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Ås, February 28th 2019

iii



iv



Abstract

Purpose
The delineation of tumours and malignant lymph nodes in medical images is an
essential part of radiotherapy. However, it is both time-consuming and prone to
inter-observer variability. Automating this process is therefore beneficial as it will
reduce the time effort of radiotherapy planning and the inter-observer variability.
One method of automating delineation is by using neural networks. Deep learning
experiments, however, requre tuning of a vast amount of parameters. Thus, a
systematic methodology for conducting such experiments is vital to ensure repro-
ducibility. This thesis will introduce the theory of deep learning and present the
SciNets library, a framework for rapid model prototyping with guaranteed repro-
ducibility. This framework was used to develop a model for automatic delineation
of gross tumour volume and malignant lymph nodes in the head and neck region.

Methods
The SciNets library (available at https://github.com/yngvem/scinets/)is a Py-
thon library that creates and trains deep learning models parametrised by a series
of JSON files containing model hyperparameters. Furthermore, an extensive visu-
alisation suite is included to inspect the training process. This library was used
to assess the applicability of neural networks for automatic tumour delineation.
The dataset consisted of medical scans taken of 197 patients who recieved treat-
ment at the Oslo University Hospital, The Radium Hospital. 18F-FDG-PET co-
registered to contrast-enhanced CT scans (i.e. contrast-enhanced PET/CT scans)
were available for all patients. The image dataset was split into a training set (142
patients), a validation set (15 patients) and a test set (40 patients), stratified by
tumour stage. A vast parameter sweep was performed on this dataset.

All tested models were based on the U-Net architecture. Both the Cross En-
tropy and dice loss were tested, as well as the novel F2 and F4 loss introduced
herein. Channel dropping and Hounsfield windowing were used for preprocessing,
with varying window centres and widths. Both Adam and SGDR+momentum

v

https://github.com/yngvem/scinets/


vi

were tested to optimise the loss. Furthermore, Improved ResNet layer types were
tested against standard convolutional layers. Models were compared based on the
average dice per image slice in the validation set. Only the highest performing
models utilising only CT information, only PET information and both PET and
CT information were used to delineate the test set. The sensitivity (sens), spe-
cificity (spec), positive predictive value (PPV) and dice score were computed for
these models. Additional analysis was performed on the highest performing model
utilising only CT information and the highest performing model utilising both PET
and CT information. Ground truth and predicted delineations were visualised for
a subset of the patients in the validation and test set for these models.

Results
The parameter sweep consisted of over 150 different parameter combinations and
showed that using the newly introduced F2 and F4 loss provided a notable in-
crease in performance compared to the Cross Entropy and dice loss. Furthermore,
Hounsfield windowing yielded a systematic increase in performance; however, the
choice of window centre and width did not yield any noticeable difference. There
was no difference between the Adam optimiser and SGDR+momentum optimiser
on either performance or training time. However, using a too low learning rate
with the Adam optimiser resulted in poor performance on out of sample data (i.e.
validation set). Models utilising ResNet layers experienced exploding gradients
on the skip connections and did not converge. The highest performing PET/CT
model (Dice: 0.66, Sens: 0.79, Spec: 0.99, PPV: 0.62) achieved higher overall
performance compared to PET-only models (Dice: 0.64, Sens: 0.69, Spec: 0.99,
PPV: 0.64) or CT-only models (Dice: 0.56, Sens: 0.58, Spec: 0.99, PPV: 0.62).

Conclusions
We have demonstrated that deep learning is a promising avenue for automatic
delineation of regions of interest in medical images. The SciNets library was used to
conduct a systematic and reproducible parameter sweep for automatic delineation
of tumours and malignant lymph nodes in patients with head and neck cancer.
This parameter sweep yielded a recommended set of hyperparameters for similar
experiments as well as recommendations for further exploration.

The dice performance of both the PET/CT and CT-only model is similar to that
expected between two radiologists. We can, however, not conclude that the auto-
matically generated segmentation maps are of similar quality as to those generated
by radiologists. The dice coefficient does not discern the severity of mistakes, only
the percentage of overlap between the predicted delineation maps and the ground
truth. Oncologists should, therefore, be consulted when assessing the quality of
delineation masks in future experiments.
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Chapter 1

Introduction

1.1 Motivation

Over nine million people died of cancer in 2018 [1]. It is, therefore, integral to
find effective and efficient treatments. Currently, more than half of the world’s
population lacks access to essential health care [2] and more than 85 countries
reported having less than one doctor per 1000 inhabitants [3]. Meanwhile, the
high costs associated to the currently available cancer treatment options make it
inaccessible to a large proportion of those affected by it. Thus, reducing the time
and cost of cancer treatment is essential to ensure that those suffering from cancer
get treatment.

One conventional treatment for patients with cancer is radiotherapy [4]. In radio-
therapy, the doctors use a linear accelerator that irradiates the cancer cells with
X-Rays, with the aim of killing them in the process. Unfortunately, this irradiation
also kills healthy tissue. Therefore, health professionals spend a large amount of
time planning exactly where and how to irradiate the patients, in order to min-
imise the radiation dose given to healthy tissue and maximising the dose given to
the tumour.

This precisely targeted irradiation requires a good understanding of the location
of the tumour. Radiologists use medical imaging techniques, such as X-Ray com-
puterised tomography (CT), positron emission tomography (PET) and magnetic
resonance imaging (MRI), to view the structural information (e.g. tissue density)
or the functional processes (e.g. glucose consumption) of the body [5]. This in-
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2 CHAPTER 1. INTRODUCTION

formation is then used to discover where the tumour is, discern which stage it has
reached, and plan how to irradiate the patient with X-Rays.

The tumour delineation process is, unfortunately, both time-consuming and sub-
jective [6]. Finding methods to automate this process would therefore be highly
beneficial, as it would reduce the time, cost and subjectivity of radiotherapy. How-
ever, tumour delineation is not a simple process as there is not necessarily a sharp
boundary between healthy and cancerous tissue. Automating this process is there-
fore a challenge.

Tumour delineation can be viewed as a computer vision problem. Specifically, we
can view it as an image segmentation problem. Using this perspective is beneficial,
as the field of computer vision has moved forward rapidly since the popularisation
of convolutional neural networks1 in 2012/2013.

1.1.1 A brief introduction to deep learning

The invent of convolutional neural networks is often attributed to LeCun’s seminal
paper in 1989 [7]. There are several reasons why convolutional neural networks
were not popularised until 2013. Amongst them were, undoubtedly, the compu-
tational power and the complicated pipeline necessary to train them. However,
when Alex Krizhevsky, as the only competitor using convolutional neural networks,
won the ImageNet competition in 2012 with a landslide [8], it became impossible
to ignore the value of deep learning in its field, despite its cumbersome training
pipeline. It is for this reason that Alex Krizhevsky is often credited for starting
the “golden age” of deep learning.

During the last decade, deep learning has flourished, shown in Figure 1.1 by the
rapid increase in publications after 2010. In 2010, Glorot and Bengio [9] showed
that carefully initialised random weights could yield similar performance to that
of networks pretrained in an unsupervised fashion. Glorot et al. [10] introduced
the ReLU nonlinearity in 2011, thus removing the problem of vanishing gradients.
In 2015, Ioffe and Szegedy [11] introduced batch normalisation, combatting the
problem of exploding gradients. It has, in other words, become significantly easier
to train these networks over the past decade. The main problems now is system
resources and large datasets.

1Neural networks are a machine learning algorithm initially developed based on ideas from
computational neuroscience. Much of its nomenclature is therefore derived from neuroscience,
even though the neural networks do not resemble the current understanding of neuroscience.
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Figure 1.1: The number of articles matching the keyword “deep learning” on Web of
Science plotted against publication year.
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However, it is not only the theory of deep learning that has shown progress over the
last decade – the engineering side has also progressed immensely [12]–[15]. This
is essential as much compute power is required to train neural networks. Several
tools have therefore been developed to utilise General Purpose Graphics Processing
Unit (GPGPU) programming in this field, hence allowing neural networks to be
trained on graphics cards. Using GPGPU programming is advantageous as graph-
ics processing units (GPUs) are much more efficient at floating point arithmetic
than central processing units (CPUs) [16].

Still, programming for GPUs is not a trivial task, as GPUs use a particular par-
allel processing paradigm called Single Instruction Multiple Threads (SIMT) [16].
Writing efficient programs for a SIMT processor requires, amongst other, extreme
care for memory layout. Testing deep learning hypotheses on a GPU might, there-
fore, seem impossible. Luckily, companies such as Google [12], Facebook [13] and
Microsoft [14] have spent countless resources to make high-level frameworks that
enable deep learning algorithms to utilise GPUs.

However, the aforementioned frameworks have several weaknesses. Although they
make GPU programming for deep learning much more straightforward, one would
be stretched to say that they make it simple. Therefore, Chollet et al. [15] created
Keras, a high-level deep learning framework that makes it easy to prototype using
high-level components.

Unfortunately, Keras also suffers from the second problem that frameworks like
TensorFlow2, PyTorch3 and CNTK4 suffer from, namely that there are many
ways to perform the same experiments, making automatic logging difficult. This
weakness means that performing a vast parameter sweep requires us to put much
thought and effort into how experiments are logged.

1.1.2 Automatic delineation of head and neck cancers

Head and neck cancer (HNC) is an umbrella term for cancers originating in the
mouth, nose, throat, sinuses, larynx (voice box), or salivary glands [17]. However,
patients with this type of tumour often have malignant lymph nodes as well. Hence,
a radiologist must delineate several malignant regions of interest per patient. Also,
the radiologist must delineate specific organs at risk that should recieve a radiation

2Made by Google.
3Made by Facebook.
4Made by Microsoft.
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dose as small as possible.

Several imaging modalities are used when delineating tumours in HNC patients.
Any combination of PET, MRI and CT can be used to detect the tumour. Fur-
thermore, contrast agents can be used to make the tumour more visible in CT and
MRI images [18].

Delineating HNC tumours is both time-consuming and subjective [6], [19]. As such,
much effort has been made to automate this process. However, this area of research
mainly focuses on automatic segmentation from PET images [20]. Furthermore,
these studies often require the radiologist to manually find a small region within
which the tumour or lymph nodes are contained [19], [20].

There are several downsides to this approach. The main downsides come from
the imaging modality used. PET imaging is costly, as it requires the hospital to
produce radioactive molecules [18]. Moreover, PET images contain little high-
frequency information, making accurate estimates of the tumour border difficult.
It is therefore advantageous to combine the PET images with high-frequency in-
formation from either CT images or MRI images [18].

In ‘Automatic delineation of tumor volumes by co-segmentation of combined PET/MR
data’, Leibfarth et al. [21] introduced an algorithm to solve the problem of high-
frequency information not being present in PET images by including MRI inform-
ation (PET/MR). Their algorithm requires the radiologist to draw a square region
of interest around the tumour before their algorithm automatically delineates it.
Furthermore, in ‘Globally Optimal Tumor Segmentation in PET-CT Images: A
Graph-Based Co-segmentation Method’, Han et al. [22] introduced a semiauto-
matic segmentation algorithm for co-registered PET/CT images. The algorithm
requires a radiologist to mark where small parts of malignant tissue and healthy
tissue were in each image slice. Using these “seeds”, the algorithm will automat-
ically label every pixel as either healthy or not healthy.

The algorithms above have two shortcomings. Firstly, they require the radiologist
to find approximately where the tumours are in most image slices (interpolation
can be used to reduce the delineation time). Secondly, they introduce interobserver
variability (i.e. different radiologists might end up with different segmentation
masks). To combat these problems, we will develop an algorithm that takes full
body images as input and returns the segmentation masks as output. Thus, the
interaction between the software and the radiologist is minimised, reducing both
the time spent to delineate tumours and the interobserver variability.

The algorithms developed in this project are based on convolutional neural net-
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works, as these have shown great success in the computer vision literature [23]–
[28]. However, neither the use of deep learning for HNC tumour delineation nor
fully automatic segmentation of HNC tumours using PET/CT are, to the author’s
knowledge, well-tested approaches. In 2009 Yu et al. [29] developed a decision
tree based algorithm that uses local texture features to delineate HNC tumours
automatically. However, this study is limited to ten patients, and their model
testing/validation approach is not adequately documented.

There are, to the author’s knowledge, only two published articles that use deep
learning for automatic delineation of malignant tissue for HNC patients [30], [31].
In both studies, a delineation of the clinical tumour volume (CTV) is generated
from CT images and already delineated gross tumour volumes (GTV). Both art-
icles achieve outstanding performance, with Dice scores5 in the range 0.70-0.85.
However, neither article include a baseline performance by showing the Dice score
between the GTV and CTV. Such a baseline is integral to their performance ana-
lysis as the GTV is entirely contained within the CTV. Additionally, the models
depend on a radiologist spending the time to delineate the GTV. Finally, we note
that [31] uses a simple two-layer stacked autoencoder, whereas [30] use a 3D U-Net
architecture to achieve their results.

Work has, however, been done on automatic segmentation of organs at risk for
HNC patients. Liang et al. [32] achieved exceptional accuracy on segmentation
of organs at risk using a two-step deep learning approach. Firstly, a Faster R-
CNN architecture [33] was used to propose bounding boxes for each organ. The
contents of these boxes were then provided to a Fully Convolutional Network [28]
that generated the final segmentation masks. Their algorithm used only CT images
and achieved an average Dice of 0.69 to 0.94 for all organs.

Furthermore, deep learning approaches have shown state-of-the-art results in tu-
mour delineation problems for other cancer types, such as brain tumours from
MRI images [34] and nodules in lungs [35]. Deep learning is, in other words, a
promising approach for segmenting both organs at risk and tumours.

1.2 Problem statement

This project aims to accomplish three separate, but connected, goals. The first
goal is to introduce the theory of deep learning for image segmentation to the

5A measure of overlap, described on page 56.
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reader. The reader should have a background in ”standard” machine learning
(e.g. having read most of The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Second Edition [36]) and a strong background in linear
algebra as well as a familiarity with multivariate calculus.

The second task is to create a framework for rapid prototyping of image seg-
mentation algorithms using deep learning. It is paramount that reproducibility
is ensured. A standardised method of performing experiments will, therefore, be
developed. This method should be designed, such that automatic logging of ex-
periment parameters and results is possible.

Finally, the developed framework will be tested by performing a vast parameter
sweep for automatic segmentation of tumours and malignant lymph. The input
to these algorithms will be PET/CT images of head and the neck cancers. This
parameter sweep will then reveal the benefit of combining PET with CT images
versus using only one of the imaging modalities.

1.3 Nomenclature and notation

1.3.1 Images

We will describe an image with n spatial dimensions as an n-dimensional image.
Thus, an image with n spatial dimensions and c channels (e.g. c = 2 for PET/CT
images) will be described as an n-dimensional image even though it is an n + 1
dimensional construct.

A m-by-n image with c colour channels, x, will, in this text, be regarded as an
element of Rm×n×c. Similarly, an m-by-n-by-p image with c colour channels, y,
will be regarded an element of Rm×n×p×c. The elements xij ∈ Rc and yijk ∈ Rc

are pixels6 (short for picture element) of the images x and y, respectively.

We will require certain operations on images, specifically, downsampling operators
and convolution operators. Convolution is described in detail in Section 2.1.6.
However, before that, we introduce some notation. Let I ∗ k be the convolution of
an image I with the convolution kernel k. The convolution operator ∗ is bilinear,

6Some texts use the word voxel for elements of 3D images, we will not make that distinction
here.
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thus, we can define the linear operator

Ck[I] = I ∗ k, (1.1)

that is, Ck is the convolution operator with kernel k.

Furthermore, we define the downsampling operator D(n)[I] as the operator that
takes every n-th pixels in each direction. Thus, for two dimensional images, D(2) :
Rm×n → Rbm2 c×bn2 c, where b·c is the floor operator.

1.3.2 Linear analysis

A linear operator is a mapping L : X → Y such that L[ax+by] = aL[x]+bL[y] for
any x,y ∈ X and a, b ∈ R. Linear operators that map Rm to Rn are represented
by m × n matrices. That is, for any linear mapping L : Rm → Rn, there exists
a matrix A such that L[x] = Ax. All linear operators used in this text will be
mappings between Rm1,...,ms and Rn1,...,ns .

Furthermore, we must define the adjoint, or dual, of a linear operator. However,
to define the adjoint, we must first define the dot product. Let x,y ∈ Rm1,...,ms ,
the dot product, x · y is then defined as:

x · y =
∑
i

...
∑
p

xi...pyi...p. (1.2)

Using this, we can define the adjoint of a linear operator L : Rm1,...,ms → Rn1,...,ns .
The adjoint of this operator, L∗ : Rn1,...,ns → Rm1,...,ms , is the operator with the
property that

L[x] · y = x · L∗[y], (1.3)

for all x ∈ Rm1,...,ms and y ∈ Rn1,...,ns . Notice that the linear operator maps from
Rm1,...,ms to Rn1,...,ns , whereas the adjoint operator maps from Rn1,...,ns to Rm1,...,ms .
The adjoint operator of a linear operator L[x] = Ax is given by L ∗ [y] = ATy.
Thus, the adjoint operator is the generalisation of a matrix transpose.

Finally, we let || · ||2 : Rm1,...,ms → R+, where R+ is the nonnegative real numbers,
be the Frobenius norm of Rm1,...,ms , that is,

||x||2 =
√
x · x =

√∑
i

...
∑
p

x2i...p. (1.4)



Chapter 2

Deep learning

2.1 Introduction to deep neural networks

2.1.1 The main components of deep learning

There are three necessary components of any deep learning system, or any super-
vised machine learning system for that matter. First, we need a goal; something to
learn. This is represented by an unknown function, f ?, which, in image segment-
ation, maps images to their ideal segmentation masks. Now, machine learning
would generally not be necessary if we have direct access to this function. There-
fore, we are interested in problems where we have many input-output pairs of
the function f ?. Thus, we have access to training data T = {(xi,yi)}ni=1, where
yi = f ?(xi), and we want to recover the function f ?. For segmentation problems,
xi is an image and yi is the corresponding segmentation mask.

Note that it would be impossible to find the correct function f ? if we were to
search among all possible functions, for this reason, we restrict the possible func-
tions that we consider. The second component of a supervised machine learning
system is, therefore, the class of functions H through which we search for a good
approximator of f ?. In deep learning, the class of functions we consider is often
called the architecture. The neural network1 approach is to specify H as a cascade

1Neural networks got their name because their structure is loosely inspired by structures in
the mammalian brain [37]. We will, however, not introduce those similarities in this text, as it
is not important for understanding how neural network based algorithms work.

9
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of composed functions,

H = {f : X0 → Xn|f(x;W) = f̆n(. . . (f̆2(f̆1(x;W1);W2)) . . . ;Wn),Wi ∈ Rki}
(2.1)

where X0 is the input space of our function (e.g. the space of all PET/CT images)
and Xn is the output space of our function (e.g. the space of all segmentation
masks). The f̆i functions are pre-specified, Wi is the collection of the parameters,
or weights, of f̆i andW is the union of all such weights [37]. Thus, the second com-
ponent of a deep learning system is the set of functions we consider to approximate
f ?.

Finally, we need a way of measuring how well a proposed function f̃ approximates
the true function f ?. This is not possible, because we (as mentioned earlier) do
not have access to f ?. Therefore, we instead measure how well f̃ explains the
relationship between the input data and output data. This is done through a loss
(or cost) function, often denoted J [37] or L [36], [38]. Loss functions work by
measuring how severe the mispredictions of our proposed function f̃ are. As a
consequence of this, loss functions have the form

J [f̃ ; T ] =
∑
i

j(ŷi,yi), (2.2)

where ŷi = f̃(xi) and T = {(xi,yi)}ni=1 is our training data. The interpretation
of this equation is that j(f̃(xi),yi) represents the cost we associate with f̃(xi)
being equal to ŷi instead of yi. The minimum of j is therefore obtained whenever
ŷi = yi. Thus, the goal of machine learning is to find the function f̃ that minimise
the loss function J [f̃ ; T ].

2.1.2 The terminology of deep learning.

Recall, that a neural network, f , is a function consisting of a cascade of composed
functions;

f(x;W) = f̆n(f̆n−1(. . . (f̆1(x;W1));Wn−1);Wn). (2.3)

We name each of the ”subfunctions”, f̆i : Xi−1 → Xi, layers ; f̆1 is the first layer,
f̆2 is the second layer and so on. Furthermore, we say that the network above has
n layers and that the layer f̆i : Xi−1 → Xi has dim(Xi) neurons. Next, we define
the output of layer i as the function

fi(x;∪ij=1Wj) = f̆i(f̆i−1(...(f̆1(x;W1);Wi−1);Wi). (2.4)
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This means that the i-th and l-th layer might be the equal, but their outputs might
not be equal (because f̆k = f̆l but fk 6= fl).

The layers, f̆i, are generally functions of the form

f̆(x;Wi) = φi(Li(x;Wi)), (2.5)

where L is a linear mapping from Xi−i to Xi and φi is a non-linear function that is
applied element-wise on L(x;Wi). The φi functions are generally called activation
functions or non-linearities, and choosing the correct nonlinearity for the layers
are an integral part to get good network performance [10]. In summary, a layer
in a neural network, f̆(x), usually consists of a linear mapping Li[x] and a one
dimensional function, φi(x) that is applied to all elements of the output of Li[x].

Finally, we discuss two different methods of designing neural networks – wide
networks and deep networks. A wide network is a network with few layers and
many neurons in each layer. The appealing property of such networks is that they
can, if they are wide enough, approximate any function [38]. On the other hand,
they are prone to overfit, or find a function that works well on the training data,
but not new data points [37]. A deep network, on the other hand, is a network
with many layers, but fewer neurons per layer than a wide network. This is the
type of network most commonly used in computer vision today [8], [25], [39].

There are several beneficial property of deep networks. First and foremost, they
are more interpretable. This is because the output of the first layer is generally low-
level feature detectors, such as edge, corner and simple texture detectors. These
low-level features are then combined to create more advanced feature detectors,
such as eye or fur detectors in animal images, which might be the output of some
intermediate layer. Then the final layer combines these again to, for example,
create a dog detector [40]. The output of a deep network can, as we previously
discussed, be approximated by a wide network. It has, however, been showed that
the number of neurons needed for a wide network to approximate deep networks
grow exponentially with respect to network depth (under reasonable assumptions)
[41]. Summarising, we see that deep networks are more easily interpretable than
wide networks and require fewer parameters than wide networks to approximate
the same functions.

2.1.3 Loss functions

Loss functions are an integral part of deep learning, and the chosen loss function
can have severe effects on model quality [42], [43]. We will here introduce two
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popular loss functions used in machine learning. Loss functions aimed specifically
at segmentation problems will be described in Section 2.3.2

The most well known loss function is probably the squared error loss function
which is commonly used in regression problems [36], [38]. The definition of this
loss is

J [f̃ ; T ] =
∑
i

(f̃(xi)− yi)2. (2.6)

There are several reasons for the popularity of the squared error loss function.
Firstly, it is shown to be the optimal loss function if our samples from f ? are
influenced by normally distributed noise with constant variance [38]. Secondly,
it has several nice mathematical properties (such as smoothness and convexity)
which makes it easier to minimise than other loss functions. To illustrate this, we
show an example from linear regression.

Example 2.1.1 (Least squared loss for linear regression).
Let T = {(xi, yi)}ni=1 be our training set and letH be the set of linear functions,

H = {f : R→ R|f(x) = ax+ b}. (2.7)

Furthermore, we define the loss function

J [f̃ ; T ] =
1

2n

n∑
i=1

(f̃(xi)− yi)2. (2.8)

The goal now is to find the function f̃ ∈ H that minimises this loss. In other
words, we want to solve the equation

arg min
f̃∈H

J [f̃ ; T ] = arg min
f̃∈H

1

2n

n∑
i=1

(f̃(xi)− yi)2. (2.9)

Observe that any function f̃ ∈ H is parametrised by two real numbers, a and
b. Using this, we can rewrite Equation (2.8),

J [f̃ ; T ] =
1

2n

n∑
i=1

(axi + b− yi)2 = J(a, b; T ). (2.10)
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Now, Equation (2.9) can be rewritten to be on the form

arg min
f̃∈H

J [f ; T ] = arg min
(a,b)∈R2

J(a, b; T ) = arg min
(a,b)∈R2

1

2n

n∑
i=1

(axi + b− yi)2,

(2.11)
which is a smooth and convex optimisation problem. This problem is therefore
equivalent to solving the equations

∂J

∂a
= 0 (2.12)

∂J

∂b
= 0. (2.13)

We compute the gradients and get

∂J

∂a
=

1

n

n∑
i=1

(axi + b− yi)xi = 0 (2.14)

∂J

∂b
=

1

n

n∑
i=1

(axi + b− yi) = 0, (2.15)

which is a set of two linear equations and can therefore easily be solved ana-
lytically.

The above example illustrates that the minimum of the squared error loss function
is simple to find. The example is, however, somewhat misleading as we only con-
sidered linear functions, which was an essential part of rephrasing the optimisation
problem from a difficult one (over functions) to a simple one (a two dimensional
convex problem). When we deal with deep learning problems we have thousands
(if not millions) of parameters, which gives us a system of equations that is in-
tractable to solve. This problem is aggravated by the fact that neural networks
are non-convex and as a consequence, there might exist local minima and saddle
points [37].

Another popular loss function is the cross entropy loss [38], which is often used
in classification tasks [8], [39], [44] and segmentation tasks [24], [25]. The cross
entropy loss measures the ”similarity” of probability distributions [38] (for a thor-
ough introduction to how this similarity is measured, see the book Information
Theory, Inference & Learning Algorithms by MacKay [45]).

A consequence of the cross entropy measuring the similarity of probability distri-
butions, is that any output vector ŷi = f̃(xi) must either sum to one or be a single
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number between zero and one. The former is the case if there are more than two
classes, and ŷi,j specifies the probability of xi being of class j. The latter is the
case if there are only two classes, then ŷi specifies the probability of one of the
classes and 1− ŷi specifies the probability of the other class.

Another requirement when using the cross entropy is that we have a probability
distribution to approximate. We set that to be the probability distribution of the
classes. This is done by noting that if data point i is of class j, then the probability
yi,j = 1 and zero otherwise. Using this, we get the following expression for the
cross entropy [37]

J [f̃ ; T ] = − 1

n

n∑
i=1

n∑
j=1

yi,jlog(f̃(xi)). (2.16)

Equivalently, if there are only two classes, then yi is one if the data point number
i is of class one and zero otherwise. If this is the case, the cross entropy has the
following expression [37]

J [f̃ ; T ] = − 1

n

n∑
i=1

yilog(f̃(xi)) + (1− yi)log(1− f̃(xi)). (2.17)

2.1.4 Activation functions

There are three main activation functions that we will consider in this text, sig-
moidal functions [38], softmax functions [38] and the rectified linear unit (ReLU)
nonlinearity [10]. We start by considering the sigmoidal activation function.

Sigmoidal activation function

First, we define the sigmoidal activation function, which is given in Definition 2.1.1.

Definition 2.1.1 (Sigmoidal activation function [38]). The sigmodal activa-
tion function, φsigmoid is given by

φsigmoid(x) =
1

1 + exp(−x)
. (2.18)

A plot of the sigmoidal activation function as well as its derivative can be seen in
Figure 2.1.
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Figure 2.1: The sigmoidal activation function and its derivative.

The main issue with the sigmoidal activation function comes from its derivative.
If the magnitude of the input to a sigmoidal function is sufficiently large, then
the derivative will be close to zero. This is problematic as we use first order
optimisation methods to minimise the loss. Therefore, the update of the network
weights (i.e. parameters) are proportional to the magnitude of partial derivative
of the loss function with respect to the weights. The magnitude of this gradient
is (by the chain rule) proportional to the derivative of the activation. Therefore,
if the derivative of the activation is negligible, then the weight updates will be so
too. This problem is called the vanishing gradients problem [37].

There is, however, one redeeming quality of the sigmoidal activation function.
Namely, that the output is a number between 0 and 1. Thus, it can be regarded
as a probability and is often used as the activation function in the final layer of
the networks used in binary classification problems.
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Softmax activation function

Secondly, we define the softmax activation function, which is given in Defini-
tion 2.1.2.

Definition 2.1.2 (Softmax activation function [38]). The softmax activation
function, φsoftmax is given by

φsoftmax(x)i =
exp(xi)∑
j exp(xj)

. (2.19)

There is, as apparent above, a significant difference between the softmax function
and other activation functions. Normally, activation functions take scalars as
input, but the softmax function takes vectors as input. The reason for this is that
the output vector of a softmax function sums to one. It can in other words be
regarded as a probability mass function. As an effect of this interpretation, we
see that it is the ideal activation function to use on the final layer in multi-class
classification problems.

Rectified Linear Units

Finally, we define the Rectified Linear Unit (ReLU) activation function, which is
defined in Definition 2.1.3.

Definition 2.1.3 (ReLU Activation function [10]). The ReLU (φReLU : R →
R) is given by

φReLU(x) = max(0, x). (2.20)

There are several reasons for why this function sees much use. Firstly, it solves
the problem of vanishing gradients; the derivative of φReLU is zero for negative
inputs and one for positive inputs. An illustration of this is given in Figure 2.2.
As a consequence, it yields larger update steps and more efficient convergence. In
addition, it has the benefit of being efficient to compute; it does not invovle any
exponentials. For these reasons ReLU has become the nonlinearity most frequently
used today [8], [39], [46], [47].

