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Sammendrag 

Menneskets tarm inneholder et komplekst samfunn av mikroorganismer som har en direkte 

innvirkning på vår helse. Basert på observerte mikrobielle mønster kan en balansert 

sammensetning defineres, kjent som normobiose. Avvik fra en slik balansert tilstand kalles 

dysbiose og har blitt knyttet til flere sykdommer. En test som har blitt utviklet for påvisning 

av dysbiose er GA-map® Dysbiosis Test. Denne testen er svært spesifikk og effektiv, men 

også relativt arbeidskrevende og dyr, noe som har ført til ønsket om å supplementere fast-

fase plattformen som brukes i dag med en flytende en. Hensikten med denne oppgaven var 

å undersøke muligheten for et slikt supplement, ved å teste 20 av innmerkingsprobene som 

blir brukt i dagens GA-map® Dysbiosis Test med en ny teknologi kalt Liquid Array Diagnostics 

(LAD). Denne teknologien er basert på en kombinasjon av Single Nucleotide Primer 

Extension og High Resolution Melting. Hele prosessen finner sted i løsning og inkluderer ikke 

et rensing- og separeringssteg, noe som gjør teknologien mer effektiv, samt mindre utsatt 

for forurensning, enn mange andre genotypingsmetoder på markedet i dag. 

Det ble først laget komplementære deteksjonsprober til de 20 innmerkingsprobene, slik at 

hvert probepar hadde et spesifikt smeltepunkt. For å undersøke probenes kompatibilitet 

med LAD ble de testet på renkulturer av målbakterier. Deretter ble LAD utført på en mer 

kompleks prøve som inneholdt 11 forskjellige bakteriekulturer for å sikre at tydelige signaler 

fortsatt kunne oppnås. Til slutt ble LAD testet på avføringsprøver som tidligere hadde blitt 

diagnostisert av Genetic Analysis AS, samt at statistiske analyser ble utført for å undersøke 

LADs diagnostiserende evne.  

Resultatene i denne oppgaven viste at LAD kan identifisere minst 15 mål samtidig, og det er 

forventet at videre optimalisering vil øke kapasiteten ytterligere. I tillegg ble det 

demonstrert at LAD kan skille mellom normobiose og dysbiose, og de fleste probene viste en 

sterk assosiasjon med en av de to tilstandene. Denne oppgaven har dermed vist at LAD kan 

være et lovende supplement til fast-fase plattformen som benyttes i dagens GA-map® 

Dysbiosis Test, selv om videre optimalisering er nødvendig. LAD krever ingen 

bakteriedyrking, er økonomisk, enkel og rask, og er kun avhengig av standardutstyr som er å 

finne i de fleste mikrobiologiske laboratorier. Teknologien har potensiale til å bli et svært 

verdifullt verktøy for diagnostisering, og kan i tillegg gi viktige bidrag til områder som 

personlig tilpasset behandling, ernæring, og presisjonsmedisin.  



 
 
 
 

Abstract 

The human gut contains a complex community of microorganisms that impact our health 

and general well-being. Based on observed microbial patterns, a balanced composition can 

be defined, known as normobiosis. Deviations from such a state is termed dysbiosis and 

have been linked to several medical conditions. A current assay designed for detection of 

dysbiosis is the GA-map® Dysbiosis Test. This test is quite specific and efficient, but also 

relatively labor-intensive and expensive, which has led to the desire to supplement the solid-

phase platform that is currently being used with a liquid one. This thesis aimed to investigate 

the possibility of such a supplement by testing 20 of the labelling probes (LPs) used in the 

current GA-map® Dysbiosis Test with a novel technology called Liquid Array Diagnostics 

(LAD). This technology is based on a combination of Single Nucleotide Primer Extension and 

High Resolution Melting. The entire process takes place in solution, and does not include a 

purification and separation step, making the technology more efficient and less prone to 

contamination than many other genotyping methods on the market today. 

Complementary reporter probes were designed for the 20 LPs, so that each probe duplex 

had a specific melting temperature. To investigate the compatibility of the probes with LAD 

they were tested on pure cultures of target bacteria. LAD was then performed on a more 

complex sample containing 11 different bacterial templates to ensure distinguishable probe 

signals could still be achieved. Finally, LAD was performed on fecal samples that had 

previously been diagnosed by Genetic Analysis AS, and statistical analyses were conducted 

to investigate the diagnostic ability of the technology.  

The results showed that LAD can detect at least 15 targets simultaneously, and it is expected 

that further optimization will increase this number. In addition, it was demonstrated that 

LAD can distinguish between normobiosis and dysbiosis, and that most of the probes 

showed a strong association with one of the two states. This thesis has thus shown that LAD 

is a promising supplement to the solid-phase platform used in the GA-map® Dysbiosis Test 

today, although further optimization is needed before the technology can be implemented.  

LAD requires no bacterial growth, is economical, easy and rapid, and relies only on standard 

equipment found in most microbiology laboratories. The technology thus has the potential 

of becoming a highly valuable tool for diagnostics, and can provide important contributions 

to areas such as personalized treatments, nutrition and precision medicine.  
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1. Introduction 

1.1    The human body as an ecosystem 

The human body is a highly complex system, with many elements affecting its health and 

general well-being. Mankind has always strived to understand the causes of diseases and 

conditions, and in recent years more attention has been directed at the importance of the 

gastrointestinal (GI) tract, and the organisms that reside there.  

The type and abundance of microorganisms found in the various parts of the GI tract varies 

greatly based on the microbes’ physiological needs and resistance to unfavorable elements. 

The mouth is nutrient-rich and contains a large number of microbes. This number rapidly 

declines when reaching the stomach, where the acidic gastric fluid makes for a very 

unfriendly environment for most microorganisms. The first part of the small intestine 

contains a limited microbiota due to stomach acid, bile and pancreatic secretions, while the 

last part contains a microbiota that is more similar to that of the large intestine (1).  

The large intestine contains a substantial community of microbes with a great variety of 

bacterial genera (1). Many of the microorganisms found there are beneficial to us, as they 

perform such tasks as extracting energy and nutrients from food and drink, regulating the 

storage of fats, protecting against pathogens, performing detoxification, and participating in 

training, development and maintenance of our immune system (1, 2, 3, 4, 5, 6, 7).  

1.1.1    Development of the human gut microbiota 

Up until quite recently, it was believed that the development of the gut microbiota of an 

individual didn’t start until birth. However, studies have found that colonization starts even 

before a baby is born (8, 9, 10, 11), as microbes have been found in the placenta (9, 10), 

umbilical cord (11), amniotic fluid (12, 13) and the meconium of healthy newborns (14, 15, 

16). This may suggest that these first colonizers play a role in human development and 

preparation for a life outside of the womb (14). The pre-birth colonization seems to be 

affected by the length of gestation, as full-term infants are usually colonized by members 

from phyla Actinobacteria, Proteobacteria and Bacteroidetes, with low quantities of 

Firmicutes, while premature infants are often dominated by the Firmicutes and Tenericutes 

phyla, and less by Actinobacteria (8, 10, 17). 
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The first few days after birth entail major microbe colonization, and a difference in bacterial 

composition can be seen early on based on how the child was delivered. A vaginal birth will 

expose the infant to microbes found in and around the birth canal, and will mostly be from 

the mother. A child born by cesarean section, however, is not exposed to these vaginal 

microbes, and instead can be seen to be colonized by microorganisms associated with skin, 

many of which will stem from persons other than the mother, such as nurses, doctors, and 

family members (1, 3, 4, 17, 18). The early colonization is important for training and 

development of the immune system and, if disturbed, can lead to problems later in life in 

the form of, for example, allergies (1, 3, 19). In addition, the colonizers are important for 

digestion of dietary substances and xenobiotics, for triggering the intestine to mature, and 

for preventing pathogen colonization (1, 3, 18).  

In the following days, weeks, months and years of an individual’s life, the composition of the 

microbiota will change significantly based on many different factors such as genetics, 

hygiene, environment and nutrition. At around 2-5 years of age the microbiota reaches a 

more stable state associated with adults, and it is believed that the initial colonization of the 

infant gut affects the subsequent stages into the more complex adult microbiota (1, 3, 10, 

18). When an adult-like microbial composition has been settled, evidence suggests that 

while short-term perturbations, caused by for example infections or use of antibiotics, may 

occur from time to time, the long-term composition usually remains stable and resistant to 

disturbance (1, 3, 4, 7, 8).  

1.1.2    The adult gut microbiota  

The gut microbiota of healthy adults consists mostly of facultative and obligate anaerobes (6, 

8). The composition varies between individuals at lower taxonomic levels due to differences 

in for example genetics, age, gender, environment and diet, but at the higher taxonomic 

levels, certain compositional trends are usually shared (1, 3, 17, 20, 21, 22).  

The large intestine is mainly dominated by members of the phyla Bacteroidetes and 

Firmicutes, followed by phyla Proteobacteria and Actinobacteria, with Bifidobacterium being 

the main genus (1, 5, 21, 22, 23). Other genera that are often detected are Bacteroides, 

Eubacterium, Clostridium, Ruminococcus and Faecalibacterium (1, 4, 5, 7, 17, 24).  
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Compared to the large intestine, there has been little investigation into the composition of 

the small intestine, mostly because this area of the body is harder to access. Studies that 

have been carried out on adults show that it is dominated by bacteria from the genera 

Streptococcus, Clostridium and Veillonella (4, 25, 26, 27). However, the composition 

fluctuates, and the bacterial profile can be quite different in the morning and the afternoon. 

The large intestine on the other hand has been shown to be quite stable over long periods of 

time, and the overall core composition of bacteria in the human gut seems to remain 

relatively constant within an individual over time (20, 27).  

The tasks performed by the microbiota in the gut are numerous, and still more roles are 

being revealed. For example, Bifidobacterium species in the colon perform fermentation, 

which results in the products propionate and acetate. The former product affects the ability 

of the adaptive immune system to recognize foreign molecules by upregulating a type of 

white blood cells known as T cells, while the latter participates in reduction of inflammation, 

among other things (1, 6, 22, 24). Other bacteria commonly found in the colon have also 

been associated with anti-inflammatory effects (1, 6, 22, 24).  

Another example of beneficial bacteria are members of the Bacteroidetes phylum, who fulfill 

several important functions such as producing exoenzymes that degrade certain complex 

carbohydrates like pectin and hemicellulose. These members, along with other microbes, are 

also needed in the development of a component of humans’ pathogen defense called the 

gut-associated lymphoid tissue. In addition, they are linked to protection against food-

related ailments, among other things (1).  

It has been found that there is less variation in functional diversity between individuals than 

taxonomic diversity, indicating that different configurations of microorganisms in the gut 

lead to the same functions being fulfilled (3, 17, 28).  

As the understanding of the patterns of microbial composition and function in the gut has 

increased, a recognition of what is considered a healthy gut and what is seen as a disturbed 

one have emerged, and with it, a realization of just how important a balanced microbiota is 

to our health.  
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1.2    Normobiosis and dysbiosis 

Due to the observed shared trends and patterns among individuals, a healthy state of the 

gut, called normobiosis, can be defined for specific populations based on a characteristic 

composition and proportion of bacteria. A deviation from such a healthy state, in which the 

relationship between the microorganisms and the host has become dysfunctional, is termed 

dysbiosis, and can occur as a result of disturbances such as illness, change in diet, weight, 

aging, stress, or use of antibiotics and other medications (2, 3, 5, 6, 20, 29, 30). For some 

people a deviation from normobiosis has no noticeable negative associations. For others, 

however, dysbiosis has been linked to various medical conditions, indicating that the shift in 

the gut microbiota is somehow correlated with disease (3, 5, 6, 20, 28, 31, 32, 33, 34, 35). 

Examples of such medical conditions are irritable bowel syndrome (IBS), inflammatory bowel 

disease (IBD), neurological disorders, diabetes, malnutrition, obesity and cancer. In addition, 

dysbiosis has been suspected to affect behavior and mood, and disorders such as depression 

and autism (3, 5, 6, 20, 22, 28, 31, 32, 36).  

Medical conditions associated with dysbiosis often demonstrate a reduced diversity in the 

gut microbiota of the individual, although how this is connected to a condition varies (22, 28, 

33, 37). For example, in adults it has been found that if the abundance of certain Firmicutes 

species in the gut grows too large, it could be connected to both type 2 diabetes and obesity, 

although not all studies agree on this. In addition, a decrease in the Bacteroidetes phylum is 

often observed compared to in lean people (1, 3, 17, 22, 23). Certain metabolites linked to 

bacteria in the gut have also been found to play a role in these disorders (37).  

IBS is a term used for conditions affecting mainly the large intestine with varying symptoms 

such as abdominal pain, constipation, diarrhea, cramps, bloating, flatulence and changes in 

bowel movement. The condition is quite common in the industrialized world and is caused 

by several different factors. Some cases seem to be linked to diet or the use of antibiotics, 

but anything that causes a disturbance in the microbial community in the gut can lead to 

symptoms of IBS (2, 3, 5, 6). While not all studies agree on the details, the general findings 

state that the bacterial composition is different in IBS patients than in healthy individuals. 

Examples are a reduction in genera Lactobacilli and Bifidobacteria, and an increase in the 

proportion of aerobes compared to anaerobes in persons suffering from IBS (5, 22, 24, 28).  
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IBD involves chronic inflammation of the digestive tract, and is a collective term for several 

diseases, the principal being Crohn’s disease (CD) and ulcerative colitis (UC) (20, 22, 28, 38, 

39). Although CD and UC both fall under the IBD definition, they can display significant 

differences in the microbial composition of the gut. Even within CD there are considerable 

differences between individuals, demonstrating the complexity of dysbiosis definitions (20, 

22, 28, 38, 39). Some common trends found for patients suffering from CD is that abundance 

of phylum Firmicutes is lower, while certain members of phylum Proteobacteria, like 

Escherichia coli, are in increased abundance compared to healthy individuals. In addition, an 

increase in Bacteroidetes species and facultative anaerobes is often seen, although a 

decrease in the phylum Bacteroidetes has also been detected (22, 28).  

