected by the levels of eta. All methods appear to use on average
more components when eta increases. Envelope methods are able to
obtain minimum prediction error by using components ranging from 1 to
3 in both the cases of relpos. This value is much higher in the case of PCR
as its prediction is based only on the principal components of the pre-
dictor matrix. The number of components used by this method ranges
from 3 to 5 when relevant components are at positions 1, 2, 3, 4 and 5 to 8
when relevant components are at positions 5, 6, 7, 8.

When relevant components are at position 5, 6, 7, 8, the eigenvalues
of relevant predictors become smaller and responses are relatively diffi-
cult to predict. This becomes more critical for high multicollinearity
cases. Fig. 9 (right) shows that the envelope methods are less influenced
by the level of relpos and are particularly better in achieving minimum
prediction error using a fewer number of components than other
methods.



Fig. 8. Effect plot of some interactions of the multivariate linear model of prediction error.

Fig. 7. Pillai Statistic and F-value for the MANOVA model. The bar represents the Pillai Statistic and the text labels are F-value for the corresponding factor.
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Fig. 9. Effect plot of some interactions of the multivariate linear model of the number of components to get minimum prediction error.

Fig. 10. (Left) Bar represents the eigenvalues corresponding to Raman Spectra. The points and line are the covariances between response and the principal com-
ponents of Raman Spectra. All the values are normalized to scale from 0 to 1. (Middle) Cumulative sum of eigenvalues corresponding to predictors. (Right) The
cumulative sum of eigenvalues corresponding to responses. The top and bottom row corresponds to test and training datasets respectively.
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9. Examples

In addition to the analysis with the simulated data, the following two
examples explore the prediction performance of the methods using real
datasets. Since both examples have wide predictor matrices, principal
components explaining 97.5% of the variation in them are used for en-
velope methods. The coefficients were transformed back after the
estimation.

9.1. Raman spectra analysis of contents of polyunsaturated fatty acids
(PUFA)

This dataset contains 44 training samples and 25 test samples of fatty
acid information expressed as a) percentage of total sample weight and b)
the percentage of total fat content. The dataset is borrowed from Næs
et al. [23] where more information can be found. The samples were
analysed using Raman spectroscopy from which 1096 wavelength
18
variables were obtained as predictors. Raman spectroscopy provides
detailed chemical information from minor components in food. The aim
of this example is to compare how well the prediction methods that we
have considered are able to predict the contents of PUFA using these
Raman spectra.

Fig. 10 (left) shows that the first few predictor components are
somewhat correlated with response variables. In addition, the most
variation in predictors is explained by less than five components (mid-
dle). Further, the response variables are highly correlated, suggesting
that a single latent dimension explains most of the variation (right). We
may therefore also believe that the relevant latent space in the response
matrix is of dimension one. This resembles Design 19 (Fig. 2) from our
simulation.

Using a range of components from 1 to 15, regression models were
fitted using each of the methods. The fitted models were used to predict
the test observation, and the root mean squared error of prediction
(RMSEP) was calculated. Fig. 11 shows that PLS2 obtained a minimum



Fig. 11. Prediction Error of different prediction methods using different number of components.

Fig. 12. (Left) Bar represents the eigenvalues corresponding to NIR Spectra. The points and line are the covariances between response and the principal components of
NIR Spectra. All the values are normalized to scale from 0 to 1. (Middle) Cumulative sum of eigenvalues corresponding to predictors. (Right) The cumulative sum of
eigenvalues corresponding to responses.
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prediction error of 3.783 using 9 components in the case of response %
Pufa, while PLS1 obtained a minimum prediction error of 1.308 using 11
components in the case of response PUFA%emul. However, the figure
also shows that both envelope methods have reached to almost minimum
prediction error in fewer number of components. This pattern is also
visible in the simulation results (Fig. 9).

9.2. Example-2: NIR spectra of biscuit dough

The dataset consists of 700 wavelengths of NIR spectra
(1100–2498 nm in steps of 2 nm) that were used as predictor variables.
There are four response variables corresponding to the yield percentages
of (a) fat, (b) sucrose, (c) flour and (d) water. The measurements were
taken from 40 training observation of biscuit dough. A separate set of 32
samples created and measured on different occasions were used as test
observations. The dataset is borrowed from Indahl [16] where further
information can be obtained.