There are a plethora of other nonlinearities based on ReLUs that sometimes yields
better resulsts. Examples of such nonlinearities are the ELU[48], SELU[49], max-
out[50], CReLU[51] and many others. We will not introduce those as the increased
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Figure 2.2: The ReLU activation function and its derivative.

performance is often outweighed by the fast computation time of ReLUs. It would
also be infeasible to test more nonlinearities within the scope of this project.

2.1.5 Fully connected layers

Definition 2.1.4 (Fully connected layer). Let f̆fc : Rm → Rn be a function
on the form

f̆fc(x) = φ(Ax), (2.21)

with A being a (n×m)-matrix and φ an activation function. f̆fc is then a fully
connected layer.

One kind of layer that has seen much use are fully connected layers. In fully
connected layers, the linear mapping Li is a dense matrix. Thus, all possible linear
mappings from the input-space to the output-space of the layer is learnable. At
first glance, this might seem like a good idea, however, it has two main downsides;
both based on the flexibility of the layer.

Notice how a single fully connected layer has (n×m) parameters, which results in
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an immense amount of parameters for most layers. To illustrate this, consider a
layer that takes as an input a 256-by-256 grayscale image and returns a 128-by-128
grayscale image. The total number of parameters for a single layer of this form
is 1 073 741 824 and will require four gigabytes of RAM to store (using single
precision floating point numbers). This high number of parameters is not only
a concern for memory reasons, but it also leads to a high degree of overfitting.
Training networks with fully connected layers for image processing is, therefore,
not feasible.

The second problem with fully connected layers are a problem that is specific to
image processing. For images to be used with fully connected layers, they need
to be made into a vector. This is done by simply assigning each element in the
vector to the value of a single pixel. As a result of this, the resulting vector, will
change drastically by simply translating the contents of the image. This drastic
change in the input will then create a drastic change in the output of the layer.
This behaviour is unwanted, and a way to combat it is to use convolutional layers
instead.

2.1.6 A brief interlude on convolutions

Before defining convolutional layers, we introduce definition of a discrete convolu-
tion.

Definition 2.1.5. Let A and B be rank N tensors with shape (m1,m2, ...,mN)
and (n1, n2, ..., nN) respectively. We define the convolution of A and B as

[A ∗B]i1,...,iN =

n1∑
j1=1

...

nN∑
jN=1

Ai1−j1,...,iN−jNBj1,...,jN . (2.22)

Furthermore, we name B the convolution kernel, or simply, the kernel.

Generally, all the length of a convolution kernel is the same - e.g. 3 × 3 or
5× 5. We will therefore say that a kernel has size k if it is of size k × . . .× k.

There is one problem with the definition above; namely how to deal with the
boundary. From the definition, we notice difficulties if ik is too small as this will
require terms with negative indices. Two separate steps are done to alleviate this
problem.

Firstly, we require that each index of the convolution kernel has odd size (i.e. nk is
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odd). This ensures that nk±1
2

is a natural number. Following this, we can re-index
the kernel. Let nk be the length of the convolution kernel’s (B) i-th dimension.
The re-indexed convolution kernel, B̃, is then defined as follows.

B̃i1,...,iN = B
i1+

n1+1
2

,...,iN+
n1+1

2
,...,iN

, (2.23)

where ik ranges from −nk−1
2

to nk−1
2

. Thus, Equation (2.22) becomes

[A ∗B]i1,...,iN =

nN−1

2∑
j1=−

nN−1

2

...

nN−1

2∑
jN=−nN−1

2

Ai1−j1,...,iN−jN B̃j1,...,jN . (2.24)

If we do this re-indexing the boundary trouble arises both if ik is too small and if
it is too large. More specifically, it arises if nk−1

2
> ik or if ik > mk − nk−1

2
.

The second step to alleviate the boundary problem can be performed in two ways.
One way is to only compute the values of A ∗ B which are valid, shrinking each
dimension of the output tensor by nk − 1. Figure 2.3 shows how this is done with
1D convolutions.

Alternatively, we can ”pad” the tensor A, expanding it in all directions by ”cre-
ating” new tensor elements (with indices below 1 or above mk) that are equal to
zero. By doing this, the output of the convolution (A ∗B) can have the same size
as the input(A). An example is given in Figure 2.4.

We will generally use one-dimensional figures to illustrate the convolution con-
cepts as that makes for illustrations that are easier to understand. However an
illustration showing how the output of a two-dimensional convolution is given in
Figure 2.5 as images are often represented as a stack of two-dimensional tensors.

Convolutions of images are an integral part of deep learning for image processing,
and there are certain differences with how image convolutions are performed and
how regular convolutions are performed. The reason for this is that n-dimensional
images are n+ 1 dimensional constructs, where (n+ 1)-th dimension represent the
image channel (e.g. the red, green and blue channels of an RGB image). This
dimension is ”ignored” when performing a convolution. If there are c different col-
our channels, then a convolution of an n dimensional image consists of performing
c n-dimensional convolutions, one for each channel, and adding the result.

As an effect of how image convolutions are performed, the output has only one
channel. To combat this, k different convolutions are often performed, one for
each output channel. The convolution kernel for images are therefore an n + 2
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Figure 2.3: Illustration of 1D convolution with no padding. The bottom row of numbers
contain the input vector, A, with A1 being the leftmost element, the convolution kernel,
B, is the vector (1, 2,−1) and the top row is the output of the convolution. (a) shows
the computation of the first element of A ∗B, (b) shows the computation of the second
element of A ∗B, (c) shows the computation of the last element of A ∗B and (d) shows
the input and output vectors of the convolution. Notice that the size of output vector
has shrunk with k − 1, where k is the kernel size.
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Figure 2.4: Illustration of 1D convolution with padding. The bottom row of numbers
contain the input, A, vector with A1 being the leftmost element, the convolution kernel,
B, is the vector (1, 2,−1) and the top row is the output of the convolution. (a) shows
the computation of the first element of A ∗B, (b) shows the computation of the second
element of A ∗B, (c) shows the computation of the last element of A ∗B and (d) shows
the input and output vectors of the convolution. Notice that the output is the same size
as the input, as opposed to convolutions without padding where they shrink by k − 1,
where k is the kernel size.
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Figure 2.5: Illustration of 2D convolution. The kernel is displayed in the 3× 3 square
in the middle, and the value of the selected output pixel is computed as follows; −1 ×
1 + (−2)× 2 + (−1)× 9 + 0× 0 + 0× 3 + 0× 1 + 1× 2 + 2× 8 + 1× 5 = 9. A grayscale
image can be represented as a two-dimensional tensor, and the above convolution can
be regarded as an edge detector image represented this way [52].
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dimensional construct, as c different n-dimensional convolutions are performed to
create each of the k output channels.

The way image convolutions are performed means that it makes sense to perform
a convolution with a kernel of size 1. This would, for regular convolutions, be equi-
valent to multiplying the convoluted tensor with a scalar. However, for images it
is equivalent by multiplying each pixel with a matrix along the channel dimen-
sion. This can be used as a ”channel mixing” operator to decrease or increase the
number of channels in an image wilst the spatial information is unchanged.

2.1.7 Convolutional layers

Definition 2.1.6 (Convolutional layers). Let f̆conv : Xi → Xi+1 be a function
on the form

f̆conv(x)p = φ(kp ∗ x), (2.25)

where kp is a tensor of the same order of x, φ an activation function and A∗B
is the convolution of A and B. f̆conv is then a convolutional layer.

The output from convolutional layers can be regarded as image feature extractors
[8], [40]. Early layers represent low-level feature detectors such as edge and corner
detectors. Later layers, on the other hand, represent high-level feature detectors
such as snout and eye detectors (for natural image classification) [40]. This makes
sense, as the input to the later layers is the output of the earlier layers. Thus,
convolutional networks use presence and absence of low-level features to detect
higher-level features.

One effect of using convolutions as linear transformations is that the layers become
spatially invariant - if an image is shifted one pixel to the right, then the output
of the convolutional layers are so too. This is a big contrast to the fully connected
layers, where translation invariance can be difficult to learn.

An important question to regarding convolutional layers is what the kernel size
should be. It is often set to be 3, after the VGG2 architecture [46]. In ‘Very
Deep Convolutional Networks for Large-Scale Image Recognition’, Simonyan and
Zisserman showed that they could get excellent performance by using many 3× 3
convolutional layers.

2VGG is short for the Visual Geometry Group in Oxford, the research group that discovered
it.
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This choice of kernel size might at first glance seem strange, as it limits the spatial
size of the features the layers can detect. To show that this is not the case we first
have to define the receptive field.

Definition 2.1.7 (Receptive field of a convolutional layer). Let f̆1, f̆2, . . . , f̆l be
convolutional layers with kernel sizes k1, k2, . . . , kl respectively. The receptive
field of fl, the output of the l-th layer, is the region on the input image that
affect one output pixel from the l-th layer.

From the above definition, we see that the receptive field of the first layer is k1.
Furthermore, we see that the receptive field of the l-th layer is given by

rl = 1 +
∑
i=1l

(ki − 1), (2.26)

where rl is the size of the receptive field for the l-th layer and ki is the kernel size
of the k-th layer.

Using the newly defined concept of receptive field, we can get an understanding
of why using layers with a kernel size of 3 might be a good idea. Firstly, we
notice that there are fewer parameters when using two convolutions of size three
than when using one of size five (even though they have the same receptive field).
This means that we can train deeper network without reducing the receptive field.
These deeper networks will be ”more” nonlinear than in shallow networks, which
means that more complex models can be trained [41].

Another reason for why the VGG architecture performed so well is hypothesised
to revolve around effective receptive fields [53]. In ‘Understanding the effective
receptive field in deep convolutional neural networks’, Luo et al. demonstrate that,
altough the theoretical receptive field might be large, the effective receptive field is
not. The influence of pixels near the border of the receptive field is small compared
to the centre pixels. For this reason, we say that the effective receptive field is
smaller than the theoretical, as the border pixels barely affect the output of a
layer.

Using this understanding, we can get some insight as to why stacking several
convolutional layers with small kernels gives good results. When we use large
kernels, we impose a ”hard cutoff” where all pixels outside a box do not affect
whether it activates or not, whereas all within have the same amount of influence.
Both using a hard cutoff and a box seems arbitrary, and does therefore not make
sense intuitively. These problems are overcome when stacking several convolutional
layers with small kernels. The influence of pixels gradually decrease as the distance
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Figure 2.6: Demonstration of how the effective receptive field is different from the
theoretic receptive field. The left figure shows the relative influence of each pixel on the
output of a composition of seven convolutions, each of size 3. The right figure shows
the relative influence of each pixel on the output for a single convolution of size 15. The
white line in the colour bar shows the influence of each pixel on the output of a single
convolution of size 15.

from the kernel centre increases, and the shape of this effective perceptual field is
more circular as can be seen from Figure 2.6.

It is necessary for the learned feature detectors to have a large receptive field. This
is because we want to be able to recognise features that span most, if not all, of the
image. As a consequence, we find one problem with using convolutions of size 3.
Namely that the receptive field grows slowly. If we want a receptive field of more
than 100 pixels, we need 50 layers, which leads to a high number of parameters to
estimate. From this, we see that it is necessary to find methods of increasing the
receptive field whilst not increasing the number of parameters significantly.

The most popular method of increasing the receptive field of a network is to use
downsampling operations [8], [39], [46], [47] and one popular way of doing this is
through strided convolutions [54]. Strided convolutions work by only computing
every s-th output of a convolution, skipping the intermediate values. Figure 2.7
shows how stride work for one dimensional convolutions. The same concept can
easily be generalised in several dimensions, skipping si values in the i-th dimension.
Mathematically, this changes the way the convolution is computed as follows

[A ∗B]i1,...,iN =

n1−1
2s1∑

j1=−n1−1
2s1

...

nN−1

2sN∑
jN=−nN−1

2sN

As1i1−s1j1,...,sN iN−sN jN B̃j1,...,jN , (2.27)
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Figure 2.7: Illustration of 1D strided convolution. The bottom row of numbers contain
the input vector with A1 being the leftmost element, the stride is 2, the convolution kernel
is the vector (−1, 2, 1) and the top row is the output of the strided convolution.

where once again, B is the convolution kernel and A is the tensor we convolve
with B. The stride of the i-th dimension is si, however, it is usually constant so
si = sj for all i and j. The effect of strided convolutions (and other downsampling
operators) is essentially to multiply the receptive field by s, the stride. As a result,
such operators are popular to use in neural networks [8], [23], [39], [46].

There is, however, one effect of downsampling operations (also known as pooling
operations), that may be unwanted. Namely that high frequency information is
discarded [23]. It is of interest to find methods that increase the receptive field
without discarding any information. One proposed way of doing this is through
dilated or atrous3 convolutions [56].

Dilated convolutions work in a similar fashion as strided convolutions, but instead

3Atrous comes from ”algorithme à trous”, or ”hole argorithm” in English. Atrous convolutions
were first proposed to compute fast wavelet transforms [55].
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Figure 2.8: Illustration of a dilated convolution kernel. The left kernel is a normal 2D
convolution kernel of size three, and the right is the equivalent kernel with a dilation
rate, d, of two.

of skipping convolution computations, the filter size is increased without increasing
the number of parameters. This is done by modifying the convolution definition
as follows

[A ∗B]i1,...,iN =

n1−1
2∑

j1=−n1−1
2s1

...

nN−1

2∑
jN=−nN−1

2

Ai1−d1j1,...,iN−dN jN B̃j1,...,jN , (2.28)

where B is the convolution kernel and A is the tensor we convolve with B. The
dilation rate of the i-th dimension is di (which is usually the same for all dimen-
sions). This is equivalent with increasing the size of the convolution kernel, filling
the new values with zero, as demonstrated in Figure 2.8.

Notice how the definition of dilated convolutions and strided convolutions are very
similar. Performing a strided convolution followed by a “standard” convolution
is, in fact, equivalent to performing a normal convolution followed by a strided
convolution. This is illustrated in Figure 2.9. Hence, we can increase the receptive
field using dilated convolution in a similar fashion to how striding does, but without
discarding information the same way. If layer number l has stride s, then the same
effect on the receptive field can be attained by multiplying the dilation rate of all
subsequent layers by s.

Finally, we note that fully connected layers can be implemented using convolutional
layers. This is done by using a kernel that is of the same size as the image and no
padding. The output of such a kernel will be an image of size one in all dimensions
except for the channel dimension. The image is, in other words, equivalent to a
vector. Thus, it has lately been popular to create fully convolutional networks
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Figure 2.9: In (a), we see the output of a strided convolution followed by a regular
convolution. In (b), we see how the output of the operation demonstrated in (a) is a
subset of the output of a normal convolution followed by a dilated convolution.

for classification, as such layers do not bound the input size of an image to the
network [54].

2.1.8 Downsampling operations

We have already noted that downsampling operations, or pooling operations, are
useful in convolutional networks. The strided convolution method described above
is often used since it is easy to implement. There are, however, other methods that
can be more efficient.

All pooling operators work similarly. Namely by having an n-by-n (for 2D) ”win-
dow” that ”slides” over the image similarly to how a convolution kernel with size
n and stride n slides over the image. The difference is that the output of a pooling
operator is not necessarily a weighted sum of the input as it is in strided convolu-
tions. See Figure 2.10 for an illustration in 1D and Figure 2.11 for an illustration
in 2D.

One of the, if not the, most used pooling operation is called max pooling. Max pool-
ing works by computing the maximum pixel-value in the sliding window. This is
the pooling operation used in Figure 2.10 and Figure 2.11. A natural interpretation
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Figure 2.10: An illustration of a one-dimensional pooling operator. In this case, a
max-pooling operator, where the output of each location is the maximum value in the
input image. (a)-(c) shows the computation of the output of the max pooling operator,
whereas (d) shows the input-output pair from the max-pooling operator.
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(a)
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(c)

Figure 2.11: An illustration of a two-dimensional pooling operator. In this case, a
max-pooling operator, where the output of each location is the maximum value in the
input image. (a) and (b) shows the computation of the first and second pixel, where
the left image is the input and the right is the output. (c) shows the completed pooling
output.
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of this pooling operation arises if we consider the feature-extractor interpretation
of layers in neural networks. Each pixel value indicate the likelihood of a specific
feature being present at the corresponding location in the image. Max pooling will
then (roughly) return the likelihood of a specific feature being present in any of
the pixels in the pooling window.

There exists a plethora of other pooling operations [37]. Those will, however, not
be introduced here, as max pooling and strides are most often used in practice
[23], [39], [46]. Max pooling often yield better results than strides [39], [46], [54],
however, strided convolutions are often used instead as a result of their simplicity.

2.1.9 Upsampling operations

If we want to perform image segmentation or compression, then simply using down-
sampling operations are not sufficient. This is because the output of the network
should have the same size as the input. One way of accomplishing this is to re-
place all pooling operations with dilated convolutions as described in Section 2.1.7
[25]–[27], [56]. This leads to a significant memory footprint and is therefore not
always an option. As a solution to this memory problem, we might perform down-
sampling operations first, followed by upsampling operations later, yielding a smal-
ler memory footprint on the layers between a downsampling and upsampling layer.

The most commonly used upsampling operation is the dual operation of strided
convolutions and has many names. We will, in this text, use the name upconvo-
lution (or upconv) [23], but it is often (misleadingly) refered as a deconvolution
[57]. Other authors use transposed strided convolutions [58] or fractionally strided
convolutions [58]. We will introduce two ways to think about the upconvolution
operator. Firstly, it can be seen as the gradient of a strided convolution operator.
Alternatively, it can be understood from a linear analysis viewpoint; any linear
map L : X → Y has an adjoint operation L∗ : Y → X (for matrices, this is the
transpose). Thus, if X is larger than Y , we have an upsampling operation. An
illustration of how this upsampling operation works is given in Figure 2.12

Using upconvolutions for upsampling might, at first glance, seem like a logical
choice. However, once we study what this operation does, we see that it is not
necessarily the optimal choice. When we want to perform an upconvolution with
a rate of two (that is the adjoint of a convolution with stride equal to two), we
double the size of the input tensor in all directions before performing a standard
convolution. This upsampling is done by filling the new tensor values with zeros
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Figure 2.12: (a) Shows how strided convolution can be regarded as a convolution
operator followed by a downsampling operator. We start with the vector [1, 3, 2, 1, 0, 0, 1],
convolve it and downscale to get the vector [5, 2,−1, 2]. (b) Shows how the transpose
of this convolution operator can be regarded as an upsampling operator. Here, we start
with the vector [5, 2,−1, 2], interleave it with zeros and convolve it to get the vector
[10, 3, 4, 3,−2,−3, 4].
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[59], as showed in the following one-dimensional example.

(1, 2, 2, 1)→ (1, 0, 2, 0, 2, 0, 1). (2.29)

It is clear that this might not be the best way to upsample an image.

We will now present an informal proof of why upconvolutions work this way. To do
this, we consider how strided convolutions work. Consider a convolution operator,
C

(2)
k with kernel k and stride 2. That operator can be decomposed the following

way

C
(2)
k [x] = D(2)[Ck[x]], (2.30)

where x is some tensor, Ck is the unstrided convolution operator with kernel k
and D(2) is a downsampling operator which works by taking every second element
of x. The adjoint of this operator can be written in the following fashion

C
(2)∗
k [x] = C∗k [D(2)∗[x]]. (2.31)

This is a basic linear algebra identity ((AB)∗ = B∗A∗). adjoint of the convolution
operator Ck is Ck′ – the convolution operator with kernel k′, which is the mirror
image of k along all axes. Thus, the only question remaining is what the adjoint of
a downsampling operator is. For one-dimensional inputs, a downsampling operator
with downsampling factor two can be expressed by the following matrix:

D(2) =


1 0 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

 , (2.32)

whose adjoint (and therefore transpose) can be described with the following matrix

D(2)T =



1 0 0 . . . 0

0 0 0 . . . 0

0 1 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


. (2.33)

Thus, using the adjoint of a downsampling operator is equivalent to upscaling the
image and setting the new values equal to zero.



34 CHAPTER 2. DEEP LEARNING

It has, as a consequence of how upconvolutions work, been proposed to perform
upsampling through interpolation, resulting in the following operator [59].

Ck′ [I
(2)[x]],

where Ck′ is the adjoint convolution of Ck and I(2) is an interpolation operator
that doubles the size of its input. By doing this, we avoid certain artefacts often
seen in networks using upconvolution, namely checkerboard artefacts [59]. This is
seldom done in practice as sufficient performance can be aquired by upconvolutions
[23], [42]. However, if checkerboard artefacts are present, then linear upsampling
followed by a convolution should be explored [59].

2.1.10 Batch Normalisation

There is one technique that is integral when training neural networks; batch nor-
malisation [11]. The exact reason why batch normalisation works is still not fully
understood [60], [61], but it is a tool seen in almost all modern neural network
architectures [23]–[25], [39], [47].

Ioffe and Szegedy originally proposed batch normalization as a method of com-
batting internal covariate shift [11]. Internal covariate shift is the the name of the
phenomena that the mean and standard deviations from layer outputs change over
training iterations. Ioffe and Szegedy argues that this is a problem since classical
machine learning algorithms perform better if the dataset has zero mean and unit
variance, that is, it is normalised. For this reason this, Ioffe and Szegedy proposed
to normalise the output of each layer before feeding it into the next, subtracting
the batch mean and dividing by the batch standard deviation.

This batch mean and batch standard deviation is only used during training. During
the prediction phase, a true estimate of the dataset mean and standard deviation
is used. As a consequence of this, architectures developed after 2015 are often on
the form

f(x) = f̆n(BN(f̆n−1(BN(...(f̆1(BN(x)))...)), (2.34)

where BN is the batch normalisation function, whose computation is explained in
Algorithm 2.1.

Using batch normalisation makes it significantly easier to train neural networks.
Before they were introduced, advanced pretraining techniques were used [62].
These techniques worked by first training the network to do one task that it can do
unsupervised (e.g. recover the input, instead of generating segmentation masks),
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Algorithm 2.1 Batch normalisation

1: procedure BatchNormalisation(x, mode)
2: if mode == ’train’ then
3: . Compute batch mean and std:
4: µbatch ← mean(x)
5: σbatch ← std(x)

6: . Update prediction mean and std:
7: µprediction ← (1− ε)µprediction + εµbatch
8: σprediction ← (1− ε)σprediction + εσbatch

9: return x−µbatch
σbatch

10: else

11: return
x−µprediction
σprediction

before changing its goal to the task at hand [62]. However, this is no longer nec-
cesary to achieve stable learning because we use batch normalisation [23], [39],
[43].

One problem that batch normalisation solved was the problem of expoding gradi-
ents [11], [49]. The exploding gradients problem in deep neural networks comes
from the derivative magnitudes growing as network depth increases. However, by
introducing batch normalisation, we get scale-invariant layers, and as such, the
exploding gradient problem is alleviated [11].

Furthermore, batch normalisation is known to reduce the effect of L2 regularisa-
tion4 [63]. The reason for this is that batch normalisation makes the outputs of
layers invariant of the scale of the weights. Thus, we can achieve arbitrarily small
2-norm on our weights without changing the network output. However, adding L2

regularisation does change the way the iterative optimisation algorithms approach
the optimal weights [63].

It is important to note that recent work has been done to figure out why batch
normalisation work [60], [61]. As a result of this work, its become clear that
reduction of internal covariate shift is not the reason for the success of batch
normalisation (it may in some cases increase it). The current hypothesis for the
success of batch normalisation is that it changes the loss-landscape so that the loss
function is smoother, and thus, easier to optimise with gradient based methods
[60].

4L2 regularisation will be introduced in Section 2.1.12 on page 40.
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2.1.11 Residual networks and skip-connections

A key observation in the design of neural networks is that deep networks perform
better than shallow [46]. Inspired by this, He et al. sought out to create very deep
neural networks, with hundreds of layers. However, they noticed one problem
with normal convolutional networks, and more importantly, the solution to this
problem.

The output of each layer is a feature extractor, early layers detect simple features
such as edges and corners, whereas later layers detect more complex features such
as eyes and ears (in animal images). Our problem arises when an early layer
(fe) has learned a feature detector needed by a late layer (fl). If that happens,
the network needs to learn identity mappings in all layers between fe and fl.
Unfortunately, the nonlinearities φi might make this difficult.

The solution to the problem above is to learn the residual map f̆
(res)
i instead of f̆i,

given by

f̆i(x) = f̆
(res)
i (x) + x. (2.35)

Thus, if the optimal function f̆
(opt)
i is the identity mapping, f̆

(opt)
i (x) = x, then

the optimal residual map is given by f̆
(res)
i (x) = 0. Figure 2.13 shows visual

explanation of such layers and why adding the input to the output is often called
a skip connection. He et al. named networks using such layers residual neural
networks, or resnet.

There is, one obvious problem with the formula stated above. It will not work
if the output dimension is changed after a convolution, either through strides, or
through a change in the number of channels. Therefore, an approximate identity
map is learned instead, which modifies Equation (2.35) in the following way

f̆i(x) = f̆
(res)
i (x) + id(x), (2.36)

where id is some function that approximates the identity function. If the output
dimension is the same as the input, this is the identity map. However, if f̆

(res)
i is

a strided convolution, then f̆
(res)
i will be a downsampling operation. Equivalently,

if f̆
(res)
i (x) has a different number of channels as x, then id is a convolution with

kernel size 1 and the same number of channels as f̆
(res)
i (x).

Residual networks became the solution to training very deep convolutional net-
works, and makes it possible to train networks with more than 100 layers, achieving
state of the art performance [39]. In a later work, the He et al. explored different



2.1. INTRODUCTION TO DEEP NEURAL NETWORKS 37

Conv
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Activation
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x

f(x)˘
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Figure 2.13: A graph showing the structure of a ResNet layer. Notice how the input
”skips” past the convolution and nonlinearity, creating a ”skip connection”. Each square
represents a mathematical operation and an arrow starting in a square represents the
output of that mathematical operation. The tip of an arrow ending in a square means
that the corresponding number is treated as an input to that mathematical operation.
The arrow starting in x is the input to the layer and f̆(x) is the output of the layer.
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methods of incorporating skip connections in neural networks and the best method
they found is shown in Algorithm 2.2.

If we study the mappings learned by residual neural networks, we see that a large
portion of the intermediate layers are identity maps (or approximate identity maps)
[65]. For this reason, Veit et al. defined the true depth of a neural network as the
number of layers that are not identity maps. By studying a 110 layer ResNet they
found that the true depth is in fact between 10 and 34 layers [65].
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Algorithm 2.2 A ResNet layer [64]

1: procedure f̆ResNet(x, mode, input channels, output channels, strides)
2: if output channels == input channels and strides == 1 then
3: . Compute ”identity” map
4: s← x
5: . Compute residual part
6: z ← φ(BN(x))
7: z ← Ck1(z)
8: z ← φ(BN(z))
9: z ← Ck2(z)

10: return s + z

11: else if output channels == input channels and strides != 1 then
12: . Compute ”identity” map
13: s← D(s)(x)

14: . Compute residual part
15: z ← φ(BN(x))

16: z ← C
(s)
k1

(z)
17: z ← φ(BN(z))
18: z ← Ck2(z)

19: return s + z

20: else if output channels != input channels then
21: . Compute ”identity” map
22: s← C

(s)
1 (x)

23: . Compute residual part
24: z ← φ(BN(x))

25: z ← C
(s)
k1

(z)
26: z ← φ(BN(z))
27: z ← Ck2(z)

28: return s + z

Note that we have some misuse of notation here, C
(s)
1 is a convolution with stride s and kernel

size 1.
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2.1.12 Regularisation

Regularisation is an important part of training neural networks. The idea behind it
is to impose some information of how the trained network should behave. There are
two main methods to accomplish this. The first is by changing the loss function to
encourage the behaviour we want. The second method is by changing the training
procedure altogether.

One popular method of changing the loss function to impose information is called
2-norm regularisation, or L2 regularisation [37]. The idea behind this regularisa-
tion method is that we want the network to be stable with respect to its input.
Mathematically, this is equivalent to the magnitude of the gradient of the network
being small.

Luckily, there is one simple way of encouraging a small network gradient,. This is
done by modifying the loss function in the following fashion

J̃ = J + γ||W||22, (2.37)

where J is the original loss function, J̃ is the modified loss function, γ is some
parameter specifying the degree of regularisation and ||W||22 is the sum of squared
weights. The reason this works is that the magnitude of the derivative of the
network is proportional to the magnitude of the weights. Thus, by encouraging
low weight values, we encourage stability with respect to the input [38].

Another popular regularisation method is called early stopping. This idea behind
this method is that by stopping the optimisation early, the network has less time
to overfit to the training data. As a result of which, the network is better suited
for out-of-sample data. Incidentally, it is possible to prove that early stopping is,
in some form, equivalent to 2-norm regularisation for linear least squares problems
[37], [66]. Consequently, this leads to 2-norm regularisation often not being used
since it requires one to choose the regularisation parameter, γ, as opposed to with
early stopping.