Although dysbiosis is frequently associated with illness, it is often found to be an effect of a 

medical condition rather than the cause of one. However, in some cases a dysbiotic state is 

suspected of leading to serious diseases (3, 5, 6, 20, 22, 28, 31, 32, 33, 34, 36). An example of 

this is Clostridium difficile infections that sometimes follow an antibiotic treatment. This 

bacterium is an opportunistic pathogen that is commonly found in low amounts in the gut, 

and that is held in check by non-pathogenic bacteria. However, through the use of 

antibiotics and the subsequent disturbance of the microbial composition, C. difficile may 

grow more or less uninhibited and release toxins, leading to an infection in the individual (1, 

3). Another example is necrotizing enterocolitis (NEC), which is a condition that is sometimes 

found in premature infants in which part of the intestine dies. In recent years studies have 

found that a dysbiotic state precedes the development of this condition, indicating that the 

disturbed microbiota could be the cause, rather than the effect of the disease (28, 33, 34, 

35). Decreased diversity and a dominance of the phylum Proteobacteria can often be 

observed in patients suffering from NEC, and it is believed that certain bacterial 

communities, such as those dominated by a specific strain of E. coli, may in some cases 

trigger a hyperinflammatory response of the immune system, which in turn may lead to the 

development of the disease (33, 35). However, more studies are needed to confirm this and 

to further identify the microorganisms involved, as it is still difficult to determine whether 

dysbiosis in this case really is a cause or simply a reflection of the medical condition (3, 28, 

34). There are still many unknown factors regarding dysbiosis, and compositional patterns 

and relationships in the gut are continuously being investigated (3, 5, 6, 20, 22, 31, 32, 36).   
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1.3    Investigating the composition of the gut microbiota 

As the human gut contains mainly anaerobes, various genotyping methods, in which DNA 

sequences are examined, are frequently used for investigating the microbial composition. 

Such methods are largely based on using the marker gene 16S rRNA which is found in 

bacteria and archaea. This gene has been highly valuable for investigating microbial 

phylogenies and taxonomic assignments, as it is vital for the survival of the microbe and 

therefore tolerates very little mutation. In addition, it does not seem to participate in 

horizontal gene transfer. It consists of conserved regions, which allow for the comparison of 

more distantly related microbes, and hypervariable regions, which allow for lower level 

taxonomy (1). A limitation to the use of the 16S rRNA gene for genotyping, however, is that 

it has been unable to discriminate between closely related species and strains (1, 20, 40). 

The widespread use of the 16S rRNA gene has led to the identification of variations in single 

nucleotides at specific sites in a genome that can be used to distinguish between organisms 

(1). Such single nucleotide polymorphisms (SNPs) are found in genes, intergenic regions, or 

other non-coding regions that are conserved, and can therefore provide information on 

evolution. They are found within all three domains of Bacteria, Archaea and Eukarya, and 

have become popular targets for detection technologies. In microbiology, the use of SNPs 

for genotyping has made it possible to distinguish between closely related species, and even 

strains, of bacteria (1). 

1.3.1    Hybridization-based methods for SNP genotyping 

Many SNP-based methods within microbiology rely on the use of probes, which are short 

sequences of nucleic acid that will hybridize to complementary strands. If a target DNA 

sequence is already known, these probes can be designed to fit specifically, and to produce a 

signal to inform if the target is present in the sample (1, 41, 42). 

Different types of probes have been developed, and one example is the TaqMan probe. This 

type of probe contains a fluorophore (reporter) usually in the 5’ end, and a quencher in the 

3’ end (41, 42). The proximity of the reporter to the quencher causes the fluorescence to get 

quenched due to a phenomenon known as fluorescence resonance energy transfer (FRET), in 

which the energy from the excited fluorophore is transferred to the quencher. During a 

quantitative polymerase chain reaction (qPCR), the probes bind to the target DNA 
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sequences, and when Taq polymerase starts elongating the primers, it cleaves the probe 

hybridized to the amplicon thanks to its exonuclease activity. This leaves the reporter and 

quencher physically separated, which results in a detectable increase in the intensity of the 

fluorescence. The qPCR machine can read this increase for each cycle, and creates an 

amplification plot that can be used later for analyses (41, 42, 43, 44).  

Another example of probes are molecular beacons, which are probes that consist of an 

internal sequence complementary to a target, and regions on each side that are 

complementary to each other, allowing for a so-called hairpin loop structure to form. In its 5’ 

end the probe carries a fluorophore, and in its 3’ end a quencher. As with TaqMan, FRET 

occurs when the fluorophore and quencher are close to each other, which is what happens 

when the probe forms a hairpin structure. When the probe hybridizes to its target, it 

undergoes a conformational change from the hairpin loop, and the increased distance 

between the quencher and the fluorophore allows for fluorescence to be detected (41, 45).  

A method that can use probes to look at SNPs is High Resolution Melting (HRM). This 

method is used to examine nucleic acid sequence variations by looking at their melting 

curves in a real-time PCR machine. When using probes for this, the probes can be designed 

to bind to a target sequence, and to dissociate from this target at a specific melting 

temperature (Tm) (46, 47, 48). This Tm can be adjusted by altering the length of the probe 

and the content of guanine (G) and cytosine (C) (due to the triple hydrogen bonds between 

the GC-base pair). To detect the dissociation, the probes can be used together with 

intercalating dyes that fluoresce when bound to double-stranded DNA, or the probes 

themselves can be labelled with molecules that fluoresce when the probe is hybridized to 

the target sequence. For both approaches, an increase in temperature leads to separation of 

the probe from the target, which in turn leads to a decrease in light intensity. This is 

registered by the qPCR machine and presented in melting curves as a drop in fluorescence 

near the designed Tm (46, 47, 48).  

Oligonucleotide ligation assay, or OLA, is another example of a method that uses probes for 

SNP genotyping. It is based on using two oligonucleotides designed to hybridize adjacent to 

each other over the target SNP site on the DNA strand. DNA ligase will then covalently join 

the ends of the two probes. To detect the products, several methods can be used, such as 

labelling the probes with different fluorescent dyes. OLA can be combined with HRM to 
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increase multiplexing, by looking both at the dye color (first dimension) and the melting 

temperature (second dimension) in a technique known as 2D labelling. The level of 

multiplexing will then be dependent on the number of detection channels and the 

temperature resolution of the machine used (41, 49). 

Another approach for detecting SNPs using probes is Multiplex Probe Amplification, or MPA 

(50). This method relies on probe pairs that are partially complementary to each other, and 

that are designed to be fully complementary to a specific target DNA sequence. Each probe 

pair carries a fluorophore and a quencher, and has a unique Tm. During a melting curve 

analysis, the two probes will denature as the temperature is increased, which based on the 

design will result in either an increase or a decrease in fluorescence, shown as a positive or 

negative peak near their unique Tm in the melting curve. If a target is present, however, one 

of the probes will bind to it rather than its complementary probe, because such a 

hybridization has a higher Tm than the two probes bound together. As a result, there will be 

no peak at that probe-duplex’s Tm during the melting curve analysis, and this lack of peak is 

what reveals the presence of the target bacterium (50). 

Hybridization-based methods for SNP genotyping are highly useful in many situations and 

have been found to have a better taxonomic resolution than many previous genotyping 

approaches (1, 20, 40, 41, 42, 46). However, as the human gut contains microbial 

communities and compositions that are quite complex, investigations of patterns that can 

provide important information for diseases and conditions require technologies that have a 

higher level of specificity than can be achieved with methods based predominantly on probe 

hybridization.  

1.3.2    Single Nucleotide Primer Extension (SNuPE) technologies 

Single nucleotide primer extension technologies, or SNuPE, are frequently used for detection 

of SNPs, and are often chosen because they are simple and rapid, and have a higher 

specificity and taxonomic resolution than techniques based mainly on hybridization. The 

principal behind SNuPE is that a specific primer gets extended in its 3’ end with a single 

labelled terminating nucleotide, known as a ddNTP (dideoxynucleotide triphosphate), when 

it hybridizes upstream from the nucleotide position of interest (41, 51). The discriminating 

power of the technology comes both from the need for the primers to hybridize to the 

target DNA sequence, and from the fidelity of the polymerase ensuring it elongates the 
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primer only when the 3’ end matches the template. This means that both internal and 

terminal mismatches can cause the extension to fail, as internal mismatches cause the 

primer-template hybridization to be less stable, while a mismatch at the 3’ end of the primer 

affects the incorporation of the correct ddNTP. By designing primers with such mismatches 

in mind, non-specific extensions can be prevented (51). 

Initially radioisotopes were used for labelling of the ddNTPs, followed by various other 

alternatives, but today it is more common to use fluorescent dyes (51). As the ddNTP is 

complementary to the nucleotide on the opposite strand, the label provides information on 

the SNP on the target sequence. By using different fluorophores on the four ddNTPs, several 

base variations can be detected in one reaction. Combined with primers that are designed 

with different lengths and for different targets, it is possible to analyze a relatively large 

number of SNPs in one reaction by reading the signals from the ddNTPs and separating the 

extended primers (51).  

There are several methods available for separation of the primers following SNuPE. When 

primer extension assays were first developed, it was common to use gel electrophoresis, 

wherein the separation of macromolecules is based on size. Using an electric current, the 

negatively charged DNA fragments travel through the gel towards the positive charge, with 

smaller fragments travelling faster than larger ones. The final band pattern, visualized with 

UV light, reveals the length of the oligonucleotides and thus the identity of the fragments (1, 

51). Later capillary electrophoresis was developed, which has a more accurate size 

separation than gel electrophoresis, resulting in higher resolution (51).  

Another separation method used for SNuPE is the Matrix-assisted laser-desorption 

ionization-time-of flight-mass-spectrometry (MALDI-TOF-MS), which separates by mass 

rather than size by taking advantage of the fact that there is a slight mass difference in 

nucleotides, which is increased in chemically altered ddNTPs. This makes it possible to 

separate products that are labelled differently by measuring their molecular weight (41, 51).  

Alternatively, tags can be used for primer separation. If a tag is added to the 5’ end of the 

primers, they can be sorted by hybridizing them to complementary “anti-tags” attached to a 

solid format such as an array or bead after the labelling has occurred. The signal can then be 

analyzed, and the anti-tags provide information on the target (51).  
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There are many assays that are based on the primer extension principle, and still more are 

being developed. Initially, primer extension technologies were mostly used for human 

genetics, but other disciplines have also embraced this approach. An example of an assay 

based on SNuPE within the field of microbiology is the quencher extension (QEXT) assay. This 

assay detects and quantifies SNPs by combining the use of ddNTPs with the use of reporters 

and quenchers in real-time in a closed, single-step tube (52, 53).  

The QEXT principle is illustrated in figure 1 and is based on a probe containing a reporter dye 

which is complementary to the target DNA. This probe gets extended in its 3’ end with a 

ddNTP containing a quencher when it hybridizes to the target sequence with the specific 

SNP. The proximity of the quencher to the reporter results in a change in fluorescence due 

to FRET. Some quencher molecules can be used either as fluorescence energy donors or 

acceptors depending on the reporter dye, and it is possible to detect the SNP either by an 

increase or decrease in fluorescence. By using a variety of fluorophores for different SNPs, 

the method has multiplexing possibilities (52, 53).  

Figure 1: The principle of the QEXT assay. The black lines are DNA, the green oval (P) is the polymerase, the blue circle is 

reporter 1 (R1), the red circle is reporter 2 (R2), and the ddC with an orange circle (A) is the ddNTP with the energy 

donor/acceptor. Before an SNP is detected, R1 emits fluorescence while R2 does not, as shown in part A of the figure. The 

labelled ddCTP is incorporated into the probe by the polymerase if the probe is hybridized to the target sequence with the 

SNP of interest, as shown in part B. The QEXT signal is detected as reduced fluorescence for R1, while R2 shows increased 

fluorescence, both indicating that the target SNP is present, as shown in part B and C of the figure (53). 
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1.3.3    Assay format 

For both hybridization-based methods and SNuPE technologies there are generally two types 

of reactions used for investigating SNPs when looking at assay format; in solution 

(homogenous), or with a solid-phase (e.g. chips, beads, or slides). Reactions that utilize solid-

phase have greater possibilities for multiplexing than reactions in solutions, but homogenous 

assays have the advantage that no purification and separation is required. As a result, 

solution-based methods are more easily automated, as PCR and detection take place in the 

same sealed-tube reaction, removing the need for post-PCR handling and reducing the risk 

of contamination (41).  

An example of a technology that detects SNPs using a solid-phase platform is the microarray 

technology. This technology allows for analysis of thousands of DNA sequences at the same 

time by first labelling amplified target fragments with fluorophores. These fragments then 

get hybridized to complementary capture probes that are attached on a solid surface, after 

which the fluorescence from the labels can be detected. Identity is revealed by the position 

of the capture probe on the surface, while relative quantitation is seen by the intensity of 

the signal (40, 41).  

HRM and QEXT are two examples of methods that can use reactions in solution to detect 

SNPs. For these methods, the use of various fluorophores enables some multiplexing, but 

this is limited by the number of detection channels on the available instrument. Hence, 

although homogenous assays are superior to solid-phase platforms in several ways, the 

limited possibility for multiplexing has made them less useful in cases where this is 

important, such as when investigating complex microbial communities. New methods could 

therefore benefit greatly from being developed with this in mind.    
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1.3.4    Liquid Array Diagnostics (LAD) 

A novel technology that aims to alleviate the multiplexing limitation of homogenous assay 

formats is Liquid Array Diagnostics (LAD). This technology enables rapid, high-volume 

screening of SNPs in various genetic markers. The increase in multiplexing is due to the use 

of a combination of SNuPE labelling and HRM analysis (54, 55).  

An illustration of the LAD process can be seen in figure 2 on the next page. The principle 

behind the method is that when a target DNA sequence is present in a sample, a specific 

labelling probe (LP) will hybridize to it and get extended with a quencher-labelled ddNTP 

(ddNTP-Q) in its 3’end. This labelled LP will then denature from the target sequence and bind 

to a reverse complementary reporter probe (RP) that carries a fluorophore in its 5’end. The 

proximity of the quencher to the fluorophore results in a quenching of fluorescence (54, 55).  

