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Abstract 

Five timber joist floors were deflection-tested with and without added boarding layers, in 

order to determine how much transversal stiffness can be considered for vibration design of 

the different floor constructions. The transversal stiffnesses were found to be higher than 

simplified analytical hand calculations would predict. A correlation between low joist 

stiffness and increased transversal stiffness was seen. 

The thesis involves literature study, laboratory testing, verifications of the floors based on 

the test results, and analytical considerations. Improvements of current vibration design 

formulas are suggested. 

The tested floors are high-frequency and will not suffer resonance problems from walking. 

The transient velocity response due to heel drop impulses can however be a concern, and 

the floors do not satisfy high vibration demands. The floors are generally deemed as 

satisfactory by half of the verification methods. 

 

Sammendrag 

Fem trebjelkelagsgulv ble nedbøyningstestet med og uten ekstra platelag, for å finne ut hvor 

mye tverrstivhet som kan regnes med i vibrasjonsdimensjonering av de forskjellige 

gulvkonstruksjonene. Tverrstivheten ble funnet til å være høyere enn det forenklede 

analytiske håndberegninger anslår. En korrelasjon mellom lav bjelkestivhet og økt 

tverrstivhet ble observert. 

Denne masteroppgaven omfatter litteraturstudium, laboratorietesting, 

vibrasjonsberegninger basert på testresultatene, og analytiske betraktninger. Forbedringer 

av eksisterende dimensjoneringsformler for gulvvibrasjoner er foreslått. 

De testede gulvene har høy egenfrekvens og vil ikke være utsatt for resonansproblemer ved 

gåing. Hastighetsresponsen fra hælstøt kan imidlertid være et problem, og gulvene 

tilfredsstiller ikke høye vibrasjonskrav. Generelt bedømmes gulvene som tilfredsstillende av 

halvparten av verifikasjonsmetodene. 
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1 Introduction 

Norway has a long-standing tradition for timber construction. And with the increasing focus 

on reducing global warming, this is likely to continue in the years to come, as timber has a 

much better carbon footprint than concrete, steel and aluminium. [1] [2] 

The design of timber floors is very often governed by the serviceability requirements. In part 

due to the light weight, they are quite sensitive to walking-induced vibrations that feel 

uncomfortable to the users, as opposed to the much heavier concrete floors that are not 

associated with such problems. In order for timber to be more competitive economically, 

there is a desire to find ways to increase the floor spans without reducing the floor 

performance. A lot of research has been done in the last few decades in order to better 

understand the vibrational behavior and how it relates to human perception. There is 

however still no clear consensus on exactly how timber floors should be considered for 

vibration design. 

The new Eurocode 5 is under development, and it is a source of debate how walking-induced 

vibrations should be calculated and how strict the requirements should be. While these 

kinds of floor vibrations are not dangerous, people do not want to feel uncomfortable and 

unsafe when walking. On the other hand, if the vibration requirements are made too strict 

then timber floors will become too expensive. 

This thesis focuses on the verification of vibrational properties of five timber joist floors from 

Støren Treindustri AS that were laboratory tested. The floors were subjected to static loads 

and deflections were measured, from which the transversal stiffnesses could be calculated. 

This input is necessary for all of the verification methods, and analytical calculations tend to 

underestimate it. We were curious to find out how much the different modifications of the 

reference floor would improve the transversal stiffness and thereby also the vibrational 

properties. 

The thesis is structured as follows: 

Chapter 1: Introduction 

Chapter 2: Floor vibration theory 

Chapter 3: Verification methods 

Chapter 4: Laboratory testing of floors 

Chapter 5: Verification of the floors based on the test results 

Chapter 6: Analytical considerations 

Chapter 7: Conclusion  
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2 Floor vibration theory 

This chapter presents the theoretical background needed to understand the verification 

methods and the vibrational behavior of the tested floors. Except where otherwise is stated, 

the main source for chapter 2 is the publication “Design of floor structures against human-

induced vibrations” by Hicks and Smith [3]. It is for steel-framed floors, but the basic 

theoretical foundation is the same as for timber joist floors. All formulas involving sine or 

cosine use radians and not degrees. 

 

2.1 Continuous and discrete systems 

Vibration is related to the movement of mass. Each vibration problem can be classified into 

either a continuous system or a discrete system. In a continuous system, the mass is directly 

linked together, such as in a beam in bending. In a discrete system, the masses involved are 

independent. An example of a discrete system is a multi-storey building subjected to 

horizontal vibration (e. g. from an earthquake), where the floors are taken as the masses and 

the columns as the springs. Continuous system vibration problems generally involve solving 

a differential equation where a continuous function is integrated. Discrete systems are 

easier to solve, through the help of matrix equations. 

To avoid solving a complicated differential equation, a continuous system can instead be 

solved through numerical methods by transforming it into a discrete system. The most well-

known way of doing this is the finite element method (FEM). It is an approximate method, 

but very accurate as long as the chosen mesh size isn’t too coarse. 

 

2.1.1 Continuous systems 

The response (i. e. displacement, velocity and acceleration) of a continuous system at a given 

position and time depends on the mass and stiffness of the system as well as the initial 

force. For example, a beam in bending will behave in accordance with Formula 2.1. To 

calculate the natural frequencies of the beam, the forcing function should be set to zero 

while the proper boundary conditions are applied. 

𝑚
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= 𝐹(𝑥, 𝑡) 

Formula 2.1 - Governing equation for beam in bending 

where: 
m is the distributed mass 
w is the beam’s displacement, as a function of x and t 
t is the time 
EI is the flexural rigidity / bending stiffness 
x is the position along the beam 
F(x, t) is the forcing function 



14 
 

2.1.2 Discrete systems 

In general, discrete systems are modelled from three components: concentrated masses, 

springs and dampers. Discrete system problems are solved by considering the forces applied 

on each mass by the other components and thereby finding and solving matrix equations 

that link the displacement, velocity and acceleration to the external forces. 

A discrete problem is either categorized as a single-degree-of-freedom (SDOF) system or as a 

multi-degree-of-freedom (MDOF) system. SDOF systems only have one mass, and so they 

are easy to solve. MDOF systems feature two or more masses and can be coupled in many 

ways. 

A typical SDOF system is depicted in Figure 2.1. There is a simple mass on a spring, 

connected to a dashpot (viscous damper). This model is useful as it can be used for each 

mode of a continuous system, with different parameters for each mode, to find the response 

at each natural frequency. 

 

Figure 2.1 - Model of SDOF system with damper 

 

2.2 Frequency 

The natural frequencies of a system, with units of either Hz (cycles per second) or radians 

per second, are a measure of the rate of system vibration. They are essential parameters 

because the effects of any external forces on a system cannot be predicted before the 

natural frequencies have been determined. For a given dynamic load to cause a large 

reaction in a system, its frequency must be within a certain range, not too low and not too 

high. If the system’s frequency is too low for a given dynamic load then the system will not 

have enough time to react to the load before it is gone, and if the natural frequency is too 

high then it will be like applying and removing a static load. 

 

2.2.1 Frequency calculation 

For free elastic vibration of a beam with uniform cross section (i. e. constant bending 

stiffness / flexural rigidity), the frequency of the nth mode of vibration is found by solving 

Formula 2.1, which gives this result: 
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𝑓𝑛 =
𝜅𝑛
2𝜋

√
𝐸𝐼

𝑚𝐿4
=

𝜅𝑛
2𝜋𝐿2

√
𝐸𝐼

𝑚
 

Formula 2.2 - Beam natural frequencies 

where: 
 EI is the dynamic flexural rigidity [Nm2] 
 m is the effective mass [kg/m] 
 L is the span of the beam [m] 

κn is a constant dependent on the support conditions for the nth vibration mode 

fn will then have the unit of Hertz (Hz). The radial frequency ωn is obtained by multiplying 

with 2π and will have the unit of radians per second; ωn = 2π fn. 

Some values for κn for various boundary conditions are given in Table 2.1. One can note that 

for a simply-supported beam, the value of κn for mode n is given by (nπ)2. 

 

Table 2.1 - κn coefficients for uniform beams 

 

One way of finding a beam’s fundamental (i. e. the lowest) natural frequency, denoted f1 (or 

f0 in some literature), is to use the maximum deflection δ caused by the weight of a uniform 

mass per unit length m. For a simply-supported beam (κ1 = π2) with a uniformly distributed 

load, this expression (where g is the gravitational acceleration of 9.81 m/s2) is to be used: 

𝛿 =
5𝑚𝑔𝐿4

384𝐸𝐼
 

Formula 2.3 - Deflection of simply-supported beam from uniformly distributed load 

 

Only loads considered to be permanent should be included in the calculation of δ. By 

rearranging Formula 2.3 and substituting into Formula 2.2 along with the value for κ1, while 

changing the unit of δ from m to mm, this relation between the fundamental frequency and 

the maximum deflection is obtained: 

𝑓1 =
17.75

√𝛿
≈
18

√𝛿
 

Formula 2.4 - Relation between fundamental frequency and maximum deflection 
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A numerator of approximately 18 is also found even for different boundary conditions if the 

same procedure is performed, with the applicable equation for δ and the appropriate κn 

value. Formula 2.4 therefore applies generally and can be used directly for design purposes 

to determine the natural frequency of individual members with different boundary 

conditions, as long as δ is determined correctly. 

To find the fundamental natural frequency (f1) of a floor system, Dunkerly’s approximation 

can be used. The f1 of each individual member (e. g. primary (fp) and secondary beams (fb), 

and slab (fs)) should then be calculated from Formula 2.4 as described above, and then be 

input into Formula 2.5 to calculate the f1 of the whole system. Alternatively, using Formula 

2.4 directly will also yield the same result when δ is taken as the sum of the deflections of 

the individual structural components. 

1

𝑓1
2 =

1

𝑓𝑠2
+

1

𝑓𝑏
2 +

1

𝑓𝑝2
 

Formula 2.5 - Dunkerly's approximation 

 

2.2.2 Mode shapes 

Continuous systems have multiple natural frequencies, each with its own associated mode 

shape. A mode shape shows the shape of the system at maximum deflection. The 

fundamental frequency corresponds to the first mode shape, which will always be the 

simplest mode shape. The first three mode shapes of a uniform simply-supported beam are 

as shown in Figure 2.2. The first mode shape is like that of half a sine wave, the second is like 

one full sine wave, and the third is like one and a half sine wave. The modes of single span 

floors have the same shape [4]: 

 

Figure 2.2 - Mode shapes of uniform simply-supported beam and single span floor 
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In Figure 2.2, the max deflection (the amplitude) is presented as equal for all of the mode 

shapes even though this won’t be the case in practice. For some purposes it is however 

common to unity-normalize them, i. e. set all of the mode shape amplitudes equal to 1 

(unitless). The beam in Figure 2.2 can be expressed mathematically like this (where μn(x) is 

positive downward): 

𝜇𝑛(𝑥) = sin (
𝑛𝜋𝑥

𝐿
) 

Formula 2.6 - Mode shapes of uniform simply-supported beam 

where: 
 μn(x) is the unity normalized amplitude at position x 
 n is the mode number (a positive integer; n = 1, 2, 3…) 
 x is the position along the beam; 0 < x < L 
 L is the span of the beam 

To get the displacement of any point at any given time, the shape function μn (x) can be 

multiplied by an amplitude function gn (t) varying with the time t, dependent on the 

frequency of motion f: 

𝑔𝑛(𝑡) = sin⁡(2𝜋𝑓𝑡) 

Formula 2.7 - Time-varying amplitude function 

 

2.2.3 Modal superposition 

To find the actual displacement of a system at any given time, the principle of superposition 

needs to be applied; the contributions from all of the modes should be added together. In 

the case of one sinusoidal forcing function of frequency f, the total response wn(x, t) is: 

𝑤𝑛(𝑥, 𝑡) = ∑𝑢𝑛

∞

𝑛=1

sin(2𝜋𝑓𝑡 + 𝜙𝑛) sin (
𝑛𝜋𝑥

𝐿
) 

Formula 2.8 - Total modal response, displacement of simply-supported beam 

where: 
 wn(x,t) is the displacement of the beam at time t and position x 
 t is the time 
 f is the frequency of the forcing function 
 un is the maximum amplitude of mode n 
 ϕn is the phase lag of mode n 

un and ϕn are determined from the forcing function or the initial excitation. 
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2.2.4 Modal mass 

A system’s modal mass is a measure of how much mass is involved in the mode shape, and 

thereby how much kinetic energy there is in the system. For a continuous system, a modal 

mass is determined for each mode so that the system can be expressed as a series of SDOF 

discrete systems. The modal mass is found via the well-known equation for kinetic energy 

(where the velocity is a function of time); 𝐸𝑘 =
1

2
𝑚𝑣2. But for this purpose, the equation 

becomes much more complex than that. A double integral has to be solved, and the modal 

mass is then found via the unity normalized kinetic energy. These equations are not 

presented here. 

The modal mass for each mode indicates how much the mode contributes to the overall 

response of the system, for an equal modal force. A large modal mass means that a lot of 

energy is required to excite the mode, which makes its contribution to the total response 

less significant than that of a small modal mass. 

For numerical analysis with vibration dose values (VDV), the modal mass can be determined 

by performing a modal analysis with a finite element software. In many of the code-based 

verification methods however, the modal mass is instead approximated via simple 

equations. 

 

2.3 Excitation 

2.3.1 Continuous forcing function 

A system’s response to a continuous excitation is found via un (max amplitude of mode n) 

and ϕn (phase lag of mode n) from Formula 2.8. This formula is however only applicable for 

the case of one sinusoidal forcing frequency, while for most practical purposes the forcing 

function will be more complex than such. Luckily, mathematicians have discovered that a 

more complicated continuous forcing function can be split up into a series of sine waves, 

each of which will have a frequency at an integer multiple (or harmonic) of the forcing 

frequency. By doing this, the overall response can be established. This set of harmonics are 

known as a Fourier series, where each harmonic will have its own amplitude and phase shift. 

An example of such a set is shown below in Figure 2.3, with the four first harmonics (of the 

Fourier series) for the excitation force due to low impact aerobics. The total force is the sum 

of the harmonics (plus the static), and we can also observe that all of the harmonics have an 

extremum in sync with the total force, hence the word harmonic, due to the integer multiple 

frequencies. We can also see from the decreasing max amplitudes that the higher harmonics 

are less significant in terms of force and energy. 
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Figure 2.3 - Fourier series for light aerobic activities 

 

2.3.2 Impulsive force 

In a high frequency floor (commonly defined as having f1 higher than the fourth harmonic of 

walking), the response from one footstep will dissipate before the next, and then the forcing 

function will resemble a series of separate events rather than a continuous function. The 

modelling can then be simplified by using impulses to describe the footfall forces. 

Mathematically, a unit impulse is an infinite force over an infinitesimal time, with the 

multiple of force and time equal to 1. While that’s not physically possible, it’s useful as a 

model. 

 

2.4 Response 

2.4.1 Acceleration 

In many code-based methods, vibration requirements are verified through threshold values 

for acceleration rather than displacement. 

As known from basic physics courses, acceleration is the second derivative of the 

displacement with respect to the time t; a(t) = v’(t) = s’’(t). By deriving the first derivative of 

Formula 2.8, this expression for the acceleration of a simply-supported beam (as a function 

of the position x along the beam and the time t) is found: 

𝑎(𝑥, 𝑡) = ∑−4𝜋2⁡𝑓𝑛
2⁡𝑢𝑛 sin(2𝜋𝑓𝑛𝑡 + 𝜙𝑛) sin(

𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

 

Formula 2.9 - Acceleration of simply-supported beam 
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The acceleration of a system can be presented in many ways. It is often natural to measure 

the peak acceleration (apeak), however this provides no information about the timeframe of 

high-level acceleration. Therefore, the root-mean-square (rms) acceleration is often used as 

a measure instead: 

𝑎𝑟𝑚𝑠 = √
1

𝑇
∫𝑎(𝑡)2⁡𝑑𝑡

𝑇

0

 

Formula 2.10 - rms acceleration 

where: 
 T is the period under consideration 
 a(t) is the acceleration function 
 t is the time 

The period T needs to be chosen as a time period that will cover at least one complete cycle 

of the acceleration. Walking has a mean frequency of 2 Hz (i. e. two steps per second), and 

the recommendation of ISO 2631-1:1997 is to then use a period T of 1 second when 

calculating the response. 

For vibration dose values (VDV), the root-mean-quad (rmq) acceleration is used. It is 

calculated in a similar way (different exponents), and it gives more emphasis to the higher 

values of acceleration. 

To better understand the physical meaning of these quantities, Table 2.2 is helpful. For 

example, a square wave instantly shifts between the extrema, and so the rms (as well as the 

rmq) acceleration is then equal to the peak acceleration. A sine wave with the same peak 

acceleration will however have a lower rms as it varies between high and low values. 

 

Table 2.2 - Acceleration measures for various waveforms 

 

2.4.2 Damping 

Damping is an influence within or upon a system that reduces, restricts or prevents its 

vibrations, to an eventual stop. The associated energy is either dispersed or dissipated from 

the system. Structural damping is provided from friction between components and slip at 

joints, and from the contents of a room (the furniture will remove vibrational energy by 
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moving or vibrating themselves). The material damping of timber is quite low and 

contributes less to the total damping. 

The damping ratio ζ is a unitless measure describing how quickly system vibrations decay 

with each bounce after a disturbance, as shown in the figure below. The general cases are 

undamped (ζ=0), underdamped (ζ<1), critically damped (ζ=1) and overdamped (ζ>1). Timber 

floors are very much underdamped, and appropriate damping ratios (generally in the range 

of 0.01 to 0.05), are presented for various floor types in chapter 3. 

 

Figure 2.4 - The effect of various damping ratios on oscillations 

 

It can be difficult to estimate the level of damping, and so it is necessary to base the design 

on damping values that have been appropriate for similar cases in the past. The 

recommendations in the table below (for steel-framed floors, but also applicable in principle 

for timber floors) show the effect of furniture and partition walls on the damping ratio: 

 

Table 2.3 - The effect of furniture etc. on the damping ratio 

 

While partitions are not dampers, they are usually modelled as such, as a simplification. The 

weight of people also provides some damping; however, this is usually ignored in design in 

order to be conservative. 
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2.4.3 Transient and steady state 

The response of a system to a regular excitation can be split into two parts; the transient 

response and the steady-state response. As shown in Figure 2.5 for the displacement u(t) for 

a harmonic force, the steady-state part of the response is the (total) response when the 

waveform has settled down. The transient response, which is the difference between the 

total and the steady-state response, is only significant in the beginning before it is gradually 

nullified due to damping. [5] 

 

Figure 2.5 - Response of damped system to harmonic force 

 

The acceleration response will take the shape of (a) or (b) in Figure 2.6, where the steady-

state response is the same in both graphs. The difference is that for (b), the transient 

response is also significant and gives a high total acceleration initially. 

 

Figure 2.6 - Total acceleration responses 

 

If the floor’s frequency is high in relation to that of the forcing frequency (for example higher 

than 10 Hz, with walking activities below 2.5 Hz, respectively), then the transient part of the 

(total) response will be much more significant than the steady-state. The applied force can 
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then instead be modelled as a series of impulses rather than as a continuous forcing 

function. The impulsive acceleration response will then be as in Figure 2.7: 

 

Figure 2.7 - Impulsive acceleration response 

 

For design, it is common to make the conservative assumption that the force is applied at 

the most responsive location of the floor. In reality, the walking path will only pass across 

this point for a moment, but an analysis based on this becomes more complex. 

For low frequency floors (where f1 is lower than the appropriate value from Table 2.4), both 

the transient and the steady-state response need to be checked, because the transient 

response could be larger than the steady-state due to the higher frequencies of the floor. 

The steady-state response is large when one or more of the harmonics of the walking are 

close to one of the floor’s natural frequencies. All vibration modes with natural frequencies 

up to 2 Hz higher than the relevant value from Table 2.4 should then be considered, to 

account for off-resonant vibration of the activity’s highest harmonic. 

 

Table 2.4 - Cut-off limit between high frequency floors and low frequency floors 

 

For high frequency floors it is sufficient to only check the transient response. For transient 

analysis, the response is dominated by a number of impulses, corresponding to the heel 
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impacts from a person. Natural frequencies higher than twice the f1 will contribute very little 

to the response and can therefore be neglected. (In the Eurocode 5 approach, the line is 

drawn at 40 Hz.) 

 

2.4.4 Resonance 

The response to a dynamic force is higher when the excitation frequency is close to a natural 

frequency of the system. As an example, a steady-state rms acceleration response due to a 

constant cyclic force applied at various excitation frequencies is shown in Figure 2.8. The 

graph peaks when the excitation frequency equals one of the natural frequencies, and this is 

known as resonance. The response in between peaks is known as off-resonant response, and 

it is also significant. 

 

Figure 2.8 - Resonant and off-resonant response 

 

The most commonly cited example of resonance is the famous and spectacular video 

showing the collapse of the Tacoma Narrows Bridge. However, this is actually an example of 

aeroelastic flutter, not resonance, as explained in an article by Billah and Scanlan written in 

1990. [6] 

The dynamic magnification factor Dn,h (often abbreviated as DMF, DAF or DIF) for 

acceleration is a dimensionless number that gives the ratio between the peak amplitude and 

the static amplitude. It describes how many times larger the amplitude will be from a 

dynamic load compared to if it had been a static load. It is calculated as follows: 

𝐷𝑛,ℎ =
ℎ2𝛽𝑛

2

√(1 − ℎ2𝛽𝑛2)2 + (2ℎ𝜁𝛽𝑛)2
 

Formula 2.11 - Dynamic magnification factor 

where: 
 h is the number of the hth harmonic 

βn is the frequency ratio; fp/fn, where fp is the frequency of the first harmonic of 
the activity, and fn is the frequency of the mode under consideration 

ζ is the damping ratio 
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A large response (resonance) results when the denominator nears zero. From Figure 2.9 we 

see that this happens when the frequency ratio βn is close to 1 and the damping ratio is low. 

 

Figure 2.9 - Dynamic magnification factor for acceleration 

 

The damping ratio of a timber floor is usually in the range of 1-5 %, which as shown in Figure 

2.9 is far from enough to avoid a large amplification when a natural frequency of the floor 

closely matches the frequency of its intended activity, be it walking or dancing. Floors should 

be designed to have a fundamental frequency high enough to at least avoid off-resonant 

vibration from the first harmonic of walking, which has a much larger amplitude than the 

other harmonics. That would imply 3 Hz as a minimum for f1, but most code-based methods 

for timber floors don’t allow anything lower than 4.5 Hz. 

 

2.5 Sources of vibration – dynamic excitation forces 

Each harmonic of the loading function can cause resonance with a natural frequency of the 

floor, and it is the walking pace frequency that gives the worst-case response that should be 

used for design. The pace frequency (fp) for walking has a mean value of 2.0 Hz. It can vary 

between 1.5 and 2.5 Hz, but the fp range for design can be narrowed down to 1.8 – 2.2 Hz. 

Within enclosed spaces where slower walking speeds are expected, fp should be set to 1.8 

Hz. The velocity as a function of the pace frequency can be approximated by this empirical 

formula (applicable for fp between 1.7 and 2.4 Hz): 

𝑣 = 1.67𝑓𝑝
2 − 4.83𝑓𝑝 + 4.50 

Formula 2.12 - The velocity of walking with a given frequency 

 

For a pace frequency of 2.0 Hz, the walking velocity is then 1.52 m/s, or 5.47 km/h. 
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The forcing function from walking is periodic and typically looks like this [4]: 

 

Figure 2.10 - Dynamic load function for continuous excitation from walking 

 

For resonant loading, the forcing function can be idealized by up to four significant 

harmonics. The amplitude of the harmonic force for the hth harmonic, Fh, is a product of the 

Fourier coefficient αh for the hth harmonic (αh is named DLF in the figure above) and the 

static force Q caused by an average person (equal to 76 kg = 746 N in the figure above): 

𝐹ℎ = 𝛼ℎ ∗ 𝑄 

Formula 2.13 - Amplitude of harmonic force 

 

The figure below gives the harmonic loading due to footfall in terms of dynamic load factors 

(abbreviated DLF, equal to αh), where DLF is the ratio between the harmonic force amplitude 

and the static weight of the walker. Most of the applied force is in the first harmonic, and 

the subsequent harmonics are of decreasing significance. The force in a given harmonic 

increases with the walking frequency. Many of the code-based methods have tried to 

describe this with a single formula, like the one from the Austrian National Annex [7] to 

Eurocode 5 that is plotted in the same figure: 

 

Figure 2.11 - Loading model for when response is expected to be resonant 
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The root mean square acceleration can be approximated by this formula [4]: 

𝑎𝑟𝑚𝑠 =
𝐹ℎ

√2⁡2⁡𝜁⁡𝑀∗
=

𝛼ℎ ∗ 𝑄

√2⁡2⁡𝜁⁡𝑀∗
=
𝑒−0.4𝑓1 ∗ 𝑄

√2⁡2⁡𝜁⁡𝑀∗
 

Formula 2.14 - rms acceleration calculated via Fourier coefficient 

Here, M* is the modal mass and ζ is the damping ratio. Similar formulas are presented in 

chapter 3. 

 

For staircases, the human loading during ascent and descent is different both in force and 

frequency versus walking on flat surfaces. The staircase loads are generally larger and more 

high-frequency, with expected pace frequency range of 3 – 4 Hz, or possibly up to 4.5 Hz. 

Only the two first harmonics of dynamic loads induced on stairs need to be included for 

design, as oppose to the first four harmonics from walking on flat surfaces. 

For floors that are to be subjected to rhythmic activities, with multiple people in 

synchronized movements (e. g. dancing or aerobics), the frequency range should be set to 

1.5 – 3.5 Hz for individuals and 1.5 – 2.8 Hz for groups. This covers the increased activity due 

to jumping; the worst-case scenario for crowd loading. Groups have a lower frequency range 

because it is harder for a big crowd to sustain a high frequency. It is recommended that the 

crowd density for rhythmic activities should be set to 2.0 persons/m2 for social dancing 

activities, and to 0.25 persons/m2 for aerobic and gymnasium activities. 

 

2.6 Structural considerations 

The distributed mass for vibration analysis must be representative of the in-service 

conditions, as a high mass will reduce a floor’s response at a given frequency. The design 

mass per unit area should be the dead loads (including ceiling self-weight and possibly some 

of the service load), with partial factor γ = 1. If the bare structure is to be analyzed, then only 

the self-weight of the structure itself should be included. When the designer is confident 

that a semi-permanent load will be present in the finished structure, it can also be included 

(not applicable for dance- or aerobic floors). For the quasi-permanent design situation in the 

Eurocodes, Ψ2 = 0.3 for deflection from imposed loads in the serviceability limit state for 

offices and residential buildings. However, including as much as 30 % of the imposed load is 

excessive in most cases. So, only the loads that can reasonably be assumed to be present at 

all times during service should be included. Either imposed loads can be ignored completely, 

or the nominal imposed load can be multiplied by 10 % or less. 

