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jn.00210.2018.—Neural circuits typically consist of many different
types of neurons, and one faces a challenge in disentangling their
individual contributions in measured neural activity. Classification of
cells into inhibitory and excitatory neurons and localization of neu-
rons on the basis of extracellular recordings are frequently employed
procedures. Current approaches, however, need a lot of human inter-
vention, which makes them slow, biased, and unreliable. In light of
recent advances in deep learning techniques and exploiting the avail-
ability of neuron models with quasi-realistic three-dimensional mor-
phology and physiological properties, we present a framework for
automatized and objective classification and localization of cells
based on the spatiotemporal profiles of the extracellular action poten-
tials recorded by multielectrode arrays. We train convolutional neural
networks on simulated signals from a large set of cell models and
show that our framework can predict the position of neurons with high
accuracy, more precisely than current state-of-the-art methods. Our
method is also able to classify whether a neuron is excitatory or
inhibitory with very high accuracy, substantially improving on com-
monly used clustering techniques. Furthermore, our new method
seems to have the potential to separate certain subtypes of excitatory
and inhibitory neurons. The possibility of automatically localizing and
classifying all neurons recorded with large high-density extracellular
electrodes contributes to a more accurate and more reliable mapping
of neural circuits.

NEW & NOTEWORTHY We propose a novel approach to localize
and classify neurons from their extracellularly recorded action poten-
tials with a combination of biophysically detailed neuron models and
deep learning techniques. Applied to simulated data, this new com-
bination of forward modeling and machine learning yields higher
performance compared with state-of-the-art localization and classifi-
cation methods.
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INTRODUCTION

The neural circuits of the brain involve the interplay of many
different types of neurons. On the most superficial level,
neurons are classified by their effect on the neurons they
project to as either excitatory or inhibitory. Extracellular re-
cordings enable us to measure the activity of neurons as
electrical potential deflections mainly due to ionic transmem-
brane currents. In recent years, many groups have been devel-
oping high-density multielectrode arrays (MEAs) for in vitro
and in vivo applications, which allow measurements of neuro-
nal activity with high spatiotemporal resolution (Berdondini et
al. 2014; Miiller et al. 2015; Neto et al. 2016; Schroder et al.
2015; Welkenhuysen et al. 2016). These probes provide some-
thing close to a functional electrical imaging (Vassanelli 2014)
of the neural activity, and this high information density can
potentially be exploited to obtain a better understanding of the
neural circuits under study. Specifically, it might be possible to
extract information that could be used to localize the individual
neurons and to classify them into their respective cell types.
The latest developments in manufacturing of high-density
neural probes call for novel analysis methods to exploit the
richness and detail in the recordings.

Neural localization from extracellular action potentials
(EAPs) recorded on a MEA is an ill-posed problem, since
solutions might not be unique for complex neural morpholo-
gies. Current approaches for localization assume simple neu-
ronal models to facilitate the inverse problem and make the
solution unique. Examples of models used in previous studies
are monopole current-source models (Blanche et al. 2005;
Chelaru and Jog 2005; Kubo et al. 2008), dipole current-source
models (Blanche et al. 2005; Mechler et al. 2011; Mechler and
Victor 2012), as well as line-source models (Somogyvdri et al.
2012). More recently, Delgado Ruz and Schultz (2014) used a
modified ball-and-stick model (Pettersen and Einevoll 2008) to
predict somatic locations. In these approaches, the soma posi-
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tion is estimated by minimizing the error between the electrical
potential on the MEA sites predicted by the chosen model and
the recorded potential. However, it is experimentally challeng-
ing to measure the correct position of the soma (Neto et al.
2016); therefore, detailed computational neuronal models are
usually used and treated as simulated ground truth to evaluate
the accuracy of the localization methods (Delgado Ruz and
Schultz 2014; Somogyvari et al. 2005, 2012). The main limi-
tations regarding neuron localization are that the models cho-
sen to solve the inverse problem are often too simple to grasp
complex spike waveforms (e.g., monopolar or bipolar current-
source models) or are tuned to specific cell types (ball-and-
stick model for pyramidal morphology).

Regarding classification of neurons, unsupervised clustering
techniques are commonly applied to differentiate EAP shapes
(Barthé et al. 2004; McCormick et al. 1985; Peyrache et al.
2012): narrow waveforms are considered to be fast-spiking
inhibitory neurons and broad waveforms excitatory neurons.
Also in this case, it is experimentally challenging, especially in
vivo, to validate the classification methods. One approach is to
measure a multitude of neurons and find putative monosynaptic
connections based on the shape of spike train cross-correlo-
grams. However, the rate of recorded monosynaptic connec-
tions is usually very low (~0.2%; Barth¢ et al. 2004; Peyrache
et al. 2012), resulting in a small number of observations useful
for validation. In neural classification, the complexity of spike
shapes across the multiple recording sites is usually com-
pressed by extracting spike widths (such as peak-to-peak and
full-width half-maximum widths; Barthé et al. 2004; Peyrache
et al. 2012) only from the electrode with the highest recorded
amplitude.

In this study, we apply a powerful machine learning tech-
nique, namely, convolutional neural networks (CNNss), to clas-
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sify excitatory and inhibitory neurons and to localize their
somata from simulated EAPs. This approach—being a super-
vised learning algorithm—demands for a large amount of
labeled data, in this case EAPs in combination with soma
position and cell type of the neuron evoking the EAPs. The
proposed method is schematically depicted in Fig. 1. First,
compartmental cell simulations are performed (Fig. 1A) that
yield EAP data sets with known simulated ground truth (for-
ward modeling) (Fig. 1B). Relying on the simulations, CNNs
are trained (Fig. 1C) on these data sets to predict position and
cell type (Fig. 1D) of the neuron generating the simulated EAP.
If the method is applied to experimental data (Fig. 1E), a
spike-triggered average EAP (average waveform) serves as
input to a CNN previously trained on simulated data to predict
soma position and cell type. In addition to binary classification,
we attempt to distinguish 11 different morphological types
(m-type classification). The performance of the CNNs depend-
ing on different characteristics extracted from the EAP, differ-
ent MEA designs, and different CNN configurations is ex-
plored. Finally, we evaluate the effect of varying neuron
alignments with respect to the recording MEA. To put our
approach into context, we compare its performance with es-
tablished methods of cell localization and classification.
CNNs perform supervised machine learning and require a
large data set to be trained. It would be experimentally chal-
lenging, if not unfeasible, to gather the required number of
recordings of exact known position (used for localization) and
morphology (used for classification) information. Therefore,
we rely on detailed compartmental cell models to provide
detailed simulated recordings and simulated ground-truth in-
formation. Forward biophysical modeling of extracellular po-
tentials has been developed and refined over the last 30 years
(Gold et al. 2006; Holt and Koch 1999; Lindén et al. 2014,
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Fig. 1. Graphical representation of the presented method. Red arrows show our approach for training (dashed lines indicate error backpropagation) and validating
the convolutional neural network (CNN) on simulated data. Green arrow shows how the method is applied within an experimental pipeline. Starting with the
red path, biophysical simulations (A) are used to generate extracellular action potential (EAP) templates (B), from which features (e.g., amplitude and width; see
Classification and Localization Features) are extracted and fed to a CNN (C) to localize and classify excitatory (blue) and inhibitory (red) neurons (D). When
applied to experimental data (green arrow), recordings are first spike sorted (E), then features are extracted from spike-triggered average waveforms (B), and
finally the CNN trained on simulated data (C) is used to localize and classify spike-sorted neurons (D).
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Pettersen and Einevoll 2008; Rall and Shepherd 1968), and it
is a still growing field. Therefore, we expect that computer
simulations will become closer to real recordings as the detail
and fidelity of neural models increase.

The aim of this study was to investigate the capability and
feasibility of the proposed deep learning approach and to
explore the large parameter space to guide future developments
and experiments. At this stage, the method is a proof of
concept, as we used some simplifications along the way.
However, valuable information can be obtained and used in the
future. Simulation software scripts are available at https://
github.com/CINPLA/NeuroCNN.

MATERIALS AND METHODS
Cell Models

We first generated simulated spike recordings from various neuro-
nal cell types (Fig. 1A). The neuronal models have been adopted from
the Neocortical Microcircuit Collaboration (NMC) Portal (Markram
et al. 2015; Ramaswamy et al. 2015, https://bbp.epfl.ch/nmc-portal), a
database containing cell models from juvenile rat somatosensory
cortex. We focused on neurons in layer (L)5, but the methods
described can be applied to a larger variety of neuronal models. The
cell models were used unmodified and are based on experimentally
reconstructed morphologies, with up to 13 different types of active ion
channels, depending on the cell type. The dynamics of these active ion
channels have been fitted to reproduce specific features of somatic
current-injection experiments, such as the amplitude and width of the
evoked action potentials, the depth and timing of the following
afterhyperpolarization, the mean interspike interval, spiking adapta-
tions, and the amplitude of the backpropagating action potential at
different positions along the apical dendrite of pyramidal cells (PC)
(Markram et al. 2015). Importantly, this means that the source of the
cell type-specific variability that we observe in, e.g., the spike widths
is grounded in experimental data. For a more detailed description of
the cell models the reader is referred to Markram et al. (2015). Note
also that each of the cell models used can be explored interactively
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In principle, the data set contains 13 types of morphologies (m-
types) in LS, in accordance with the NMC Portal. However, because
of the limited data variety in the case of bipolar and neuroglial cells
(BP and NGC), we excluded them from the analyses unless elsewhere
specified. APPENDIX A describes the data set in detail and explains how
we manipulated the original data set to extract unbiased sub-data sets
for training and validating the results. A single-cell morphology of
each m-type is displayed in Fig. 2, divided into inhibitory and
excitatory neurons. Axons are not depicted because only their initial
tract is included in the simulations.