Finally, we discuss dropout regularisation [67]. The idea behind dropout regu-
larisation is that ensemble methods, such as random forest, generally outperform
non-ensemble methods, such as decision trees, in machine learning. However,
training ensemble methods take much longer than their non-ensemble counter-
parts. Unfortunately, training an ensemble of neural networks is not feasible due
to the amount of time it would take to train such ensembles. Srivastava et al.,
therefore, found a method to train a neural network to have some of the same
properties as ensemble methods do – and named it dropout.
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The way dropout accomplishes this is by introducing a dropout layer to the net-
work, which randomly sets parts of it input to zero. The probability of each input
to the dropout layer being set to zero is denoted p and called the dropout rate.
This is done by multiplying each input to the dropout layer elementwise with a
random tensor whose elements has a probability of p for being equal to 0 and a
probability of 1 − p for being equal to 1. Typically, p is set close to 1 (e.g. 0.9)
[67]. To understand how this is done in pracitce, consider the following example.

Example 2.1.2. Let f̆d be a dropout layer, with dropout rate p = 0.6. Let
fd−1(x) ∈ Rm be the output of the layer before f̆d. The output of f̆d can then
be described by the following equation

fd(x)i = rifd−1(x)i, (2.38)

where i ∈ Zm, fd(x)i is the i− th element of the output of our dropout layer
and ri is a random variable that takes the value 1 with a probability of 0.4
and the value 0 with a probability of 0.6.

Let m = 5 and fd−1(x) = (1, 4, 3, 2, 2). The output of f̆d can then be equal to

f̆d(x)i = (0× 1, 0× 4, 1× 3, 1× 2, 0× 2) = (0, 0, 3, 2, 0). (2.39)

The reason models trained with dropout share similarities with ensemble methods
is that ensemble methods often use the method of random projections. That is,
each model trained in an ensemble uses a subset of the available features. Thus, the
different models need to find different ways to separate the input in the specified
categories (for classification that is). Similarly, if we regard the outputs of each
layer as feature detectors, then by setting the output to zero, we train the model
to work with a subset of features.

Finally, we note that the dropout layer is removed when the model is predicting,
as opposed to training. When that is done, the dropout layer is replaced with a
layer that simply multiplies all the layer inputs by the dropout rate, p.

2.1.13 Optimisation

One of the most important parts of deep learning is how we optimise the loss
functions. This is done using numerical optimisation algorithms. These algorithms
work by choosing an initial guess for the initial weights, and then iteratively update
them to improve performance. This optimisation procedure is called training.
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The idea behind most numerical optimisation methods is as follows. Consider the
problem

arg min
W∈Rn

J(W), (2.40)

where J : Rn → R is some the loss that we want to minimise. We start with
an initial ”guess”, W(0) (often random) for what the the true minimiser of J is.
We then compute some direction d(0) ∈ Rn, and update our guess for W in the
following fashion

W(1) =W(0) + α(0)d(0), (2.41)

where α1 is some positive number that we call the learning rate. The same pro-
cedure is performed to find W(2), which is done in the following fashion

W(i+1) =W(i) + α(i)d(i). (2.42)

Algorithm 2.3 shows a summary of how most optimisation algorithms work5 [68].

Algorithm 2.3 Numerical Optimisation

1: procedure NumericalOptimisation(J(·),W(0))
2: i← 0
3: repeat
4: Compute α(i) . Find step length
5: Compute d(i) . Find descent direction
6: W(i+1) ←W(i) + α(i)d(i)

7: i← i+ 1
8: until Convergence

9: return W(i)

There are key parts of Algorithm 2.3 that are left out, namely how to find d(i) and
α(i). We start by discussing three methods of computing the direction, d, before
we introduce three methods of computing the learning rate, α.

Gradient descent

The easiest method to compute d(i) is called gradient descent, or steepest descent.
In this algorithm, the direction that will give the largest local decrease in loss,
namely the direction of the negative gradient [68]. That is,

d(i) = −α(i)∇J(W(i)), (2.43)

5In deep learning, we do not perform a line search, which is common in other optimisation
algorithms [68]. We can therefore find the step length, α first before the descent direction, d.
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where d(i) is the descent direction, and W(i) are th parameters at time step i.
Furthermore, J is the loss we want to minimise.

There are several downsides with gradient descent. One is the sheer computational
power required to compute ∇J , as is demonstrated by the equation below.

∇J(W(i)) = ∇J(W(i); T ) = ∇
∑
n

j(W(i);xn,yn), (2.44)

where T is the training set, xn and yn is the n-th element of the training set and
its corresponding output, respectively. Using the linearity of the differentiation
operator, we get

∇J(W(i)) =
∑
n

∇j(W(i);xn,yn). (2.45)

Thus, to compute the gradient of the loss function, we need to evaluate j(W(i);xn,yn)
for all the elements in the training set. Unfortunately, this is often infeasible, as
the training set is too large..

Luckily, there is a remedy to this problem, namely to replace the gradient ∇J with
a random variable ∇Jrand with the following property

E[∇Jrand] = ∇J. (2.46)

That is, the expected value of ∇Jrand is equal to the gradient of the loss. This al-
gorithm is called stochastic gradient descent, or SGD. Generally, we choose ∇Jrand
to be equal to ∑

xn,yn∈B(i)
∇j(W (i);xn,yn), (2.47)

where Bi is a (small) random subset of the training set. Algorithm 2.4 shows the
stochastic gradient descent algorithm.

The batches Bi are generally chosen as random subsets from T without replace-
ment. Thus, if a datapoint has beed chosen from T in the first iteration, then
that same datapoint will not be used in subsequent iterations. Once the whole
dataset is iterated through, this procedure is restarted, and all elements from T
is available. This gives rise to the term epoch. The number we train over is the
number of times the whole dataset has been iterated through.

Another downside with gradient descent is that it does not converge particularly
fast [44], [69]. One reason for this is demonstrated in Figure 2.14, namely that
simply choosing the direction of steepest descent can lead to oscillating behaviour.
There are several methods to combat this, and we will introduce two of them –
gradient descent with momentum and Adam.
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Algorithm 2.4 Stochastic gradient descent [38]

1: procedure SGD(J(·),W(0))
2: repeat
3: Compute α(i)

4: d(i) ← −∇Jrand(W (i))
5: W(i+1) ←W(i) + α(i)d(i)

6: i← i+ 1
7: until Convergence

8: return W(i)
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Figure 2.14: Demonstration of how choosing the steepest descent direction can lead to
oscillations in W and thus reduce the convergence speed. The purple arrows correspond
to the path taken by a gradient descent optimiser with a too large learning rate and the
ellipses are the level curves of a quadratic.
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Momentum gradient descent

One method of reducing the oscillation of gradient descent is by using momentum.
In momentum stochastic gradient descent (momentum SGD), the new descent
direction, d(i) is a weighted sum of the previous descent direction, d(i−1), and the
gradient, ∇J(W(i)). The full algorithm is summarised in Algorithm 2.5.

Algorithm 2.5 Momentum gradient descent [69]

1: procedure MomentumSGD(J(·),W(0), µ)
2: repeat
3: Compute α(i)

4: d(i) ← −α(i)∇Jrand(W (i)) + µd(i−1)

5: W(i+1) ←W(i) + d(i)

6: i← i+ 1
7: until Convergence

8: return W(i)

There is one tuning parameter, µ, that needs to be set before this algorithm is
ran. The purpose of µ is to control the previous iteration should be weighted, and
a typical choice for it is 0.9 [70].

The intuition behind momentum gradient descent is similar to that of gradient
descent. However, instead taking one step in the direction of steepest descent,
we roll a heavy ball with down the landscape parametrised by the loss function.
This ball will then achieve momentum in the direction that it is rolling, making
it more difficult for it to accelerate in new directions. The W(i)-s is then the
position sampled at timestep i after letting the ”ball” roll. For an illustration of
this, consider Figure 2.15.

Adam

Adam6 is an algorithm designed by Kingma and Ba to improve momentum gradient
descent. The idea is to modify the learning rate of each weight, W(i)

n . The reason
for this is that not all parameters oscillate during training, and by giving only the
parameters that do so a low learning rate, we might increase the convergence rate.
The full algorithm is summarised in Algorithm 2.6.

6Adam is not an abbreviation, but its name is inspired by adaptive momentum.
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Figure 2.15: Illustration of momentum gradient descent. The purple arrows correspond
to the path taken by a gradient descent optimiser and the orange arrows correspond to
the path taken by a momentum optimiser. The ellipses are the level curves of a quadratic.
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Algorithm 2.6 Adam [44]

1: procedure Adam(W(0), β1 ∈ [0, 1), β2 ∈ [0, 1))
2: m(0) ← 0
3: v(0) ← 0
4: ε small
5: repeat
6: Compute α(i)

7: . Compute gradient and moments
8: m(i+1) ← (1− β1)∇Jrand(W(i)) + β1m

(i)

9: v(i+1) ← (1− β2)
(
∇Jrand(W(i))

)2
+ β2v

(i)

10: . Bias correction
11: m̂(i+1) = m(i+1)

1−βi1
12: v̂(i+1) = v(i+1)

1−βi2

13: . Weight Update
14: di ← −α(i) m̂(i+1)

√
v̂(i+1)+ε

15: W(i+1) ←W(i) + d(i)

16: i← i+ 1
17: until Convergence

18: return W(i)

All operations are element-wise



48 CHAPTER 2. DEEP LEARNING

There is one key similarity between Adam and momentum gradient descent. No-
tice how the m term in Algorithm 2.6 is similar to the momentum update in
Algorithm 2.5. If we set µ = β1 and α = (1 − β1), then Line 4 in Algorithm 2.5
becomes the same as Line 8 in Algorithm 2.6. By doing this, we see that the
differences lies on lines 8 through to 14 in Algorithm 2.6.

The main difference between Adam and momentum gradient descent is the v term.
The idea of this term that if one parameter encountered very large updates the
previous iterations, then we decrease its learning rate. We decrease its learning
rate since large updates are often associated with numerical instabilities [44]. An
illustration of this phenomena is seen in Figure 2.14. Equivalently, if a parameter
has encountered very small updates the previous iterations, then it might be on a
plateau [37], and using a large step sizes might therefore decrease the time spent
on that plateau.

Next, there are two lines where a modified m and v is computed. The reason for
this is that they are initialised as zero, which leads to the m and v vectors being
biased towards zero. To fix this, Kingma and Ba derived a bias corrected m and
v, which are the m̂ and v̂ terms [44].

Finally, d is computed as m̂(i+1)
√
v̂(i+1)+ε

. Thus, it is the momentum term scaled element-

wise by the amount the corresponding parameter has changed the previous itera-
tions. The ε term is to provide numerical stability, preventing divison by zero.

It is important to note that the idea of giving each parameter its own learning
rate is not unique to Adam. Rather, Adam is an improvement upon the AdaGrad
algorithm [71] and the RMSProp algorithm [72], two similar algorithms that we
will not discuss he

A downside with Adam is that it involves choosing good hyperparameters, α, β1,
β2 and ε. Luckily, Kingma and Ba provided recommendations for these parameters
in [44], which you can see in Table 2.1 re.

There are both benefits and downsides to using the Adam optimiser. The main
benefit is that it is very fast [44]. However, it is demonstrated that models trained
with Adam often has worse generalisation properties than those trained with SGD
and momentum SGD [73], [74]. This means that networks trained with Adam will
often perform worse on data that wasn’t used as part of the training procedure.
In addition to this, Reddi et al. found a mistake in the original Adam article and
showed an example where Adam converged to something other than the minimum
of a function [75].
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Table 2.1: Recommended values for the hyperparameters of Adam [44].

Parameter Recommended value

α 0.001

β1 0.9

β2 0.999

ε 10−8

Adam is still used, even though might converge to suboptimal points. The reason
for this is that the time saved by training models with Adam allow for more fine
tuning of the network architectures. However, the results in [73] demonstrate that
training the final model with momentum SGD instead of Adam might improve
performance on the validation data.

Learning rate scheduling

We have up til this point not focused on how to choose the learning rate, α. Often,
this is just constant, such as in [23]. However, an improved rate of convergence is
often seen when a learning rate schedule is used [74].

By a learning rate schedule, we mean that the learning rate is a function of the
iteration number, i. We will introduce three methods of choosing the learning
rate. The first is simply setting the learning rate to a constant (for Adam, 0.001
is recommended [44]). The second, is to use the following rule

α(i) = α(0)ρξ, (2.48)

where ρ is the decay rate chosen beforehand, and ξ is the epoch number, given by

ξ(i) =

∑
j |B|j
|T |

, (2.49)

that is, the number of iterations, times the batch size, divided by the size of the
training set. If the batches drawn from the training set without replacement, this
is the number of times the whole dataset has been used to compute ∇Jrand.

One popular modification of the above learning rate schedule is achieved by modi-
fying the expression for ξ in the following fashion:

ξ(i) =

⌊∑
j |B|j
|T |

⌋
, (2.50)
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Table 2.2: Two recommended hyper parameter settings for SGDR [74].

Parameter Option 1 Option 2

αmin 0 0

αmax 0.05 0.05

Trestart (initial) 100 10

Tmult 1 2

where b·c is the floor function. Thus, the above schedule is a discrete version of
the linear decay schedule above where the learning rate is decreased by a factor of
ρ every epoch.

The final method of computing the learning rate we will discuss is called Stochastic
Gradient Descent with Warm Restarts, or SGDR. Other optimisation algorithms
benefit from restarting the momentum and learning rate [74]. Therefore, Loshchilov
and Hutter proposed to use a learning rate that gradually decays to zero before
restarting [74]. Their proposed scheme is intended to be used with SGD (SGDR)
and momentum SGD (SGDR+momentum) and uses the following learning rate
schedule [74]

α(i) = α
(i)
min +

1

2
(αmax − αmin)

(
1 + cos

(
T (i)

Trestart
π

))
. (2.51)

αmax and αmin is the maximum and minimum learning rate, respectively, T (i) is the
number of epochs since last restart and Trestart is the number of iterations between
each restart. Loshchilov and Hutter reccommend that Trestart is multiplied by a
factor of Tmult > 1 every restart. Thus, if we use momentum stochastic gradient
descent with an SGDR learning rate scheme, we get Algorithm 2.7. A table of
recommended hyperparameters is seen in Table 2.2 [74] and an illustration of how
the SGDR learning rate schedule varies with training step is shown in Figure 2.16.

Initialisation

How we initialise neural networks, that is how we choose W(0), can have substan-
tial effects on the training result [37]. We will, therefore, introduce one popular
initialisation algorithm – He initialisation [76].
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Algorithm 2.7 Momentum SGDR [74].

1: procedure SGDR+momentum(W(0), µ, αmin, αmax, Trestart, Tmult)
2: |B| ← batch size
3: |T | ← size of training set
4: Tcur ← 0
5: repeat
6: . Compute α(i)

7: Tcur ← Tcur
|B|
|T |

8: if Tcur ≥ Trestart then
9: Tcur ← Tcur − Trestart

10: Trestart ← TmultTrestart
11: α(i) ← αmin + 0.5(αmax − αmin)

(
1 + cos

(
Tcur

Trestart
π
))

12: . Momentum SGD update
13: d(i) ← −∇J(W (i)) + µd(i)

14: W(i+1) ←W(i) + α(i)d(i)

15: until Convergence

16: return W(i)
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Figure 2.16: An illustration of the SGDR learning rate schedule. The parameters used
here are: αmin = 0, αmax = 0.1, Trestart = 2, Tmult = 2.
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He initialisation builds upon work by Glorot and Bengio, who discovered that
choosing weights so that the variance of each layer’s output should be equal to
one. Thus, if we use ReLU nonlinearities, [76] showed that the weights should be
chosen so that

var(Wi) =
2

dim(Xi)
, (2.52)

where dim(Xi) is the dimensionality of the input space of f̆i.

2.2 Splitting the dataset

One problem with deep learning is that the models tend to overfit to the data [37].
Thus, the performance at the end of the training is not representative to how the
model will perform on new data. To prevent this from being a problem, we divide
the dataset in three parts. The first part is used to train the networks, and is often
the largest. The other two are both used to test the models on out-of-sample data.
One of these datasets is used to compare different models aptitude at handling
such data and is called the validation dataset. Finally we need a dataset that is
solely used to test the final model, this is called the test dataset.

2.3 Deep learning for image segmentation

The previous section covered general deep learning for image analysis, however,
there are certain tools that are only used in segmentation algorithms. Those tools
will be the focus of the following two sections

2.3.1 Performance metrics

There is one large problem with image segmentation as opposed to other image
analysis algorithms – the difficulty of dealing with class imbalance. In classification
problems, we classify each pixel in an image, and the object(s) we are interested in
segmenting generally occupy a small are of the image. Thus, the (vast) majority
of the pixels are background pixels.

The reason class imbalance problems are a particular problem in segmentation is
that it cannot be resolved with the sampling algorithms [77]. These algorithms
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work by subsampling, or oversampling the dataset to attain class imbalance. Un-
fortunately, this is not feasible for images, as whole images are fed into the network
at once.

Thus, segmentation accuracy, that is, the fraction of correctly classified pixels
is not an ideal measure of a networks performance. To illustrate this, consider
an image where 9000 pixels are of the background class and 1000 pixels are of
the infected tissue class. In this setting, an algorithm that classifies all pixels as
background pixels will achieve an accuracy of 90% whilst completely failing at
tackling the task at hand. As a result of this, we introduce several performance
measures when we compare segmentation algorithms.

All performance measures we introduce are designed for binary classification prob-
lems. The background class is the negative class and the class of interest is the
positive class. For segmentation problems with more than one class, the perform-
ance measures can be computed for each class separately. The class of interest is
then used as the positive class and all other classes are combined into the negative
class.

There are four terms that are integral when we design performance measures. true
positives, false positives, true negatives, false negatives. See definitions 2.3.1 - 2.3.3
for a definition of those terms.

Definition 2.3.1 (True positives). The number of true positives (TP ) is the
number of pixels belonging to the positive class that were correctly predicted
as members of that class.

For a single image, TP is the total number of pixels belonging to the positive
class that were correctly predicted as members of that class. For several images,
this is summed up across all images.

Definition 2.3.2 (True negatives). The number of true negatives (TN) is the
number of pixels belonging to the negative class that were correctly predicted
as members of that class.

For a single image, TN is the total number of pixels belonging to the negative
class that were correctly predicted as members of that class. For several images,
this is summed up across all images.
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Definition 2.3.3 (False negatives). The number of false negatives (FN) is the
number of pixels belonging to the positive class that were incorrectly predicted
as members of the negative class.

For a single image, FN is the total number of pixels belonging to the positive
class that were incorrectly predicted as members of the negative class For
several images, this is summed up across all images.

Definition 2.3.4 (False positives). The number of false positives (FP ) is
the number of pixels belonging to the negatives class that were incorrectly
predicted as members of the positive class.

For a single image, FP is the total number of pixels belonging to the Negative
class that were incorrectly predicted as members of the Positive class For
several images, this is summed up across all images.

Two very popular performance metrics are sensitivity and specificity [36]. These
terms are defined in Definition 2.3.5 and Definition 2.3.6. Sensitivity measures the
networks ability to correctly detect positive pixels, and specificity measures the
networks ability to correctly detect negative pixels.

Definition 2.3.5 (Sensitivity). The sensitivity is the true positive rate (TPR)
of a network. That is, the proportion of the positives that were correctly
identified. Mathematically, this is the same as

TPR = P (Predictedpositive|Positive) =
TP

TP + FN
, (2.53)

where TP is the number of true positives and FN is the number of false
negatives.

Another word used for sensitivity is recall.
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Definition 2.3.6 (Specificity). The specificity is the true negative rate (TNR)
of a network. That is, the proportion of the negatives that were correctly
identified. Mathematically, this is the same as

TNR = P (Predictednegative|Negative) =
TN

TN + FP
, (2.54)

where TN is the number of true negatives and FP is the number of false
positives.

Another word used for specificity is selectivity.

Using only the sensitivity or onlyt ehs specificity doesn’t properly reflect model
performance. However, the combination of the two carries much information about
the networks efficiency. The reason for this, is that we can get a sensitivity of one
if all pixels are predicted as positive pixels. Similarly, the specificity is one if all
pixels are predicted as negative pixels. Thus, simply having a network with high
sensitivity or specificity is not particularly enlightening.

Another performance metric that is important when reviewing tumour segmenta-
tion maps is the precision, or positive predictive value [78]. The definition for this
metric is seen in Definition 2.3.7.

Definition 2.3.7 (Positive predictive value). The positive predictive value
(PPV ), or precision, of a network is the probability that a positively predicted
pixel in fact belong to the positive class. Mathematically, this is the same as

PPV = P (Positive|Predictedpositive) =
TP

TP + FP
, (2.55)

where TP is the number of true positives and FP is the number of false
positives.

The main downside with the PPV is that it is dependent on the dataset it is
computed upon. However, if the class imbalance in our dataset is ”typical”, then
the precision can be more descriptive than only the sensitivity and specificity. The
reason for this is that the precision can be low, even if both the sensitivity and
specificity is high so long as the class imbalance is severe enough. Thus, PPV gives
a clear indication of how adapt the network is at detecting objects-of-interest in
real-world images.

One metric that is particularly popular to assess image segmentation algorithms
is the Sørensen-Dice coefficient [79], [80]. This particular metric has many names;
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some of them are: Dice similiarity coefficient (DSC), Dice score, F -score and
F1-score. The Dice score is defined in Definition 2.3.8.

Definition 2.3.8 (Dice score). The Dice score (DSC) is defined as the har-
monic average of the precision (PPV ) and the sensitivity (TPR). Mathemat-
ically, this is equivalent to

DSC =
1

1
TPR

+ 1
PPV

2

, (2.56)

that is, the reciprocal of the mean of the reciprocals of PPV and TPR. This
can be rewritten as

DSC =
2

1
TPR

+ 1
PPV

=
2TP

2TP + FN + FP
, (2.57)

where TP is the number of true positives, FN is the number of false negatives
and FP is the number of false positives.

From Definition 2.3.8, we see that one benefit of the Dice coefficient is that it
doesn’t involve the number of true negatives. This is beneficial since, if the object-
of-interest is small compared to the background, then it is very easy to get a high
number of true negatives.

The Dice coefficient is an average (specifically, the harmonic mean) of the sens-
itivity and precision. It is, therefore, easy to generalise it to a weighted average
of sensitivity and precision. Doing this gives rise to the Fβ score [81], which is
defined in Definition 2.3.9. Thus, we have a method to weigh sensitivity more
than precision and vice versa.
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Definition 2.3.9 (Fβ score). The Fβ score is defined as the weighted harmonic
average of the precision (PPV ) and the sensitivity (TPR), where the weight
of the precision is β2 and the sensitivity is 1. Mathematically, this is equivalent
to

Fβ =
1

1
TPR

+ β2

PPV

1+β2

, (2.58)

which can be rewritten as

Fβ =
1 + β2

β2

TPR
+ 1

PPV

=
(1 + β2)TP

(1 + β2)TP + β2FN + FP
, (2.59)

where TP is the number of true positives, FN is the number of false negatives
and FP is the number of false positives.

When we use the Fβ score, the sensitivity has β times as much influence on the
score as the PPV. Thus, if we value sensitivity more than the PPV, β should be
high and vice versa. Explaining why the β value must be squared is outside the
scope of this project, and the interested reader is recommended to read pages 133
and 134 of Information Retrieval by Rijsbergen [81].

2.3.2 Loss functions for image segmentation

One problem with the cross entropy loss is that it is sensitive to class imbalance
[42]. As a result of this, Milletari et al. designed a loss function specific for seg-
mentation that is based on the Dice coefficient. Their Dice loss is defined as
follows

jDSC(y, ŷ) = 1− 2
∑

i[yiŷi]∑
i[y

2
i ] +

∑
i[ŷ

2
i ]
, (2.60)

where y is the true segmentation mask for an image and ŷ is the predicted seg-
mentation mask for an image. If pixel i belongs to the positive class, then yi = 1.
Similarly, yi = 0 if pixel i belongs to the negative class.

When Milletari et al. derived Equation (2.60), they stated, without a proof, that

DSC =
2
∑

i[yiŷi]∑
i[y

2
i ] +

∑
i[ŷ

2
i ]

(2.61)

for binary vectors y and ŷ [42]. Furthermore proposed to use this identity in
the case where ŷi is the predicted probability of pixel i belonging to the positive
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class. This relaxation is sensible, as demonstrated by the increase in performance
Milletari et al. observed when using their Dice loss instead of a cross entropy loss
[42].

To demonstrate why Equation (2.61) holds true, we prove Theorem 2.3.1. Then, we
motivate the squares below thedenominator. After which, we introduce a general
Fβ loss that, to the authors knowledge, hasn’t published in the current litterature.

Theorem 2.3.1. Let y and ŷ be binary vectors representing segmentation maps.
Then, the Fβ score with the ground truth vector being y and prediction vector being
ŷ is given by

Fβ =
(1 + β2)

∑
i[y

p
i ŷ

q
i ]

β2
∑

i[y
r
i ] +

∑
i[ŷ

s
i ]
, (2.62)

where p, q, r, s 6= 0.

To prove this, we need the following lemmas, which we give without proof.

Lemma 2.3.2. Let y and ŷ be binary vectors representing segmentation maps.
Then, the number of true positives, (TP) is given by∑

i

[yiŷi]. (2.63)

Lemma 2.3.3. Let y and ŷ be binary vectors representing segmentation maps.
Then, the number of false positives, (FP) is given by∑

i

[(1− yi)ŷi]. (2.64)

Lemma 2.3.4. Let y and ŷ be binary vectors representing segmentation maps.
Then, the number of false negatives, (FN) is given by∑

i

[yi(1− ŷi)]. (2.65)

Proof of Theorem 2.3.1. We want to prove that

Fβ =
(1 + β2)

∑
i[y

p
i ŷ

q
i ]

β2
∑

i[y
r
i ] +

∑
i[ŷ

s
i ]

(2.66)

for all p, q, r, s 6= 0.
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To do this, we start with the definition of Fβ;

Fβ =
(1 + β2)TP

(1 + β2)TP + β2FN + FP
. (2.67)

Inserting Lemmas 2.3.2 - 2.3.4, we get the following equation

Fβ =
(1 + β2)

∑
i[yiŷi]

(1 + β2)
∑

i[yiŷi] + β2
∑

i[yi(1− ŷi)] +
∑

i[(1− yi)ŷi]
, (2.68)

we then divide the nominator and denominator by TP , which yields

Fβ =
(1 + β2)

(1 + β2) + β2
∑
i[yi(1−ŷi)]∑
i[yiŷi]

+
∑
i[(1−yi)ŷi]∑
i[yiŷi]

. (2.69)

Following that, we use the fact that
∑

i[ai(1− bi)] =
∑

i[ai]−
∑

i[aibi] to get

Fβ =
(1 + β2)

(1 + β2) + β2
∑
i[yi]−

∑
i[yiŷi]∑

i[yiŷi]
+

∑
i[ŷi]−

∑
i[yiŷi]∑

i[yiŷi]

, (2.70)

which through simple arithmetic becomes

Fβ =
(1 + β2)

(1 + β2) + β2
∑
i[yi]∑
i[yiŷi]

− β2 +
∑
i[ŷi]∑
i[yiŷi]

− 1
. (2.71)

Rewriting this, we get

Fβ =
(1 + β2)

β2
∑
i[yi]+

∑
i[ŷi]∑

i[yiŷi]

, (2.72)

which we can rewrite as

Fβ =
(1 + β2)

∑
i[yiŷi]

β2
∑

i[yi] +
∑

i[ŷi]
. (2.73)

The only part missing for this equation to be the statement of the theorem are the
nonzero powers p, q, r and s. To show that they can be placed on their respective
places in the equation above, we note that yi, ŷi ∈ {0, 1}. Thus,

yi = yki ∀k 6= 0 (2.74)

and

ŷi = ŷki ∀k 6= 0. (2.75)

Using this, we see that

Fβ =
(1 + β2)

∑
i[y

p
i ŷ

q
i ]

β2
∑

i[y
r
i ] +

∑
i[ŷ

s
i ]

(2.76)

for all p, q, r, s 6= 0, which is what we intended to prove.
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An obvious question now is how to choose the powers p, q, r and s. One immediate
choice for these powers is p = q = r = s = 1, however, this is not what Milletari
et al. chose. Instead they used p = q = 1 and r = s = 2. Since ŷ ∈ [0, 1]
and y ∈ {0, 1}, this leads to the denominator of the fraction becoming larger and
uncertaintes in ŷ is, therefore, penalised less than if r = s = 1. We follow that
decision and define a loss function that directly optimises the Fβ score.

Definition 2.3.10 (Fβ loss). Let β be a positive real number. The Fβ loss is
then defined as

jFβ = 1− (1 + β2)
∑

i[yiŷi]

β2
∑

i[y
r
i ] +

∑
i[ŷ

s
i ]
. (2.77)

The Fβ loss (of which, the Dice loss is a special case) has one key benefit compared
to the cross entropy loss. This stems from the fact that the cross entropy loss sums
up the prediction error for each pixel in an image. The Fβ loss, on the other hand,
considers the quality of the whole segmentation map at once, and sums this up
for each image. Intuitively, it therefore makes more sense to optimise the Fβ score
than the cross entropy.

There is also a downside with the Fβ loss. Namely that it considers only two-
class segmentation problems. This is problematic, as it can be useful to segment
different organs with one algorithm. One way to solve this problem, is by using one-
versus-all strategy. By doing this, we compute the loss for each class separately,
using the class of interest as positive and all others as negative. This will give one
loss per class, which we can average to get a single metric to optimise for.