Each probe duplex is designed to have a specific Tm. By using HRM, a signal is detected near 

this Tm as the temperature is increased and the probe duplex denatures, separating the 

quencher from the fluorophore (54, 55). The differences in Tm between probe duplexes will 

result in signals that are distinguishable from one another. Thus, the temperature a signal is 

detected on reveals the identity of the target, and there is no need to separate the probes 

physically, for example by use of gel electrophoresis or mass spectroscopy (47, 54, 55).  
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Figure 2: Overview of the Liquid Array Diagnostics process. First a sample is collected, genomic DNA (gDNA) is isolated, and 

16S rRNA genes are amplified. Labelling probes (LPs) are added to the sample and get extended with a quencher-labelled 

ddNTP (in this case a ddCTP-Q) when hybridized to the target DNA sequence. The LPs are denatured from the target, and 

fluorescently labelled reporter probes (RPs) that are complementary to the LPs are added to the solution. If the RP 

hybridizes to an LP containing a ddCTP-Q, the fluorescence is quenched, indicating the presence of the target bacterium. 

Using High Resolution Melting (HRM), the probes dissociate at their specific melting temperature (Tm), and fluorescence 

increases as the fluorophore and quencher are separated. Data about fluorescence and quenching is then processed. 
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There are several different fluorescence molecules available on the market, and by labelling 

the RPs with different ones, they can be distinguished by using different detection channels 

on the qPCR machine. When this is combined with the variations in Tm of the probe 

duplexes, the number of targets that can be detected in one single reaction increases 

dramatically from previous solution-based technologies (54, 55).  

Initial experiments with LAD have demonstrated it to be a very promising genotyping 

technology for investigations of complex microbial communities such as that of the gut, and 

a competitor to many of the current methods available (54, 55). Its use of SNuPE makes it 

highly specific, as the LP in LAD needs to bind to the target, and in addition needs to get the 

ddNTP-Q correctly incorporated. This sets LAD above technologies that only rely on 

hybridization, like OLA and MPA. These technologies can suffer from false positives due to 

mismatches between the probe and the SNP site being treated as a normal base-pairing, as 

it has been found that primers that have a G/T or T/G mismatch can work almost as 

efficiently as a normal primer with a G/C or C/G match (56, 57).  

The combination of SNuPE with HRM enables LAD to have a one-tube assay which improves 

efficiency and reduces contamination risk compared to for example SNaPshot, which is a kit 

from Applied Biosystems (Waltham, Massachusetts, USA) that requires physical separation 

of the oligonucleotides to detect microbial identity. Additionally, HRM is cheaper than for 

example electrophoresis, and there is no need for hazardous chemicals like acrylamide, 

ethidium bromide or formamide, like in methods such as denaturing gradient gel 

electrophoresis (DGGE) (46, 47, 51).  

As the probes in LAD remain intact, subsequent analysis is possible if necessary, for example 

by running the samples again. This makes it more advantageous than for example TaqMan-

based assays, in which the probes are fragmented. A drawback of LAD is that at present it 

hasn’t been optimized for quantitative use.  

The different methods available today for investigating the gut microbiota all have their 

strengths and limitations, and together their use has led to an increased understanding of 

the main microbial patterns found in the gut. The link of these patterns to human health and 

well-being has resulted in a need for assays to be developed that can quickly identify a large 

number of microbes, and distinguish sufficiently between them to discriminate between 

normobiosis and dysbiosis.  
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1.4    The GA-map® Dysbiosis Test  

As technologies based on SNuPE have a higher fidelity than those based mainly on 

hybridization, they can be of great value for detection of dysbiosis due to the complexity of 

the microbial communities found in the gut. An assay that uses the SNuPE concept 

successfully for this purpose is the Genetic Analysis microbiota array platform Dysbiosis Test, 

or GA-map® Dysbiosis Test, developed by Genetic Analysis AS, Oslo, Norway. This test is a 

well-established diagnostic tool, and currently the only clinically validated assay for 

determination of dysbiosis. The test uses a solid-phase platform and performs SNP detection 

by analyzing fecal samples using 54 highly specific SNuPE probes that cover more than 300 

strains of bacteria within phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, 

Tenericutes and Verrucomicrobia (19, 20, 58). The probes, known as labelling probes (LPs), 

have been designed to be complementary to bacteria that can be expected to be found in 

the adult gut. Of the 54 probes, 26 are species specific, 19 detect at genus level, and the 

remaining 9 detect bacteria at higher taxonomic levels (19, 20, 58). The probes target 

conserved and hypervariable regions V3 to V9 of the 16S rRNA gene, which gives the test 

higher resolution than for example high-throughput sequencing (HTS), which usually covers 

V3 and/or V4 of the 16S rRNA gene (20). The effect of this difference was demonstrated by 

Casén et al. (20) when their experiment managed to detect the genus Mycoplasma in a 

majority of the 188 samples investigated using the GA-map® Dysbiosis Test, but only in one 

when using MiSeq Illumina sequencing on the same samples. As a result, certain bacteria 

that may have great importance for dysbiosis can go undetected when using methods such 

as HTS.  

An illustration of the GA-map® Dysbiosis Test process is presented in figure 3 on the 

following page. The principle behind the test is that the LPs hybridize to a target sequence 

present in a sample collected from the patient, and get extended with a labelled ddNTP. 

These labelled LPs will then separate from the template and bind to reverse complementary 

oligonucleotides that are attached to uniquely barcoded magnetic beads. Signals from the 

labelled probes are detected, and the barcode on the bead will inform which target the 

signal refers to (19, 20). Using an algorithm, the bacterial composition of the fecal sample is 

then compared to a normobiotic microbiota profile model which has previously been made 

from a reference population based on individuals that are non-symptomatic.  
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Deviations from the profile are detected, and a dysbiosis score is calculated. Genetic Analysis 

divides the degree of dysbiosis into an index of 5. If a fecal sample is given a dysbiosis index 

(DI) of 1 or 2, the microbiota is considered normobiotic. If it is given a score of 3-5, there is 

dysbiosis, with DI5 being the most deviant from normobiosis (20).  

Figure 3: The process of the GA-map® Dysbiosis Test. Fecal samples are collected, genomic DNA is isolated, and 16S rRNA 

genes are amplified using PCR. Labelling probes (LPs) hybridize to complementary bacterial DNA targets present in the 

sample and get extended with a labelled ddCTP. Magnetic beads containing oligonucleotides that are complementary to the 

LPs are added, to which the LPs hybridize. Signals are detected from the labelled LPs for bacteria that are present, and the 

magnetic beads inform which bacterium a signal refers to. The data collected from the test is processed, and dysbiosis 

index (DI) level is determined, where a DI of 1 or 2 indicates normobiosis, and a DI of 3-5 indicates dysbiosis. 

(http://www.genetic-analysis.com/wp-content/uploads/2014/10/GA-map-princible-1024x576.png)  

The GA-map® Dysbiosis Test has proven to be an efficient and accurate way to determine 

degree of dysbiosis in an individual, and is very useful for deciding the best course of action 

for treatment, and for tracking said treatment (19, 20). However, it is a relatively labor-

intensive and expensive process, as the probes need to bind to the beads, washing is needed 

to remove any unmarked probes, and the barcodes of the beads need to be identified. 

Consequently, there is a desire to improve the test by supplementing the currently used 

solid-phase platform with a homogenous one, as such an implementation is believed to 

reduce cost and increase efficiency of the test.  

http://www.genetic-analysis.com/wp-content/uploads/2014/10/GA-map-princible-1024x576.png
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1.5    Aim of this thesis 

Due to the growing need for efficient assays that are capable of determining dysbiosis, the 

aim of this thesis was to investigate the possibility of improving the GA-map® Dysbiosis Test 

by supplementing the solid-phase platform currently employed, with a homogenous 

platform. The new and emerging Liquid Array Diagnostics technology has been shown to 

fulfill the demands that are required to detect point mutations sufficiently for detection of 

dysbiosis, and has previously been proven to be rapid, simple, and economical. Owing to its 

combination of SNuPE and HRM, the purification and separation steps are no longer needed, 

and the limited multiplexing capabilities of previous homogenous technologies have been 

mitigated. This technology has therefore been chosen as a potential supplement, as a 

successful implementation of LAD as a diagnostic tool is believed to greatly improve the  

GA-map® Dysbiosis Test.  

To accomplish the main objective of investigating if LAD can be incorporated into the  

GA-map® Dysbiosis Test, several sub-goals were set:  

• Design reporter probes that were complementary to 20 of the labelling probes 

designed by Genetic Analysis for their current GA-map® Dysbiosis Test 

• Determine if the probe duplexes could be used with LAD to detect target bacteria 

• Examine if LAD could detect signals from 20 probes simultaneously 

• Investigate if LAD could distinguish between normobiosis and dysbiosis 

• Determine which of the probes tested best separate normobiosis from dysbiosis  

 

This thesis focused on bacteria in relation to dysbiosis, and while the gut contains viruses, 

and members of the domains Archaea and Eukarya as well (5, 6, 28, 59, 60), this falls outside 

the scope of this thesis.  
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2. Materials and methods 
This thesis is part of a larger project led by Genetic Analysis AS (GA), which aims to 

investigate the use of LAD as a supplement to the GA-map® Dysbiosis Test. It was theorized 

that LAD could detect 20 targets simultaneously, and the 54 LPs used in the GA-map® 

Dysbiosis Test were therefore divided by GA into three subsets. The contribution of this 

thesis was to test LAD with one of the subsets, which contained 20 probes selected by GA. 

The probes in this subset were the least associated with normobiosis or dysbiosis of the 54 

probes. The remaining two subsets will be investigated by GA. A flow chart for the project is 

presented in figure 4, where the blue boxes demonstrate the process of this thesis. 

Figure 4: Flow chart for the project. The green boxes show the process handled by GA prior to the beginning of this thesis. 

The blue boxes show the process of this thesis, where a subset of 20 LPs designed by GA was investigated. Complementary 

RPs were designed, and the LP-RP duplexes were tested on pure cultures of target bacteria, on a mixed sample, and finally 

on fecal samples. The red boxes show how the project may continue after the completion of this thesis. 
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2.1    Design of reporter probes 

The LPs from the GA-map® Dysbiosis Test had been designed by GA to get labelled with a 

ddCTP-Q in their 3’ end when hybridized to a target DNA sequence. For this thesis, the first 

step was to design RPs that were complementary to the 20 LPs being investigated.  

When designing the RPs, the goal was to enable detection of 20 targets simultaneously by 

using four detection channels on the qPCR machine, with five distinguishable melting 

temperatures per channel. The 20 LPs were therefore split into four groups of five probes 

each. The fluorophores used for each group were HEX, ROX, CY5 and FAM. Within each 

group the RPs were designed so that the LP-RP duplexes had a theoretical Tm of roughly 

30 °C, 40 °C, 50 °C, 60 °C and 70 °C. One of the LPs was a universal (UNI) probe, and the 

complementary RP for this probe was designed by GA. A list of the probe pairs with the 

detection target, fluorophore and theoretical Tm is presented in table 1. 

Table 1: List of the probes investigated in this thesis, along with the targets that they were designed to detect1, the 

associated fluorophore, and the theoretical Tm for the probe duplexes in Celsius.    
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For designing the RPs, Oligoanalyzer 3.1 web-based bioinformatics tool (Integrated DNA 

Technologies, Coralville, Iowa, USA) was used. The parameters were set to: Oligo 

concentration 0.1 M, Na+ concentration 0 mM, Mg++ concentration 1 mM and dNTP 

concentration 0.0008 mM. 

The RPs were designed to have the fluorophore attached to their 5’ end. To adjust the probe 

duplex Tms, the RPs were therefore shortened in the 3’ end to ensure the 5’ end with the 

fluorophore would hybridize close to the quencher at the 3’ end of the LP.  

All of the LPs designed by GA had a Tm significantly lower than 70 °C. As each group was to 

have one probe duplex at roughly this temperature, four of the LPs needed to be altered to 

increase the Tm. This was done by adding nucleotides to the 5’ end, leaving the 3’ end intact 

for labelling with ddCTP-Q.  

All designed probes were checked for potential hairpin structures and self-dimerization, and 

all duplexes were checked for hetero-dimer formations. Blunt ends were avoided in all 

duplexes.  

The probes were ordered in dry form from Biomers.net, Ulm/Donau, Germany. They were 

prepared by adding pH7 of Ambion® molecular biology grade 0.1 M EDTA (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) and Ambion® molecular biology grade 10 mM Tris 

(Thermo Fisher Scientific).  

2.2    Probe validation on pure cultures of target bacteria 

2.2.1    Template preparation 

To investigate if the probes were compatible with LAD, they were tested on pure cultures of 

target bacteria. Twenty species were therefore selected based on their complementarity to 

the probes, and their 16S rRNA genes were amplified using PCR. Each amplification reaction 

consisted of 2.5 mM MgCl2 (Solis Biodyne, Tartu, Estonia), 0.05 U/μl HOT FIREPol DNA 

Polymerase (Solis Biodyne), 1X B1 Buffer (Solis Biodyne), 0.2 mM dNTPs (Solis Biodyne), 0.2 

μM Mangala F1 forward primer (biomers.net), 0.2 μM 16S UR (biomers.net) and 2 μl 

bacterial template (provided by Genetic Analysis AS), in a total reaction volume of 50 μl. 
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The PCR program began with an activation step of 15 minutes at 95 °C. Following this was 30 

cycles that started with 30 seconds at 95 °C for denaturation, 30 seconds at 55 °C for 

annealing, and 1 minute and 20 seconds at 72 °C for elongation. A final elongation step took 

place for 7 minutes at 72 °C. The process was performed using an Applied Biosystems 2720 

Thermal Cycler (Thermo Fisher Scientific).  

The DNA concentrations of the amplified templates were checked using the Quant-iTTM 

assay kit with the Qubit Fluorometer (Invitrogen Detection Technologies, Carlsbad, 

California, USA), and gel electrophoresis at 80 volts for 30 minutes with 5 μl of template 

mixed with 1 μl Gel Loading Dye, Purple (6X) (New England BioLabs, Ipswich, Massachusetts, 

USA) on a 1% agarose gel containing 1X TAE buffer.   

To remove excess primers and nucleotides, the PCR products were treated with 0.12 U/μl 

Exonuclease I (Thermo Fisher Scientific), and 0.32 U/μl FastAP Thermosensitive Alkaline 

Phosphatase (Thermo Fisher Scientific). The reaction was performed using an Applied 

Biosystems VeritiTM 96 Well Thermal Cycler (Thermo Fisher Scientific), starting with two 

hours of incubation at 37 °C, followed by 15 minutes at 85 °C.   