 

2.7 Architectural considerations 

Some areas of a floor will have a higher response than others due to the vibration mode 

shapes. Areas close to beams and columns tend to be less responsive than areas in the 
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middle of the floor. So, if walking paths are moved closer to the less responsive areas in the 

design phase, vibration problems can be mitigated. The length of corridors also matters, as 

the walking time increases with the length, which increases the vibration dose. The walking 

pace frequency will also be higher in open areas than within enclosed areas, which also 

increases the vibration dose. 

Due to the possibility of vibration transfer, offices and residential locations should ideally be 

separated from floors where rhythmic activities take place. And due to possible force 

transfer, the vertical placement should also be considered. Areas used for rhythmic activities 

should ideally be as low in a building as possible. 

 

2.8 Human perception of vibrations 

Vibration of floors is generally a serviceability issue related to discomfort. Other potential 

problems can be related to disturbance of sensitive equipment or crack growth leading to 

fatigue, but the latter is generally only a concern for bridges, offshore structures, airplanes 

etc. that are subject to more severe dynamic loading from traffic, waves and wind, 

respectively. 

Discomfort and human perception of vibrations is highly individual and cannot be directly 

quantified, and as such there is no way to guarantee that 100 % of the users will be satisfied 

with a floor’s vibration response. As a rule of thumb in the construction industry (ref. Povl 

Ole Fanger), 5 % of people will be dissatisfied no matter how good any measured values are, 

whether related to air quality, thermal comfort or floor vibrational properties. And as such, 

the goal of the design standards is simply to reduce the probability of complaints. 

Humans are quite perceptible to relatively low levels of vibrations. At the same time, a 

relatively large change in vibration amplitude corresponds to a relatively small change in 

perception. If a person is asked to evaluate the level of vibration in two different rooms on 

separate occasions, it is unlikely he/she will notice a difference unless the quantitative 

difference is at least a factor of 2. This means that to improve the subjective evaluations of a 

floor, it has to be modified quite a lot. 

Subjective evaluations also differ a lot between different people, and there can be some 

cultural differences. Personal discomfort also depends on the situation; for example, a 

surgeon focusing on an operation will be more perceptible to lower levels of floor vibrations 

than a spectator at a football match, and this along with the level of importance is accounted 

for in the acceptance criteria in various design standards. 

The level of acceleration that can be perceived depends on how the body is positioned in 

relation to the vibration. Figure 2.12 shows the commonly used basicentric coordinate 

system where the z-axis follows the spine. The human body doesn’t perceive z-axis 

vibrations as easily as it does for x- and y-direction. 
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Figure 2.12 - Basicentric coordinate system for vibration directions for the human body 

 

The perception of vibration also depends on the frequency, because the body’s sensitivity to 

a given vibration amplitude changes with the vibration frequency. Much in the same way as 

humans can’t hear dog whistles or see ultraviolet light because the output frequencies are 

outside of the perceptible range, the human body has a variable range of maximum 

sensitivity to vibration frequencies. This can be accounted for in the design through 

frequency weighting. An example of that is shown in Figure 2.13, where the relevant curve 

(based on vibration direction and the activity) gives the weighting factor to be used in design 

for a given vibration frequency. If for example the Wg curve is to be applied, a sine wave of 5 

Hz will be equivalent to a 17 Hz sine wave with double the amplitude because the weighting 

factors are 1 and 0.5, respectively. 

 

Figure 2.13 - Frequency weighting curves  
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3 Verification methods 

There is still some unexplored territory in the research of floor vibrations, and to this date 

there is no clear consensus on how the vibrational properties should be assessed and 

verified, particularly due to the dynamic aspects of it. 

A floor’s vibration performance is determined by its stiffness, mass and damping. Stiffness 

and mass determine its natural frequencies, and damping reduces the duration of induced 

vibrations. Current verification methods focus on some of the key parameters that have 

been proven to correlate well with subjective assessments; namely frequency, 

deflection/stiffness, velocity and acceleration. Stiffness is important to avoid noticeable 

vertical displacements when walking, and the floor’s natural frequencies determine whether 

the response to a given dynamic excitation will be transient or resonant. An acceleration 

criterion is generally only proposed for low frequency floors because it relates to resonance 

problems. Velocity is more directly linked to the energy involved in the structural movement, 

and high frequency floors subjected to impulses from heel impacts require verification of the 

transient velocity response by many of the code-based methods. Damping is a sensitive 

parameter in some of the dynamic verifications and it is very difficult to estimate accurately. 

This chapter presents the verification methods most commonly used for timber floors, and 

some of the research behind them. Verifications of the tested floors (presented in chapter 4) 

based on these methods is done in chapters 5 and 6. 

 

3.1 Hamm/Richter/Winter 

A research project at the Technical University of Munich by Patricia Hamm, Antje Richter and 

Stefan Winter investigated the vibrational properties of timber floors. Their findings were 

presented at the 2010 World Conference on Timber Engineering [8]. Measurements of about 

100 floors from 50 buildings were carried out, in addition to laboratory tests. The results 

(frequency, deflection, velocity and acceleration) were coupled with the subjective 

evaluations of the floors, and this resulted in rules and suggestions on how to design timber 

floors; for higher demands and for lower demands. 

The measured floor values were: velocity and damping after heel drop, natural frequency 

from heel drop or jump, and the acceleration due to walking (if possible, walking with a step 

frequency of 1/2 or 1/3 of the natural frequency). 

These values were calculated for the floors: natural frequency, velocity due to heel drop, 

static deflection from single load, and the acceleration due to walking in resonance with the 

second or third harmonic of the Fourier series. 

The subjective evaluations were done by Hamm and Richter themselves (which opens up for 

confirmation bias if the floor configuration is known in advance), and also by the users if the 

floor was already in use. The floors were graded from 1 to 4, in the same way as previously 

done by Kreuzinger/Mohr [9], where a grade of 1 means no vibration problem and 4 means 
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heavy vibration problem. Afterwards, the subjective assessments were paired with all of the 

measured and calculated values individually to see if a correlation could be established. 

Generally, timber-concrete composite systems (1.2) had the best scores, followed by 

“special constructions” (1.7) and timber floors with heavy screed (2.0). The numbers in 

parentheses are my own (roughly) estimated average grades from studying the figures. The 

worst performers in general were floors with light screed (3.2) or no floor finish (3.1), and 

“elastic bearing” (3.1). 

Neither the calculated natural frequency nor the measured one correlated sufficiently with 

the subjective evaluations. That is not to say that the natural frequency is not important as a 

criterion; it rather shows that other criteria are needed in addition. 

In nearly all cases, the measured natural frequencies were a lot higher than the calculated 

ones. This was because the assumptions for the calculations were too conservative. For 

example, supports calculated as pinned were in reality influenced by a torsional spring due 

to the walls in the above storeys or the roof loads. Another source of error was that partition 

walls that were calculated as not load bearing also contribute with some stiffness to help 

reduce vibrations. To eliminate such variables, laboratory tests were also performed. 

For the laboratory measurements, the square test floor had a width and span of 5.0 m. 

Different floor finishes and support conditions were tested. The fundamental frequency and 

the damping ratio was measured for 12 different floor configurations. The f1 ranged from 9.5 

to 15.0 Hz while the damping ratio varied between 2.2 and 4.6 %. Afterwards, similar testing 

was also done for CLT (cross laminated timber) floors. 

Based on all of the research done, a verification method was suggested. The design rules and 

demands are summarized in Table 3.1, from [8]: 

 

Table 3.1 - Hamm/Richter/Winter design rules summary 
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The various construction demands are shown in Table 3.2, from [8]. Floating heavy screeds 

are better than floating light screeds due to the higher mass and stiffness. “Heavy fill” in the 

table means 60 kg/m2 or above, and this extra mass also improves the vibration behavior. 

 

Table 3.2 - Hamm/Richter/Winter demands on construction 

 

3.1.1 Frequency criterion 

The natural frequency (measured or calculated) of floors should be higher than limit 

frequencies (dependent on the demands) to avoid resonance from walking persons. If lower 

than the limit frequency, an acceleration criterion must be met while still staying above a 

given minimum frequency. 

The live load mass can be neglected when calculating the natural frequency, despite what 

Eurocode 5 says. The stiffness of screed can be added to the stiffness of the construction. 

The support conditions should be considered; if the floor is supported on more than two 

sides or if it is like a continuous beam then this can be regarded, and if it has elastic bearings 

(e. g. a beam below) then that must be regarded. 

The fundamental natural frequency of single spanning simply supported floors can be 

calculated from Formula 3.15. If there are supports on four sides, the frequency of a plate 

can be calculated from this formula: 

𝑓plate = 𝑓𝑏𝑒𝑎𝑚⁡√1 + 1/𝛼4 

Formula 3.1 - Fundamental frequency of plate 

where: 
 fbeam is the single-span floor fundamental frequency, calculated from Formula 3.15 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛼 =
𝑏

𝐿
⁡ √

(𝐸𝐼)𝐿
(𝐸𝐼)𝑏

4

 

 b is the width of the floor 
 (EI)L is the effective longitudinal stiffness (screed included) 
 (EI)b is the effective transversal stiffness (screed included) 

 

3.1.2 Deflection/stiffness criterion 

The Hamm/Richter/Winter research project as well as others show that a criterion for 

deflection or stiffness is at least as important as a frequency criterion [9]. The deflection is 

calculated from Formula 3.2 (with a 2 kN concentrated load chosen as default, and limit 

value according to demands): 

𝑤(2⁡kN) =
2𝐿3

48(𝐸𝐼)L⁡𝑏ef
≤ 𝑤limit 

Formula 3.2 - Hamm/Richter/Winter deflection criterion 

𝑏𝑒𝑓 =
𝐿

1.1
⁡ √
(𝐸𝐼)𝑏
(𝐸𝐼)𝐿

4

=
𝑏

1.1⁡𝛼
 

Formula 3.3 - Effective width 

 

The effective width bef cannot be larger than the width of the floor. (It could also be argued 

that bef must be at least as large as the joist spacing because a single joist has to at least 

carry the load in its vicinity.) 

Screed stiffness and elastic bearings are considered in the same way as for the frequency 

calculation. If the floor is supported on four sides it can be calculated as a beam grid. Floors 

supported on two sides are calculated according to Formula 3.2, where the original system is 

transferred to a substitute system of a simply-supported beam, and the transversal stiffness 

is factored in through bef. 

While the correlation between frequency and subjective evaluation was not good, it was 

easier to see a relation between stiffness (via the deflection calculated with bef) and the 

ratings. In Figure 3.1 from [8] this is plotted along with the verification demands (outlined in 

green): 
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Figure 3.1 - Hamm/Richter/Winter deflection vs. evaluation 

 

3.1.3 Acceleration criterion 

The frequency criterion is especially limiting for long-span floors as f1 is inversely 

proportional to L2. However, the results showed that long-span floors can still function well 

even if below flimit; the two conditions being that the natural frequency must be above fmin = 

4.5 Hz while the acceleration due to walking in resonance with 1/2 or 1/3 of the natural 

frequency is less than alimit from Table 3.1. For the acceleration to be below the limit value, 

the floor generally has to be quite heavy or have a long span. The acceleration is verified 

through this criterion: 

𝑎 =
𝐹dyn

𝑀∗⁡2𝐷
=

0.4⁡𝐹(t)

𝑚⁡0.5𝐿⁡0.5𝑏⁡2𝐷
≤ alimit 

Formula 3.4 - Hamm/Richter/Winter acceleration criterion 

where: 
 M* is the modal mass of the floor 
 L is the span of the floor 
 b is the width of the floor, limited by: b < 1.5 L 
 m is the distributed mass (per floor area) 
 D is the damping of the structure, taken from Table 3.3 
 Fdyn is the total dynamic force 
 F(t) are the harmonic parts of the force on the floor, taken from Figure 3.2 
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SI units are used for all formula parameters. The factor 0.4 accounts for that the force is 

acting during a limited time and not always in the middle of the span. [9] The harmonics of 

F(t) depend on the natural frequency of the floor and can be taken from the figure below. 

For most of the natural frequency range that’s relevant for design, F(t) will simply be equal 

to 70 N. 

 

Figure 3.2 - The harmonic parts of the floor force depending on the floor’s f1 

 

Type of floor Modal damping ratio D 

Timber floors without any floor finish 0.01 

Plain glued laminated timber floors with floating screed 0.02 

Girder floors and nail laminated timber floors with floating 
screed 

0.03 

Table 3.3 - Hamm/Richter/Winter recommended damping ratios 

 

3.1.4 Summary 

A summary of the verifications is shown in this table: 

 Design equations Limit values 

 
 
 
Frequency 

𝑓1 =
π

2𝐿2
√
(𝐸𝐼)𝐿
𝑚

⁡ 

 

 
 
High demands: f1 > 8 Hz 
Low demands: f1 > 6 Hz 
No demands: None 

𝑓1 =
π

2𝐿2
√
(𝐸𝐼)𝐿
𝑚

√1 + (
𝐿

𝑏
)
4 (𝐸𝐼)𝑏
(𝐸𝐼)𝐿

⁡ 

 

 
 
 
Deflection 

 

𝑤 =
𝐹𝐿3

48(𝐸𝐼)L⁡𝑏ef
 

 

𝑏𝑒𝑓 =
𝐿

1.1
⁡ √
(𝐸𝐼)𝑏
(𝐸𝐼)𝐿

4

 

 

 
 
High demands: w < 0.25 mm/kN 
Low demands: w < 0.50 mm/kN 
No demands: None 
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Velocity 

 
None 

 
None 

 
Acceleration 
(4.5 Hz < f1 < flimit) 

 

𝑎 =
𝐹dyn

𝑀∗⁡2𝐷
=

0.4⁡𝐹(t)

𝑚⁡0.5𝐿⁡0.5𝑏⁡2𝐷
 

 
 

 
High demands: a < 0.05 m/s2 
Low demands: a < 0.10m/s2 
No demands: None 

Table 3.4 - Hamm/Richter/Winter summary 

 

3.2 Mohr 

Bernhard Mohr of the Technical University of Munich published a paper [10] in 1999 with 

recommendations on how floor vibrations should be verified, largely based on the research 

project done together with Heinrich Kreuzinger [9]. The proposal was based on how 

subjective evaluations from in situ tests correlated with calculated vibration parameters, and 

limit values could then be suggested from this. 

For the subjective evaluations, 20 floors in Switzerland and Germany were rated (by user 

and examiner) from 1 to 4, where a rating of 1 meant “no vibration problem” and 4 meant 

“heavy vibration problem”. 

 
The human perceptibility to vibration 

- depends on the vibration acceleration for frequencies lower than about 8 Hz 

- depends on the vibration velocity for frequencies higher than about 8 Hz 

- increases with the duration of the vibration 

- increases with an increasing number of impulses 

- decreases with the relationship to and the awareness of the vibration cause 

- decreases with human activity 

- decreases by increasing damping 

- has logarithmic character like the sensibility to sound 

- is strongly subjective. 

 

To ensure that a floor is comfortable to the users, the design standards tend to focus on 

some main points: 

- Resonance is a problem for low frequency floors subjected to cyclic loading. The 

fundamental frequency should therefore be above a minimum value, or the resulting 

acceleration should be limited.  

- With regards to footfall (impulses of longer duration), the stiffness of the floor should 

be sufficiently high. 

- For impulses of shorter duration, like a heel drop, there should be a requirement for 

the mass of the floor. 
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The following values for the modal damping ratio are recommended (based on literature and 

in situ tests): 

Type of floor construction Modal damping ratio D 

Timber floors without any additional boarding for sound 
insulation 

0.01 

Plain glued laminated timber floors with additional boarding for 
sound insulation 

0.02 

Girder floors and nail laminated timber floors with additional 
boarding for sound insulation 

0.03 

Table 3.5 - Modal damping ratios recommended by Mohr 

 

3.2.1 Frequency requirement 

As an example, the figure below from [10] illustrates clearly how sensitive the vibration 

acceleration is to the fundamental frequency. It is calculated with the given dynamic 

parameters, and the resulting acceleration is high when the fundamental frequency f1 of the 

floor coincides with the forcing frequency fF, due to resonance. 

 

Figure 3.3 - Acceleration response depending on frequency 

 

Because of this, Mohr’s verification method has a limit value of f1 > 8 Hz for residential 

timber floors. 

Contrary to e. g. Hamm/Richter/Winter, but in line with the current Eurocode 5, Mohr 

calculates the mass to be used in the formulas with 30 % of the live load mass on top of the 

self-weight mass, through this EC5 quasi-permanent load combination: 

m = mg + Ψ2*mq = mg + 0.3*mq 

Formula 3.5 - Mohr mass calculation 
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Floors with fundamental frequencies below 8 Hz can still be verified if this expression for 

acceleration (due to cyclic loading) gives a value below alimit = 0.10 m/s2: 

𝑎 ≈ 0.4
𝑃0⁡𝛼𝑖(𝑓1)

𝑀𝑔𝑒𝑛
∗

1

√[(
𝑓1
𝑓𝐹
)
2

− 1]

2

+ (2𝐷
𝑓1
𝑓𝐹
)
2

 

Formula 3.6 - Acceleration due to repeated actions 

where: 
 P0 is the weight force of an average person, taken as 700 N 
 fF is the forcing frequency from Table 3.6 (taken from [10]) 
 αi(f1) is the Fourier coefficient, dependent on the floor’s fundamental frequency 

 𝑀𝑔𝑒𝑛 = 𝑚
𝐿

2
𝑏𝑒𝑓 

 bef is as defined in Formula 3.3 

 

Table 3.6 - Fourier coefficient and forcing frequency based on fundamental frequency 

 

3.2.2 Stiffness/deflection requirement 

For the stiffness requirement, many timber floors with different parameters (spans, widths, 

masses and stiffnesses) were considered by finite element modelling. A centric concentrated 

load, as well as a force-time analysis of a footfall in the middle of the floor was modelled. By 

then doing regression analysis from all the computations, the formula below was found: 

𝑤𝑠𝑡𝑎𝑡 =
1

47.36
∗

𝑃⁡𝐿2.07

(𝐸𝐼)𝐿
0.75⁡(𝐸𝐼)𝑏

0.21 

Formula 3.7 - Deflection formula derived numerically 

The coherence between this formula and the finite element calculations was very good, as 

indicated by the statistical measure R2 = 0.962 being very close to 1. The largest differences 

were found in the cases of low-width floors and floors with high transversal stiffness (EI)b. 

A timber floor was also modelled analytically, as a girder on elastic bedding: 
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Figure 3.4 - Timber floor model 

 

The deflection from the centric load was then computed to be as shown in the formula 

below, which doesn’t differ much from the one obtained through the numerical analyses. 

𝑤 =
1

43.37
∗

𝑃⁡𝐿2

(𝐸𝐼)𝐿
0.75⁡(𝐸𝐼)𝑏

0.25 

Formula 3.8 - Deflection formula derived analytically 

 

The effective static width bef, as presented in Formula 3.3, was also originally computed by 

Mohr. 

A moderate correlation between calculated deflections and subjective evaluations was 

found. In general, 1.0 mm/kN resulted in a vibration problem, 0.5 mm/kN resulted in a small 

vibration problem, and 0.25 mm/kN resulted in no vibration problem. 

For design, Mohr proposes to use Formula 3.8 with a limit value of 1.0 mm when the load P 

is 1 kN, placed in the least favorable position of the floor. For higher demands, limits of 0.5 

mm/kN and 0.25 mm/kN are suggested. For floors with lower or no demands, deflections 

higher than 1.0 mm/kN can be permitted. 

The deflection verification assumes a damping ratio of 0.01. For floors with D = 0.02 or D = 

0.03, this can be accounted for by modification factors of kD = 1.15 or kD = 1.25, respectively. 

This dynamic parameter is introduced into this verification of a static property because there 

was a very good correlation between deflection and an acceleration verification of a footfall 

as a function of f1 and damping. 

For floors with more than one span, the possibility of vibration transfer must be considered. 
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3.2.3 Mass/velocity requirement 

There were two proposals for the mass requirement; verification of velocity response from 

either heel drop or unit impulse. 

 

Figure 3.5 - Heel drop 

 

A similar FEM and regression procedure as for Formula 3.7 was performed for the short-

term action of a heel drop (i. e. a person is standing on his toes and lets himself fall to the 

heels as shown in Figure 3.5, from [8]), and this was the result after rounding (where the 

respective units are m/s, kg/m2 and MNm2/m): 

𝑣ℎ𝑒𝑒𝑙⁡𝑑𝑟𝑜𝑝 =
0.6

𝑚0.5⁡(𝐸𝐼)𝐿
0.25⁡(𝐸𝐼)𝑏

0.25 

Formula 3.9 - Heel drop velocity formula derived numerically 

 

By modifying the Eurocode 5 formula and neglecting all additive terms, this approximation 

formula for the vibration velocity was found: 

𝑣 =
0.4

(𝐸𝐼)𝑏
0.25⁡𝐿⁡𝑚0.75

 

Formula 3.10 - Unit impulse velocity approximation 

Here, the velocity is in m/s per 1 Ns, and the other units are MNm2/m, m and kg/m2, 

respectively. 

 

For the mass/velocity requirement, the correlation between the subjective evaluations and 

the velocity verification was good when using the limit value expression below (a modified 

version of the expression from Eurocode 5, making the verification stricter): 

𝑣𝑙𝑖𝑚𝑖𝑡 =
100(𝑓1𝐷−1)

3
 

Formula 3.11 - EC5 velocity limit modified by Mohr 
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The correlation with subjective evaluations was better for the heel drop velocity verification, 

with limit value calculated from the formula below. 

𝑣ℎ𝑒𝑒𝑙⁡𝑑𝑟𝑜𝑝⁡𝑙𝑖𝑚𝑖𝑡 = 6 ∗ 100(𝑓1𝐷−1) 

Formula 3.12 - Limit value for heel drop velocity 

 

3.3 Eurocode 5 

The verification criteria for vibrations in Eurocode 5 [11] are largely based on the work of 

Ohlsson from 1988 [12]. A combination of natural frequencies, damping and amplitude (in 

the form of maximum impulse velocity) is embedded in Ohlsson’s method; arguably the 

three most important dynamic parameters [13]. Eurocode 5 (EC5) additionally has a 

deflection criterion. 

The topic of vibrations is covered in section 7.3 of Eurocode 5, and it is mainly a serviceability 

concern. It is stated that vibrations shall be limited so as to not cause discomfort to people. 

A modal damping ratio of 1 % (ζ = 0.01) is to be assumed for floors unless other values are 

proven to be more appropriate. Mean values should be used for the elastic modulus and 

other stiffness moduli. Section 7.3.2 about vibrations from machinery is a separate topic. 

There is a lot of uncertainty about damping as a parameter. A damping ratio of 1 % is 

generally quite conservative, as measurements tend to be in the range of 2-4 %. Damping is 

however hard to estimate. Measurements of damping are often characterized by a lot of 

scatter due to the measurement situation, method, and boundary conditions of the 

construction. At the same time, the damping ratio is a very sensitive parameter in the unit 

impulse velocity verification; Formula 3.14 implies that the fundamental frequency f1 can be 

reduced by 50 % if the damping is doubled. (However, Formula 3.17 also involves f1.) 

Humans tolerate higher impulse velocities if the oscillations are quickly damped, and 

damping is especially important for low frequency floors. [13] 

For residential floors with a fundamental frequency lower than 8 Hz (f1 < 8 Hz), a special 

examination should be performed. For residential floors with f1 > 8 Hz, it is sufficient to 

verify that both of these requirements are satisfied: 

𝑤

𝐹
≤ 𝑎 

Formula 3.13 - EC5 deflection criterion 

𝑣 ≤ 𝑏(𝑓1𝜁−1) 

Formula 3.14 - EC5 velocity criterion 

where: 
w is the maximum instantaneous vertical deflection (in mm) caused by a vertical 

concentrated static force F (in kN) applied at any point on the floor, taking 
load distribution into account 
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v is the unit impulse velocity response (in m/(Ns²)), i. e. the maximum initial 
value of the vertical floor vibration velocity (in m/s) caused by an ideal unit 
impulse (1 Ns) applied at the point of the floor giving maximum response. 
Components above 40 Hz may be disregarded 

ζ is the modal damping ratio (unitless) 

The recommended range of limiting values of a and b, as well as the recommended relation 

between them is as shown below in Figure 3.6, where “1” is key for better performance and 

“2” means poorer performance. Information on the national choice can be found in the 

National Annex. 

 

Figure 3.6 - EC5 recommended range of and relation between a and b 

 

These calculations, for residential floors with f1 > 8 Hz as per EC5 7.3.3(2), should be done 

under the assumption that the floor is unloaded, i. e. only the floor’s self-weight and other 

actions considered to be permanent should be included in the calculation of the mass m. 

For a rectangular floor with overall dimensions L and B, simply-supported along all four 

edges and with timber beams of span L, the fundamental frequency f1 can be approximated 

according to Formula 2.2 (which is correct for a simply-supported beam), with κn = κ1 = π2 

from Table 2.1, which gives this expression for the floor: 

𝑓1 =
π

2𝐿2
√
(𝐸𝐼)𝐿
𝑚

 

Formula 3.15 - EC5 simply-supported rectangular floor fundamental frequency 

where: 
 m is the mass per unit area [kg/m2] 
 L is the floor span [m] 
 (EI)L is the equivalent plate bending stiffness of the floor about an axis 

perpendicular to the beam direction, i. e. the longitudinal bending stiffness of 

the floor [Nm2/m] 
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For a rectangular floor with overall dimensions L and B, simply-supported along all four 

edges, the value v can be approximated as: 

𝑣 =
4(0.4 + 0.6⁡𝑛40)

𝑚𝑏𝐿 + 200
 

Formula 3.16 - EC5 unit impulse velocity response 

where: 
 v is the unit impulse velocity response [m/(Ns2)] 
 n40 is the number of first-order modes with natural frequencies below 40 Hz 
 b is the floor width [m] 

L and m are the same as in Formula 3.15. The value n40 can be calculated from this 

expression: 

𝑛40 = {((
40

𝑓1
)
2

− 1) (
𝑏

𝐿
)
4 (𝐸𝐼)𝐿
(𝐸𝐼)𝑏

}

0.25

 

Formula 3.17 - Amount of first-order modes with fn < 40 Hz 

The parameter (EI)b is the equivalent plate bending stiffness (in Nm2/m) of the floor about an 

axis parallel to the beams, i. e. the floor’s transversal bending stiffness, where (EI)b < (EI)L. 

 

3.3.1 The Norwegian National Annex 

For beams with a span of up to 4.5 m, the value a from Formula 3.13 should be set to: 

• 0.9 mm/kN for normal stiffness requirements  

• 0.6 mm/kN for high stiffness requirements 

No national limitations exist with regards to Formula 3.14, but the natural frequency must 

be considered for long spans. If the recommendations of Figure 3.6 are to be followed, the b 

value should, by linear interpolation, be set to 126 for normal stiffness requirements and 

144 for high stiffness requirements. 

 

3.3.2 The Austrian National Annex 

The Austrian National Annex [7] of Eurocode 5 is included here because of its more 

advanced verification method for floor vibrations. It is largely based on what 

Hamm/Richter/Winter suggested and is very similar to the new proposal for Eurocode 5. 