Fig. 12 (left) shows that the first predictor component has the largest
variance and also has large covariance with all response variables. The
second component, however, has larger variance (middle) than the suc-
ceeding components but has a small covariance with all the responses,
19
which indicates that the component is less relevant for any of the re-
sponses. In addition, two response components have explained most of
the variation in response variables (right). This structure is also some-
what similar to Design 19, although it is uncertain whether the dimen-
sion of the relevant space in the response matrix is larger than one.

Fig. 13 (corresponding to Fig. 11) shows the root mean squared error
for both test and train prediction of the biscuit dough data. Here four
different methods have minimum test prediction error for the four re-
sponses. As the structure of the data is similar to that of the first example,
the pattern in the prediction is also similar for all methods.

The prediction performance on the test data of the envelope methods
appears to be more stable compared to the PCR and PLS methods.
Furthermore, the envelope methods achieve good performance generally
using fewer components, which is in accordance with Fig. 6.

10. Discussions and conclusion

Analysis using both simulated data and real data has shown that the
envelope methods are more stable, less influenced by relpos and gamma
and in general, performed better than PCR and PLS methods. These
methods are also found to be less dependent on the number of



Fig. 13. Prediction Error of different prediction methods using different number of components.
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components.
Since the facet in Figs. 5 and 6 have their own scales, despite having

some large prediction errors seen at the right tail, envelope methods still
have a smaller prediction error and have used a fewer number of com-
ponents than the other methods.

The envelope methods may have this problem of being caught in a
local optimum of the objective function. If these cases of sub-optimal
convergence were identified and rerun to obtain better convergence,
the envelope results may have become even better. Particularly in the
case of the simultaneous envelope, since users can specify the number of
dimension for the response envelope, the method can leverage the rele-
vant space of response while PCR, PLS and Xenv are constrained to play
only on predictor space.

Furthermore, we have fixed the coefficient of determination (R2) as a
constant throughout all the designs. Initial simulations (not shown)
indicated that low R2 affects all methods in a similar manner and that the
MANOVA is highly dominated by R2. Keeping the value of R2 fixed has
allowed us to analyze other factors properly.

Two clear comments can be made about the effect of correlation of
response on the prediction methods. The highly correlated response has
shown the highest prediction error in general and the effect is most
distinct in envelope methods. Since the envelope methods identify the
relevant space as the span of relevant eigenvectors, the methods are able
to obtain the minimum average prediction error by using a lesser number
of components for all levels of eta.

To our knowledge, the effect of correlation in the response on PCR
and PLS methods has been explored only to a limited extent. In this
regards, it is interesting to see that these methods have applied a large
number of components and returned a larger prediction error than en-
velope methods in the case of highly correlated responses. To fully un-
derstand the effect of eta, it is necessary to study the estimation
performance of these methods with different numbers of components.

In addition, since using principal components or actual variables as
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predictors in envelope methods has shown similar results, we have used
principal components that have explained 97.5% of the variation, as
mentioned previously, in the cases of envelope methods for the designs
where p > n. Using 97.5% is slightly arbitrary here, but for the chosen
simulation designs this proportion captured a fair amount of variations in
predictor variables and also reduce the dimension significantly while
enabling us to use envelope methods in all settings. The analyst should
choose this number to balance the explained amount of variation to the
number of components which is practical for model fitting using the
envelope model. The methodology used to adapt envelopes to settings in
which p > n is, in fact, the same as that used by PLS: reduce by principal
components, run the method, and then back transform to the original
scale. The minor relative impact of p shown in Fig. 7 suggests that this
adaptation method is useful.

The results from this study will help researchers to understand these
methods for their performance in various linear model data and
encourage them to use newly developed methods such as the envelopes.
Since this study has focused entirely on prediction performance, further
analysis of the estimative properties of these methods is required. A study
of estimation error and the performance of methods on the non-optimal
number of components can give a deeper understanding of these
methods.

A shiny application [3] is available at http://therimalaya.shin
yapps.io/Comparison where all the results related to this study can be
visualized. In addition, a GitHub repository at https://github.com/ther
imalaya/03-prediction-comparison can be used to reproduce this study.
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