2.2.2    Labelling of the LPs 

To examine if the LPs would hybridize to target DNA sequences and get labelled with a 

ddCTP-Q when used with LAD, 20 separate reactions were prepared which contained 2 μl of 

pure amplified DNA template, 0.1 μM of each LP (Table 1), 1x buffer C (Solis Biodyne), 1 mM 

MgCl2 (Solis Biodyne), 0.25 U/μl HOT TERMIPol DNA Polymerase (Solis Biodyne), 0.8 μM 

ddCTPDYQ660 (2',3'-dideoxycytidine-5'-triphosphate labelled with quencher DYQ660, Jena 

Bioscience, Jena, Germany), and 20 μM ddTTP (2',3'-dideoxythymidine-5'-triphosphate, Jena 

Bioscience). Each reaction had a total volume of 20 μl. In addition, two negative controls 

were prepared, in which 2 μl of water was added instead of DNA template. The UNI probe 

was used as a positive control.  

The labelling reaction was performed with Applied Biosystems VeritiTM 96 Well Thermal 

Cycler (Thermo Fisher Scientific). The program started at 95 °C for 12 minutes, followed by 

40 cycles of 96 °C for 20 seconds and 60 °C for 40 seconds.   
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2.2.3    LP-RP hybridization, signal detection and melting curve analysis 

To inactivate the polymerase and detect fluorescent signal, 10 μl of each labelling reaction 

was mixed with all RPs with a final concentration of 0.005 μM each, 0.1% SDS (Thermo Fisher 

Scientific), and 0.3X buffer C (Solis Biodyne). Total reaction volume in each sample was 15 μl.  

Signal detection and melting curve analysis was performed on Applied Biosystems 

7500/7500 Fast Real-Time PCR Systems (Thermo Fisher Scientific). The process started with 

15 seconds at 95 °C, followed by one minute at 20 °C, another 15 seconds at 95 °C and finally 

15 seconds at 60 °C.  

The qPCR software prepared one melting curve per sample from each channel, which means 

that since four channels were used, each sample had four melting curves. These melting 

curves were presented as the negative first derivative of fluorescence with respect to 

temperature (-dF/dT), in which the signals from the probes were shown as distinct negative 

peaks near the designed theoretical Tms on an otherwise stable baseline. Melting curves for 

negative controls should show no peaks, as there should be no major changes in 

fluorescence.  

To determine if a probe was compatible with LAD, all the melting curves from the pure 

culture tests were visually inspected for all samples to see if the probes provided a 

satisfactory signal in expected samples, and no signal in samples containing non-

complementary, or no, templates. The criteria for a satisfactory signal was that it needed to 

be observed near the designed theoretical Tm on the correct channel, it needed to be clearly 

distinguishable from the baseline, noise and other signals, and it should not be seen on other 

channels at the same temperature as that would imply noise. In addition, the tests were 

repeated with all probes at least three times, and the signal needed to fulfill the above 

criteria each time. 

DNA templates that had been used to test probes that did not provide satisfactory signals 

were sent to Eurofins Scientific (Luxembourg) for GATC Biotech’s LightRun Sanger 

sequencing to investigate if there were any unexpected mutations in the 16S rRNA gene 

sequences. 
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2.3    Validation of LAD on a mixed sample 

To investigate if the probes would provide distinguishable signals with LAD in a mixed 

sample, 11 of the bacterial templates that had led to good results during probe validation on 

pure cultures were selected and pooled together.  

The labelling reaction was performed as described under section 2.2.2 on page 21, but with 

1 μl of each template (11 μl in total). All reagent concentrations remained the same as under 

section 2.2.2, and the total reaction volume was 20 μl. LP-RP hybridization, signal detection 

and melting curve analysis of the mixed sample was performed as described in section 2.2.3 

on the previous page.  

Based on the bacterial templates selected, the probes that were expected to give a signal in 

the mixed sample were Fir224, Eub206, Ali239, UNI, Str138, Cat187, Eub119, Pse30, Lac47, 

Aci57, Par89, and Bac109. For more information on the probes, see table 1 on page 19.  

2.4    Evaluation of LAD for diagnosis of dysbiosis 

2.4.1    Performing LAD on fecal samples 

To test if LAD could be used with the current probeset to correctly differentiate between 

normobiosis and dysbiosis in real patients, the process was performed on fecal samples 

(provided by Genetic Analysis AS) that had previously been indexed using the GA-map® 

Dysbiosis Test. GA’s dysbiosis index ranges from 1 to 5, where DI1 and DI2 are considered 

normobiotic, and DI3 to DI5 are considered dysbiotic. Thirty-two fecal samples were 

investigated, of which 15 had been classified by GA as normobiotic (eight as DI1 and seven as 

DI2), and 17 samples as dysbiotic (seven as DI3, three as DI4, and seven as DI5). The samples 

had been collected from adults in Norway, and the ones that had been classified as dysbiotic 

were collected from individuals suffering from IBS and IBD.  

Labelling was performed as described under section 2.2.2 on page 21, but with 5 μl of fecal 

sample in a total reaction volume of 20 μl. Probe hybridization and signal detection was 

performed as described in section 2.2.3 on page 22, but due to the complexity of the fecal 

samples compared to the pure cultures and mixed sample, visual determination of probe 

performance using the melting curves was not possible. Instead the raw data was extracted, 

and the peak values for each probe were used for further investigation (see table S1 and S2 

in the supplementary material for the extracted peak values).  
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2.4.2    Statistical analysis  

The average detected signal from a probe in the normobiotic samples was compared against 

the average detected signal from the same probe in the dysbiotic samples to investigate the 

difference between the two states. This was done for all probes except the UNI probe, as 

that was used as a positive control. In addition, a Welch Two Sample t-test was performed 

with a 95% confidence interval using R commander (open source software), version R 3.5.1. 

This was done to investigate the statistical significance of the differences in detected signals 

from each probe with respect to normobiosis and dysbiosis, where a p-value of less than 

0.05 was considered significant.  

Before further analyses were conducted, the raw data was normalized by dividing the 

extracted peak values for each probe by the signal from the UNI probe.  

The following analyses were performed by Professor Knut Rudi using the multi-paradigm 

numerical computing environment MatLab (MathWorks, Natick, USA). 

The accuracy of LAD as a diagnostic tool for dysbiosis was investigated by using a receiver 

operating characteristic (ROC) curve analysis. This analysis shows the true positive rate (the 

proportion of dysbiotic samples that are correctly classified as such) against the true 

negative (the proportion of normobiotic samples that are correctly classified as 

normobiotic), shown as sensitivity and specificity respectively. The analysis is a 

representation of how well LAD, with the probes used in this thesis, can distinguish between 

healthy and sick individuals and correctly classify a sample.  

When creating the ROC curve, the best-case scenario was first estimated by the MatLab 

software based on the entire dataset. For this the software had been informed which 

samples were normobiotic and which were dysbiotic, from which it prepared an ideal 

classifier. Following this, a cross-validated model was prepared, in which the software had 

no knowledge of the diagnoses of the samples. This model was made to predict the true 

performance of the LAD technology when using these probes. To reach this model, the 

software randomly partitioned the data into complementary subsets, and then analyzed one 

such subset to make a preliminary model. The remaining subset was then used to validate 

the model by seeing how well they fit. This was repeated many times by the software, each 

time with a new random partitioning of samples. Finally, the software made a final cross-

validated model based on an average of all the preliminary cross-validated models.  



 
 

25 
      s  

 

For both the ideal classifier and the final cross-validated model the optimal points with 

regards to sensitivity and specificity for the dataset were calculated. These points were 

determined by the software to give the best trade-off between correctly classifying a sample 

as dysbiotic, against the cost of wrongly diagnosing a healthy individual as sick.  

Following the creation of the ROC curve, the probes were investigated to see which of them 

were more strongly associated with either normobiosis or dysbiosis to get an indication of 

which probes, if any, may best separate the two states. To achieve this, the MatLab software 

was informed of which samples were dysbiotic and which were normobiotic. First the 

software identified the regression vectors for each probe. The signals detected for the 

probes during the LAD process were then multiplied with the regression vectors, and the 

sum informed the association of the probe, as a positive value indicated dysbiosis, while a 

negative value would indicate normobiosis.  
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3. Results 

3.1    Probe compatibility with LAD 

An overview of the 20 probe pairs investigated in this thesis, with a summary of their 

performance during testing on pure cultures and the mixed sample, is presented in table 2. 

The background for the results shown in the table will be presented on the following pages.  

 Table 2: Summary of the findings for each of the 20 probe pairs during testing on pure cultures and the mixed sample  

 

3.1.1    Probe validation on pure cultures of target bacteria 

For a probe pair to be determined to be compatible with LAD it needed to fulfill the criteria 

for a satisfactory signal as defined under section 2.2.3 on page 22. For this to happen, the LP 

first needed to bind to its complementary DNA target and get extended with a ddCTP-Q. This 

labelled LP would then need to hybridize to its complementary fluorophore-labelled RP, 

which would result in quenching of fluorescence. During the melting curve analysis, the 

gradually rising temperature would lead to dissociation of the LP-RP duplex, resulting in 

increased fluorescence. This would be presented as a negative peak near the theorized Tm in 
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the dissociation curve from the channel corresponding to the fluorophore attached to the RP 

(HEX, ROX, CY5 or FAM). Dissociation curves from all four channels were provided by the 

qPCR software for all 22 samples (of which 20 contained template and two were negative 

controls) giving a total of 88 melting curves per run. The test was run on each pure culture 

sample at least three times, and due to this large number of melting curves, only a 

representative selection is presented in this thesis. However, the results for all the probes 

from the tests on the pure cultures are listed in table 2 on the previous page.  

The negative controls confirmed that none of the probes led to a signal in the absence of 

bacterial template. The UNI probe, which had been included in all tests as a positive control, 

confirmed that bacteria were present in all samples except the negative controls, as all the 

samples containing DNA template had a negative peak at roughly 65 °C on the melting curve 

from the HEX channel (demonstrated in figure 5 on the next page and in figure S1 in the 

supplementary material).  

Figure 5 presents two representative examples of melting curves achieved from testing on 

pure cultures. In figure 5a a melting curve from the HEX channel for a sample containing 

Eubacterium hallii is shown, where two signals can be seen. The first signal at roughly 40 °C 

was from probe Eub206, which was designed to detect E. hallii. The second peak at 65 °C 

was from the UNI probe. No peaks were seen on the melting curves from the ROX, CY5 and 

FAM channels for this sample (not included in this thesis), as none of the probes carrying 

those fluorophores were complementary to the 16S rRNA gene of E. hallii.  

Figure 5b shows a melting curve collected from the ROX channel from a sample containing 

Eubacterium rectale, and demonstrates a signal from the complementary probe Eub119 at 

70 °C. This sample also showed a peak on the melting curve from the HEX channel at 65 °C 

due to the UNI probe, but no peaks on the melting curves collected from the CY5 and FAM 

channels, as no probes on those channels were complementary to the E. rectale template 

(melting curves not shown).  

For information on the probes and their corresponding targets, fluorophore and Tm, see 

table 1 on page 19.  
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Figure 5: Two representative examples of melting curves from samples containing pure bacterial cultures. The 

temperature is presented on the horizontal axis, starting at 22 °C and ending at 95 °C. The negative derivative of the 

fluorescence and temperature measurements (-dF/dT) is on the vertical axis, ranging from -1200 to 800 on the HEX channel 

(a), and from -1400 to 600 on the ROX channel (b). The melting curve from the HEX channel is collected from a sample 

containing Eubacterium hallii, which is targeted by probe Eub206 (seen as a negative peak just below 50 °C). The signal for 

the UNI probe can be seen at roughly 65 °C. The melting curve from the ROX channel is from a sample containing 

Eubacterium rectale, which is targeted by probe Eub119, shown as a peak at 70 °C.  

 

 

After the tests on pure cultures had been completed, 15 of the 20 LPs investigated in this 

thesis were determined to be compatible with LAD under the current experimental setup 

(table 2). Representative melting curves demonstrating true positive signals for all 15 probes 

can be seen in figure S1, S2 and S3 in the supplementary material. The five probes that did 

not provide satisfactory signals when tested with LAD were Bac230, Bac155, Dor124, Str78 

and Bac88 (see table 1 for more information on these probes).  
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3.1.2    Investigation of probes that did not provide satisfactory signals  

Probe Bac230 (designed to detect Bacteroides fragilis), never provided a signal in response 

to its target bacterium. However, it gave a weak false positive signal in response to 

Lactobacillus ruminis, for which it was not intended, each time the test was performed 

(demonstrated in figure S1 in the supplementary material). Due to this false positive signal, 

the sequence of the Bac230 LP was checked against reference sequences of L. ruminis’ 16S 

rRNA gene using the Basic Alignment Search Tool (BLAST, National Center for Biotechnology 

Information (NCBI), Bethesda, Maryland, USA). This confirmed that the sequences were not 

complementary. As the probe never gave a signal for its target bacterium, the sample 

containing B. fragilis was sent for sequencing. This confirmed that the template that had 

been used for testing was a perfect match to the Bac230 LP, and thus provided no 

information on the lack of true positive signal. The L. ruminis sample was not sent for 

sequencing because probe Lac47, which was designed to detect L. ruminis, provided a 

satisfactory signal in all tests performed. It is therefore unknown whether the sample 

contained any contamination that Bac230 could be reacting to.  

The bacterial templates used to test the probes Bac155 and Dor124 were sent for 

sequencing, as no signal was detected for these two probes in any of the tests. The results 

from this confirmed that the templates used were perfectly complementary to the LPs, and 

therefore provided no information on the lack of detected signals.  

Self-dimerization and hairpin structures were found to be highly unlikely for the three 

probes Bac230, Bac155 and Dor124, as all possible formations had a near zero or positive 

delta G. The probes themselves were not sequenced, and it is therefore unknown if they 

contained any unexpected errors.   

Several bacterial species were used to test the probes Bac88 and Str78, but neither of them 

provided a detectable signal during testing. However, this was expected, because none of 

the bacterial species used were a perfect match to the LPs, and were only chosen because 

fully complementary species were not available during the time of testing.  
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3.2    Validation of LAD on a mixed sample 
Following the probe validation on pure cultures, LAD was performed on a mixed sample 

containing 11 bacterial templates whose 16S rRNA gene sequences were complementary to 

12 of the 15 probes (one of which was the UNI probe) that had been determined to be 

compatible with LAD. This was to ensure that the technology could provide distinguishable 

signals in more complex bacterial communities as well. The results from this test confirmed 

that LAD showed the expected satisfactory signals (based on the criteria listed under section 

2.2.3 on page 22) for the probes that were complementary to the bacteria included in the 

mix, and no signals for the probes whose target templates were not included. The exception 

to this was probe Bac230, which gave a false positive signal in response to L. ruminis.  