The regulations are applicable to floors of usage categories A, B, C1, C3.1 and D as described 

in Table 6.1 in the national annex of EN 1991-1-1, with a distributed mass of at least 50 

kg/m2. The floors must fit into one of the categories of Table 3.7 below and meet the design 

requirements. For floors with a lower distributed mass and/or special usage (e. g. 
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gymnasiums, gymnastics halls, dance studios or laboratories), a special examination is 

required. This table and the ones that follow have been translated into English: 

Category of use 
according to EN 
1991-1-1 

Floor class 1 Floor class 2 Floor class 3 

 
A1, B, C1, C3.1, D 

 
A2 

 
 
 
 
Typical usage 

- Floors between 
different units of use 
(also continuous 
floors) 
- Floors between 
apartments 
- Office floors for 
meetings or use of 
computers 
- Corridors with 
short spans 

- Floors within one 
unit of use 
- Floors in single-
family houses of 
regular use 

- Floors without 
residential use or 
attic floors not in 
regular use 
- Floors without 
vibration 
requirements 

Table 3.7 - ÖNORM floor vibration classes 

 

Constructive requirements Floor class 1 Floor class 2 Floor class 3 

 
Timber joist floors 
 

with wet 
screed 

Floating 
composition, at 
least 60 kg/m2 

Floating 
composition (also 
without filling) 

None 

with dry 
screed 

Special 
documentation 
required 

Floating 
composition, at 
least 60 kg/m2 

None 

Two-dimensional 
timber floors (e. g. 
CLT or “Brettstapel 
floors”) 

with wet 
screed 

Floating 
composition, 
heavy and light 

Floating 
composition (also 
without filling) 

None 

with dry 
screed 

Floating 
composition, at 
least 60 kg/m2 

Floating 
composition, at 
least 60 kg/m2 

None 

Table 3.8 - ÖNORM constructive requirements 

 

The characteristic permanent actions should be used in the vibration calculations. For the 

stiffness properties, the mean values should be used. The bending strength of screed may be 

taken into account, provided that the screed meets the technical requirements related to its 

production etc. The elasticity/springiness of beams etc. must also be considered. 

For rectangular pin-supported floors without transverse load distribution, the fundamental 

frequency is calculated from Formula 3.15 in the same way as usual. 

For rectangular pin-supported floors with transverse load distribution, this formula (which is 

just a more convenient rewriting of Formula 3.1, from Hamm/Richter/Winter) is used 

instead: 
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𝑓1 =
π

2𝐿2
√
(𝐸𝐼)𝐿
𝑚

√1 + (
𝐿

𝑏
)
4 (𝐸𝐼)𝑏
(𝐸𝐼)𝐿

⁡ 

Formula 3.18 - Fundamental frequency of four-side supported floor 

It can be noted that the transverse distribution effect is generally only significant (with 

regards to f1) if (EI)b is at least 5 % of (EI)L.  

If the support conditions are different than described above for Formula 3.15 and Formula 

3.18, the fundamental frequency can be approximated by multiplying with the appropriate 

factor from this table: 

Coefficients for considering different support conditions (without 
transversal load distribution) 

ke,1 

pinned – pinned 1.000 

clamped – pinned 1.562 

clamped – clamped 2.268 

clamped – free (cantilever) 0.356 

Table 3.9 - Support condition coefficients for the fundamental frequency 

 

For a two-span floor (supported on all four sides), the fundamental frequency can be 

approximated according to Formula 3.15 or Formula 3.18 and multiplied with the 

appropriate ke,2 coefficient according to the table below, where L is the largest span and L2 

the smallest. Intermediate values can be found through linear interpolation. 

L2/L 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

ke,2 1.000 1.090 1.157 1.206 1.245 1.282 1.318 1.359 1.410 1.474 1.562 

Table 3.10 - Fundamental frequency coefficients for two-span floors 

 

The stiffness/deflection criterion is the same as for Hamm/Richter/Winter (Formula 3.2), 

with the same limit values in mm/kN. For continuous floor systems, this criterion can as a 

simplification be applied to the largest span which should then be calculated as a simply-

supported one-span floor. 

The limit values for the fundamental frequency are also the same as suggested by 

Hamm/Richter/Winter. They are 8 Hz and 6 Hz for floor classes 1 and 2 respectively, while 

there for floor class 3 is no limitation (same as for the deflection criterion). If both of those 

criteria are met, then the floor is verified with regards to vibrations. 

If f1 is lower than the limit values (but higher than 4.5 Hz, for floor classes 1 and 2), then the 

floor will still be verified if an acceleration criterion is met (in addition to the other criteria). 

This additional check is very similar to Formula 3.4 as suggested by Hamm/Richter/Winter, 

but calculated somewhat differently. The effective value of the vibration acceleration for 

single-span floors pinned along all edges may be approximated as follows: 
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𝑎𝑟𝑚𝑠 =
0.4⁡𝛼⁡𝐹0
2⁡𝜁⁡𝑀∗

 

Formula 3.19 - Root-mean-square acceleration 

where: 
 arms is the root-mean-square acceleration, in m/s2 

 α is the Fourier coefficient as a function of f1, with 𝛼 = 𝑒−0.4𝑓1 
 F0 is the weight of a person walking on the floor, usually F0 = 700 N 
 ζ is the modal damping ratio, from Table 3.11 
 M* is the modal mass, in kg 

Another difference from Hamm/Richter/Winter is that the modal mass is here calculated 

from the effective width bef rather than the floor width b: 

𝑀∗ = 𝑚⁡
𝐿

2
⁡𝑏𝑒𝑓 

Formula 3.20 - ÖNORM modal mass 

Here, m is still the distributed mass in kg/m2, and L is the span (in m, same as for bef). 

These values are to be assumed for the modal damping ratio ζ: 

Type of floor construction Modal damping ratio ζ 

Floor constructions without or with a light floor construction 0.01 

Floor constructions with floating screed 0.02 

Cross laminated timber floors with or without a light floor 
construction 

0.025 

Timber joist floors and mechanically connected “Brettstapel 
floors” with floating screed 

0.03 

Cross laminated timber floors with floating screed and heavy 
floor construction 

0.04 

Table 3.11 - Standard modal damping ratio values for various timber floor constructions 

 

The limit values for arms are as for Hamm/Richter/Winter; < 0.05 m/s2 for floor class 1 and < 

0.10 m/s2 for floor class 2 (and N/A for floor class 3). 

As an alternative to the calculations, the vibrational properties of timber floors can also be 

verified through measurements. Information about this can for example be taken from ISO 

10137. For the root-mean-square acceleration, ÖNORM ISO 2631-2 is referenced. 

A summary of the calculations is given in Table 3.12. According to Figure 3.6, the value of b 

(for the limit value of the unit impulse velocity response) should be 150 for floor classes 1 

and 2. 
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 Design equations Limit values 

 
 
 
Frequency 

𝑓1 =
π

2𝐿2
√
(𝐸𝐼)𝐿
𝑚

⁡ 

 

 
 
Class 1: f1 > 8 Hz 
Class 2: f1 > 6 Hz 
Class 3: None 

𝑓1 =
π

2𝐿2
√
(𝐸𝐼)𝐿
𝑚

√1 + (
𝐿

𝑏
)
4 (𝐸𝐼)𝑏
(𝐸𝐼)𝐿

⁡𝑘𝑒,1𝑘𝑒,2 
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Class 1: w < 0.25 mm/kN 
Class 2: w < 0.50 mm/kN 
Class 3: None 
 

 
 
 
Velocity 

 

𝑣 =
4(0.4 + 0.6⁡𝑛40)

𝑚𝑏𝐿 + 200
 

 

𝑛40 = {((
40

𝑓1
)
2
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𝑏

𝐿
)
4 (𝐸𝐼)𝐿
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Class 1: 𝑣 ≤ 150(𝑓1𝜁−1) 

Class 2: 𝑣 ≤ 150(𝑓1𝜁−1) 
Class 3: None 

 
 
 
Acceleration 
(4.5 Hz < f1 < flimit) 

 

𝑎𝑟𝑚𝑠 =
0.4⁡𝑒−0.4𝑓1 ⁡𝐹0

2⁡𝜁⁡𝑀∗
 

 

𝑀∗ = 𝑚⁡
𝐿

2
⁡𝑏𝑒𝑓 

 

 
 
Class 1: arms < 0.05 m/s2 
Class 2: arms < 0.10m/s2 
Class 3: None 

Table 3.12 - Austrian National Annex summary 

 

3.3.3 New Eurocode 5 proposal 

The section about floor vibrations from footfalls in the newest Eurocode 5 proposal (dated 

October 2018, [14]) is largely based on the methods given by Wilford et al. [15] It should be 

noted that these loading models are only applicable for floors with a mass of at least ten 

times the weight of the walker. 

The hand calculation methods are applicable to timber floors on rigid supports (walls), but 

not yet for flexible/elastic supports (beams). A reduction factor to account for that the 

walker and the vibration perceiver cannot be in the same location at midspan is under 

discussion. Multiplication factors for multi-span floors (for frequency and modal mass) are 
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also being evaluated. The possibility of including more than just the floor’s self-weight in the 

mass calculation is being debated as well. [4] 

The minimum modal damping ratio (ζ) for floors is no longer 1 %, as many studies has found 

this to be overly conservative [4]. The recommend ζ values, unless other values are proven 

to be more appropriate, are as presented in the table below. (For determination of ζ through 

on-site testing, prEN 16929 is referenced.) 

Type of floor construction Modal damping ratio ζ 

Joisted floors 0.02 

Timber-concrete and massive floors 0.025 

Joisted floors with a floating layer 0.03 

Timber-concrete and massive floors with a floating layer 0.035 

All floors with a floating layer and supported on 4 sides 0.04 

Table 3.13 - New EC5 modal damping ratios 

A floating layer is defined as not being connected to the layer underneath. 

The sum of the floor’s characteristic self-weight mass, including all supported or suspended 

horizontal layers, should be used for the vibrational calculations. 

The bending stiffness of a floating floor layer or screed may be included in the calculations, 

but no composite action should be considered for a floating layer. 

The flexibility of supporting members such as beams should be considered. 

The design rules are applicable for human induced footfall vibrations of timber floors in 

categories of use A, B, C1, C3 and D as defined in EN 1991-1-1. This includes residential 

floors, office floors and areas with moderate amounts of people, like museums, exposition 

rooms etc., as well as access areas in offices. It excludes areas where crowd loading can be 

expected, like theatres, gymnastic and dance halls, and areas with sensitive equipment. 

The table below gives the recommended floor performance levels for office and residential 

categories. Depending on which aspect has the highest emphasis, the choice can be based 

on quality or economy, or it can be a middle ground between the two. The choice of 

performance levels, also for other categories than A and B, can be specified in the National 

Annex. 

Usage category Quality choice Base choice Economy choice 

A (residential) level III level IV level V 

B (office) level II level III level IV 

Table 3.14 - Recommended floor performance levels for categories of use A and B 

People are more likely to complain about vibrations they cannot see the source of, so e. g. 

multi-family buildings where floors cross from one apartment to another will generally have 

higher requirements. 

A floor should satisfy the vibration criteria according to its performance level. For floor 

performance levels I through VI, no further investigations are necessary if the requirements 

for fundamental frequency, acceleration or velocity, and stiffness from Table 3.15 are met. 
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When verifying the acceleration or velocity caused by vibrations from a walking person, it is 

the root-mean-square values that should be considered. The rms acceleration or velocity 

responses are compared to the vibration perception base curve (in figure C1 of appendix C in 

ISO 10137), which is shown below in Figure 3.7. Human perception of vibration is frequency 

dependent, being most sensitive to vibrations in the range of 4-8 Hz, where the minimum 

perceptible arms is constantly equal to 0.005 m/s2 in the figure. Above 8 Hz, the curve has a 

constant slope, and when this part of the curve is integrated, the minimum perceptible vrms 

is found to be constantly equal to 0.0001 m/s. By utilizing this, the limit values for the 

verifications can be reliably related to the real human disturbance levels for vibrations. The 

acceleration and velocity criteria are expressed as a multiple of these base values, and this 

multiple is termed as the response factor R in Table 3.15. R is equal to the response (arms or 

vrms) divided by the minimum perceptible value (0.005 or 0.0001), depending on whether the 

fundamental frequency of the floor is below 8 Hz or above. 

 

Figure 3.7 - Vibration perception base curve, frequency vs. acceleration 

 

For resonant vibration design situations, i. e. for low frequency floors (f1 < 8 Hz), the criteria 

for minimum fundamental frequency, maximum rms acceleration and deflection of Table 

3.15 should be fulfilled. For the transient vibration design situations, i. e. for high frequency 

floors (f1 > 8 Hz), the criteria for maximum deflection and rms velocity of Table 3.15 should 

be fulfilled. In both cases, floors will be assumed to be single spanning and simply-supported 

on all edges.  
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 Floor performance levels 

Criteria level I level II level III level IV level V level VI 

Frequency criteria 
for all floors 
f1 [Hz] > 

 
4.5 

Stiffness criteria 
for all floors 
w1 kN [mm] < 

 
0.25 

 
0.5 

 
0.8 

 
1.2 

 
1.6 

Response factor R 4 8 12 16 20 24 

Acceleration criteria 
for resonant vibration 
design situations 
arms [m/s2] < 

 
R x 0.005 

Velocity criteria 
for transient vibration 
design situations 
vrms [m/s] < 

 
R x 0.0001 

Table 3.15 - Floor vibration criteria according to performance level 

 

For example; for floor performance level I when f1 is between 4.5 and 8 Hz, the response 

factor gives a limit value for arms of 0.02, which is much stricter than the lowest limit value of 

0.05 from the Austrian National Annex. 

The figure below shows the resonant and transient vibration design situations for walking 

pace frequencies of 2 Hz. [4] 

 

Figure 3.8 - Resonant vs. transient response 

 

3.3.3.1 Frequency 

The fundamental frequency for rectangular one-span or two-span floors, supported by walls 

or beams, can be calculated according to Formula 3.21, which is a convenient combination of 

Formula 2.4 and Formula 3.1 (from Hamm/Richter/Winter, similar to Formula 3.18 from the 

Austrian NA), with factor taken from Table 3.10 (as in the Austrian NA, but here only 

applicable for L2/L1  >  0.2): 
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𝑓1 = 𝑘𝑒,1⁡𝑘𝑒,2 ⁡
18

√𝛿𝑠𝑦𝑠
 

Formula 3.21 - New EC5 fundamental frequency formula 

where: 
 ke,1 is the frequency multiplier from Table 3.10, applicable for two-span floors 

 ke,2 is a frequency multiplier for two-span floors, ke,2 = √1 + (
𝐿

𝑏
)
4 (𝐸𝐼)𝑏

(𝐸𝐼)𝐿
⁡ 

δsys is the one-way spanning deflection of the floor system (including the effect of 

any support beams, shear and connections in composite structures) under the 

self-weight load, in mm. 

The multiplication factors are then 1 for single-span floors. The above formula considers all 

factors that affect deflection, but a simplified approach that just factors in the bending 

stiffness can also be used: 

𝑓1 = 𝑘𝑒,1⁡𝑘𝑒,2 ⁡
π

2𝐿2
√
(𝐸𝐼)𝐿
𝑚

 

Formula 3.22 - New EC5 simplified fundamental frequency formula 

 

3.3.3.2 Acceleration 

When the fundamental frequency of a floor is lower than 8 Hz, the floor vibration is assumed 

to be resonant, and an acceleration criterion should be met. The root-mean-square 

acceleration is approximated from the formula below (which assumes a single-span floor), 

which is the same as in the Austrian National Annex, except that here the arms is divided by 

√2: 

𝑎𝑟𝑚𝑠 =
0.4⁡𝛼⁡𝐹0

√2⁡2⁡𝜁⁡𝑀∗
 

Formula 3.23 - New EC5 proposal, rms-acceleration 

where: 
 arms is the root-mean-square acceleration, in m/s2 

 α is the Fourier coefficient as a function of f1, with 𝛼 = 𝑒−0.4𝑓1 
 F0 is the weight of a person walking on the floor, usually F0 = 700 N 
 ζ is the modal damping ratio, from Table 3.13 
 M* is the modal mass, in kg 

While Mohr and the Austrian NA calculates the modal mass from the effective width bef, the 

latest EC5 proposal rather utilizes the width b, in the same way as for Formula 3.4 from 

Hamm/Richter/Winter, with the limitation of b < 1.5 L. The ratio of modal mass to total mass 

of the first mode of a plate is known to be 25 %: 
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𝑀∗ = 𝑚⁡
𝐿

4
⁡𝑏 

Formula 3.24 - New EC5 proposal, modal mass 

 

The response factor R is calculated as such: 

𝑅 =
𝑎𝑟𝑚𝑠

0.005
 

Formula 3.25 - Response factor for acceleration 

 

3.3.3.3 Velocity 

If f1 is 8 Hz or above, the floor vibration is assumed to be transient, and a velocity criterion 

should be met. The rms velocity response is verified according to Formula 3.26 through 

Formula 3.31, which assumes a one-span floor. 

𝐼 =
42𝑓𝑤

1.43

𝑓1
1.3  

Formula 3.26 - Mean modal impulse 

 
where: 
 I is the mean modal impulse [Ns] 
 fw is the walking frequency, taken as 2 Hz 
 f1 is the floor’s fundamental frequency [Hz] 

 

𝑉1,𝑝𝑒𝑎𝑘 =
𝐼

𝑀∗
 

Formula 3.27 - Peak velocity response of the fundamental mode 

 

In order to also account for the contribution from the higher modes of vibration to the floor 

response, the multiplication factor Kimp is introduced: 

𝐾𝑖𝑚𝑝 = 0.48⁡
𝑏

𝐿
⁡(
(𝐸𝐼)𝑏
(𝐸𝐼)𝐿

)

−0.25

≥ 1.0 

Formula 3.28 - Impulsive multiplier accounting for higher modes 

 

𝑉𝑡𝑜𝑡,𝑝𝑒𝑎𝑘 = 𝐾𝑖𝑚𝑝⁡𝑉1,𝑝𝑒𝑎𝑘 

Formula 3.29 - Total velocity peak response 
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𝑉𝑟𝑚𝑠 = 𝛽⁡𝑉𝑡𝑜𝑡,𝑝𝑒𝑎𝑘 

Formula 3.30 - Root-mean-square velocity response 

where: 

 β = (0.65 - 0,01 f1) * (1.22 - 0.11 ζ ) η 

 η = 1.52 - 0.55 Kimp , when 1.0 ≤ Kimp ≤ 1.5. Else: η = 0.69  . 

 

𝑅 =
𝑉𝑟𝑚𝑠

0.0001
 

Formula 3.31 - Response factor for rms velocity 

 

3.3.3.4 Stiffness/deflection 

The stiffness criterion, with limit values from Table 3.15, is calculated from the same 

expression as known from Hamm/Richter/Winter and the Austrian National Annex (with 

effective width bef as defined in Formula 3.3), where F is 1 kN placed in the most unfavorable 

position: 

𝑤1⁡𝑘𝑁 =
𝐹𝐿3

48(𝐸𝐼)L⁡𝑏ef
 

Formula 3.32 - New EC5 deflection formula 

This formula applies for single-span floors. If continuous over two or more spans, the 

formula can still be used as an approximation, by considering the maximum span of the 

continuous beam system. 

 

3.3.3.5 Alternative verification 

As an alternative to all of these simplified calculations, the floor vibrational properties can be 

verified by thorough dynamic analysis, for example by using the finite element method. The 

same criteria for floor performance levels still apply. Another alternative verification method 

is in-situ measurements of test floors, as described in prEN 16929. Furthermore, ISO 10137, 

ISO 2631-1 and ISO 2631-2 are referenced for alternative verification. 

 

3.4 Deflection and frequency criteria 

Vibrational properties of timber joist floors have been verified in many different ways 

around the world over the years. In Norway there was previously just one criterion; for the 

deflection caused by a concentrated load. Other verification methods focused on for 
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example the fundamental frequency f1, maximum unit impulse velocity response, or a 

combination of parameters. In recent years, a criterion proposed by Hu and Choi [16] which 

combines f1 and deflection has been used a lot in Norway, in part due to the difficulty of 

accurately estimating damping. [13] 

 

3.4.1 Deflection criterion 

Studies at Byggforsk as well as internationally show that deflection as a sole criterion is 

insufficient to ensure acceptable floor vibrational performance [13]. Stiffness is very 

important, but the floor vibrations will still be problematic if e. g. resonance or significant 

off-resonant response can occur. 

The recommendations of Canadian Wood Council from 1997 in Table 3.16 [17], as presented 

in this table excerpt from Homb (2007) [13], are interesting as an example. It shows the 

maximum recommended deflection of timber joist floors, calculated from a centric 

concentrated load of 1 kN for various spans: 

 

Table 3.16 - Max recommended deflection from 1 kN point load for timber joist floors 

 

We can see that these deflection requirements are stricter with increasing span. Why is 

that? As known from statics, the deflection from a concentrated load mid-span is 

proportional to L3/EI. And as seen in Formula 2.2, the fundamental frequency is inversely 

proportional to L2/(EI)0,5. So if for example the span is tripled, EI has to be increased 33 = 27 

times to get the same deflection, but to get the same fundamental frequency f1, EI would 

need to be (32)2 = 81 = 27*3 times larger. Generally, if the span is increased X-fold, then f1 is 

affected X times more than the deflection is. With this sensitivity analysis by the involved 

stiffness parameters in mind, it is then interesting to note that both the ratio between the 

maximum and minimum span limit values (9.9 / 3), as well as between the given maximum 

allowed deflections (2.0 / 0.6), equals 3.3. So, although this is a sole deflection criterion, 

resonance is still accounted for indirectly. By having the limit values so that f1 doesn’t change 
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with the span, this particular deflection criterion is actually more of a fundamental 

frequency criterion. For low-span floors, this verification method allows such a high 

displacement amplitude under the foot that it would be very noticeable when walking. 

It can be shown, by rearranging both Formula 3.15 and Formula 3.32 with respect to the 

parameters L and (EI)L so that the formulas can be combined, that f1 = 
100

√𝑚⁡𝑏𝑒𝑓
 is a good 

approximation with this verification method. Here, the effective width bef is as defined in 

Formula 3.3, the concentrated load F is 1000 N as defined, and δL was 

approximated/simplified as constantly equal to 0.005 m2 based on Table 3.16. So, if for 

example a floor has a distributed mass m of 60 kg/m2 and bef equal to 1.0 m, then the 

fundamental frequency of the floor will be 12.9 Hz with this verification method if designed 

to deflect as much as the limit values allow. (If designed to only deflect half as much, then f1 

would have to be multiplied by √2 because δL was assumed two times as high when written 

into the approximation formula as a constant.) 

Nevertheless, it can be understood from the formulas for deflection and f1, and from the 

limit values in Table 3.16, that long-span timber joist floors are especially sensitive to 

vibrations, and it highlights why this has been a topic of interest for researchers, in order to 

find ways to achieve longer spans. 

 

3.4.2 Fundamental frequency criterion 

As a sole criterion, focusing on minimum values of the fundamental frequency f1 has its 

limitations. As known from Formula 2.2 and Formula 3.15, f1 depends on the mass, the 

longitudinal bending stiffness, the span, and the boundary conditions of the floor; and f1 is 

roughly inversely proportional to the square root of the deflection from permanent loads, as 

seen in Formula 2.4 for a beam. And so, floors with increased transversal stiffness will be 

calculated too conservatively from just a limitation of f1, as then just the longitudinal 

stiffness matters (for single-span floors). Also, heavy floors will have a lower fundamental 

frequency, especially if also required to be calculated with a higher load, as instructed by 

Dolan et al. [18] However, heavy floors tend to perform better than lightweight floors when 

subjectively assessed in walking tests. So in short, a fundamental frequency criterion doesn’t 

do justice to floors with high transversal stiffness and/or high (modal) mass. As long as there 

is no resonance or significant off-resonant response, then f1 alone is far from sufficient as an 

indicator of floor vibration response. [13] 

This is evident in the test results below, from Hamm/Richter/Winter [8]. No correlation 

between f1 and subjective evaluations could be found. Many of the best performers were 

low-frequency (according to hand calculations), heavy timber-concrete floors (with high 

transversal stiffness). Timber floors without floor finish, although quite high-frequency due 

to the light weight, were much more negatively evaluated. 
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Figure 3.9 - Subjective evaluations vs. f1 (measured and calculated) 

 

While the fundamental frequency is still important as a criterion, others are needed in 

addition. 

There was quite a large discrepancy between calculated and measured values of f1. This is 

discussed in section 3.4.3.3. 

 

3.4.3 Combined deflection and fundamental frequency criterion 

There has been a lot of research looking into vibrational properties of timber floors in 

Canada. Hu et al. [16] [19] paired different combinations of parameters (e. g. frequency and 

deflection) against subjective evaluations of in-use floors based on standardized 

questionnaires in order to find the most reliable correlation. The parameters were calculated 

as well as verified through field or laboratory testing. The basis of the research was a 

database of 112 floors in buildings and some laboratory floors. The verification methods 

existing at the time were evaluated, and then five tentative models were fitted based on 

regression analysis of the subjective evaluations versus combinations of physical 

parameters. All of the models combined the fundamental frequency with another 

parameter, namely these: acceleration, impulse velocity, deflection from concentrated load, 

span, and distributed weight. [13] 

The conclusion of the reports was that a criterion combining the fundamental frequency and 

the deflection from a concentrated load correlated well with the subjective evaluations, 

while also being easy to calculate fairly accurately. Based on this report as well as later work 

done by Hu, Chui and others, this criterion was suggested: 



57 
 

𝑓1
𝛥0.44

> 18.7 

Formula 3.33 - Combined deflection and fundamental frequency criterion 

Here, f1 is the fundamental frequency in Hz and Δ is the deflection in mm from a 1 kN 

concentrated load in the middle of the span. This formula was later also adopted by SINTEF 

Byggforsk for their “comfort criterion”, chosen ahead of other verification methods 

considered, such as Ohlsson’s approach which is adopted by the current Eurocode 5. This 

was in large part due to the difficulties in estimating damping, which is a sensitive 

parameter. [13] Anders Homb maintained the same conclusion in an article published in 

2018. [20] 

The figure below shows how subjectively evaluated floors were calculated according to Hu’s 

criterion. The blue squares represent floors deemed as acceptable while the purple were 

unacceptable. The formula predicted this quite well, placing most of the acceptable floors to 

the right of the design curve and most of the unacceptable floors to the left of it. The design 

curve is somewhat conservative in that more acceptable floors are calculated as non-

approved compared to how many unacceptable floors are approved by the formula. 

 

Figure 3.10 - Subjective evaluations vs. Hu’s formula 

 

None of the tested floors were mass-timber floors. They were all timber joist floors of 

various build-ups, but without screed. Hu stated that the criterion is applicable for floors 

with f1 > 7 Hz, but all of the acceptable floors had a fundamental frequency of at least 10 Hz. 
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Because of this, Homb set a limit value of 10 Hz for the “comfort criterion” – along with a 

deflection limit of 1.3 mm/kN for a centric concentrated load. Floors with f1 as low as 8 Hz 

could also still be verified if an additional criterion that considers damping is met. 

Fundamental frequencies lower than 8 Hz are discouraged due to possible resonance and 

off-resonant response from the 2nd, 3rd and 4th harmonics of walking. 