2.3.3 Architectures for segmentation

One early method of designing convolutional networks for image segmentations was
through an encoder-decoder architecture (also known as an hourglass architecture)
[37], [57]. Encoding-decoder architectures are split in two parts, the encoder net-
work and the decoder network.

In the encoder network, the input image is fed through convolutional layers and
downsampling layers (e.g. two convolutional layers between each downsampling
layer). This network generates a low dimensional “encoding” of the input image.
The low dimensional encoding of the input image is then fed through a decoder
network. This network alternates between a set amount of convolutional layers
and upsampling layers (e.g. two convolutional layers between each upconvolution).
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Thus, “mirroring” the encoder network. The output of the decoder network is the
final segmentation mask.

There is one downside with the encoder-decoder architecture for image segment-
ation; high frequency information (e.g. information about borders) is discarded
in the downsampling operations. As a consequence, the segmentation masks are
often only rough estimates of the ground truth, missing the fine-detailed structure
[82].

One way to combat the fact that low-frequency information is discarded in encoder-
decoder network is through long-distance skip connections, which was introduced
in the U-Net architecture [23]. By long-distance skip connections, we mean that
the input to the first downsampling operator is concatenated to the output of
the last upsampling operator. Similarly, the input to the second downsampling
operator is concatenated to the output of the second to last upsampling operator,
and so on. An illustration of this is given in Figure 2.17.

The U-Net architecture we introduce here differ slightly from the original archi-
tecture proposed in [23]. The original U-Net architecture used no padding for
their convolutions, and had to crop the inputs to max pooling layers before con-
catenating them onto the outputs of upsampling operations. Moreover, we use
upconvolutions of size 3 × 3 instead of 2 × 2. The final layer was a convolution
of size 1, not one of size 3. This choice is not standard ([24], [57], [82]) and was
therefore ommitted for simplicitly.

There are other architectures that are aimed at segmentation, such as Large Kernel
Matters [24] Deeplab [25]–[27], CRF as RNN [83] and the Tiramisu net [84]. How-
ever, these models are somewhat more complicated to implement. Furthermore,
the the performance gain reported in the papers these architectures were intro-
duced in was not substantial (2−5%). Explaining how these architectures work is
outside the scope of this project. The interested reader is, therefore, recommended
to read their original papers where they are introduced [24]–[27].
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Chapter 3

Code

3.1 Code outline

User-friendliness was a big concern when creating the SciNets package provided
by this project. As such, an object oriented interface is used and example scripts
are supplied. The code follows the PEP-8 style-guide [85] (with the exception
of having up to 88 characters per line) and are documented according to the
Numpydoc specifications [86]. In addition, simple example scripts are supplied to
easily get started.

There are two main benefits of using SciNets as compared with other low-threshold
deep learning tools such as Keras [15]. SciNets is made for scientific purposes,
which requires a focus on both reproducibility and the ability to efficiently test
new layers and architectures. As a result, an extensive logging suite is provided,
both for mid-training logging and result logging.

Furthermore, extendability was a concern when designing SciNets. For example,
creating new layers are easily done by subclassing the BaseLayer and overloading
its _build_layer function. Creating new architecture structures are also easily
done by subclassing the BaseModel class and overloading its build_model function.

Finally, we note that the codebase uses the TensorFlow 1.12 framework [12], which
is described below.

63
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3.1.1 The TensorFlow framework

TensorFlow [12] is a deep learning framework in which all computations are per-
formed in a two-step fashion. First, a computation graph is generated. Thereafter,
this graph is used to compute the actual quantities we are interested in.

A computation graph is a Directed Acyclic Graph (DAG) in which every node
represents a mathematical operation. Additionally there are certain ”special”
nodes that deal with the input/output (IO) stream of the graph. An edge starting
in node i and ending in node j shows that the output of the operation that i
represents is required as an input to the operation that j represents.

To see how we create a TensorFlow graph, consider the following example.

Example 3.1.1 (Simple TensorFlow code).

1 import tensorflow as tf
2

3 A = tf.placeholder(tf.float32 , shape=(2, 2))
4 x = tf.placeholder(tf.float32 , shape=(2,))
5 y = tf.placeholder(tf.float32 , shape=(2,))
6

7 z = x + y
8 w = tf.matmul(A, z)

In the above code several things happen. Firstly, we import the tensorflow
module and name it tf. Afterwards, on lines 3-5 we create three placeholder
nodes, A, x and y. A placeholder node is an IO node that represents data being
sent into the computation graph.

After the A, x and y nodes are created, we create two additional nodes, z and
w. The z node represents the sum of x and y, and the w node represents the
matrix multiplication of A and z.

The computation graph created in this example can be seen in Figure 3.1.

It is important to note that none of the variables in the code above have any
numerical values. As such, a computation graph does not have any value by
itself.

We have now shown how to create a computation graph. Next we need to compute
the values we are interested in. This is done by setting up a TensorFlow Session
context and feeding in values using the specified IO mechanisms. Example 3.1.2
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Figure 3.1: The computation graph created by the code in Example 3.1.1

demonstrates how we can use the code developed in Example 3.1.1 to compute the
values of interest.

Example 3.1.2 (Performing computations with TensorFlow).

1 import tensorflow as tf
2

3 A = tf.placeholder(tf.float32 , shape=(2, 2))
4 x = tf.placeholder(tf.float32 , shape=(2,))
5 y = tf.placeholder(tf.float32 , shape=(2,))
6

7 z = x + y
8 w = tf.matmul(A, z)
9

10 with tf.Session () as sess:
11 z1 = sess.run(z, feed_dict={x: [1, 2], y: [3, 4]}
12 z2, w2 = sess.run((z, w), feed_dict={x: [1, 0], y: [0, 2],
13 A: [[-1, 0], [0, 1]]}
14

15 print(f'The value of z1 is {z1}')
16 print(f'The value of z2 is {z2} and w2 is {w2}')

The value of z1 is [4, 6]
The value of z2 is [1, 2] and w2 is [-1 2]
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In the above code, we see how the same computation graph can yield two
different values, z1 and z2 depending on which values are fed into the graph.
Furthermore, we see that we do not need to supply any values for A when we
only want to compute the value of the z node, as A is not a parent of z.

Example 3.1.2 demonstrates that generating a computation graph is similar to
defining functions. When we define a function, we create a ”recipe” to compute
something that varies with the function arguments. Similarly, when we create a
computation graph, we generate a ”recipe” for a variable that is dependent on the
inputs of the graph.

There are several benefits gained by using a static computation graph the way
TensorFlow does. By generating the computation graph before performing the
computations, workload-planning is easier and optimisation procedures can be
implemented [12].

Next, we note that there are several other special nodes in TensorFlow that we
have not discussed. There are, for example, Variables, that have persistant values
within one session, and special nodes that modify the value of a Variable [12].

The main benefit of using a computation graph, however, is that it makes autodif-
ferentiation easier [12]. If all nodes in the graph have a method in which the
partial derivatives with respect to the input is defined, then it is easy to compute
the gradient of any node with respect to any parent node (using the chain rule). It
is this benefit which makes TensorFlow suited for deep learning, as we only need
to think about how to generate the model, not how to compute its gradient.

There are, however, also downsides with having a static computation graph. One
particular downside is that the problem at hand needs to be thought of in a
different way as compared to a ”standard” programming approach. In general, we
want reusable functions that create our neural networks, as such, we essentially
create functions that create the functions we want to use. This added abstraction
layer makes the development process more cumbersome at the same time as it
complicates the debugging process.

There is one way to solve the afforementioned problem, namely dynamic compu-
tation graphs. Dynamic computation graphs are available in the latest version of
TensorFlow and in the PyTorch framework [13]. Unfortunately, these tools did
not have a mature documentation when this project was first envisioned, and were
therefore not used.
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3.1.2 The codebase

Before starting, we note that this thesis is written in British English. However,
American English is the language used in the TensorFlow library which the presen-
ted code heavily relies on. As such, American English was chosen when writing
the code to avoid inconsistent language within the code. There are, therefore,
some inconsistensies in this chapter, especially with words ending with “-ise” in
British English and “-ize” in American English. British English is used for all text
written with a normal font, whereas American English is used for all text written
in a monospaced font.

The codebase is available at https://github.com/yngvem/scinets/ and is struc-
tured into four Python modules: data, which is responsible for the dataset-pipline;
model, which contains the layer and model classes; trainer, which provides a
high-level training interface; and utils which contains general utility function
and classes.

Apart from two classes (Initializer and Optimizer), all code presented herein
was implemented as part of this project. Some classes (e.g. Normalizer and
Activation) are small wrappers around TensorFlow functions, whereas other classes
(e.g. Model and Logger) are not.

The model module

We start by discussing the model module and, in particular, the structure of the
layer classes. All layer classes are created by subclassing the BaseLayer class,
which contain several utility methods needed to create a layer. Additionally, all
subclasses of the BaseLayer class are logged to a dictionary upon creation for
reasons that will be apparent later.

Instead of highlighting every part of the BaseLayer class, we show how the __init__
function is structured (see below). Afterwards, we demonstrate how to create a

simple convolutional layer.

1 class BaseClass(ABC):
2 def __init__(
3 self,
4 x,
5 initializer=None ,
6 regularizer=None ,
7 activation=None ,

https://github.com/yngvem/scinets/
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8 normalizer=None ,
9 is_training=None ,
10 scope=None ,
11 layer_params=None ,
12 verbose=False ,
13 *args ,
14 **kwargs ,
15 ):
16 if normalizer is not None and is_training is None:
17 raise ValueError(
18 "You have to supply the `is_training ` placeholder

for batch norm."
19 )
20 layer_params = layer_params if layer_params is not None else

{}
21

22 self.input = x
23 self.is_training = is_training
24 self.scope = self._get_scope(scope)
25

26 self.initializer , self._init_str = self.
_generate_initializer(initializer)

27 self.activation , self._act_str = self._generate_activation(
activation)

28 self.regularizer , self._reg_str = self._generate_regularizer
(regularizer)

29 self.normalizer , self._normalizer_str = self.
_generate_normalizer(normalizer)

30

31 # Build layer
32 with tf.variable_scope(scope) as self.vscope:
33 self.output = self._build_layer(**layer_params)
34 self.params , self.reg_list = self._get_returns(self.

vscope)
35

36 if verbose:
37 self._print_info(layer_params)

The interesting part here lies in lines 26 through to 37. First, we create an initialiser
instance, a regulariser instance, an activation function instance and a normaliser
instance. We will focus on these parts later.

The key part of the __init__ function is within the tf.variable_scope context1.
Within this context, the correct TensorFlow nodes are set up by the _build_layer
function. Afterwards, the trainable parameters and regularisation operators within

1A Python context is the block of code following a with statement.
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the same variable scope are collected and stored in a dictionary and list, respect-
ively.

Finally, if the verbosity level is nonzero (i.e. verbose 6= 0), then the _print_info
function is called.

Let us now look at a way to implement a two-dimensional convolutional layer.

1 class Conv2D(BaseLayer):
2 """A standard convolutional layer.
3 """
4 def _build_layer(
5 self,
6 out_size ,
7 k_size=3,
8 use_bias=True ,
9 dilation_rate=1,
10 strides=1,
11 padding="SAME",
12 ):
13 out = tf.layers.conv2d(
14 self.input ,
15 out_size ,
16 kernel_size=k_size ,
17 use_bias=use_bias ,
18 kernel_initializer=self.initializer ,
19 strides=strides ,
20 dilation_rate=dilation_rate ,
21 padding=padding ,
22 kernel_regularizer=self.regularizer ,
23 )
24 out = self.activation(out)
25 out = self.normalizer(out , training=self.is_training , name="

BN")
26

27 return out
28

29 def _print_info(self, layer_params):
30 print(
31 "________________Convolutional layer________________\n",
32 "Variable_scope: {}\n".format(self.vscope.name),
33 "Kernel size: {}\n".format(layer_params.get("k_size", 3)

),
34 "Output filters: {}\n".format(layer_params["out_size"]),
35 "Strides: {}\n".format(layer_params.get("strides", 1)),
36 "Dilation rate: {}\n".format(layer_params.get("

dilation_rate", 1)),
37 "Padding: {}\n".format(layer_params.get("padding", "SAME

")),
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38 "Kernel initialisation: {}\n".format(self._init_str),
39 "Activation function: {}\n".format(self._act_str),
40 "Kernel regularisation: {}\n".format(self._reg_str),
41 "Number of regularizer loss: {}".format(len(self.

reg_list)),
42 "Use bias: {}\n".format(layer_params.get("use_bias",

True)),
43 "Normalization: {}\n".format(self._normalizer_str),
44 "Input shape: {}\n".format(self.input.get_shape ().

as_list ()),
45 "Output shape: {}".format(self.output.get_shape ().

as_list ()),
46 )

We see that the _build_layer function creates a TensorFlow conv2d layer, passes
it through the activation function and normalises the output using the self.
normalizer instance of the BaseNormalizer class. Generally, this will either rep-
resent an identity mapping or create the required TensorFlow nodes for a batch
normalisation layer.

The normaliser, activation and regulariser classes have almost the same structure
as the layer classes. There are three differences, firstly there is no _print_info.
Secondly, the _build_layer is exchanged with a build_normalizer, build_activation
and _build_regularizer, respectively. Finally, it is the __call__ function that

generates the TensorFlow nodes, not the __init__ function.

The initialiser classes are Keras initialisers.

It is also important to note that the convolutional layer defined above is also
stored in a SubclassRegister that is linked to the BaseLayer class. This allows
us to define new layers without modifying the scinets.model module and without
changing the structure of the configuration files. A thorough explanation of this
is given in Section 3.1.2.

In general, all classes of the SciNets library are stored in SubclassRegisters with
an associated getter. Thus, to create a regulariser instance, we can write

1 reg = models.get_regulariser('WeightDecay ')()

Similarly, to create an optimiser instance we can write

1 optimizer = trainer.get_optimizer('ADAM')

Finally, we look at how the BaseModel class is structured. This is a complic-
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Table 3.1: The inputs used to generate a BaseModel instance in SciNets

Argument Description

input var TensorFlow node containing input.

architecture List of dictionaries specifying the architecture.

name Variable scope of the model.

is training TensorFlow placeholder specifying whether model is training or
inferring new segmentation masks.

true out TensorFlow node containing the true output of the model.

loss function Dictionary specifying which loss function to use.

verbose Boolean, whether or not to print out information in the terminal
window

ated class, so we will not go in detail, but rather focus on the overarching design
principles of the class.

In SciNets, a model is defined as the neural network and its loss function. This
choice is made as the loss function heavily affects the functionality of a network. To
illustrate why this is, we note that the only part that separates an object detection
network from an image classification network is the choice of loss function and
the training data [43]. As a consequence of which, SciNets models require several
inputs and a complete list of these inputs is specified in Table 3.1 and an illustration
of these inputs is shown in Figure 3.2.

When a SciNets model is created, the _build_model function is called. This func-
tion generates the neural network of the model. To do this, the architecture list is
iterated through to assemble the network. Below is the build_model function of
a normal feed-forward network.

1 def _build_model(self):
2 """ Assemble the network.
3 """
4 if self.verbose:
5 print("\n" + 25 * "-" + "Assembling network" + 25 * "-")
6

7 for layer in self.architecture:
8 self._assemble_layer(layer , layer_input=self.out)
9

10 if self.verbose:
11 print (25 * "-" + "Finished assembling" + 25 * "-" + "\n")
12
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Model

architecture

input

loss_function

true_output

is_training

Layer
Layer
Layer

Dataset

Figure 3.2: Flowchart showing the inputs and their dependencies to a SciNets model.
The dashed arrows signifies that Dataset provides input and true output, whereas the
solid arrows signify that the starting node is an input of the ending node. The Dataset
class will be described later.
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Initializer

Normalizer

Layer

Model

LossFunction

Activation

Figure 3.3: The class dependencies of the Model classes. The arrow that starts in the
LossFunction node and ends in the Model node signals that an instance of the Model
class contains an instance of the LossFunction class.
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13 self.collect_regularizers ()

Hence, the way a neural network is built is by calling the _assemble_layer function
on all elements in the architecture list. Thus, to understand how a network is
assembled, we need to inspect the _assemble_layer function.

1 def _assemble_layer(self, layer_dict , layer_input):
2 """ Assemble the next layer.
3 """
4 layer_class = get_layer(layer_dict["layer"])
5 layer = layer_class(
6 layer_input ,
7 is_training=self.is_training ,
8 verbose=self.verbose ,
9 **layer_dict
10 )
11

12 self.layers.append(layer)
13 self.out = layer.output
14

15 self.outs[layer_dict["scope"]] = self.out
16 self.reg_lists[layer_dict["scope"]] = layer.reg_list
17 for pname , param in layer.params.items():
18 self.params[layer_dict["scope"] + "/" + pname] = param

The code above does several things, let us therefore focus on the most important
lines. Recall that all layers classes are added in a dictionary, the reason for this is
so we can extract the class using a string. This is what line 4 does, it extracts the
class with the name given by the "layer" key of the layer dictionary and stores
this class in the LayerClass variable. Then, an instance of that class is created
using the current network output as input to that layer. After which, the current
network output is updated so it is equal to the output of the recently created layer.

The model building process can be summarised in Section 3.1.2.

In addition, the layer parameters are added to a dictionary to facilitate their
logging. Similarly, the layer outputs are stored in a list. This is not only done for
logging purposes, but also because the layer outputs are useful when interpreting
a trained model. In addition, certain architectures require the outputs of earlier
layers (e.g. U-Net [23]).

The TensorFlow nodes that correspond to the loss function is created after the
neural network is created. The way loss functions are generated are in a similar
fashion as to how regularisers are generated. Upon instance initialisation, the
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Algorithm 3.1 How feed forward networks are generated in SciNets

1: procedure GenerateNeuralNetwork(Input, Architecture)
2: The architecture is a list of layer specifications
3: Output ← Input.
4: for each layer spec in Architecture do
5: Layer = get layer(layer spec)
6: Output ← Layer(Output)

7: return Output

parameters of the loss function is set. Furthermore, the __call__ method is over-
loaded to call the _build_loss function, which creates the TensorFlow nodes that
represent the loss function. This function, and possibly the __init__ function
should be overloaded in loss function classes.

A flow-chart summarising the class dependencies in the model module is shown in
Figure 3.3. Furthermore, an example where we create a SciNets model is given in
Example 3.1.3
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Example 3.1.3 (Creating a SciNets model.).

1 import tensorflow as tf
2 import scinets.model
3

4

5 loss_function = ({"operator": "BinaryFBeta", "arguments": {"beta
": 2}},)

6 architecture = [
7 {
8 "layer": "Conv2D",
9 "scope": "conv1",
10 "layer_params": {"out_size": 8, "k_size": 3},
11 "normalizer": {"operator": "BatchNormalization"},
12 "activation": {"operator": "ReLU"},
13 "initializer": {"operator": "he_normal"},
14 "regularizer": {"operator": "WeightDecay", "arguments":

{"amount": 1}},
15 },
16 {
17 "layer": "Conv2D",
18 "scope": "conv2",
19 "layer_params": {"out_size": 8, "k_size": 3, "strides":

4},
20 "normalizer": {"operator": "BatchNormalization"},
21 "activation": {"operator": "ReLU"},
22 "initializer": {"operator": "he_normal"},
23 },
24 {
25 "layer": "Conv2D",
26 "scope": "conv3",
27 "layer_params": {"out_size": 16, "k_size": 3},
28 "normalizer": {"operator": "BatchNormalization"},
29 "activation": {"operator": "ReLU"},
30 "initializer": {"operator": "he_normal"},
31 },
32 {
33 "layer": "LinearInterpolate",
34 "scope": "linear_upsample",
35 "layer_params": {"rate": 4},
36 },
37 {
38 "layer": "Conv2D",
39 "scope": "conv4",
40 "layer_params": {"out_size": 32, "k_size": 3},
41 "normalizer": {"operator": "BatchNormalization"},
42 "activation": {"operator": "ReLU"},
43 "initializer": {"operator": "he_normal"},
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44 },
45 {
46 "layer": "Conv2D",
47 "scope": "conv5",
48 "layer_params": {"out_size": 1, "k_size": 3},
49 "normalizer": {"operator": "BatchNormalization"},
50 "activation": {"operator": "Sigmoid"},
51 "initializer": {"operator": "he_normal"},
52 },
53 ]
54 input = tf.placeholder(tf.float32 , shape=(16, 256, 256, 2))
55 true_out = tf.placeholder(tf.float32 , shape=(16, 256, 256, 1))
56 is_training = tf.placeholder(tf.bool , shape=(,))
57

58 model = scinets.model.NeuralNet(
59 input=input ,
60 true_out=true_out ,
61 architecture=architecture ,
62 loss_function=loss_function ,
63 is_training=is_training ,
64 )
65

66 with tf.Session () as sess:
67 sess.run(tf.global_variables_initializer ())
68

69 feed_dict = {input: INPUT_IMAGE , true_out: TRUE_MASK ,
is_training=False ,}

70 proposed_segmentation , loss = sess.run([model.out , model.
loss], feed_dict=feed_dict)

Here we create a standard feed-forward neural network with no skip connec-
tions for image segmentation. The loss function is a F2 style loss.

The INPUT_IMAGE is the PET/CT image we want to segment, and TRUE_MASK
is the ground truth segmentation mask for that image. How we load these will
be the focus of the next section.

Finally, we store the proposed segmentation mask and the loss in the associated
variables.

The data module

The data module contains everything needed for data loading and preprocessing.
It contains three base classes, one dataset class, one data reader class and one
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preprocessing class. The full data loading pipeline is summarised in the flowcharts
shown in Figure 3.4.

The Reader classes is responsible for loading data from disk, preprocessing it and
feeding it to the TensorFlow graph. The way this is implemented is through a
Python generator that iterates through the dataset in a random order and yields
the preprocessed inputs and targets (the wanted outcome of the network). This
generator is then fed into the TensorFlow tf.nn.Dataset class which stacks n
outputs of the generator into a TensorFlow node [12].

The benefit of using the TensorFlow tf.nn.Dataset class are two-folds. Firstly, it
offers a wrapper to Python generators, which allows the data to be lazily2 loaded
and preprocessed. Secondly, it allows for parallel prefetching. That is, loading and
preprocessing a batch while the network is training with the current batch.

During the development phase of this module, it was found that prefetching a single
batch yielded the same performance as keeping the entire dataset in memory. As
a consequence, we gain optimal data throughput without sacrificing memory.

A key part of the data reader classes is the preprocessing of the input images and
segmentation masks, which is accomplished by the Preprocessing classes. Every
preprocessor has four methods, __init__, which sets the preprocessor paramet-
ers; __call__, which takes two numpy arrays, image and target, as input and
returns a preprocessed version of them; output_channels, which returns the num-
ber of image channels after preprocessing; and output_targets, which returns the
number of segmentation masks after preprocessing.

The usefulness of the __init__ and __call__ methods of the preprocessors is
clear. They are the functions that set the preprocessor parameters and perform
the preprocessing. The usefulness of output_channels and output_targets, on
the other hand, is less clear. These functions have to be implemented since the
TensorFlow IO nodes need to know the dimensions of the inputs. Thus, the results
of these functions are fed into the TensorFlow Dataset constructor.

Finally, we introduce the main component of the data module, the scinets tf.nn
.Dataset class. This class generates three instances of the Reader class, one for
the training dataset, one for the validation dataset and one for the testing dataset.
The TensorFlow IO nodes provided by the data readers are fed through conditional
TensorFlow nodes to yield a single output node. These boolean TensorFlow nodes

2Lazy evaluation is a programming technique in which an iterable data structure generates
its elements when they are requested. For more information, see the Python documentation for
generators.
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TensorFlow
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(validation data)
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is_testing
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Figure 3.4: Flowcharts demonstrating how the data loading pipeline works. The arrows
leaving the large boxes represent the contents of the TensorFlow node provided by the
classes. (a) shows how the data reader class works; the data generator (lazily) loads single
datapoints from the dataset in a random order. The dataset is then passed through the
preprocessor as numpy arrays before being fed into the TensorFlow Dataset. (b) shows
how the outputs of the data loader are passed through two conditional TensorFlow nodes,
that depend on boolean TensorFlow placeholder nodes to discern which dataset to load
data from. Thus, the single output node of the dataset class is the only node required
as input to the neural network. Thus, the datapoints are only loaded from disk when
they are required, which reduces the memory footprint.
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Figure 3.5: The structure of the dataset files. The dashed boxes are the HDF5 datasets,
the forks with text overhead denotes HDF5 groups.

dependend on two TensorFlow placeholders, is_training and is_testing, that
specify which dataset to use.

There is one kind of data reader provided in SciNets; HDFReader. The HDFReader
loads data on the HDF5 format, which is described in Section 3.2.1. For the

dataset files to be supported by the HDFReader, it needs to be in a specific format.
In particular, the inputs and targets of the model should be stored in separate
HDF5 datasets3 but in the same group. The first axis of the datasets represent
the different datapoints (i.e. first element in the training dataset corresponds to
the first element of the targets dataset and so forth).

Furthermore, a HDFDataset class is provided which wraps the HDFReader. For
this class to work, the training, validation and testing sets must be in the same
HDF5 file, but in separate groups. The dataset instance will then lazily load the
datapoints from the HDF5 file as requested by the network. Figure 3.5 shows an
illustration of how the HDF5 files should be structured for the HDFDataset class
to work. Additionally, Example 3.1.4 shows how the HDFDataset class can be used
with a SciNets model.

3In HDF5 files, a dataset is a multidimensional array stored to disk [87].
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Example 3.1.4 (SciNets HDFDataset and model.).

1 import tensorflow as tf
2 import scinets.model
3 import scinets.data
4

5

6 loss_function = ({"operator": "BinaryFBeta", "arguments": {"beta
": 2}},)

7 architecture = [
8 ...
9 ]
10

11 preprocessor = {
12 "operator": "WindowingPreprocessor",
13 "arguments": {
14 "window_width": 100,
15 "window_centers": 1070,
16 }
17 }
18

19

20 is_training = tf.placeholder(tf.bool , shape=(,))
21 is_testing = tf.placeholder(tf.bool , shape=(,))
22

23 train_batch_size = 8
24 val_batch_size = 16
25 test_batch_size = 16
26

27 dataset = scinets.data.HDFDataset(
28 data_path="/data/data_2d.h5"
29 batch_size=[train_batch_size , val_batch_size ,

test_batch_size ,]
30 train_group="train"
31 val_group="val"
32 test_group="test",
33 preprocessor=preprocessor ,
34 is_training=is_training ,
35 is_testing=is_testing
36 )
37 model = scinets.model.NeuralNet(
38 input=input ,
39 true_out=true_out ,
40 architecture=architecture ,
41 loss_function=loss_function ,
42 is_training=is_training ,
43 )
44
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45 with tf.Session () as sess:
46 sess.run([tf.global_variables_initializer (), dataset.

initializers ])
47

48 feed_dict = {is_training=False , is_testing=False ,}
49 proposed_segmentations , losses = sess.run([model.out , model.

loss], feed_dict=feed_dict)

Here we create a HDF5Dataset using an HDF file with path ”/data/data 2d.h5”.
Each training batch contain 8s samples, whereas the validation batch and test-
ing batch contain 16 samples each.

The group with the training data is called ”train”, the group with the valida-
tion data is called ”val” and the group with the test data is called ”test”.

For preprocessing, we use a WindowingPreprocessor, which simply reduces
the dynamic range of the image.

Finally, we use this model as input to a feed forward network with the same
architecture as in Example 3.1.3 and store the proposed segmentations and
losses for 16 random validation images.

Also, note that the dataset class provides an initializers attribute, which must
be run to activate the TensorFlow dataset nodes

The trainer module

The trainer module is also a relatively small module. It contains three kinds of
classes, optimisers, learning rate schedulers and the network trainer. The optim-
isers provide an interface for updating the weights of the network, the learning
rate schedulers enable a learning rate that varies with iteration number and the
trainer class provides a high-level interface to train a SciNets model.

The learning rate schedulers generate the TensorFlow node representing the learn-
ing rate. This is done by providing the schedulers with a TensorFlow node that
keeps track of the number of training steps that has been performed as well as the
number of training steps per epoch. This allows us to have a learning rate that
varies with the current iteration number. Thereafter, the build_lr_scheduler
method is called, which creates and returns a TensorFlow node representing the
current learning rate.
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The optimisers are subclasses of the TensorFlow tensorflow.train.Optimizer
class. See the TensorFlow documentation for more information about this class
[88].

Finally, the NetworkTrainer class provide an easy method to train SciNets models.
Upon initiation of this class, several inputs are provided, a list of which is seen in
Table 3.2. After initialisation, we call the train method of the NetworkTrainer
to train the model. The number of training steps to perform and an active

TensorFlow session should be given as arguments to this function. Alternatively,
it is possible to call the train_step method to perform a single training step at
a time (which, amongst others is useful for debugging purposes). An example of
the NetworkTrainer in action can be found in Example 3.1.5.

Finally, we note that the train and train_step methods have an optional argu-
ment, additional_ops. The input to this argument should be a list of additional
TensorFlow operators to run during the training iterations. The output of these
nodes are the return values of these methods. This option is added so we, for
example, can perform logging during training.

Table 3.2: The inputs to the scinets.trainer.NetworkTrainer class.

Input argument Description

model The model that should be trained.

steps per epoch The number of training steps per epoch.

log dir Directory to store checkpoints in

train op Dictionary parametrising the training operator.

learning rate scheduler Dictionary parametrising the learning rate scheduler.

max checkpoints Maximum number of checkpoints to store.

save step The number of training steps to perform between each
checkpoint.

verbose The verbosity level.