As the mixed sample contained several bacterial templates, the melting curves from each 

channel presented a baseline with several peaks. These peaks were found near the 

theoretical Tms of all the probes designed for that channel that were complementary to the 

species included in the mix. This is demonstrated in figure 6 on the following page, where 

representative examples of melting curves from all four channels collected from a test 

performed on the mixed sample are presented.  

On the HEX channel shown in figure 6a, signals can be seen for probes Fir224, Eub206, Ali239 

and UNI. These signals were all expected based on the species included in the mixed sample. 

In addition, a false positive signal from Bac230 in response to L. ruminis can be seen at 30 °C.  

The ROX channel is presented in 6b, where probes Str138, Cat187 and Eub119 demonstrate 

peaks near their designed theoretical Tms, all of which were expected.  

On the CY5 channel, shown in figure 6c, probes Pse30, Lac47 and Aci57 can all be seen to 

provide a signal, as expected based on the templates used in the mix. The baseline on this 

channel can be seen to decline with increasing temperature, and this was observed in all 

tests performed (also demonstrated in figure S3a in the supplementary material). 

Figure 6d shows the FAM channel, where probes Par89 and Bac109 both show deep signals 

in response to the mixed sample, as was expected.  

For an overview of the fluorophore, theoretical Tm and bacterial target for each probe pair, 

see table 1 on page 19. For a list of the probes expected to provide a signal in the mixed 

sample, see table 2 on page 26.  
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Figure 6: Representative melting curves from a test performed on a mixed sample containing pure DNA templates from 

11 bacterial species. The temperature is presented on the horizontal axis and goes from 20 °C to 90 °C for all four melting 

curves. The negative first derivative of the fluorescence and temperature measurements (-dF/dT) is on the vertical axis, and 

goes from -2000 to 1200 on the HEX channel (a), from -2000 to 1500 on the ROX channel (b), from 0 to 4500 on the CY5 

channel (c), and from -800 to 2000 on the FAM channel (d). The signal seen for probe Bac230 on the HEX channel was a 

false positive signal. In addition, a contaminating signal can be seen on this channel at around 85 °C. This is outside the 

temperature range used for this thesis. All other observed peaks in the figure were true positive signals.  
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3.3    Evaluation of LAD for diagnosis of dysbiosis 

As an aim of this thesis was to investigate if LAD can be used to correctly define a sample as 

normobiotic or dysbiotic, the entire LAD process was performed on fecal samples collected 

from 32 individuals. These samples had previously been mapped by GA according to their 

dysbiosis index, and of the 32 samples, 15 were classified by GA as normobiotic and 17 as 

dysbiotic. After LAD had been completed, the UNI probe confirmed that all fecal samples 

contained bacterial DNA.  

3.3.1    Probe signals in normobiotic versus dysbiotic samples 

The extracted peak values collected from the test on the fecal samples were first used to 

examine the differences in the average signal detected for each probe in the normobiotic 

samples compared to the dysbiotic samples. In addition, a Welch Two Sample t-test was 

performed to investigate if the differences observed were statistically significant, indicated 

by a p-value < 0.05. The signal comparisons are visualized in figure 7 on the following page, 

with the statistical significance indicated by asterisks. In the figure, a strong signal (given as 

low magnitude) indicates a higher bacterial abundance as more LPs have been labelled.  

The figure shows that the average detected signals for probes Fir224, Eub206, Ali239, 

Str138, Cat187, Eub119, Lac71, Lac47, Aci57 and Bac91 were stronger in the normobiotic 

samples than in the dysbiotic ones. The dysbiotic samples show on average a stronger signal 

for probes Pse30, Par89, Bac109 and Act39. The results from the Welch Two Sample t-test 

shows that the increased signal strengths detected for probes Ali239 and Cat187 in the 

normobiotic samples were statistically significant (p-value = 0.02664 and p-value = 0.02263 

respectively). For the remaining probes, observed differences in signal strength were not 

considered statistically significant with respect to normobiosis and dysbiosis (p > 0.05). The 

p-values for all probes can be seen in table S3 in the supplementary material.  

The columns for the probes carrying a CY5 fluorophore (figure 7c) show a similar trend as the 

melting curves from the CY5 channel in figures 6c and S3a, with a decline in signal depth 

from probe Pse30 (designed for a theoretical Tm of 29.5 °C), to Bac91 (designed for a 

theoretical Tm of 70 °C). 
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Figure 7: Presentation of the average detected signals with standard deviation for each probe from the normobiotic and 

dysbiotic samples. The signals from the normobiotic samples are shown by the blue columns, while the signals detected 

from the dysbiotic samples are shown by the orange columns. The probe signals are the negative first derivative of the 

fluorescence and temperature measurements (-dF/dT) and are shown by the y-axis. As the signal is detected as low 

magnitude, a lower number on the y-axis indicates a stronger signal. The probes Fir224, Eub206, Ali239, Str138, Cat187, 

Eub119, Lac71, Lac47, Aci57, and Bac91 show a stronger signal in the normobiotic samples than in the dysbiotic samples, 

while for probes Pse30, Par89, Bac109 and Act39, the dysbiotic samples display stronger signals than the normobiotic 

samples. The statistical significance of the differences in average probe signals between normobiotic and dysbiotic samples 

is shown by asterisks, where one asterisk represents a non-significant p-value (p > 0.05), while two asterisks represent a 

significant p-value (p < 0.05).  
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3.3.2    ROC curve analysis 

The ROC curves investigating the accuracy of LAD as a diagnostic tool for dysbiosis is 

presented in figure 8 on the following page. In this plot, the blue curve represents the 

theoretical best-case scenario based on this dataset, while the green curve shows the cross-

validated model, which indicates the realistic diagnostic performance of the LAD technology 

with the current probes.  

The red rings on the curves show the optimal results with regards to sensitivity and 

specificity as determined by the MatLab software, and indicate the proportion of each group 

being tested that get classified correctly. For the blue curve sensitivity of the red ring is just 

below 0.9 (or 90%), as seen from the y-axis. Specificity is read from the x-axis as 1-specificity, 

and in the figure this can be found at 0.1 for the red ring, which translates into a specificity 

of 90%. The best-case scenario for the entire dataset from this thesis can therefore be seen 

to have both sensitivity and specificity at around 90%. This means that roughly 90% of the 

dysbiotic samples (seen by the sensitivity) will be classified correctly as dysbiotic, while 

about 10% of the dysbiotic samples get mistaken for healthy. Similarly, 90% of normobiotic 

samples (seen by the specificity) will be correctly classified as normobiotic, while around 

10% will get wrongly diagnosed as dysbiotic according to the ideal classifier.   

For the cross-validated model represented by the green curve, the red ring indicates that the 

realistic optimal result has a sensitivity a little under 0.8, indicating that around 80% of 

samples that are dysbiotic will be classified correctly. This means that a little more than 20% 

of dysbiotic individuals will be wrongly classified as healthy using the LAD technology with 

the current probeset. Of normobiotic individuals, the red circle indicates that about 75% will 

be correctly classified as healthy. Around 25% of the normobiotic samples will be classified 

wrongly as dysbiotic, as demonstrated by the specificity of the red ring which is found at 

roughly 0.25 on the x-axis.  
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The area under the curve (AUC) shows the accuracy of classification for all the samples, and 

indicates how well LAD can distinguish between dysbiosis and normobiosis when using the 

current probeset. The blue curve has an AUC of 0.9373 (94%), showing that an ideal result 

from this probeset would mean that 94% of all samples were classified correctly. The cross-

validated green line has a value of 0.8157 (82%), indicating that the realistic result using the 

LAD method with the current probeset is that 82% of all samples investigated will get 

classified correctly as either dysbiotic or normobiotic, while 18% will be incorrectly classified.  

 

Figure 8: ROC plot showing the classification accuracy of LAD when using the probe subset tested in this thesis.  

The blue curve represents the estimated best-case scenario, while the green curve shows the cross-validated model. 

Sensitivity can be read from the vertical axis, while specificity is read as 1-specificity on the horizontal axis. The red ring on 

the blue line informs what the optimal result for the dataset is, where both sensitivity and specificity are at around 0.9. The 

red circle on the green line shows the optimal realistic result, where a sensitivity was achieved of just below 0.8, while 

specificity can be found at roughly 0.75. These optimal points give the best trade-offs between correctly classifying a 

sample as dysbiotic, against the cost of wrongly diagnosing a normobiotic sample as dysbiotic. The location of the ring is 

based on a straight line whose gradient is dependent on previously determined accepted thresholds for sensitivity and 

specificity. When the cost of misclassifying normobiotic and dysbiotic samples is the same, and it is assumed that there is 

roughly the same number of healthy and sick samples, this line has a slope of 1, making it angled at 45 degrees. In the 

figure, this is presented as the two grey dashed lines going through the red circles. When using such a line, the optimal 

result can be found at the point where the ROC curve and the dashed line cross closest to the top left corner of the figure.  
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3.3.3    Association of probes to dysbiosis or normobiosis 

The association of individual probes to either dysbiosis or normobiosis is presented in figure 

9, and indicates which probes in the subset best separate the two states. In this figure, a 

positive value on the vertical axis means the probe is associated with dysbiosis, while a 

negative value means it is associated with normobiosis.  

The figure shows that for dysbiosis, probe Eub206 is the most strongly associated of the 

subset, closely followed by Par89, Bac109 and Act39. The final probe seen associated with 

dysbiosis is Fir224 with a regression vector a little under 0.2.  

Of the probes associated with normobiosis, Eub119 has the strongest association, closely 

followed by Lac47. Ali239 has a regression vector value of about -0.3, followed by Aci57 and 

Cat 187 near -0.2. Bac91 can be found at -0.15, while Str138 is at just below -0.1. The probes 

Lac71 and Pse30 are the probes with the least association with normobiosis at just below 

zero.  

 

Figure 9: Association of individual probes to either dysbiosis or normobiosis. A positive value on the vertical axis, 

presented as the regression vector, means the probe is associated with dysbiosis. A negative value means it is associated 

with normobiosis. The probe Eub206 is the most strongly associated probe for dysbiosis in this probe subset, while Eub119 

is the most associated to normobiosis. Fir224 is the least associated for dysbiosis of the dysbiosis-associated probes, while 

Pse30 is the least associated to normobiosis, followed closely by Lac71.                             
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4. Discussion 

4.1    The diagnostic performance of LAD 

The aim of this thesis was to investigate whether the Liquid Array Diagnostics technology can 

detect target bacteria and differentiate between dysbiosis and normobiosis sufficiently to be 

a valuable supplement to the GA-map® Dysbiosis Test. As it was assumed that LAD could 

detect 20 targets simultaneously, a subset of 20 labelling probes designed by Genetic 

Analysis AS was used for the study. These probes were first tested with LAD on pure cultures 

of target bacteria to ensure they could provide true positive signals when used with this 

technology. In addition, LAD was performed on a mixed sample to confirm that probe signals 

would also be distinguishable in more complex bacterial communities. At the end of the 

thesis 15 of the 20 probes were deemed to be compatible with LAD under the current 

experimental setup. 

After probe compatibility had been established, LAD was performed on previously classified 

fecal samples to investigate how well the technology could distinguish between dysbiosis 

and normobiosis. Using a ROC curve analysis (figure 8) it was estimated that LAD had an 

overall accuracy of 82% for diagnosing patients correctly. The analysis also indicated that a 

slightly larger proportion of dysbiotic samples would be classified correctly compared to the 

normobiotic ones.  

As five probes did not provide distinguishable signals in this thesis, and the UNI probe was 

used as a positive control, the evaluation of LAD’s diagnostic ability was based on the 

remaining 14 probes that gave true positive signals to their target bacteria. Due to the 

complexity of factors influencing dysbiosis, it is assumed that using 20 compatible probes 

would increase the accuracy of the test. In addition, the probes investigated are the least 

associated with dysbiosis or normobiosis of GA’s complete probeset, and it is expected that 

probes that have a stronger association would achieve an even higher accuracy using LAD.  

Of the 14 probes used to evaluate LAD’s diagnostic performance, five were associated with 

dysbiosis in this thesis, while nine were associated with normobiosis (figure 9). To examine 

the validity of these associations, investigations were made into previous studies on the 

topic, the biology of the bacteria targeted by the probes, and the relationships between the 

bacteria and the host.  
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4.1.1    Probes associated with dysbiosis 

The probes that were identified as associated with dysbiosis in this study were Fir224, 

Eub206, Par89, Bac109 and Act39 (figure 9).  

Probe Fir224 was designed to detect species within the Firmicutes phylum. This is one of the 

most dominant phyla in the gut, and studies have found that dysbiosis often involves a shift 

within this phylum. For example, as was mentioned in the introduction of this thesis type 2 

diabetes and obesity are both associated with the abundance of Firmicutes species growing 

too large compared to healthy microbiota profiles (1, 17, 22, 23). On the other hand, a 

decrease in the abundance of certain Firmicutes species is frequently found in individuals 

suffering from IBD. An example of this is in CD patients, where a reduction is often seen in 

Faecalibacterium prausnitzii, one of several bacteria within the phylum that has anti-

inflammatory effects (20, 22, 23, 28, 38, 39, 61, 62, 63, 64). Such decreases in Firmicutes 

species is, together with a reduction in functional diversity, a strong indicator of IBD (22, 28, 

38, 61, 62). This agrees with the data presented in figure 7 in this thesis which suggests that 

on average the dysbiotic samples, which were collected from individuals suffering from IBS 

and IBD, had a lower abundance of Firmicutes species than the normobiotic samples.  

Based on the above, it is as expected that probe Fir224 was associated with dysbiosis in this 

thesis. This finding also agrees with a previous study on the topic which found that for the 

IBS and IBD cohorts investigated the bacteria that contributed the most to dysbiosis were 

within the Firmicutes phylum (20).   

The probe Eub206 targets Eubacterium hallii, which is a species within the Firmicutes 

phylum that is commonly found in human feces. This bacterium is important to the intestinal 

metabolic balance due to its ability to utilize glucose, acetate and lactate to produce the 

short-chain fatty acid (SCFA) butyrate. Its use of lactate in this production is particularly 

advantageous, because an accumulation of this intermediate has been linked to several 

diseases in humans (3, 6, 22, 24, 65, 66, 67, 68).  

