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Abstract: A novel floc sensor prototype was tested in a Norwegian municipal waste-
water treatment plant. The resulting images of flocs, captured using a specially 
designed software, were analysed by texture image analysis technique—grey level 
co-occurrence matrix (GLCM). The results of image analysis were merged with the 
coagulation process measurement data—inlet and outlet wastewater parameters. 
The data based only on GLCM textural features resulted in 96.6% explained total 
variance by two principal components and distinguished two classes in the data—
low and high outlet turbidity values. The predicted by partial least squares regres-
sion (PLSR) coagulant dosages precisely followed the reference dosages, explained 
Y total variance by 3 factors equals 91.8% for calibration and 77.9% for validation. 
Results of the studies indicate that the GLCM method and sensor prototype can 
be used for an improvement of coagulant dosage control. Tested sensor prototype 
gives a solid basis for development of the low-cost floc sensor.
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1. Introduction
Wastewater contains a significant amount of suspended and dissolved pollutants that create the 
need for its treatment before discharging into the environment. Coagulation is one of the methods 
in wastewater treatment to remove suspended solids, phosphates and other water contaminants. 
At first treatment plants, the quality control was done by manual water sampling after certain stag-
es of treatment (Edzwald, 2010). The main problem with this approach was very long response time 
from sampling until obtaining the results making it impossible to adjust operating conditions to 
achieve optimal results. Nowadays, the flow-proportional dosing concept is usually used for coagu-
lation process, while process optimisation often bases on the results from the jar tests (Ratnaweera 
& Fettig, 2015). Many modern wastewater treatment plants (WWTP) perform water quality control 
based on online measurements of water parameter (Vesilind, 2003). In this approach, the sampling 
and analysing of water parameters are typically automatized while process control is carried out by 
online monitors coupled with complicated optimal dosage control systems (Bourgeois, Burgess, & 
Stuetz, 2001; Ratnaweera, 2004). However, the operational cost of such monitors and control sys-
tems are very high. In addition, some of this equipment, for example, orthophosphate and total 
phosphate monitors, have an entirely long response time, because of the nature of phosphorus 
chemical analysis process. The characteristics of coming to the WWTP wastewater are changing 
dramatically within short periods, so the control systems, which require a longer time for the re-
sponse, are not applicable for dosage control.

Advanced dosing control systems based on multiple water quality parameters that could be 
measured online have confirmed to be successful (Ratnaweera, 1997; VA-Support, 2012). Such sys-
tems enable a reduction in operational costs by lowering coagulant consumption, reduce the sludge 
volumes and maintain the desired removal of particles and phosphates (Manamperuma, Ratnaweera, 
& Rathnaweera, 2013; Manamperuma, Wei, & Ratnaweera, 2017). The need for wastewater treat-
ment processes optimisation is growing and requires the development of accurate, robust, reliable 
and low-cost online dosing control systems (Ratnaweera & Fettig, 2015).

Raspberry Pi® is a single-board computer which was created last decade and became popular 
because of its low price. It was previously used in the research projects as a data logger of the optical 
sensor for continuous marine monitoring and water quality monitoring (Murphy, Sullivan, Heery, & 
Regan, 2015; Murphy et al., 2015). Raspberry Pi was also tested as an alternative to Programmable 
Logic Controller (PLC) for the automation of a small-scale water treatment plant (Lagu & Deshmukh, 
2015).

During the last decades, image analysis techniques were often applied in water and wastewater 
treatment industry to determine such particles characteristics as floc size, fractal dimension, 
strength and breakage (Chakraborti, Atkinson, & Van Benschoten, 2000; Chakraborti, Gardner, 
Atkinson, & Van Benschoten, 2003; Jarvis, Jefferson, Gregory, & Parsons, 2005; Vlieghe, Coufort-
Saudejaud, Frances, & Liné, 2014). However, their applicability has been limited to laboratory scale 
tests due to complicated and inaccurate measurements in the field, hardware and software limita-
tions. Sievers et al. (2003) have developed an on-line method to optimize the sludge dewatering 
process. The method is based on CCD-line scan camera and image processing which measures the 
relative floc size distribution for the control of sludge dewatering. Juntunen, Liukkonen, Lehtola, and 
Hiltunen (2014) have studied the correlations between floc properties and the flocculation process 
parameters using an industrial camera and self-organizing maps. Particles’ characteristics such as 
size, form and area were retrieved form the digital images of flocs was well as information about 
colour (average green, red, blue and colour index) and were used for modelling. The removal of sus-
pended solids and colour from textile wastewater by coagulation was evaluated on-line using digital 
image analysis application (Yu, Chen, & Cheng, 2017). The authors measured mean grey value and 
mean red/green/blue values of the captured images in addition to particles’ characterization param-
eters (e.g. particle size, area and fractal dimension). Recent review of sensor technologies for the 
energy-water nexus (Abegaz, Datta, & Mahajan, 2018) summaries the information about sensors 
used in the water sector and their costs. The authors emphasize a need for modern, remote and 



Page 4 of 12

Sivchenko et al., Cogent Engineering (2018), 5: 1436929
https://doi.org/10.1080/23311916.2018.1436929

real-time sensor technologies as well as wireless sensor networks to achieve economic benefits in 
the energy-water nexus.

The new approach in image analysis of flocs—computing flocs characteristics on the images as 
textural features was proposed and tested (Sivchenko, Kvaal, & Ratnaweera, 2014, 2016; Sivchenko, 
Ratnaweera, & Kvaal, 2017). Such method of image characterisation is comparatively easy since it 
analyses the whole image texture instead of calculating the shape characteristics of each particle in 
the image. The innovative extremely low-cost image acquisition system based on Raspberry Pi sin-
gle-board computer and camera module was tested during the research. This paper presents the 
applicability of the concept for municipal wastewater treatment to be further developed into an 
actual sensor. The sensor is to be used for advanced dosage control to optimising the coagulation 
process.

2. Experimental setup and methods

2.1. Wastewater treatment plant
Full-scale tests were conducted in August 2016 at the Skiphelle wastewater treatment plant situ-
ated in city Drøbak—the centre of Frogn municipality in Akershus county, southeast part of Norway. 
Skiphelle WWTP receives municipal wastewater from Drøbak city and the neighbourhood area. 
Average inlet flow is 4,600 m3/day (14,000 pe) during the days without snowmelt and/or 
precipitations.

Skiphelle WWTP is a mechanical-chemical precipitation plant. The treatment process consists of 
the next stages: screens, two parallel pre-sedimentation basins, three sequenced coagulation 
chambers with the different velocity gradients, and two parallel sedimentation chambers. The plant 
also has the sludge dewatering and thickening system. The inlet and outlet water quality parame-
ters are measured by online sensors and recorded (average values) with the 10 min interval. The 
data is available for observation in the plant’s SCADA (Supervisory Control and Data Acquisition) 
system and through the DOSCON (DOSCON AS, Oslo, Norway) system. The retrieved water parame-
ters included inlet wastewater flow (QIN), inlet pH (PHI), inlet turbidity (TUI), wastewater tempera-
ture (TMP), coagulant dosage (Dose), pH after coagulant dosage (PHO) and outlet turbidity (TUO). 
The plant operators perform daily sampling of inlet and outlet total Phosphorous (total P) in water. 
Total P was measured using DR3900 spectrophotometer and DRB200 reactor for digestion (Hach®, 
USA). Wastewater flow was measured in open channel by the ultrasonic system consisting of an 
ultrasonic sensor 7005 and a flow converter 713 (MJK Automation, Xylem Inc., Denmark). Inlet and 
outlet pH was measured by two pHix Compact™ sensors (MJK Automation, Xylem Inc., Denmark). 
Inlet and outlet turbidity was measured by two VisioTurb® 700 IQ sensors (YSI, USA). The coagulant 
was dosed by digitally controlled direct-drive diaphragm pump IX-C150TCR-RF-E (IWAKI Co., Ltd., 
Japan). The summarised data of water quality parameters for the tests period is given in Table 1. 
Coagulant used in the Skiphelle WWTP is polyaluminium chloride (ECOFLOCK 90, Feralco), 
9 ± 0.3 % aluminium by weight, and density 1,356 ± 25 kg/m3.

2.2. Image acquisition and pre-processing
A special installation was designed to observe changes in flocs’ structure online. The facility was set 
above the second flocculation chamber and consisted of the tube, peristaltic pump 620U (WMFTG, 
UK), acrylic cell for image acquisition, floodlight LED (anslut® 427–624, 600 lumens) as a light source 
for a camera, Raspberry Pi with a camera module and the screen. The same system but with the 
DSLR camera was presented in the previous research paper (Sivchenko et al., 2017). The imaging cell 
was disassembled for cleanings with water each 2–3 days.

Raspberry Pi 2 Model B V1.1 single-board computer was chosen for its low price (35$ range), com-
pact size and programmability. It is an affordable and perspective tool to be developed into the ac-
tual sensor. A low-cost (15$) camera module (5-megapixel OV5647 sensor) with the changeable 
focal length was mounted to the Raspberry Pi (Figure 1(a) and (b). A unique program was written in 
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Python to control the camera and make changes in the camera settings. The interface of the appli-
cation is shown in Figure 2. Using the program, it is possible to set specific needed parameters, such 
as camera settings (Figure 2(b)), the time lapse between the images and start time. In time lapse 
window (Figure 2(c)) option “Interval” means the time interval in seconds between the captured 
series of images. It was decided that one image might be not enough to represent the flocs struc-
tures. Hence, option “Picture count” indicates a number of images in series (three during this re-
search) and option “Shotspeed” sets the time interval in seconds between the images in one set (5 s 
in this case). It is also possible to use the online camera mode and see the flocs movement through 
the cell on the monitor in real time. On demand, the video can be recorded choosing menu option 
“Record video” (Figure 2(a)).

Camera settings during the tests period were next (Figure 2(b)): ISO – 400, colour effect – grey 
scale photo (u, v = 128, 128 – settings for Raspberry Pi camera), 1/336 shutter speed (2,974 
microseconds).

Three images were captured every 10 min with the interval 5 s between the images (sets of im-
ages further in the text). The size of the image-capturing zone in the cuvette was 3.2 cm × 9.6 cm. In 
order to obtain flocs with the proper depth of field, the black metal stripe was placed in the centre of 

Table 1. Inlet and outlet wastewater quality parameters of Skiphelle WWTP during the 
experiments period
Variables Mean Min Max Standard deviation
Inlet flow, m3/h 190.6 75.6 346.1 60.9

Inlet pH 7.4 7.3 7.9 0.1

Inlet turbidity, FNU 161.0 55.8 500.0 78.3

Ww temperature, °C 14.4 12.9 15.1 0.5

pH after coagulant dosage 6.9 6.6 7.2 0.1

Outlet turbidity, FNU 4.5 1.6 12.7 4.0

Coagulant dose, ml/s 5.8 2.4 7.3 0.9

Coagulant dose, ml/m3 115.6 31.6 194.3 22.9

Coagulant dose, mmol Al/l 0.53 0.14 0.88 0.1

Figure 1. (a) Schematic 
representation of the 
installation; (b) a photograph 
of a part of the installation 
– Raspberry Pi camera and 
imaging cell with flocs.

(a) (b)
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the cuvette, which also became a background for the flocs. The choice of the background colour was 
based on the fact that the wastewater flocs are greyish coloured. Thus, using a contrasting back-
ground, it is easier to perform the further image analysis.

The obtained images have a resolution of 5 megapixels each. They were processed in the open 
source image analysis software ImageJ v.1.49 (Rasband, 1997/2016) that based on plugins and 
macros. For each image 1360 × 1360 pixels (3 cm × 3 cm) area was cropped by manual investiga-
tion of the area.

2.3. Image analysis by Grey level co-occurrence matrix
GLCM is one of the methods to analyse texture in the image. Previously it was successfully tested on 
the laboratory scale basis with model wastewater (Sivchenko et al., 2016) and in full scale with mu-
nicipal wastewater using an expensive DLSR camera (Sivchenko et al., 2017). The GLCM measure-
ments can be further implemented and computed by Raspberry Pi board itself.

ImageJ plugin “GLCM Texture Too” v. 0.009 was used to obtain the GLCM feature vectors. The re-
sulting output was given as a vector of the next four parameters per each image: Contrast, Entropy, 
Homogeneity and Variance. Hence, the data matrix was obtained with the size 588 × 4. The detailed 
description, explanation, and equations for above GLCM texture features can be found in the litera-
ture (Conners, Trivedi, & Harlow, 1984; Haralick, Shanmugam, & Dinstein, 1973; Zheng, Sun, & Zheng, 
2006). GLCM textural features for two images in a set were averaged and used for calibration, while 
the textural information from the third image in a set was used for validation during principal com-
ponent analysis (PCA).

Calibration data-set included inlet and outlet measurements of the coagulation process, coagu-
lant dosage and corresponding 4 GLCM textural features of images of flocs (average values from 2 

Figure 2. Print screens of the 
developed program for the 
Raspberry Pi camera control: (a) 
main page with the menu; (b) 
camera parameters settings; (c) 
time laps settings.
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images for each 10 min process data). Validation data-set included inlet and outlet measurements 
of the coagulation process, coagulant dosage and corresponding 4 GLCM textural features of images 
of flocs (retrieved from the third image captured for the 10 min process data).

Three images for each 10 min were chosen to be representative. The measured GLCM feature vec-
tors were averaged for every 2 images and matched with the retrieved water quality parameters. 
According to the tracer tests conducted in Skiphelle WWTP, the outlet turbidity values were 45 min 
shifted to meet the response lag between the coagulant injection point and outlet from the sedi-
mentation tank. After the removal of missing values and outliers, the resulting data-set included 196 
samples. In a real-world situation, the removal of outliers should be treated carefully due to a warn-
ing of unwanted conditions.

2.4. Multivariate statistical analysis and modelling
The resulted data matrix was processed in statistical software The Unscrambler® X 10.3 (CAMO 
Software AS, Norway) and in MATLAB using PLS toolbox (Eigenvector Research, Inc., USA). Principal 
component analysis (PCA) was performed to find the relationships between water quality parame-
ters and images of flocs – GLCM feature vectors. PCA is a statistical data analysis technique to reduce 
the dimensionality of the data-set, overview and describe the interrelationships among variables 
and to find so-called hidden structures in the data. Partial least squares regression (PLSR) was per-
formed to predict coagulant dosage based on the combination of water quality parameters and 
GLCM texture features. PLSR is a statistical regression method to model the response variable using 
a large number of predictor variables while those variables may highly correlate.

3. Results and discussion
Previously the three different texture image analysis systems applied to coagulation process were 
tested in the laboratory scale (Sivchenko et al., 2016). It was found that the textural information 
retrieved from the images of flocs is related to the coagulant dosages. Thus, the quantified informa-
tion from the images of flocs can be used directly for the dosage prediction. Afterwards, the special 
installation for image acquisition was placed in the Skiphelle WWTP. The captured by a digital single-
lens reflex (DSLR) camera images of flocs were used to predict the outlet turbidity values after sedi-
mentation (Sivchenko et al., 2017). It was also shown that such image analysis technique could work 
as an early warning system of coagulation failure.

This work aimed to continue the development of a floc sensor prototype using cheap hardware 
available in the market. Since the difference in images resolution for Nikon D600 DSLR camera and 
Raspberry Pi camera module is significant, 24 and 5 MP, respectively, it was essential to check 
whether the last can produce flocs images of enough quality to use them for the coagulant dosage 
prediction.

The significant advantage of a Raspberry Pi computer is that it is entirely programmable and easy 
to control the camera module. It is also possible to develop a sophisticated self-standing system 
that includes image acquisition, storage and processing – all done in Raspberry Pi. Besides, the sin-
gle-board computer has a Wi-Fi module, so the captured/processed information can be sent right 
away to the server, database cloud or remote PC.

During this research, the images of flocs were captured with the specified frequency and stored on 
the Raspberry Pi memory card, afterwards collected manually and processed on the remote PC. Here 
the results of analysed images of flocs by GLCM and corresponding them measurement data from 
the coagulation process are presented.

3.1. Results of principal component analysis
Figure 3(a) shows the results of PCA for 4 GLCM feature vectors of the flocs images. With only two 
principal components (PCs) the total explained variance equals 96.6% (PC1 = 63.3 %) for calibration 
and 90.4% (PC1 = 52.2 %) for validation. PC1 is mainly explained by Contrast, Entropy and 
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Homogeneity (loadings values 0.55, 0.54 and −0.51, respectively), while GLCM textural parameter 
Variance mainly contributes to PC2 (loading value 0.69).

The results of PCA performed for all inlet (QIN, TUI, PHI) and outlet (PHO, TUO) process measure-
ments, 4 textural features of the flocs images and coagulant dosage in ml/s, are shown in Figure 
3(b). Data class, which corresponds to the high outlet turbidities (marked in red), is better separated 
by two PCs. However, the data-set in this case included variable TUO. Even though the scores are 
visually separated better, the total explained variance of the data-set is much lower. Total explained 
variance for calibration: PC1 = 38.4%, PC2 = 55.9%, PC3 = 70.4%, PC4 = 79.7%; for validation: 
PC1 = 18.2%, PC2 = 29.9%, PC3 = 30.4%, PC4 = 60.8%.

3.2. Results of partial least squares regression
For the prediction of coagulant dosages the data matrix was divided into calibration and test data 
sets, 60 and 40% of the data, respectively. The data was divided based on the outlet turbidity values. 
The X matrix for PLSR included inlet wastewater parameters—QIN, TUI, PHI, TMP; after the dosage 
measurement PHO; an hour of the day; and GLCM textural features—Contrast, Entropy, Homogeneity 
and Variance. The response Y was coagulant dosage in ml/s. The PLSR model was calibrated on the 
data values which correspond to the outlet turbidity measurements between 1.9–5 FNU (desired 
range of effluent turbidity for the Skiphelle WWTP). The test data-set included measurements re-
lated to outlet turbidity values (TUO) higher than 5 FNU.

Figure 4 shows the results of PLSR – coagulant dosage prediction. The continuous red line is the 
reference dose (dosages used in the WWTP). Black squares represent the dosage prediction of cali-
bration data with corresponding TUO in a range 1.9–5 FNU. Black dots are the dosage predictions 
which correspond to TUO less than 1.9 FNU. Black diamonds are the dosage predictions which cor-
respond to TUO above 5 FNU. Minimum desired value of effluent turbidity – 1.9 FNU and maximum 
value 5 FNU are marked by dashed green lines, TUO min and TUO max, respectively.

Overall, the predicted coagulant dosages precisely follow the reference dosages. Prediction R2 
equals 0.92 for calibration and 0.78 for validation with three factors, root mean square error (RMSE) 
for calibration is 0.182 and 0.297 for validation. The area with high TUO represents a rain event, dos-
age was manually adjusted by plant operators and tend to be under-estimated. The predicted by 
PLSR model dosages (black diamonds, Figure 4) suggest having higher coagulant use for the wet-
weather period.

3.3. Grey level co-occurrence matrix feature vectors
Figure 5 represents the sample flocs images of three classes in the data-set – coagulation process 
conditions when resulting outlet turbidity was lower than 1.9 FNU, range of desired in the plant 

Figure 3. Scores plot of PCA, 
PC1 vs. PC2 for: (a) data with 
4 GLCM textural features of 
the images of flocs; (b) data 
containing wastewater quality 
parameters, GLCM textural 
features and the coagulant 
dosage.
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effluent turbidity 1.9–5 FNU and conditions lead to high TUO values (higher than 5 FNU). The actual 
values of TUO for the presented images are written in brackets. For each class, the average GLCM 
textural features are presented. The predicted coagulant dosages for the particular presented im-
ages of flocs are also shown.

Investigating the average values of four GLCM parameters, it can be concluded that the images of 
flocs with higher Homogeneity (visually these flocs also seem to have a higher density) result in good 
treatment efficiency – low outlet turbidity measurements. Images of flocs with the higher Contrast, 
Entropy and Variance values point on the coagulation failure and require higher dosages of the co-
agulant. Visually such flocs are more separated from each other, and probably it results in worse 
sedimentation abilities of the flocs. However, the sedimentation rates of the different floc structures 
were not studied in this research.

3.4. Practical implications and further studies
The study shows a potential possibility of the floc sensor prototype to be developed into an actual 
sensor, based on textural image analysis of flocs. The sensor is to be used to improve an existing 
coagulant dosage control system.

Raspberry Pi and the camera module are to be sealed into the waterproof stainless steel case and 
put directly into the coagulation chamber for online image analysis. The software in Raspberry Pi 
should be extended to include automated GLCM texture analysis algorithm and rewriting function of 
the stored images. The appropriate light source is also to be found and mounted next to the camera 
lens.

Figure 4. Comparison of the 
predicted coagulant dosages 
by PLSR and reference 
dosages with corresponding 
them effluent turbidity 
measurements.

Figure 5. Comparison of the 
sample images corresponding 
to different outlet turbidity 
measurements and the ranges 
of their GLCM textural features.

Sample image 

avg. Contrast 10.19±0.39 11.21±1.44 12.86±0.75 
avg. Entropy 7.11±0.1 7.13±0.11 7.23±0.14 
avg. Homogeneity 0.422±0.003 0.415±0.012 0.407±0.004 
avg. Variance 650±140 629±149 819±185 
Predicted dose, ml/s 7.735.455.37
TUO, FNU TUO<1.9 (1.71) 1.9<TUO<5 (4.22) TUO>5 (12.24) 
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Further detailed investigations of flocs and their sedimentation abilities are needed to find the 
correlations between flocs images and sedimentation rates.

4. Conclusions
The tested innovative image acquisition system – floc sensor prototype, proved to produce the im-
ages of flocs enough quality to be further used for troubleshooting, coagulation process faults de-
tection and more efficient coagulant dosage prediction.

Images of flocs quantified by textural image analysis technique – GLCM, were able to distinguish 
coagulation conditions, which lead to insufficient wastewater treatment with high outlet values of 
turbidity.

Coagulant dosages were predicted by wastewater quality parameters and 4 GLCM textural fea-
tures with R2 = 0.92 for calibration and R2 = 0.78 for validation (three factors).

It was found that images of flocs with high values of Homogeneity parameter are related to low 
outlet turbidity values. While images of flocs with higher Contrast, Entropy and Variance values are 
associated with low treatment efficiency (high effluent turbidity).

List of abbreviations
FNU    Formazin nephelometric unit

GLCM   Grey level co-occurrence matrix

DSLR   Digital single-lens reflex (camera)

LED    Light-emitting diode

MP    Megapixels

PC(n)   Principal component

PCA    Principal component analysis

PHI    Inlet pH

PHO    pH after coagulant dosage

PLC    Programmable logic controller

PLSR    Partial least squares regression

QIN    Inlet flow rate

RMSE   Root mean square error

SCADA   Supervisory control and data acquisition

TUI    Inlet turbidity

TUO    Outlet turbidity

Ww    Wastewater

WWTP   Wastewater treatment plant
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