Simulated Recordings

Extracellular action potential computation. Each of the multicom-
partment neuronal models was simulated separately, and extracellular
potentials were calculated in two steps. First, transmembrane currents
were computed by solving the cable equation (Holt and Koch 1999)
with LFPy (Lindén et al. 2014) running on NEURON 7.4 (Carnevale
and Hines 2006; Hines et al. 2009). A constant depolarizing current
was applied to the soma to get the neuron firing at least 10 times (and
not more than 30 times) in a simulation period of 1.2 s. Multiple
spikes were simulated to account for spike-to-spike variations due to
electrophysiological properties (e-types). All transmembrane currents
for each compartment were stored within a time window ¢ = — 2 ms
and t = 5 ms, where ¢ = 0 is the time of the intracellular membrane
voltage peak considered as spike time. Simulations were run with a
time resolution of df = 27> ms, i.e., with a sampling frequency of 32
kHz, so that a single spike window of 7-ms duration (2 ms + 5 ms)
consists of 224 samples.

Second, transmembrane currents were used within LFPy to calcu-
late the extracellular potential at the recording site. Each transmem-
brane current, including the somatic one, was distributed over a line
source with the length of its corresponding neural segment. With
quasi-static approximation (Nunez and Srinivasan 2006) and assum-
ing a homogeneous and isotropic neural tissue with conductivity
o = 0.3 S/m (Goto et al. 2010), the contribution of each compartment
i at position r; with transmembrane current /?) to the electric potential
on an electrode at position r; reads (Holt and Koch 1999; Lindén et al.
2014; Pettersen and Einevoll 2008)
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Fig. 2. One representative cell for each different morphology type in layer 5 [data from Neocortical Microcircuit Collaboration Portal (Ramaswamy et al. 2015)].
Top: 9 inhibitory cells (red). Bottom: 4 excitatory cells (blue). Dendrites are colored in lighter shades, and the soma is indicated with a darker circle. The same
red/blue convention is used throughout article. For all cells C stands for cell, and for excitatory cells the P represents pyramidal.
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The simulated EAP was obtained by summing up the contribu-
tions of all compartments. For each recording site, the electric
potential was computed at a single point corresponding to the
center of the recording electrode. These EAPs are associated with
the templates in Fig. 1B.

Only spikes generating a notable waveform with a peak-to-peak
amplitude exceeding 30 wV on at least one of the electrodes were
included in the data set. The detection threshold of 30 wV was chosen
to mimic experimental settings, where noise in the recordings due to
equipment electronics and background neural signals does not allow
detection of low-amplitude action potentials.

The coordinate system was fixed in reference to the MEA plane.
Each recording site (different MEA designs are explained in MEA
designs) lay within the yz-plane, and neuron somata were located
within the semispace of the positive x-axis (the x-coordinate is thus
the distance from the MEA). For each neuron, 1,000 EAP recordings
above the detection threshold were simulated by randomly choosing
one of the generated spikes and by placing the soma at random
locations with distances x between 10 wm and 80 wm. The y and z
boundaries were different for each MEA, and a neuron could exceed
the y and/or z boundary of the MEA by a maximum of 30 wm. For the
EAP, we considered the contributions of all dendritic compartments,
including those crossing the MEA. This was done to force the sum of
transmembrane currents to be zero (Pettersen and Einevoll 2008). In
other words, we did not clip neurites entering the probe, but we made
sure that their position did not coincide with a recording site within
LFPy.

MEA designs. We investigated the performance of seven different
MEA probes. Five of these were based on the prototype described in
Schroder et al. (2015), in which the recording sites are arranged in a
16 X 16 matrix on a penetrating shank. Instead of considering a single
interelectrode distance, we investigated five different pitches (i.e.,
distance between the centers of adjacent electrodes), namely, 10, 15,
20, 25, and 30 um. The probe models were built in a way that they
roughly covered the same area on the shank.

Hence, we ended up with the following list of squared probes:
SqMEA-15-10: squared MEA with 15 X 15 electrodes and 10-um
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pitch; SQMEA-10-15: squared MEA with 10 X 10 electrodes and
15-pum pitch; SQMEA-7-20: squared MEA with 7 X 7 electrodes
and 20-pum pitch; SQMEA-6-25: squared MEA with 6 X 6 elec-
trodes and 25-um pitch; and SQMEA-5-30: squared MEA with
5 X 5 electrodes and 30-um pitch.

Moreover, we simulated recordings on the Poly3-25s probe (Neu-
ronexus Technologies), which has 32 electrodes in three columns with
a hexagonal arrangement, a y-pitch of 18 wm, and a z-pitch of 22 um.
Another probe becoming popular is the NeuroPixels probe (Jun et al.
2017), with recording sites arranged in a checkerboard pattern with a
y-pitch of 32 wm and a z-pitch of 20 wm. Although the probe has 384
recording channels, for convenience we decided to trim it to 128
channels. Finally, we constructed a model of the NeuroSeeker probe
(http://www.neuroseeker.eu; used in Neto et al. 2016), a MEA with
128 recording sites arranged in a 4 X 32 configuration and a regular
interelectrode distance of 22.5 wm. Figure 3 shows all the probes in
the yz-plane.

The CNNs we used required a rectangular shape of the input data.
The two dimensions of the data array correspond to the number of
electrode sites N, and N_ in y- and z-directions, respectively. There-
fore, we cut the Neuronexus-32 MEA probe to a Neuronexus-30,
which is shown in the fourth position from the left in Fig. 3.

Neuron-MEA alignment. We investigated different neuron-MEA
alignments (or rotations) of neurons. Some neurons, such as pyrami-
dal cells (PC) or bipolar cells (BP), have morphologies that follow a
specific orientation (see Fig. 2) that might affect the classification and
localization performance. For this reason, we generated three rota-
tional data sets:

Norot: The orientation of the cells (e.g., the apical dendrite of PCs)

was along the z-axis (same orientation as in Delgado Ruz and

Schultz 2014 and Somogyviri et al. 2012).

Physrot: Neurons with a preferential orientation were randomly rotated

such that after rotation their axis from white matter toward the pia

pointed into a cone around the z-direction with an opening angle of 15°

(the puncture point on the unit sphere is uniformly distributed in this

spherical cap). Neurons without a preferential orientation were rotated

randomly in the three-dimensional (3D) space. We considered all
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Fig. 3. Multielectrode array models used in the study. Right: plots show an excitatory cell [thick-tufted pyramidal cell (PC) with late bifurcating apical tuft
(TTPC1)] and an inhibitory cell [neuroglial cell (NGC)] to compare probe and neuron sizes. PCs are on average much larger than inhibitory cells, and only a
portion of the neuron is located directly in front of the probe (the apical dendrite is not fully shown, and it can be seen in Fig. 2).
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Fig. 4. Neuron-multielectrode array (MEA) align-
ments: in each panel we show a sample orientation
of a pyramidal cell [thick-tufted pyramidal cell with
late bifurcating apical tuft (TTPC1)] placed at a
fixed position of (50 um, 0, 0). The MEA is the
SqMEA-10-15, and the colors of each recording site
(displayed as an image at top left of each plot) show
the qualitative sodium peak image (Na image, ex-
plained in Classification and Localization Features).
A: Norot: the pyramidal cell main axis is aligned to the
z-direction. B: Physrot: the TTPC1 is rotated around
the z-axis, and the apical dendrite is tilted at maximum
15° inside a cone around the z-axis. C: 3drot: the
neuron can be rotated along all axes and might end up
with its apical dendrite entering the MEA probe, as
depicted in the plot. While the Na image is similar for -
A and B, it can become quite different in C, when the

neuron is 3D-rotated. L -

=
Z
2

W
g W

neurons apart from nest basket cells (NBC), small basket cells (SBC),

and NGC to have a preferential orientation (DeFelipe et al. 2006;

Markram et al. 2004; Overstreet-Wadiche and McBain 2015; Wang et

al. 2002, 2004; Woodruff and Yuste 2008). NBC, SBC, and NGC were

assumed to have no preferential axis.

3drot: Neurons were rotated randomly around all axes.

The soma positions corresponded to the intersection point of
rotation axes and were shifted randomly inside the observation vol-
ume in all cases. Figure 4 displays a sample orientation with respect
to the MEA of a PC [thick-tufted PC with late bifurcating apical tuft
(TTPC1)] in each of the three data sets, Norot (Fig. 4A), Physrot (Fig.
4B), and 3drot (Fig. 4C).

Classification and Localization Features

We extracted features from the EAPs as input variables to a CNN
for training. Since classification and localization of neurons from
extracellular recordings are quite different tasks, we used different
sets of features from the simulated spikes. The pipeline for extracting
feature images is described in Fig. 5. First, neurons with known cell
type and position were simulated and the spike traces on the MEA
probe were obtained. Then, for each spike, a set of features was
computed and these features were rearranged in a 2D shape according
to the MEA arrangement, i.e., the feature image. In the following
paragraphs N, N,, and N_ are the total number of electrodes, the
number of electrodes in y-direction, and the number of electrodes in
z-direction, respectively.

Localization features. The goal of localization is to estimate the
soma position with respect to the probe. Therefore, we considered
only the EAP negative peak and the positive peak time points, during
which negative and positive transmembrane currents are larger in
proximity of the soma (Delgado Ruz and Schultz 2014; Gold et al.
2007; Somogyvdri et al. 2005, 2012). For simplicity, we refer to the
EAP negative peak as Na peak because, close to the soma, it is mainly
attributed to the sodium currents flowing into the soma. The positive
peak is referred to as Rep because it is associated with the cell
repolarization phase. The peak values were computed with respect to
a reference of 0 uV, i.e., the baseline, as follows:

na. For each spike recording on N electrodes, the spike with the
largest negative peak amplitude was identified. At the time instant
when the minimum peak occurred (z,,,;,,) the recorded potential on all
N electrodes was used to build the Na image (the amplitude values are
sampled at the same time instant 7).

rep. The time instant of the repolarization peak (z,,,,) was extracted
from the spike trace with the largest negative trough (same electrode
as Na) and a Rep image was built by probing all N electrodes at 7,,,,,,.