Butyrate, along with some other SCFAs, is believed to have anti-inflammatory properties (6, 

22, 24). In addition, butyrate is a source of energy for epithelial colonic cells, it participates in 

the proliferation and apoptosis of said cells, and it is seen as an important contributor to the 

prevention of colon cancer. Epithelial cells protect the host against invading microorganisms 

and their toxins, and a disturbance in the production of butyrate can therefore lead to a 
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poorer immune response. Butyrate also increases the growth of species within the 

Lactobacillus genus, some of which are important for a healthy gut (5, 22, 24, 67, 69, 70, 71). 

Studies have found that butyrate-producing bacteria such as E. hallii are often depleted in 

IBS and IBD patients, particularly in CD patients, compared to healthy subjects. A low 

abundance of E. hallii has also been linked to obesity and type 2 diabetes, and there is some 

indication that a decrease in butyrate producers is associated with the pathogenesis of 

multiple sclerosis (MS), a pro-inflammatory disease that affects the central nervous system 

(6, 22, 64, 65, 66, 67, 72, 73, 74).  

Along with butyrate, E. hallii produces H2, which normally gets efficiently consumed by 

methanogenic and sulfate-reducing microorganisms in the gut (3, 6, 66, 75). H2 has been 

found to neutralize certain toxic hydroxyl radicals, downregulate expression of 

proinflammatory factors, and maintain cerebrovascular reactivity. In addition, hydrogen 

sulfide, which is produced from H2 by the sulfate-reducers, helps modulate smooth muscle 

and neuronal functions, protects cells from harmful agents, and can function as an anti-

inflammatory (3, 5, 76). A decrease in the production of H2 can therefore have a negative 

effect on human health. For example, a recent study theorized that such a reduction could 

be linked to Parkinson’s disease (PD), a condition that is often accompanied by dysbiosis 

(77).  

Based on the above information, the recognition in this thesis of Eub206 as a probe 

associated with dysbiosis could suggest that in the dysbiotic samples investigated, the 

abundance of the bacterium was lowered compared to the normobiotic samples. This also 

agrees with the findings presented in figure 7, which indicate an average lower amount of  

E. hallii in the dysbiotic samples compared to the non-dysbiotic ones. However, as can be 

seen from the raw data presented in table S2 in the supplementary material, some of the 

dysbiotic samples display relatively strong signals for Eub206, and the strongest detected 

signal for this bacterium comes from a DI3 sample. Such an elevated amount of E. hallii 

could also be linked to dysbiosis, as it could lead to an abundance of H2, which in turn could 

lead to an overproduction of hydrogen sulfide and methane. While hydrogen sulfide has 

been found to be beneficial to human health, it can also lead to stomach pain and have toxic 

effects if the concentration grows too high. Methane has been linked to both constipation 

and constipation-predominant IBS, likely because it causes a delay in the movement of food 

in the small intestine. In diseases that include symptomatic diarrhea, like CD or UC,  
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the production of methane has generally been found to be low (3, 6, 28, 66, 75, 76).  

Hydrogen has been suspected to increase the small intestinal motility, but as it is easily 

consumed, its effect on this is usually minor (3, 6, 28, 66, 75, 76). However, there is a 

possibility that a significant increase in H2 production beyond what the microbiota could 

efficiently consume could be associated with diarrheal diseases. In addition, hydrogen 

removal is needed for fermentation to remain efficient. It is also worth mentioning that 

intestinal gases, such as H2, are frequently associated with abdominal pain, bloating, and 

changes in bowel movement, all of which are symptoms of IBS, further underlining E. hallii’s 

link to dysbiosis (5, 6, 75). 

A disturbance is frequently seen in the abundance of species within the Bacteroidetes 

phylum in individuals suffering from dysbiosis-related disorders compared to healthy 

subjects (20, 22, 28, 61, 62, 74). This agrees with the finding in this thesis that probes Par89 

and Bac109 were associated with dysbiosis, as they target Parabacteroides johnsonii and 

Bacteroides pectinophilus respectively, which are both species within this phylum.   

It has been hypothesized that MS is linked with dysbiosis, and investigations of fecal samples 

collected from patients suffering from this disease have revealed a decrease within the 

Parabacteroides genus compared to healthy subjects (72, 73, 74). A lower abundance of this 

genus has also been found in patients suffering from chronic hepatitis B, along with a 

decrease in the Bacteroides genus (78).   

Many members of the Bacteroides genus ferment pectin and other plant cell wall 

polysaccharides in our food, including B. pectinophilus which is frequently isolated from 

human feces. Degraded pectin is absorbed and used for energy by the host or bacteria in the 

colon, and both pectin and its fermentation products help develop and maintain a healthy 

microbial balance in the gut (62, 79, 80). It has been found that pectin can positively affect 

the success of a fecal microbiota transplantation (FMT), which is sometimes used as a 

treatment for patients suffering from UC, while also delaying the deterioration of diversity in 

the gut (5, 62, 80). In addition, pectin participates in modifying blood glucose and insulin 

response, and has been found to be useful in the treatment of diabetes and other 

carbohydrate-related disorders (62, 80).  
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One of the main products from pectin degradation, acetate, is used as an energy source both 

for bacteria and for the colon epithelial cells. In addition, it acts as a substrate in cholesterol- 

and lipid biosynthesis, has anti-inflammatory effects, and is used by some bacteria to inhibit 

enteropathogens (1, 24, 67). Acetate is also used in the synthesis of butyrate, and a decrease 

in pectin-degradation can therefore lead to a decrease in the production of butyrate, which, 

along with a general decrease in microbial diversity, is a key trait in dysbiosis (6, 80).  

Based on the above information, it could be assumed that since Par89 and Bac109 were 

associated with dysbiosis in this thesis, the abundances of the bacteria detected by these 

two probes were lower in the dysbiotic samples than in the normobiotic ones. This is 

contradictive to the findings presented in figure 7, which indicate that both of these probes 

on average detected a stronger signal (and thus theoretically a higher abundance) in the 

dysbiotic samples. However, for Bac109 this difference was minor. For Par89 it could be 

theorized that the stronger signal detected in the dysbiotic samples was because those 

samples came from IBS and IBD patients, while the cases of reduced abundance described 

above was in relation to MS and chronic hepatitis B.   

The last probe that was associated with dysbiosis in this thesis was Act39, which targets the 

order Actinomycetales within the Actinobacteria phylum. This association agrees with a 

study performed by Casén et al. (20), which found that members of the Actinobacteria 

phylum were some of the predominant bacteria linked to dysbiosis within their IBS cohort, 

displaying a stronger signal in the dysbiotic samples than in the non-dysbiotic ones. The 

results presented in figure 7 in this thesis indicate the same, although the difference in 

average signal between the dysbiotic and normobiotic samples is small. This could be 

because the dysbiotic cohort in this thesis consisted of both IBS and IBD samples, rather than 

purely IBS.  

A change in Actinomycetales abundance has been recorded in several dysbiosis-related 

cases. For example, taking proton pump inhibitors to reduce the production of stomach acid 

can lead to a decrease in bacterial diversity and to moderate dysbiosis, and in such cases an 

increase in the Actinomycetales order is often seen. An increase has also been found in 

obese individuals compared to lean ones (23, 81, 82, 83). 
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In a study by Valeur et al. (58) it was found that IBS patients that responded well to a low 

FODMAP diet (Fermentable oligosaccharides, disaccharides, monosaccharides and polyols. 

For more information on the diet, see section 4.3.1 on page 56) had lower levels of 

Actinomycetales species than the patients that did not respond well. However, whether this 

is an indication of its link to dysbiosis, or simply a trait that affects response to this specific 

diet, is not clear.  

Based on the above information, it could seem that an increased presence of the order 

Actinomycetales in the human gut is negative. However, the order contains many members, 

several of which are frequently found on mucosal surfaces, on skin, and in the human gut. 

Some of its members produce antiproliferative and immunosuppressant, and it has been 

theorized that this enables them to prevent allergies, autoimmunity and IBD because they 

suppress both excessive proliferation of certain microorganisms and local immune responses 

(1, 84). Hence, while certain trends can be seen with regards to specific bacterial orders and 

dysbiosis, the above serves as a demonstration of how methods that can distinguish down to 

species level is necessary to truly discover the underlying patterns of a disturbed gut.  

4.1.2    Probes associated with normobiosis 

The probes shown to be associated with normobiosis in this thesis were Aci57, Pse30, 

Cat187, Ali239, Bac91, Eub119, Lac71, Lac47, and Str138 (figure 9).  

Probe Aci57 targets the bacterium Acinetobacter junii, which is an opportunistic pathogen 

that sometimes causes infections in individuals with a compromised immune system (1, 73, 

85). According to Pepper et al. (85), up to 25% of adults carry this bacterium in their 

respiratory tract and on their skin, and during outbreaks in hospitals, the source is often 

human skin, sinks or taps (73, 85).  

A research group recently found in a study that the abundance of the Acinetobacter genus 

was much higher in MS patients than in healthy individuals, indicating a negative association 

to the genus. However, the nature of this connection remains to be verified, and it is unclear 

whether A. junii was involved in this, as the study was unable to distinguish at species level 

(73). A positive association to the genus has also been observed, as a study on patient 

response to a low FODMAP diet found that individuals with higher levels of Acinetobacter 

species responded well to the diet (58).  
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Figure 7 in this thesis indicates that the normobiotic samples on average contained a slightly 

higher abundance of A. junii than the dysbiotic ones, which could have led the probe to be 

associated with normobiosis. However, this difference in probe signals was relatively small. 

Acinetobacter species are generally rare in the healthy human gut, and it may be suggested 

that probe Aci57 is not consistently associated with either normobiosis or dysbiosis (73, 85). 

Instead it could be a probe to use in certain situations, for example when there is suspicion 

of MS development, for investigation of potential contamination during sampling (e.g. from 

human skin), to check potential response to a low FODMAP diet, or to check for the 

opportunistic pathogen.  

The same might apply to probe Pse30, which showed only a weak association to normobiosis 

in this thesis. This probe targets Pseudomonas spp., a genus that is very prevalent in nature 

and can be found in for example snow, rain, lakes, plants, soil and animals (1, 86). Humans 

frequently get exposed to members of the genus from for example swimming pools, hot 

tubs, and taps (5, 72, 85). As for the Acinetobacter genus, a higher abundance of the 

Pseudomonas genus has been found in patients that have MS, and the probe might 

therefore be used to investigate MS development. In addition, the genus contains several 

opportunistic pathogens (5, 72, 85). Based on this, it may be that in the samples tested, the 

bacteria targeted by Pse30 had little influence on normobiosis, leading to only a weak 

association. In addition, because the genus is so common due to its widespread habitations, 

it could have been detected almost equally in both the normobiotic and dysbiotic samples. 

This theory is supported by figure 7, in which the average signals detected for probe Pse30 

are of similar strength for dysbiosis and normobiosis. 

Probe Cat187 targets Catenibacterium mitsuokai, a bacterial species belonging to the class 

Erysipelotrichia which is found frequently in the gut (87). The species performs 

fermentation, producing lactic, acetic, butyric and isobutyric acids (88). 

Acetic and butyric acids are among the most abundant SCFAs in the gut. As has been 

mentioned earlier in this thesis, acetate, derived from acetic acid, helps reduce 

inflammation, inhibits pathogens, and can be used as an energy source. In addition, it is 

involved in the production of butyrate and lipids. Butyrate was discussed during the 

investigation of E. hallii, and in brief functions as an anti-inflammatory, is very important for 
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epithelial cells, and promotes the growth of beneficial bacteria. Based on this, the 

association of probe Cat187 to normobiosis seems correct.  

The gut microbiota is influenced by diet, and it has been found that in mice fed with a 

western diet, which usually consists of large amounts of animal protein and saturated fats, 

there is an elevation in the abundance of members of the Erysipelotrichia class, including C. 

mitsuokai. Other bacteria that have been seen to increase in individuals consuming such a 

diet are within the genera Alistipes and Bacteroides, covered by probes Ali239 and Bac91 

respectively (1, 3, 22, 23, 80). This could perhaps partly explain why these three probes were 

seen in this thesis to be associated with normobiosis, even though a western diet is not 

necessarily associated with good health. The fecal samples used in this project were from 

Norway, and it may therefore be assumed that the normobiotic individuals most likely 

followed a western diet. Individuals suffering from dysbiosis-related illnesses often make 

changes to their diets, and may exclude certain food items, which will affect the bacterial 

composition (1, 17, 20, 22). This is further supported by figure 7 in this thesis, which suggests 

that there was on average a higher abundance of C. mitsuokai, Alistipes spp., and 

Bacteroides spp. in the normobiotic samples compared to the dysbiotic ones. This link to diet 

may also partly explain why the differences in average signals detected for probes Cat187 

and Ali239 were found to be statistically significant in this thesis, as diet may be one of the 

most consistent differences between the normobiotic and dysbiotic samples.  

In addition to being affected by a western diet, certain species within the Alistipes genus 

have been found to be shared among individuals in general, suggesting its importance in the 

human gut, and supporting the link of probe Ali239 to normobiosis (1, 24, 39). Its positive 

effect has been indicated in studies on cancer patients’ response to immunotherapy, where 

it has been found that in the individuals responding well to the treatment, there was a 

higher abundance of Alistipes species, along with certain other bacteria (22, 89). In addition, 

it has been found that obese individuals who succeed in weight loss have a microbiota 

baseline which is elevated in members from this genus, although it is worth noting that an 

increase in the genus has generally been observed in obese individuals compared to lean 

ones (90, 91). Species within the Alistipes genus have also been found to be more abundant 

in healthy individuals compared to people suffering from non-alcoholic liver diseases, 

chronic hepatitis B and HIV (78, 91, 92, 93).  
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On the other hand, some studies have observed adverse effects in relation to elevated 

amounts of the Alistipes genus. For example, a high abundance of certain of its species has 

been found to be correlated with an increase in abdominal pain in children with IBS, and to 

major depressive disorder (36, 90, 94). Therefore, one could also argue that the probe could 

be associated with dysbiosis. However, all samples used in this project were collected from 

adults, and seeing as the genus is shared among individuals, especially those that follow a 

western diet, its link to normobiosis seems correct for the samples investigated. 