The parametrising dictionaries is on the form {"operator": name, "arguments":
kwargs}, where name is a string containing the name of the operator to use and
kwargs is an optional keyword argument dictionary that is passed to the con-
structor.

Example 3.1.5 (Training a SciNets model).

1 import tensorflow as tf
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2 import scinets.model
3 import scinets.data
4 import scinets.trainer
5

6

7 loss_function = ({"operator": "BinaryFBeta", "arguments": {"beta
": 2}},)

8 architecture = [
9 ...
10 ]
11

12 preprocessor = {
13 ...
14 }
15

16

17 is_training = tf.placeholder(tf.bool , shape=(,))
18 is_testing = tf.placeholder(tf.bool , shape=(,))
19

20 train_batch_size = 8
21 val_batch_size = 16
22 test_batch_size = 16
23

24 dataset = scinets.data.HDFDataset(
25 ...
26 )
27 model = scinets.model.NeuralNet(
28 ...
29 )
30

31 steps_per_epoch = len(dataset)// dataset.batch_size [0]
32 train_op = {"operator": "Adam"}
33 learning_rate_scheduler = {
34 "operator": PolynomialDecay ,
35 "arguments": {"decay_steps": 10000, "power": 1,}
36 }
37

38 trainer = scinets.trainer.NetworkTrainer(
39 model=model ,
40 log_dir="./logs",
41 steps_per_epoch=steps_per_epoch ,
42 train_op=train_op ,
43 learning_rate_scheduler=learning_rate_scheduler ,
44 max_checkpoints=5,
45 save_steps=2000,
46 verbose=True ,
47 )
48
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49 with tf.Session () as sess:
50 sess.run([tf.global_variables_initializer (), dataset.

initializers ])
51

52 trainer.train(sess , num_steps=1000,)
53

54 feed_dict = {is_training=False , is_testing=False ,}
55 proposed_segmentations , losses = sess.run([model.out , model.

loss], feed_dict=feed_dict ,)

The code above creates a neural network using a dataset in the same method as
in Example 3.1.4. This time, however, we also create a network trainer, using
the ADAM optimizer and a linear learning rate scheduler. The network is then
trained for 10000 iterations, storing the network weights every 2000 iteration.
Finally, the segmentation masks and losses for 16 random validation images are
computed (with the trained model) and stored in the proposed_segmentation
and losses variables.

The utils module

The utils module contains several utility classes separated over three submodules:
the evaluator module, the logger module and the experiment module. The
evaluator module contains two kinds of classes, evaluators and network testers.
The former creates TensorFlow nodes that compute performance metrics of the
network (such as accuracy, sensitivity and specificity). The network testers, on the
other hand, are responsible for iterating through the whole dataset and computing
the average performance metrics.

There are two kinds of evaluator supplied with SciNets, ClassificationEvaluator
and BinaryClassificationEvaluator. These evaluators provide performance

metrics specific for classification problems in general and binary classification prob-
lems. It is, however, not difficult to create an evaluator class, as its only property
is having TensorFlow nodes as attributes. Thus, to create a new evaluator, one
only needs to subclass the BaseEvaluator and add attributes for the quantities of
interest.

In addition to the evaluator submodule, we have the logger submodule. In this
module, we provide an easy-to-use interface to track the model performance during
training.

To create a logger instance, it should be provided with an evaluator instance.
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It will then create a TensorFlow node (or a collection of nodes in an iterable)
responsible for creating ”entries” in the training log and validation log, whose
names are train_log_op and val_log_op, respectively.

In addition, the logger classes need to store log entries after they have been com-
puted. There are two methods that do this, the log method and the log_multiple
method. The former takes a single log entry as well as an integer that represents
which iteration that entry corresponds to as well as a string that signifies whether
it is a validation log or a training log, before adding that entry to its log. Similarly,
the log_multiple method takes a list of entries and a list of iteration numbers and
logs all of them in the correct log. Before these methods can be used, however, the
init_logging, which does the final logger preparation (e.g. by storing the current
session in an instance attribute) method must be called.

Thus, to log the performance during training, we first need to create an evaluator,
then feed this evaluator into a logger. Thereafter, we start the TensorFlow session
and initiate the loggers, using their init_logging method. Then, during train-
ing, we supply the train_log_op-operators so they are computed simultaneously
as the variable update operator is called. Finally, we supply the results of the
train_log_op-operators to the log_multiple method of the logger.

There are three loggers provided in the SciNets package; a TensorboardLogger,
an HDF5Logger and a SacredLogger. The TensorboardLogger creates logs that
are compatible with TensorBoard. TensorBoard is a dashboard created by Google
to accompany the TensorFlow package [12]. It makes it easy to follow the train-
ing procedure as it is occuring, and can create a plethora of diagnostic graphs.
Figures 3.6, 3.7, 3.8 and 3.9 show examples of different dashboards that can be
created with TensorBoard.

Similarly, the SacredLogger creates logs that are compatible with the Sacred pack-
age [89]. Sacred is a general-purpose tool for logging of machine learning exper-
iments and a particularly useful part of Sacred is its ability to connect with a
database of already run experiments. Thus, by using the SacredLogger, we are
able to collect a database of previously run experiments and compare their results.
Keeping a database of the previously run experiments ensures reproducability.
In addition, the SacredBoard library [89] allows us to host a webpage with a
dashboard to easily interact with the database. Thus, by using the Sacred and
SacredBoard libraries, we can compare the performance of the different models
easily. Using the Sacred library involves some overhead, we therefore recommend
to read the source code for the run sacred.py command line interface program to
understand how to use this logger.
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Finally, we have the HDF5 logger. This logger simply creates a HDF5 file with the
corresponding logs stored in the train group and validation group, respectively.
Example 3.1.6 shows how to use the TensorBoardLogger.

Example 3.1.6 (Using the TensorboardLogger class).

1

2 import tensorflow as tf
3 import scinets.model
4 import scinets.data
5 import scinets.trainer
6

7

8 loss_function = ({"operator": "BinaryFBeta", "arguments": {"beta
": 2}},)

9 architecture = [
10 ...
11 ]
12

13 preprocessor = {
14 ...
15 }
16

17

18 is_training = tf.placeholder(tf.bool , shape=(,))
19 is_testing = tf.placeholder(tf.bool , shape=(,))
20

21 train_batch_size = 8
22 val_batch_size = 16
23 test_batch_size = 16
24

25 dataset = scinets.data.HDFDataset(
26 ...
27 )
28 model = scinets.model.NeuralNet(
29 ...
30 )
31

32 steps_per_epoch = len(dataset)/dataset.batch_size [0]
33 train_op = {"operator": "Adam"}
34 learning_rate_scheduler = {
35 ...
36 }
37

38 trainer = scinets.trainer.NetworkTrainer(
39 ...
40 )
41 evaluator = scinets.utils.Evaluator(model)
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42 logger = scinets.utils.TensorboardLogger(
43 evaluator ,
44 log_dir="./logs",
45 log_dicts=[
46 {
47 "log_name": "Loss",
48 "log_var": "loss",
49 "log_type": "scalar",
50 },
51 {
52 "log_name": "Dice",
53 "log_var": "dice",
54 "log_type": "scalar",
55 },
56 {
57 "log_name": "PET",
58 "log_var": "input",
59 "log_type": "image",
60 "log_kwargs": {"max_outputs": 1, "channel": 0}
61 },
62 {
63 "log_name": "Mask",
64 "log_var": "true_out",
65 "log_type": "image",
66 "log_kwargs": {"max_outputs":1}
67 },
68 {
69 "log_name": "Probability_map",
70 "log_var":"probabilities",
71 "log_type": "image",
72 "log_kwargs": {"max_outputs":1}
73 },
74 ]
75 )
76

77

78 with tf.Session () as sess:
79 sess.run([tf.global_variables_initializer (), dataset.

initializers ])
80

81 for i in range (10):
82 train_summaries , it_nums = trainer.train(sess , num_steps

=100, additional_ops=[logger.train_summary_op ])
83 logger.log_multiple(train_summaries , it_nums , log_type="

train")
84 val_summaries = sess.run(self.logger.val_summary_op)
85 logger.log(val_summaries , it_nums[-1], log_type="val")
86
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87 feed_dict = {is_training=False , is_testing=False ,}
88 proposed_segmentations , losses = sess.run([model.out , model.

loss], feed_dict=feed_dict ,)

In this example, we see how to use the Tensorboard logger can be used to
easily create a dashboard like the one shown in Figures 3.6 and 3.7. The
BinaryClassificationEvaluator instance provides performance metrics for
the neural network that can be logged by the TensorboardLogger instance.
The logs are stored in the directory specified by the log_dir argument of the
TensorboardLogger.

This example creates four logs, two line plots and two images. The log_name
key of the a log dictionary represents the name of the TensorFlow node

that computes the Tensorboard logs. The log_var key is which attribute
of the BinaryClassificationEvaluator to log. Finally, the log_type and
log_kwargs keys parametrise the log operator to create.

The last submodule in the utils module is the experiment module. This module
contains the NetworkExperiment class, which wraps all classes mentioned above
into an easy-to-use interface. The input to this class is a set of dictionaries that
parametrise the dataset, model, trainer, evaluator and logger. An illustration of
which dictionaries parametrise which part of a network experiment is shown in
Figure 3.11 Thus, all parts in the training and evaluation pipeline are taken care
of and best practices are enforced.

Several functionalities are available once NetworkExperiment is initiated4. First,
and foremost, a train method is provided, which takes care of data loading, train-
ing and validation. As a consequence, one needs not worry about training or
validating on the incorrect dataset.

Another method of interest is the evaluate_model method. This method computes
the final evaluation metrics for all data points in the specified dataset and returns
them as a dictionary (whose keys are evaluation metrics and values are a list
containing the results for each data point).

An important use-case of the evaluate_model method is to find the best perform-
ing model amongst all checkpointed models. This is exactly what the find_best_model
method does. It takes which evaluation metric to use as input, whether it is the

mean or the median of it that should be used and which dataset to evalute on. If
the test set is chosen, then the user will be warned twice before finding the best

4The format of the input dictionaries are described in Appendix A.
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dataset. This is to prevent evaluating on the test set without being 100% certain
that it is our goal.

Finally, we have the store_outputs method. This method computes the evalu-
ation metrics and input-output pairs of all data points in the specified dataset and
stores it in a HDF5 file, making post-training evaluation such as plotting histo-
grams of performance metrics easy. For a full example that demonstrates how to
use the NetworkExperiment class, see Example 3.1.7

Example 3.1.7 (Using the NetworkExperiment class).

1 from scinets.utils import NetworkExperiment
2 experiment_params = {
3 ...
4 }
5 dataset_params = {
6 ...
7 }
8 log_params = {
9 ...
10 }
11 model_params = {
12 ...
13 }
14 trainer_params = {
15 ...
16 }
17

18 experiment = NetworkExperiment(
19 experiment_params=experiment_params ,
20 model_params=model_params ,
21 dataset_params=dataset_params ,
22 trainer_params=trainer_params ,
23 log_params=log_params ,
24 )
25

26 num_steps = 10000
27 experiment.train(num_steps) # Train for 10 000 steps
28

29 best_it , result , result_std = experiment.find_best_model("val",
"dice")

30 print(" Final score ")
31 print(
32 f" Achieved a Dice of {result :.3f}, with a standard "
33 f"deviation of {result_std :.3f}"
34 )
35 print(f" This result was achieved at iteration {best_it}")
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This code will train a model according to the parameters. An overview of the
parameter structure is given in Appendix A. After which, the network will
iterate through all checkpointed models and compute the average Dice for all
of them and print the best value. Example of a possible printout is given
below:

Final score
Achieved a Dice of 0.567 with a standard deviation of 0.281
This result was achieved at iteration 4000
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Figure 3.6: Screenshot of some automatic diagnostic line plots created by the
TensorboardLogger.
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Figure 3.7: Screenshot of some automatic diagnostic image illustrations created by the
TensorboardLogger. The images show the PET channel, CT channel, predicted mask
and true mask.
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Figure 3.8: Screenshot of an automatically generated TensorFlow computation graph
visualisation.

Figure 3.9: Screenshot of some automatic histograms created by the
TensorboardLogger. These histograms show the distribution of predicted class labels
for pixels.
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(a)

(b)
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(c)

Figure 3.10: Three screenshots from the dashboard automatically created by the sacred
logger. (a) shows the dashboard overview with the final evaluation metric (in this case
Dice) in the results column, making it easier to compare models. (b) shows the view when
one of the models are expanded, showing that all model parameters are logged with the
experiment. (c) shows the logged performance metrics, which updates real-time during
training.



3.1. CODE OUTLINE 97

Ex
pe
ri
me
nt

Da
ta
se
t

Mo
de
l

In
it
ia
li
ze
r

Re
gu
la
ri
ze
r

No
rm
al
iz
er

Lo
ss

Tr
ai
ne
r

Ev
al
ua
to
r

Op
ti
mi
ze
r

Le
ar
ni
ng
Ra
te
Sc
he
du
le
r

Ne
tw
or
kT
es
te
r

Lo
gg
er

La
ye
r

Ac
ti
va
ti
on

Pr
ep
ro
ce
ss
or

Da
ta
re
ad
er

e
x
p
e
r
i
m
e
n
t
_
p
a
r
a
m
s

l
o
g
_
p
a
r
a
m
s

t
r
a
i
n
e
r
_
p
a
r
a
m
s

m
o
d
e
l
_
p
a
r
a
m
s

d
a
t
a
s
e
t
_
p
a
r
a
m
s

F
ig
u
re

3
.1
1
:

F
lo

w
ch

ar
t

il
lu

st
ra

ti
n

g
th

e
co

m
p

on
en

ts
of

a
Ne

tw
or

kE
xp

er
im

en
t

in
st

an
ce

.
E

ac
h

co
m

p
on

en
t

is
co

lo
u

r
co

d
ed

af
te

r
th

e
in

p
u
t-

d
ic

ti
o
n

ar
y

th
a
t

p
a
ra

m
et

ri
se

s
it

.



98 CHAPTER 3. CODE

The subclass register

One key component of the SciNets library is the SubclassRegister utility class.
This class is the backbone of how the different get_ functions (e.g. get_layer)
work, and is therefore integral to creating layers, regularisers, etc. from strings.
To demonstrate how it works, consider Example 3.1.8

Example 3.1.8 (The subclass register).

1 from scinets._backend_utils import SubclassRegister
2

3 car_register = SubclassRegister('car')
4

5 @car_register.link_base
6 class BaseCar:
7 def honk(self):
8 print('HONK')
9

10 class Sedan(BaseCar):
11 def __init__(self, num_seats):
12 self.num_seats = num_seats
13

14 class SUV(BaseCar):
15 def __init__(self, num_seats , trunk_size):
16 self.num_seats = num_seats
17 self.trunk_size = trunk_size
18

19

20 print(car_register.available_classes)
21 suv_instance = car_register["SUV"](4, 20)
22 print(type(first_sub_instance))
23 sedan_instance = car_register["sedan"](5)
24 print(type(sedan_instance))

('Sedan ', 'SUV ')
<class '__main__.SUV '>
-----------------------------------------------------------
IndexError Traceback (most recent call last)
...
IndexError: sedan is not a valid name for a car.
Available layers are (in decreasing similarity):

* Sedan
* SUV

In the code above, we demonstrate some of the components of a subclass
register. Firstly, in line 3, we create a subclass register that should register
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car classes (this name is only used for error messages). Then, we use the
link_base class decorator when we create the base class for all cars. This
decorator ensures that all subclasses of BaseCar are placed in the subclass
register upon creation. Then, we create two car classes, Sedan and SUV.

Finally, we use the subclass register to create class instances. Firstly, we print
the available classes, that is the name of all subclasses of BaseCar. Thereafter,
we create a SUV instance, by indexing the subclass register for the class with
name "SUV". Finally, we try to create a Sedan instance, however, we forgot
to capitalise the ”S”, which throws an index error. In the traceback of this
exception, the available classes are listed, sorted by similarity with the query
string.

The subclass register provides several essential parts of the SciNets package. Firstly,
it makes it possible to specify which class to use in a string-format, whilst still mak-
ing the library extendible. One option is to use the getattr builtin in Python.
However, this would require us to change the SciNets library itself every time we
want to add a new type of layer. By doing it this way, that is unnecessary, as will be
demonstrated in Extending SciNets section on page 102. Furthermore, by listing
the available subclasses in sorted order when a misspelling is used, we make it easy
for the users to detect typos in their configuration files. The SubclassRegister
class is, in other words an essential part of SciNets.

Command line interfaces

Several command line interfaces, or CLIs, are supplied with the SciNets lib-
rary. We will now introduce two, the rest are presented in Appendix B. The
first CLI, run sacred, takes three arguments (database credentials, experiment and
num steps) and two optional arguments (--eval and --name). An explanation of
the arguments provided to this class is listed in Table 3.3.

The run sacred program starts a connection with a MongoDB database in which
the Sacred logs are stored before starting a SciNets experiment which is trained
for num steps training steps. When the SciNets experiment is finished training,
all checkpoints are iterated through, finding which checkpoint yielded best per-
formance on validation dataset with respect to the metric supplied with the --eval
argument. This checkpoint is logged, and the evaluation metric is stored as the
experiment result, making it easy to find in the Sacred dashboard. Example files
for database credential files and experiment folders are supplied with the SciNets
library.
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Table 3.3: A short description of the arguments of the run sacred CLI.

Argument Description

database credentials Path to a YAML file contianing the database credentials.

experiment Path to a folder containing the experiment files.

num steps The number of training steps to perform

--eval The evaluation metric to use when finding the best check-
point

--name The name of the experiment (used in logs, etc.)

The experiment folder should contain the files “experiment params.json”,
“dataset params.json”, “model params.json”, “trainer params.json” and
“log params.json”.

The second CLI provided by the SciNets library is the store outputs program.
This program takes two arguments (experiment, model version and eval metric)
and three optional arguments (--storefile, --stepnum and --skip summary). An
explanation of these arguments are given in Table 3.4.

The store outputs program creates an NetworkExperiment using the information in
the experiment folder. The model version is used to find the correct log/checkpoint
folder. Thereafter, the program goes through all checkpoints and finds the optimal
weights with respect to the specified evaluation metric. This step is skipped if
the --stepnum argument is provided. Next, the program prints a summary of
all evaluation metrics at the specified checkpoint in the terminal window, unless
the --skip summary argument is set to True. Finally, if the --storefile argument
is provided, then all evaluation metrics for all images as well as all input-output
pairs of the model are computed and stored in a HDF5 file.

The model version argument is neccessary since the same experiment can be ran
twice with the same name and the same log-folder. To prevent the logs from
overwriting each other, the number of times the same experiment has been run
previously is appended to the log-folder name (i.e. the first time an experiment
is run, it gets the name ExperimentName00, the second time, it gets the name
ExperimentName01 and so on).
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Table 3.4: A short description of the arguments of the store outputs CLI.

Argument Description

experiment Path to a folder containing the experiment files.

model version The ”experiment ID”.

eval metric The evaluation metric to use when finding best checkpoint.

--storefile The path where the evaluation HDF5 file should be stored.

--stepnum The best iteration number.

--skip summary True if the intermediate summary should be skipped.

The experiment folder should contain the files “experiment params.json”,
“dataset params.json”, “model params.json”, “trainer params.json” and
“log params.json”.

The SciNets container

Installing the required version of TensorFlow is not a trivial task, as it requires
the installation of old versions of CUDA and cuDNN. This problem is alleviated
by the fact that SciNets is created using TensorFlow 1.X, not 2.X. TensorFlow 2.X
includes a major rewrite of the TensorFlow API, and will, upon release, break the
SciNets codebase5. Thus, to make SciNets easily accessible, we have provided a
Docker image with SciNets installed.

Docker is a program that enables us to run virtual machines with little to no
performance overhead [90]. To use it, we need to a Dockerfile, which is a ”recipe”
for creating a virtual machine. This image contains information about which
operating system to use, which programs to install and what commands to run
when the virtual machine is started. Thus, by creating a Docker image with the
correct version of TensorFlow, CUDA and cuDNN, we ensure that the tools created
in this project can be run on any computer. A Dockerfile with SciNets and all of
its dependencies installed is available on the GitHub repository.

5The reason SciNets is built using TensorFlow 1.X is that 2.X is not released at the time of
writing.
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Extending SciNets

SciNets has, as mentioned earlier, been designed with the goal of extendability.
To demonstrate this, we introduce two examples, one where we define a new layer
and one where we define a new loss function.

Example 3.1.9 (Creating custom layers).

1 import tensorflow as tf
2 import scinets.model
3 from scinets.model.layers import Conv2D
4

5 class Conv3D(Conv2D):
6 def _build_layer(
7 self,
8 out_size ,
9 k_size=3,
10 use_bias=True ,
11 dilation_rate=1,
12 strides=1,
13 padding="SAME",
14 ):
15 out = tf.layers.conv3d(
16 self.input ,
17 out_size ,
18 kernel_size=k_size ,
19 use_bias=use_bias ,
20 kernel_initializer=self.initializer ,
21 strides=strides ,
22 dilation_rate=dilation_rate ,
23 padding=padding ,
24 kernel_regularizer=self.regularizer ,
25 )
26 out = self.activation(out)
27 out = self.normalizer(out , name="BN")
28

29 return out
30

31

32 loss_function = ({"operator": "BinaryFBeta", "arguments": {"beta
": 2}},)

33 architecture = [
34 {
35 "layer": "Conv3D",
36 "scope": "conv1",
37 "layer_params": {"out_size": 8, "k_size": 3},
38 "normalizer": {"operator": "BatchNormalization"},
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39 "activation": {"operator": "ReLU"},
40 "initializer": {"operator": "he_normal"},
41 "regularizer": {"operator": "WeightDecay", "arguments":

{"amount": 1}},
42 },
43 {
44 "layer": "Conv3D",
45 "scope": "conv2",
46 "layer_params": {"out_size": 8, "k_size": 3, "strides":

4},
47 "normalizer": {"operator": "BatchNormalization"},
48 "activation": {"operator": "ReLU"},
49 "initializer": {"operator": "he_normal"},
50 },
51 {
52 "layer": "Conv3D",
53 "scope": "conv3",
54 "layer_params": {"out_size": 16, "k_size": 3},
55 "normalizer": {"operator": "BatchNormalization"},
56 "activation": {"operator": "ReLU"},
57 "initializer": {"operator": "he_normal"},
58 },
59 {
60 "layer": "LinearInterpolate",
61 "scope": "linear_upsample",
62 "layer_params": {"rate": 4},
63 },
64 {
65 "layer": "Conv3D",
66 "scope": "conv4",
67 "layer_params": {"out_size": 32, "k_size": 3},
68 "normalizer": {"operator": "BatchNormalization"},
69 "activation": {"operator": "ReLU"},
70 "initializer": {"operator": "he_normal"},
71 },
72 {
73 "layer": "Conv3D",
74 "scope": "conv5",
75 "layer_params": {"out_size": 1, "k_size": 3},
76 "normalizer": {"operator": "BatchNormalization"},
77 "activation": {"operator": "Sigmoid"},
78 "initializer": {"operator": "he_normal"},
79 },
80 ]
81 input = tf.placeholder(tf.float32 , shape=(16, 256, 256, 256, 2))
82 true_out = tf.placeholder(tf.float32 , shape=(16, 256, 256, 256,

1))
83 is_training = tf.placeholder(tf.bool , shape=(,))
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84

85 model = scinets.model.NeuralNet(
86 input=input ,
87 true_out=true_out ,
88 architecture=architecture ,
89 loss_function=loss_function ,
90 is_training=is_training ,
91 )
92

93 with tf.Session () as sess:
94 sess.run([tf.global_variables_initializer (), dataset.

initializers ])
95

96 feed_dict = {input: INPUT_IMAGE , true_out: TRUE_MASK ,
is_training=False ,}

97 proposed_segmentation , loss = sess.run([model.out , model.
loss], feed_dict=feed_dict)

This code does the exact same as the code in Example 3.1.3, except with three
dimensional convolutions instead of two dimensional ones. The lines of interest
are 5-29 and every ”layer” line in the architecture definition.

Example 3.1.10 (Creating custom layers).

1 import tensorflow as tf
2 import scinets.model
3 from scinets.model.loss import BaseLoss
4

5 class LpLoss(BaseLoss):
6 def __init__(self, p=2, name="loss_function"):
7 super().__init__(name=name)
8 self.p = p
9

10 def _buid_loss(self, prediction , target):
11 reduce_ax = range(1, len(prediction.get_shape ().as_list

())
12 p_err = tf.math.pow(prediction - target , self.p)
13 return tf.reduce_sum(p_err/p, ax=reduce_ax)
14

15 loss_function = ({"operator": "LpLoss", "arguments": {"p": 2}},)
16 architecture = [
17 ...
18 ]
19

20 preprocessor = {
21 ...
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22 }
23

24

25 is_training = tf.placeholder(tf.bool , shape=(,))
26 is_testing = tf.placeholder(tf.bool , shape=(,))
27

28 train_batch_size = 8
29 val_batch_size = 16
30 test_batch_size = 16
31

32 dataset = scinets.data.HDFDataset(
33 ...
34 )
35 model = scinets.model.NeuralNet(
36 ...
37 )
38

39 steps_per_epoch = len(dataset)// dataset.batch_size [0]
40 train_op = {"operator": "Adam"}
41 learning_rate_scheduler = {
42 "operator": PolynomialDecay ,
43 "arguments": {"decay_steps": 10000, "power": 1,}
44 }
45

46 trainer = scinets.trainer.NetworkTrainer(
47 model=model ,
48 log_dir="./logs",
49 steps_per_epoch=steps_per_epoch ,
50 train_op=train_op ,
51 learning_rate_scheduler=learning_rate_scheduler ,
52 max_checkpoints=5,
53 save_steps=2000,
54 verbose=True ,
55 )
56

57 with tf.Session () as sess:
58 sess.run([tf.global_variables_initializer (), dataset.

initializers ])
59

60 trainer.train(sess , num_steps=1000,)
61

62 feed_dict = {is_training=False , is_testing=False ,}
63 proposed_segmentations , losses = sess.run([model.out , model.

loss], feed_dict=feed_dict ,)

This code does the exact same as the code in Example 3.1.5, except with an
L2 loss instead of a F2 loss. The lines of interest are Line 5 through to 15.
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Both examples above demonstrate how easy it is to extend the SciNets library,
without changing any of its components. This extendability is made possible by
the SubclassRegister, which places the newly created classes in a dictionary.
Thus, when the get_layer or get_loss function is called with the name of the
new class, it is still found.

3.2 Organising the dataset

3.2.1 The HDF5 format

It is integral to keep the dataset organised when we tackle machine learning prob-
lems. We have chosen to use the HDF5 file format (or Hierarchical Data Format
5)[91], since it is recommended by NASA for storing large datasets [92]. A thor-
ough introduction to the HDF5 data format and how to use it in Python is given in
Python and HDF5: Unlocking Scientific Data by Collette [87]. We will, therefore,
only give a very brief introduction to the file format here.

A key component of HDF5 files is datasets, which contain a data array (the data)
and key-value pairs (the attributes). We will not discuss the key-value pairs in this
section. The data array can be stored directly on disc, or in a compressed format.
Furthermore, the data array can be stored in two ways, either in compressed
chunks, or decompressed. To see how we can create a dataset using the h5py
library, see Example 3.2.1.

One benefit of the HDF5 file format is that it allows for array slicing directly from
disc. Say we have a multidimensional array, and we want every second element of
the second axis. If this was a numpy array, we could simply write data = arr[0,
::2]. However, if we store this numpy array as a CSV file, we need to read the

entire dataset from disc in order to find the correct bytes. With the HDF5 format,
however, we can perform array slicing from disc, thus removing the time needed
to loading everything. This is demonstrated in Example 3.2.1.

Example 3.2.1 (HDF5 datasets).

1 import h5py
2 import numpy as np
3

4 random_data = np.random.randn(4, 2, 2).astype(np.float32)
5 with h5py.File("test_hdf5.h5", "w") as h5:
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6 h5.create_dataset("test_dataset", dtype=np.float32 , shape=
(4, 2, 2))

7 h5["test_dataset"][...] = random_data
8

9 with h5py.File("test_hdf5.h5", "r") as h5:
10 first_slice = h5["test_dataset"][0]
11 other_slice = h5["test_dataset"][:, 0, ::2]
12 all_data = h5["test_dataset"][...]
13

14 assert np.array_equal(random_data [0], first_slice)
15 assert np.array_equal(random_data [:, 0, ::2], other_slice)
16 assert np.array_equal(random_data , all_data)

Here we see that we can create a HDF5 file with filename ”test dataset.h5” us-
ing the h5py.File("test_hdf5.h5", "w") context. Furthermore, we can later
read from this dataset using the h5py.File("test_hdf5.h5", "r") context.

Another important part of the HDF5 format is groups. A group is like a folder in
the file system. These groups can contain two things, datasets and other groups
and is the origin of the hierarchical in the name of the file format. To understand
how groups can be used, consider Example 3.2.2

Example 3.2.2 (HDF5 groups).