NEURON LOCALIZATION AND CLASSIFICATION WITH DEEP LEARNING
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Overall, the localization-specific (N,, N_)-dimensional sets of fea-
tures are Na, Rep, and NaRep, where the last is a stacked version of
both features having dimension (N,,N_, 2).

Classification features. From each spike, we extracted features that
are commonly used for cell classification (Barthé et al. 2004; Peyra-
che et al. 2012): peak-to-peak width (W), full-width half-maximum
(F), and peak-to-peak amplitude (A). The peak-to-peak amplitude A,
despite not being one of the commonly used features for classifying
neurons from extracellular recordings, was selected as a feature in
combination with F and W because spike widths increase with
increasing recording distance (Anastassiou et al. 2015; Hagen et al.
2015; Pettersen and Einevoll 2008) and therefore with decreasing
amplitude.

The following is a list including a detailed description of the
features:

A B .
T ——
~— Y
B e A Wi A S
——
\
\
_ \

Na image

Fig. 5. Feature extraction pipeline: first, neuronal models (a pyramidal cell
here) are simulated (A) and extracellular action potentials (EAPs; B) are
computed on the multielectrode array (MEA) probe (SQMEA-10-15 here).
Features (D) are then extracted from EAPs. Localization features are sodium
negative peak (Na) and repolarization (positive) peak (Rep), and classification
features are peak-to-peak amplitude (A), spike width (W), and full-width
half-maximum width (F). The feature images (C) are finally used as input for
convolutional neural networks.
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A: For each recording site, the peak-to-peak amplitude was ex-
tracted as the absolute difference between the negative peak and the
following positive repolarization peak. If the amplitude value of a
recording site was less than a detection threshold of 5 wV, then the
amplitude for that electrode was set to zero.
W: For each electrode site, the width was computed as the time
difference between the negative peak and the following positive
repolarization peak. If the amplitude of the corresponding elec-
trode was below the detection threshold (i.e., when the ampli-
tude feature was set to 0), the width was set to the duration of the
spike window, which was 7 ms.
F: For each electrode site, the full-width half-maximum was computed
as the width at 50% of the negative maximum amplitude (refer to Fig.
5 for a graphical visualization and further explanation). In this case, the
reference voltage was the initial voltage on the selected electrode site
at beginning of the spike window. If the amplitude of the correspond-
ing electrode was below the detection threshold (when the amplitude
feature was set to 0), F' was set to the duration of the spike window,
which was 7 ms.

For classification, we considered the feature combinations AW (Ny,
N_2), FW(N,, N, 2),and AFW (N, N_, 3), where the shapes of input
arrays to the CNN are indicated in parentheses.

Waveform. We also investigated the performance using the entire
spike waveform as input to the CNNs for localization and classifica-
tion. While localization and classification features focused on ampli-
tudes at specific time points (e.g., Na, Rep) or on extracting significant
spike shape parameters (A, F, W), here we took into account the
evolution of the action potential in time. As the additional third
dimension (2D + time) increased the training time significantly, we
downsampled the initial spike waveforms from 224 to 14 samples,
i.e., with a downsampling factor of 16. We denoted this feature set,
with a shape of (N,, N, 14), as Waveform.

Convolutional Neural Network

CNNs are biologically inspired artificial neural networks, and they
differ from standard artificial neural networks mainly by the use of
convolutional layers. The biological inspiration originates from the
information processing in the visual system (Krizhevsky et al. 2012;
Zeiler and Fergus 2014). For our implementation, we used the open-
source software TensorFlow to train and evaluate the network (see
Abadi et al. 2016; software available from https://www.tensor-
flow.org). All computations were done on the HPC clusters NEMO in
Freiburg and ABEL in Oslo.

Configuration. We investigated the performance of CNNs of dif-
ferent sizes, all having the same underlying configurations (except for
Waveform input features, whose CNN morphology is explained at the
end of this section). Five CNN sizes (XS, S, M, L, XL) were used, and
they differ in the size k; of convolutional kernels (the index i € {1,2}
specifies the convolutional layer), convolutional layer depths d,, and
the number of nodes in the fully connected layer np- The values used
for different sizes are listed in Table B1 in APPENDIX B.

Feature images of dimension (N,, N,) were input to a d,-deep
convolutional layer with rectified-linear units that filter the input
image with (k,, k,) kernels and a stride of 1. Then max-pooling was
applied, and the image was shrunk to a (n,, n)) = (N/2, N/2)
footprint. Another d,-deep convolutional layer with rectified-linear
units applied (k,, k,) kernels, and a second max-pooling operation
reduced the output image features to a (m,, m_) = (n,/2, n /2) size. The
(m,, m_) features were input to a fully connected layer with npc nodes.
The fully connected nodes were connected to the nodes in the output
layer (see Output layer and optimization).

The Waveform feature set differed from the classification- and
localization-specific sets as it included time as a dimension. Although
some feature images for localization and classification were concate-
nated and thus had a 3D shape [for example, NaRep had a shape of
(N,, N_,2) and AFW s (N,, N, 3)-dimensional], the optimized kernels
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were the same for two or three dimensions. For the Waveform feature
set, a 3D CNN was used, i.e., convolutional kernels were 3D with a
shape of (k,, k,, k,) and (k,, k,, k,). Max-pooling was also applied in
all three dimensions. For the Waveform feature set, we used a CNN
with k, = 4.

Output layer and optimization. The output layer of the network was
different depending on whether localization or classification was
performed. In case of localization, three output nodes linearly
summed the fully connected node inputs and biases to output the x-,
y-, and z-coordinates. Optimization minimized the mean squared error
between the predicted x-, y-, and z-coordinates and the true soma
positions of the training spikes. For classification, there were instead
two output nodes in case of excitatory/inhibitory classification. For the
m-type classification, we used 11 output nodes, 1 for each cell type
under consideration (see Cell Models for a list of m-types). During
training, softmax cross entropy was minimized (Goodfellow et al.
2016).

For both localization and classification we used an Adam optimizer
(learning rate = 0.0005) (see Kingma and Ba 2014), and we ran 2,000
training epochs. At each iteration, 10% of the training observations
were randomly sampled and used to update network weights with
backpropagation. To limit overfitting, we used dropout on the fully
connected layer (Srivastava et al. 2014) with a dropout rate of 0.3
(during training 30% randomly chosen fully connected nodes were
dropped and not considered for updating the network weights).

Validation strategy. To estimate the accuracy of the CNNs, we
divided the input data into a training set, used to estimate the CNN
parameters, and a validation set, upon which the trained CNN'’s
accuracy was tested. Before the training-validation set division, we
preprocessed the data set so that morphologies in the training and
validation sets were unique (APPENDIX A). Then, we balanced the
occurrence of observations of the same cell type (m-type) by random
undersampling. For excitatory/inhibitory classification, we further
subsampled the inhibitory neuron observations to match the excitatory
ones (in the data set, there are 7 inhibitory cell types—not counting
BP and NGC—and 4 excitatory types). The class balancing was
performed for training and validation sets separately. For localization
(and m-type classification), the training and validation data sets
consisted of 44,000 and 11,000 instances, respectively. For classifi-
cation, we used 32,000 observations for training and 8,000 for
validation.

Comparison with Other Models

Localization. In previous work on neural localization, the underly-
ing idea has been to solve the inverse problem by choosing a
generative model and minimizing the error between the true extracel-
lular potential and the one predicted by the chosen model. The soma
position has been among the model parameters that have been opti-
mized. Several models were used in previous studies: monopole and
dipole current-source models (Blanche et al. 2005), line-source mod-
els (Somogyviri et al. 2012), and ball-and-stick models (Delgado Ruz
and Schultz 2014). We compared our localization approach to inverse
problem solutions solved with the EAP negative peak (i.e., Na image)
with the following models (o denotes the extracellular conductivity):

MONOPOLAR CURRENT SOURCE. A negative monopolar current-
source I, placed at position r, evokes a potential ¢(r) at position r
according to

I

() @)

4aroflr —r|

The somatic current and soma position are the only parameters to
be optimized. The predicted soma position is r.

BIPOLAR CURRENT SOURCE. Placing a negative current- source / at
position r,,., and its positive counterpart (absolute value of /) atr
the potential at position r reads
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In this case, the estimated soma position corresponds to the nega-
tive current-source location, which is r,,.,. This model is equivalent to
the two-monopole model in Pettersen and Einevoll (2008).

BALL AND STICK. The ball-and-stick model combines a somatic
point-like constant current-source /; at position r, with a dendritic
stick of length d,.,, pointing in direction d. We used a modified version
of the ball-and-stick model described in Pettersen and Einevoll
(2008), since we do not assume net currents to be zero (Delgado Ruz
and Schultz 2014). The current along the stick /(x) is assumed to
decay exponentially, as confirmed by experimental data (Foust et al.
2010; Goldberg and Yuste 2005; Golding et al. 2001; Gulledge and
Stuart 2003; Migliore et al. 1999; Sasaki et al. 2012; Waters et al.
2005). With initial negative value /.4 at r,, the current distribution
along the stick reads

X,
1(x) = Igeng X exp(d—d) )

T

where d.. denotes the decay constant and x4 € [0, d,.,] is the position
along the dendritic segment (discretized in N, = 50 uniformly dis-
tributed points along the stick of length d,.,). The predicted soma
location corresponds to r,. The potential at position r is given by the
summation of the somatic and dendritic contributions:

I,
d)(r) = d)soma(r) + d)dend(r) = 4—
molr —r

P [ ari 5

=1 4mo ) [[r =7l ©)

where each segment is modeled as a line current source (see Eg. I).

Table 1 summarizes the parameters to be estimated for each
described model.

GENETIC OPTIMIZATION. To estimate the model parameters, we
minimized the sum of squared errors at each recording site between
the extracellular potential predicted by the model and the extracted Na
feature image of the true simulated extracellular potential. Optimiza-
tion was performed with a genetic algorithm implemented with the
Distributed Evolutionary Algorithms in Python (DEAP) package
(Fortin et al. 2012). We used the (i + A) evolution strategy, which
selects the next parents from the common set of the current parents (u
individuals) and the offspring (A individuals). More precisely, the
algorithm was implemented with the deap.algorithms.eaMuPlus-
Lambda function. We used w = 100, A = 200, crossover probability
Pox = 0.8, and mutation probability p,,.. = 0.2. Furthermore, tourna-
ment selection (deap.tools.selTournament) and blend crossover (deap.
tools.cxBlend) were used for selecting and mating individuals, respec-
tively. Mutation was performed with a random Gaussian mutation
(deap.tools.mutGaussian). When an individual was selected for mu-
tation with probability p., each of its elements was individually
mutated with an individual probability of p,,, = 0.3. Gaussian means
for all parameters were set to zero, and standard deviations (SDs) were

Table 1. Inverse model parameters
Model Parameters No. of Parameters
Monopolar I, rg,rg 7 4
. S X v %z
BIPOIar . Is’ rposA rpos_‘. rpOSZ’ rneg)" rneg),7 rnegf 7
Ball and stick I, r,, 7, 7y, dyw dyy doy Lyenas iens ds 10

Summary of parameters for the different inverse models involved in the
study. /;, current source; r;, predicted soma position; r,,,, position of positive
[; Teq POsition of negative [; Iye,q, dendritic current; d,,,, dendritic length; &,
decay constant.
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Table 2. Model parameter summary

Parameter Range Gaussian o
L Lyena (—100, 0) nA 1 nA
X positions (10, 80) wm 10 wm
¥,Z positions (—180, 180) wm 10 wm
d,d,d, -1 0.1
dien (1, 500) wm 50 wm
d, (0.1, 500) wm 20 wm

Range for initialization and constraint and standard deviation o for mutation
Gaussian for the different parameters. I, current source; /4.4 dendritic
current; d,,,, dendritic length; d_, decay constant.

different depending on the parameter. The parameter values are
summarized in Table 2, and we constrained the optimization to solutions
within biophysically acceptable boundaries (shown in Table 2).

Classification. Besides applying a CNN, the problem of classifying
neurons according to their EAP can be done by several other methods
(Barth¢ et al. 2004; Delgado Ruz and Schultz 2014; Peyrache et al.
2012). It is a well-established observation that pyramidal excitatory
cells present a broad spike waveform, while inhibitory cells have a
narrow one (Barthé et al. 2004). Therefore, a standard way of
classifying between the two classes is to plot spike width W and
full-width half-maximum F (see Classification and Localization Fea-
tures for feature extraction details) of the EAP with the maximum
amplitude and then cluster the data points in this 2D space (Barthé et
al. 2004; Peyrache et al. 2012). Once F and W were computed for the
electrode with the maximum peak-to-peak amplitude, we applied two
different clustering techniques to the point cloud: k-means and a
mixture of Gaussians (MoG) clustering (Pedregosa et al. 2011). While
k-means clustering iteratively assigns points to K clusters based on
their distances to the cluster means and then recomputes the cluster
means with new assignments until convergence, the MoG estimates K
Gaussians to fit the data and then labels the data points based on the
Gaussian shape. In this case, since the goal is excitatory/inhibitory
classification, we set K = 2.

Statistical Analysis

For localization errors, statistical tests were run on the 11,000
validation observations: since all distributions did not satisfy the
normality assumption, nonparametric tests were run (1-sided Mann-
Whitney U-test; Mann and Whitney 1947). When sample sizes are
large, statistical tests are prone to indicate that there is a significant
difference (effect) between distributions, resulting in low P values. To
characterize whether such difference is relevant, a measure of its
magnitude, or effect size, should be included (Sullivan and Feinn
2012). To quantify the effect size, we used Cohen’s d coefficient
(Cohen 1992), i.e., the difference between population means normal-
ized by the pooled SD. We considered significant differences (low P
values) to be negligible (effect size < 0.2), small (effect size = 0.2),
medium (effect size = 0.5), or large (effect size = 0.8). Test results are
shown in APPENDIX B, divided by group (data set rotation, Table B3; CNN
size, Table B4; feature type, Table BS; probe type, Table B6; and
localization method, Table B7). Each entry of the tables shows the
Cohen’s d coefficient (rounded to 2 decimals) and the significance of the
Mann-Whitney U-test with the alternative hypothesis that column
group < row group.

RESULTS

In the following sections, we show localization and excit-
atory/inhibitory classification results only of m-type cells in-
cluded in the training data set. Therefore, unless otherwise
specified, BP and NGC are excluded from the analysis. The
performance measures were different for localization and clas-
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sification. In case of localization we used the average total
error and for classification the average classification accuracy
(ratio between correctly classified observations and total num-
ber of observations). Moreover, we analyzed the cell-specific
accuracy to get more insight on the classification performance.
The average localization error in the x-, y-, and z-directions can
be interpreted in the following way. Assuming normally dis-
tributed errors, the true soma location is with 32% probability
inside a box centered at the predicted soma position with edge
lengths of twice the average localization error in the corre-
sponding dimension. The probability rises to 87% with a box
edge length of four times the average localization error in the
corresponding dimension.

Dependence on Neuron-MEA Alignment

The first question we investigate is how the neuron-MEA
alignment affects the localization and classification perfor-
mance. Three data sets were built, Norot, Physrot, and 3drot.
To focus on the effects of alignments, we use fixed feature sets
(NaRep for localization, FW for classification; see Classifica-
tion and Localization Features for definitions), MEA probe
(SqMEA-15-10), and CNN size L.

Localization. First, we show the mean and SD of the local-
ization errors along the three axes as well as the total error in
Table B2. Each row displays the performance of a rotational
data set. Average errors and SDs are 7.3 = 5.7 um for Norot,
7.8 = 6.3 wm for Physrot, and 8.9 = 8.2 um for 3drot.
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The Norot data set results in significantly lower errors with
respect to the 3drot data set (effect size = 0.21; Table B3).
Negligible differences are found in the comparison between the
Norot errors and the Physrot errors (effect size = 0.09) and
between the Physrot and 3drot data sets (effect size = 0.13).
Taking into account the finite size of the soma (~10-15 pwm of
diameter), we consider the resulting error values to be a
sufficient performance for most applications. The errors along
the three axes appear to be isotropically distributed, as they
show similar values in all directions (but the observations in
the x-direction are not uniformly distributed—as shown below
in Fig. 9C—since we only considered spikes above 30 wV and
spike amplitude decreases with distance).

In Fig. 6, A-C, we show the errors along x-, y-, and z-axes
with respect to the x-, y-, and z-coordinates for the three
rotational data sets. In these plots, we bin the true x, y, and
Z neuron positions in seven bins and treat them as categor-
ical data (i.e., the positions can have discrete values depend-
ing on the bin they belong to). The data points are the mean
of the error grouped by bin and rotation type and the error
bar is the SD. Figure 6A shows that errors in the distance
estimation (x-direction) tend to increase as the distance of
the neuron increases for all three data sets, similarly to
Delgado Ruz and Schultz (2014). Regarding the y- and
z-dimensions (Fig. 6, B and C, respectively), it is interesting
to note how the errors have a convex shape, meaning that
errors tend to increase when the neuron is at the border of
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Fig. 6. A: x errors with respect to the x-coordinate (distance). B: y errors with respect to the y-coordinate. C: z errors with respect to the z-coordinate. D: x
predictions with respect to the true x-coordinate (distance). E: absolute value of the y predictions with respect to the true y-coordinate. F: absolute value of the
z predictions with respect to the true z-coordinate. All values are in wm. Orange lines indicate the Norot data set, green lines the Physrot data set, and purple
lines the 3drot data set. Gray lines correspond to a perfect prediction. Data are binned in 7 bins along x-, y-, and z -directions: points and error bars display the

average errors and their SDs for each bin and each data set.
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the probe, in which case only partial information about the
spike is available.

When looking at the distribution of the predicted x-, y-, and
z-coordinates with respect to the true coordinates in Fig. 6,
D-F, one can note how the errors observed in Fig. 6, A-C, are
caused by an underestimation of the soma distance in all
dimensions: at large distances (x-direction) from the probe,
neurons are predicted to be closer to the MEA; when they are
close to the y and z borders of the probe, the predicted position
is closer to the center of the MEA.

Next, we consider the variability of localization performance
depending on cell types and alignment. In Fig. 7A the bar plots
show the average total errors and their SDs grouped by neuron
morphology type (11 training morphologies + BP and NGC;
see Fig. 2 for representative cells) for the Norot, Physrot, and
3drot data sets. The range and distribution of distances taken
into consideration are the same as in Fig. 6. Focusing on the
Physrot data set, the minimum error of 4.7 3.8 um is
obtained for the SBC morphology, while the worst perfor-
mance is 15.9 = 9.1 um for slender-tufted PC (STPC) mor-
phology. The difference in prediction performance with respect
to cell type does not seem to be depending on excitatory/
inhibitory morphologies (i.e., pyramidal and nonpyramidal
cells), nor do they look to be clustered depending on morpho-
logical subclasses; for instance, among the different basket
cells (names ending with BC) there is some variability among
large basket cells (LBC), NBC, and SBC, and the same holds
for pyramidal cells [STPC, TTPC1, thick-tufted PC with early
bifurcating apical tuft (TTPC2), and untufted PC (UTPC)]. The
performance of BP and NGC (Fig. 7A), which were not used
for training, is in line with other cell types, with errors of
8822 wm and 9.4 * 5.1 wm, respectively. This result
confirms that the method is capable of dealing with diverse
morphologies, as long as the training set contains a large
representation of cell types.

Classification. The accuracy analysis of excitatory/inhibi-
tory classification is based on the F'W feature set. Table B8 in
APPENDIX B shows the classification accuracies for each cell
morphology plus the average accuracy and the SD for the

Fig. 7. A: localization error grouped by cell type for all
rotational data sets. Bars are the average errors, and error
bars show the SDs in um. Orange bars display the Norot
data set, green bars display the Physrot data set, and purple
bars display the 3drot data set. Ticks on the x-axis show the
cell types: red ticks are inhibitory cells, blue ticks are
excitatory, and yellow ticks are bipolar (BP) and neuroglial
(NGC) cells (not used for training). B: excitatory/inhibitory
classification accuracy in color code grouped by rotation
and cell type. Each element of the matrix is the accuracy of
a specific cell type (red, inhibitory neurons; blue, excitatory
neurons) in the different rotational data sets (rows). For
explicit values see Table B8. C: spike shapes for maximum
peak electrode sites are plotted in the FW-plane. Red dots
are inhibitory neurons, and they lie in the lower left part of
the plot. Blue dots show excitatory cells, in the upper right

o
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different data sets. The cell-specific accuracies are also visu-
alized by color coding in Fig. 7B.

The average classification accuracy is equally high for the
Norot and Physrot data sets (98.1 = 2.4% and 98.0 = 3.9%,
respectively) and lower for the 3drot data set (97.6 = 3.9%).
This is because neurons are rotated with more degrees of
freedom; nevertheless, on average the accuracy remains very
high in all cases. A closer examination of this result reveals
that the main reason for the drop in classification accuracy was
misclassification of the chandelier cells (ChCs). The lowest
value is the ChC accuracy in the 3drot data set (84.1%). In Fig.
7C, we show the spike shapes in the FW-plane of the electrode
site with largest amplitude. Inhibitory neurons mainly lie in the
lower left part (narrow spikes). Excitatory neurons are almost
perfectly classified as excitatory cells, as shown in Table B8
and Fig. 7B. The spike shapes of ChC in the FW-plane mainly
lie at the interface with the excitatory neurons. This might
explain why they are harder to classify correctly with respect to
the other cell types.

Effect of CNN Size

We investigated how localization and classification perfor-
mances vary with network size. The results shown in this
section were obtained with the SQMEA-10-15 probe, NaRep
features for localization, and F'W for classifications. For the
remaining analyses, boxplots and cumulative distribution func-
tions (cdfs) are used to represent the performance of the
localization models. In all boxplots, the box is the interquartile
range (IQR), i.e., the 25th and 75th percentiles, the horizontal
lines inside the box show the medians, and the red diamonds
display the means. The whiskers (horizontal black lines) rep-
resent the highest and lowest data values within 1.5 times the
IQR. Data points outside the whiskers are plotted as black dots
and are regarded as outliers. We obtained the cdfs by sorting
the sample and pairing each data point with its normalized rank
(percentile). Hence, the point where the cdf crosses 0.5 repre-
sents the median of the localization error.
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Localization. Figure 8A shows the localization errors
grouped by CNN size (XS, S, M, L, and XL). Increasing the
size of the network improves the performance significantly
(Table B4), but for sizes L and XL the average localization
error is almost the same [7.8 = 6.3 um for L and 7.3 = 5.8 um
for XL (effect size = 0.09)]. If not stated otherwise, networks
of size L. have been chosen, as they provide a good compro-
mise between performance and time required for training.

Classification. Table B9 in appENDIX B shows the perfor-
mance in classification into excitatory and inhibitory neuron
types. The highest accuracy (98.6 £ 1.1%) is reached with a
network of size M, while all others show a slightly lower
performance. A possible explanation for the lower score of the
XL network is overfitting to the training set because of the
large number of parameters.

Feature Selection

In the previous sections, we have presented results with
fixed feature sets (NaRep for localization and FW for classifi-
cation), eliminating the effects caused by other factors, such as
alignment, cell type and CNN size. The following results were
obtained on SQMEA-10-15 probes using CNNs of size M
(because of the long training time required by 3D CNNs for
Waveform feature).

Localization. In Fig. 8, C and D, we display the boxplots and
cdf of the errors with varying feature sets for localization. In
other studies, either the sodium peak is the only feature used
(Blanche et al. 2005; Delgado Ruz and Schultz 2014; Mechler
et al. 2011; Mechler and Victor 2012; Somogyvari et al. 2005)

B

1.0 1
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or the entire spike time course is modeled (Somogyvari et al.
2012). Here we show that all CNNs relying on peak input show
roughly the same performance: average errors * SDs are
8.8 £ 7.1 wm for Na, 8.8 = 7.9 um for Rep, and 8.8 = 7.7 um
for NaRep. Negligible differences are found when comparing
Na, Rep, and NaRep, with effect sizes close to zero (Table BS).

The Waveform CNN results in a lower average prediction error
of 6.9 £ 6.5 wm, which is significantly better in comparison with
Na (effect size = 0.28), Rep (effect size = 0.26), and NaRep
(effect size = 0.27; Table BS). We speculate that the performance
of the Waveform approach is only slightly increased (by ~2 wm)
for the following reason: when considering the peaks only, trans-
membrane currents are mainly concentrated around the soma
(Delgado Ruz and Schultz 2014; Gold et al. 2007; Somogyvari et
al. 2005, 2012); therefore, the peak features contain almost all
information the CNN needs for soma location.

Classification. Classification performances are listed in Ta-
ble B10 in appeEnDIX B. The AFW feature set, with an accuracy
of 98.6%, performs better than AW and FW, with accuracies of
98.1% and 97.0%, respectively. The Waveform feature set,
which uses a downsampled version of the entire spike, per-
forms almost perfectly on the classification task (accuracy
99.7%). Given these results, the Waveform feature set is better
than the other approaches, at the expense of more computa-
tionally demanding training procedures.

Performance with Different MEA Probes

We built simulated spikes using eight different MEA mod-
els: five of them are square arrays with varying pitch, and the
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Fig. 8. A, C, and E: error boxplots grouped by
convolutional neural network (CNN) size (A),
feature type (C), and probe type (E). Red
diamonds represent means, and black dia-
monds denote outliers. B, D, and F: cumula-
tive distribution function (cdf) grouped by
CNN size (B), feature type (D), and probe
type (F). Gray dashed horizontal line at 0.5
defines the median. Diamonds on each curve
show the means (their x values are the aver-
age error; the y values are the percentile of
their occurrence). The error values are
clipped to 20 wm to zoom in the distributions.
Statistical analyses are shown in Table B4
(for A and B), Table B5 (for C and D), and
Table B6 (for E and F).
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other three are the NeuroSeeker (Neto et al. 2016), NeuroPixels
(Jun et al. 2017) (trimmed to 128 channels), and Neu-
ronexus-32 (clipped to 30 electrodes to make it rectangular)
probes. In the following paragraphs, we present the capabilities
in terms of neuron localization and classification for the dif-
ferent probes. All simulations shown in this section make use
of CNNs of size L, NaRep features for localization, and FW for
classification.

Localization. Figure 8, E and F, show localization errors for
the eight different probes (boxplots and cdf). Although an error
reduction can be observed from square MEA with 30-um pitch
to 10-wm pitch, as expected, even with a relatively low density
(30-um pitch) a CNN can learn localization models with an
average error as low as 8.4 *£ 6.4 um for the SQMEA-5-30. As
a comparison, the average error for the probe with 10-wm pitch
(SqMEA-15-10) is 7.6 = 6.4 um. The errors are in the same
order also for the Neuronexus probe (mean of 8.5 * 7.2 um)
and for the NeuroSeeker probe (mean of 9.3 = 7.7 um). When
evaluating the performance on 128 sites with the arrangement
of the NeuroPixels probe, the average error is 10.8 £ 8.5 wm.
One may note that even though the NeuroSeeker and Neu-
ronexus probes have lower pitch (NeuroSeeker: 22.5 um in y-
and z-axes; Neuronexus: 18 wm in y-axis and 25 um in z-axis)
compared with SQMEA-5-30, their localization error is higher.
The reason for this discrepancy might be in the arrangement of
the electrodes: while the SQMEA-5-30 has an effective width
(considering point electrode contacts) of 120 wm, for the
NeuroSeeker the effective width (considering point electrode
contacts) is 67.5 um and for the Neuronexus it is 36 wm.
Hence on the NeuroSeeker and Neuronexus probes there is less
spatial information in the y-direction, which may explain the
reduced localization accuracy.

In general, most comparisons show negligible differences
(effect size < 0.2), except for the NeuroSeeker and NeuroPix-
els probes. The NeuroSeeker probe performs worse than the
high-density square MEAs (SqMEA-15-10: effect size = 0.25,
SGMEA-10-15: effect size = 0.22), while the NeuroPixels er-
rors show effect sizes above 0.2 in all comparisons (ranging
from 0.43 compared with SQMEA-15-10 to 0.3 compared with
Neuronexus) except for the comparison with the NeuroSeeker
probe (effect size = 0.19). In case of the NeuroPixels probe the
checkerboard arrangement might pose additional difficulties,
resulting in even lower performance.

Classification. Table B11 in apPENDIX B shows accuracies for
classification with different probes. The average accuracies are
very high and almost the same for all probes, from a minimum
of 96.6% (SqQMEA-6-25, SQMEA-15-10) to a maximum of
98.6% (NeuroPixels-128).

Comparison with Other Approaches

In this section, we compare the CNN approach to other
state-of-the-art methods. For localization, we used the mono-
polar, bipolar, and ball-and-stick models described in Compar-
ison with Other Models to solve the inverse problem on our
simulated data sets. Hence the results obtained for other meth-
ods might be different with respect to ones in the literature
because the number of cell models, the utilized probes, and the
neuron-MEA alignments vary. For characterization of excit-
atory and inhibitory neurons, we compared with commonly
used clustering techniques.

NEURON LOCALIZATION AND CLASSIFICATION WITH DEEP LEARNING

Localization. For localization, we use the validation data set
on the SQMEA-10-15 probe. The CNN errors displayed in the
plots are obtained with the NaRep feature set and a network of
size L. In Fig. 9, we show the errors of the simplified models
described in Comparison with Other Models and for the CNN
method.