Additionally, both in the cases of obesity and major depressive disorder, it was found that a 

high abundance of the genus could be connected to a better response to treatment, thus 

presenting the question of whether the elevated presence of the bacteria is in fact negative 

or positive (36, 90, 91). Indeed, it is a good example of the complexity of the gut microbiota 

and the roles of the microbes.  

The Bacteroides genus, which is one of the most common genera found in the large 

intestine, contains several species that have been found to be shared among individuals (1, 

39). According to Willey et al. (1) about 30% of the bacteria isolated from human feces 

belong to this genus, and the association of probe Bac91 (which targets Bacteroides spp.) to 

normobiosis is therefore as expected.  

The probe was first tested on one species from the Bacteroides genus, for which it gave no 

signal. By checking the sequence of the LP against the 16S rRNA gene sequence of the 

bacterium used, it was revealed that the probe had TCC at the 3’ end, while the bacterial 

sequence had TTC, meaning the reverse complementary strand had AAG. In theory, the 

probe could get extended with a ddCTP-Q, as the complementary bacterial strand had a G in 

its 5’end. The lack of signal could therefore be due to the mismatch in the penultimate 

position. The second species within the Bacteroides spp. that was tested with Bac91 did not 

have this penultimate mismatch and provided a satisfactory signal. This is therefore an 

example of the specificity of LAD. It could be interesting to investigate further how 

penultimate mismatches are linked to the specificity of LAD, and potentially to test other 

polymerases to see if the issue persists.  

If a goal is to detect more species within the genus with probe Bac91, changes to the 

protocol could be investigated. For example, lowering the temperature of the annealing step 
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during labelling may enable the probes to bind to more templates despite a penultimate 

mismatch. However, this can also lead to more incidents of nonspecific binding.  

Eubacterium rectale is one of the most dominant species in the colon, and is an important 

bacterium for butyrate production and for synthesis of the biologically active form of vitamin 

B6 called Pyridoxal 5′-phosphate, or PLP. This active form of the vitamin is involved in the 

metabolism and synthesis of lipids, proteins, and carbohydrates, in addition to being 

important for the immune system (24, 61).  

People suffering from IBD and IBS are frequently found to have reduced levels of butyrate-

producers, including E. rectale, compared to healthy subjects, and several studies have 

found that healthy individuals have up to a 10-fold higher abundance of this bacterium (6, 

22, 24, 61, 63). This agrees with figure 7 in this thesis, which indicates that on average the 

normobiotic samples had a higher abundance of E. rectale compared to the dysbiotic ones. 

The strong association of probe Eub119, targeting E. rectale, to normobiosis is therefore as 

expected.  

Probes Lac71 and Lac47 both target members of the Lactobacillus genus that are normal 

constituents of the human microbiota (1, 24, 68). Probe Lac71 covers Lactobacillus spp., and 

the genus contains species that reduce the symptoms of IBD, alleviate certain obesity-

related complications linked to metabolism, protect against pathogens, have anti-

inflammatory effects, and are suspected of having anti-cancer activities (22, 68, 83). In 

addition, several species are involved in the production of SCFAs, and of vitamins such as 

vitamin K, B12 and B9 (also known as folic acid) (22, 61, 68, 83, 95). Vitamin B9 is important 

for DNA repair, cell division and cell growth, and a deficiency in this vitamin has been seen in 

patients suffering from CD (61, 95).  

Probe Lac47 targets Lactobacillus ruminis, and the genome of this bacterium has revealed 

that while it is unable to produce folic acid itself, it has the genes needed for chorismite 

biosynthesis, which is a precursor to folic acid. A hypothesis is that L. ruminis contributes to 

the production of vitamin B9 by secreting chorismite to the environment, allowing for other 

bacteria in the gut to use that to synthesize folic acid (68). Lac47 also targets Pediococcus 

acidilactici, which is often involved in food fermentation products like sausages (1). Various 

members of the Lactobacillus genus are also frequently used in food, such as in yoghurts, 

fermented vegetable foods, sourdough bread and more. In addition, due to their beneficial 
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role in the human gut, several Lactobacillus species are commonly used in probiotics (1, 5, 

22, 68).  

A reduction in abundance of Lactobacillus species is often observed in cases of IBD and IBS 

compared to in healthy individuals, and some species have been associated with obesity. In 

addition, certain species have been found to express receptors for vitamin B12, which can 

lead to a decreased bioavailability of this vitamin for the host (5, 6, 22, 68). These negative 

associations are not immediately reflected in the results of this experiment, as the two 

probes used in this thesis that are directed at members of this genus, Lac71 and Lac47, have 

both been demonstrated as more strongly associated with normobiosis. However, this could 

be because the probes do not target, or only target a few of the Lactobacillus species that 

are linked to an imbalanced gut. The genus is part of the Firmicutes phylum, and the species 

associated with dysbiosis could possibly fall under the Fir224 probe. In addition, GA has 

designed another probe directed at Lactobacillus spp., and there is a possibility that this 

probe would have been associated with dysbiosis using LAD had it been tested in this thesis.  

Hence, as the bacteria targeted by Lac71 and Lac47 are normal members of the gut 

microbiota, are used as probiotics, and are frequently found in food products, an association 

to normobiosis is not surprising. In figure 9 in this thesis, probe Lac71 barely shows on the 

normobiotic side, suggesting that the species targeted by this probe are somewhat equally 

distributed among the samples. This is also reflected in figure 7, which indicates that there 

was only a slight increase in abundance in the normobiotic samples compared to the 

dysbiotic ones. This could perhaps be because the probe targets some species within the 

genus that are associated with normobiosis, and others that are associated with dysbiosis. In 

addition, it could be theorized that the dysbiotic samples investigated in this thesis came 

from individuals who had recently consumed probiotics or food products containing 

Lactobacillus species, perhaps as a treatment for their dysbiosis-related symptoms, which 

could veil a larger difference in the abundance between healthy and sick individuals.  

The probe Str138, covering Streptococcus spp., was the last probe that showed a relation to 

normobiosis in this thesis. This association was expected, as members of this genus 

dominate the small intestine, in addition to being some of the few types of bacteria that can 

survive in the harsh environment of the stomach (1, 24, 26, 96). Thanks to their lactic acid 

producing ability, Streptococcus species are used in food and as probiotics, and are 
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important for promoting and maintaining a healthy gut (1, 5). Figure 7 further supports the 

association, as the normobiotic samples on average appear to have had a higher abundance 

of Streptococcus spp. than the dysbiotic samples. 

Valeur et al. (58) found in their study that patients that responded well to a low FODMAP 

diet had higher levels of Streptococcus species than those that did not, although it is not yet 

confirmed if this response was a reflection of the positive effect of Streptococcus. In previous 

studies, a negative health association to the genus has been found, as higher levels of 

Streptococcus spp. have been linked to an increase in pro-inflammatory cytokine IL-6 (58).  

Some species within this genus are pathogens that can cause disease, but as that is not 

necessarily linked to dysbiosis, it does not contradict the finding that the probe is associated 

with normobiosis. On the contrary, it could contribute to the normobiosis association, as an 

estimated 25% of people exposed to the pathogenic species become carriers of the 

bacterium, resulting in it becoming part of their microbiota profile, which could be the case 

for some of the fecal samples in this thesis (1, 96).  

As has already been mentioned, dysbiosis is related to complex microbial patterns and 

relationships in the gut rather than one specific microbe, and the above information on the 

bacteria related to the investigated probes further demonstrates this. This is why a test like 

the GA-map® Dysbiosis Test is needed, where it is the collected information from all the 

probes that determines the health of an individual’s gut. This is further demonstrated by the 

Welch Two Sample t-test performed in this thesis, which informed that apart from probes 

Ali239 and Cat187, there were no differences in the average signals detected for each probe 

in the normobiotic versus the dysbiotic samples that were statistically significant. This 

indicates that one probe alone can’t reveal dysbiosis, but rather the pattern shown by all the 

probes in a probe-set.   

A relatively small sample set was investigated in this thesis, and the distribution between 

normobiotic and dysbiotic samples was slightly uneven. Different links may therefore be 

seen in a larger sample pool. However, although some of the probe associations in this thesis 

could be debatable, most of the findings were as expected based on previous studies, the 

physiology of the target bacteria, and the relationship between the bacteria and the host.  
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4.1.3    Probes that did not provide satisfactory signals 

As there is a desire to incorporate the LAD technology as a supplement to the GA-map® 

Dysbiosis Test, it would be very practical if all the probes were compatible with both 

platforms. In addition, the five probes that did not give satisfactory signals with LAD in this 

thesis all target bacteria that can be expected to be found in the colon, and it could 

therefore be very useful for determining the health of a gut to ensure that these probes 

provide true positive signals with the technology. 

Probe Bac230 was designed to detect B. fragilis, which is a common resident in the human 

gut. The bacterium has been found to function protectively in patients suffering from 

inflammation of the colon by modulating immune responses. In addition, patients that 

respond well to a low FODMAP diet have been found to have a higher level of B. fragilis than 

those that do not respond well (1, 32, 58).  

A next step to get the Bac230 probe pair to provide a satisfactory signal with LAD could be to 

order a fresh batch of both the LP and the RP, as there could be errors in their sequences 

preventing the LP from binding to the bacterial template and get extended, or the RP from 

binding to the LP and get quenched. Errors in the RP sequence could also potentially enable 

it to bind to the Lac47 LP, resulting in the observed peak in the samples containing the pure 

culture of L. ruminis. If a fresh batch of the probes still does not improve the results, new 

probes could be designed. However, the LP has already been validated by GA for their 

current GA-map® Dysbiosis Test and has proven to satisfactorily detect B. fragilis without 

detecting L. ruminis, indicating that the results in this thesis could be related to the current 

LAD set-up. Hence, it underlines the need for further investigation and optimization before 

the technology can be used as a supplement to the current solid-phase platform.  

Dorea spp., which is targeted by probe Dor124, is one of the dominant genera in the colon. 

The genus has been linked to obesity, and to IBS in children, and some members are 

occasionally found in higher abundances in UC patients compared to healthy subjects (24, 

37, 94).  

As the bacterial template used in this thesis was found to be a perfect match to the Dor124 

LP, no immediate explanation for the lack of signal was apparent. However, one theory is 

related to the design of the RP, as this probe had four thymine nucleobases added to its 5’ 

end that were not complementary to the LP. These were added to cover up a G which would 
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otherwise be at the 5’ end of the RP, because guanine has a quenching effect and should not 

get too close to the fluorophore (97). The additional Ts could perhaps have made the 

distance from the fluorophore on the RP to the quencher on the LP too great for quenching 

to occur.  

Bacteroides stercoris, targeted by probe Bac155, has been found to be strongly associated to 

dysbiosis in some cases. For example, in MS patients the proportion of the bacteria has been 

found to be decreased compared to in healthy subjects (20, 74).  

When designing the Bac155 RP, three mismatched Ts were included in the 5’ end to adjust 

the melting temperature. This had also been done for several other RPs who all provided 

satisfactory signals to their target bacteria. However, for Bac155, the mismatched 

nucleotides could have made the probe duplex too unstable to provide a detectable signal, 

as it was found that due to the short length of the probes, only 9 bases matched between 

the LP and the RP. 

For both Dor124 and Bac155, a next step for future research could therefore be to design 

new RPs that match the LPs better. 

As probes Bac88 and Str78 were never tested on the target bacteria in this thesis, it is 

impossible to determine at this point whether or not they are compatible with LAD. The next 

step for these two probes should therefore be to test them on the intended targets. The 

second bacterial template used for Str78 had only one mismatch to the probe, located at a 

central position, and could therefore be a demonstration of the specificity of LAD. However, 

this conclusion cannot be drawn until a true positive signal for the intended target has been 

achieved.    
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4.2    Future work on LAD for use with the GA-map® Dysbiosis Test 

In this thesis it has been demonstrated that LAD, by use of liquid reactions, is able to 

differentiate between dysbiosis and normobiosis with high accuracy, and that it has great 

multiplexing potential. Based on this it is believed that LAD can be a good addition to the GA-

map® Dysbiosis Test, offering increased efficiency and reduced cost. However, there is still 

work to be done before the technology can be used as a valid supplement, and optimization 

is needed before further improvements and expansions should be addressed.   

4.2.1    Optimizing and improving the use of LAD as a dysbiosis test 

As discussed under section 4.1.3 on page 49 and 50, one way to optimize the LAD dysbiosis 

test could be to try to get the five probes that did not provide satisfactory signals in this 

thesis to work with LAD. In addition, any of the remaining LPs of the 54 probes in GA’s 

complete probeset that have not yet been tested with LAD by GA should also be 

investigated.  

While the results from this thesis demonstrated that LAD can differentiate between the two 

states dysbiosis and normobiosis, the GA-map® Dysbiosis Test is able to separate samples 

into subgroups of these two states. This is done according to their dysbiosis index, and a 

next step to optimize LAD for use as a supplement to the GA-map® Dysbiosis Test could be 

to investigate how well the technology can distinguish between the five degrees of dysbiosis 

defined by GA.   

It was shown in this thesis that detecting five probes per channel is possible with LAD, as all 

five probes designed for the CY5 and HEX channels provided distinguishable signals 

(although the signal from the Bac230 probe was a false positive). It is therefore still assumed 

that LAD can detect all 20 probes simultaneously when using four detection channels, as 

long as all the probes are compatible with the technology. Furthermore, it is believed that 

the multiplexing level can be increased beyond 20 targets. One way to do this could be to 

add more probes to each channel. This can for example be attempted by reducing the 

difference in theoretical Tm between each probe pair. In this thesis, the difference was 

roughly 10 °C between each probe pair in a channel, except between Ali239 and UNI which 

had about 5 °C difference between them. As these two probe pairs gave distinguishable 

signals, it can be theorized that such a small difference in Tm is possible for all the probes in 
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a channel, thus allowing for more probes to be used per channel. If this is combined with the 

use of a qPCR machine that has more than four detection channels, it can be expected that 

LAD will be able to detect as many as 30-40 targets simultaneously in the near future. 

However, this would need to be tested with all the probes in a probeset to ensure that 

satisfactory signals, as described under section 2.2.2 on page 22, are achieved for all the 

probes.  