1 import h5py
2 import numpy as np
3

4 random_data1 = np.random.randn(4, 2, 2).astype(np.float32)
5 random_data2 = np.random.randn(2, 2, 8).astype(np.float16)
6 with h5py.File("test_hdf5.h5", "w") as h5:
7 # Create groups
8 group = h5.create_group("group")
9 subgroup1 = group.create_group("subgroup1")
10 subgroup2 = group.create_group("subgroup2")
11

12 # Create datasets
13 test_dataset1 = subgroup1.create_dataset("test_dataset",

dtype=np.float32 , shape=(4, 2, 2))
14 test_dataset2 = subgroup2.create_dataset("test_dataset",

dtype=np.float16 , shape=(2, 2, 8))
15

16 # Set the data
17 test_dataset1 [...] = random_data1
18 test_dataset2 [...] = random_data2
19

20 with h5py.File("test_hdf5.h5", "r") as h5:
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21 first_slice = h5["group/subgroup1/test_dataset"][0]
22 other_slice = h5["group/subgroup2/test_dataset"][:, 0, ::2]
23

24 assert np.array_equal(random_data1 [0], first_slice)
25 assert np.array_equal(random_data2 [:, 0, ::2], other_slice)

Here we demonstrate how to crate HDF5 files with a folder layout in Python
using h5py. The structure is as follows, in the file root, we have one group
named ”group”. This group contains two subgroups, ”subgroup1” and ”sub-
group2” which contain one dataset each.

We could also have several groups in the file root, have several datasets in the
groups and have a combination of groups and subgroups in the same group.
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Experimental setup

4.1 The dataset

The dataset used in this project contains 3D PET/CT images and segmentation
masks for 197 patients that underwent treatment at the Oslo University Hospital,
the Radium Hospital. Affected lymph nodes and the gross tumour volume (GTV)
was used as the segmentation goal. The union of the ground truth segmentation
masks was used where multiple delineations existed. Finally, each image was
cropped in 3D to reduce class imbalance. The final slices contained between 0.02%
and 32% tumour/lymph-node pixels.

Three separate datasets are needed for deep learning; a training set, which we use
to train our network; a validation set, which we use to compare models; and a
test set, which we use to assess the quality of our final model. The datasets were
stratified by tumour stage such that the same datasets could be used for radiomics
research (e.g. by transfer learning). An overview of the dataset sizes are given in
Table 4.2

Two classes were used for the dataset at hand, healthy tissue and affected tissue.
A pixel was in the affected tissue class if it was delineated as either tumorous or
lymph node.

Each dataset file used for the experiments in this project were structured as follows.
There are three groups in the file root, “train” (142 patients), “test” (40 patients)
and “val” (15 patients). Each of these groups contain four datasets, “images”,
“masks”, “patient id” and “slice id”. An overview of the contents of these datasets

109
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Table 4.1: Description of the dataset file structure

Dataset Shape Datatype Contents

images [n images, x, y, c] float32 The input images.

masks [n images, x, y, m] float32 The segmentation masks.

patient id [n images] uint16 The patient ID number

slice id [n images] uint16 The current slice in the patient’s
3D image.

Overview of the structure of the HDF5 files used in this project. n images is the
total number of images in the dataset, x is the number of pixels in the x direction,
y is the number of pixels in the y direction, c is the number of input channels
(for PET/CT this is 2) and m is the number of segmentation masks (for binary
segmentation problems, this is a singleton axis).

Table 4.2: The number of patients in each of the datasets used to train the model.

Dataset No. patients

train 142

val 15

test 40

are given in Table 4.1 and the exact dataset sizes are given in Table 4.2.
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4.2 Model parameters

Architecture

Over 100 different experiments were run, all using a U-Net architecture (Sec-
tion 2.3.3 on page 61) [23], with the same number of layers, convolutions per layer
and skip connections as described in [23]. An overview of this architecture is given
in Table 4.3. Furthermore, all hyperparameters are reported in Table 4.4. Certain
parameters were discontinued during training when the performance was shown to
be suboptimal.

Layer type

Two types of layers were examined, convolutional layers and improved ResNet
layers. The convolutional layers used in this text consisted of a single kernel of
size 3, followed by a ReLU nonlinearity and finally batch normalisation. The
improved ResNet layers [64] are described in Section 2.1.11 on page 38.

Loss function

Four different loss functions were used, the cross entropy loss (Section 2.1.3 on
page 13), the Dice loss [42] (Section 2.3.2 on page 58) and the Fβ loss (Section 2.3.2
on page 60) with β = 2 and β = 4.

Optimiser

To train the network, the ADAM optimiser was used. After training all mod-
els with the Adam optimiser, the best performing model using only the CT
channel and the best performing model using PET/CT were trained using the
SGDR+Momentum algorithm. The hyperparameters chosen for the SGDR learn-
ing rate schedule are showed in Table 4.5.
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Table 4.3: Overview of the architecture used in this project.

Name Type Input No. output channels

Conv 1 Convolutional Input image 64

Conv 2 Convolutional Conv 1 64

MaxPool 1 Max Pooling Conv 2 64

Conv 3 Convolutional MaxPool 1 128

Conv 4 Convolutional Conv 3 128

MaxPool 2 Max Pooling Conv 4 128

Conv 5 Convolutional MaxPool 2 256

Conv 6 Convolutional Conv 5 256

MaxPool 3 Max Pooling Conv 6 256

Conv 7 Convolutional MaxPool 3 512

Conv 8 Convolutional Conv 7 512

MaxPool 4 Max Pooling Conv 8 512

Conv 9 Convolutional MaxPool 4 1024

Conv 10 Convolutional Conv 9 1024

UpConv 1 Upconvolutional Conv10 512

Conv 11 Convolutional UpConv 1, Conv 8 512

Conv 12 Convolutional Conv 11 512

UpConv 2 Upconvolutional Conv12 256

Conv 13 Convolutional UpConv 2, Conv 6 256

Conv 14 Convolutional Conv 13 256

UpConv 3 Upconvolutional Conv14 128

Conv 15 Convolutional UpConv 3, Conv 4 128

Conv 16 Convolutional Conv 15 128

UpConv 4 Upconvolutional Conv14 64

Conv 17 Convolutional UpConv 4, Conv 2 64

Conv 18 Convolutional Conv 17 64

Conv 19 Convolutional Conv 18 1

The Convolutional and upconvolutional layers were either standard layers or
Improved ResNet layers [64].
The inputs were concatenated for layers with multiple inputs.
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Table 4.4: Overview of the hyperparameters used for the U-Net architecture.

Hyperparameter Value(s)

Learning rate [0.0001, 0.00001]

Optimiser Adam

Nonlinearity ReLU

Normalizer Batch Normalisation

Initializer Normally distributed He

Layer type [Convolutional, Improved ResNet]

Loss [Cross entropy, F1, F2, F4]

Window centre [60 HU, 70 HU]

Window width [100 HU, 200 HU]

Batch size 16

Number of iterations 10000− 30000

Iterations between checkpoints 2000

Table 4.5: Overview of the hyperparameters used for the SGDR+momentum optimiser.

Hyperparameter Value(s)

αmin 0

αmax 0.05

Trestart 650 iterations (≈ 10 epoch)

Tmult 2

µ 0.9

Batch size 16
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No windowing

Windowing
Centre=70 HU
Width=200 HU

Figure 4.1: Illustration of Hounsfield windowing. The left image shows a CT slice with
full dynamic range whereas the right image shows the same CT slice but with reduced
dynamic range.

Preprocessing

There were three types of pre-processing performed on the training data. Remov-
ing the PET channel, removing the CT channel and reducing the dynamic range
of the CT channel through thresholding (henceforth named Hounsfield window-
ing). All possible combinations of preprocessing were performed (i.e. PET/CT,
PET/CT + windowing, CT, CT + windowing, PET). The focus of these exper-
iments are CT-only and PET/CT models, since CT is standard procedure when
performing a PET scan [5].

The Hounsfield windowing parameters were set after consulting with a radiologist.
The window centres were set approximately equal to the average tumour value
and median tumour value and the window size was set to encompass most of
the soft tissue dynamic range. he windowing parameters are given in Table 4.4.
Experiments were also run such that all windows were used simultaneously, fed
in as different input channels. An illustration of Hounsfield windowing is given in
Figure 4.1.
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4.3 The training procedure

A server with five Nvidia GeForce 1080Ti, one Intel Xeon E5-2620 CPU and 64 GB
RAM was used to train the models. Each model was trained using a single GPU,
but up to five models were trained concurrently (dependent on the availability).
Server restarts were common, as the company that owns it were doing experiments
at the same time. This led to some experiments being repeated several times and
others not being performed at all (in particular, the 60HU PET/CT experiments
crashed at a time when they could not be repeated). It took five weeks to train all
models. There was some downtime between experiments because of server restarts.
The GPUs were, therefore, used approximately 60% of these three weeks. Running
experiments in parallel reduced GPU time by approximately 40%.

For reproducability, all parameter files used in this project are located on the
SciNets GitHub repository (https://github.com/yngvem/scinets/). Further-
more, a virtual server was rented to store the Sacred logs in an off-site MongoDB
database, making it easy to compare runs performed on different computers.

4.4 Analysis of model performance

The average Dice score per slice was used to compare the different models.

Finally, when all models were trained, a network with the best hyperparameter-
setup for each modality was trained with a dataset file that did not contain any
validation-data or test-data. The Dice performance of these models on the valid-
ation set were then compared with the best over-all models to ensure that there
was no dataset-contamination.

https://github.com/yngvem/scinets/
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Chapter 5

Results

5.1 Hyperparameter effects on model perform-

ance

Let us start by exploring the effect of each hyperparameter on model performance.
The average Dice per slice (henceforth called performance) of each trained model
was stored in a database together with the hyperparameters of each run. Summary
statistics of the performance distrubution for each hyperparameter were computed
to assess which hyperparameter combination provided the highest performance
(henceforth called best).

For example, all trained models were separated by which layer type they used.
Then the summary statistics of the performances, such as mean and median per-
formance, were computed for all models with ResNet layers and all models with
convolutional layers. Thus, we have summary statistics that indicate whether
convolutional layers or ResNet layers provided the highest performance.

The tables in this and the following section only contain the results from the
experiments conducted with the Adam optimiser. The hyperparameters of the
SGDR+momentum models were chosen based on these results. The results from
the SGDR+momentum were therefore omitted here, to prevent skewing of the
results.

To measure performance, all checkpointed weights were tested. The highest per-
formance on the validation set was most commonly found at iteration 2000 and

117
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4000 while it was seldomly found at iteration 6000 and 8000. An epoch was ap-
proximately 650 iterations. The choice of learning rate did not have a noticable
impact on the optimal checkpoint. Typical loss and Dice curves are shown in
Figure 5.1

5.1.1 Single hyperparameters

The training loss of networks with ResNet layers did not decrease (with the ex-
ception of two models with vastly different hyperparameters). This is illustrated
in Table 5.1 which compares the efficiency of ResNet layers and convolutional lay-
ers on the validation set. During training, it became apparent that the partial
derivatives with respect to the parameters of the skip-connections in the ResNet
layers had significantly higher values than the partial derivatives with respect to
the residual blocks. This indicated exploding gradients on the skip connections
in ResNet layers. Therefore, all further analysis will disregard the results from
models using ResNet layers.

In Table 5.2, the summary statistics of the effects of the “loss” hyperparameter
on performance are shown. The cross entropy loss generally provided lower Dice
values than the Fβ loss for all tested values of β. Furthermore, the F2 and F4 loss
had higher performance than the F1 loss with respect to all performance summary
statistics.

Table 5.3 demonstrates that the model performance differed greatly depending on
the choice of “channels” hyperparameter. Models trained with PET/CT achieved
the best result, followed by the PET-only models. The CT-only models had lower
performance on all summary statistics of the average Dice.

The “learning rate” hyperparameter also has a notable effect on model perform-
ance, as demonstrated by Table 5.4. Specifically, it is clear that choosing a small
learning rate led to convergence to a worse local minimum than with a higher
learning rate.

Finally, Tables 5.5 to 5.7 display the results pertaining to CT windowing. Table 5.5
demonstrate that preprocessing CT images with Hounsfield windowing has a clear
influence on model performance. The effect of the windowing parameters was,
however, marginal, as is shown in Tables 5.6 and 5.7.
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Figure 5.1: The loss curves on a logarithmic scale (a) and Dice curves (b) for a typical
model. Note that the model has not converged, as the loss is still decreasing, however,
the validation lines have plateaued. The dark blue lines show the loss/Dice evaluated on
the training set (rolling average of performance over 51 iterations), the dark blue areas
represent one standard deviation and the light blue areas represent two standard devi-
ations. The orange lines show the loss/Dice performance on the validation set (evaluated
every 100th iteration on 256 random slices).
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Table 5.1: Dice results on the validation set for the “layer type” hyperparameter.

Layer type Min Max STD Mean Median No. experiments

Convolutional 0.439 0.620 0.043 0.549 0.548 168

ResNet 0.000 0.508 0.108 0.101 0.109 36

Table 5.2: Dice results on the validation set for the “loss” hyperparameter.

Loss Min Max STD Mean Median No. experiments

F1 0.469 0.611 0.047 0.541 0.541 41

F2 0.500 0.618 0.035 0.567 0.563 41

F4 0.515 0.620 0.033 0.566 0.558 33

Cross entropy 0.439 0.604 0.042 0.533 0.514 33

Table 5.3: Dice results on the validation set for the “channels” hyperparameter.

Channels Min Max STD Mean Median No. experiments

CT 0.439 0.565 0.027 0.520 0.517 80

PET 0.557 0.594 0.012 0.577 0.580 14

PET/CT 0.545 0.620 0.018 0.593 0.595 54

Table 5.4: Dice results on the validation set for the “learning rate” hyperparameter.

Learning rate Min Max STD Mean Median No. experiments

0.00001 0.442 0.582 0.039 0.525 0.526 20

0.0001 0.439 0.620 0.042 0.552 0.555 148

Table 5.5: Dice results on the validation set for the “windowing” hyperparameter.

Windowing Min Max STD Mean Median No. experiments

False 0.439 0.595 0.046 0.545 0.561 48

True 0.469 0.620 0.042 0.550 0.546 120
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Table 5.6: Dice results on the validation set for the “window centre” hyperparameter.

Window centre Min Max STD Mean Median No. experiments

60 HU 0.485 0.562 0.025 0.526 0.529 24

70 HU 0.493 0.565 0.021 0.527 0.528 32

Both 0.469 0.548 0.025 0.509 0.507 16

Only results from the CT-only models are shown here as the server crashed during the
experiments with PET/CT input and window size 60. Including PET/CT perform-
ances where available would therefore yield interpretable results.

Table 5.7: Dice results on the validation set for the “window width” hyperparameter.

Window width Min Max STD Mean Median No. experiments

100 HU 0.488 0.617 0.041 0.552 0.547 44

200 HU 0.485 0.620 0.040 0.553 0.549 44

Both 0.469 0.617 0.045 0.544 0.542 32
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Figure 5.2: Jitter plot showing the performance of the different models on the validation
set grouped by loss function and input channels.

5.1.2 Hyperparameter combinations

There are certain pairs of hyperparameters whose joint analysis are of interest.
Pairwise tables and a colour-coded jitter plot are therefore provided, demonstrating
model performance for certain hyperparameter combinations. It should be noted
that the results obtained using ResNet and a low learning rate are omitted due to
their poor performance.

Table 5.8 shows the Dice performance on the “loss” and “channels” hyperparamet-
ers, demonstrating that the F2 and F4 loss provided higher performance than the
cross entropy and F1 loss for all modalities. Furthermore, Table 5.8 demonstrates
that the choice of loss function had a larger effect on the CT-only model than on
the PET-only and PET/CT models. The same conclusions can be drawn from
Figure 5.2, which shows the Dice distribution for these hyperparameters.

The effect of windowing was demonstrated in the previous section. However, how
to choose correct windowing parameters was not obvious. Table 5.9 shows that
windowing yields models with higher average Dice per slice for both CT-only and
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Figure 5.3: Jitter plot showing performance on the validation set based on whether or
not the CT-channel was processed using Hounsfield windowing.

PET/CT models. This is also shown in Figure 5.3. Table 5.10 demonstrates that
the windowing parameters did not affect the model performance much.
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Table 5.8: Dice results on the validation set for the “loss” and “channels” hyperpara-
meters.

Channels

Loss PET/CT PET CT

F1 0.59/0.59 (15) 0.57/0.57 (4) 0.50/0.50 (22)

F2 0.60/0.61 (15) 0.59/0.59 (4) 0.54/0.54 (22)

F4 0.60/0.60 (12) 0.58/0.58 (3) 0.54/0.54 (18)

Cross entropy 0.58/0.58 (12) 0.56/0.56 (3) 0.50/0.50 (18)

The format is “mean/median (count)”, where count is the number of
experiments with this particular parameter configuration.

Table 5.9: Dice results on the validation set for the “windowing” and “channels”
hyperparameters.

Windowing

Channels True False

CT 0.52/0.53 (66) 0.50/0.50 (14)

PET/CT 0.60/0.60 (40) 0.57/0.58 (14)

The format is “mean/median (count)”, where
count is the number of experiments with this par-
ticular parameter configuration.
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Table 5.10: Dice results for the “window centre” and “window width” hyperparameters.

Window centre

Window width 60 HU 70 HU Both

100 HU 0.52/0.52 (12) 0.53/0.53 (16)† –/– (0)

200 HU 0.53/0.53 (12) 0.53/0.53 (16)† –/– (0)

Both –/– (0) –/– (0) 0.51/0.51 (16)†

The format is “mean/median (count)”, where count is the number of exper-
iments with this particular parameter configuration.
† The PET/CT results are omitted here as the server crashed during the ex-
periments with PET/CT input and a window centre of 60 HU. Including
PET/CT results for these values would therefore not yield interpretable res-
ults.
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5.1.3 The SGDR+momentum optimiser

The highest performing CT-only and PET/CT models were trained twice using
the SGDR+momentum optimiser. The hyperparameters of these models are given
in given in Table 5.11.

For CT-only, one of the runs with SGDR+momentum yielded an improvement on
the validation performance compared to Adam, for PET/CT the results were un-
changed. Consequently, the SGDR+momentum CT-only model was taken forward
for further analysis and the Adam based models were taken forward for PET/CT
and PET-only models. The average Dice performance of these trainings is given
in Table 5.12.

Table 5.11: The hyperparameters of the models that achieved highest mean Dice on
the validation dataset.

Modality

Hyperparameter CT PET/CT

Loss F2 F4

Optimiser Adam Adam

Learning rate 0.0001 0.0001

Window centre 70 HU 70

Window width 100 200

Dice 0.56 0.62

Table 5.12: The results from the SGDR+momentum runs.

Modality Run 1 Run 2

CT 0.58 0.54

PET/CT 0.62 0.61
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5.2 The highest performing models

The hyperparameters of the highest performing models are given in Table 5.13.
The summary statistics for the Dice distribution of these models are provided in
Table 5.14. These models with these hyperparameters were trained with a dataset
file that did not contain the test and validation data. When omitting these datasets
from the training procedure, we achieved a mean and median Dice within 0.02 of
the best overall models (evaluated on the actual validation data), hence implying
no dataset contamination.

Additional performance metrics for the model with best average Dice score are
provided in Table 5.15. This table shows that the sensitivity is highest for the
PET/CT model and lowest for the CT-only model. Similarly, the PPV is highest
for the PET-only model and lowest for the CT-only model. The specificity is high
for all three models.

Furthermore, Table 5.15 shows that the sensitivity was higher than the PPV for
both the PET-only model and the PET/CT model. On the CT-only model the
mean PPV was slightly lower than the mean sensitivity, whereas the median PPV
was slightly higher than the median sensitivity.

Table 5.16 demonstrates that there are trade-offs between the PET-only model
and the CT-only model. There are four patients (patients 35, 87, 90 and 241)
where the CT-only performs best, four where the PET-only model performs best
(patients 29, 49, 229 and 246). The PET/CT model performs the best on the last
seven patients. Furthermore, we note that the PET/CT model performs better
than the PET-only model on both patients the CT-only model failed to delineate
(patients 18 and 177).

The CT-only model performs better than the PET-only model and PET/CT model
for both patients the CT-only model failed to delineate.



128 CHAPTER 5. RESULTS

Table 5.13: The hyperparameters of the models that achieved highest mean Dice on
the validation dataset.

Modality

Hyperparameter CT PET PET/CT

Loss F2 F4 F4

Optimiser SGDR+momentum Adam Adam

Learning rate 0.5 0.0001 0.0001

Window centre 70 HU – 70

Window width 100 – 200

Dice 0.58 0.59 0.62

Table 5.14: Dice performance per slice in the validation set for the best models using
each modality.

Modality Mean Median STD 25% Quantile 75% quantile

CT 0.57 0.70 0.31 0.35 0.80

PET 0.59 0.66 0.25 0.47 0.79

PET/CT 0.62 0.71 0.26 0.47 0.82

Model specifications are given in Table 5.13

Table 5.15: Performance metrics for the best three models.

Loss

Metric CT PET PET/CT

Sensitivity 0.60 (0.73)± 0.34 0.63 (0.70)± 0.30 0.72 (0.83)± 0.31

Spesificity 0.99 (0.99)± 0.01 0.99 (1.00)± 0.01 0.99 (0.99)± 0.01

PPV 0.61 (0.71)± 0.33 0.66 (0.74)± 0.29 0.62 (0.71)± 0.29

Dice 0.57 (0.70)± 0.31 0.59 (0.66)± 0.25 0.62 (0.71)± 0.26

The format is mean (median) ± standard deviation, computed on a slice-by-
sliced basis.

Model specifications are given in Table 5.13
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Table 5.16: Mean and median Dice for the best models using each modality, evaluated
on the patients in the validation set.

Patient ID CT PET PET/CT

29 0.71 (0.72) 0.75 (0.81) 0.67 (0.69)

35 0.62 (0.75) 0.48 (0.51) 0.62 (0.66)

38 0.14 (0.10) 0.38 (0.45) 0.39 (0.52)

49 0.66 (0.67) 0.71 (0.69) 0.69 (0.74)

70 0.49 (0.55) 0.47 (0.47) 0.53 (0.60)

87 0.75 (0.75) 0.74 (0.76) 0.74 (0.75)

90 0.54 (0.65) 0.45 (0.45) 0.37 (0.39)

98 0.73 (0.79) 0.65 (0.67) 0.77 (0.80)

163 0.80 (0.85) 0.80 (0.83) 0.83 (0.87)

170 0.65 (0.75) 0.68 (0.77) 0.70 (0.80)

177 0.00 (0.00) 0.05 (0.00) 0.08 (0.00)

213 0.71 (0.81) 0.74 (0.79) 0.75 (0.84)

229 0.40 (0.34) 0.58 (0.64) 0.57 (0.69)

241 0.70 (0.77) 0.62 (0.69) 0.69 (0.76)

246 0.37 (0.35) 0.57 (0.65) 0.46 (0.50)

The format is “mean (median)”.
The model attained best performance for the patient in
bold.
Model specifications are given in Table 5.13
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Figure 5.4: Histogram of the Dice per slice on the validation set for the best CT-only
and PET/CT models. Model specifications are given in Table 5.13

Analysis of the CT-only and PET/CT model

Figure 5.4 shows a histogram of the Dice per slice for the CT-only and PET/CT
models that achieved highest average Dice on the validation set. It is apparent
that the main difference between the CT-only model and the PET/CT model is
the number of slices with close to no overlap between the predicted delineation
and the oncologist’s delineation. On images that are well segmented, the models
are comparable.

Similarly, Figure 5.5 shows two boxplots that illustrate the Dice-performance for
both models per patient in the validation set. There is one key differences between
the PET/CT model and the CT-only model in these plots. Namely that the CT-
only model has a larger number of slices where the network failed to delineate the
affected tissue (i.e. Dice close to zero) than the PET/CT model. These failure
slices occur in all patients. Furthermore, we see that the performance on some
patients are slightly preferable on the CT-only model (e.g. patient 29).
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Figure 5.5: Boxplots illustrating the Dice distribution for the best model (evaluated
on the validation set) per slice for each patient. The line within each box represents the
median, the box itself contains all data within the 25% quantile and the 75% quantile.
The whiskers span the full dataset, excluding (automatically detected) outliers, which
are marked with diamonds. (a) shows the results for the CT-only model and (b) shows
the results for the PET/CT model. Model specifications are given in Table 5.13



132 CHAPTER 5. RESULTS

5.3 Model performance on the test set

The models with the highest average Dice within each modality (reported in
Table 5.13 on page 128) were run on the test set, and the summary statistics
of the Dice performance are reported in Table 5.17. On average, the PET/CT
model proveded the highest performance

Additionally, Table 5.18 shows that the sensitivity was higher than the PPV for
both the PET-only model and the PET/CT model on the test data. For the CT-
only model, on the other hand, the mean PPV was higher than the mean sensitivty
(in contrast to the validation results).

Finally, we have the performance of the best models on each patient in Table 5.19.
This table demonstrate that the PET/CT model had highest performance for 22
out of 40 patients, the PET-only model performed best on 12 out of 40 patients
and the CT-only model performed the best on 6 out of 40 patients. If we consider
the median performance instead of mean, we see that the CT-only model performs
best on 8 patients, the PET-only model performs best on 10 patients and the
PET/CT model performs best on 22 patients.

Table 5.17: Dice performance per slice in the test set for the best models using each
modality.

Modality Mean Median STD 25% Quantile 75% quantile

CT 0.56 0.65 0.29 0.38 0.79

PET 0.64 0.72 0.24 0.56 0.80

PET/CT 0.66 0.75 0.24 0.59 0.82

Model specifications are given in Table 5.13
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Table 5.18: Performance metrics for the best three models on the test set.

Modality

Metric CT PET PET/CT

Sensitivity 0.58 (0.64)± 0.33 0.69 (0.76)± 0.27 0.78 (0.89)± 0.28

Spesificity 0.99 (1.00)± 0.01 0.99 (0.99)± 0.01 0.99 (0.99)± 0.01

PPV 0.62 (0.71)± 0.31 0.64 (0.71)± 0.27 0.62 (0.68)± 0.26

Dice 0.56 (0.65)± 0.29 0.64 (0.72)± 0.24 0.66 (0.75)± 0.24

The format is mean (median)± standard deviation, computed on a slice-by-sliced
basis.
Model specifications are given in Table 5.13
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Table 5.19: Mean and median Dice for the best models using each modality, evaluated
on the patients in the test set.

Patient ID CT PET PET/CT

5 0.74 (0.77) 0.70 (0.74) 0.74 (0.79)

8 0.37 (0.36) 0.60 (0.72) 0.65 (0.71)

13 0.45 (0.50) 0.59 (0.67) 0.58 (0.72)

16 0.31 (0.32) 0.32 (0.33) 0.47 (0.55)

18 0.48 (0.56) 0.70 (0.75) 0.69 (0.75)

21 0.51 (0.57) 0.66 (0.71) 0.63 (0.69)

36 0.74 (0.84) 0.64 (0.69) 0.74 (0.75)

44 0.41 (0.47) 0.73 (0.77) 0.68 (0.81)

52 0.65 (0.75) 0.74 (0.74) 0.76 (0.81)

55 0.64 (0.68) 0.67 (0.71) 0.75 (0.78)

60 0.64 (0.71) 0.63 (0.68) 0.65 (0.75)

61 0.56 (0.60) 0.57 (0.62) 0.61 (0.73)

67 0.57 (0.59) 0.67 (0.69) 0.58 (0.62)

73 0.67 (0.67) 0.65 (0.66) 0.62 (0.63)

74 0.54 (0.55) 0.69 (0.73) 0.65 (0.71)

77 0.77 (0.84) 0.79 (0.81) 0.76 (0.78)

82 0.12 (0.00) 0.59 (0.60) 0.54 (0.70)

91 0.68 (0.79) 0.63 (0.71) 0.69 (0.78)

93 0.60 (0.60) 0.41 (0.37) 0.56 (0.58)

99 0.60 (0.68) 0.71 (0.80) 0.74 (0.86)

110 0.12 (0.16) 0.00 (0.00) 0.19 (0.20)

116 0.53 (0.77) 0.45 (0.60) 0.51 (0.59)

120 0.80 (0.82) 0.75 (0.77) 0.80 (0.82)

130 0.59 (0.69) 0.58 (0.62) 0.73 (0.82)

140 0.76 (0.79) 0.72 (0.76) 0.67 (0.69)

148 0.70 (0.72) 0.69 (0.71) 0.73 (0.77)

153 0.28 (0.33) 0.65 (0.72) 0.58 (0.67)

154 0.55 (0.60) 0.56 (0.71) 0.60 (0.72)

The format is “mean (median)”.
Model specifications are given in Table 5.13
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Patient ID CT PET PET/CT

162 0.55 (0.67) 0.62 (0.76) 0.63 (0.77)

164 0.44 (0.45) 0.44 (0.40) 0.47 (0.54)

169 0.68 (0.76) 0.62 (0.71) 0.72 (0.77)

184 0.57 (0.58) 0.81 (0.87) 0.82 (0.86)

191 0.61 (0.69) 0.59 (0.70) 0.67 (0.78)

194 0.68 (0.72) 0.66 (0.67) 0.71 (0.74)

209 0.69 (0.73) 0.80 (0.84) 0.77 (0.79)

217 0.57 (0.65) 0.74 (0.81) 0.69 (0.75)

223 0.54 (0.60) 0.58 (0.66) 0.50 (0.53)

233 0.59 (0.65) 0.72 (0.78) 0.72 (0.81)

242 0.64 (0.73) 0.63 (0.76) 0.70 (0.79)

249 0.67 (0.76) 0.60 (0.69) 0.67 (0.74)

The format is “mean (median)”.
Model specifications are given in Table 5.13
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Figure 5.6: Histogram of the Dice per slice on the validation set for the best CT-only
and PET/CT models. Model specifications are given in Table 5.13

5.3.1 Analysis of the CT-only and PET/CT model

Similarly to Figure 5.4, Figure 5.6 shows the Dice-per-slice distribution of the
CT-only model and the PET/CT model. The Dice distribution of the test set
bares strong resemblance to the distribution of the validation set, albeit with an
important difference; the number of failure slices was less than half on the PET/CT
model as compared with the CT-only model. Furthermore, the tail of the CT-only
model’s Dice distribution is more prominent than the tail of the PET/CT model’s
Dice distribution.