We found that the CNN performs significantly better than
the inverse approach in all cases, with an average error and SD
of 7.8 = 6.3 wm. The large differences between the CNN and
the other methods’ error distributions are confirmed by the
effect sizes: 0.9 for the monopolar approach, 0.68 for the
bipolar approach, and 0.87 compared with the ball-and-stick
approach (Table B7). Among the models used to solve the
inverse problem, the monopolar has a mean error and SD of
21.7 = 20.9 um, the bipolar model of 15.6 = 15.2 wm, and the
ball-and-stick model of 22.6 = 23.2 um. The better perfor-
mance of the bipolar model with respect to the monopolar
model (and ball-and-stick model) can be due to the fact that it
is the only model capable of predicting negative and positive
potential values on the MEA. Dendritic branches act as current
sources when the soma is depolarized, causing positive deflec-
tions in the extracellular potential (Pettersen and Einevoll
2008).

Studying the probability density function (pdf) of the pre-
dicted coordinates by different models in Fig. 9, C-E, the
monopolar model tends to underestimate the distance (x-coor-
dinate) from the MEA (note sharp peak in the distribution in
Fig. 9C). In the y- and z-axes, instead the predictions are closer
to the center of the MEA when observations lie outside the
boundary of the probe (note the different steepness and shape
of the monopolar pdf with respect to the true pdf in Fig. 9, D
and E, close to —100 wm and 100 pwm). Similarly, the bipolar
model also underestimates distances in the x-direction, but the
underestimation is less severe. In the y- and z-directions it
nicely follows the true distribution. The ball-and-stick model
has distributions very similar to the monopolar model in all
three directions. The CNN approach, on the other hand, is the
closest match to the true distribution in all three dimensions.
Note that the distribution in the x-direction is not as uniform as
in the y- and z-directions (the density decreases with increased
distances) because we discarded spikes with a peak-to-peak
amplitude below 30 wV here.

Classification. For excitatory/inhibitory classification we
compared the performance of our CNN approach to standard
clustering techniques in the FW space (F: full-width half-
maximum, W: width). In Fig. 104, we show the validation data
with the SQMEA-10-15 probe and the excitatory/inhibitory
balanced data sets (8,000 observations). Each point is com-
puted from the recording site with largest amplitude. Although
it is true that inhibitory cells cover the bottom left part of the
cloud (narrower width and full-width half-maximum) and ex-
citatory cells the top right (wider spike shape), we can observe
that there is some overlap between the two groups. When we
apply k-means clustering (Fig. 10B), the algorithm correctly
assigns the bottom left part to inhibitory neurons and the top
right part to excitatory neurons, but the overlap is mainly
assigned to the excitatory class. This yields an accuracy of
99.9% for the excitatory class but only 60.7% for the inhibitory
one, with an average of 80.3%. When it comes to the MoG, the
data are fit to two multivariate Gaussians and labels are
assigned based on the probability of an observation to belong
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Fig. 9. A: error boxplots grouped by model used to solve the inverse problem. Red diamonds are means; black diamonds are outliers. B-A-S, ball-and-stick; CNN,
convolutional neural network. B: cumulative distribution function (cdf) grouped by localization method. Gray dashed horizontal line at 0.5 defines the median.
Diamonds on each curve show the means (their x values are the average error; the y values are the percentile of their occurrence). The error values are clipped
to 50 wm to zoom in the distributions. C—E: probability density functions (pdfs) of predicted values by different models and true values in the x (C)-, y (D)-,

and z (E)-directions. Statistical analysis is shown in Table B7.

to the two distributions. Figure 10C shows the estimated
Gaussians (ellipses) and the labeling of the points. Although
the MoG is capable of describing the diagonal shape of the
excitatory cloud, the overlap between the observations cannot
be untangled, resulting in an accuracy of 98.8% for the excit-
atory class and 54.2% for the inhibitory one, with an average
of 76.5%. The CNN method, instead, is able to discern the
overlap in the FW space. This is certainly due to its higher
complexity, due both to the method itself and to the use of all
electrodes’ information, not only those with highest amplitude.
The CNN result shown here (FW feature set, size L) allows us
to correctly predict excitatory cells in 98.9% of the cases and
inhibitory cells with an accuracy of 97.1%. This makes it the
best-performing method among those compared here, with an
overall accuracy of 98.0%. It could be argued that the com-
parison was somewhat unfair, as our CNN approach considers
F and W images (computed on all recording sites), while the
clustering is performed with values computed from the elec-
trode with highest amplitude only. Nevertheless, it is not
common practice to consider waveforms on all electrodes but
only on the one with highest amplitude (Barthé et al. 2004;
Peyrache et al. 2012).

m-Type Classification

In addition to separating excitatory cells from inhibitory
ones by trained CNNs, we tried to make a finer subdivision and
classify cells into morphology classes (m-type) based on the
EAP. The approach is similar to that for excitatory/inhibitory
classification, but instead of only 2 output classes we take the

11 m-type classes (cells of m-type BP and NGC are excluded,
since only 1 morphology is available in the data set). We use
a CNN of size L and consider Waveform features (in this case
with a downsampling factor of 8, i.e., a sampling frequency of
4 kHz) on the SQMEA-10-15 with the Physrot data set. The
resulting confusion matrix E, in which each entry E; represents
the amount of observations of the true cell type i predicted as
cell type j, is depicted in Fig. 11. We do not observe a striking
diagonal, indicating that full identification of all cell types is
not feasible from EAPs. But it is noteworthy that there is some
block structure dividing excitatory neurons from inhibitory
neurons. This division is learned intrinsically by the network,
and inhibitory cells are classified within the inhibitory block in
100.0% of the cases and excitatory cells within the excitatory
block in 95.7%. Concerning the mixing of TTPCI and TTPC2,
we do not expect to be able to differentiate between these two
types because their only difference is the distance of the
bifurcation point of the apical dendrite to the soma. Since the
MEA is located close to the somatic region, recordings might
not be sensitive to this delicate difference. Disregarding this
mixing, the m-type classification performs well (chance would
be 9.1%) on excitatory cells and inhibitory Martinotti cells
(MC) (80.5%). Note that these well-classified cells make up a
large proportion of cortical cells. The overall accuracy of
34.0% illustrates that the morphological details are partially
resolved by the CNN. In cases in which the CNN is not able to
extract the information about the morphological details, it is
unclear whether the information is present at all in the EAP or
an increased number of cell models could solve the problem. In
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conclusion, the results show promise for a more refined clas-
sification than only distinguishing excitatory cells from inhib-
itory cells.

Validation on Different Models

To investigate how general the trained CNN models are,
we tested the performance of localization and classification
on simulated EAPs from other neuronal models, namely, the
cell model from Hay et al. (2011) and the models from the
Allen Brain Institute (ABI) cell type database (Gouwens et
al. 2018; http://celltypes.brain-map.org). For the following
results, we used the SQMEA-10-15 probe, CNNs of size L,
and NaRep and FW feature sets for localization and classi-
fication, respectively.

Hay model. The Hay cell models a neocortical pyramidal
cell from L5b, and the techniques used to build the models
were similar to the models from the NMC Portal. Therefore,
we expect a relatively good performance in localization and
classification with the CNNs trained on our standard NMC
data sets. We built a Physrot data set of Hay cells consisting
of 1,000 observations at random locations around the probe
as described in Simulated Recordings, and we then evalu-

ated the performance of the CNNs in localization and
classification.

For localization, the average error on the Hay data set is
8.7 = 6.6 um, perfectly in line with the average errors of
TTPC models in the NMC validation data set (Fig. 7A). The
average error over all cell types in the NMC validation data
setis 7.8 £ 6.3 um. For classification, we obtain an average
accuracy of 76.4%, while the accuracy on the NMC valida-
tion set is 98.0%. The lower accuracy could be due to the
fact that the Hay model includes other types of mechanisms,
such as active calcium channels in the apical dendrites, that
are not modeled in the NMC cell models.

Allen Brain Institute models. The cell models from the ABI
that we selected are quite different from the NMC cell
models at least for two reasons. First, the ABI neurons are
from mice, whereas the NMC cells are from juvenile rats.
Second, they are from visual cortex (19 cells) and postrhinal
area (1 cell), whereas the NMC models are from somato-
sensory cortex. With CNNs trained on NMC data are ex-
pected to have lower accuracy when applied to the ABI data.
We generated 1,000 EAPs for each of the 20 ABI cell
models, according to the description in Simulated Record-
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Fig. 11. Normalized confusion matrix of m-type classification based on Wave-
form features (here with downsampling factor 8, i.e., 28 sample points) for
Physrot data set. The convolutional neural network size is L and extracellular
action potentials are taken for the SQMEA-10-15 probe. BTC, bitufted cells;
ChC, chandelier cells; DBC, double bouquet cells; LBC, large basket cells;
MC, Martinotti cells; NBC, nest basket cells; SBC. small basket cells; STPC,
slender-tufted pyramidal cells (PC); TTPCI, thick-tufted PC with late bifur-
cating apical tuft; TTPC2, thick-tufted PC with early bifurcating apical tuft;
UTPC, untufted PC.

ings. We used the 3drot alignment because of the variability
in the ABI cell models’ orientation (for details about selec-
tion of cell models see APPENDIX A).

We ran the 3drot CNN for localization on the ABI data set,
obtaining an average error of 19.3 * 11.5 um, larger than the
8.9 = 8.2 um obtained on the NMC validation set as expected.
For classification, we distinguished excitatory and inhibitory
cells in the ABI data set based on mouse transgenic lines
(details in appENDIX A). With the CNN for classification trained
on NMC models, the average accuracy is 76.9%, while it is
97.6% on the NMC validation data set.

Since the cell models of the ABI come from a different
species and are from a different cortical region, we trained a
CNN on this data set only—16 models are used for training and
4 for validation (apPENDIX A). We used a CNN of size L and
NaRep features, obtaining a localization average error of
5.9 +45 pum, which is in line with the performance we
obtained on NMC models only. We did not run classification
with so few models (only 20 cell models in total), because the
CNNs need a larger diversity to find general features related to
excitatory-inhibitory types (using the NMC data we trained on
192 cell models).

Test on Experimental Data

Although the method proposed in this report is at a proof-
of-concept stage, we tested some CNNs trained with simulated
data on experiments at least for plausibility.

We decided to use data (publicly available at http://
www.kampff-lab.org/validating-electrodes) from paired juxta-
cellular and extracellular recordings (Neto et al. 2016) where,
to a certain extent, the ground-truth location is known. The
extracellular signals are measured with either the Neuronexus
or the NeuroSeeker probe. Taking the amplitude threshold of
our CNN training simulation (peak-to-peak amplitude of 30
1V on at least 1 electrode) into account and considering only
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cells in front of the MEA, we were left with 10 data sets (see
APPENDIX A for further details). After performing juxtacellular-
triggered averaging, we fed the average EAP waveform into
the CNN and predicted the soma position. The CNNs were
trained with simulated data having the appropriate geometric
alignment (MEA probes are rotated by —48.2° along the
y-axis). On average the prediction error is 42.2 = 16.8 um,
assuming the true soma position is the tip of the juxtacellular
probe. The experimentally determined positions for the x-, y-,
and z-coordinates range from 27 pum to 129 um, —48 um to 6
pum, and —121 um to 21 wm, respectively. Neto et al. (2016)
report a distance uncertainty of 10.5 = 5.2 um. This uncer-
tainty only applies to the tip position of the juxtacellular probe
with respect to the MEA, but it is a drastic assumption to
consider this position equal to the soma position (center of the
soma). Without neglecting the soma diameter, one might favor
a larger distance error by adding a soma radius uncertainty of
10-20 wm. Furthermore, the uncertainty of 10.5 = 5.2 um
reflects misalignment errors caused by the manipulators used in
the experiment and is investigated under free conditions, i.e.,
without entering any brain tissue. Additional misalignment
originating from entering brain tissue with the probes or from
the brain’s pulsation due to breathing of the mouse are not
taken into account.

Figure 12 shows predicted vs. true coordinates. Figure 12A
demonstrates that the predicted soma distances (x-coordinate)
are in a plausible range. Overall, the distance x is predicted
with a mean error of 20.3 = 16.1 wm. The y- and z-positions
are in the same range of precision (22.3 = 13.1 um and
22.9 £ 15.7 wm, respectively, on average). Note that the hor-
izontal error bars in the plots only represent the uncertainty due
to the misalignment of the manipulators as reported by Neto et
al. (2016) and all other previously mentioned uncertainties
(which are not quantified) are not considered.

DISCUSSION

This work provides a deep learning approach for neuron
localization and classification based on MEA recordings. We
simulated in vivo-equivalent EAPs and built data sets for
various probe designs, using a multitude of cell models from
the NMC Portal (205 cell models from Ramaswamy et al.
2015). CNN models trained on these simulated spikes predict
the soma position of the neuron and characterize whether it is
excitatory or inhibitory. The accuracy depends on the neuron-
MEA alignment, the specific cell types, the CNN size itself,
and the input feature sets. For completeness, we compared the
proposed method with existing strategies regarding both local-
ization and classification of recorded spikes, we validated on
cell models from other databases, and we tested the models on
publicly available experimental data.

Localization

We showed that the CNN method is robust and accurate in
predicting the 3D soma location from spikes generated by
neurons with a physiological neuron-MEA alignment (Physrot,
defined in Neuron-MEA alignment). The average errors are on
the order of 7.6—11.7 um for all probes involved in the study
(Fig. 8E). We demonstrated the CNN approach to be robust
with different cell models and to be able to generalize among
cell types not used for training (BP and NGC). Finally, local-
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A

Fig. 12. Soma position predictions of a convolutional
neural network (CNN) based on experimental extracel-
lular action potential (EAP) recordings. Experimental
data are from paired juxtacellular-extracellular record-
ings (Neto et al. 2016) where the position of the soma
is associated with the tip position of the juxtacellular
probe. The CNN (size L, NaRep feature) is trained on
simulated (3drot) EAP signals. Error bars are CNN
prediction uncertainties for the predicted coordinates
and 42 pm, 2.8 wm, and 8.5 wm (misalignment
uncertainties reported by the experimenters of Neto et
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ization performances achieved with our approach are signifi-
cantly better than solving the inverse problem with various
generative models. With a SQMEA-10-15 data set the total
error in three dimensions was 21.7 £ 20.9 um for the mono-
polar current source, 15.6 = 15.2 um for the bipolar current
source, and 22.6 = 23.2 wm for the ball-and-stick model,
whereas with our CNN approach we obtained an error of
7.8 £ 6.3 wm (as shown in Fig. 9).

In a recent study (Delgado Ruz and Schultz 2014), a Neu-
ronexus-32 probe was used (shown in Fig. 3) with a modified
ball-and-stick model to solve the inverse problem. For the five
cell types considered in Delgado Ruz and Schultz (2014), they
reached average errors of 6.26 * 6.10 uwm, 6.03 = 7.68 um,
and 2.58 = 4.75 pwm along the x-, y-, and z-axes, respectively.
Using the same probe on our Physrot data set, we obtained with
CNNs average errors of 4.1 £4.5 um, 43 * 4.7 pum, and
43 =53 pm for the x-, y-, and z-axes, respectively (with
NaRep feature set and size L).

Classification

The deep learning method was applied to excitatory/inhibi-
tory classification with accuracies above 96.6% for all em-
ployed MEA models using the F'W feature set and a CNN size
L. An almost perfect outcome of 99.7% was obtained with the
Waveform features on the SQMEA-10-15 probe. Compared
with standard strategies using spike widths extracted from the
spike shape, it showed a significant improvement (k-means
clustering: 80.3%, MoG: 76.5%; Comparison with Other Ap-
proaches). We also attempted to distinguish among 11 cell
morphologies (m-type classification). The overall accuracy of
34.0% is substantially better than the chance level of 9.1%. It
is interesting to see that m-type classification performs a sort of
unsupervised learning, as inhibitory cells were classified as
inhibitory in 100.0% of the cases and excitatory cells as
excitatory 95.7% of the time.

Overfitting and Stability

When evaluating the predictions of our CNNs on the vali-
dation data set, we observed a drop in accuracy compared with
training accuracy. The drop is in an acceptable range for
excitatory/inhibitory classification (0-3% with respect to the
training accuracy) and localization (up to 3.7 um prediction
error increase). In case of m-type classification, the validation
accuracy drops ~65% compared with training accuracy, clearly
indicating overfitting. Since we do not have enough diversity in
cell model data to build a third data set for implementing
early-stopping regularization (i.e., stop training as soon as the
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generalization error increases), we tracked the evaluation ac-
curacies depending on the number of training epochs. In most
cases, they reached a plateau after roughly 2,000 training
epochs and did not decrease significantly afterwards, while
training accuracies still increased. Therefore, we decided to
stop training after 2,000 training epochs, assuming that the
CNN has extracted most of the generalizable information
provided by the EAPs at that point. Moreover, we tried to
quantify the stability of the performance depending on differ-
ent initial weights before the optimization process. To do so we
ran the CNN training for localization and classification (on the
SGMEA-10-15 probe, CNN size L, and with NaRep and FW
features, respectively) six times with different random seeds.
We obtained an average mean error of 7.6 = 0.1 um with an
average SD of 6.3 = 0.2 um for localization (including the BP
and NGC models) and an average mean accuracy of 97.9%
with a SD of 0.2% for classification, indicating that perfor-
mance is not dependent on the initial conditions of network
weights and the convergence is robust.

Model-Based Approach

The findings presented in this study are based on simula-
tions. Although this might be regarded as a limitation, we want
to stress that the proposed method makes use of highly detailed
cell models (Markram et al. 2015) and the complexity of such
models is maintained and learned by CNNs. Previous ap-
proaches to localization and/or classification relied on simple
forward models to solve the inverse models—monopolar, bi-
polar, ball-and-stick models, etc. (Blanche et al. 2005; Delgado
Ruz and Schultz 2014; Somogyvari et al. 2012). We showed
that CNNs outperform these models in estimating the soma
positions. Another point that plays in favor of the use of neural
simulations is the difficulty in gathering ground-truth data
experimentally. Localizing and classifying neurons in real
recordings requires advanced and highly accurate equipment,
and the recorded labeled data would most likely still not be
sufficient to train data-hungry machine learning algorithms
such as CNNs. Nevertheless, validation on experimental data is
definitely a required step and will be based on combined
approaches with paired electrophysiological recordings and
standard microscopy (Neto et al. 2016), or even involving more
sophisticated and precise imaging techniques, such as two-
photon imaging (Gobel and Helmchen 2007), which was
paired with electrophysiological recordings in vivo in Shew et
al. (2010). Paired electrophysiology and two-photon micros-
copy data, possibly in combination with intracellular voltage
monitoring through patch clamping or voltage-sensitive dyes,
could also represent a valuable tool to further validate and
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improve the forward modeling schemes, providing morpholog-
ical, intracellular, and extracellular recordings simultaneously.

Another advantage of using forward modeling is that the
performance of the machine learning algorithm could be im-
proved by building case-specific data sets that better match the
real experimental scenarios. In this work, we assumed that the
simulated probe was inserted in L5 of somatosensory cortex of
a juvenile rat with a vertical insertion angle. However, somato-
sensory cortex can present large differences with respect to
other brain regions (e.g., hippocampus, cerebellum, or other
cortical regions) but also among animal species. Therefore, we
do not envision a single universal model to localize and
classify neurons but species- and brain area-specific CNNs to
accurately deal with variability in neuronal types and func-
tions. For example, when we fed mouse data from the ABI
database, the localization CNN trained on rat data performed
relatively poorly (19.3 = 11.5 um; Allen Brain Institute mod-
els), but trained on mouse models the performance is in line
with what we obtained on rat data (5.9 = 4.5 um).

Effect of Probe Design

Regarding neural probes, a forward modeling-based ap-
proach can give important insights for the design and manu-
facturing of next-generation probes. For example, our results
showed that even relatively low-density probes, such as the
SGMEA-5-30, despite performing slightly worse than higher-
density probes, still yield high accuracy in localizing and
classifying neurons. Potentially, the pursuit of extremely high-
density probes, which makes the design complicated and the
data throughput very high, is not required for classification and
localization tasks [although it might still be important for spike
sorting (Franke et al. 2012; Rossant et al. 2016)]. However, for
such simulation-driven MEA design, the simulations lack a
more accurate electrode model considering finite size recording
sites (in this work we used an ideal point electrode), electrode
impedances, and transfer functions.

Future Extensions

The generative model for spike simulations could be im-
proved in various ways. A straightforward improvement to
obtain more accurate simulations could be including the MEA
scar in the data generation, by clipping or bending neuronal
branches in the proximity of the probe before simulating the
recordings. Another refinement might be to take into account
the finite size effects of the electrode contacts by means of the
disk-electrode approximation (Lindén et al. 2014), which was
shown to be appropriate for current sources positioned at
distances larger than the contact radius (Ness et al. 2015).
Moreover, here we assumed a tissue with homogeneous and
isotropic electrical properties, but experimental findings sug-
gest that in the cortex the conductive properties of the extra-
cellular space are anisotropic (Goto et al. 2010). Anisotropy
could be easily taken into account for the simulation of spikes
(Ness et al. 2015; Pettersen et al. 2012). As the proposed
approach strongly relies on high-fidelity simulations that reli-
ably describe the neuron dynamics and volume conduction,
another strategy could be using finite element method-based
models, as in Agudelo-Toro and Neef (2013), Pods et al.
(2013), and Tveito et al. (2017), which would result in more
detailed simulations at the cost of a much higher computational
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cost for data generation. Another layer of modeling is the
electrode-tissue interface. The generated data should include
electrical properties of the electrodes, such as the impedance,
and account for their variability in experimental scenarios. In
this work, we used polytrodes with a relevant size with respect
to the neuron: although we assumed a homogeneous medium,
the presence of the probe itself represents an obstacle for
electrical signal propagation and can be modeled with either
finite element method or analytical simplifications, such as the
method of images (Ness et al. 2015).

In this work, we did not include any noise in the simulated
recordings. The rationale behind this choice is that sorted
spikes can be cleaned by applying spike-triggered averaging.
With spike-triggered averaging, additive random noise is re-
duced by a factor of N, where N is the number of occur-
rences of the sorted unit. Moreover, a common problem in
spike sorting is electrode drift, in which the relative position
between a neuron and the recording electrodes changes during
the experiment. If drifting is detected from the spike sorting
algorithm, one could feed different averaged EAPs computed
in separate time windows and evaluate the drift over time,
similarly to Delgado Ruz and Schultz (2014), in which win-
dows of 5 min were used to compute the mean EAP.

Furthermore, the recording site area affects the amount of
noise in the recordings, as the recording area is related to the
impedance of the electrode. Here we assumed perfectly sorted
spikes, from which a clean EAP can be computed. Clearly,
with experimental data errors in spike sorting would affect the
performance of localization and classification due to distorted
waveforms from wrong assignments.

Outlook

Precise neural localization and classification from in vivo
extracellular recordings has the potential of making electro-
physiology an even more powerful technique to interact with
neural tissue. Rather than only extracting spike trains, we could
build a 3D representation of the recorded units and perform
functional electrical imaging to study the spatial interactions
among different cell types in neural microcircuits. On top of
this, a precise localization of neuronal somata might enable the
use of highly selective electrical stimulation patterns (Buccino
et al. 2016) and represent an advancement in single-neuron
stimulation from extracellular probes.

We strongly believe that computational approaches must go
hand in hand with experimental ones, and an extension of this
work might include the simulations of the entire pipeline from
simulated MEA recordings, for example, with VISAPy (Hagen
et al. 2015), to electrical stimulation including spike sorting,
localization, classification, electrical stimulation, and evalua-
tion of its effect on detailed neural morphologies.

APPENDIX A: DATA SELECTION
Neocortical Microcircuit Collaboration Portal Data Set

In this appendix we discuss the data set and the modifications that
we applied to make sure that that training and validation set are
completely disjointed.

In the original data set (https://bbp.epfl.ch/nmc-portal/welcome; LS
cells) there are nine inhibitory neuron types: BP, bitufted cells (BTC),
ChC, double bouquet cells (DBC), LBC, MC, NBC, NGC, and SBC.
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The four excitatory types, i.e., the PCs, are grouped into STPC,
TTPC1, TTPC2, and UTPC. While belonging to the same m-type,
neurons can have different electrophysiology properties (e-type)
based on their firing patterns (Markram et al. 2015). In L5 the e-types
are categorized into continuous accommodating (cAC), continuous
stuttering (cSTUT), burst accommodating (bAC), burst stuttering
(bSTUT), continuous nonaccommodating (cNAC), delayed stuttering
(dSTUT), burst nonaccommodating (bNAC), continuous irregular
(cIR), delayed nonaccommodating (ANAC), burst irregular (bIR), and
continuous adapting (cAD). Since not all m-types express all e-types,
the combination of morphological and electrical type gives rise to 52
morpho-electrical types (me-types) in L5. For each me-type, the NMC
database contains five cell models; therefore, there are a total of 260
cell models in the data set.

In Markram et al. (2015), to extend the number of reconstructed
models, an algorithm is used to clone morphologies: neural compart-
ments are randomly scaled and rotated with respect to each other.
Moreover, morphologies are also stretched and shrunk to make up
new morphologies. We identified 54 different morphologies in the
data set, listed in the Supplemental Material for this article. Although
the cloned and/or scaled morphologies are indeed different than the
original ones, their shape is quite similar.

The use of CNNs, which are among the most powerful machine
learning algorithms, pushed us to pay particular attention in the
training-validation splitting so that no information of the validation set
is present in the training set (leakage). Hence, the presence of a
cloned/scaled version of the same morphology in both training and
validation has been avoided. We selected training and validation cell
models so that all morphologies in the validation set are unique. In
doing so, we had to remove all instances of BP and NGC from the
training set, as all the models are derived from the same reconstructed
morphology. For localization and excitatory/inhibitory classification,
we kept a BP and an NGC model in the additional validation set.

After the manipulation, the training set consists of 192 cell models,
while the validation set only contains 11 cell models, one for each
m-type. Moreover, we use one BP and one NGC model, not used for
training, as further validation. In total, we included 205 neuronal
models out of the available 260. The cell models are listed in the
Supplemental Material.

Allen Brain Institute Data Set

From the Allen Brain Institute cell type portal (http://celltypes.
brain-map.org/data), we selected cell models according to three cri-
teria: /) cells were from mice, 2) cells were from L5 (to maintain
consistency with the data from the NMC Portal), and 3) cells had an
all-active model. This search reduced the number of cell models
available to 42. During the simulation process, we further discarded
22 models based on two extra rules: /) if adjusting the current-clamp
amplitude to the soma could not induce a number of spikes between
10 and 30 in 10 iterations (in which the weight was multiplied by 0.75
if the number of intracellular spikes was >30 and by 1.25 when <10
spikes were detected) and 2) if <5 EAP peaks had a peak-to-peak
threshold of 30 wV in 500 random positioning of the neuron around
the probe (meaning that the EAPs were mainly below the defined
detection threshold). After this pruning, 20 cell models are left. To
distinguish between excitatory and inhibitory cells, we used the
transgenic line information: Pvalb, Sst, Htr3, and Gad?2 lines were
considered inhibitory; Rbp4, Scnn, and Rorb were considered excit-
atory (Gouwens et al. 2018). After this division there were 11
inhibitory and 9 excitatory cell types.

To avoid overfitting, we randomly selected 4 models, 2 excitatory
and 2 inhibitory, and we set them aside for validation, while we used
the remaining 16 neuronal models for training.

The cell models are listed in the Supplemental Material.
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Kampff Laboratory Data Set

Accompanying their article on paired juxtacellular-extracellular
recordings (Neto et al. 2016), the laboratory of Adam Kampff publicly
offers the data on http://www.kampff-lab.org/validating-electrodes.
To extract an averaged extracellular waveform for each cell that can
be fed into a trained CNN, some data processing was necessary. First,
we detected spikes in the juxtacellular probe by thresholding the
signal to get the cell’s spike times. Second, we high-pass filtered the
extracellular MEA recording with a third-order Butterworth filter in
forward-backward mode with a band pass of 100-14,250 Hz. After-
wards, we averaged the EAP in windows of 7 ms around the spike
times (2 ms preceding and 5 ms after the peak). This average
waveform was then referred to as the juxtacellular-triggered aver-
age and was used as input for CNN predictions. After this prepro-
cessing, 10 of the 29 available data sets fulfilled the criteria of
having a peak-to-peak amplitude of 30 wV on at least one electrode
and being in front of the extracellular probe (2014_03_26: Pair 2.0,
2014_03_20: Pair 3.0, 2014_03_26: Pair 2.1, 2014_10_17: Pair
1.1, 2014_10_17: Pair 1.0, 2014_11_25: Pair 3.0, 2014_11_25:
Pair 1.0, 2014_11_25: Pair 2.0, 2015_09_04: Pair 5.0,
2015_09_03: Pair 6.0). These 10 data sets were used in Test on
Experimental Data to test our deep learning approach.

APPENDIX B: ADDITIONAL INFORMATION

This appendix contains additional information on parameters and
results.

Table B1 shows the specific CNN parameters for different network
sizes.

The average localization errors and SDs for different rotational data
sets are contained in Table B2, and the corresponding statistical
analysis is depicted in Table B3.

Further results on significant differences and effect sizes of local-
ization performances for different CNN sizes, features, MEA probes,
and localization methods are listed in Tables B4, BS, B6, and B7,
respectively.

The excitatory/inhibitory classification accuracies grouped by cell
type for different rotational data sets, CNN sizes, feature sets, and
MEA probes are shown in Tables B8, B9, B10, and B11, respectively.
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Table B11. MEA probe classification performance
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cells; DBC, double bouquet cells; LBC, large basket cells; MC, Martinotti cells; NBC, nest basket cells; SBC. small basket cells; STPC, slender-tufted pyramidal
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