Further optimizations of LAD can be attempted by experimenting with the various parts of 

the protocol, such as temperatures, cycle numbers, or the reagents used. For example, some 

false positive probe signals were experienced during this thesis, which could be due to an 

incomplete polymerase inactivation by sodium dodecyl sulfate (SDS). The false peaks were 

easy to distinguish from the real ones, and were diminished if the plate was run through the 

qPCR machine twice. This was therefore not investigated further, as optimization was not 

within the scope of this thesis. However, as running the plate twice is both time-consuming 

and less efficient, and the signals can potentially be deceiving, alternatives or additions to 

SDS should be investigated. An idea is to use heparin for the deactivation. While SDS is an 

anionic detergent that inactivates the polymerase by denaturing it and covering it with a 

negative charge (1), heparin is believed to occupy the DNA binding site of the enzyme so that 

the polymerase is unable to bind to the template (98). Another alternative could be to use a 

combination, for example by using SDS with EDTA, a chelating agent that binds up the 

magnesium ions needed by the polymerase to function (1). EDTA on its own has been found 

to be ineffective for this use with LAD (Pranvera Hiseni, pers. comm.), but together with SDS 

could potentially get rid of some of the false positive peaks.  

The melting curve from the CY5 channel always showed a continuously declining baseline in 

this thesis (figure 6c and S3a), and it could be worth looking more into this fluorophore to try 

and improve it, or to look at alternatives. The dropping baseline could theoretically lead to a 

peak not being acknowledged, as the baseline may end up being at a lower point than a 

relatively weak peak, or the peak could be interpreted as noise. In this thesis, the peaks on 

the CY5 channel were always easily distinguishable, but the peak for probe Bac91, found 

near 70 °C, seemed weak as the baseline had dropped dramatically by the time it reached 

this temperature. This means the peak’s depth may appear smaller than it really was.  
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A declining baseline could also make quantification difficult. This is not yet something LAD is 

optimized for, but as dysbiosis is often related to a change in abundance of bacteria, rather 

than simple presence or absence of species, it is desirable to use the technology 

quantitatively in the future. For this to be possible, the relationship between the fluorescent 

signal intensity and the abundance of template needs to be established and validated (51). 

The probes used in this thesis detect bacteria based on their 16S rRNA genes. The use of this 

gene is a good choice as it is found in all bacteria, and there are extensive databases that 

contain 16S rRNA gene sequences. Its combination of conserved and hypervariable regions 

makes it easy to amplify all bacterial DNA in a sample using universal primers, and it makes 

probe design relatively easy. In addition, it allows for detection at various taxonomic levels. 

However, the 16S rRNA gene is partly why LAD can only be used semi-quantitatively, as 

bacteria have different numbers of copies of the gene, some having more than 15 copies per 

genome, making them overrepresented. Copy numbers mostly appear to be specific to 

taxon, allowing for this to be taken into consideration during testing. However, this is not 

consistent, and variations have even been found among strains of the same species (99, 100, 

101).  

Another issue with the 16S rRNA gene which can affect the registered abundance is that the 

genes from different species don’t get amplified with the same efficiency during PCR, which 

can lead to the genes of some microbes being amplified more than others. By designing 

primers that target highly conserved regions, this issue can be overcome, but it is then 

important to ensure that the part of the gene that is complementary to the probes used in 

LAD is intact and sufficient for the necessary classification accuracy (99, 101).  

As has been mentioned earlier in this thesis, it can be difficult to differentiate between 

certain bacteria when using the 16S rRNA gene, and some species even have identical 16S 

rRNA genes (101). If such species are found to be associated with dysbiosis, being able to 

distinguish between them would be very useful.  

Based on the above information, other genes could be suggested to be used instead of the 

16S rRNA gene. For example, some studies claim that the single-copy protein coding genes 

cpn60 and rpoB, coding for type I chaperonin protein and the β subunit of DNA polymerases 

respectively, have a phylogenetic resolution as good as, or even better than, the 16S rRNA 

gene. However, more work still needs to be conducted on such replacement genes,  
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and the limited number of sequences found in databases of those genes compared to that of 

the 16S rRNA gene makes it less preferable at the moment (99, 100, 102, 103). Nevertheless, 

it could be interesting to examine such genes in the future as an alternative, or addition, to 

the 16S rRNA gene to improve the LAD dysbiosis test even further, both in relation to 

resolution of the test, and the quantification ability of the technology. 

4.2.2    Expanding the LAD dysbiosis test 

The probes of the GA-map® Dysbiosis Test have been designed based on microbial 

compositions that are associated with IBS and IBD in a Scandinavian setting. To increase the 

diagnostic scope of the test, investigations could be made into additional dysbiosis-related 

disorders, for which specific probe sets could be designed. For example, as H2 may be 

involved in PD pathogenicity, it could be interesting to investigate further the producers and 

consumers involved in this, along with other contributors to the disease. Or for those 

suffering from MS, more research could be done on Parabacteroides and Acinetobacter 

abundance, as well as on any other patterns that may be shared among the affected 

individuals. By designing appropriate probesets for various disorders, LAD can become a 

highly useful tool for the diagnosis and treatment of a large number of medical conditions.  

In addition, the technology can prove useful for predictions of diseases that may develop in 

the future. For example, in the introduction of this thesis it was mentioned that NEC is 

believed to be preceded by bacterial compositions in the gut that trigger bodily responses 

which may lead to development of the disease. In addition, both PD and MS have been seen 

to display distinct microbial patterns prior to the onset of disease, which may function as 

warning signs (34, 35, 58, 72, 73, 74, 77). By detecting such patterns early by using an 

appropriate probeset with LAD, treatments can commence before the disease has a chance 

to develop. The same is true for any illness where it is believed that a disturbed gut 

microbiota may precede the actual disease, whether the microbes are a cause or simply a 

reflection of the development of the condition.  

As the probesets in the GA-map® Dysbiosis Test are based on gut bacteria that are common 

in adults in Scandinavia, bacterial compositions could also be mapped out for other age 

groups and populations, further developing the scope of the LAD dysbiosis test.  
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Another potential expansion for the LAD dysbiosis test is to develop a catalogue of 

functional genes, as studies have found that while the composition of the gut microbiota in 

individuals differ, the functions remain more or less the same in everyone (3, 6, 28, 38, 61, 

62, 64). This means that different species are performing similar functions in our guts, and as 

a disturbance in function can be a trait of dysbiosis, it may be useful to investigate the genes 

involved in this, in addition to species composition, to truly investigate dysbiosis and its 

related diseases. For example, the metabolism of carbohydrates is an important 

fermentative process performed by microorganisms, providing the host with energy and 

nutrients. By investigating functional groups, it has been found that certain types of IBS are 

characterized by an imbalance in the microbial community that performs this important 

task, and that some IBS patients suffer from changes in carbohydrate metabolism. In 

addition, as mentioned earlier shifts in H2 metabolism and butyrate-production are often 

observed (3, 6, 28, 64). One study showed that NEC is often linked to functionally related 

strains of E. coli. Such a link could be missed if the investigation only looks at E. coli as an 

entire group (35). The actual mapping of the functions could be done by other methods than 

LAD, such as HTS. However, once patterns are known, appropriate probes can be designed 

to detect these functional genes using LAD.  

For this thesis, the focus was to investigate the bacteria associated with dysbiosis. However, 

Eukaryotes and Archaea are also found in the human gut, and studies have found that they 

are also involved in dysbiosis-related diseases. For example, both fungi and methane-

production from archaea have been linked to IBD (5, 6, 28, 59, 60). The composition and 

interactions of all three domains could therefore be investigated for a more complete 

picture of the elements involved in the health of an individual’s gastrointestinal tract. 

Appropriate probes, for example ones targeting the 16S rRNA genes found in archaea, or the 

internal transcribed spacer (ITS, a common marker used in mycology) region in fungi, can 

then be designed and included in the LAD dysbiosis test catalogue (6, 59, 60, 104).  

By expanding LAD’s diagnostic scope, the dysbiosis test could prove to be an invaluable tool 

in the world of medicine. 
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4.3    Other potential uses for LAD 

4.3.1    Tailor-made therapies 

LAD’s ability to accurately and rapidly detect selected DNA sequences in the human gut 

makes it suitable for use also with other aims than diagnosing dysbiosis. For example, as has 

already been indicated in this thesis there are strong indications that the gut microbiota is 

connected to a person’s response to drugs and treatments. Some treatments are ineffective 

for certain individuals, and can even be harmful if their microbes metabolize the drug into 

metabolites that are detrimental. A quick and easy test like LAD could be used to investigate 

the composition of the microorganisms in the gut prior to the administration of a drug, 

enabling the creation of tailor-made therapies formulated to eliminate undesirable reactions 

to treatment (1, 3). 

For dysbiosis-related ailments there are several treatments available, one of which is FMT (1, 

3, 5). The efficiency of FMT is still debated, but while there are some contradictory findings, 

positive effects have been noted in various studies, especially in individuals suffering from 

UC. The microbiota of the donor has been seen to affect the result of an FMT, with the most 

successful donors often having an increased proportion of species that can ferment pectin, 

and of species from the family Lachnospiraceae, of which E. hallii is a member (1, 5, 62, 64, 

80, 105). With FMT it is normal to use transplants from healthy family members, as it is 

assumed that the gut microbiota is similar due to being exposed to the same environments 

and diets (1, 5). However, by using the LAD technology, the microbial profile of both the 

recipient and potential donors can quickly be mapped, increasing the chance for success. 

Patients suffering from IBS often experience abdominal pain, and as mentioned on the 

previous page, a disturbance in the microbial community involved in metabolizing 

carbohydrates is suggested as one factor involved in this (5, 6, 106). Lactose, fructose, 

polyols and other fermentable carbohydrates can be difficult for the body to absorb, and 

have been seen as a culprit for such symptoms. To treat this, it has been common to restrict 

intake of one or a few types of these carbohydrates. Lately the low FODMAP diet has gained 

increasing support, in which intake of several such fermentable carbohydrates is greatly 

reduced. Such a diet has been found to relieve abdominal pain quickly, probably at least 

partly due to the reduced fermentation by microbes in the gut which leads to less gas and 
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osmotically active metabolites (22, 58, 106, 107). However, this is a very challenging diet to 

follow, and often includes resource-demanding nutritional counseling. The diet does not 

work for all IBS subjects, and potential negative effects of long-term use are less known. 

Following extreme diets like this will change the composition in the gut by selecting for 

certain microorganisms, and detrimental effects can be experienced (58, 106, 107). Putting a 

patient through such a diet if they will not have a good response to it should therefore be 

avoided. As was mentioned during the discussion of the probe associations in this study 

certain bacteria have been linked to the success of following the low FODMAP diet, and 

patients that respond well have been found to have a different bacterial profile in their gut 

than the non-responders. Using LAD to determine if the regime is likely to have any positive 

effect on an individual could therefore be very useful (22, 58, 106, 107, 108).  

Lately, links have been drawn between gut microbiota and the efficacy of cancer treatments 

such as immunotherapy. This kind of treatment uses antibodies to stimulate the immune 

system to attack cells that are cancerous, and some patients respond better to this than 

others (3, 22, 89, 109). As has been mentioned earlier in this thesis, one study recently found 

that people who responded well to the treatment had a higher abundance of species within 

the Alistipes genus. In addition, a higher abundance of the bacteria Akkermansia muciniphila 

was detected. When A. muciniphila was transferred to mice with tumors using FMT, a 

positive correlation to the immunotherapy treatment was observed (89). In addition, both 

patients and mice that had been given antibiotics had worse cancer outcomes than those 

that had not used antibiotics recently, which may be linked to the reduction in microbial 

diversity that often follows an antibiotic treatment (2, 3, 28, 29, 30, 89).  

Another study on gut microbiota and cancer immunotherapy treatment found a link 

between Bacteroides species, particularly B. fragilis, and the efficacy of a treatment involving 

the use of antibodies targeting and blocking the protein CTLA-4, which functions to 

downregulate immune response (109). They found that tumors in mice that had been 

treated with antibiotics, or were raised germ-free, did not respond to blockade of CTLA-4. 

However, this was alleviated by gavage with B. fragilis, immunization using B. fragilis 

polysaccharides, or by transferring B. fragilis specific T cells (109).   

The probe designed for B. fragilis used in this thesis, Bac230, did not work as expected with 

LAD, but the above example demonstrates how important the probe could be for the 
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success of cancer treatments. Although the results from these two studies are far from 

conclusive, and more research is needed to determine the cause and effect of all factors 

involved, it is an example of the exciting potential of LAD. By creating a probeset to target  

A. muciniphila, B. fragilis and other bacteria found to be involved in the efficacy of cancer 

treatment, LAD can be used to quickly determine the best path forward, for example by 

performing an FMT prior to immunotherapy.  

4.3.2    Screening of genes in industry and medicine 

While this thesis has focused on bacteria in the gut and diagnosis of dysbiosis, LAD is by no 

means limited to this. For example, the technology might prove useful during outbreaks of 

food poisoning, or for screening of known pathogens in raw or processed food prior to 

becoming available to the consumer. In addition, transfusion of blood and blood products to 

patients that have reduced immune systems can be dangerous, partly due to bacterial 

contamination. Many of the methods used for detecting contamination today require 

incubation time to allow for bacterial growth, but could perhaps be improved by using LAD 

(110, 111).  

As has already been mentioned, LAD can also be used on eukaryotes. This was demonstrated 

by Hiseni (54) when she succeeded in using the technology to genotype polymorphisms in 

the MSTN gene in beef cattle to reveal unfavorable mutations that lead to double muscling. 

In her thesis, she proved that LAD can be used to detect allele variants as well as indels. This 

suggests that LAD can potentially be used to detect genetic diseases in humans and animals.   

In addition, genetically modified organisms (GMOs) could perhaps be investigated with LAD 

to check if labelling is correct by targeting known genes that are frequently used, such as 

insect resistant genes. As new genetic elements are continuously emerging, a high-

throughput method such as LAD to target a large set of genes could be highly useful for 

qualitive assurance of GMOs (47). 

These are just a few suggestions for how the LAD technology may prove useful, and they 

would all need to be tested and verified, which falls outside the scope of this thesis. 

However, it is clear that the specificity, speed and low cost of LAD makes it a highly versatile 

tool, with great potential in many areas.  
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4.4    Conclusion 

In this thesis, it has been successfully proven that LAD can detect 15 target DNA sequences 

simultaneously, and it is expected that at least 30 should be possible in the near future. In 

addition, it has been demonstrated that LAD can distinguish between normobiosis and 

dysbiosis. