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Abstract

Many pathological conditions, such as seizures, stroke, and spreading depression, are

associated with substantial changes in ion concentrations in the extracellular space (ECS)

of the brain. An understanding of the mechanisms that govern ECS concentration dynamics

may be a prerequisite for understanding such pathologies. To estimate the transport of ions

due to electrodiffusive effects, one must keep track of both the ion concentrations and the

electric potential simultaneously in the relevant regions of the brain. Although this is cur-

rently unfeasible experimentally, it is in principle achievable with computational models

based on biophysical principles and constraints. Previous computational models of extracel-

lular ion-concentration dynamics have required extensive computing power, and therefore

have been limited to either phenomena on very small spatiotemporal scales (micrometers

and milliseconds), or simplified and idealized 1-dimensional (1-D) transport processes on a

larger scale. Here, we present the 3-D Kirchhoff-Nernst-Planck (KNP) framework, tailored

to explore electrodiffusive effects on large spatiotemporal scales. By assuming electroneu-

trality, the KNP-framework circumvents charge-relaxation processes on the spatiotemporal

scales of nanometers and nanoseconds, and makes it feasible to run simulations on the

spatiotemporal scales of millimeters and seconds on a standard desktop computer. In the

present work, we use the 3-D KNP framework to simulate the dynamics of ion concentra-

tions and the electrical potential surrounding a morphologically detailed pyramidal cell. In

addition to elucidating the single neuron contribution to electrodiffusive effects in the ECS,

the simulation demonstrates the efficiency of the 3-D KNP framework. We envision that

future applications of the framework to more complex and biologically realistic systems will

be useful in exploring pathological conditions associated with large concentration variations

in the ECS.
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Author summary

Many pathological conditions, such as epilepsy and cortical spreading depression, are

linked to abnormal extracellular ion concentrations in the brain. Understanding the

underlying principles of such conditions may prove important in developing treatments

for these illnesses, which incur societal costs of tens of billions annually. In order to inves-

tigate the role of ion-concentration dynamics in the pathological conditions, one must

measure the spatial distribution of all ion concentrations over time. This remains chal-

lenging experimentally, which makes computational modeling an attractive tool. We have

previously introduced the Kirchhoff-Nernst-Planck framework, an efficient framework

for modeling electrodiffusion. In this study, we introduce a 3-dimensional version of this

framework and use it to model the electrodiffusion of ions surrounding a morphologically

detailed neuron. The simulation covered a 1 mm3 cylinder of tissue for over a minute and

was performed in less than a day on a standard desktop computer, demonstrating the

framework’s efficiency. We believe this to be an important step on the way to understand-

ing phenomena involving ion concentration shifts at the tissue level.

Introduction

The brain mainly consists of a dense packing of neurons and neuroglia, submerged in the

cerebrospinal fluid which fills the extracellular space (ECS). Neurons generate their electrical

signals by exchanging ions with the ECS through ion-selective channels in their plasma

membranes. During normal signaling, this does not lead to significant changes in local ion

concentrations, as neuronal and glial transport mechanisms work towards maintaining ion

concentrations close to baseline levels. However, endured periods of enhanced neuronal activ-

ity or aberrant ion transport may lead to changes in ECS ion concentrations. Local concentra-

tion changes often coincide with slow shifts in the ECS potential [1–3], which may be partly

evoked by diffusive electrical currents, i.e., currents carried by charged ions moving along ECS

concentration gradients [2, 4]. While concentration gradients can influence electrical fields,

the reverse is also true, since ions move not only by diffusion but also by electric drift. A better

understanding of the electrodiffusive interplay between ECS ion dynamics and ECS potentials

may be a prerequisite for understanding the mechanisms behind many pathological conditions

linked to substantial concentration shifts in the ECS, such as epilepsy and spreading depres-

sion [3, 5–7].

A simultaneous and accurate knowledge of the concentration of all ion species is needed to

make reliable estimates of electrodiffusive effects in the ECS. Although this is currently unfea-

sible experimentally, it is in principle achievable with computational models based on biophys-

ical principles and constraints. However, in most computational models in neuroscience ion-

concentration dynamics are only partially modeled, or are ignored altogether. One reason for

this is the challenge involved in keeping track of all ion concentrations and their spatiotempo-

ral dynamics. Another reason may be the strong focus within the community on modeling the

neuronal membrane dynamics at short timescales, during which both intra- and extracellular

concentration changes are relatively small and putatively negligible. Although there exist mod-

els that account for ion concentration shifts and their effects on neuronal and glial reversal

potentials [8–11], the most common computational models for excitable cells, the multi-com-

partmental models and the cable equation, are based on the assumptions that (i) the ECS

potential is constant (ground), and (ii) the ion concentrations are constant [12, 13]. The

NEURON simulator [14, 15] is based on these assumptions, and although they are physically
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incorrect, they still allow for efficient and fairly accurate predictions of the membrane-poten-

tial dynamics.

Because of assumption (i), multi-compartmental models are unsuited for modeling ECS

dynamics, and several approaches have been taken to construct models which include ECS

effects. A majority of computational studies of ECS potentials are based on volume conductor
(VC) theory [16–21]. VC-schemes link neuronal membrane dynamics to its signatures in the

ECS potential. In contrast to the multi-compartmental models, VC-schemes are derived by

allowing the ECS potential to vary, but still assuming that the ion concentrations are constant.

VC-schemes are attractive, because they offer closed-form solutions, and allow the calculation

of the electric field for arbitrarily large systems. Although it may be reasonable to neglect varia-

tions in ECS ion concentrations on short timescales, the accumulative effects of endured neu-

ronal activity may lead to significant concentration changes in the ECS, which are related to

the aforementioned pathological conditions. Naturally, models that do not include ion-con-

centration dynamics are not applicable for exploring such pathologies. Furthermore, VC-

schemes neglect the effects from diffusive currents on the ECS potentials [4, 22, 23], and in

previous computational studies we have found the low-frequency components of the ECS

potential to be dominated by diffusion effects [4, 24].

A simplified approach to modeling concentration dynamics in brain tissue, is to use reac-

tion-diffusion schemes (see e.g., [25–27]). In these schemes, concentration dynamics are simu-

lated under the simplifying assumption that ions move due to diffusion only. This approach

has been used for many specific applications, giving results in close agreement with experi-

mental data [26]. However, the net transport of abundant charge carriers such as Na+, K+,

Ca2+, and Cl−, is also influenced by electric forces, which is not incorporated in diffusion only

(DO)-schemes. Furthermore, DO-schemes do not include the influence that diffusing ions can

have on the electrical potential.

To account for the electric interactions between the different ion species, as well as the effect

of such electric forces on the ECS potential, an electrodiffusive modeling framework is needed.

The most detailed modeling scheme for electrodiffusion is the Poisson-Nernst-Planck (PNP)

scheme [28–34]. The PNP-scheme explicitly models charge-relaxation processes, that is, tiny

deviations from electroneutrality involving only about 10—9 of the total ionic concentration

[35]. This requires a prohibitively high spatiotemporal resolution, which makes the PNP-

scheme too computationally expensive for modeling the ECS on the tissue scale. Even the

state-of-the-art simulations in the literature are on the order of milliseconds on computational

domains of micrometers. The PNP-scheme is therefore not suited for simulating processes tak-

ing place at the tissue scale [23].

A series of modeling schemes have been developed that circumvent the brief charge-relaxa-

tion processes, and solve directly for the ECS potential when the system is in a quasi-steady

state [4, 23, 36–42]. Circumventing charge-relaxation allows for simulations on spatiotemporal

scales which are larger, compared to what is possible with the PNP-scheme, by several orders

of magnitude. The charge-relaxation can be bypassed by replacing Poisson’s equation with the

constraint that the bulk solution is electroneutral. These schemes have been shown to deviate

from the PNP-scheme very close to the cell membrane (less than 5 Î¼m), but to give a good

agreement in the bulk solution [23]. The simplest electroneutral modeling scheme is the

Kirchhoff-Nernst-Planck (KNP) scheme, previously developed in our group [41, 42]. A similar

scheme was developed in parallel in the heart cell community [40].

The KNP-scheme has previously been used to study electrodiffusive phenomena such as

spatial K+ buffering by astrocytes [41], effects of ECS diffusion on the local field potential [4],

and the implication for current-source density analysis [24]. For simplicity, these previous

applications were limited to idealized 1-D setups with a relatively coarse spatial resolution.
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006510 October 4, 2018 3 / 26

https://doi.org/10.1371/journal.pcbi.1006510


Furthermore, a comparison between the KNP framework and other simulation frameworks

was not included in previous studies.

In the present study, we introduce a 3-D version of the KNP framework which can be used

to simulate the electrodiffusive dynamics of ion-concentrations and the electrical potential

in the ECS on large spatiotemporal scales. We establish in which situations the assumptions

used in the KNP scheme are warranted by comparing it to the more physically detailed PNP

scheme. Furthermore, we identify the conditions under which an electrodiffusive formalism is

needed by comparing the KNP scheme to the VC and DO schemes. The simplified schemes

can be derived from the KNP scheme by assuming, respectively, that (for VC) diffusive effects

on the membrane potential and (for DO) migratory effects on the concentration dynamics are

negligible. Accordingly, the accuracy of the simplifying assumptions can be assessed by com-

paring how close their predictions come to the KNP scheme.

We present the results of three distinct simulation setups, which we will refer to as Applica-

tion 1, Application 2, and Application 3 for the remainder of this study:

In Application 1, we consider an idealized 1-D domain filled with a salt solution, starting

with a nonzero ion concentration gradient. We solve the system using the PNP-scheme, the

KNP-scheme, and a DO-scheme. We compare results on short and long timescales (nanosec-

onds and seconds), to highlight the similarities and differences between the schemes.

In Application 2, we consider a 3-D domain with an ion concentration point source and a

point sink, of equal magnitude, embedded in a standard ECS ion solution. We compare results

obtained with the VC- and KNP-schemes to highlight their similarities and differences.

In Application 3, we consider a morphologically realistic pyramidal neuron model [43])

embedded in a 3-D ECS solution. The neuronal morphology is inserted as a 1-D branching

tree, which means that it does not occupy any volume, but gives rise to a morphologically real-

istic spatial distribution of neuronal membrane current sources or sinks. The ECS dynamics is

computed using the KNP-scheme, and show how concentration gradients gradually build up

in the ECS due to the neural activity, and how this influences the local potential in the ECS.

We compare results obtained with the VC-, DO-, and KNP-schemes to highlight their similari-

ties and differences.

The first two applications are simplified simulation setups, used to better understand the

differences between the schemes introduced above, while the third application is the main

result of this study, as it illustrates the scales at which the KNP-scheme can be used.

To our knowledge, the KNP-scheme is the first simulation framework which can handle

3-D electrodiffusion in neuronal tissue at relatively large spatiotemporal scales without

demanding an insurmountable amount of computer power. For Application 3, the long-term

ECS ion-concentration dynamics (about 100 s) in a spatial region of about 1 mm3 was run on

a standard desktop computer within a day. We expect that the presented simulation frame-

work will be of great use for future studies, especially for modeling tissue dynamics in the con-

text of exploring pathological conditions associated with large shifts in ECS ion concentrations

[3, 5–7].

Materials and methods

This section is thematically split into three parts. We begin by explaining the necessary physi-

cal theory, stating and deriving the equations which we implemented. Then, we explain in

more detail how the models were implemented, including details such as numerical schemes

and boundary conditions. Finally, we give the specific details on each of the three applications

used in the study. The source code can be found online, at https://github.com/CINPLA/

KNPsim, and the results in this study can be reproduced by checking out the tag PLoS.
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Theory

The Nernst-Planck equation for electrodiffusion. The ion concentration dynamics of an

ion species in a solution is described by the continuity equation:

@ck
@t

¼ � r � Jk þ fk; in O; ð1Þ

where ck is the concentration of ion species k, fk represent any source terms in the system, O is

the domain for which the concentrations are defined, and Jk is the concentration flux of ion

species k. In the applications in this study, fk is implemented as a set of point sources at speci-

fied coordinates in the ECS. In the Nernst-Planck equation, Jk consists of a diffusive and an

electric component:

Jk ¼ Jdiff
k þ J

field
k : ð2Þ

The diffusive component is given by Fick’s first law,

Jdiff
k ¼ � Dkrck; ð3Þ

where Dk is the diffusion coefficient of ion species k. The electric component is

J field
k ¼ �

Dkzkck
c
r�; ð4Þ

where ϕ is the electric potential, zk is the valency of ion species k, and ψ = RT/F is defined by

the gas constant (R), Faraday’s constant (F) and the temperature (T) which we assume to be

constant (cf. Table 1). Inserting Eqs 2–4 into Eq 1, yields the time evolution of the concentra-

tion of ion species k:

@ck
@t

¼ r � Dkrck þ
Dkzkck

c
r�

� �

þ fk; in O: ð5Þ

We model the ECS as a continuous medium, while in reality, the ECS only takes up roughly

20% of the tissue volume [44] in the brain. To compensate for this, we use the porous medium

approximation [45]. This involves two changes to the model. The diffusion constants of the

ion species are modified as

~Dk ¼
Dk

l
2
; ð6Þ

where λ is the tortuosity, which accounts for various hindrances to free diffusion and electrical

migration through the ECS. We used the value λ = 1.6 [46]. We denote the fraction of tissue

volume belonging to the ECS by α, and set the value α = 0.2. The sources in the system are

Table 1. The physical parameters used in the simulations.

symbol explanation value

R gas constant 8.314 J/(K mol)

T temperature 300 K

F Faraday’s constant 9.648 × 104 C/mol

�0 vacuum permittivity 8.854 × 10−12 F/m

�r relative permittivity 80

https://doi.org/10.1371/journal.pcbi.1006510.t001
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modified as

~f k ¼
fk
a
: ð7Þ

~Dk and ~f k are the values used in the simulations, and we will refer to these in the remainder of

this study. In this study, we included four ion species: Ca2+, K+, Na+, and a general anion X−

accounting for all negative ions in the system. Their diffusion constants, as well as their steady-

state values assumed for the ECS, are shown in Table 2.

Poisson-Nernst-Planck (PNP) framework. In order to solve the Nernst-Planck equation

(Eq 1), we need an expression for the electrical potential. One common approach is to assume

Poisson’s equation for electrostatics,

r2� ¼ �
r

�
; in O; ð8Þ

where ρ is the charge concentration in the system, and � is the permittivity of the system, given

by � = �r �0, where �0 is the vacuum permittivity, and �r is the relative permittivity of the extra-

cellular medium (cf. Table 1).

The charge concentration is given by the sum of contributions from the different ion spe-

cies,

r ¼ F
X

k2ions

zkck: ð9Þ

Poisson’s equation (Eq 8) combined with the Nernst-Planck equation (Eq 5) is referred to

as the Poisson-Nernst-Planck equations. The PNP-system is defined at all points in space and

gives physically correct results in cases where the continuum approximation for the ions is

valid. However, there are a few challenges involved in solving the PNP system. Firstly, when

neuronal membranes are present in the system, these need to be defined in terms of appropri-

ate boundary conditions. Secondly, the PNP system is numerically very inefficient, because it

models charge-relaxation processes which in the tissue solution take place at the spatiotempo-

ral scales of nanometers and nanoseconds [47, 48].

Kirchhoff-Nernst-Planck (KNP) framework. Several frameworks that assume the system

to be electroneutral at all interior points have been developed to overcome the limitations of

the PNP framework [23, 36–41]. We will here present one of these frameworks, which we have

coined the Kirchhoff-Nernst-Planck framework.

In the KNP framework, the electric field (in Eq 1) is required to be such that:

@r

@t
¼ � ~icap; ð10Þ

at all points in the system. In all the applications of this study, the neural output is imple-

mented as a set of point sources which are known from separate simulations performed in

the NEURON simulator. Here, ~icap is the capacitive component in the source term, which

Table 2. Diffusion constants and baseline ECS concentrations for the ion species considered, with values as in [4].

All ion constants were modified as ~Dk ¼ Dk=l
2
, where λ = 1.6 is the tortuosity. The general anion X− was given the

properties of Cl−.

Na+ K+ X− Ca2+

D (μm2/ms) 1.33 1.96 2.03 0.71

cout (mM) 150 3 155.8 1.4

https://doi.org/10.1371/journal.pcbi.1006510.t002
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exclusively stems from the capacitive current across a neuronal membrane. The bulk solution

is assumed to be electroneutral, so that @ρ/@t = 0 at points where there are no neuronal source.

In other words, the only allowed nonzero charge density in the KNP-system is that building

up the membrane potential across a capacitive membrane.

The rationale behind assuming bulk electroneutrality is that (i) charge concentration will

only deviate from zero on nanometer scales, and that (ii) charge-relaxation occurs within a few

nanoseconds, after which the system will settle at a quasi-steady state where @ρ/@t� 0. Fur-

thermore, the number of ions that constitute the net charge density at equilibrium is about

nine orders of magnitudes smaller than the number of ions present [35]. Hence, if we simulate

neuronal processes that take place at the spatiotemporal resolution of, or larger than, micro-

meters and microseconds, we would expect the bulk solution to appear electroneutral.

Motivated by this, the KNP-scheme bypasses the rapid equilibration process by assuming

that the quasi-steady state is reached instantaneously, and derives the value for ϕ associated

with the equilibrium state. In doing so, the KNP-scheme implicitly neglects the tiny local

charge separation associated with charge-relaxation processes in the bulk. We investigate the

magnitude of this charge separation in the Results-section.

To turn Eq 10 into an equation which can be solved for ϕ, we combine it with Eq 9 to

obtain:

F
X

k2ions

zk
@ck
@t
¼ � ~icap: ð11Þ

Inserting this into the Nernst-Planck equation (Eq 5) gives us:

r � ðsr�þrbÞ þ F
X

k2ions

~f kzk þ~icap ¼ 0; in O; ð12Þ

where σ is the conductivity of the medium, defined as [49]:

s ¼ F
X

k2ions

~Dkz2
k

c
ck; ð13Þ

and

b ¼ F
X

k2ions

~Dkzkck: ð14Þ

Eq 12 is similar to Poisson’s equation, in that it is an elliptic equation that can be solved for

ϕ, assuming that ck is known.

The potential can be separated into the contribution from diffusive effects, and the contri-

bution from the membrane currents. In order to analyze these components separately, we

replace Eq 12 with the following equivalent set of equations:

� ¼ �VC þ �diff ; ð15Þ

where

r � ðsr�VCÞ þ F
X

k2ions

~f kzk þ~icap ¼ 0; in O; ð16Þ

and

r � ðsr�diff þrbÞ ¼ 0; in O: ð17Þ
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Eq 10 ensures that balance between positive and negative ions entering a volume in extra-

cellular space during a given time step is always so that the net charge accumulation is identical

to the change in the (outside) membrane charge, as determined by~icap. However, the capacitive

term ~icap is not ion-specific, and does not enter as a source term in the Nernst-Planck equation

for ion concentration dynamics (Eq 1). This means that the KNP formalism does not specify

which ions that actually accumulate at the membrane, but treats all ions entering a volume as

part of the extracellular solution. The inaccuracy introduced by this approximation should be

small, as the fraction of ions that are membrane bound should be very small at the spatial reso-

lution that we are interested in.

Volume Conductor (VC) framework. Standard VC-schemes include only the effects of

the transmembrane currents, and ignore all other ion-concentration dynamics. Using the stan-

dard notation from current source density theory, the electric potential is found from

C ¼ � r � ½sr��; ð18Þ

where C is the current source density [24]. This is the potential found in Eq 16, if we set the

current source density as

C ¼ F
X

k2ions

~f kzk þ~icap: ð19Þ

As the ECS concentrations are not modeled, σ is typically defined to be constant in VC-

schemes, and current sources are modeled as either point or line sources [50]. This approach

gives a closed-form solution for ϕ, which means it can be applied to arbitrarily large systems.

In this study, when we refer to ϕVC, we mean ϕVC as found in the KNP-scheme (Eq 16). This is

essentially the same as in most common VC-implementations, with the exception that σ in Eq

16 is found from the ion concentrations.

Diffusion Only (DO) framework. Reaction-diffusion schemes ignore all electric forces in

the system. In our implementation, we obtained this by setting ϕ = 0 in Eq 5. The resulting

equation for the concentration dynamics is:

@ck
@t

¼ r � ð~DkrckÞ þ ~f k; in O: ð20Þ

This is the equation used when we refer to the DO-scheme in the Results-section.

Implementation

The solver for the above modeling schemes was implemented utilizing FEniCS, an open-

source platform for solving partial differential equations using the finite element method [51].

The reader is referred to [52] for an extensive introduction to the finite element method. The

time derivative was approximated using an implicit Euler time-stepping scheme. We chose to

use this method as the PNP equations are highly unstable, and the implicit Euler step offers

superior stability to other methods [33]. Employing the implicit Euler step makes the PNP-

scheme fairly stable, at the cost of numerical efficiency. Piecewise linear Lagrangian elements

were used for all unknowns in all simulations [52].

The system was solved monolithically, using Newton’s method to solve for each time step.

Due to limitations of FEniCS’ built-in nonlinear solver, we implemented our own Newton

solver, which is found in the source code. Details on the FEniCS implementation are found in

S1 Appendix.
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Boundary conditions. For the first application, we employed a sealed (no-flow) boundary

for the ion concentrations,

Jk � n ¼ 0; at @O; ð21Þ

where n is a unit vector directed out of the domain, and @O is the boundary of the domain.

For the second and third application, we assumed a concentration-clamp boundary condi-

tion,

ck ¼ ck;out; at @O; ð22Þ

where ck,out was set to typical ECS baseline concentrations, see Table 2. This can be interpreted

as our system interacting with a larger reservoir of ions (the rest of the brain).

In order to maintain overall electroneutrality in the system, the KNP-scheme dictates that

no net charge can leave the system on the boundary. In the current application, we have

applied this criterion locally to each point at the boundary, using the condition:

ðsr�þrbÞ � n ¼ 0; at @O: ð23Þ

Note that this requirement is automatically fulfilled when we use the boundary conditions

in Eq 21, but must be given as an additional condition when the concentration-clamp bound-

ary is used. Furthermore, as we split the potential into the components ϕdiff and ϕVC, we had to

apply boundary conditions to each component. We set the boundary conditions as

ðsr�diff þrbÞ � n ¼ 0; at @O; ð24Þ

r�VC � n ¼ 0; at @O: ð25Þ

In order to compare the PNP- and KNP-schemes directly, we chose the same boundary

condition for the potential in the PNP-scheme.

To make the system fully determined, we set the additional requirement

Z

O

� dx ¼ 0: ð26Þ

Summary of the KNP-scheme

For readability, we include the complete set of equations used in the KNP-scheme.

@ck
@t
� r � ~Dkrck þ

~Dkzkck
c
r�

� �

¼ ~f k; in O; ð27Þ

r � ðsr�VCÞ þ F
X

k2ions

~f kzk þ~icap ¼ 0; in O; ð28Þ

r � ðsr�diff þrbÞ ¼ 0; in O; ð29Þ

ck ¼ ck;out; at @O; ð30Þ

ðsr�diff þrbÞ � n ¼ 0; at @O; ð31Þ

r�VC � n ¼ 0; at @O: ð32Þ
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where we use the following definitions

� ¼ �VC þ �diff ; ð33Þ

s ¼ F
X

k2ions

~Dkz2
k

c
ck; ð34Þ

b ¼ F
X

k2ions

~Dkzkck: ð35Þ

Furthermore, ~f k and ~icap are assumed to be known quantities.

Application details

In the following, we go through the details of the three applications presented.

Application 1: 1-D step concentration. In the first application, which was implemented

using the PNP-, KNP-, and DO-schemes, we used an idealized 1-D mesh with a resolution suf-

ficiently fine for PNP to be stable. Two ion species were included in this setup; Na+ and X−.

We present two simulations using this setup.

1. The first simulation was performed on a mesh on the interval [−0.1 μm, 0.1 μm]. The mesh

had uniformly spaced vertices, with Δx = 0.02 nm. The time step was set to Δt = 0.1 ns. The

simulation was stopped at tend = 0.1 μs.

2. The second simulation was performed on a mesh on the interval [−50 μm, 50 μm], with

Δx = 0.01 μm, and Δt = 1.0 ms. The simulation was stopped at tend = 10 μs.

For both simulations, the initial concentration of both ion species was set to a step function,

as

cðx; t ¼ 0Þ ¼

(
140 mM if x � 0;

150 mM if x > 0:
ð36Þ

Application 2: Point source/sink simulation. For the second application, which was

implemented using the KNP-scheme, we generated a 3-D box-shaped mesh with opposing

corners located at (0 μm, 0 μm, 0 μm) and (400 μm, 400 μm and 40 μm). The mesh consisted

of 27000 linear tetrahedral cells. A K+ point source and a K+ point sink were placed in the sys-

tem. They were placed with a distance of 160 μm apart, at x1 = (120 μm, 200 μm, 20 μm) and

x2 = (280 μm, 200 μ, m20 μm). Both were turned on at t = 0 and shut off at t = 1 s. The point

source/sink pair were given opposites fluxes, of magnitude ±I(Fα)−1, where F is Faraday’s con-

stant, α is the ECS fraction, and I is the input current, set to I = 0.1 nA. The simulation was

started at tstart = 0 s, and stopped at tend = 2 s, with a time step of Δt = 2 ms. Two measurement

points were chosen to create time series of the potential. These were placed at xleft = (120 μ,

m205 μ, m20 μm) and xright = (280 μ, m205 μ, m20 μm) (see Results).

Application 3: Input from a morphologically detailed neuron. In the final simulation

we modeled the ion sources from a morphologically detailed neuron [43], using the KNP-

scheme. The source terms were generated by simulations run on the NEURON simulator. The

spatial location and magnitude of ion specific membrane currents were stored, and used as an

external input to the KNP simulation in the form of ion sinks and sources distributed in the

3-D ECS mesh (i.e., ions entering or disappearing from the ECS), as illustrated in Fig 1A and

1B. The NEURON simulations were run independently from the KNP simulation, which
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means that there was no feedback from the ECS dynamics to the neurons. Apart from deter-

mining the distribution of point sources/sinks, the neuronal morphology was not explicitly

accounted in the KNP simulations. However, the reduced extracellular volume fraction and

the membrane-imposed hindrances (tortuosity) to extracellular transports were accounted for

as a tissue-average, as reflected in the porous medium approximation (cf. Eqs 6 and 7).

Assuming a single point source, located at the point x1 = (x1, y1, z1), with an ion specific cur-

rent Ik(t), the source term for ion species k would be,

~f kðx; tÞ ¼
1

Fzka
IkðtÞd

3
ðx � x1Þ; ð37Þ

where the 3-D Dirac delta function δ3(x) is used to make the source local in space. The 3-D

neuron in separated into NC compartments, with centers at x1; x2; . . . ; xNC . The source term

for ion species k is the sum of the current point sources from all these compartments,

~f kðx; tÞ ¼
1

Fzka

XNC

j¼1

IjkðtÞd
3
ðx � xjÞ; ð38Þ

where IjkðtÞ is the current from compartment j specific to ion species k, at time t. By conven-

tion, we define the current to be positive if there is a flow of positive charge out of the cell. In

addition to the ionic membrane currents Ijk there are also capacitive membrane currents Ijcap.

As capacitive sources are not ion specific, they did not appear as source terms in the Nernst-

Planck equation (Eq 5), but gave rise to source terms in the KNP equation for the extracellular

Fig 1. Model system of a 3-D cylinder of ECS containing a morphologically detailed neuron. (A) The simulated

domain is denoted by O, and the boundary is denoted by @O. Exchange of ions between the neuron and ECS was

modeled as a set of point sources (marked by blue dots). Two measurement points were used to create time series in

the Results-section. These are shown as the green and purple points. (B) Each point source was included as a sink/

source of each ion species, as well as a capacitive current.

https://doi.org/10.1371/journal.pcbi.1006510.g001
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field. (cf. Eq 10):

~icapðx; tÞ ¼
1

a

XNC

j¼1

IjcapðtÞd
3
ðx � xjÞ: ð39Þ

With these source terms (Eqs 38 and 39), the KNP equation (Eq 12) can be written:

r � sr�þrbð Þ þ
1

a

XNC

j¼0

Ijd3
ðx � xjÞ ¼ 0; ð40Þ

where Ij denotes the sum of all ionic and capacitive membrane current at compartment j,

Ij ¼ Ijcap þ
X

k2ions

Ijk: ð41Þ

The delta functions were implemented using the PointSource object in FEniCS, which

will approximate a Dirac delta function at a given point xj by a function using only the closest

points in the mesh.

To generate the ion-specific membrane currents, we used a model developed for cortical

layer 5 pyramidal cells [43], consisting of 196 sections. All ionic currents, as well as the capaci-

tive current, was recorded for each section. The neuron was driven by Poissonian input trains

through 10.000 synapses. The synapses were uniformly distributed over the membrane area,

and were tuned to give the model neuron a firing rate of about five action potentials (APs) per

second. The NEURON simulation was nearly identical to that used by us previously, and we

refer to the original implementation for further details [4]. The only difference is that in the

previous paper, the membrane currents were stored in 1-D compartments based on their posi-

tion in the discretization of the ECS, while in this implementation they were stored as point

sources with 3-D coordinates.

The extracellular space was modeled as a 3-D cylinder with a height of roughly 1500 μm

and a radius of roughly 500 μm. The mesh was automatically generated using mshr [53], yield-

ing a mesh with 53619 linear tetrahedral cells. All ionic concentrations were clamped at the

boundary, to their initial background concentrations (cf. Table 2). The time step was Δt = 0.1

s, and the simulation was stopped at tend = 80 s. An additional simulation was performed using

a smaller time step of Δt = 0.1 ms. Starting with the concentrations found at the end of the

80-second simulation, this secondary simulation was stopped at tend = 80.2 s. The NEURON

simulations were performed using time steps of 0.025 ms. The neuronal output to the extracel-

lular space during an extracellular time step Δt, was computed by integrating the NEURON

simulation outcome over Δt.
Two measurement points were chosen for creating time series of the concentrations. These

are referred to as the green and purple measurement points in the Results-section, and are

shown in Fig 1A. In the computational mesh, with the soma centered at the origin, the green

point was set at xgreen = (20 μm, 20 μm, 20 μm), and the purple point was set near the apical

dendrites, at xpurple = (−100 μm, 1100 μm, 0 μm).

Results

Below we present the results obtained with the three different applications listed in the intro-

duction and methodology. In the first subsection, we have explored the validity of the KNP

framework by comparing it to the PNP framework in a simplified application representing a

box filled with a solution containing only two ion species, Na+ and X−. We also showed that

even for this system, containing no current sources, a DO model gave different results that the
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other models. In the second subsection, we have highlighted the differences between the KNP-

and VC-schemes using an idealized application containing only a single current source and

sink, both mediated by K+ ions. Finally, in the third subsection, we have used the KNP-scheme

to model the ion dynamics and electric potential around a detailed model of a pyramidal neu-

ron. For this final application, we also compared the predictions of the KNP-scheme to those

of the simpler DO- and VC-schemes, and analyzed their differences.

Application 1: Comparison of KNP-, PNP- and DO-schemes for a salt

concentration gradient

The differences and similarities between KNP, PNP and DO were illustrated using the simpli-

fied 1-D domain representing a box filled with a solution containing two ion species, Na+ and

X−, with an initial concentration gradient (see Methods).

When we simulated Application 1 using the PNP-scheme, two distinct modes of behavior

were revealed. Firstly, an initial charge-relaxation mode occurred. During this mode, the X−

concentration spread towards the left side of the box faster than the Na+ concentration, since

X− had a larger diffusion coefficient than Na+. Due to the charge separation caused by this pro-

cess, an electrical potential difference rapidly built up in the system (see blue line in Fig 2A).

The charge separation process only went on for a few nanoseconds, before the system reached

a quasi-steady state. Secondly, a quasi-steady state occurred, in which the potential difference

was such that diffusion and electrical drift were in equilibrium, and further charge separation

was prevented. The quasi-steady state potential changed on a slow timescale of seconds (Fig

2B). This was the timescale at which the concentration differences in the system evened out.

A comparison between the two lines in Fig 2A and 2B highlights the key difference between

the PNP (blue line) and KNP (yellow dashed line) schemes. The KNP-scheme does not model

the relaxation of the charge concentration, but derives the quasi-steady state potential directly.

The results using KNP therefore deviated from those using PNP only on very short timescales

during which the quasi-steady state potential was built up. After the initial charge-relaxation

(t> 5 ns), the two schemes were in excellent agreement.

Fig 2. Electrodiffusion in a simple 1-D system containing no current sources. The system had an initial step

concentration of NaX being 140 mM for x< 0 and 150 mM for x> 0. (A) Dynamics of the potential difference

between the left and right sides of the system on a short timescale. Δϕ is defined as Δϕ = ϕ(xright) − ϕ(xleft), where

xright = 0.1 μm and xleft = −0.1 μm. In PNP simulations, the system spent about 10 ns building up the potential

difference across the system. In KNP simulations, the steady-state potential was assumed to occur immediately. After

10 ns, the schemes were virtually indistinguishable. (B) Dynamics of the potential between xright = 50 μm and xleft =

−50 μm on a long timescale. The PNP- and KNP-schemes gave identical predictions. (C) The concentration profiles in

the system at t = 1.0 s as obtained with KNP, DO and according to the theoretical approximation when NaX develops

as a single concentration moving by diffusion with a modified diffusion coefficient.

https://doi.org/10.1371/journal.pcbi.1006510.g002
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In theoretical studies of binary systems of ions, it has been shown that the ion concentra-

tions will develop approximately as a single particle species moving by simple diffusion with a

modified diffusion coefficient [54],

~DNaX ¼
2~DNa

~DX

~DNa þ
~DX

: ð42Þ

In Fig 2C the ion concentration profiles obtained with this theoretical approximation have

been compared to a KNP-based simulation, as well as a DO-simulation where the electric

charge of the ions was ignored, so that they were allowed to diffuse independently. The KNP

solution was in agreement with Eq 42, and shows that the anion and cation concentrations

coincided closely due to the strong electrical forces that would be associated with charge sepa-

ration. This comparison highlights the shortcomings of the DO-model, which (i) gave inaccu-

rate predictions of the two ion-concentration profiles, and (ii) predicted that the twin ion

species were not locally balanced, so that the system contained a charge density ρ = F(cNa−cX)

which varied over the x-axis. According to the Poisson equation (Eq 8), the charge density

associated with the concentration profiles in Fig 2C would amount voltage differences of 247

kV across the system, which is clearly not physically realistic.

Application 2: Comparison of KNP- and VC-schemes for an ion source-

sink pair

We next compared the KNP-scheme with the simpler VC-scheme for computing ECS poten-

tials. We first did this for an idealized setup, using the computational domain of a 3-D

box consisting of the extracellular domain. The initial ion concentrations were uniform, with

values from Table 2. The box contained one K+ point source, and one K+ point sink, with

equal magnitudes (see Methods).

The electrical potential ϕ at the end of the stimulus period (t = 1 s) is shown in Fig 3A. The

resulting electrical potential could be split into two contributions, i.e., the contribution from

the source and sink currents, ϕVC (Fig 3B), and the contribution from the diffusive currents in

the ECS, ϕdiff (Fig 3C).

In this simulation, ϕVC had a constant value which was reached immediately when the

source and sink were turned on, and remained constant throughout the stimulus period since

the source and sink were constant. This was not the case for ϕdiff, which was close to zero at

t = 0, but increased gradually throughout the simulation, as concentration gradients built up in

the system. The diffusion potential ϕdiff was quite local, and gave strongest contribution close

to the source and sink (Fig 3C).

The differences between the KNP scheme and VC scheme are illustrated in Fig 3D, which

shows the potential difference between two points close to the source and sink. VC and KNP

gave similar estimates of the potential ϕ only for a brief period after the source and sink had

been turned on, when the contribution from diffusion was still small. As the simulation pro-

gressed, the local build-up of ion concentrations evoked a shift in the KNP-simulated potential

ϕ, but left ϕVC unaffected. The difference between the schemes ϕ − ϕVC is identical to the diffu-

sion potential ϕdiff, which is not accounted for by the VC scheme. The diffusion component

had a sort of screening effect, reducing the potential difference between the source and sink

compared to what we would predict in the absence of diffusion (i.e. |ϕ|< |ϕVC|). After roughly

0.1 seconds, ϕdiff had lowered ϕ by about 5%, compared to what the VC model predicted. This

effect lasted until the source and sink were turned off (Fig 3D). After this, ϕVC immediately

dropped to zero, while in the KNP-scheme, a diffusion potential ϕdiff remained. In the absence

of sources, ϕdiff decayed gradually until system reached a steady state.
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Application 3: Ion dynamics in the ECS of a morphologically detailed

neuron

Finally, we used the KNP-scheme to model electrodiffusion in a 3-D cylinder containing a

morphologically detailed neuron (Fig 1A). The neuron was represented as a set of point

sources and sinks that had a spatial distribution representing the neuronal morphology, and

which exchanged ions with the system as illustrated in Fig 1B (see Methods for details). Since

ECS ion concentrations generally vary on a slow timescale (order of seconds), the system was

simulated for 80 s. Due to the efficiency of the KNP-scheme, we could run this simulation in

less than 15 hours using 4 CPU cores in parallel on a standard desktop computer.

Concentration gradients in the ECS caused by neuronal membrane currents. Due to the

slow nature of diffusion, the concentration changes clearly reflected the presence of neuronal

sources/sinks. This can be seen in the snapshots of the ion-concentration profile surrounding

the neuron after t = 80.0 s of neural activity (Fig 4). The largest changes were seen for the Na+

and K+ concentrations near the soma and axon hillock. This reflects the strong neuronal output

of K+ and uptake of Na+ from the soma-near regions during action potentials. Animations that

show the time evolution of the concentrations were also created (see S1 Animations).

Fig 3. Application with a K+ point source/sink pair in a 3-D box containing a standard ECS ion solution. The

source and sink were turned on at t = 0 s, and turned off at t = 1 s. The simulation was stopped at t = 2 s. (A) The total

electrical potential ϕ at the end of the stimulus period (t = 1.0 s) in a plane intersecting the source and sink. (B) The

volume conductor component of the electrical potential, ϕVC. (C) The diffusive component of the electrical potential

ϕdiff. (D) The difference in the electric potential between points close to the point sources (blue line), also shown is the

differences in the VC component of the potential (stapled yellow line). Δϕ is defined as Δϕ = ϕ(xleft) − ϕ(xright), where

xleft and xright were points 5 μm away from the left and right, respectively (see Methods).

https://doi.org/10.1371/journal.pcbi.1006510.g003
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The effect of electrical fields on extracellular ion dynamics. In general, ions move both

by electrical drift and diffusion. To explore the relative effect of these transport processes on

the ECS ion-concentration dynamics, we compared two simulations where (i) ions moved by

independent diffusion as predicted by the DO-scheme, and (ii) where ions moved due to elec-

trodiffusion as predicted by the KNP-scheme. The two schemes were compared by looking at

time series for the ion concentrations at two selected measurement points, one near the soma

(green), and one near the apical dendrites (purple), as indicated in Fig 4. The concentration

time series obtained with the KNP-scheme are shown in Fig 5A and 5B, for the green and pur-

ple measurement points, respectively. In the remaining panels of Fig 5, the KNP and DO-

schemes are compared.

At the measurement point near the soma (Fig 5C–5F), the KNP- and DO-schemes gave

similar predictions for all ion species except X− (Fig 5E). To explain this, we separate the local

concentration dynamics into (i) a component due to neuronal uptake/efflux, (ii) a component

due to ECS diffusion, and (iii) a component due to ECS electrical drift. The first two compo-

nents (i-ii) were shared between the KNP- and DO-schemes, and the differences between the

schemes were due to the latter component, which was absent from the DO-scheme. The

Fig 4. (A)-(D)The change in ionic concentration for Ca2+, K+, Na+, and X−, respectively, as measured at t = 80 s,

compared to the initial concentration. Δck is the change in concentration from the initial value, defined as Δck = ck(t)
− ck(0). The concentrations were measured in a 2-D slice going through the center of the computational mesh, and the

neuron morphology was stenciled in. The green and purple dots signify selected measurement points in the ECS near

the soma (green) and apical dendrites (purple) of the neuron, which are reference points for the analysis in the

following sections.

https://doi.org/10.1371/journal.pcbi.1006510.g004
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Fig 5. Ion concentration dynamics at selected measurement points. The locations of the measurement points were

in the ECS near the soma (green) and apical dendrites (purple) of the neuron. Δc(t) is the change in concentration

from the initial value, defined as Δc(t) = c(t) − c(0). (A)-(B) Dynamics of all ion species as predicted by the KNP-

scheme. (C)-(F) A comparison between the KNP and DO predictions at the measurement point near the soma. (G)-(J)

A comparison between the KNP and DO predictions at the measurement point near the apical dendrites. (C)-(J) To
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component (iii) represents ions being electrically forced into a local region to ensure local elec-

troneutrality, and would in principle affect the dynamics of all ion species. The reason why the

effect was small in the case of Na+ and K+, is that the concentration changes of these ions were

dominated by (i) the neuronal uptake and output during AP firing, and less so by (ii-iii) elec-

trodiffusion in the ECS. The reason why the relative effect of electrical drift was larger for X−

than for Ca2+ is twofold. First, X− had a larger diffusion constant than Ca2+, and was therefore

more mobile (cf. Table 2). Secondly, the number of electrically migrating ions is proportional

to the abundance of a given ion species (cf. Eq 4), as well as the valence of the ion species. Even

though Ca2+ has a larger valence than X−, as X− was a significantly more abundant than Ca2+

in the ECS (cf. Table 2), we would expect X− to be most affected by electrical drift.

In the apical dendrites, the membrane currents were not dominated by the AP exchange of

Na+ and K+, and shifts in the different ion concentrations were more similar in magnitude. At

the measurement point near the apical dendrites, the KNP and DO predictions deviated for all

ion species (Fig 5G–5J). The deviations were largest for Na+ and X−, which again reflects the

fact that these were the two most abundant ion species in the ECS (cf. Table 2).

The exact nature of the ECS dynamics in Fig 5 depended on the specific distribution of ion

channels in the selected neuronal model. Although this model choice was somewhat arbitrary,

these simulations still serve as a clear demonstration that ECS ion dynamics in general is of

electrodiffusive nature, and thus depend on effects that are not accounted for by a DO-

scheme.

Local effects of diffusion on the extracellular potential. Above, we saw that the ECS

potential could influence the local ion-concentration dynamics. Here, we explore how the ion-

concentration dynamics can influence the local potential ϕ. We first study a low-pass filtered

version of ϕ by taking the average over a 100 ms interval. Fig 6A shows the spatial profile of the

low-pass filtered ϕ at t = 80 s, while Fig 6B and 6C show the diffusion component (ϕdiff) and

VC component (ϕVC) of ϕ, respectively. Evidently, the two components had similar ampli-

tudes, which means that ECS diffusion gave a substantial contribution to the total potential ϕ.

generate the DO predictions, we set the ECS field to zero, which ensured that the ECS dynamics was due to diffusion

only.

https://doi.org/10.1371/journal.pcbi.1006510.g005

Fig 6. Spatial profile of the ECS potential at a selected time point. The ECS potential was averaged over a 100 ms

interval between t = 79.9 s and 80 s. This averaging low-pass filters the potential. (A) ECS potential as predicted by the

KNP-scheme. (B) The VC component of the potential. (C) The diffusive component of the potential.

https://doi.org/10.1371/journal.pcbi.1006510.g006
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It should be noted that this conclusion is based on the low-pass filtered version of the signal,

and that the higher frequency components are studied below.

Interestingly, the simulations demonstrated that ϕdiff was much more local than ϕVC.

Whereas the membrane currents generated potential fluctuations over the entire simulated

region, the ϕdiff contributions were confined to the regions of space where concentration gra-

dients were nonzero. Since diffusion is a slow process, only a relatively small region of about

200 μm around the neuron was affected during the 80 s simulation. The local nature of ϕdiff

implies that ϕVC gives a good estimate of ϕ in regions where concentration gradients are small,

even if diffusive effects are present in other regions of the system.

To compare ϕVC to other common implementations of the VC-scheme, we note that for

other implementations, σ is usually kept constant in the entire domain. We measured σ
throughout the domain for the whole simulation, and found that it varied by about at most

0.001%, which means that this result is essentially the same as what would be found by the tra-

ditional implementation of the VC-scheme, given that the same boundary conditions are used.

Diffusive currents affect the low-frequency part of the LFP. To gain further insight in

how diffusion can affect ECS potentials, we also explored the temporal development of ϕ at

two selected measurement points (marked in green and purple in Fig 6). Fig 7A and 7B show

the dynamics of ϕ (blue curve) during an 80 seconds simulation, as well as its components ϕVC

(orange curve) and ϕdiff (green curve). Again, each data point represents the average over a 100

ms interval, so that ϕ was effectively low-pass filtered. As we also saw above, the low-frequency

contributions of ϕVC and ϕdiff were similar in magnitude (and opposite in sign).

The time series clearly showed that ϕVC varied more rapidly in time than ϕdiff. Even when

low-pass filtered, ϕVC fluctuated several times between about 0.5 and 1.5 μV during the 80 s

simulation, while ϕdiff underwent an almost monotonous decrease from zero towards -1 μV

(Fig 7A).

Due to the slow nature of the diffusive currents, their contribution to the ECS potentials

was close to DC-like, and we would therefore not expect diffusion to have an impact on brief

signals, such as extracellular AP signatures. We verified this in an additional simulation, which

started (with the ECS concentrations) at t = 80 s, and which used a smaller time step (0.1 ms)

in order to simulate an AP with sufficient temporal resolution. The simulation was run for 200

ms, and an AP was observed at roughly t = 80.18 s.

Fig 7C and 7D shows the time course of ϕ (blue curve) and ϕVC (orange curve) during the

AP. The constant offset between the two curves was due to the diffusive contribution ϕdiff,

which was accounted for by ϕ, but not by ϕVC. In the apical dendritic region, the offset was of

comparable magnitude to the amplitude of the AP signature (Fig 7C). The diffusion evoked

offset was even larger outside the soma, but its relative impact on ϕ was smaller, since ϕVC

there varied by more than 100 μV during the AP (Fig 7D). The offset was seen to distort the

shape of the AP signature at either of these points. Hence, we can conclude that diffusion can

have a strong effect on the low-frequency components of ϕ, but that the high frequency com-

ponents are unaffected by diffusion. This conclusion is in line with what we found in previous

studies based on simpler, 1-D implementations of the KNP-scheme [4, 24].

Discussion

In the current work we presented a 3-D version of the electrodiffusive KNP-scheme, and used

it to simultaneously simulate the dynamics of ion concentrations and the electrical potential in

the ECS of a piece of tissue containing a morphologically realistic distribution of neuronal cur-

rent sources/sinks. We demonstrated the applicability of this simulation framework by com-

paring it to the more physically detailed, but more computationally demanding PNP-scheme
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(Fig 2). Furthermore, we demonstrated the need for an electrodiffusive simulation framework

by showing (i) how its predicted ion concentrations deviated from predictions obtained with

the diffusion only (DO) scheme, which ignores concentration variations due to electrical drift

in the ECS (Figs 2 and 5), and (ii) how its predicted potentials deviated from predictions

obtained with the volume conductor (VC) schemes, which ignores voltage variations due to

diffusive currents in the ECS (Figs 3, 6 and 7).

To our knowledge, the presented model is the first in the field of computational neurosci-

ence that can handle electrodiffusive processes in 3-D on spatiotemporal scales spanning over

millimeters and seconds without demanding an insurmountable amount of computer power.

Even the most resource-demanding simulations presented here could be performed in about

15 hours on a normal stationary computer, and we believe that simulation efficiency can be

improved even further if we select an optimal numerical scheme for KNP. In the current work,

all simulations were run using an implicit Euler time-stepping scheme. This choice was mainly

based on the requirements of the PNP-scheme, which requires an implicit scheme in order to

not become unstable. The KNP-scheme is, however, much more stable than the PNP-scheme,

Fig 7. Dynamics of the ECS potential at selected measurement points. The selected measurement points were in the

ECS near the soma (green) and apical dendrites (purple) of the neuron. (A)-(B) Dynamics of the ECS potential for the

first 80 s of the simulation. Each data point represent an average over a 100 ms time interval, which effectively low-pass

filtered the signal. (C)-(D) High resolution time series for the ECS potential during a neural AP. The data were not

low-pass filtered, but had a temporal resolution of 0.1 ms.

https://doi.org/10.1371/journal.pcbi.1006510.g007

Modelling large scale electrodiffusion surrounding morphologically detailed neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006510 October 4, 2018 20 / 26

https://doi.org/10.1371/journal.pcbi.1006510.g007
https://doi.org/10.1371/journal.pcbi.1006510


and in future KNP implementations we will investigate the possibility of using an operator-

splitting approach for the numerical solver, which would likely improve the efficiency of the

simulations.

Model limitations

The presented implementation of the 3-D KNP-scheme was limited to a relatively small piece

of neural tissue, which included only a single pyramidal neuron modeled with the NEURON

simulator. Although this approach provided clarity regarding the possible single-neuron con-

tribution to the ECS electro- and concentration dynamics, there are many reasons why this

simulation setup was far from representative for any biologically realistic scenario.

Firstly, the brain is packed with neurons and glial cells, and even the small volume consid-

ered here would in reality be populated by thousands of neurons that would contribute to the

ECS dynamics. In a realistic scenario, ECS concentration shifts may become much larger than

for the single-neuron case, where the maximal changes in ion concentration were roughly 1%

(for K+ near the soma). Accordingly, the effects of electrodiffusion in the single neuron-setup

used here were small, and the simulations in Application 3 should predominantly be regarded

as a proof of principle, and as a precursor for what could be expected in more realistic scenar-

ios with additive contributions from networks of neurons to extracellular ion dynamics.

Secondly, the simulations were performed under the simplifying assumption that there

was no feedback from the ECS dynamics to the neurodynamics. This assumption gave us the

advantage that the neuronal output did not depend on the modelling scheme used for the ECS

dynamics, meaning that VC-, DO- and KNP-schemes could be compared under identical

input/output conditions. In reality, however, shifts in extracellular (or intracellular) concentra-

tions would influence the reversal potential of transmembrane currents, which in turn would

have an impact on the neurodynamics (see [8–11]), and these effects are not accounted for in

the current model. In addition, simulations based on the NEURON simulator do not account

for ephaptic feedback from extracellular fields onto neurons, which could also have moderate

impact on neurodynamics (see [55]).

Thirdly, the neuron model used in our study did not include the Na+/K+-exchanger pump

[43]. This is the case for most neuron models currently available in NEURON (for a model

with ion pumps, see [56]). Together with astrocytic uptake mechanisms, the exchanger pump

would strive towards maintaining extra- and intracellular ion concentrations close to baseline

levels. For a biophysical modeling scheme that derives the transmembrane transport through

channels and pumps from first principles, see e.g., [57, 58]. In the presence of such mecha-

nisms, the single-neuron contribution to ECS concentration shifts would likely be smaller

than in the simulations presented here, or would require a higher neural activity level in order

to occur. The model limitations mentioned above were also present in the previous 1-D imple-

mentation of the KNP-scheme, and we refer to this previous work for a more thorough discus-

sion [4].

Previous models of ECS electrodiffusion

Several previous studies have explored ECS electrodiffusion on small spatiotemporal scales

[23, 28–34, 36–39]. Electrodiffusive models tailored to explore larger spatiotemporal scales

have to our knowledge so far only been implemented in 1-D [4, 24, 40–42].

We have previously used a 1-D implementation of the KNP-scheme to explore the effect of

diffusive currents on ECS potentials [4]. Qualitatively, the results from the 1-D simulations

were similar to those found in the current 3-D model, and in both cases it was concluded that

diffusive currents affected the low-frequency components of ECS potentials (Fig 7). In the 1-D
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implementation, diffusion and electrical drift were confined to the spatial direction along the

neuronal extension, i.e. along the basal dendrite-soma-apical dendrite axis, and did not occur

in the lateral direction. As discussed in [4], the 1-D assumption is equivalent to assuming lat-

eral homogeneity, which means that any neuron is surrounded by neighboring neurons with

identical activity patterns as itself. Clearly, this is would not apply to most biological scenarios,

which means that the results obtained with the 3-D implementation are generally more reli-

able. In contrast to the 1-D model, the 3-D model predicts how ion concentrations vary in all

spatial directions surrounding the neuronal sources, and can thus be applied to a broader

range of biological problems.

The diffusion potentials addressed by the KNP-scheme are those that arise due to ECS con-

centration gradients on relatively large spatial scales. Diffusion potentials of this kind are often

referred to as liquid junction potentials, since they are most pronounced at the boundary

between two solutions of different ion compositions [35, 59]. These diffusion potentials

are unrelated to filtering effects hypothesized to arise due to diffusion in the vicinity of the

membrane when electric charge is transferred from the intracellular to the extracellular space

[60, 61].

Outlook

The presented version of the KNP-scheme was developed for use in a hybrid simulation setup

where the dynamics of ion concentrations and the electrical potential in the ECS were com-

puted with KNP, while the neurodynamics was computed with the NEURON simulator tool.

By necessity, this scheme shares the limitations of the NEURON simulator in terms of han-

dling intracellular ion dynamics, which by default is not electrodiffusive in the NEURON envi-

ronment [14]. A natural future endeavor will therefore be to derive a computational scheme

that in a consistent way couples both the intra- and extracellular ion-concentration and voltage

dynamics based on the KNP-scheme. Such a scheme will represent a generalization of the pre-

viously developed extracellular-membrane-intracellular (EMI) model [55, 62], which in a con-

sistent way couples the intra- and extracellular electrodynamics, but so far does not include

ion-concentration dynamics and thus not diffusive currents.

This being said, the hybrid KNP/NEURON version presented here is valuable in its own

right, since it allows the KNP framework to be combined with the many models that are

already available in the NEURON software. Although we here only studied a single neuron’s

contribution to the ECS electro- and concentration dynamics, we envision future applications

of the 3-D KNP to more complex systems. The 3-D version of the KNP-scheme is generally

applicable, and could be used to simulate the dynamics of ion concentrations and the electrical

potential in the ECS surrounding arbitrary complex models of neurons or populations of neu-

rons. It could, for example, be used to account for extracellular transport processes in the Blue

Brain Simulator [63]. If combined with a cellular system of neurons and glial cells tailored to

represent a specific experimental condition, the KNP-scheme could be used to explore the

mechanisms behind spreading depression [3, 7, 64], epilepsy [5, 65], or other pathological con-

ditions associated with large shifts in extracellular ion concentrations. In such applications,

however, the hybrid KNP framework would need to be expanded to also account for the effect

of ECS concentration dynamics on neuronal reversal potentials. This would require the devel-

opment of an application programming interface that allows two-way communication

between the simulator tools NEURON (for neurons) and FEniCS (for ECS). Since neurody-

namics typically occurs at a much faster time scale (millisceonds) than changes in ECS ion

concentrations (seconds), the interface could be based on using multiple time scales in order

to keep the computational cost manageable. For example, a millisecond resolution could be
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used in NEURON simulations, while ECS concentrations could be computed (and updated in

NEURON) at a slower temporal resolution of e.g., seconds.

Supporting information

S1 Animations. Animations of the ion-concentration dynamics. Animations of the temporal

evolution of the ion concentrations were created using ParaView. The neuron morphology

was stenciled in.
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S1 Appendix. Details on the FEniCS implementation.
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