Figures 5.7 and 5.8 show boxplots of the Dice-distribution for the CT-only model
and the PET/CT model, respectively. These also demonstrate that the PET/CT
model was preferable to the CT-only model. The median Dice was consistently
higher for the PET/CT model and the spread was consistently lower.
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Figure 5.7: Boxplot illustrating the Dice distribution for the highest performing CT-
only model (evaluated on the validation set) per slice for each patient on the test set.
The line within each box represents the median, the box itself contains all data within
the 25% quantile and the 75% quantile. The whiskers span the full dataset, excluding
(automatically detected) outliers, which are marked with diamonds. Model specifications
are given in Table 5.13
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Figure 5.8: Boxplot illustrating the Dice distribution per patient for the highest per-
forming PET/CT model (evaluated on the validation set) per slice for each patient on
the test set. The line within each box represents the median, the box itself contains all
data within the 25% quantile and the 75% quantile. The whiskers span the full dataset,
excluding (automatically detected) outliers, which are marked with diamonds. Model
specifications are given in Table 5.13
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5.4 Visualisation of the segmentation masks

To assess the quality of the predicted segmentation masks, twelve linearly spaced
slices were visualised for each patient in the validation and test set. A selection
of patients are shown in this section. The input to the network are shown as
images and the outline of the predicted and ground truth segmentation masks are
given. Note that the dynamic range of the CT-only model and PET/CT model
are different as the optimal window size for the CT-only model was not the same
as that of the PET/CT model.

PET images were normalised so the maximal standardised uptake value amongst
all patients were set as the maximum signal on all visualisation. A gamma trans-
form with γ = 1

10
was chosen for the PET images to enhance changes at small

standardised uptake values. Note that the PET signal is not easily discernable
when printed in grayscale.

Predicted delineations in the validation set

Both the PET/CT model and the CT-only model performed poorly on patient
177. There was no overlap between the predicted segmentation and the ground
truth for the CT-only model (Figure 5.9). The PET/CT model, on the other hand,
managed to find some of the affected tissue in early slices (Figure 5.10).

Note that in this patient, the tumour and the lymph nodes are difficult to discern
in the images (at least for lay people). Some of the lymph nodes are discernable
on the CT slices (on slice 64-72 and on slice 79 in Figure 5.9). However, they are
not as easily visible as on several other patients. Furthermore, the PET signal was
not enhanced in the tumour of lymph nodes (Figure 5.10).

The ground truth and predicted segmentation mask of patient 229 are shown in
Figures 5.11 and 5.12. The PET/CT model performed somewhat poorly, with an
average Dice of 0.57, and the CT-only model had an average Dice of only 0.40.
Again, we see that both models struggled to delineate the affected tissue on the
tongue. Additionally, there are some lymph nodes on slice 39 to 71 that the models
struggled to delineate. One main difference between this patient and patient 177,
is that this patient had a visible PET signal, which made it easier for the models
to detect the regions of interest.

Figure 5.13 and Figure 5.14 shows the predicted segmentation masks for patient
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98. In this case both models yielded high-quality segmentation masks with an
average Dice of over 0.70. Furthermore, both models successfully segmented the
lymph node on the early slices on all but the first two slices.

For patient 98, both the CT-only model and the PET/CT model delineated regions
that did not appear in the original segmentation masks. Some of these regions (e.g.
PET/CT, slice 99 in Figure 5.14) are clearly not lymph nodes, whereas others (e.g.
CT-only slice 63 in Figure 5.13) may be. Finally, we note that the CT-only model
successfully delineated the tumour on several slices with severe beam hardening
artefacts (e.g. slice 124-136 Figure 5.13).
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Slice 61 Slice 64 Slice 68

Slice 72 Slice 75 Slice 79

Slice 83 Slice 87 Slice 90

Slice 94 Slice 98 Slice 102

Ground truth Predicted tumour

Figure 5.9: Slices showing the segmentation masks predicted by the CT-only model
(Table 5.13) for patient 177. The ground truth is also given. The average Dice for this
patient was 0.0 and the standard deviation was 0.0.
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Slice 61 Slice 64 Slice 68

Slice 72 Slice 75 Slice 79

Slice 83 Slice 87 Slice 90

Slice 94 Slice 98 Slice 102

Ground truth Predicted tumour

Figure 5.10: Slices showing the segmentation masks predicted by the PET/CT model
(Table 5.13) for patient 177. The ground truth is also given. The average Dice for
this patient was 0.08 and the standard deviation was 0.20. The PET-channel is gamma
transformed with γ = 1

10
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Slice 39 Slice 46 Slice 61

Slice 68 Slice 75 Slice 82

Slice 89 Slice 96 Slice 103

Slice 110 Slice 117 Slice 124

Ground truth Predicted tumour

Figure 5.11: Slices showing the segmentation masks predicted by the CT-only model
(Table 5.13) for patient 229. The ground truth is also given. The average Dice for this
patient was 0.40 and the standard deviation was 0.33.
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Slice 39 Slice 46 Slice 61

Slice 68 Slice 75 Slice 82

Slice 89 Slice 96 Slice 103

Slice 110 Slice 117 Slice 124

Ground truth Predicted tumour

Figure 5.12: Slices showing the segmentation masks predicted by the PET/CT model
(Table 5.13) for patient 229. The ground truth is also given. The average Dice for
this patient was 0.57 and the standard deviation was 0.25. The PET-channel is gamma
transformed with γ = 1

10
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Slice 14 Slice 26 Slice 38

Slice 50 Slice 63 Slice 75

Slice 87 Slice 99 Slice 112

Slice 124 Slice 136 Slice 149

Ground truth Predicted tumour

Figure 5.13: Slices showing the segmentation masks predicted by the CT-only model
(Table 5.13) for patient 98. The ground truth is also given. The average Dice for this
patient was 0.73 and the standard deviation was 0.17.
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Slice 14 Slice 26 Slice 38

Slice 50 Slice 63 Slice 75

Slice 87 Slice 99 Slice 112

Slice 124 Slice 136 Slice 149

Ground truth Predicted tumour

Figure 5.14: Slices showing the segmentation masks predicted by the PET/CT model
(Table 5.13) for patient 98. The ground truth is also given. The average Dice for this
patient was 0.77 and the standard deviation was 0.16. The PET-channel is gamma
transformed with γ = 1

10
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Predicted delineations on the test set

The segmentation masks of several patients in the test set were also visualised.
Firstly, we consider the segmentation masks for patient 5, shown in Figures 5.15
and 5.16. Again, both the PET/CT model and the CT-only model performed well
on all slices, including those with considerable beam hardening artefacts.

Figures 5.17 and 5.18 show the segmentation masks of patient 110. Both the
PET/CT and CT-only models delineate a region on the right hand side of the
patient where contrast agent has accumulated. Consequently, the Dice score is
close to zero. This large region is not part of the original region of interest, thereby
reducing the performance severely. Furthermore, both models delineate a small
region of tissue on the left hand side of the patient not delineated in the ground
truth.

Both models achieved highest performance for patient 120, shown in Figures 5.19
and 5.20. There are some falsely discovered small lymph nodes in these segment-
ation masks (slice 59 in Figure 5.19 and slice 32 in Figure 5.20).

Finally, the predicted segmentation masks of patient 249 are shown in Figures 5.21
and 5.22. The performance for the PET/CT model and CT-only model were the
same for this patient, with the CT-only model performing well over average and
the PET/CT model performing slightly above average.
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Slice 61 Slice 64 Slice 68

Slice 72 Slice 75 Slice 79

Slice 83 Slice 87 Slice 90

Slice 94 Slice 98 Slice 102

Ground truth Predicted tumour

Figure 5.15: Slices showing the segmentation masks predicted by the CT-only model
(Table 5.13) for patient 5. The ground truth is also given. The average Dice for this
patient was 0.74 and the standard deviation was 0.17.
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Slice 61 Slice 64 Slice 68

Slice 72 Slice 75 Slice 79

Slice 83 Slice 87 Slice 90

Slice 94 Slice 98 Slice 102

Ground truth Predicted tumour

Figure 5.16: Slices showing the segmentation masks predicted by the PET/CT model
(Table 5.13) for patient 5. The ground truth is also given. The average Dice for this
patient was 0.74 and the standard deviation was 0.15. The PET-channel is gamma
transformed with γ = 1

10
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Slice 76 Slice 77 Slice 78

Slice 79 Slice 80 Slice 81

Slice 82 Slice 83 Slice 84

Slice 85 Slice 86 Slice 87

Ground truth Predicted tumour

Figure 5.17: Slices showing the segmentation masks predicted by the CT-only model
(Table 5.13) for patient 110. The ground truth is also given. The average Dice for this
patient was 0.12 and the standard deviation was 0.072.



5.4. VISUALISATION OF THE SEGMENTATION MASKS 153

Slice 76 Slice 77 Slice 78

Slice 79 Slice 80 Slice 81

Slice 82 Slice 83 Slice 84

Slice 85 Slice 86 Slice 87

Ground truth Predicted tumour

Figure 5.18: Slices showing the segmentation masks predicted by the PET/CT model
(Table 5.13) for patient 110. The ground truth is also given. The average Dice for this
patient was 0.19 and the standard deviation was 0.094. The PET-channel is gamma
transformed with γ = 1
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Slice 32 Slice 41 Slice 50

Slice 59 Slice 68 Slice 77

Slice 86 Slice 95 Slice 104

Slice 113 Slice 122 Slice 131

Ground truth Predicted tumour

Figure 5.19: Slices showing the segmentation masks predicted by the CT-only model
(Table 5.13) for patient 120. The ground truth is also given. The average Dice for this
patient was 0.80 and the standard deviation was 0.14.
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Slice 32 Slice 41 Slice 50

Slice 59 Slice 68 Slice 77

Slice 86 Slice 95 Slice 104

Slice 113 Slice 122 Slice 131

Ground truth Predicted tumour

Figure 5.20: Slices showing the segmentation masks predicted by the PET/CT model
(Table 5.13) for patient 120. The ground truth is also given. The average Dice for
this patient was 0.80 and the standard deviation was 0.10. The PET-channel is gamma
transformed with γ = 1
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Slice 30 Slice 39 Slice 48

Slice 58 Slice 67 Slice 76

Slice 86 Slice 95 Slice 104

Slice 114 Slice 123 Slice 133

Ground truth Predicted tumour

Figure 5.21: Slices showing the segmentation masks predicted by the CT-only model
(Table 5.13) for patient 249. The ground truth is also given. The average Dice for this
patient was 0.67 and the standard deviation was 0.30.
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Ground truth Predicted tumour

Figure 5.22: Slices showing the segmentation masks predicted by the PET/CT model
(Table 5.13) for patient 249. The ground truth is also given. The average Dice for
this patient was 0.67 and the standard deviation was 0.24. The PET-channel is gamma
transformed with γ = 1
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Chapter 6

Discussion

6.1 Model hyperparameters

We start by discussing the effect of hyperparameters on the neural network per-
formance1. It is clear, from the tables in Sections 5.1.1 and 5.1.2, that the choice
of hyperparameters influenced the model performance.

The initial plan for this analysis was to use ANOVA+post-hoc tests to compare
the different modalities. However, when studying the distribution of data points,
it became apparent that the results were not normally distributed and thus, the
assumptions of ANOVA were not fullfilled. ANOVA tests were therefore not con-
ducted.

6.1.1 Assessment of the loss functions

It is apparent that choosing the correct loss function is a key part of maximising
model performance. Table 5.2 demonstrates that using the cross entropy loss
instead of the F2 or F4 loss led to an expected drop in Dice performance by 0.03
units.

The difference between the F1 (Dice) loss versus the cross entropy loss, however,
was notably low. In ‘V-net: Fully convolutional neural networks for volumetric
medical image segmentation’, Milletari et al. [42] demonstrate that the Dice loss

1Recall from the previous chapter, that performance meant Dice per slice.

159
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leads to consistently higher Dice than the cross entropy loss. In our analysis,
this was not the case. Figure 5.2 on page 122 might support this claim, as it
demonstrates that using a Dice loss can result in higher performance than the
cross entropy loss. However, the effect is so small that it can be random, especially
when we consider that more experiments were run with the F1 loss than the cross
entropy loss (Table 5.8 on page 124).

The effect of using the F2 or F4 loss as opposed to the F1 or cross entropy loss was
greater. The F2 and F4 loss yielded an expected increase in Dice performance of
0.02−0.04 for all modalities (most for CT-only, Table 5.8). Additionally, Table 5.2
shows that the F2 and F4 loss were better than the F1 and cross entropy loss on
summary statistics of the performances. Thus, the generalised Fβ loss introduced
in this thesis is indeed preferable to the cross entropy loss and Dice loss.

To understand the difference between the Dice loss and the Fβ loss for higher
values of β, we need to look at the definition of the Fβ metric (Definition 2.3.9
on page 57). The Fβ metric is analogous to the Dice score, except that it weighs
sensitivity β times more than the precision. Thus, the increase in Dice performance
observed when optimising for higher values of β signifies that the generalisation
gap for sensitivity is larger than that for precision (i.e. the performance decrease
between the train-set and the validation/test set for sensitivity is larger than that
for precision).

Furthermore, choice of loss function had a larger effect on the performances of
the CT-only models than on the performances of the PET/CT and PET-only
models. This indicates that the generalisation gap in sensitivity is larger for CT-
only models than for PET/CT and PET-only models. Testing this hypothesis is
unfortunately outside the scope of this project, and further experiments should be
conducted to test this hypothesis.

Finally, we propose a method for choosing the correct β value when training neural
networks. First, train a model using the Dice loss, then inspect the generalisation
gap for the sensitivity and PPV. If the generalisation gap is larger for sensitivity,
increase the β value, if the generalisation gap is larger for PPV, decrease the β.
Algorithm 6.1 demonstrates this algorithm in practice.

There are two weaknesses with the proposed algorithm. The first is how actively
the validation set is being used, which most likely will lead to overfitting on the
training set. We therefore recommend using only parts of the validation set for
this procedure.

Furthermore, training a network with a specific value of β is not deterministic
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Algorithm 6.1 Optimal β search for the Fβ loss.

1: procedure OptimalβSearch(T , ε)
2: . Initiate β search
3: β0 ← 1
4: β1 ← 1
5: Train model with Fβ0 loss.
6: Compute validation PPV and Sensitivity, store in
7: PPV0 and Sensitivity0.
8: PPV1 ← PPV0

9: Sensitivity1 ← Sensitivity0

10: while PPV0 < Sensitivity0 do
11: β0 ← 0.5β0

12: while PPV1 > Sensitivity1 do
13: β1 ← 2β1

14: . Perform β search
15: while β1 − β0 > ε do
16: β? ← 0.5β0 + 0.5β1
17: PPV? ← PPV on validation set
18: Sensitivity? ← Sensitivity on validation set
19: if PPV? > Sensitivity? then
20: β1 ← β?

21: else
22: β2 ← β?

23: return β?
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(because of random batches, initialisation, etc). Thus, the computed sensitivity
and PPV might not be representative. However, training the model several times is
often computationally infeasible. The non-determinicity of neural network training
is therefore a potential weakness of the proposed algorithm for finding β.

The proposed method of finding β for the Fβ loss is, in other words, not without
its weaknesses and it should therefore be tested in practice. Unfortunately, testing
this algorithm was outside the scope of this project and should be done in future
works.

6.1.2 Layer type selection

It is clear, from Table 5.1 on page 120, that choosing ResNet layer types did not
work for U-Net architectures. The reason for this, however, is less clear.

One possible reason for why ResNet layers yielded suboptimal results is the explod-
ing gradient problem (see page 35). Batch normalisation will often alleviate this
problem [11]. However, the 1 × 1 convolutions performed in the skip-connection
whenever the number of channels was reduced were not normalised. Hence, they
might lead to an exploding gradient problem. The fact that the partial derivat-
ives with respect to the skip-connections were significantly higher than those with
respect to the residual connections support this hypothesis.

However, the only way to test the exploding gradient hypothesis is to run ex-
periments with normalised skip connections. Luckily, this is easily done with the
SciNets package, as it is only necessary to overload the generate_skip_connection
method of the ResNet layer class. Thus, such experiments are cheap with respect
to the number of man-hours required and should be done in later analyses.

6.1.3 Optimiser selection

The hyperparameter sweep was performed using an Adam optimiser, as it is known
to be a very fast optimiser [44]. The highest performing models were then trained
with the SGDR+momentum algorithm. However, the SGDR+momentum runs
converged after approximately the same number of epochs as the Adam runs.
Using Adam for exploration first was, in other words, not neccessary.

Unfortunately, only four SGDR+momentum models were trained with two differ-
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ent hyperparameter combinations, in order to reduce the number of experiments
conducted. If both optimisers were tested for the entire dataset, the total training
time would be approximately two months. It was, in other words, not possible
to compare Adam to SGDR+momentum with as many hyperparameters as were
tested in this project.

We do, however, still recommend that future tumour delineation experiments are
run using the SGDR+momentum. The main reason for this is the SGDR+momentum
optimiser’s theoretical advantages over Adam [73], [74]. Furthermore, Table 5.12
on page 126 demonstrates that the SGDR+momentum optimiser achieved the
same or better results at the same speed as the Adam optimiser on the validation
set for both hyperparameter configurations tested.

An observant reader will notice that the learning rate used for the Adam experi-
ments is either a factor 10 or a factor 100 lower than the recommended learning
rate [44]. Such small learning rates were chosen because preliminary experiments
showed that the networks trained poorly with a higher learning rate. Experiments
with a learning rate of 10−5 converged to an optimum with poorer generalisation
capabilities (Table 5.4 on page 120). Thus, a more in-depth parameter sweep of
the learning rate might yield even better generalisation capabilities.

On the other hand, training with SGDR+momentum yielded similar generalisa-
tion performance as training with Adam. Hence, the generalisation achieved with
Adam and a learning rate of 10−4 might be close to the optimum. Consequently,
we cannot conclude whether the experiments would improve with a higher learning
rate, but testing a lower one is most likely not necessary.

Increasing the batch size has the effect of increasing the stability when training.
Increasing the batch size might, therefore, improve the quality of the models and
reduce the time taken to train them. The batch size used in this project was chosen
dependent on the available VRAM, increasing it was, therefore, not possible while
training on a single GPU.

Furthermore, gradually increasing the batch size while training has been demon-
strated to be preferable compared to reducing the learning rate [93]. Increasing
the batch size this way leads to high exploration of the parameter space in early
iterations and more accurate optimisation later.
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6.1.4 Assessment of preprocessing parameters

Hounsfield windowing yielded an expected performance improvement of 0.02 for
both CT-only and PET/CT models. Additionally, both the highest and lowest per-
forming models with windowing achieved a Dice score approximately 0.03 higher
than the highest and lowest performing models without preprocessing, respectively.
Thus, it is clear that using Hounsfield windowing leads to improved performance.

Hounsfield windowing can be expressed as a single-layer neural network with ReLU
nonlinearities. Thus, the models trained without windowing should be able to learn
to perform the windowing. The fact that they did not learn this suggests that there
was not enough data at hand.

A logical next step would be to learn the optimal windowing parameters auto-
matically. To demonstrate that this is possible, we will derive a layer that does
this using only the ReLU function and additions. Thereafter, we will derive the
gradient of this layer.

Let w represent the window width and c represent the window centre. Perform-
ing Houndsfield windowing (HW (x)) on an image (x) is then equivalent to the
following operation:

HW (x) = min
(
c+

w

2
,max

(
c− w

2
,x
))

. (6.1)

We can then use the fact that max(a, b) = max(0, b − a) + a, the definition of
the ReLU nonlinearity (f̆ReLU(x) = max(0,x)) and the fact that min(a, b) =
−max(−a,−b) to get

HW (x) = c+
w

2
− f̆ReLU

(
w − f̆ReLU

(
x +

w

2
− c
))

, (6.2)

which is differentiable with respect to w and c almost everywhere.

To compute the gradient of HW , we start by noting that the derivative of f̆ReLU(x)
is given by the following equation,

df̆ReLU(x)

dx
=

{
1 if x > 0

0 if x < 0
. (6.3)

Thus, the partial derivative of HW with respect to c is given by

∂HW (x)

∂c
=

{
1 if c− w

2
> x or x > c+ w

2

0 if c− w
2
< x < c+ w

2

. (6.4)
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Similarly, the partial derivative of HW with respect to w is given by

∂HW (x)

∂w
=


−0.5 if c− w

2
> x

0 if c− w
2
< x < c+ w

2

0.5 if c+ w
2
< x

. (6.5)

Thus, the windowing parameters are learnable.

6.1.5 Architecture selection

The U-Net architecture [23] was chosen because of its simplicity. It was relatively
easy to implement, reducing the development phase of the project. As such, other
architectures might yield better results.

One example of another architecture aimed at segmentation is the Large Kernel
Matters architecture (LKM) [24]. It works similarly to U-Net [23], using long-
range skip connections. However, LKM includes global, low-level information in
these skip connections through the use of Global Convolutional Networks (GCNs).
A GCN is essentially a layer consisting of a constrained convolution with kernel
size 15 and no nonlinearity (for more information, see [24]). This architecture was
not tested to reduce development time.

Another architecture that can be used for segmentation purposes is the DeepLab
family [25]–[27]. In these architectures, the downsampling operations are replaced
with dilated convolutions, thus, reducing the amount of discarded information.
This architecture was considered. However, the memory footprint increases consid-
erably by not using downsampling. Therefore, training with deeplab architectures
was deemed infeasible in the scope of this project.

Finally, we have the V-net architecture [42]. This architecture is essentially the
same as U-Net, but with 3D convolutions instead of 2D convolutions. Unfortu-
nately, this leads to a large memory footprint, making training on GPU impossible.
As a consequence, training models with 3D convolution would take too long time
for the hyperparameter sweep to be feasible.

There are several ways to reduce the memory footprint of the architectures men-
tioned above. One method is by downscaling the input. However, by doing this, we
discard valuable information. Another method is to divide each image into several
pieces, and use each piece as an image instead. Unfortunately, this would increase
the development phase excessively. Finally, we can reduce the batch sizes and
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use batch renormalisation [94] to alleviate the instability of batch normalisations
with small batches. Unfortunately, this involves two additional hyperparameters
to tune. These methods should be tested in further work.

6.1.6 Hyperparameter recommendations

The experiments performed in this project resulted in some recommendations
choosing for choosing hyperparameters for segmenting tumours and lymph nodes
in PET/CT images. Firstly, improved ResNet layers are not recommended, as this
layer type yielded exploding gradients.

Moreover, the generalised Fβ loss should be used, and values for β between two and
four yielded good results. Alternatively, β can be chosen by inspecting the gener-
alisation gap for PPV and sensitivity, as described in Section 6.1.1 on page 160.

To optimise the loss, the SGDR+momentum algorithm should be used. If this
algorithm is either too slow or does not result in acceptable performance, then the
Adam algorithm can be tested with a learning rate of 10−4.

Finally, we recommend using Hounsfield windowing. In this project, it was found
that using the mean or median Hounsfield unit of the tumour as window centre
and a window width of 100HU−200HU leads to adequate performance. However,
other windowing parameters should be tested.

6.1.7 Further work in hyperparameter exploration

There are three venues for further exploration of hyperparameters. The automatic
learning of windowing parameters should be tested. Furthermore, adding batch
normalisation on the ResNet layers should be considered to test whether or not
ResNet layers are applicable with U-Net architectures. And lastly, the algorithm
for finding correct β value for the Fβ loss should be tested.

Furthermore, no regularisation (except for early stopping) was used. Dropout
regularisation is known to have beneficial effects [67] and should therefore be tested.
L2 regularisation was not considered as it loses its regularising effect when used in
tandem with batch normalisation [63].

The preprocessing pipeline was also not explored in detail. Currently, the only form
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of preprocessing was windowing. However, several other forms of preprocessing
operators should be tested. Specifically, data augmentation methods, such as
random rotations and mirroring of the images, should be tested as they have a
proven positive effect on similar tasks [35].

Additionally, all 3D information was discarded in the experiments run as part of
this project. Using architectures with three dimensional convolutions as opposed
to two dimensional convolutions is an obvious way to remedy this. As such, the
V-net architecture [42] should be tested, potentially using batch renormalisation
instead of batch normalisation to reduce the memory footprint.

Finally, no post-processing was performed. Earlier work has demonstrated that
post-processing with conditional random fields (CRFs) is beneficial for segment-
ation with neural networks [25]. Additionally, the CRF models would allow 3D
information to be encoded in the segmentation masks without using 3D convolu-
tions. One particularly efficient CRF model is the dense CRF model [95], which
is commonly used to improve the output of neural networks [24], [25].

One benefit with CRF post-processing is that it only requires probability maps
and input images [96], [97]. As such, it can, and should, be tested on the outputs
of the best models developed as part of this project.

We have already discussed the potential of small architectural changes (e.g. using
the Large Kernel Matters architecture [24]). However, there are some larger ar-
chitectural changes that might yield further improvements on model performance.
Firstly, the model presented herein use a one-step process for segmentation. One
potential improvement would be to train an additional network whose goal is to
predict whether or not a slice will be segmented well by the network. Thus, the
prediction process would consist of a two-step process. Firstly, one model would
predict whether or not the segmentation network is able to segment the affected
tissue sufficiently and then, if this is the case, the image would be delineated.

Finally, we note that using neural networks that has been trained to perform other
tasks can yield good result for medical imaging tasks [98]. In particular, models
that has been trained to perform segmentation of natural images, can be modified
to segment tumours. Modifying previously trained networks to perform new tasks
is called transfer learning. By choosing the degree of modification based on the
amount of data available, Tajbakhsh et al. [98] achieved better performance than
with random initialisation of the network weights. Transfer learning should also
be tested in further work.



168 CHAPTER 6. DISCUSSION

6.2 Analysis of the top performing models

6.2.1 Comparison based on model input

The best CT-only model performed on par with the best PET-only model on
the validation data (Table 5.14 on page 128). On the test data (Table 5.17 on
page 132), however, the CT-only model had a considerable drop in performance
(especially median performance). Thus, the hyperparameter sweep likely ended up
with a model that performed well on the validation set by mere chance. Studying
the performance of the CT-only model on the validation set will therefore likely
end with too optimistic conclusions.

Recall that neither the PET/CT model, nor the PET-only model had a noticable
drop in the PPV and sensitivity between validation data (Table 5.15 on page 128)
and the test data (Table 5.18 on page 133). There was, on the other hand, a
drop in sensitivity of 0.04 units for the CT-only model. Thus, the PET/CT and
PET-only model performances on the validation set were representative for the
test set, whereas the CT-only performance was not.

Furthermore, upon inspection, we see that the main difference between the per-
formance of the CT-only models and the models using PET-information was the
sensitivity (Tables 5.15 and 5.18). The PPV was the same for the CT-only model
and PET/CT model. There are at least two possible reasons for these results.

Firstly, the tumours are more difficult to locate using only CT information, which
is the reason PET/CT often is used [5]. Thus, this might account for the drop in
sensitivity.

The other reason stems from the loss functions used; the CT-only model used the
F2 loss, whereas the PET-incorporating models used the F4 loss. Thus, the de-
crease in sensitivity is probably also influenced by this choice. Further experiments
should therefore be conducted to fully understand if the choice of loss function af-
fects the generalisation gap in sensitivity. One interesting experiment would be to
check if the sensitivity increases and the PPV decreases for the CT-only models
trained with an F4 loss.

The exact reason for why the sensitivity of the CT-only model is lower than that of
the PET/CT and PET-only models is, in other words, unknown. It might either
be because the CT-only model was trained with a loss function that weighted
sensitivity less, or that it is more difficult to obtain a high sensitivity with only
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CT images.

Table 5.16 (page 129) and Table 5.19 (page 135) show the mean and median
performance per patient for each modality on the validation set and test set. We
see that the PET/CT generally scored better than CT-only and PET-only. The
PET/CT model was, however, not always the best model. There were several
patients in which either the CT-only model, the PET-only model or both had
higher performance than the PET/CT model. On average, however, the PET/CT
model gave the highest performance scores.

6.2.2 Assessment of model behaviour

The focus of this section will be on the PET/CT and CT-only models, as CT
is a standard procedure when performing PET scans. The performance of the
PET-only model is, therefore, only interesting to understand if the inclusion of
CT information provides improvements upon the segmentation masks of the PET-
only models, which it has been shown to do.

A main difference between the CT-only model and the PET/CT model is the
consistency. The CT-only model’s median segmentation quality is not far from
the PET/CT model’s median segmentation quality (wrt. Dice). However, the
CT-only model has a much higher probability of producing poor segmentation
masks. This is particularly well demonstrated by the boxplots in Figures 5.5, 5.7
and 5.8 on pages 131, 138 and 139, respectively, and the histograms in Figures 5.4
and 5.6 on pages 130 and 136.

Upon studing the performance metrics in Table 5.18 on page 133, we see that
there is a large drop in PPV between the PET/CT model and the CT-only model.
This means that the CT-only model has considerably more false positives than the
PET/CT model. Furthermore, the sensitivity of the CT-only model is smaller than
that of the PET/CT model. Thus, the CT-only model has more false positives
and fewer true positives.

Both the PET/CT and the CT-only model sometimes missed affected tissue alto-
gether. This is problematic as the ground truth delineation masks do not differ
between lymph nodes and the gross tumour volume (GTV). Thus, we have no data
on how commonly the models missed the GTV completely. One method to test
how often the models missed the GTV completely would be to segment the lymph
nodes and tumour separately using a multi-class approach. However, doing this
multi-class approach might reduce performance as it is difficult for lay-people to
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discern GTV from PET-positive lymph nodes.

It was not solely the CT-only model that had a large portion of false positives,
but also the PET/CT model. These false positives were regularly shared between
the two models (e.g. patient 229 in the validation set and patient 249 in the test
set), signifying that the models picked up on the same erroneous cues.

Some of the falsely delineated areas contained buildup of CT contrast agent. An
example of this is patient 110, where the buildup of contrast agent on the right
side resembles a lymph node to the untrained eye. It is important to know why the
radiologist did not delineate this region when assessing the model performance.

The falsely delineated areas with contrast agent buildup demonstrate one weakness
with automatic delineation from PET/CT images. Particularly, that the radiolo-
gists use more information than what is apparent in the images. This became
apparent after consulting with oncologist Dr Dale at The Norwegian Radium Hos-
pital who described how radiologists delineate tumours and lymph nodes in the
head and the neck. Other sources of information that the radiologists use include
endoscopy images as well as physical examinations. Thus, we cannot expect a fully
automatic tumour delineation system without input from radiologists.

We should also inspect the slices in which the model successfully delineated the
tumour. Specifically, we should pay attention to how the CT-only model success-
fully delineated the GTV in the slices with strong beam hardening artefacts. The
success in these slices indicates that the model might delineate the tumour based
on biases in the dataset instead of information in the images. The reason is that
the tumour is in no form visible to the (untrained) human eye. Understanding the
biases in the dataset and how to prevent that the model learns them are integral
when developing an automatic tumour delineation system.

One bias that the model might have picked detected stems from the cropping of the
images. The images were cropped such that the centre of mass of the segmentation
masks were close to the image centre. Thus, if the tumour centre of mass is on
the right hand side of the patient, the patient might be shifted to the left. The
placement of the tumour might, in other words, be influenced by the placement of
the patient in the image.

It might, at first, seem like the position of the patient in an image should not
influence the output of a convolutional network, as the convolution operator is
translationally invariant. There are two reasons why this is not the case; boundary
effects and maxpooling layers. Specifically, finite convolutions are not spatially
invariant unless we impose cyclic boundary conditions. These boundary conditions
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are not used here, implying that the convolution operator is not translationally
invariant. Additionally, strided maxpooling layers are not translationally invariant.
Thus, there might be a way for the network to learn if the patient is shifted to the
left or right of the image.

One way to assess the above hypothesis is to artificially crop the images so the
tumour is located on the same side of the image as the patient is shifted. Thus,
if the network still delineates the tumour correctly on slices with severe beam
hardening artefacts (such as patient 5 in the test set), then the network did indeed
learn how to delineate the tumour in such slices.

There are two weaknessess of deep learning. Firstly, neural networks are overcon-
fident [99]. As a consequence, the network reports a 100% probability of healthy
tissue being cancerous. We can, in other words, not trust the confidence of the
segmentation masks. This is problematic, as we do not know which segmentation
masks likely represent a tumour or not.

Bayesian deep learning is one method to combat the overconfidence problem [99]
and has successfully been used for stroke lesion segmentation [100]. There are at
least two reasons why Bayesian deep learning is not more popular. The computa-
tional cost of training such networks are high [101] and the theoretic background
required for these algorithms is more difficult [101].

Another method to combat the overconfidence problem is to train a network to
predict the quality of each connected component in the predicted segmentation
mask. One way to acquire training data for this is to compute the Dice of each
predicted connected component and all true connected components that overlap
with them. Thus, each connected component would get a score between 0 and 1
which a classification network could be trained to predict. Such a classification
network would take the predicted mask and the PET/CT image (or CT image for
CT-only models) as input and return the quality score of that segmentation mask.

Another weakness of deep learning is demonstrated by the proposed delineation
of patient 110. For this patient, both the PET/CT model and the CT-only model
predict a small region of affected tissue on the left side of the patient on the early
slices. However, with little to no local change in the image, the network stopped
to delineate that region. Thus, the network either adapted to global cues, or local
cues that were imperceptible for the untrained eye. Understanding what makes a
network delineate different regions is important, however, it is difficult with neural
networks working as black box models.

A visualisation suite should, therefore, be developed to understand what parts of
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the image are important when detecting the different tumours/lymph nodes. There
are, to the author’s knowledge, no work on explicitly visualising pixel importance
in segmentation tasks. However, guided backpropagation [54] is a classification
network visualisation algorithm that easily can be generalised for the segmentation
case.

Guided backpropagation is an algorithm for visualisation of classification networks
using the ReLU nonlinearity [54]. The idea is to visualise the parts of the input
that were most important when classifying the image. This is visualised using an
image the same size as the input whose pixel values indicate the influence of the
corresponding pixel to the network output.

One naive way to accomplish this is to differentiate the network output with re-
spect to the input image. However, this method has one weakness, namely that the
gradient of a neural network with respect to the input image is very noisy. There-
fore, Springenberg et al. [54] introduced guided backpropagation, which modifies
the way the derivative of ReLU nonlinearities are computed to yield more inform-
ative saliency maps.

There are several ways that guided backpropagation can be generalised for the
segmentation case. Either, each pixel can get its own saliency map. However,
this would only be useful through an interactive tool where the user picks a single
pixel, and the saliency map for that pixel is computed. The other, possibly better,
way of generalising guided backpropagation to segmentation maps is to compute
the mean saliency map for connected regions of delineated tissue.

6.2.3 Evaluation of model performance

Before assessing the performance of the networks, we must discuss the ground truth
data. Recall that the data was collected over several years and was delineated by
both radiologists and nuclear physisists. In the cases where several segmentation
masks were available, the union of them was used.

Furthermore, one goal of this thesis was to assess whether or not deep learning
is a promising approach for head and neck cancer delineation. As such, enlarged
lymph nodes and the GTV were considered to be the same class to make the
classification task easier. This was thought to be easier since it is difficult for
lay people to discern between GTV and lymph nodes. However, whether or not
merging GTV and lymph nodes into one class improves model performance is not
known. Furthermore, it makes comparison to other methods more difficult.
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Another facet to consider is that two different radiologists might create vastly dif-
ferent delineations of the same tumour. This is known as interobserver variability.
In a recent study [6], three radiologists, each with vast experience in head and
neck cancers, were presented with PET/CT scans from ten head and neck cancer
patients. The radiologists were first asked to delineate the GTV and organs at risk
based solely on the contrast agent CT scan. Thereafter, they were presented with
the PET signal as well and were tasked with delineating the GTV once more. The
average Dice on the GTV between the radiologists delineation was 0.57± 0.12 for
contrast agent CT and 0.69± 0.08 for PET/CT [6].

Recall that the highest performing PET/CT model achieved an average Dice of
0.66 ± 0.24, whereas the highest performing CT-only model achieved an average
Dice of 0.56±0.29. Thus, it might seem like the highest performing models achieve
radiologist level performance. However, that conclusion cannot be drawn simply
by examining the performance metrics. There are several reasons for this. Firstly,
our ground truth data is the union of several delineations, not the delineation
from a single radiologist. Thus, the comparison is not fully valid. Furthermore,
the errors made by the models described in this text may be more severe than
those made by radiologists. The only way to truthfully conclude about the model
performance is by consulting with radiologists, which, unfortunately, was outside
the scope of this project.

The fact that the model achieved Dice performance close to that between two ra-
diologists must be acknowledged. However, with such high performance, we must
be certain that the model performance is generalisable. To ensure no contam-
ination of the test and training data, several measures were taken. Firstly, the
dataset was thoroughly investigated to make sure that no slices from patients in
the validation or test set were available in the training set. Furthermore, to ensure
that the SciNets package did not train the models using the validation or test
set, additional models were trained with the best hyperparameter combinations.
However, these models were trained with a dataset file where the validation and
test set were replaced with the training set. After fitting the models, these models
were tested with the correct validation set, which showed similar performance to
the highest performing models. Finally, Figure 5.1 on page 119 demonstrates that
the validation loss stops decreasing after approximately 2000 iterations, whereas
the training loss did not. If the models trained on validation data, this would not
be observed. We can, therefore, conclude that the model did not train on testing
and validation data.

It is difficult to compare the performance of the deep learning models explored
here to that of other automatic head and neck tumour delineation models. The
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reason is that there is, to the author’s knowledge, no other work taking such a
broad approach to HNC tumour delineation.

In ‘Automated Radiation Targeting in Head-and-Neck Cancer Using Region-Based
Texture Analysis of PET and CT Images’, Yu et al. [29] do not report any local
cropping around the ROIs. We, therefore, assume their tumour prediction model
works similarly to ours, by delineating full images. By using their reported sens-
itivity and specificity, we compute the expected Dice of the their model on our
dataset to be approximately 0.85. Thus, their performance was not only better
than the performance presented herein, it was vastly better than that between
radiologists [6]. However, the study only included 10 patients and the testing and
validation procedure was not well described. Their algorithm does, in other words,
not have the same generalisation guarantees as the models presented in this text.

Two other relevant studies described prediction of CT images and delineated clin-
ical tumour volumes (CTV) [30], [31]. In these studies, CT images and delineated
GTVs were used to predict the clinical tumour volume (CTV). Both papers report
Dice performances in the range 0.7 to 0.85. Their results were, in other words,
much stronger than those presented herein. However, neither of the studies re-
duce interobserver variability as well as the models presented herein because both
require the GTV delineation to predict the CTV.

Finally, we have the work by Han et al. [22]. In this study the authors develop
a graph cut based Markov Random Fields model [97] to create semiautomatic
segmentation maps from PET/CT images. They achieved stellar results, with a
Dice score in the range of 0.8 to 0.9. The algorithm presented in [22] requires that
a radiologist marks parts of the tumour and parts of the healthy tissue (called
“seeds”). A thorough comparison of their result to ours is therefore difficult be-
cause semiautomatic systems do not yield unique segmentation maps for each
image.

6.3 Evaluation of the SciNets library

In this thesis, we introduced the SciNets library, which allowed us to systematically
run a large parameter sweep for image segmentation using a U-Net architecture.
The straightforward API allowed us to shift focus away from the implementation
details of the neural networks when running experiments.

Another benefit of the SciNets library is that the same parameter files can be
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used for experiments with vastly different data. For this reason, HDF5 files for
segmentation of organs at risk from PET/CT scans as well as HDF5 files for
segmentation of rectal cancers from MRI images of approximately 200 patients,
were prepared. How, neither of these experiments were run due to time limitations.

Several weaknesses of the SciNets library became apparent during and after the
training. Firstly, the DataReader class will allways shuffle the dataset, which made
it difficult to assess patient-to-patient performance. It was, however, possible as
the store_outputs method stores the input-output pairs of the model as well as
the the index of each such pair.

The ideal way to fix the above problem is to implement a context manager that
prevents dataset shuffling. Then, the TensorFlow session be should generated
within that context. Below is a demonstration of how the API of such a solution
should be.

1 dataset = scinets.data.HDFDataset(
2 data_path="/datasets/val_split_2d.h5"
3 batch_size=[train_batch_size , val_batch_size , test_batch_size ,]
4 train_group="train"
5 val_group="val"
6 test_group="test",
7 preprocessor=preprocessor ,
8 is_training=is_training ,
9 is_testing=is_testing
10 )
11

12 with dataset.no_shuffle (): # This context is not implemented in
SciNets

13 with tf.Session () as sess:
14 # Do something

Furthermore, the way the parameter logging was performed made it cumbersome
to compare models using more than one performance metric (in our case, the mean
Dice per slice). There is, unfortunately, no easy method to integrate multiple final
performance metrics in SacredBoard.

There are, however, two solutions to this problem. One solution is to develop a
similar tool as Sacred and SacredBoard. However, this is no small feat. Therefore,
we recommend using Comet.ml for tracking instead. Comet.ml is a commercial
service that provides a tool similar to SacredBoard, but without having to rent
a server and set up a database. Furthermore, it offers the use of several evalu-
ation metrics, instead of just one. Additionally, comet.ml offers an easier API for
experiment logging.

Comet.ml
Comet.ml
comet.ml
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The main downside of Comet.ml is that it is not open source, but rather the
product of a company. Thus, if the company goes bankrupt, or the pricing model
changes, then the database of experiments might be lost. Luckily, the paid plans
are currently free for academic use.

Comet.ml was not implemented as part of SciNets for three reasons. Firstly, it
was launched in April 2018, four months after the development of SciNets had
started, and it was, as of July 2018, not completely stable. Furthermore, as a new,
commercial product with unknown lifetime, it was deemed an unstable option.
Finally, the downsides of Sacred and SacredBoard were not known before the final
analysis of the results was conducted.

The generation of the final evaluation plots and tables was unnecessarily cum-
bersome and automating this is clearly beneficial. SciNets should, therefore, be
extended to automatically generate a wide range of tables and plots chosen by
the user. These plots and tables could then be generated for each model. If a
Comet.ml logger is implemented, these plots and tables could be uploaded to the
Comet.ml project corresponding to the experiments.

There is one caveat to keep in mind when automating the generation of final eval-
uation tables and figures, namely, how to deal with the test set. Performances
on the test set should not be generated automatically for all models, as the com-
parison of models should not be performed on the basis of the test set. Thus,
the best way to implement this is to have a class that generates the evaluation
tables and results for a given dataset, and call this function with the validation
set automatically after each model is trained.

The analysis of the experiments also revealed the need for good visualisation tools.
Adding an interactive toolkit is outside the scope of SciNets. However, extending
the final final evaluation pipeline to generate guided backpropagation outputs is
within the scope. Thus, for a subset of the patients, guided backpropagation
visualisation can be created for separately for all connected components in the
proposed segmentation map.

Another shortcoming of the library was that creating of experiment parameter files
was time consuming. This was mainly an effect of the way the TensorboardLogger,
particularly how the Tensorboard image logger, was implemented was implemen-
ted. Problems with the image logger arose when different windowing and channel
settings were used, thereby changing the number of input channels and requir-
ing different loggers. This meant that the dataset parameters and the logger
parameters were coupled, so simply creating log files with all possible parameter

Comet.ml
Comet.ml
Comet.ml
Comet.ml
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combinations was not possible.

One way to combat the problem with the image loggers is to create a new log type.
The new logger would not take a parameter that represents which input channel
to visualise, but rather make one Tensorboard image log per input channel. By
implementing such a logger, it would be trivial to generate all combinations of
parameter configurations automatically.

The experiment phase revealed certain problems that caused poor GPU utilisation
(20%) and had to be corrected. The first problem was that bicubic interpolation
was used after upconvolutions to ensure that the output of the upconvolutional
layer and the input to the corresponding maxpooling layer were of the same size.
This is necessary because a max pooling followed by an upconvolution will have
dimensions that differ by one if the input to the max pooling layer is odd. After
profiling the code, it became apparent that TensorFlow’s bicubic interpolation
layer was unable to run on a GPU. By using bilinear interpolation layers instead,
the GPU utilisation increased markedly.

The other performance bottleneck came from how the datasets were loaded from
disc. Two separate methods were tested to reduce the time taken to load; keeping
the entire dataset in RAM and fetching the next batch while computing the current
batch gradient. There were no noticeable performance gains by keeping the whole
dataset in RAM. Prefetching is therefore recommended.
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Chapter 7

Conclusion

In this thesis, we have introduced the SciNets library for deep learning. The lib-
rary is aimed at image segmentation and classification and can take any stack
of images as inputs (e.g. RGB images, PET/CT images or MRI images). Fur-
ther, SciNets enables rapid model prototyping whilst ensuring reproducible results.
SciNets is implemented using the TensorFlow framework by Google [12] and can
amongst others, automatically generate TensorBoard [12] and SacredBoard [89]
logs for visualisation. By using the SciNets library, we successfully performed a
vast parameter sweep with over 160 different neural networks for ROI delineation
in HNC patients.

Furthermore, we introduced the novel Fβ loss – a generalisation of the Dice loss
introduced in [42]. The Fβ loss allows for different weighting of sensitivty and
PPV in the loss by varying the β value. The β value represents the weighing
factor of the sensitvity. If β = 1, then the sensitivity and PPV is weighted the
same and the loss function is equivalent to the Dice loss. Similarly, if β = 2, then
the the sensitivity is weighted twice as much as the PPV and if β = 0.5, then the
sensitivity is weighted half that of the PPV.

The parameter sweep resulted in a set of recommended hyperparameters for sim-
ilar segmentation tasks (presented on page 166). Notably, we demonstrated that
using the newly introduced F2 and F4 loss gave an expected improved validation
performance compared to the Dice loss and cross entropy loss for all parameter
combinations.

During the delineation experiments, we demonstrated that deep learning is applic-
able to the segmentation of tumours and malignant lymph nodes tissue in PET/CT
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images of HNC patients. The PET/CT model achieved highest performance with
an average Dice of 0.66± 0.24, sensitivity of 0.79± 0.28, Specificity of 0.99± 0.01
and PPV of 0.62± 0.26. The PET-only model achieved second best overall with a
Dice of 0.64±0.24, a sensitivity of 0.69±0.27, a specificity of 0.99±0.01 and a PPV
of 0.64 ± 0.27. Finally, the CT-only models achieved lowest overall performance
with a Dice of 0.56 ± 0.29, a sensitivity of 0.58 ± 0.33 a specificity of 0.99 ± 0.01
and a PPV of 0.62± 0.31.

Thus, we demonstrated that deep learning models can acquire radiologist-level Dice
performance on delineation of affected tissue in PET/CT images. However, the
Dice performance is not a true measure of segmentation quality as some errors are
more severe than others. Future work should, therefore, consult with radiologists
to get a true measure of model performance.
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Appendix A

SciNets experiment structure

The NetworkExperiment class has a general structure for its input. In particular,
the input is a set of dictionaries with a clear structure. We will now provide an
example of each such dictionary and explain some of the implementation details
of SciNets. We start with the dataset parameters.

Dataset parameters

1 dataset_params = {
2 "operator": "HDFDataset",
3 "arguments": {
4 "data_path": "/dataset/val_split_2d.h5",
5 "batch_size": [16, 128, 128],
6 "val_group": "val",
7 "preprocessor": {
8 "operator": "PreprocessingPipeline",
9 "arguments": {
10 "preprocessor_dicts": [
11 {
12 "operator": "ChannelRemoverPreprocessor",
13 "arguments": {"channel": 1}
14 },
15 {
16 "operator": "HoundsfieldWindowingPreprocessor",
17 "arguments": {
18 "window_width": 100,
19 "window_center": 70
20 }
21 }
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22 ]
23 }
24 }
25 }
26 }

Above we see that the dataset_params dictionary has a clear pattern. It contains
two keys, "operator" and "arguments". The "operator" key is used to extract
a class from the dataset_register. A dataset instance of this class is generated,
providing the "arguments" dictionary as keyword arguments through dictionary
unpacking1. Thus, the code above creates a dataset the following way.

1 dataset = HDFDataset(
2 data_path="/dataset/val_split_2d.h5",
3 batch_size=[16, 128, 128],
4 val_group="val",
5 preprocessor={
6 "operator": "PreprocessingPipeline",
7 "arguments": {
8 "preprocessor_dicts": [
9 {
10 "operator": "ChannelRemoverPreprocessor",
11 "arguments": {"channel": 1}
12 },
13 {
14 "operator": "HoundsfieldWindowingPreprocessor",
15 "arguments": {
16 "window_width": 100,
17 "window_center": 70
18 }
19 }
20 ]
21 }
22 }
23 )

This pattern is repeated when the preprocessor instance is created. Thus the "
operator", "arguments" pattern is a standard pattern in SciNets. The value of
an "operator" key is provided to some subclass register to get a class. An in-
stance of this class is then generated using the "arguments" dictionary as keyword
arguments through dictionary unpacking.

Thus, to see the possible key-value combinations in the "arguments" dictionaries,
we must look at the implementation of the class given by the "operator" key.

1See PEP 448 for information about this.

https://www.python.org/dev/peps/pep-0448/
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Log parameters

1 log_params = {
2 "val_log_frequency": 100,
3 "evaluator": {"operator": "BinaryClassificationEvaluator"},
4 "loggers": [
5 {
6 "operator": "TensorboardLogger",
7 "arguments": {
8 "log_dicts": [
9 {
10 "log_name": "Loss",
11 "log_var": "loss",
12 "log_type": "scalar"
13 },
14 {
15 "log_name": "Accuracy",
16 "log_var": "accuracy",
17 "log_type": "scalar"
18 },
19 {
20 "log_name": "Dice",
21 "log_var": "dice",
22 "log_type": "scalar"
23 },
24 {
25 "log_name": "Probability_map",
26 "log_var":"probabilities",
27 "log_type": "image",
28 "log_kwargs": {"max_outputs":1}
29 },
30 {
31 "log_name": "Mask",
32 "log_var": "true_out",
33 "log_type": "image",
34 "log_kwargs": {"max_outputs":1}
35 },
36 {
37 "log_name": "CT_c70_w200",
38 "log_var": "input",
39 "log_type": "image",
40 "log_kwargs": {"max_outputs": 1, "channel":

0}
41 },
42 {
43 "log_name": "Probability_map",
44 "log_var":"probabilities",
45 "log_type": "histogram"
46 }
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47 ]
48 }
49 },
50 {
51 "operator": "SacredLogger",
52 "arguments": {
53 "log_dicts": [
54 {
55 "log_name": "Loss",
56 "log_var": "loss"
57 },
58 {
59 "log_name": "Accuracy",
60 "log_var": "accuracy"
61 },
62 {
63 "log_name": "Dice",
64 "log_var": "dice"
65 }
66 ]
67 }
68 },
69 {
70 "operator": "HDF5Logger",
71 "arguments": {
72 "log_dicts": [
73 {
74 "log_name": "Loss",
75 "log_var": "loss"
76 },
77 {
78 "log_name": "Accuracy",
79 "log_var": "accuracy"
80 },
81 {
82 "log_name": "Dice",
83 "log_var": "dice"
84 }
85 ]
86 }
87 }
88 ],
89 "network_tester": {
90 "metrics": ["dice", "true_positives", "true_negatives", "

sensitivity", "precision"]
91 }
92 }
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Here, we see a similar pattern to that of the dataset parameters. However, a single
SciNets experiment might have several loggers. Thus, the loggers are parametrised
in the "loggers" list. Furthermore, there are some parameters that are set in the
NetworkExperiment class, these are provided as additional key-value pairs. The
"val_log_frequency" key specifies how often logs should be computed on the
validation dataset, the "evaluator" key contains a dictionary that parametrises
the network evaluator and the "network_tester" key specifies which parameters
to compute for the validation dataset after training.

Model parameters

1 {
2 "operator": "UNet",
3 "arguments": {
4 "loss_function": {
5 "operator": "BinaryFBeta",
6 "arguments": {"beta": 2}
7 },
8 "skip_connections": [
9 ["conv2", "upconv4"],
10 ["conv4", "upconv3"],
11 ["conv6", "upconv2"],
12 ["conv8", "upconv1"]
13 ],
14 "architecture": [
15 {
16 "layer": "Conv2D",
17 "scope": "conv1",
18 "layer_params": {
19 "out_size": 64,
20 "k_size": 3
21 },
22 "normalizer": {
23 "operator": "BatchNormalization"
24 },
25 "activation": {
26 "operator": "ReLU"
27 },
28 "initializer": {
29 "operator": "he_normal"
30 }
31 },
32 {
33 "layer": "Conv2D",
34 "scope": "conv2",
35 "layer_params": {
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36 "out_size": 64,
37 "k_size": 3
38 },
39 "normalizer": {
40 "operator": "BatchNormalization"
41 },
42 "activation": {
43 "operator": "ReLU"
44 },
45 "initializer": {
46 "operator": "he_normal"
47 }
48 },
49 {
50 "layer": "MaxPool",
51 "scope": "max_pool1",
52 "layer_params": {
53 "pool_size": 2
54 }
55 },
56 ...
57 {
58 "layer": "Upconv2D",
59 "scope": "upconv4",
60 "layer_params": {
61 "out_size": 64,
62 "k_size": 3
63 },
64 "normalizer": {
65 "operator": "BatchNormalization"
66 },
67 "activation": {
68 "operator": "ReLU"
69 },
70 "initializer": {
71 "operator": "he_normal"
72 }
73 },
74 {
75 "layer": "Conv2D",
76 "scope": "conv17",
77 "layer_params": {
78 "out_size": 64,
79 "k_size": 3
80 },
81 "normalizer": {
82 "operator": "BatchNormalization"
83 },
84 "activation": {
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85 "operator": "ReLU"
86 },
87 "initializer": {
88 "operator": "he_normal"
89 }
90 },
91 {
92 "layer": "Conv2D",
93 "scope": "conv18",
94 "layer_params": {
95 "out_size": 64,
96 "k_size": 3
97 },
98 "normalizer": {
99 "operator": "BatchNormalization"
100 },
101 "activation": {
102 "operator": "ReLU"
103 },
104 "initializer": {
105 "operator": "he_normal"
106 }
107 },
108 {
109 "layer": "Conv2D",
110 "scope": "conv19",
111 "layer_params": {
112 "out_size": 1,
113 "k_size": 3
114 },
115 "initializer": {
116 "operator": "he_normal"
117 },
118 "activation": {
119 "operator": "Sigmoid"
120 }
121 }
122 ]
123 }
124 }

Again, we see the "operator"–"arguments" dictionary structure. We now briefly
describe the structure of the U-Net class. We see that the UNet class takes
three keyword arguments, the loss_function, the skip_connections and the
architecture. How a normal feed-forward network is generated is described in
3.1.
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Trainer parameters

1 trainer_params = {
2 "save_step": 2000,
3 "max_checkpoints": 20,
4 "train_op": {
5 "operator": "MomentumOptimizer",
6 "arguments": {
7 "momentum": 0.9
8 }
9 },
10 "learning_rate_scheduler": {
11 "operator": "CosineDecayRestarts",
12 "arguments": {
13 "learning_rate": 0.05,
14 "first_decay_steps": 650,
15 "t_mul": 10,
16 "m_mul": 1,
17 "alpha": 0.01
18 }
19 }
20 }

There is only one NetworkTrainer class, and the generation of a network trainer
does, therefore, not include ”operator” and ”arguments” keys. Rather, the whole
trainer_params dictionary is provided as keyword arguments when initiating the
NetworkTrainer instance.

Experiment parameters

1 experiment_params = {
2 "continue_old": False
3 "log_dir": "/myhdd/logs"
4 "name": "unet_only_ct_windowing_c70_w200_basic_f2_sgdr"
5 "verbose": True
6 }

The experiment_params dictionary contains only four key-value pairs. "continue_old
" specifies whether or not training should start at the latest checkpoint. "log_dir"
specifies which directory to store the checkpoints and log files. "name" specifies
the name of the experiment and "verbose" is True if additional printouts should
be shown in the terminal window. We recommend setting the verbosity to True.
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The CLI programmes in SciNets

Several CLI programmes are provided as part of SciNets. Here, we will highlight
“run sacred” and “run experiment”. These CLI programmes perform the same
task, namely running an experiment based on a set of JSON files. The difference
is that “run sacred” creates a connection with a sacred database and stores the
sacred logs there. Thus, the “run sacred” CLI programme must be ran if a sacred
logger is present in the log_params dictionary, whereas “run experiment” should
be ran if it is not.

The structure of the parameter dictionaries is explicitly designed to easily be
stored in JSON files. This is, in fact, the sole reason for the SubclassRegister
, which allows instances of classes to be generated from a string with the class
name. Thus, to run an experiment, each of the above dictionaries are stored in
JSON file with the following names: “dataset params.json”, “log params.json”,
“model params.json”, “trainer params.json” and “experiment params.json”.

Furthermore, a CLI programme for creating a plethora of such experiments is
provided; “create experiments”. This CLI takes amonst others a path as in-
put. The folder at the provided path should contain four subfolders: “data-
set params”, “log params”, “model params” and “trainer params”. Each of these
folders should contain at least one JSON file. The “create experiments” pro-
gramme will iterate through all possible combinations of the parameter files in the
afforementioned folders and create an experiment folder for each of them. The
“experiment params.json” file is autogenerated by the other inputs to the “cre-
ate experiments” programme.

Finally, we have the “store outputs” programme. This programme will find the
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highest performing model using a specified performance metric and store input-
output pairs as well as performance metrics per slice for either the validation set
(default) or test set (must be specified).

All CLI programmes are documented using the argparse builtin library in Python
with a description of each mandatory and optional input argument.
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Thank you.
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