For timber floors with high transversal stiffness, such as e. g. mass-timber floors or joisted 

floors with screed, a higher limit value of 12.5 Hz was proposed for the “comfort criterion”, 

due to lack of available data at the time. [13] 

 

For the “comfort criterion”, the fundamental frequency of one-span floors has not been 

calculated according to Formula 3.15. Due to better correlation with measurements, an 

orthotropic plate model has been used instead. This is looked into in section 3.4.3.3. 

To calculate deflection for the “comfort criterion”, SINTEF Byggforsk has used the calculation 

program BTAB. This was deemed as more accurate than KAN, a calculation model based on 

ribbed-plate theory that was developed along with the design formula. 

Analytical hand calculation of the transversal stiffness is typically very conservative for 

timber joist floors, which in turn overestimates the deflection. Since the laboratory tested 

Støren floors were verified according to the “comfort criterion”, it was appropriate to 

investigate how BTAB works, to better understand also the measurements. BTAB is 

described in detail in a report by Kolstad and Homb [21], and it is the source used for 

sections 3.4.3.1 and 3.4.3.2. 

 

3.4.3.1 BTAB description 

The calculation program “BTAB” is based on the method described in a report by Norges 

Byggforskningsinstitutt (NBI) ref. Megård & Hansteen. [22] 

The program calculates deflections of timber joist floors. The deflections are calculated in 

the middle of each joist for a timber joist floor with a concentrated load in the middle of a 

chosen joist. Alternatively, the maximum allowed span can be calculated based on deflection 

demands. 

The method is based on a shell and plate theory, where the plate (the subfloor) is calculated 

as a shell supported by beams. Between the plate and the beams there is assumed to be a 

spring connection that resists relative movements in the longitudinal direction of the beam. 

Simply supported beams are used in the timber joist floor model. The lateral bending 

stiffness of the beams is neglected, and torsion of the beams is not considered either. It is 

assumed that the timber joist floor is only supported on two of four sides. BTAB assumes 

that the theoretical span is 0.10 m larger than the free distance between the supports. 

The y direction is defined as parallel to the beam/joist direction, the x direction is transversal 

to their span direction, and the z direction is vertical. 
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In BTAB, beams can be defined by spacing, height, axial stiffness and bending stiffness. 

Rectangular beams can alternatively be defined by spacing, thickness, height and modulus of 

elasticity. Up to seven different beams can be defined and modelled in the program. 

The plate/subfloor is defined by specifying thickness, diaphragm stiffnesses and plate 

stiffnesses. The diaphragm and plate stiffnesses are added after doing hand calculations 

based on the plate thickness, elastic moduli (for axial loading and bending longitudinally and 

transversally), shear modulus (in-plane) and Poisson’s ratio. 

Diaphragm stiffnesses (denoted by C) and plate stiffnesses (denoted by D) of subfloors of k 

layers are calculated as such: 

     

Formula 3.34 - Subfloor stiffnesses in-plane and out of plane 

Here, G is the shear modulus and νn is Poisson’s ratio in n direction. En is the modulus of 

elasticity in n direction: 

 

Formula 3.35 - Elastic moduli of subfloor 

 

The connection between plate and beam is calculated as a linear elastic spring connection 

(in the beam’s longitudinal direction), and the spring stiffness can be defined by the user. 

Based on testing of nailed connection (with nail distance 20 cm), the average spring stiffness 

was found to be 200 N/mm [22]. For glued and nailed floor, the same source suggests using 

a spring stiffness of 106 N/mm, which in practice means close to full static interaction 

(transversally) between joists and plate. 
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BTAB doesn’t automatically factor in transversal stiffeners (blocking), but it can be done 

manually by increasing the diaphragm and plate stiffnesses of the plate. The spring stiffness 

between the transversal stiffening and the beams will then be equal to the spring stiffness 

between subfloor and beams. 

For stiffeners/blocking mounted perpendicular to the joists, their transversal contribution 

can be considered by increasing the stiffnesses Cx and Dx. This contribution will then be 

uniformly distributed over the timber joist floor’s length, like an extra plate layer 

perpendicular to the joists. 

The contribution from rectangular blocking, where Cx is the diaphragm stiffness and Dx the 

plate stiffness in x direction, can be calculated by these formulas: 

 

Formula 3.36 - Stiffnesses of rectangular blocking 

Here, Etv is the blocking’s elastic modulus in the globally defined x direction, btv is the width 

and htv the height of the blocking, and cctv is the spacing of the blocking.  

The contribution of the ceiling, if applicable, can also be considered by increasing relevant 

stiffness values. Due to the ceiling’s discontinuity at splices, not all stiffness parameters 

should be included. 

BTAB only calculates one-span timber joist floors that are simply supported, and not floors 

with clamped/fixed supports. 

 

3.4.3.2 BTAB calculations versus measured deflections 

The table below shows measured deflections of various timber joist floors along with 

theoretically calculated deflections using BTAB. Two of the six floors are with ceiling, and the 

percentage difference is also included: 

 

Table 3.17 - Measured vs. BTAB calculated deflections of timber joist floors 
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The calculated deflection is generally higher than what was measured. The calculations 

assumed a spring constant of 200 N/mm for the connection between the subfloor and the 

joists, which is appropriate for a nailed connection. However, the tested floors had a 

screwed connection, which in reality probably has a higher stiffness. If the spring stiffness 

constant is increased to 550 N/mm for the floor “TL1”, then the calculated deflection is 

reduced so that it equals what was measured. 

The two floors with ceiling had the highest difference between measured and calculated 

deflections. Laboratory tests showed that the ceiling reduced deflection by 16-22 %, while 

the calculated reduction was only 5-6 %, so that is part of the explanation. 

To show the effect of parameter variation, the figure below shows what the theoretically 

calculated deflection of floor “TL1” would be with various spring constants. (Its measured 

deflection of 1.16 mm would give a spring constant of 550 N/mm if that is the only corrected 

flaw in the calculations, but that is not shown in the figure.) If the subfloor is just floating (i. 

e. unconnected) on top of the joists, then the spring constant of 0 gives a high deflection. 

Increasing the spring constant to 200 or 550 N/mm reduces the deflection a lot. For a glued 

and nailed connection between joists and subfloor, the spring constant is taken as the very 

high number 106 N/mm. That gives a further deflection decrease, but we see that the 

deflection is much more sensitive to variations of the spring constant when it is low: 

 

Figure 3.11 - Effect of connection between subfloor and joists, calculated with BTAB 

 

Transversal load distribution depends on stiffness and geometry. For one-span floors 

subjected to a concentrated load in the center of the floor, the end joists will deflect nothing 

(or very little) if the floor is very wide. This also means that the end joists will contribute 

nothing towards reducing the middle joist deflection. 

A one-span example floor with a joist spacing of 600 mm calculated with BTAB in the 

Kolstad/Homb report [21] showed that the width/span ratio had to be below about 0.5 for 

the middle joist deflection to increase. For a span of 4.8 m, it didn’t matter much if the width 

was 2.4 m or 3.6 m, but a width of 1.2 m gave a much higher maximum deflection. Similarly, 
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BTAB calculations also showed that supporting the floor on all four sides only helped reduce 

the deflection if the width/span ratio was below 0.5. 

It should be stressed that this ratio of 0.5 pertains to these specific examples, and that floors 

with higher transversal stiffness will be better at distributing the load along the floor width, i. 

e. a higher width/span ratio would then help reduce the mid-joist deflection. The calculated 

examples had low transversal stiffness. 

If a timber joist floor has low width and the end joists are supported along their length, these 

supports can be modelled by defining a very high bending stiffness of the end joists. 

 

In BTAB, the stiffness of blocking has to be added as plate stiffness evenly distributed over 

the width of the floor. It is conservative to assume that the stiffness is evenly distributed 

over the floor’s span. By doing this, one calculated example found that adding blocking to a 

given timber joist floor reduced the maximum deflection by 53 %. Measurements of the 

same floor showed the reduction to be 60 %. Floors that have higher transversal stiffness to 

begin with will however not see such a high percentage reduction from adding blocking. By 

doubling the evenly distributed stiffness from the blocking in BTAB, the calculated reduction 

in deflection was 59 %. This is more in line with the measurement, and the small difference 

between 53 % and 59 % shows that the returns are severely diminished when the transversal 

stiffness is already high. 

 

As mentioned above, the ceiling also helps to reduce the deflection. This is contrary to what 

one may assume initially, because it’s on the bottom side of the joists. In the example 

calculations given in the latest EC5 vibration committee document [4], the ceiling is not 

considered towards the transversal stiffness (EI)b. But the two examples in the 

Kolstad/Homb report [21] showed deflection reductions of 16 % and 22 % when measured 

with 12 mm chipboard added as ceiling. (Once again, the percentages pertain to the specific 

examples and are by no means generally applicable.)  

The laths also provide some transversal stiffness. Their height is more important than their 

width. In a given BTAB calculated example floor with 48 mm wide laths spaced 600 mm 

apart, heights of 23, 36 and 48 mm reduced deflections by 4 %, 11 % and 19 %, respectively. 

 

The figure below shows measured deflections vs. deflections calculated with BTAB and KAN 

for six timber joist floors. Both programs are conservative, and BTAB was more accurate (17 

% vs. 35 % error, on average): 
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Figure 3.12 - Deflections measured vs. calculated with BTAB and KAN 

 

In summary: Boarding, blocking, ceiling, laths, sufficient floor width, and a rigid connection 

between joists and sheathing increases the transversal stiffness and thereby decreases the 

deflection of timber joist floors subjected to a concentrated load. Supporting the end joists 

may also help, depending on geometry and stiffness properties. 

 

3.4.3.3 Frequency calculation 

Timber joist floors have much higher stiffness in the joist direction than transversally and are 

therefore only supported on two of four sides in most cases. For the Støren floors, that 

means that the basic f1 formula for one-span floors (Formula 3.15) is applicable. This is the 

formula obtained when the anisotropic plate model of Leissa [23], which takes different 

boundary/support conditions into account, is simplified accordingly. However, Homb [20] 

has found better correlation with measurements from using an orthotropic plate model for 

four-side supported floors (the same as in Ohlsson [12] and Leissa [23]). Orthotropic is an 

abbreviation of orthogonal and anisotropic, and it means here that the plate is modelled as 

having different stiffness properties in the two main, perpendicular directions (Dx > Dy). This 

describes timber floors quite well. Resonance frequencies for a rectangular, orthotropic 

plate (simply supported on all four sides), can be calculated from this formula (where e. g. f21 

means mode 2, natural frequency 1): 

𝑓𝑚𝑛 =
𝜋

2𝐿2
√
1

𝑔
√𝐷𝑥 ⁡𝑚4 + 2⁡𝐷𝑥𝑦⁡𝑚2⁡𝑛2 (

𝐿

𝑏
)
2

+ 𝐷𝑦⁡𝑛4 (
𝐿

𝑏
)
4

 

Formula 3.37 - Resonance frequencies for two-span, rectangular, orthotropic plate 

where: 
 L is the floor span [m] 
 b is the width of the floor [m] 
 g is the unit weight [kg/m2] 
 m is an integer 
 n is an integer 



64 
 

𝐷𝑥 = (𝐸𝐼)𝐿 = 𝐸𝑏𝑒𝑎𝑚⁡𝐼𝑥⁡/⁡𝑐 

𝐷𝑦 = (𝐸𝐼)𝑏 = 𝛴(𝐸𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔⁡𝐼𝑦⁡/⁡𝐿) = 𝛴(𝐸𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔⁡𝑡
3/12) 

𝐷𝑥𝑦 = 𝜈⁡𝐷𝑥 + 2⁡𝐷𝑘 

𝐷𝑘 =
𝐺⁡ℎ3

12
 

 h is the beam height [m] 
 ν is Poisson’s ratio 

Dxy can normally be taken as equal to Dy. [20] [24] [25] [12] To find the fundamental 

frequency f1, both integers m (not the mass) and n are set equal to 1. The difference 

between Formula 3.15 and Formula 3.37 can then be simplified to this multiplication factor: 

√1 +
𝐷𝑦

𝐷𝑥
⁡[⁡2 (

𝐿

𝑏
)
2

+ (
𝐿

𝑏
)
4

] = √1 +
(𝐸𝐼)𝑏
(𝐸𝐼)𝐿

⁡[⁡2 (
𝐿

𝑏
)
2

+ (
𝐿

𝑏
)
4

] 

Formula 3.38 - Fundamental frequency multiplication factor 

 

This is similar to the f1 multiplication factors for two-span floors given by 

Hamm/Richter/Winter, the Austrian National Annex to EC5, and the new EC5 proposal. The 

only difference is that those code-based methods have set Dxy equal to zero rather than 

equal to Dy, thus nullifying the second-order term. 

The formula is warranted because, as seen in the figure below from Hamm/Richter/Winter, 

the fundamental frequency tends to be higher in real life than in the theoretical calculations. 

In these cases it was due to conservatively assumed boundary conditions and stiffness from 

partition walls. [8] 
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Figure 3.13 - Calculated vs. measured fundamental frequencies  
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4 Laboratory testing of floors 

In June of 2018, one unmounted floor and five mounted floors were delivered from Støren 

Treindustri to NMBU for laboratory testing of vibrational properties. Static deflection tests 

were done shortly after delivery for five floors, from which stiffness properties necessary for 

vibration verifications could be calculated. The main purpose of the tests was to see how 

much transversal stiffness can be achieved from different modifications, and thereby how 

the vibrational properties can be improved the most efficiently. 

At the end of the year, the beams of the unmounted floor were bending tested in the wood 

laboratory in order to determine the elastic modulus. One of the beams was also loaded 

until failure. Dynamic tests, with a walking person as the load, will be done in the future for 

all six floors. 

This chapter describes the testing of the floors and presents the results. Most of the 

calculations based on the test results are shown in chapters 5 and 6. 

 

4.1 Description of the floors 

The properties of the Støren floors are summarized in the table below. Differences from the 

reference floor (floor number 1) are highlighted in bold. 

 

Table 4.1 - Description of the six Støren floors 

 

The only difference between floors 1 and 2 is the perforation. Floors 1 and 6 are identical 

except that the latter has blocking. The static test results for floors 2 and 6 provide a direct 

comparison of the added transversal stiffness from adding blocking versus switching to 

sheathing without holes. Floors 2 and 5 are identical other than the floor width (and the 

number of joists), but the joist spacing is the same; however, static tests were not done for 

floor 5. Other than that, there are at least two variables that differ between the floors. The 

transversal stiffness can however be compared between all of them through the calculation 

of bef (the effective width) from the test results. 
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Floor 4 has a different type of joist, which has a lower modulus of elasticity (as shown in 

Table 4.3) as well as a lower height, but with a lower span. Floor 3 is the only one with a 

lower joist spacing, and thus it also has a longer span.  

The various floors were tested with and without non-structural parts. The bare structure was 

simply the joists and the sheathing (and blocking for floor 6). Then the same tests were 

performed after adding 20 mm acoustic insulation, 13 mm plasterboard and 22 mm 

particleboard on top of the sheathing, to see how much that helped distribute the load to 

the other joists. The cross section of the Støren floors (with perforated sheathing) are as 

shown in Figure 4.1, from “SINTEF Certification Nr. 2232” [26]. The non-structural 

components on the bottom side of the floor were not mounted. How this affects the test 

results and calculations is discussed later. 

 

 

Layout from Norwegian certificate English translation 

Figure 4.1 - Cross section of the floors 

 

Floor 1 is the reference floor. It has good acoustic properties, but vibration problems can 

occur as it is lightweight with low transversal stiffness. The reference floor and the modified 

versions of it were to be tested to see which changes could improve the vibrational 

properties the most. 

The Støren floors were delivered with the maximum allowed spans, with the exception of 

floor number 4 which is 0.2 m too long-span to be approved. These values are summarized 

in Table 4.2 below, taken from “SINTEF Certification Nr. 2365”, the technical approval 

document for the joists [27]. The relevant values for the tested floors are outlined in red. 

Floor 4 would have been approved if the joists were K-Bjelke Plus rather than K-Bjelke. 

For the technical certification, the vibrational properties were verified according to the 

“comfort criterion”, as suggested by Homb and adopted by SINTEF Byggforsk [13] [28]. It 
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requires a deflection of less than 1.3 mm from a 1 kN concentrated load, the fundamental 

frequency must be higher than 10 Hz, and Formula 3.33 (Hu’s combined deflection and 

fundamental frequency criterion) must be satisfied. 

According to Table NA.6.2 in the Norwegian National Annex of NS-EN 1991-1-1, the 

maximum live load (in addition to the self-weight of movable partitions) for floors in 

residential buildings is 2.0 kN/m2 as oppose to 3.0 kN/m2 for office buildings [29]. But as seen 

in Table 4.2, the maximum allowed span is the same for both load cases. So it is the vibration 

requirements that are the strictest, thus highlighting the purpose of our research project. 

 

Table 4.2 - Maximum spans of "K beam" floors 

 

The “K-Bjelke” and “K-Bjelke Plus” glulam joists used in the Støren floors are of timber 

quality C24, except for the outer lamellas of the latter which are C40, increasing the quality 

of the product to C33. The material properties, with standard Eurocode abbreviations and 

units of N/mm2, are as shown in Table 4.3, taken from the technical approval document. [27] 
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Table 4.3 - Material properties of the "K beams" 

Figure 4.2 - Standard "K beam" cross section build-ups 

 

The 22 mm perforated particleboards (“slisseplater” in Norwegian) are connected to the 

joists by screws and glue. They are mounted so that their longitudinal direction is in the 

floor’s transversal direction, and they are glued along all edges. 

The holes (7*20 = 140 in total per element) comprise 15 % of the net area (and volume), and 

so this is accounted for in the mass calculations. The elastic modulus in the product’s 

longitudinal direction is 2550 N/mm2. The density is 685-700 kg/m3. [30] 

 

Figure 4.3 - Technical specification drawings of the perforated particleboard 
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Figure 4.4 - Floor build-up, structural and complete 

 

The blocking of floor 6 was as pictured in Figure 4.5. Such transversal stiffeners were only 

mounted mid-span. The supports are also (barely) visible in the back. They are steel 

cylinders, making for perfect roller supports. All of the joists are actually supported by rollers 

on both sides, but for deflection that doesn’t matter; the result will be the same as for a 

simply-supported floor. But if there were horizontal constraints on both sides however, it 

would introduce a tensile force in the longitudinal direction that would reduce the 

deflection. For safety reasons, it was necessary to restrict the possibility of very large 

horizontal movements (by nailing laths to the outer side of the timber supports), but the 

supports were still rollers on both sides. The visible gap between the cylinders is irrelevant 

as all of the joists were supported: 

 

Figure 4.5 - Floor 6, mid-span blocking 
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4.2 Method 

The static testing was done together with an exchange student from the University of Trento 

who was also looking into vibrations of timber joist floors for her master’s thesis. 

Two load configurations were tested for all floors; a concentrated load mid-span on the 

middle joist, and concentrated load mid-span on all joists simultaneously. The displacements 

of the joists were measured with displacement transducers connected to the computer 

software. They are shown in the pictures below, taken from Bevilacqua’s thesis [31]: 

  

Figure 4.6 - Displacement transducers 

 

All of the weights at our disposal were weighed. Floor 1 was initially tested with a centric 

concentrated load of 100.0 kg (43.65 + 43.00 + 3.30 + 10.05). Then we decided to test the 

floor with 200.0 kg also (by adding 41.95 + 22.95 + 31.80 + 3.20 + 0.10 = 100.0 kg), in order 

to be more certain about the accuracy of the measurements. As a general example, 2.0 mm 

+ 0.1 mm is more reliable than 1.0 mm + 0.1 mm in terms of percentage error from the 

measuring equipment. So more weight is better, and for the subsequent floors, only 200.0 

kg = 1.96 kN was used for the single concentrated load. 

We also had some “background noise” (for the lack of a better term) that made the 

measured displacement value jump a bit up and down from second to second (possibly due 

to vibrations of the tested floor caused by surrounding technical applications in the 

laboratory?). And so to get sufficient accuracy, we took 10 measurements for each test with 

the plan to use the calculated average in the further calculations. Part of the reason for the 

magnitude of the fluctuations seemed to be because of the “factor” value in the software 

linked to the displacement transducers. If for example a 3.0 mm plate placed over the spring 

gave a reading of 0.3 mm (after offset value was set equal to raw value, with factor equal to 

one), setting a factor of 10.0 would calibrate the device properly to give an output of 3.0 

mm. However, one of the factors was about 35 (as oppose to 10-15 for the other 
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displacement transducers), and so its raw measurement was accordingly multiplied by a 

number about three times larger, resulting in three times higher inaccuracy compared to the 

others. The results from this transducer were therefore not trustworthy and could not be 

used. Also, due to time constraints we could not do measurements for all joists for all floors 

as we didn’t have enough devices that functioned properly at all times. Some results that 

were obviously wrong were excluded. 

For the loading of all joists simultaneously, 43.65 kg was used on each joist. More weight 

could have been used for the five-joist floors, but for those with nine joists it would then 

have been difficult to combine the available weights in a such a way that all joists were 

loaded equally with the same higher load. Five of the combinations used for all of the floors 

were exactly 43.65 kg, and the four others were 43.00, 43.60, 43.80, and 44.00. Here the 

loading is shown for floor 3 which has nine joists: 

 

Figure 4.7 - Loading of nine joists 

 

The 200 kg concentrated load in the middle of the span of the middle joist was done as 

shown in Figure 4.8. Here we can also see the different layers of the floors when complete; 

with particleboard on top, followed by gypsum plasterboard, acoustic insulation, and 

sheathing above the joists. The components on the bottom side in Figure 4.1, such as 

thermal insulation and the ceiling, were not mounted. 
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Figure 4.8 - Centric 200 kg concentrated load on floor, complete with non-structural parts 

 

4.3 Hypothesis 

4.3.1 Load on all joists 

For the equal loading of all joists simultaneously, the deflection should be (more or less) the 

same for all joists, given that their modulus of elasticity is the same. Obviously there will be 

some variation here as the construction material is produced by the forest, and sorted into 

strength classes by visual grading rather than accurate laboratory testing. 

The deflection for this load case should also be virtually the same with and without non-

structural components, for three reasons. First of all, the self-weight of the non-structural 

components was irrelevant for these tests, because the equipment was calibrated (with the 

initial displacement set to zero) after the components were applied. Secondly, the 

transversal stiffness becomes irrelevant when the joists are loaded equally; the plate will 

distribute as much of the joist load to the neighbor joists as is distributed back, making the 

net effect zero. (Possibly a small difference for the edge joists as they only have one 

neighbor joist.) And thirdly, there is obviously no composite action from the non-structural 

parts as they are just floating on top, not connected to the rest of the floor (and the 

elements are also not rigidly connected in the floor’s longitudinal direction), and so any 

added longitudinal bending stiffness is orders of magnitude lower than that from the joists. 
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And if there is also no composite action (with regards to floor longitudinal stiffness) from the 

sheathing which is glued and screwed to the joists, then the joist deformation from the 

equal loading of all joists simultaneously should be predicted quite accurately by the bending 

deformation FL3/(48 EIjoist) plus the shear deformation, in accordance with Timoshenko beam 

theory. 

The longitudinal stiffness (EI)L can anyway be calculated based on these measurements, and 

that is necessary to estimate the transversal stiffness more accurately, as the calculation of 

bef (via the other load case measurements) involves the parameter (EI)L. So these 

measurements are important for the calibration of the model, as the stiffness of timber 

joists can vary a lot. 

 

4.3.2 Load on middle joist 

For the loading of only the middle joist with a concentrated load (of 200 kg), the transversal 

stiffness is to be investigated. It seems obvious that floor 2 with the non-perforated 

particleboard, as well as floor 6 with the blocking, both should have higher transversal 

stiffness than floor 1 (the reference floor). The question is how much these separate 

modifications of the reference floor contribute to the load redistribution. For floors 3 and 4 

it is less apparent how the altered properties would affect the transversal stiffness. 

The effect of adding the non-structural components is investigated for all of the tested 

floors. Since the exact same components are added each time, it would be reasonable to 

assume that the same additive increase of (EI)b should be found for all of the floors. 

The tests should provide information about how much transversal stiffness that can be 

considered for analytical calculations, both for the added layers and for the sheathing that is 

glued and screwed to the joists. As shown in Figure 3.11, it is expected that the more rigid 

connection of the sheathing should give a higher benefit per mm of particleboard thickness, 

but the tests performed by us do not measure the benefit of the unconnected particleboard 

alone, as the plasterboard (and acoustic insulation) is added at the same time. 

The floors (with the exception of floor number 4) are approved according to the “comfort 

criterion” by BTAB calculations, so it would be expected that our measurements also verify 

the floors. Other verification methods will give different answers. 

 

4.4 Expected deformation from bending and shear 

The basic deflection expression FL3/(48 EI) from Euler/Bernoulli only considers bending 

deformation. In order to better understand the measurements, the importance of shear 

deformation was investigated. A finite element model of a beam was created in SAP2000. It 

was modelled as simply supported and with the same basic properties as the reference floor 

joists: b = 48 mm, h = 300 mm, L = 4700 mm, E = 14 000 N/mm2. The shear modulus G was 

initially set to 690 N/mm2, as reported by the producer. Then, to get only the bending 

deformation, the shear modulus was set to infinite. The selfweight was modelled as zero, 
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just like in our measurements. The mid-span concentrated load F was arbitrarily chosen as 

1000 N. The percentage difference between the bending deformation and the total 

(shear+bending) deformation could then be found. Mesh density was irrelevant: 

 

Figure 4.9 - Euler/Bernoulli vs. Timoshenko beam models 

 

So, the Timoshenko beam deflection is 10 % higher (1.567 mm / 1.4254 mm = 1.0993) than 

for Euler/Bernoulli, for the reference floor joists. The shear deformation is therefore 

significant and should not be neglected in the further calculations, as our measured 

deflections of course are due to both bending and shear. 

The contribution of shear to the total deflection can also be hand-calculated from the 

formula below, applicable for a concentrated load mid-span on a beam with rectangular 

cross section. [32] 

𝛿𝑠ℎ𝑒𝑎𝑟 =
3⁡𝐹𝐿

10⁡𝐺𝐴
 

Formula 4.1 - Shear deflection for rectangular section beam point-loaded at mid-span 

Here, A is the cross-sectional area bh. 
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The finite element model (FEM) found a shear deflection of 1.567 mm - 1.4254 mm = 0.1416 

mm, which corresponds very well with the 0.14198 mm obtained by using the above 

formula. 

The FEM modelled Euler/Bernoulli beam showed a bending deflection of 1.4254 mm, also 

basically the same as FL3/(48 EI) = 1.4305 mm. 

It can be shown that the ratio of shear to bending deflection is given by the formula below, 

which shows that shear is more significant the larger the (h/L)2 ratio is (for constant E/G): 

𝛿𝑠ℎ𝑒𝑎𝑟
𝛿𝑏𝑒𝑛𝑑𝑖𝑛𝑔

=
6ℎ2⁡𝐸

5𝐿2⁡𝐺
 

Formula 4.2 - Ratio of shear to bending deflection for the tested floor joists 

To obtain this, the Formula 4.1 expression (with A substituted for 12 I/h2) was simply divided 

by FL3/(48EI). 

These are the values for the tested Støren floor joists: 

 Floor 1 Floor 2 Floor 3 Floor 4 Floor 6 

h 300 300 300 250 300 

L 4700 4740 5380 4050 4720 

E 14 000 14 000 14 000 11 000 14 000 

G 690 690 690 690 690 

δshear/δbending 9.92 % 9.75 % 7.57 % 7.29 % 9.84 % 

Table 4.4 - Theoretically expected contribution of shear deflection for the Støren floors 

 

The total deformation can be predicted from this: 

𝛿 = 𝛿𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝛿𝑠ℎ𝑒𝑎𝑟 =
𝐹𝐿3

48⁡𝐸𝐼
+

3⁡𝐹𝐿

10⁡𝐺𝐴
=

𝐹𝐿3

48⁡𝐸𝐼
∗ (1 +

6ℎ2⁡𝐸

5𝐿2⁡𝐺
) ≈ 1.1

𝐹𝐿3

48⁡𝐸𝐼
 

Formula 4.3 - Deflection for rectangular Timoshenko beam point-loaded at mid-span 

 

If instead used as cantilevers, with much shorter spans as needed to meet various design 

rules, the ratio of shear to bending deflection can become much higher than 10 %. [33] 

 

4.5 Results 

The test results are summarized in this subchapter. The test results in their entirety are 

found in “Appendix A – Floor test data”. 
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4.5.1 Load on all joists 

Table 4.5 shows the measured deflections (in mm) for the load case with 43.65 kg above 

each joist. The middle joist is indicated as “1200”, while the end joists were at positions 0 

mm and 2400 mm, and so on. Floor 5 with the width of 4800 mm is not included in the table 

as no static tests were done for it. As previously explained, not all joist displacements were 

measured, and they are indicated as empty cells of light blue color. 

 

Table 4.5 - The measured deflections for the loading of all joists simultaneously 

 

The column “δTimo“ shows the deflection predicted by Timoshenko beam theory (Formula 

4.3) when only the joist EI (with values as reported by the producer) is considered, while the 

sheathing’s stiffness contribution is assumed negligible and calculated as zero. The average 

joist deflection (“Avg.”) was then, on average for all tested floors, 4.7 % higher than 

theoretically calculated, as per the “Ratio” column. (13.9 % higher than for Euler/Bernoulli, 

not presented in the table.) So, according to these measurements, there is no composite 

action (with regards to longitudinal stiffness) between the joists and the sheathing that 

would warrant the use of Steiner’s parallel axis theorem formula for analytical calculation of 

(EI)L for such floors. That implies that the decreased deflection with more rigid joist-

sheathing connections, as shown in Figure 3.11, is explained purely by increased transversal 

stiffness (EI)b, which is irrelevant for this load case. 

Floor 1 has the most suspicious values. It was the first floor we did measurements for, and 

without established routines it was less likely that mistakes and anomalies would be 

discovered. The average joist deflection for floor 1 is 17 % higher without the non-structural 

components, whereas for the other floors there is little or no difference.  

For joist 4 of floor 1, the measured deflection was 43 % higher for the bare structure. In 

theory it should be virtually the same as for the complete structure, so this cannot be 

correct. The second largest difference for a joist with and without non-structural parts (for 

joist 7 of floor 3) is “only” 14.4 %, while there are many cases of 5-10 % increase or decrease 

0 300 600 900 1200 1500 1800 2100 2400 Avg. δTimo Ratio

Structural 0,754 0,622 0,812 0,689 0,72 0,67 1,07

Complete 0,690 0,577 0,567 0,628 0,62 0,67 0,91

Structural 0,622 0,643 0,667 0,64 0,69 0,93

Complete 0,591 0,645 0,659 0,63 0,69 0,92

Structural 1,008 1,207 1,091 1,10 0,99 1,12

Complete 1,128 1,055 1,067 1,08 0,99 1,10

Structural 0,990 1,057 0,976 1,01 0,92 1,09

Complete 0,913 1,001 0,921 0,94 0,92 1,02

Structural 0,781 0,756 0,773 0,77 0,68 1,13

Complete 0,809 0,840 0,773 0,81 0,68 1,18

1,047

FLOOR 6

LOAD ON EVERY JOIST - 43.65 kg

FLOOR 1

FLOOR 2

FLOOR 3

FLOOR 4
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in measured deflection from adding the three layers. The expectation was that e. g. these 

two lines for floor 1 (the most extreme example) would be much better aligned, i. e. 

straighter and more equal to each other: 

 

Figure 4.10 - Joist deflections from equal loading of all joists for floor 1, bare and complete 

 

Since the longitudinal stiffness of the non-structural parts is orders of magnitude lower than 

for the joists, the (EI)L is the same for both floor configurations, and the deflection should be 

the same. So to make the values more reliable for further considerations, the joist 

deflections for “structural” and “complete” have been averaged: 

 

Table 4.6 - Averaged joist displacements 

 

It is interesting to note that there was much more variation between floors than between 

the joists of a floor. 

The “Ratio” column implies that the floor 2 joists on average have a 25 % higher modulus of 

elasticity than those of floor 6 (because 1.157 / 0.925 = 1.25). 
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0 300 600 900 1200 1500 1800 2100 2400 Avg. δTimo Ratio

Structural

Complete

Structural

Complete

Structural

Complete

Structural

Complete

Structural

Complete

1,047

0,991

0,925

1,106

1,055
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0,64 0,69

1,09 0,99

0,98 0,92

0,79 0,68

1,079

0,9481,029

0,658

0,607 0,644 0,663

FLOOR 6

0,722 0,599 0,689

1,068 1,131

0,951

0,795 0,798 0,773

LOAD ON EVERY JOIST - 43.65 kg

FLOOR 1

FLOOR 2

FLOOR 3

FLOOR 4
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Not counting the uncertain measurements for floor 1, the highest difference in deflection 

between joists of a single floor is only 9 %, for floor 2 (where 0.663 / 0.607 = 1.09). 

Even floor 1 with a 20.5 % difference between joists 2 and 3 is lower than the 25 %. 

Statistically, it should of course be the opposite (with respect to stiffness); with more 

variation between joists than floors. And the testing of the joists (presented in section 4.7) 

showed variations of the Young’s modulus (E) far greater than 9 %, as expected. 

The logical explanation seems to be that, since the joists are connected to the sheathing, the 

floor acts somewhat like one unit. So when one joist is loaded, the neighbor joists are also 

pushed down a bit along with the sheathing, leading to relatively equal joist displacements. 

So the individual joist displacements cannot be used to calculate the E of the respective 

joists with good accuracy. The floor’s longitudinal stiffness (EI)L can however be calculated 

from this, and that is also necessary to estimate the transversal stiffness more accurately. If 

for example the (EI)L is assumed 7 % too high, then the bef will be too low by a factor of 1.07 

when calculated from measurements of the other load case. These calculations are done in 

chapters 5 and 6. 

 

4.5.2 Load on middle joist 

As seen in Table 4.5, only three of nine joist displacements were measured for floor 3 for 

that load case. But as they in theory should give roughly the same deflection, it was 

prioritized to spend more time on the other load case. The joist displacements for the 200 kg 

concentrated load on the middle joist are shown here: 

 

Table 4.7 - The measured deflections for the 200 kg centric concentrated load 

 

The relative joist deflection compared to that of the joist with the highest deflection is 

shown in this table: 

0 300 600 900 1200 1500 1800 2100 2400

Structural 0,714 1,826 0,624 0,094

Complete 0,797 1,410 0,787 0,077

Structural 0,266 0,691 1,575

Complete 0,210 0,608 1,323

Structural 0,016 0,157 0,502 0,892 1,600 1,002 0,435 0,248 0,167

Complete 0,105 0,115 0,861 1,044 0,876 0,611 0,101 0,085

Structural 0,344 1,071 2,404

Complete 0,348 1,110 1,814

Structural 0,164 0,830 1,641

Complete 0,170 0,781 1,471

FLOOR 4

FLOOR 6

CONCENTRATED LOAD - 200 kg

FLOOR 1

FLOOR 2

FLOOR 3
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Table 4.8 - Relative displacements 

 

Below, the deflections of floor 3 with and without the non-structural components are shown 

graphically. Since the complete floor has higher transversal stiffness, the deflection of the 

mid-joist is considerably lower. The floor distributes the load better to the neighbor joists, 

and so the curve is less steep than for the bare structure. 

 

0 300 600 900 1200 1500 1800 2100 2400

Structural 39 % 100 % 34 % 5 %

Complete 57 % 100 % 56 % 5 %

Structural 17 % 44 % 100 %

Complete 16 % 46 % 100 %

Structural 1 % 10 % 31 % 56 % 100 % 63 % 27 % 15 % 10 %

Complete 10 % 11 % 82 % 100 % 84 % 59 % 10 % 8 %

Structural 14 % 45 % 100 %

Complete 19 % 61 % 100 %

Structural 10 % 51 % 100 %

Complete 12 % 53 % 100 %
FLOOR 6

FLOOR 1

FLOOR 2

FLOOR 3

FLOOR 4

CONCENTRATED LOAD - 200 kg
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Figure 4.11 - Joist deflections from concentrated load for floor 3, bare and complete 

 

Calculations based on the test results are done in chapters 5 and 6. 

 

4.6 Testing of the displacement transducers 

The accuracy of the measuring equipment used was investigated in the laboratory some 

months later, in order to determine or rule out a source of error. The measurements of the 

displacement transducers were compared against Instron, which is known to be much more 

accurate. The transducers were placed under the machine and calibrated in the same 

manner as during the summer. The Instron machine was then given a chosen vertical 

displacement, which could be compared to that of the other software. One or two 

transducers were tested at the time, as shown in the picture: 

 

Figure 4.12 - Displacement transducers tested against Instron 
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The chosen Instron deflections were 0.65 mm and 1.64 mm, values similar in magnitude to 

those measured for the floors for the two load cases. And just like in the summer, ten 

displacement values were used to calculate the average. 

 

Table 4.9 - Comparison between displacement transducers and Instron 

 

The maximum minus the minimum measured value is generally the same for 0.65 mm and 

1.645 mm. The 0.65 mm measurements then give a higher error in terms of percentage. This 

is exemplified by the “total variation”, calculated here as “max - min” divided by the Instron 

displacement. 

The average difference between Instron and the transducers is only 0.2 %, which means that 

the transducers give correct values, given that the calibration is done accurately and that 

enough values are used to calculate the average. However, averaging based on ten values is 

not sufficient for transducer number 1, which gave the most inaccurate results. With values 

varying from 0.580 to 0.788 mm, one has to be a bit lucky to get as many extreme values on 

both sides of the correct, true displacement to get a representative average, and the highest 

difference of 5.8 % would have been even higher (7.6 %) without the tenth value. 

This is explained by the calibration factor. The steel plate used for calibration in this case was 

measured as 4.97 mm thick. In the software, the initial output of 0.306 mm required a 

calibration factor of 4.97 / 0.306 = 16.242 to return the true displacement of 4.97 mm. For 

transducers 2, 3 and 4, the factors were all close to 11.0. So, a 50 % higher calibration factor 

for number 1 means that any error is amplified accordingly. Transducer number 5, with a 

calibration factor of about 5.4, had the best accuracy. It was about three times as accurate 

as number 1, and two times as accurate as the three other transducers when considering the 

“max – min” values, just as predicted by the difference in calibration factors. 

The spring of transducer number 5 is actually not working properly over its entire length, but 

as long as it is only used within the range where it does work, it provides higher accuracy 

Instron displ. 0,6527 1,643 0,6509 0,6506

Transducer 2 3 2 3 1 4 1 4 1 4 5 5 5 2

1 0,714 0,617 1,637 1,651 0,539 0,734 1,575 1,694 0,663 0,593 0,639 1,649 0,680 0,589

2 0,630 0,673 1,609 1,595 0,663 0,649 1,699 1,638 0,705 0,621 0,625 1,677 0,653 0,646

3 0,630 0,673 1,609 1,651 0,497 0,706 1,699 1,638 0,746 0,621 0,625 1,607 0,653 0,730

4 0,630 0,729 1,525 1,707 0,663 0,621 1,782 1,553 0,705 0,649 0,625 1,690 0,653 0,730

5 0,630 0,617 1,693 1,651 0,663 0,649 1,782 1,581 0,580 0,734 0,625 1,649 0,611 0,674

6 0,658 0,673 1,693 1,651 0,663 0,649 1,658 1,638 0,663 0,706 0,653 1,649 0,680 0,646

7 0,574 0,673 1,637 1,679 0,746 0,593 1,575 1,722 0,663 0,621 0,694 1,621 0,625 0,589

8 0,630 0,589 1,609 1,679 0,663 0,621 1,699 1,638 0,788 0,621 0,680 1,677 0,639 0,589

9 0,602 0,673 1,637 1,735 0,580 0,706 1,575 1,694 0,788 0,565 0,611 1,677 0,653 0,730

10 0,686 0,645 1,693 1,651 0,580 0,706 1,658 1,694 0,580 0,649 0,611 1,649 0,653 0,674

Average displ. 0,638 0,656 1,634 1,665 0,626 0,663 1,670 1,649 0,688 0,638 0,639 1,655 0,650 0,660

Difference -2,1 % 0,6 % -0,7 % 1,2 % -4,1 % 1,7 % 1,7 % 0,4 % 5,8 % -1,9 % -2,1 % 0,7 % -0,1 % 1,4 % 0,2 %

Max - min 0,140 0,140 0,168 0,140 0,249 0,141 0,207 0,169 0,208 0,169 0,083 0,083 0,069 0,141

Total variation 21 % 21 % 10 % 9 % 38 % 22 % 13 % 10 % 32 % 26 % 13 % 5 % 11 % 22 %

0,6524 1,645 0,6523 1,642 0,6504
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than the others. In the summer we also had a transducer with a required calibration factor 

of about 35, which was not acceptable. 

The conclusion is that the transducers give reliable answers as long as they are calibrated 

correctly and enough values are used to calculate the average measured deflection. Since 

the average of 20 values could be used to calculate the longitudinal stiffness, because it is 

virtually the same with and without the three added layers, any large inaccuracies will have 

resulted from human error rather than the transducers themselves. No model updating is 

needed since the measurements only differed from Instron by 0.2 % on average. 

 

4.7 EN 408 laboratory testing of beams 

In the middle of December 2018, bending tests according to EN 408 [34] were performed for 

the joists of the unmounted floor 5, i. e. the only floor that we did not do static tests on in 

June. The objective was to determine whether the mean elastic modulus (E) parallel to the 

grain given in the technical certification [27] is reliable, both in terms of average value and 

how much variation there is between the tested joists. 

Chapter 9 of EN 408 gives the procedure for determining the local E, and chapter 10 

describes how the global E should be found. The formula for the global E involves the shear 

modulus G, which should be found by tests according to chapter 11. This was not done, but 

the shear modulus can be estimated by requiring that the global E should be equal to the 

local E. One of the beams was also loaded until failure. 

 

4.7.1 Procedure for finding the elastic modulus parallel to the grain in bending 

EN 408 specifies a lot of standardized distances that should be used for the testing. Some of 

these were difficult to satisfy, because the cross-sectional height (h = 300 mm) of the beams 

is quite large in relation to the beam length. Also, for the determination of the local E, the 

distance between the nails in the neutral axis for the steel gauge in the middle of the beam 

(see Figure 4.13) was too short in relation to h. The standardized distances are written in 

black and the distances as tested are written in red: 
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Figure 4.13 - Distances for determination of the local Young’s modulus 

 

The arrangement for finding the global E is very similar, the difference is just the 

displacement measurement: 

 

Figure 4.14 - Distances for determination of the global Young's modulus 

 

The local modulus of elasticity in bending is calculated from this formula: 

𝐸𝑚,𝑙 =
𝑎⁡𝑙1

2(𝐹2 − 𝐹1)

16⁡𝐼⁡(𝑤2 − 𝑤1)
 

Formula 4.4 - Local modulus of elasticity in bending 
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where: 
a is the distance [mm] between the support and the load 
l1 is the distance [mm] between the nails supporting the steel gauge 
I is the second moment of area [mm4], equal to bh3/12 for rectangular beams 
F2–F1 is the increase in load [N] on the regression line with a correlation coefficient 

of at least 0.99 
 w2–w1 is the increase in deformation [mm] corresponding to F2–F1 in Figure 4.15 

 

 

Figure 4.15 - Load/deformation graph within the range of elastic deformation 

 

The global modulus of elasticity in bending is calculated from this formula (where G is the 

shear modulus): 

𝐸𝑚,𝑔 =
3𝑎𝑙2 − 4𝑎3

2𝑏ℎ3(2
𝑤2 − 𝑤1

𝐹2 − 𝐹1
−

6𝑎
5𝐺𝑏ℎ

)
 

Formula 4.5 - Global modulus of elasticity in bending 

 

Since the procedures are the same, the measurements for the local E and the global E were 

done simultaneously. (Instron also gave the displacement of the loading head, which isn’t 

relevant for the formulas.) As required by EN 408, the test station for the beams was set up 

as simply supported with low friction lateral restraints to prevent lateral torsional buckling. 

Steel plates (which should not be longer than h/2 = 150 mm) were placed between the 

timber beam and the concentrated loads, to minimize local indentation from compression 

perpendicular to the grain, when loaded symmetrically in bending at the two points. In 

hindsight, the ones we used under the loads were probably a bit longer than h/2, but they 

were however quite thin (which the standard doesn’t say anything about). 



86 
 

 

Figure 4.16 - Test station 

 

The load was applied at a constant rate of 15 mm/min, lower than the maximum limit of 

(0.003 h) mm/s = 0.9 mm/s = 54 mm/min. Instron satisfies the standard’s accuracy 

requirements. 

The moment diagram, shear force diagram and formulas for this load case is as shown in the 

figure below, from StructX.com. [35] 

 

Figure 4.17 - Data for the EN 408 load case 
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So, the local Young’s modulus in bending is measured in the middle of the beam where there 

is no shear force and a constant moment. The global E in bending is measured for the entire 

beam, and so Formula 4.5 includes the shear modulus G. 

The maximum load had to be estimated before the testing. With respect to moment, the 

maximum load was calculated as such (without partial factors): 

Mmax = σmax * W = fm,k * bh2/6 = 33 N/mm2 * 720 000 mm3 = 23.76 kNm 

Pmax = Mmax / a = 23.76 / 1.345 = 17.67 kN 

 

The maximum shear stress is equal to the characteristic shear strength for a load of 22.5 kN, 

when the width of the cross section is reduced with the factor kcr = 0.67 (to account for 

cracks) as instructed by Eurocode 5 of 2010: 

τmax = 1.5 V/A = 1.5 * 22.5 kN / (0.67 * 48 mm * 300 mm) = 3.5 N/mm2 = fv,k 

 

Compression perpendicular to the grain was also calculated, and deemed a problem without 

steel plates, but no problem with. Lateral stability was also found to not be a problem. 

So, the maximum estimated load Pmax is 17.67 kN applied at each point, i. e. Fmax,est = 35.34 

kN total for Instron. EN 408 states that the maximum load applied shall not exceed 40 % of 

Fmax,est. The section of the graph (like in Figure 4.15) between 10 % and 40 % of Fmax,est should 

be used for regression analysis. The longest portion of this section that gives a correlation 

coefficient of at least 0.99 should be used, provided that at least the range from 20 % to 30 

% is covered. 

According to this, Instron should be instructed to log the results from about 3.5 kN and up to 

almost 14 kN (with minimum load value below 3.5 and maximum slightly above 14, to avoid 

“noise” in the results, associated with Instron switching between cycles, see Figure 4.18). 

But on the advice from an experienced professor, the choice was made to only go up to 11 

kN, which is just above the required 30 % of Fmax,est, to make sure that the plastic range was 

avoided. 

However, there was a problem with the .txt file output by Instron. For cycle 1, results were 

logged between 3.5 kN and 11.0 kN, as instructed. But strangely enough, for cycles 2 and 3 

the results were only logged between 3.5 kN and approximately 7.5 kN, which only covers 

the range of 10 % to 21 % of Fmax,est, less than required by the standard. Regardless of this, 

the choice was made to use the results of cycles 2 and 3 rather than cycle 1, again after 

listening to advice. It is common laboratory practice to throw out the results of the first 

cycle, because the material needs some time to “settle”. The EN 408 standard gives a lot of 

rules, but it doesn’t say anything about which load cycles that should be used. The computed 

elastic moduli of cycles 2 and 3 were more in agreement with each other than with that of 

cycle 1. 
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All of the load histories looked like in the figure below. Instron did go up to above 11 000 N 

for all cycles, but the results for cycles 2 and 3 were only logged below the straight line at 

about 7500 N. 

 

Figure 4.18 - Load cycles for determination of elastic moduli 

 

4.7.2 Results 

The full results are found in “Appendix B – Beam test data”. The correlation was well above 

the required 0.99 for all cycles, and with averages of above 0.999 for both the local E and 

global E regression lines. The mathematical operations were done by the programming 

software RStudio. 

The table below gives the elastic moduli (the average E from cycles 2 and 3) for the beams. 

The Em,g assumes a shear modulus of 690 MPa, as stated in the technical certification. The 

shear modulus G is then estimated by requiring that Em,g should be equal to Em,l. (For this, 

the “Goal Seek” function in Excel was used.) 

 

Table 4.10 - Summary of the elastic modulus test results 

Beam Em,l Em,g (G=690) Gestimated

1 16 022 14 378 312

2 15 528 15 352 614

3 17 066 14 596 257

4 15 837 14 656 370

5 15 855 14 659 368

6 12 303 12 980 2 507

7 16 365 15 013 358

8 15 064 14 401 454

9 13 510 13 458 660

10 13 098 12 826 542

15 065 14 232 644

4 764 2 525 2 251

Max / Average 113,3 % 107,9 % 389,3 %

Min / Average 81,7 % 90,1 % 39,9 %

31,6 % 17,7 % 349,4 %

Average

Max - min

Total variation
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The local and global elastic moduli parallel to the grain in bending, Em,l and Em,g, should be 

pretty much equal. This is not the case in the table above, which is surprising. This 

discrepancy leads to much larger variations in the estimated G. I would have thought that 

the shear modulus wouldn’t vary much more than the elastic modulus in terms of 

percentage. Especially the computed G of 2507 MPa cannot be correct. It is also surprising 

that half of the beams are computed to shear modulus values of about 50 % of what is 

stated in the technical certification. 

The moisture content of the beams when tested was a bit lower than the (approximately) 14 

% they are to be delivered with, which impacts the elastic modulus. 

 

4.7.3 Moisture content 

A moisture meter was used on the beams at the time of testing. Initially, it gave moisture 

contents of 11-14 %, with an average of 12.7 % (for 9 beams tested). Then, towards the end 

of the testing, it started giving values of below 8 %, also for a beam that was measured as 

above 11 % just a couple hours earlier. This raised questions about how trustworthy the 

numbers were. 

For the beam that was loaded until failure, six small samples from the middle part of the 

beam were used to measure the moisture content in a more accurate way. The pieces were 

weighed, then put in the oven for a couple days, and then weighed again afterwards. The 

moisture content (MC) was calculated as the weight difference divided by the dry weight: 

 

Table 4.11 - Moisture content of samples taken from beam loaded to failure 

 

So, the moisture content of the beam was measured as 12.0 %. This was a few days after it 

was tested, meaning that it had probably dried out a little since then. 

All things considered, it seems reasonable to assume a moisture content of 12.5 % as an 

average for all beams at the time of EN 408 testing. The technical certification gives the 

mean elastic modulus as 14 000 N/mm2, and the moisture content as 14 + 2 % at the time of 

delivery. [27] This difference in MC means that it is expected that our laboratory testing 

would find a slightly higher elastic modulus. The figure below shows the effect of moisture 

content on the elastic modulus parallel to the grain at 20o C. [36] The relevant values for 

12.5 % and 14 % MC have been highlighted: 

Piece Initial weight Dry weight MC

1 217,248 193,910 12,04 %

2 465,097 414,830 12,12 %

3 377,381 336,530 12,14 %

4 274,100 244,850 11,95 %

5 577,682 515,910 11,97 %

6 439,376 392,400 11,97 %

12,03 %



90 
 

 

Figure 4.19 - Effect of moisture content on Young’s modulus parallel to the grain at 20o C 

 

So, the difference between 12.5 % and 14 % moisture content equates to an expected 

difference in elastic modulus of roughly 3 %. If adopted for the test results, the average Em,l 

reduces to 14 600 N/mm2 while Em,g reduces to 13 800 N/mm2. 

 

4.7.4 Failure testing 

One of the beams was also loaded until failure. The force vs. deformation graph for the test 

was as shown below: 

 

Figure 4.20 - Force vs. deformation graph for beam loaded until failure 
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The maximum Instron force was 41.57 kN, i. e. two concentrated loads of 20.875 kN. The 

deformation at this instant was 59 mm. The maximum deformation, at the moment of 

failure when the force dropped from 40.9 kN to 1 kN, was 63 mm. The predicted bending 

deformation for such loading is 41 mm (by formula shown in Figure 4.17), and 45 mm in total 

when shear deformation is included. The last millimeters are explained by plastic 

deformation, occurring when the graph above starts deviating from the initial straight line 

that the Euler/Bernoulli and Timoshenko beam theories assume, and the stress distribution 

over the cross-section is no longer linear. 

Unexpectedly, the beam failed due to shear rather than exceeded bending moment capacity. 

It was anticipated that the beam would break close to mid-span on the bottom side of the 

cross-section, where the tensile stress is the largest. Rather, it went to shear failure in the 

neutral axis on one side of the beam: 

 

Figure 4.21 - Shear failure of beam 

 

The failure, for the two concentrated loads of 20.875 kN, occurred at 118 % of estimated 

bending moment capacity and only 93 % of estimated shear capacity, calculated without 

partial factors as shown below Figure 4.17. This shows that the kcr factor for shear design in 

EC5 of 2010, not present in EC5 of 2004, is very much warranted. [11] 
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It is especially unexpected that it failed below 100 % since the characteristic strength values 

are supposed to be the lower 5 % fractiles. While there is uncertainty about the elastic 

modulus results giving quite low estimated shear modulus values, maybe this failure 

supports the notion that the shear properties of the beams aren’t all that good, in which 

case the percentage contribution of shear deformation will have been higher than previously 

assumed for the floors. If the shear modulus is lower, it also means that the elastic modulus 

is higher than the value reported by the producer, and the total expected deformation is 

unchanged. It would however impact all of the calculations involving the longitudinal 

stiffness of the floor. No model updating will anyway be done based on the beam testing, 

due to uncertainty. In tables, the values for both the shear modulus (Gmean) and shear 

strength (fv,k) are the same for glulam strength classes 20 through 32 (fm,k). [37]  
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5 Verification of the floors based on the test results 

This chapter considers the floors as they were tested. They were tested without ceiling and 

floor finish, which means that the vibrational properties of the floors will be somewhat 

different when built with the extra components. The transversal stiffness will be higher 

(which means lower deflection), and the mass will be higher (which means lower 

fundamental frequency f1, but higher modal mass). 

It is difficult to accurately predict how also the other verifications (such as e. g. velocity 

response) will be affected, because the magnitude of added transversal stiffness from the 

ceiling and floor finish is unknown, and the lower f1 is never a positive for the verifications. 

But adding the ceiling and floor finish should result in better subjective evaluations of the 

floors. Heavier and more transversally stiff floors perform better, and the fundamental 

frequencies of the Støren floors will still be above the limit values. 

Some of the floors had higher longitudinal stiffness (EI)L than theoretically expected and 

some had lower (EI)L. Chapter 5 considers the actual floors that were tested, while in chapter 

6 the same verifications are also shown with respect to how the properties would be if (EI)L 

was exactly as expected (while the bef found from the tests is kept constant), so as to make 

the verifications more generally applicable for the Støren floors (without ceiling and floor 

finish). Some analytical considerations about the transversal stiffness are also done in 

chapter 6. 

The verifications are done according to chapter 3 with the test results of section 4.5. 

 

5.1 Longitudinal stiffness 

The results for the “43.65 kg load case” of Table 4.6 showed that the longitudinal stiffness 

varies significantly between floors. (The laboratory testing of the joists also showed a lot of 

variation of the elastic modulus.) Since the calculation of the transversal stiffness via 

measured deflection is dependent on the longitudinal stiffness, it is important to consider 

this correctly. If for example (EI)L is assumed 9 % too high, then bef will be calculated as too 

low by a factor of 1.09, and (EI)b will be too low by a much larger factor (about 1.3 for these 

floors). 

The longitudinal stiffness (EI)L of each floor can be calculated from the deflections of Table 

4.6 by rearranging this formula (which is basically the same as Formula 4.3): 

𝑤 =
𝐹𝐿3

48⁡𝐸𝐼
∗ (1 +

𝛿𝑠ℎ𝑒𝑎𝑟
𝛿𝑏𝑒𝑛𝑑𝑖𝑛𝑔

) =
𝐹𝐿3

48⁡(𝐸𝐼)𝐿
∗
1

𝑐
∗ (1 +

𝛿𝑠ℎ𝑒𝑎𝑟
𝛿𝑏𝑒𝑛𝑑𝑖𝑛𝑔

) =
𝐹𝐿3

48⁡(𝐸𝐼)𝐿
∗
1

𝑐
∗ (1 +

6ℎ2⁡𝐸

5𝐿2⁡𝐺
) 

Formula 5.1 - Deflection when the transversal stiffness is not a factor 

where: 
 w is the mid-span deflection 
 F is the mid-span load 
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 L is the span 
 EI is the (unknown) longitudinal bending stiffness 
 (EI)L is the (unknown) longitudinal bending stiffness per unit length, i. e. EI/c 
 c is the joist spacing 

           
𝛿𝑠ℎ𝑒𝑎𝑟

𝛿𝑏𝑒𝑛𝑑𝑖𝑛𝑔
 is the ratio of shear to bending deformation (like in Formula 4.2) 

 

When calculating the transversal stiffness via the “200 kg load case” measurements, it is the 

longitudinal stiffness at the middle joist that should be considered. 

By dividing the middle joist deflection by the theoretically predicted deflection from the 

“43.65 kg load case” (see Table 4.6), these numbers are obtained: 

 Floor 1 Floor 2 Floor 3 Floor 4 Floor 6 Average 

δmid joist/δTimo 0.890 0.961 1.081 1.025 1.135 1.018 

Table 5.1 - Ratio of measured to expected middle joist deflection 

 

So, the middle joists deflected 1.8 % more than expected, on average. For example; for floor 

6, the deflection was 13.5 % higher, meaning that the longitudinal stiffness (EI)L is lower than 

expected by a factor of 1.135. The (EI)L of floor 6 can be found either by using Formula 5.1 

(where w is 0.773), or by dividing by 1.135 when calculating (EI)L analytically. 

 

Table 5.2 - Longitudinal stiffness parameters for the floors 

 

Since the sheathing is negligible for the longitudinal stiffness, the stiffness calibration factor 

also gives an estimate of the middle joist’s elastic modulus (Ecal). However, as mentioned in 

chapter 4, there was surprisingly little difference in deflection between joists of a single 

floor, suggesting that the joists deflect more equally when connected via the sheathing, in 

which case the joists’ actual E may deviate more from the mean value. 

Floor 1 had some incongruent results (Table 4.5). However, the middle joist deflection was 

almost the same both times, and so the choice was made to trust also these results for the 

stiffness calibration above. 

 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

b mm 48 48 48 48 48 48 48 48 48 48

h mm 300 300 300 300 300 300 250 250 300 300

I mm4 1,08E+08 1,08E+08 1,08E+08 1,08E+08 1,08E+08 1,08E+08 6,25E+07 6,25E+07 1,08E+08 1,08E+08

E N/mm2 14 000 14 000 14 000 14 000 14 000 14 000 11 000 11 000 14 000 14 000

c mm 600 600 600 600 300 300 600 600 600 600

Stiffness cal. 0,890 0,890 0,961 0,961 1,081 1,081 1,025 1,025 1,135 1,135

(EI) L Nmm 2,83E+09 2,83E+09 2,62E+09 2,62E+09 4,66E+09 4,66E+09 1,12E+09 1,12E+09 2,22E+09 2,22E+09

E cal
N/mm2

15 735 15 735 14 563 14 563 12 954 12 954 10 729 10 729 12 339 12 339

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6
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5.2 Transversal stiffness 

For the “200 kg load case” of Table 4.7, Formula 5.1 is not applicable because it doesn’t 

consider the transversal load distribution. The formula given in various verification methods 

is the one below. By rearranging it, the effective width bef of the floors can be calculated 

based on the measured deflection w of the middle joist. 

𝑤 =
𝐹𝐿3

48⁡(𝐸𝐼)𝐿⁡𝑏𝑒𝑓
=

𝐹𝐿3

48⁡(𝐸𝐼)𝑗𝑜𝑖𝑠𝑡
∗
𝑐

𝑏𝑒𝑓
 

Formula 5.2 - Deflection when the transversal stiffness matters 

 

It is unclear whether this formula considers the shear deformation. At first glance it seems 

the answer is no, but it may be hidden in the form of the factor 1.1 for the bef (defined in 

Formula 3.3). Bernhard Mohr doesn’t specify how he computed the effective width, and 

others who adopted it (like Hamm/Richter/Winter) don’t mention anything about it either 

[10] [38] [8]. If the answer is that shear is not considered, I would suggest the design formula 

below (adapted from Formula 4.3, for rectangular cross-sections) as a more accurate way of 

considering deformation: 

𝛿 = 𝛿𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝛿𝑠ℎ𝑒𝑎𝑟 =
𝐹𝐿3

48⁡(𝐸𝐼)𝐿 ⁡𝑏𝑒𝑓
+

3⁡𝐹𝐿

10⁡𝐺𝐴
=

𝐹𝐿3

48⁡(𝐸𝐼)𝐿⁡𝑏𝑒𝑓
∗ (1 +

6ℎ2⁡𝐸

5𝐿2⁡𝐺
) ≈ 1.1

𝐹𝐿3

48⁡(𝐸𝐼)𝐿 ⁡𝑏𝑒𝑓
 

Formula 5.3 - Possible new deflection design formula 

 

If shear deformation is not accounted for in the current design formula and limit values, then 

measurements of the real deflection in laboratories will give stricter verifications, and that’s 

definitely not how it should be. The new Eurocode 5 should specify this. 

Because of the uncertainty about this, and to be concordant with the various verification 

methods, Formula 5.2 is used in the further calculations of the transversal stiffness. This is 

also the conservative choice, which gives bef values almost 10 % lower than with Formula 

5.3. The floor stiffness parameters based on the test results are summarized here: 

 

Table 5.3 - Stiffness properties of the tested Støren floors 

 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

(EI) L Nmm 2,83E+09 2,83E+09 2,62E+09 2,62E+09 4,66E+09 4,66E+09 1,12E+09 1,12E+09 2,22E+09 2,22E+09

L mm 4700 4700 4740 4740 5380 5380 4050 4050 4720 4720

F kN 1,96 1,96 1,96 1,96 1,96 1,96 1,96 1,96 1,96 1,96

mm 1,83 1,41 1,57 1,32 1,60 1,04 2,40 1,81 1,64 1,47

mm 820 1063 1055 1255 853 1307 1010 1339 1179 1316

Nmm 3,85E+06 1,08E+07 9,40E+06 1,89E+07 4,32E+06 2,38E+07 6,34E+06 1,96E+07 1,27E+07 1,96E+07

0,0532 0,0411 0,0414 0,0348 0,0511 0,0334 0,0432 0,0326 0,0370 0,0332

b ef

w

(EI) b

α
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The deflection w for floor 1 was 30 % higher for the bare structure. That means that the 

effective width bef was increased by 30 % when the non-structural components were added. 

Likewise, the increase of bef from the non-structural parts for floors 2, 3, 4 and 6 were 19 %, 

53 %, 33 % and 12 %, respectively. 

The percentage increase of the transversal stiffness (EI)b is much higher. It could be 

calculated by rearranging Formula 3.3 as such: 

(𝐸𝐼)b = (𝐸𝐼)L ∗ (
1.1⁡𝑏ef
𝐿

)
4

= (𝐸𝐼)L ∗ (
𝑏

𝐿⁡𝛼
)
4

 

Formula 5.4 - Transversal stiffness 

Here, α is as defined for Formula 3.1, b is the joist width and L is the span. The parameter α 

could be calculated from either bef or (EI)b by rearranging one of the formulas presented. 

The exponent of 4 of course means that any error in bef (from the measurements) will lead 

to a much higher error in the calculated (EI)b. Further considerations about the transversal 

stiffness are discussed in chapter 6. 

 

5.3 Verifications 

5.3.1 Deflection 

The table below shows how the tested floors performed against the deflection/stiffness 

criteria of the various verification methods. It gives the ratio between measured deflection 

(from Table 4.7) and the limit value, both shown below in mm/kN. For the ratios highlighted 

in red, the requirement is not satisfied. The deflection requirements according to 

Hamm/Richter/Winter, Mohr, Eurocode 5 (the newest proposal, as well as Norwegian and 

Austrian national annexes), Canadian Wood Council, as well as SINTEF Byggforsk’s “comfort 

criterion” are considered. 

 

Table 5.4 - Verification of deflection for the tested Støren floors 

Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

w/F 0,93 0,72 0,80 0,67 0,82 0,53 1,23 0,92 0,84 0,75

0.9 103 % 80 % 89 % 75 % 91 % 59 % 136 % 103 % 93 % 83 %

0.6 155 % 120 % 134 % 112 % 136 % 89 % 204 % 154 % 139 % 125 %

"Comfort criterion" 1.3 72 % 55 % 62 % 52 % 63 % 41 % 94 % 71 % 64 % 58 %

New EC5 level 1 & 2

0.8 116 % 90 % 100 % 84 % 102 % 67 % 153 % 116 % 105 % 94 %

1.2 78 % 60 % 67 % 56 % 68 % 44 % 102 % 77 % 70 % 62 %

1.6 58 % 45 % 50 % 42 % 51 % 33 % 77 % 58 % 52 % 47 %

1.0 93 % 72 % 80 % 67 % 82 % 53 % 123 % 92 % 84 % 75 %

8/L 1,3 87 % 67 % 76 % 64 % 91 % 59 % 94 % 71 % 79 % 70 %

EC5 NO low

EC5 NO high

300 %0.25

0.5

None 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

Requirements

186 % 150 %167 %245 % 185 %163 %135 % 106 %161 %144 %

372 % 287 % 321 % 270 %

HRW none

EC5 AT class 3

HRW high

EC5 AT class 1

HRW low

EC5 AT class 2

326 % 213 % 490 % 370 % 335 %

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

New EC5 level 3

New EC5 level 4

New EC5 level 5

New EC5 level 6

Mohr

CWC
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The deflection part of the “comfort criterion” is not the limiting factor. 

For the Norwegian National Annex of EC5, only the complete floor 3 satisfies high stiffness 

requirements, seven of the ten floor configurations satisfy normal requirements, while three 

of them don’t meet either of the demands. 

All of the complete floors deflected less than 0.8 mm/kN, except floor 4 which is the only 

one not approved according to Table 4.2, so it was expected to perform the worst. 

The deflections would however have been lower if the floors had been tested with ceiling 

and floor finish. 

 

5.3.2 Frequency 

To calculate the fundamental frequency of the floors, their distributed mass is needed. As an 

example, the mass calculation for floor 6 (the one with blocking) is shown in the table below. 

The mass of some secondary components such as nails and screws was neglected. The mass 

of the end beams (at the supports, parallel to the blocking) was also neglected as it isn’t 

evenly distributed and is taken directly by the supports. A floor finish of 14 mm thick parquet 

was assumed. Laths for the ceiling are assumed to be spaced 600 mm apart. 

Floor 6 Density 
[kg/m3] 

Height 
[m] 

Width 
[m] 

Length 
[m] 

Number of 
elements 

Mass 
[kg] 

Distributed 
mass [kg/m2] 

K-Bjelke Plus 460 0.300 0.048 4.9 5 162.3 13.8 

Perforated 
particleboard 

685 0.022 2.4 4.9 0.85 150.6 12.8 

Blocking 460 0.300 0.048 2.4 0.9 14.3 1.2 

Bare structure Σ 27.8 

Particleboard 685 0.022 2.4 4.9 1 177.2 15.1 

Plasterboard 516 0.013 2.4 4.9 1 78.9 6.7 

Acoustic 
insulation 

16.5 0.020 2.4 4.9 1 3.9 0.3 

Tested “complete” floor Σ 49.9 

Plasterboard 516 0.013 2.4 4.9 2 157.8 13.4 

Lath 380 0.036 0.048 4.9 9 29.0 2.5 

Insulation 16.5 0.300 0.552 4.9 4 53.6 4.6 

Parquet 550 0.014 2.4 4.9 1 90.6 7.7 

The floor with all components Σ 78.2 

Table 5.5 - The distributed mass of floor 6 

 

By repeating the same type of calculations from Table 5.5 for all the floors, the values shown 

in Table 5.6 are obtained. Here, the values are also calculated for when 10 %, 20 % or 30 % 

of the live load mass qk for residential building floors is included. From Table NA.6.2 in 

Eurocode 1, this is 2.0 kN/m2, as oppose to 3.0 kN/m2 for office building floors. [29] 
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Distributed mass m [kg/m2] Floor 1 Floor 2 Floor 3 Floor 4 Floor 6 

Bare structure 26.6 28.9 37.6 24.3 27.8 

Tested “complete” floor 48.7 51.0 59.8 46.4 49.9 

The floor with all components 76.9 79.2 87.6 73.9 78.2 

The floor with all components + 0.2 
kN/m2 

97.3 99.6 108.0 94.3 98.5 

The floor with all components + 0.4 
kN/m2 

117.7 120.0 128.3 114.6 118.9 

The floor with all components + 0.6 
kN/m2 

138.1 140.4 148.7 135.0 139.3 

Table 5.6 - Distributed mass for all of the floors 

 

In the table below, the fundamental frequency of the floors is calculated from Formula 3.15, 

based on the distributed mass m from Table 5.6 and the calibrated (EI)L of Table 5.2. 

Fundamental frequency f1 [Hz] Floor 1 Floor 2 Floor 3 Floor 4 Floor 6 

Bare structure 23.2 21.1 19.1 20.5 19.9 

Tested “complete” floor 17.1 15.9 15.2 14.9 14.9 

The floor with all components 13.6 12.7 12.5 11.8 11.9 

The floor with all components + 0.2 
kN/m2 

12.1 11.3 11.3 10.4 10.6 

The floor with all components + 0.4 
kN/m2 

11.0 10.3 10.3 9.5 9.6 

The floor with all components + 0.6 
kN/m2 

10.2 9.6 9.6 8.7 8.9 

Table 5.7 - Fundamental frequencies of the floors 

 

It is the f1 values for the Bare structure and the Tested “complete” floor in the table above 

that will be considered for the various verifications. To use the f1 values for The floor with all 

components would not result in a fair assessment of the floors. As explained in section 

3.4.3.23.4.3.2, the ceiling (here: two gypsum plasterboards, as well as the laths) provides 

considerable transversal stiffness (EI)b that would have reduced the deflection if it had been 

mounted for the testing. Increased (EI)b also helps for the verifications of velocity response, 

while the lowered f1 makes the verifications stricter. A floor finish such as parquet (which 

should be laid out in the floor’s transversal direction) will also improve the floor’s vibrational 

behavior. So to consider just the added mass for the reduction of f1, without including the 

benefit for the transversal stiffness in the calculations, would be a much too conservative 

and wrong way of verifying the floors. 

In accordance with the normal recommendations (e. g. Hamm/Richter/Winter and the new 

EC5 proposal), the live load mass will be taken as zero, i. e. Ψ2*qk = 0*qk. When in use, the 

mass will of course be higher than this due to furniture and people, but the added damping 

from this is not accounted for, and in practice a heavier floor will perform better. And also, 

while the values above are calculated for single-span floors where the transversal stiffness 
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isn’t considered, Homb [20] has found that the f1 formula for two-span orthotropic floors 

(Formula 3.37), which gives higher f1 values, correlates better with measurements. In real 

life, things are often a bit different from what is assumed in the early, conceptual design 

stage. Partition walls placed so that the main modes of vibration are interrupted will 

increase the stiffness and thus f1, and the support conditions can also be stiffer than 

assumed. So in practice it doesn’t necessarily make sense to compare f1 values calculated 

with a live load against the limit values, making the verification stricter. 

The fundamental frequency criterion is not a problem for the Støren floors. A simplified 

summary of the f1 limit values of the various verification methods is presented in the table 

below. 

 f1,limit high demands f1,limit low demands f1,min (with extra 
requirements) 

EC5 Austrian NA 8 6 4.5 

Hamm/Richter/Winter 8 6 4.5 

New EC5 proposal 8 4.5 

EC5 8 None 

Mohr 8 None 

“Comfort criterion” 10 8 

Table 5.8 - Summary of the limit values for the fundamental frequency 

 

The tested Støren floors have design fundamental frequencies well above the typical limit 

value of 8 Hz that is generally seen as the cut-of limit between high frequency and low 

frequency floors, for walking activities. Resonance won’t be a problem for the floors (unless 

they are used for rhythmic activities etc.), and no verification of vibration acceleration is 

required by any of the code-based methods. The floor vibration will rather be transient, and 

some of the methods require a verification of the velocity response. 

 

5.3.3 Deflection and frequency combined 

Hu’s combined deflection and f1 criterion (Formula 3.33) forms the basis of the “comfort 

criterion”. The requirement is that f1/Δ0.44 should be higher than 18.7 for the floor to be 

verified. The deflections measured for the “200 kg load case” (of Table 5.4, in mm/kN) are 

paired with the f1 values for the same floor configuration (from Table 5.7), and compared 

against the limit value. 

Because of the better correlation with f1 measurements from using the two-span orthotropic 

plate model, the fundamental frequency was rather calculated according to Formula 3.37 

when the floors were verified according to the “comfort criterion” [27] [28]. In the table 

below, the tested floors were also considered in this way against the requirement, using the 

f1 multiplication factor of Formula 3.38. 
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Table 5.9 - Combined deflection and fundamental frequency criterion verification 

 

Floor 4 was expected to perform the worst, so that is no surprise. The red numbers for floor 

6 can be understood from it having the lowest longitudinal stiffness relative to expectations, 

as shown in Table 5.1, which negatively affects both f1 and Δ. (In chapter 6 this will be 

accounted for and adjusted so that the verifications become more generally applicable for 

the floor configurations.) 

What is surprising is that these verifications imply that the floors are better without the non-

structural components. This is not the case, and a critique of the method is that it may be 

more accurate for floors that are not as high-frequency. And of course, such simple floor 

structures will not be built in practice anyway. Another critique of the method is that it only 

sees mass as a bad thing and doesn’t account for damping. It would be interesting to see 

how the floors are considered by the method with the missing components added, but the 

transversal stiffness and deflection is difficult to estimate accurately without test results or 

BTAB available. 

 

5.3.4 Velocity 

The recommended damping ratios of the various code-based methods are shown in the 

table below for the different floor configurations. 

Recommended 
damping ratios ζ 

Bare structure Tested “complete” 
floor 

The floor with all 
components 

Eurocode 5 0.01 0.01 0.01 

EC5 Austrian NA 0.01 0.01 0.01 

Hamm/Richter/Winter 0.01 0.01 0.01 

Mohr 0.01 0.02 0.02 

New EC5 proposal 0.02 0.03 0.03 

Table 5.10 - Recommended damping ratios 

 

Based on this (as well as other findings [20]), it seems the most appropriate to assume 

damping ratios of 1 % and 2 %, respectively, for the floors without and with the added 

layers. These are the values that will be used for all verification methods. 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

m kg/m2 26,6 48,7 28,9 51,0 37,6 59,8 24,3 46,4 27,8 49,9

f1 Hz 23,2 17,1 21,1 15,9 19,1 15,2 20,5 14,9 19,9 14,9

Δ mm/kN 0,93 0,72 0,80 0,67 0,82 0,53 1,23 0,92 0,84 0,75

f1/Δ0,44 23,9 19,8 23,2 18,9 20,9 20,0 18,8 15,4 21,5 16,9

Verification 78 % 94 % 81 % 99 % 89 % 93 % 100 % 122 % 87 % 111 %

Factor 1,015 1,042 1,040 1,080 1,016 1,086 1,038 1,114 1,063 1,096

Verification 77 % 91 % 77 % 92 % 88 % 86 % 96 % 109 % 82 % 101 %

Floor 2 Floor 4Floor 1 Floor 6Floor 3
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The floors are calculated with the mass and frequency from Table 5.6 and Table 5.7, and the 

stiffness parameters from Table 5.3. 

The Norwegian National Annex of EC5 doesn’t give directions with regards to limit value for 

the unit impulse velocity verification, only for the deflection criterion. However, if the 

Eurocode 5 recommendations of Figure 3.6 are to be followed, the b value should be 126 for 

normal requirements and 144 for high requirements. If the same is done for the Austrian 

National Annex, this limit value is 150 both for floor classes 1 and 2. In the table below, the 

floors are verified according to all of these demands. 

 

Table 5.11 - EC5 unit impulse velocity response verification with ζ of 1 % and 2 % 

 

So, the unit impulse velocity response is not a problem for the Støren floors according to the 

current Eurocode 5. The damping ratio is a sensitive parameter; the differences between the 

verification percentages for “structural” and “complete” are mostly due to the difference of 

0.01 versus 0.02. 

Mohr’s velocity/mass requirement requirements (presented in section 3.2.3) are however 

stricter. Only one of these verifications (velocities by heel drop or modified EC5 unit impulse) 

needs to be done, but both of them are considered here: 

 

Table 5.12 - Mohr's velocity/mass requirement verifications with ζ of 1 % and 2 % 

 

As for EC5/Ohlsson, the damping ratio is a sensitive parameter for the verifications, 

responsible for the majority of the difference between “structural” and “complete”. 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

3,15 2,98 2,63 2,65 3,47 2,61 2,79 2,58 2,44 2,62

m/(Ns2) 0,0183 0,0117 0,0150 0,0102 0,0145 0,0081 0,0190 0,0120 0,0145 0,0103

0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02

bnormal 126 126 126 126 126 126 126 126 126 126

vlimit,normal
m/(Ns2) 0,0244 0,0417 0,0220 0,0368 0,0200 0,0344 0,0214 0,0334 0,0208 0,0334

Verification 75 % 28 % 68 % 28 % 72 % 24 % 89 % 36 % 70 % 31 %

144 144 144 144 144 144 144 144 144 144

vlimit,high m/(Ns2) 0,0220 0,0382 0,0198 0,0336 0,0179 0,0313 0,0193 0,0304 0,0187 0,0304

Verification 83 % 31 % 76 % 30 % 81 % 26 % 99 % 39 % 77 % 34 %

150 150 150 150 150 150 150 150 150 150

vlimit
m/(Ns2) 0,0213 0,0372 0,0192 0,0327 0,0174 0,0305 0,0187 0,0296 0,0181 0,0296

Verification 86 % 31 % 78 % 31 % 83 % 27 % 102 % 40 % 80 % 35 %

Floor 6Floor 1 Floor 2 Floor 3 Floor 4

bAustria

n40

v

ζ

bhigh

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

vheel drop m/s 0,360 0,205 0,282 0,178 0,260 0,135 0,419 0,229 0,278 0,186

vheel drop,limit m/s 0,175 0,291 0,158 0,258 0,145 0,242 0,154 0,236 0,150 0,236

Verification 206 % 71 % 178 % 69 % 179 % 55 % 272 % 97 % 185 % 79 %

vEC5 mod m/(Ns2) 0,0292 0,0143 0,0218 0,0119 0,0191 0,0088 0,0320 0,0149 0,0208 0,0121

vEC5 mod,limit
m/(Ns2) 0,0097 0,0162 0,0088 0,0144 0,0080 0,0135 0,0086 0,0131 0,0083 0,0131

Verification 301 % 88 % 247 % 83 % 238 % 65 % 373 % 113 % 250 % 92 %

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6
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The proposed velocity verification method for the new Eurocode 5 (presented in section 

3.3.3.3) is very strict. The least strict limit value for the response factor is 24, and the 

strictest is 4. Neither requirement can be fulfilled without making big structural changes to 

the floors: 

 

Table 5.13 - Proposed new EC5 velocity verification with ζ of 1 % and 2 % 

 

It should be noted that the loading models for velocity and accelerations of the new EC5 

proposal are only applicable for floors with a mass of at least ten times the weight of the 

walker, i. e. generally not applicable for these floors until the mass from the ceiling etc. is 

added. [4] 

An analysis of how much the various input parameters affect the verifications is done in 

section 6.1. 

 

5.3.5 Acceleration 

Verification of acceleration is not warranted because the Støren floors are high frequency 

floors according to all of the methods (given that they won’t be used for dance studios etc.). 

The calculations are anyway shown in the table below. On top is the Austrian National Annex 

to EC5 (limit values 0.05 or 0.10, or none), in the middle is Mohr (limit value 0.10), and on 

the bottom is the new EC5 proposal (limit values ranging from 0.02 to 0.12 m/s2). 

Accelerations that satisfy all demands are written in black, red indicates that the strictest 

(lowest) limit value is not satisfied, while numbers written in red and bold font indicate that 

the highest limit value is not satisfied. Hamm/Richter/Winter has a similar formula for 

acceleration as the other methods, and the same limits as the Austrian NA, but it is omitted 

from the table because the input parameter of Figure 3.2 is not shown for high frequency 

floors. 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

fw Hz 2 2 2 2 2 2 2 2 2 2

I Ns 1,90 2,81 2,15 3,12 2,45 3,30 2,23 3,39 2,32 3,39

M* kg 75,0 137,4 82,1 145,0 121,5 192,9 59,1 112,8 78,8 141,4

V1,peak m/s 0,0253 0,0205 0,0262 0,0215 0,0201 0,0171 0,0377 0,0300 0,0294 0,0239

Kimp 1,277 1,0 1,0 1,0 1,227 1,0 1,036 1,0 1,0 1,0

Vtot,peak m/s 0,0323 0,0205 0,0262 0,0215 0,0247 0,0171 0,0391 0,0300 0,0294 0,0239

η 0,82 0,97 0,97 0,97 0,84 0,97 0,95 0,97 0,97 0,97

β 0,417 0,565 0,519 0,581 0,473 0,589 0,515 0,592 0,533 0,592

Vrms m/s 0,0135 0,0116 0,0136 0,0125 0,0117 0,0101 0,0201 0,0178 0,0157 0,0142

R 134,7 115,8 136,2 124,8 116,8 100,8 201,1 178,0 156,6 141,8

Rlimit 24 24 24 24 24 24 24 24 24 24

Vrms,limit m/s 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024

Verification 561 % 482 % 568 % 520 % 486 % 420 % 838 % 742 % 653 % 591 %

Floor 6Floor 1 Floor 2 Floor 3 Floor 4

Rlimit 4 4 4 4 4 4 4 4 4 4

Vrms,limit m/s 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004

Verification 3366 % 2895 % 3405 % 3119 % 2919 % 2520 % 5027 % 4449 % 3915 % 3545 %
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Table 5.14 - Accelerations with ζ of 1 % and 2 % 

 

The accelerations are higher when the non-structural components are added, even though 

damping is very important (except in Mohr’s method). This is because, although a high 

modal mass in itself also helps the verification, an increased mass reduces f1 which increases 

the acceleration response a lot. 

The best performer was floor 1, because of its unexpectedly high longitudinal stiffness (at 

the middle joist) found in the tests, but this will look different when adjusted in chapter 6. 

While Mohr and the Austrian NA calculates the modal mass via the effective width bef, the 

new EC5 proposal (like Hamm/Richter/Winter) rather uses the width b. The transversal 

stiffness not being a factor means that all input parameters are known also for “the floor 

with all components” (from Table 5.6 and Table 5.7), and it is possible to do this verification. 

Because the new EC5 proposal states that a damping ratio of 3 % is appropriate for “joisted 

floors with a floating layer”, the calculations are shown for both 2 % and 3 %: 

 

 

Table 5.15 - Accelerations for the floors with ceiling and parquet, with ζ of 2 % and 3 % 

 

The accelerations are now higher, even with the increased damping ratio. None of the floors 

satisfy the strictest requirement of 0.02 m/s2, but some of them satisfy the least strict of 

0.12. Verification of acceleration response is anyway not required for walking activities for 

these high frequency Støren floors. 

The new EC5 proposal states that the design rules are not applicable for e. g. gymnastic halls 

and dance halls, so the above calculations cannot be used to verify the floors for rhythmic 

activities. 

 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

M* kg 51,3 121,7 72,2 151,6 86,4 210,1 49,7 125,9 77,5 155,1

arms
m/s2

0,03 0,06 0,04 0,08 0,08 0,08 0,08 0,15 0,06 0,12

Mgen kg 51,3 121,7 72,2 151,6 86,4 210,1 49,7 125,9 77,5 155,1

a m/s2 0,03 0,03 0,03 0,03 0,03 0,02 0,04 0,04 0,03 0,03

M* kg 75,0 137,4 82,1 145,0 121,5 192,9 59,1 112,8 78,8 141,4

arms
m/s2

0,01 0,04 0,03 0,06 0,04 0,06 0,05 0,12 0,04 0,09

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

Parameter Unit Full Full Full Full Full

M* kg 217,0 225,2 282,7 179,5 221,3

arms m/s2
0,10 0,14 0,12 0,25 0,19

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

Parameter Unit Full Full Full Full Full

M* kg 217,0 225,2 282,7 179,5 221,3

arms m/s2
0,06 0,09 0,08 0,17 0,13

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6
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5.3.6 Constructive requirements and summary 

The Hamm/Richter/Winter method and the Austrian National Annex both have constructive 

requirements (as shown in Table 3.2 and Table 3.8). For the floors to be approved (given that 

there are vibration requirements), a layer of screed is mandatory, and in some cases also 

filling to increase the mass. All of the floors are then by default not approved according to 

both methods. None of the tested floors fulfilled their least strict deflection limit value of 0.5 

mm/kN. Floor 3 was however close at 0.53 mm/kN, and if tested with ceiling and a floor 

finish then it would be below the limit. 

All of the floors are approved according to Mohr’s criteria, except floor 4. 

All of the floors (except floor 4) satisfy the least strict demands of the Norwegian NA to EC5, 

while only floor 3 satisfies the high demands. 

According to the new EC5 proposal, the velocity response of the floors is way too high. (But 

not according to the Ohlsson or Mohr methods.) 

The floors (except number 4) are OK according to the “comfort criterion”. 

The floors are high-frequency, and so there will be no resonance from walking activities, and 

no verification of acceleration response is needed. 

 

A summary of selected verifications is shown below. Based on this, the performance of the 

ten tested floor constructions has been rated in order from #1 (best) to #10 (worst): 

 

Table 5.16 - Summary of selected verifications 

 

The ratings look different in section 6.1 when the verifications are made more generally 

applicable for these kinds of floor structures.  

Verifications Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

Deflection [mm/kN] 0,93 0,72 0,80 0,67 0,82 0,53 1,23 0,92 0,84 0,75

Comfort criterion 77 % 91 % 77 % 92 % 88 % 86 % 96 % 109 % 82 % 101 %

EC5 velocity, b=144 83 % 31 % 76 % 30 % 81 % 26 % 99 % 39 % 77 % 34 %

Mohr heel drop vel. 206 % 71 % 178 % 69 % 179 % 55 % 272 % 97 % 185 % 79 %

New EC5, velocity, VI 561 % 482 % 568 % 520 % 486 % 420 % 838 % 742 % 653 % 591 %

New EC5, velocity, I 3366 % 2895 % 3405 % 3119 % 2919 % 2520 % 5027 % 4449 % 3915 % 3545 %

Rating #7 #2 #5 #2 #5 #1 #10 #7 #7 #4

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6
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6 Analytical considerations 

This chapter makes some further analytical considerations about the test results and 

verification methods. In section 6.1, the verifications of chapter 5 are made more generally 

applicable with regards to the longitudinal stiffness. In section 6.2, the transversal stiffnesses 

found are investigated in-depth. Section 6.3 suggests an improvement of a design formula. 

 

6.1 Verifications 

The verifications in chapter 5 considered the actual floors that were tested. For some of 

them the longitudinal stiffness (EI)L was higher than expected and for some it was lower. To 

make the verifications more generally applicable for these floor structures, the elastic 

modulus E is changed to the average value reported by the producer, and a new deflection w 

is calculated based on the assumption that the effective width bef found in chapter 5 is the 

same. (The calculated deflections will be different by at most + 3 % if the (EI)b is kept 

constant instead – because (EI)b and bef are related via (EI)L, which is now different.) 

None of the other input parameters have been changed from chapter 5, only the 

longitudinal stiffness. The discussion is therefore, for the most part, much more brief here, 

and the basic explanations for the same tables are found in chapter 5. The verifications will 

now be worse for floors 1 and 2, while they are improved for floors 3, 4 and 6. 

New deflections w are calculated based on the same load F that was used in the 

measurements: 

 

Table 6.1 - Input parameters for the verifications 

 

The deflection verifications are shown below. With the three added layers the floors were 

tested with, they satisfy requirements of 0.81, 0.70, 0.49, 0.90 and 0.66 mm/kN, 

respectively. 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

b mm 48 48 48 48 48 48 48 48 48 48

h mm 300 300 300 300 300 300 250 250 300 300

I mm4 1,08E+08 1,08E+08 1,08E+08 1,08E+08 1,08E+08 1,08E+08 6,25E+07 6,25E+07 1,08E+08 1,08E+08

E N/mm2 14 000 14 000 14 000 14 000 14 000 14 000 11 000 11 000 14 000 14 000

c mm 600 600 600 600 300 300 600 600 600 600

(EI) L Nmm 2,52E+09 2,52E+09 2,52E+09 2,52E+09 5,04E+09 5,04E+09 1,15E+09 1,15E+09 2,52E+09 2,52E+09

L mm 4700 4700 4740 4740 5380 5380 4050 4050 4720 4720

F kN 1,96 1,96 1,96 1,96 1,96 1,96 1,96 1,96 1,96 1,96

mm 820 1063 1055 1255 853 1307 1010 1339 1179 1316

mm 2,05 1,58 1,64 1,38 1,48 0,97 2,35 1,77 1,45 1,30

Nmm 3,43E+06 9,65E+06 9,04E+06 1,81E+07 4,67E+06 2,57E+07 6,50E+06 2,00E+07 1,44E+07 2,23E+07

0,0532 0,0411 0,0414 0,0348 0,0511 0,0334 0,0432 0,0326 0,0370 0,0332

(EI) b

w

b ef

α

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6
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Table 6.2 - Verification of deflection for the Støren floors 

 

The fundamental frequencies are well above the typical limit value of 8 Hz: 

Fundamental frequency f1 [Hz] Floor 1 Floor 2 Floor 3 Floor 4 Floor 6 

Bare structure 21.9 20.7 19.9 20.8 21.2 

Tested “complete” floor 16.2 15.5 15.8 15.0 15.8 

The floor with all components 12.9 12.5 13.0 11.9 12.7 

The floor with all components + 0.2 
kN/m2 

11.4 11.1 11.7 10.6 11.3 

The floor with all components + 0.4 
kN/m2 

10.4 10.1 10.8 9.6 10.3 

The floor with all components + 0.6 
kN/m2 

9.6 9.4 10.0 8.8 9.5 

Table 6.3 - Fundamental frequencies of the floors 

 

Opposite to chapter 5, floor 6 is now verified by the “comfort criterion” and floor 1 is not. 

 

Table 6.4 - Combined deflection and fundamental frequency criterion verification 

 

Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

w/F 1,05 0,81 0,83 0,70 0,75 0,49 1,20 0,90 0,74 0,66

0.9 116 % 90 % 93 % 78 % 84 % 55 % 133 % 100 % 82 % 73 %

0.6 174 % 135 % 139 % 117 % 126 % 82 % 199 % 150 % 123 % 110 %

"Comfort criterion" 1.3 80 % 62 % 64 % 54 % 58 % 38 % 92 % 69 % 57 % 51 %

New EC5 level 1 & 2

0.8 131 % 101 % 104 % 88 % 94 % 62 % 149 % 113 % 92 % 83 %

1.2 87 % 67 % 70 % 58 % 63 % 41 % 100 % 75 % 61 % 55 %

1.6 65 % 50 % 52 % 44 % 47 % 31 % 75 % 56 % 46 % 41 %

1.0 105 % 81 % 83 % 70 % 75 % 49 % 120 % 90 % 74 % 66 %

8/L 1,3 98 % 75 % 79 % 66 % 84 % 55 % 92 % 69 % 69 % 62 %

Mohr

CWC

132 %EC5 AT class 2

New EC5 level 3

New EC5 level 4

New EC5 level 5

New EC5 level 6

140 % 151 % 99 % 239 % 180 % 147 %

478 % 361 % 295 % 264 %EC5 AT class 1

HRW low

0.5 209 % 162 % 167 %

0 %
EC5 AT class 3

HRW high

0.25 418 % 323 % 334 % 281 % 302 % 197 %

0 % 0 % 0 % 0 % 0 % 0 %

EC5 NO high

HRW none
None 0 % 0 % 0 %

Floor 2 Floor 3 Floor 4 Floor 6

Requirements

EC5 NO low

Floor 1

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

m kg/m2 26,6 48,7 28,9 51,0 37,6 59,8 24,3 46,4 27,8 49,9

f1 Hz 21,9 16,2 20,7 15,5 19,9 15,8 20,8 15,0 21,2 15,8

Δ mm/kN 1,05 0,81 0,83 0,70 0,75 0,49 1,20 0,90 0,74 0,66

f1/Δ0,44 21,5 17,8 22,4 18,2 22,5 21,5 19,2 15,7 24,3 19,0

Verification 87 % 105 % 84 % 103 % 83 % 87 % 97 % 119 % 77 % 98 %

Factor 1,015 1,042 1,040 1,080 1,016 1,086 1,038 1,114 1,063 1,096

Verification 86 % 101 % 80 % 95 % 82 % 80 % 94 % 107 % 73 % 90 %

Floor 4 Floor 6Floor 1 Floor 2 Floor 3
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The velocity verifications according to the Ohlsson method of the current Eurocode 5 are not 

a problem: 

 

Table 6.5 - EC5 unit impulse velocity response verification with ζ of 1 % and 2 % 

 

The new Eurocode 5 proposal paints a very different picture of the velocity response: 

 

Table 6.6 - Proposed new EC5 velocity verification with ζ of 1 % and 2 % 

 

For sensitivity analysis of input parameters, “Floor 1 – Complete” will be considered, with 

the least strict response factor limit of 24, changing one parameter at the time: 

If the damping ratio is changed from 2 % to 100 %, the verification only reduces from 531 % 

to 484 %. This is despite it being known that vibration velocities are tolerated better when 

quickly damped [20], which the Ohlsson and Mohr methods account for. So the effect of 

damping is basically just ignored, like in the “comfort criterion” / Hu’s formula. 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

3,29 3,09 2,66 2,68 3,38 2,55 2,77 2,56 2,34 2,53

m/(Ns2) 0,0190 0,0120 0,0151 0,0103 0,0142 0,0079 0,0189 0,0119 0,0140 0,0100

0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02

bnormal 126 126 126 126 126 126 126 126 126 126

vlimit,normal
m/(Ns2) 0,0229 0,0379 0,0216 0,0357 0,0207 0,0364 0,0217 0,0340 0,0221 0,0367

Verification 83 % 32 % 70 % 29 % 68 % 22 % 87 % 35 % 63 % 27 %

144 144 144 144 144 144 144 144 144 144

vlimit,high m/(Ns
2
) 0,0206 0,0347 0,0194 0,0326 0,0186 0,0333 0,0195 0,0310 0,0199 0,0335

Verification 92 % 35 % 78 % 32 % 76 % 24 % 97 % 38 % 70 % 30 %

150 150 150 150 150 150 150 150 150 150

vlimit
m/(Ns2) 0,0200 0,0337 0,0188 0,0317 0,0180 0,0323 0,0189 0,0301 0,0193 0,0326

Verification 95 % 36 % 81 % 33 % 79 % 25 % 100 % 39 % 73 % 31 %

n40

v

ζ

bhigh

bAustria

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

fw Hz 2 2 2 2 2 2 2 2 2 2

I Ns 2,05 3,04 2,21 3,20 2,33 3,14 2,19 3,33 2,13 3,12

M* kg 75,0 137,4 82,1 145,0 121,5 192,9 59,1 112,8 78,8 141,4

V1,peak m/s 0,0273 0,0221 0,0269 0,0220 0,0191 0,0163 0,0371 0,0296 0,0271 0,0221

Kimp 1,277 1,0 1,0 1,0 1,227 1,0 1,036 1,0 1,0 1,0

Vtot,peak m/s 0,0349 0,0221 0,0269 0,0220 0,0235 0,0163 0,0384 0,0296 0,0271 0,0221

η 0,82 0,97 0,97 0,97 0,84 0,97 0,95 0,97 0,97 0,97

β 0,430 0,577 0,524 0,584 0,465 0,582 0,512 0,590 0,518 0,581

Vrms m/s 0,0150 0,0127 0,0141 0,0129 0,0109 0,0095 0,0197 0,0174 0,0140 0,0128

R 149,8 127,5 141,0 128,8 109,2 94,7 196,7 174,5 140,1 128,1

Rlimit 24 24 24 24 24 24 24 24 24 24

Vrms,limit m/s 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024 0,0024

Verification 624 % 531 % 588 % 537 % 455 % 394 % 820 % 727 % 584 % 534 %

Floor 6Floor 1 Floor 2 Floor 3 Floor 4

Rlimit 4 4 4 4 4 4 4 4 4 4

Vrms,limit m/s 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004

Verification 3746 % 3187 % 3526 % 3220 % 2729 % 2367 % 4918 % 4361 % 3503 % 3202 %
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Changing the walking frequency from 2 Hz (suggested for offices) to 1.5 Hz (suggested for 

residential floors) lowers the verification to 352 %.  

To get the verification down from 531 % to 100 %, the span could either be lowered by 40 % 

(from 4.7 m to 2.8 m) or the longitudinal stiffness could be increased by a factor of 5.5. 

Increasing the (modal) mass doesn’t help much because it is counteracted by the 

simultaneous lowering of f1. A four times higher mass only lowers the verification to 381 %. 

The modal mass is here calculated via the floor width (like for Hamm/Richter/Winter), while 

both the Austrian NA and Mohr instead used bef to approximate the modal mass. 

Increasing the floor width from 2.4 m to 3.7 m lowers the verification to 374 %, but 

increasing the width further than that does not help. 

Increasing bef or (EI)b has zero impact in this case. (As instructed, the f1 formula for one-span 

floors is used, which only factors in the longitudinal stiffness.) But the transversal stiffness 

does matter if the floor width is increased at the same time. Doubling bef while also doubling 

the floor width reduces the verification to 267 %. A further increase of the width to 7.4 m 

gives 187 %, while increasing the width more than that does not help. 

Overall it seems rather hopeless to get such timber joist floors verified according to this 

method for even the least strict response factor limit. The example floor calculated in the 

EC5 committee document [4] had 40 mm of screed and a much larger width. 

 

The floors (except number 4) are approved by both of Mohr’s velocity criteria: 

 

Table 6.7 - Mohr's velocity/mass requirement verifications with ζ of 1 % and 2 % 

 

Verification of acceleration response is not needed for high-frequency floors like these, but 

they are anyway shown below, with respective damping ratios of 1 % and 2 % without and 

with the added layers. On top is the Austrian National Annex to EC5 (limit values 0.05 or 

0.10, or none), in the middle is Mohr (limit value 0.10), and on the bottom is the new EC5 

proposal (limit values ranging from 0.02 to 0.12 m/s2). 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

vheel drop m/s 0,382 0,218 0,287 0,182 0,250 0,129 0,414 0,226 0,261 0,174

vheel drop,limit m/s 0,164 0,266 0,155 0,251 0,150 0,256 0,156 0,240 0,159 0,258

Verification 232 % 82 % 185 % 72 % 167 % 51 % 265 % 94 % 164 % 68 %

vEC5 mod m/(Ns2) 0,0300 0,0147 0,0220 0,0121 0,0187 0,0086 0,0318 0,0148 0,0202 0,0117

vEC5 mod,limit
m/(Ns2) 0,0091 0,0148 0,0086 0,0140 0,0083 0,0142 0,0087 0,0133 0,0089 0,0143

Verification 329 % 100 % 255 % 86 % 225 % 61 % 366 % 111 % 228 % 81 %

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6
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Table 6.8 - Accelerations with ζ of 1 % and 2 % 

 

For the new EC5 proposal, all input parameters for the acceleration are also known for “the 

floor with all components” (from Table 5.6 and Table 6.3). They are shown for damping 

ratios of 2 % and 3 %: 

 

 

Table 6.9 - Accelerations for the floors with ceiling and parquet, with ζ of 2 % and 3 % 

 

The floors are high-frequency with regards to walking activities, so the acceleration response 

is then not relevant, just the velocity response. The floors’ transient vibration behavior is 

assessed very differently by Ohlsson, Mohr and the new EC5 proposal. 

Hamm/Richter/Winter and the Austrian NA to EC5 require a layer of screed (and in some 

cases filling to increase the mass), so the floors are by default not approved according to 

these two methods. Only floor 3 with 0.49 mm/kN satisfies their least strict deflection limit 

value of 0.5 mm/kN. 

The floors satisfy the least strict demands of the Norwegian NA to the current EC5, but only 

floor 3 is approved by the higher demands. 

The floors are mostly deemed as OK by the “comfort criterion”. 

A summary of selected verifications is shown below. Based on this, the performance of the 

ten floor constructions has been rated in order from #1 (best) to #10 (worst): 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

M* kg 51,3 121,7 72,2 151,6 86,4 210,1 49,7 125,9 77,5 155,1

arms
m/s2

0,04 0,09 0,05 0,09 0,06 0,06 0,07 0,14 0,04 0,08

Mgen kg 51,3 121,7 72,2 151,6 86,4 210,1 49,7 125,9 77,5 155,1

a m/s2 0,04 0,03 0,03 0,03 0,03 0,02 0,04 0,04 0,03 0,03

M* kg 75,0 137,4 82,1 145,0 121,5 192,9 59,1 112,8 78,8 141,4

arms
m/s2

0,02 0,06 0,03 0,07 0,03 0,05 0,04 0,11 0,03 0,06

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

Parameter Unit Full Full Full Full Full

M* kg 217,0 225,2 282,7 179,5 221,3

arms
m/s2

0,13 0,15 0,10 0,23 0,14

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

Parameter Unit Full Full Full Full Full

M* kg 217,0 225,2 282,7 179,5 221,3

arms
m/s2

0,09 0,10 0,06 0,16 0,09

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6
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Table 6.10 - Summary of selected verifications 

 

The vibration behavior should be somewhat better than the calculations imply when the 

floors are built with a floor finish and ceiling, which were not mounted for the testing. 

The “comfort criterion” is the only verification method that implies that the floors are better 

without the three added layers. This is addressed in section 6.3. 

 

6.2 Transversal stiffness 

First of all, it should be said that (EI)b is a very sensitive parameter when calculated from the 

test results. Its percentage error will be much larger than that of bef, because the relation 

between them (Formula 5.4) involves an exponent of 4. So the hand calculations presented 

here will by default just be approximations. 

The transversal stiffness properties calculated from the test results are shown in Table 5.3, 

and are reiterated here: 

 

 

 

Table 6.11 - Transversal stiffness properties of the tested floors 

 

A breakdown of the (EI)b values is shown in section 6.2.2. 

The transversal stiffness of the bare structure will be looked into first, and then how much 

(EI)b that was gained from adding the three layers. 

 

6.2.1 Stiffness of sheathing and blocking 

Floor 6 had a transversal stiffener at the mid-span. The sheathings of all tested floors were 

perforated, except the one of floor 2 which didn’t have any holes. 

Verifications Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

Deflection [mm/kN] 1,05 0,81 0,83 0,70 0,75 0,49 1,20 0,90 0,74 0,66

Comfort criterion 86 % 101 % 80 % 95 % 82 % 80 % 94 % 107 % 73 % 90 %

EC5 velocity, b=144 92 % 35 % 78 % 32 % 76 % 24 % 97 % 38 % 70 % 30 %

Mohr heel drop vel. 232 % 82 % 185 % 72 % 167 % 51 % 265 % 94 % 164 % 68 %

New EC5, velocity, VI 624 % 531 % 588 % 537 % 455 % 394 % 820 % 727 % 584 % 534 %

New EC5, velocity, I 3746 % 3187 % 3526 % 3220 % 2729 % 2367 % 4918 % 4361 % 3503 % 3202 %

Rating #9 #4 #8 #3 #5 #1 #10 #5 #5 #2

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

Floor 1 Floor 2 Floor 3 Floor 4 Floor 6

Nmm 3,85E+06 1,08E+07 9,40E+06 1,89E+07 4,32E+06 2,38E+07 6,34E+06 1,96E+07 1,27E+07 1,96E+07(EI) b

mm 820 1063 1055 1255 853 1307 1010 1339 1179 1316b ef
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As expected, floor 2 does indeed have a higher (EI)b than floors 1, 3 and 4. For simplified 

analytical hand calculations, the sheathing of floor 2 (with E = 2550 N/mm2 and t = 22 mm) 

would normally be considered as such: 

(EI)b = 2550 * 223 / 12 = 2.26 * 106 Nmm 

This is 9.40 / 2.26 = 4.16 times lower than found from the test results. But it was to be 

expected that this ratio would be much higher than 1, because the glued and screwed 

connection between sheathing and joists adds stiffness and reduces deflection compared to 

if it had been floating/unconnected, as seen in Figure 3.11. 

The average (EI)b found for floors 1, 3 and 4 is: 

(EI)b,avg = (3.85 + 4.32 + 6.34) * 106  / 3 = 4.84 * 106 Nmm 

If the perforations are ignored when doing hand calculations, the multiplication factor 

should then be 4.84 / 2.26 = 2.14, which is slightly more than half of the 4.16 factor found 

for the non-perforated particleboard of floor 2. 

The reduction in area (and volume) due to the holes is only 15 %. But the reduction in 

second moment of area will be larger as this is a 4th order term (bh3/12) rather than 2nd 

order (bh). As a simplification, a multiplication factor to account for the holes could be 

assumed as follows: 0.85(0.5*4) = 0.7225. This is however not conservative according to the 

test results, which found it to be 4.84 / 9.40 = 0.515. 

But of course, testing just one floor with a non-perforated particleboard isn’t a large enough 

sample size for this purpose, and the difference in calculated transversal stiffness between 

floors 1, 3 and 4 also varied a lot. By standard hand calculations, the transversal stiffness 

(EI)b should be the same for these three floors, both with and without the added layers. But 

according to the measurements there are large differences, and even more so when the 

three layers are added, as will be shown in section 6.2.2. 

The transversal stiffness contribution from the blocking can be approximated by subtracting 

the average (EI)b found for the sheathings of floor 1, 3 and 4 from the total (EI)b of floor 6: 

(EI)b,blocking = 1.27 * 107 – 4.84 * 106 = 7.86 * 106 Nmm 

 

6.2.2 Stiffness of the added layers 

A breakdown of how the components contribute to the transversal stiffness is shown below: 

(EI)b [Nmm] Floor 1 Floor 2 Floor 3 Floor 4 Floor 6 

Blocking     7.86 * 106 

Sheathing 3.85 * 106 9.40 * 106 4.32 * 106 6.34 * 106 4.84 * 106 

Σ Structural 3.85 * 106 9.40 * 106 4.32 * 106 6.34 * 106 1.27 * 107 

The three added layers 6.99 * 106 9.47 * 106 1.95 * 107 1.32 * 107 6.96 * 106 

Σ Complete 1.08 * 107 1.89 * 107 2.38 * 107 1.96 * 107 1.96 * 107 

Table 6.12 - Breakdown of transversal stiffness added from components 
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Since the exact same layers were added each time, one would expect to find the same added 

transversal stiffness for all floors, which should be predicted quite well by this formula: 

Σ (EI)b = Σ (E * t3 / 12) 

This was however not the case. For example, the added (EI)b for floor 3 was 2.8 times higher 

than for floor 6. 

The benefit of the added layers on average for all floors was 1.29 * 107 Nmm. 

The acoustic insulation has no stiffness. The unconnected particleboard has roughly the 

same basic properties as the sheathing, so (EI)b ≈ 2.26 * 106 Nmm according to hand 

calculations. 

The elastic modulus of the 12.5 mm gypsum plasterboard (from Knauf) is not available. By 

requiring that it must account for the rest of the average added (EI)b, the computed elastic 

modulus of the plasterboard is 65 000 N/mm2. Clearly this is not the case, so the test results 

show that the transversal stiffness is increased by more than what the hand calculations 

would predict, also for the layers that are unconnected. 

It is difficult to explain all of these results. Floor 3 having the largest stiffness increase from 

the added layers could be due to it being the only floor with a joist spacing of 300 mm. But it 

is then odd that such an effect was not seen for the bare structure. 

The transversal stiffness of floor 4 was large for both floor configurations. This is the floor 

with the worst stiffness properties longitudinally, so the high calculated (EI)b might be 

explained by load distribution according to stiffness. 

Floor 6 had the highest (EI)b of all floors without the added layers, and also the lowest 

increase when they were added. This may be a case of diminished returns. 

The calculated (EI)b values for floor 1 are quite low. This is however the floor that had the 

most uncertainty regarding the measurements for (EI)L. If (EI)L is 5 % lower than assumed in 

the calculations, then the (EI)b values should be 18 % higher, and bef 6 % higher. 

It would be harder to spot any measurement errors for the “200 kg load case” than for the 

other load case, because of not knowing as much what to expect, and because the middle 

joist displacement can’t be compared with the others. The load of 200 kg is however high 

enough so that the percentage error from the measuring equipment is very low, as long as 

no errors were made. 

As seen in Table 6.11, the effective width bef maxed out at close to 1300 mm for all floors 

except number 1. This makes sense mathematically; an increase of (EI)b by a factor of 2 only 

results in a 19 % increase of bef, due to the exponent of 0.25 in the relation between them, 

as can be seen from Formula 5.4 or Formula 3.3. 
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There seemed to be an inverse correlation between EI/L3 and the transversal stiffness (EI)b 

gained from adding the non-structural components: 

 Floor 1 Floor 2 Floor 3 Floor 4 Floor 6 

EI/L3 16.37 14.77 8.89 10.09 12.67 

(EI)b [*106] from the added layers 6.99 9.47 19.46 13.22 6.96 

Table 6.13 - Joist stiffness vs. transversal stiffness from added layers 

 

It seems that more added transversal stiffness can be expected for floors with low joist 

stiffness EI/L3. The relatively low stiffness in the joist’s longitudinal direction then means that 

a larger portion of the load is rather transferred in the orthogonal direction, and maybe 

more so when the joist center distance is low. Floor 3, the one with the longest span and the 

only one with a joist spacing of 300 mm, was the one that performed the best in the 

verifications. The low increase for floor 6 could be due to it having the highest transversal 

stiffness to begin with, i. e. diminished returns. 

So, a given (EI)L results in higher transversal stiffness if the joist spacing c is low than if the 

joist EI is high (and c is high). But of course, since I = bh3/12, it will in most cases still be more 

rational to increase h than to lower the spacing c. Lowering c by a factor of 2 has the same 

effect on (EI)L as increasing the joist height by 26 %. Storey height could be a limitation, 

though. And it is anyway good news that more transversal stiffness may be achieved for 

long-span floors. 

If the joist center distance is halved (while the joist EI is also halved), a person walking 

between two joists in the floor’s longitudinal direction will then cause a 23 = 8 times lower 

local deformation of the boarding. The effect on the global deformation is of course far 

lower, but not insignificant. A quick estimate showed that the difference between a joist 

spacing of 300 mm and 600 mm for the reference floor may be about 0.2 mm/kN of local 

deformation of the sheathing, and this has to be added to the joist deformation to get the 

total deformation. For strict demands such as 0.5 mm/kN in total, the local deformation 

would account for a high percentage if the joist spacing is high. Our tests did however only 

place the load above the joists and not between them. 

 

6.3 Suggested design formula 

The main weaknesses of Hu’s formula are that it doesn’t account for damping, and mass is 

only seen as a negative. The problem is of course that the damping ratio ζ is difficult to 

estimate accurately, while it is a sensitive parameter in other verification methods. But since 

it is very important, it shouldn’t be discarded completely. 

A higher modal mass means that it takes more energy to excite a mode. The Austrian 

National Annex and Hamm/Richter/Winter have constructive requirements regarding mass 

(from screed and fill). And it is in reality also a requirement for the proposed new EC5 

velocity verification, because it is so strict. Even if a higher floor mass doesn’t equate to a 
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higher damping ratio [8], it could still be modelled as such (as a simplification, like done for 

partition walls in Table 2.3) to account for the positive influence of mass. 

As an improvement of Hu’s formula, I will suggest the following: 

𝑓1
𝛥0.44

∗ (
𝜁

0.03
)
0.8

> 18.7 

Formula 6.1 - Combined frequency, deflection and damping criterion 

 

For a damping ratio of 0.03, the criterion is unchanged. In Table 3.13, the recommended 

damping ratios ζ for the new EC5 proposal are shown. They range from 0.02 to 0.04 for 

various floor types, which is more realistic in situ than the overly conservative 0.01 

recommended by many of the code-based methods. The exponent of 0.8 is to limit the 

sensitivity of ζ in the verifications. 

On the basis of Table 3.13 being implemented for the new EC5, the in-situ damping ratios of 

the tested floors should be 0.02 without the non-structural parts and 0.03 with. (ζ will be 

somewhat lower in laboratory test conditions.) If adopted, it makes these “comfort 

criterion” verifications more logical: 

 

Table 6.14 - Modified comfort criterion verifications 

 

Table 3.13 only includes four basic floor types, and it would be warranted to expand on it. 

One could e. g. be able to assume some more “damping” for floors with additional mass. 

Tabulated values would regulate this for the use of the formula. For example, floors heavier 

than X kg/m2 could be calculated with a ζ value that is 0.01 higher than for more lightweight 

floors, and so on. 

Partition walls are often modelled as extra damping as a simplification (although it is the f1 

that is increased through added stiffness). The problem with accounting for partition walls 

(perpendicular to the main vibrating elements of the critical mode shape) in the conceptual 

design stage is that they may be removed some years later if the owner wants to change the 

floor plan/layout. It cannot always be seen as a constant like the floor’s self-weight mass, so 

it may be advised against considering partition walls towards ζ. And because the “comfort 

criterion” uses the orthotropic plate model for two-span floors to calculate f1, it is already 

Parameter Unit Structural Complete Structural Complete Structural Complete Structural Complete Structural Complete

m kg/m2 26,6 48,7 28,9 51,0 37,6 59,8 24,3 46,4 27,8 49,9

f1 Hz 21,9 16,2 20,7 15,5 19,9 15,8 20,8 15,0 21,2 15,8

Δ mm/kN 1,05 0,81 0,83 0,70 0,75 0,49 1,20 0,90 0,74 0,66

f1/Δ0,44 21,5 17,8 22,4 18,2 22,5 21,5 19,2 15,7 24,3 19,0

Verification 87 % 105 % 84 % 103 % 83 % 87 % 97 % 119 % 77 % 98 %

Factor 1,015 1,042 1,040 1,080 1,016 1,086 1,038 1,114 1,063 1,096

Verification 86 % 101 % 80 % 95 % 82 % 80 % 94 % 107 % 73 % 90 %

ζ 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03 0,02 0,03

Verification 119 % 101 % 111 % 95 % 113 % 80 % 130 % 107 % 100 % 90 %

Floor 4 Floor 6Floor 3Floor 1 Floor 2
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accounted for that f1 tends to be somewhat higher in real life than theoretically assumed 

(due to stiffer support conditions and partitions). 

The suggested design formula is very simple and has potential, in my opinion. In addition to 

accounting for frequency and stiffness, this modification would make it also consider 

damping as well as modal mass (indirectly), so that all important parameters are accounted 

for in one small formula with associated table values. 

And if it is the case that Formula 5.2 does not consider shear deformation, then I will suggest 

that Formula 5.3 is instead adopted for the new Eurocode 5, as explained in section 5.2.  
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7 Conclusion 

The Støren floors are high frequency floors characterized by transient vibration behavior 

when subjected to walking activities. Resonance is not a problem for the floors (unless they 

are to be used for rhythmic activities), and it is the vibration velocity rather than vibration 

acceleration that may give rise to negative feedback from people. Whether the velocity 

response is problematic for the Støren floors depends which verification method is applied. 

According to the Ohlsson (current EC5) and Mohr methods, the floors are satisfactory. But 

according to the latest proposal for the new EC5, the velocity response is way too high. 

This large discrepancy between methods is due to a couple of things. As explained in section 

2.8, it is necessary to modify a floor construction quite a lot to achieve a perceptible 

difference of the vibrational behavior. It is also highly subjective. Subjective evaluations vary 

(and the criteria may be interpreted differently) between people, and also between different 

cultures. This combination explains why the different code-based methods give such 

different answers. 

It is good that the new Eurocode 5 proposal involves six floor performance levels, to allow 

for different cultures to prioritize between economy and walking comfort in the national 

annexes. But while the highest deflection limit of 1.6 mm/kN is very lenient, even the least 

strict velocity requirement cannot be reasonably fulfilled for the Støren floors without using 

screed and increasing the floor width. If implemented for the new EC5, people will be more 

likely to simply choose concrete instead of timber. 

With the three added layers that the Støren floors were tested with, they satisfy deflection 

requirements of 0.81, 0.70, 0.49, 0.90 and 0.66 mm/kN, respectively. These numbers would 

be better if tested with a floor finish and ceiling, due to the added transversal stiffness. 

The floors are in general approved by the “comfort criterion”, Mohr and the current 

Eurocode 5. They are not approved according to the new EC5 proposal, 

Hamm/Richter/Winter and the Austrian National Annex to EC5. 

The best performer was floor 3; the most long-span floor with the lowest joist spacing. A 

correlation was seen: Floors with joists of low EI/L3 had a higher increase of the transversal 

stiffness from the added floor layers. This suggests that, for the same (EI)L, it is better with a 

low joist distance than a high joist EI. (This also reduces the local deformation of the 

boarding when walking between two joists.) But in practice it is more efficient to increase EI 

as it has the cross-sectional height as a 3rd order term. It is anyway good news that the 

results suggest that the transversal stiffness is higher for long-span floors. Load distribution 

according to stiffness would be a logical explanation for these results. 

The transversal stiffness was in general higher than what simplified analytical hand 

calculations would predict, as shown in sections 6.2.1 and 6.2.2. To enable structural 

engineers to make realistic estimates of the deflection etc., a reliable calculation program 

like BTAB should be made user-friendly and publicly available. 
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The effective width bef maxed out at close to 1300 mm for all floors except number 1, as 

seen in Table 6.11. Diminished returns were to be expected, as an increase of (EI)b by 100 % 

only results in a 19 % increase of bef, (due to the exponent of 0.25 in the relation between 

them, as can be seen from Formula 5.4,) and then the deflection can only be divided by a 

factor of 1.19. 

As expected, floor 4 has the worst vibrational properties (as shown in Table 6.10). The best 

performer was clearly floor 3. Floor 6 was found to be the second best, closely followed by 

floor 2. Floor 1 was the fourth best. 

Without the three added floor layers, floor 6 (with blocking) was found to be just as good as 

floor 3. But floor 3 saw a much higher increase of the transversal stiffness from the added 

layers. Floor 6 had the highest transversal stiffness among all of the floors before the layers 

were added, and this could be a reason for the diminished returns. 

 

Improvements of existing vibration design formulas were suggested. (Formula 6.1, and 

possibly also Formula 5.3.) 

A floor’s vibration performance is determined by its mass, stiffness and damping. The 

simplest way to increase all three would be to add a layer of screed to the floors, but this 

may not be desirable for a company wanting to construct the floors in the factory rather 

than on the building site. 

When the dynamic walking tests will be performed for the Støren floors, deflection tests 

should also be performed with the ceiling and a floor finish added, to see how much 

transversal stiffness the floors have in as-built condition. 

The floors do not satisfy high vibration demands, but they are not bad either. In Norway we 

are used to the live feel of timber joist floors, and so for residential purposes where only 

normal/medium vibration performance is required then they should be satisfactory for most 

people.  
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Appendix A – Floor test data 

 

 

 

 

FLOOR 1

SECTION 48x300 mm

SPAN 4,7 m

JOIST SPACING 0,6 m

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0,322 0,888 0,319 0,083 0,724 1,868 0,609 0,083 0,698 0,644 0,841 0,715

0,456 0,747 0,377 0,055 0,778 1,728 0,696 0,083 0,698 0,682 0,754 0,688

0,402 0,934 0,290 0,083 0,698 1,822 0,609 0,124 0,671 0,720 0,754 0,715

0,456 0,934 0,348 0,055 0,644 1,822 0,551 0,110 0,885 0,531 0,841 0,660

0,402 0,888 0,319 0,096 0,751 1,868 0,696 0,069 0,751 0,531 0,841 0,674

0,483 0,794 0,377 0,055 0,698 1,822 0,609 0,083 0,724 0,644 0,754 0,701

0,349 0,934 0,319 0,028 0,698 1,822 0,609 0,110 0,805 0,531 0,899 0,701

0,429 0,747 0,348 0,055 0,698 1,915 0,551 0,083 0,724 0,682 0,754 0,688

0,456 0,841 0,406 0,055 0,724 1,775 0,696 0,069 0,805 0,644 0,841 0,674

0,442 0,794 0,348 0,069 0,724 1,822 0,609 0,124 0,778 0,606 0,841 0,674

0,420 0,850 0,345 0,063 0,714 1,826 0,624 0,094 0,754 0,622 0,812 0,689

Average: 0,719

COMPLETE STRUCTURE

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0,469 0,664 0,407 0,000 0,677 1,534 0,668 0,095 0,729 0,539 0,552 0,613

0,391 0,664 0,436 0,027 0,833 1,286 0,842 0,095 0,677 0,622 0,552 0,640

0,391 0,664 0,378 0,068 0,755 1,451 0,755 0,095 0,677 0,581 0,581 0,585

0,339 0,746 0,349 0,054 0,859 1,369 0,813 0,068 0,755 0,581 0,581 0,613

0,313 0,664 0,349 0,054 0,755 1,286 0,813 0,095 0,651 0,498 0,581 0,653

0,313 0,788 0,349 0,027 0,807 1,451 0,842 0,068 0,677 0,581 0,581 0,599

0,391 0,664 0,378 0,054 0,833 1,451 0,755 0,068 0,677 0,456 0,639 0,640

0,417 0,705 0,436 0,000 0,833 1,410 0,842 0,068 0,729 0,581 0,581 0,653

0,339 0,788 0,349 0,054 0,833 1,410 0,784 0,054 0,677 0,664 0,523 0,640

0,339 0,788 0,349 0,041 0,781 1,451 0,755 0,068 0,651 0,664 0,494 0,640

0,370 0,714 0,378 0,038 0,797 1,410 0,787 0,077 0,690 0,577 0,567 0,628

Average: 0,615

STRUCTURAL

CONCENTRATED LOAD - 100 kg CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg

CONCENTRATED LOAD - 100 kg CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg
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FLOOR 2

SECTION 48x300 mm

SPAN (THEORY) 4,7 m

SPAN (REAL) 4,74 m

JOIST SPACING 0,6 m

1 2 3 4 5 1 2 3 4 5

0,208 0,702 1,669 0,515 0,594 0,716

0,374 0,810 1,586 0,674 0,675 0,573

0,291 0,675 1,586 0,555 0,621 0,716

0,291 0,729 1,586 0,634 0,648 0,716

0,291 0,648 1,586 0,674 0,729 0,687

0,250 0,621 1,530 0,674 0,675 0,630

0,250 0,675 1,530 0,555 0,621 0,687

0,208 0,621 1,558 0,634 0,621 0,716

0,208 0,702 1,613 0,714 0,621 0,601

0,291 0,729 1,502 0,595 0,621 0,630

0,266 0,691 1,575 0,622 0,643 0,667

Average: 0,644

COMPLETE STRUCTURE

1 2 3 4 5 1 2 3 4 5

0,238 0,594 1,317 0,674 0,729 0,659

0,198 0,675 1,289 0,634 0,675 0,773

0,159 0,594 1,317 0,595 0,621 0,716

0,278 0,648 1,375 0,555 0,621 0,687

0,198 0,594 1,317 0,595 0,648 0,630

0,198 0,567 1,289 0,555 0,621 0,659

0,198 0,540 1,317 0,555 0,594 0,659

0,238 0,621 1,403 0,595 0,675 0,544

0,238 0,567 1,289 0,595 0,648 0,601

0,159 0,675 1,317 0,555 0,621 0,659

0,210 0,608 1,323 0,591 0,645 0,659

Average: 0,632

STRUCTURAL

CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg

CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg
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FLOOR 3

SECTION 48x300 mm

SPAN (THEORY) 5,35 m

SPAN (REAL) 5,38 m

JOIST SPACING 0,3 m

CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0,120 0,083 0,598 0,799 1,606 1,006 0,438 0,275 0,154 0,996 1,212 1,118

0,040 0,165 0,478 0,881 1,634 0,978 0,518 0,248 0,196 0,957 1,212 1,076

0,000 0,083 0,638 0,799 1,593 1,034 0,478 0,248 0,154 0,996 1,212 1,090

0,000 0,165 0,478 0,964 1,620 0,978 0,399 0,303 0,154 1,076 1,157 1,076

0,000 0,165 0,399 0,964 1,606 1,020 0,359 0,275 0,154 1,036 1,212 1,118

0,000 0,193 0,478 0,909 1,634 1,020 0,438 0,248 0,182 1,036 1,212 1,090

0,000 0,220 0,558 0,881 1,565 1,006 0,399 0,220 0,140 0,996 1,212 1,118

0,000 0,193 0,478 0,881 1,565 1,020 0,518 0,165 0,196 0,837 1,267 1,090

0,000 0,165 0,399 0,964 1,593 0,978 0,399 0,248 0,154 1,116 1,157 1,090

0,000 0,138 0,518 0,881 1,579 0,978 0,399 0,248 0,182 1,036 1,212 1,048

0,016 0,157 0,502 0,892 1,600 1,002 0,435 0,248 0,167 1,008 1,207 1,091

Average: 1,102

COMPLETE STRUCTURE

CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0,000 0,084 0,882 1,116 0,826 0,568 0,085 0,093 1,156 1,055 1,094

0,117 0,140 0,714 1,156 0,964 0,568 0,085 0,093 0,996 1,109 1,081

0,155 0,112 0,840 1,076 0,881 0,622 0,071 0,053 1,156 1,109 1,027

0,000 0,084 0,840 1,076 0,799 0,622 0,100 0,120 1,156 1,001 1,067

0,117 0,140 0,840 0,957 0,826 0,676 0,085 0,080 1,116 1,109 1,054

0,155 0,084 0,925 0,917 0,909 0,622 0,142 0,107 1,156 0,974 1,067

0,117 0,140 0,882 0,917 0,826 0,622 0,100 0,080 1,196 0,974 1,067

0,194 0,112 0,967 1,116 0,936 0,541 0,085 0,080 1,076 1,109 1,054

0,039 0,168 0,840 1,036 0,936 0,676 0,114 0,093 1,076 1,055 1,094

0,155 0,084 0,882 1,076 0,854 0,595 0,142 0,053 1,196 1,055 1,067

0,105 0,115 0,861 1,044 0,876 0,611 0,101 0,085 1,128 1,055 1,067

Average: 1,083

STRUCTURAL
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FLOOR 4

SECTION 48x250 mm K-Bjelke!

SPAN (THEORY) 4,00 m

SPAN (REAL) 4,05 m

JOIST SPACING 0,6 m

CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg

1 2 3 4 5 1 2 3 4 5

0,271 1,087 2,377 1,005 1,060 0,929

0,271 1,060 2,404 0,928 1,032 0,984

0,425 1,115 2,404 1,044 1,032 0,956

0,387 1,143 2,323 0,928 0,976 0,929

0,387 1,004 2,350 0,967 1,087 1,011

0,348 1,115 2,323 1,121 1,115 0,984

0,425 1,115 2,486 0,928 1,060 1,038

0,309 1,060 2,514 1,083 1,087 1,066

0,387 0,976 2,459 0,967 1,060 0,956

0,232 1,032 2,404 0,928 1,060 0,902

0,344 1,071 2,404 0,990 1,057 0,976

Average: 1,007

COMPLETE STRUCTURE

CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg

1 2 3 4 5 1 2 3 4 5

0,387 1,143 1,803 0,889 1,004 0,902

0,271 1,115 1,858 0,851 0,976 0,984

0,348 1,143 1,776 0,928 0,976 0,984

0,387 1,143 1,858 0,812 1,004 0,984

0,425 1,115 1,749 0,889 1,032 0,874

0,309 1,032 1,913 0,851 1,004 0,956

0,271 0,976 1,776 1,044 1,087 0,874

0,348 1,143 1,803 0,967 0,976 0,874

0,425 1,171 1,831 0,967 1,004 0,902

0,309 1,115 1,776 0,928 0,948 0,874

0,348 1,110 1,814 0,913 1,001 0,921

Average: 0,945

STRUCTURAL
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FLOOR 6

SECTION 48x300 mm

SPAN (THEORY) 4,7 m

SPAN (REAL) 4,72 m

JOIST SPACING 0,6 m

CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg

1 2 3 4 5 1 2 3 4 5

0,192 0,925 1,460 0,750 0,682 0,757

0,152 0,898 1,676 0,710 0,710 0,784

0,192 0,898 1,703 0,750 0,791 0,838

0,192 0,789 1,649 0,868 0,819 0,811

0,113 0,789 1,676 0,789 0,764 0,703

0,192 0,843 1,622 0,750 0,764 0,811

0,113 0,734 1,649 0,868 0,791 0,784

0,152 0,789 1,568 0,789 0,710 0,784

0,152 0,816 1,649 0,710 0,737 0,730

0,192 0,816 1,757 0,828 0,791 0,730

0,164 0,830 1,641 0,781 0,756 0,773

Average: 0,770

COMPLETE STRUCTURE

CONCENTRATED LOAD - 200 kg LOAD ON EVERY JOIST - 43.65 kg

1 2 3 4 5 1 2 3 4 5

0,118 0,764 1,379 0,828 0,901 0,784

0,197 0,846 1,460 0,868 0,791 0,838

0,197 0,819 1,460 0,710 0,791 0,838

0,197 0,764 1,487 0,828 0,873 0,811

0,197 0,791 1,487 0,789 0,873 0,703

0,158 0,737 1,541 0,868 0,846 0,784

0,197 0,737 1,541 0,868 0,901 0,730

0,158 0,764 1,352 0,710 0,846 0,784

0,158 0,737 1,541 0,828 0,791 0,757

0,118 0,846 1,460 0,789 0,791 0,703

0,170 0,781 1,471 0,809 0,840 0,773

Average: 0,807

STRUCTURAL
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Appendix B – Beam test data 

 

  

Beam test file Cycle F1 F2 w1_L w2_L Emodul_L Cor_L w1_G w2_G Emodul_G Cor_G

plank1_emodul.txt 1 3541,374 10973,990 5,536 6,071 15571,45 0,9999 3,690 11,705 13854,01 0,9999

plank1_emodul.txt 2 3525,567 7121,873 5,803 6,053 16123,44 0,9993 4,030 7,782 14358,91 0,9998

plank1_emodul.txt 3 3526,783 7282,340 5,791 6,052 16127,79 0,9996 4,089 7,989 14431,39 0,9999

plank1_nr2_emodul.txt 1 3542,912 10991,729 5,423 5,956 15663,94 0,9999 3,769 11,715 14017,20 1,0000

plank1_nr2_emodul.txt 2 3527,158 7337,880 5,677 5,945 15937,25 0,9998 3,992 7,967 14361,65 0,9999

plank1_nr2_emodul.txt 3 3539,783 7299,346 5,678 5,943 15901,30 0,9998 4,053 7,975 14360,20 0,9999

plank10_emodul.txt 1 3545,737 10991,890 8,619 9,267 12879,47 0,9999 2,176 10,928 12625,59 0,9999

plank10_emodul.txt 2 3525,585 7253,927 8,932 9,253 13018,22 0,9997 2,398 6,728 12789,21 0,9999

plank10_emodul.txt 3 3528,857 7326,668 8,925 9,248 13178,68 0,9998 2,454 6,841 12863,46 0,9999

plank2_emodul.txt 1 3539,604 10927,552 6,143 6,680 15420,22 0,9998 2,553 9,932 15055,35 1,0000

plank2_emodul.txt 2 3547,186 7631,725 6,372 6,665 15624,87 0,9993 2,757 6,754 15394,60 0,9999

plank2_emodul.txt 3 3534,079 7292,748 6,394 6,667 15431,65 0,9991 2,798 6,495 15308,88 0,9999

plank3_emodul.txt 1 3520,542 10997,826 6,404 6,954 15237,80 0,9999 3,289 11,100 14338,97 0,9999

plank3_emodul.txt 2 3524,655 7403,004 6,660 6,912 17249,93 0,9970 3,562 7,505 14767,57 0,9999

plank3_emodul.txt 3 3523,529 7349,378 6,659 6,913 16882,44 0,9973 3,508 7,483 14423,50 0,9999

plank4_emodul.txt 1 3522,474 10992,462 5,196 5,756 14951,09 0,9999 1,813 9,588 14395,74 0,9999

plank4_emodul.txt 2 3528,303 7378,632 5,457 5,726 16043,04 0,9993 2,073 5,980 14798,44 0,9998

plank4_emodul.txt 3 3549,600 7398,587 5,444 5,720 15630,70 0,9994 2,110 6,086 14514,21 0,9998

plank5_emodul.txt 1 3524,280 10952,210 8,923 9,448 15858,04 0,9998 2,154 9,882 14402,26 0,9999

plank5_emodul.txt 2 3545,719 7297,808 9,162 9,428 15810,02 0,9993 2,409 6,258 14624,39 0,9999

plank5_emodul.txt 3 3543,717 7373,697 9,155 9,425 15899,15 0,9995 2,460 6,372 14693,03 0,9999

plank6_emodul.txt 1 3522,903 10992,050 6,026 6,717 12115,30 0,9999 2,481 11,033 12986,35 1,0000

plank6_emodul.txt 2 3533,471 7282,913 6,358 6,698 12360,29 0,9998 2,738 7,023 13012,53 0,9999

plank6_emodul.txt 3 3540,409 7353,222 6,347 6,696 12245,07 0,9998 2,762 7,140 12946,71 0,9999

plank7_emodul.txt 1 3550,959 10981,769 7,213 7,738 15864,19 0,9999 2,123 9,675 14773,27 1,0000

plank7_emodul.txt 2 3523,278 7252,783 7,466 7,722 16328,72 0,9992 2,359 6,067 15130,46 0,9999

plank7_emodul.txt 3 3522,027 7282,555 7,462 7,719 16400,49 0,9992 2,360 6,153 14895,51 0,9998

plank8_emodul.txt 1 3533,757 10986,257 5,291 5,849 14969,55 0,9999 1,500 9,340 14230,18 1,0000

plank8_emodul.txt 2 3520,256 7297,879 5,559 5,838 15175,93 0,9997 1,724 5,636 14475,08 0,9999

plank8_emodul.txt 3 3526,157 7328,313 5,555 5,840 14952,92 0,9998 1,736 5,711 14326,65 0,9999

plank9_emodul.txt 1 3537,708 10967,964 6,000 6,635 13115,08 0,9998 2,278 10,528 13423,62 0,9999

plank9_emodul.txt 2 3541,803 7257,056 6,304 6,613 13476,31 0,9996 2,463 6,570 13487,61 0,9999

plank9_emodul.txt 3 3524,923 7234,794 6,302 6,609 13544,45 0,9995 2,477 6,595 13427,71 0,9999
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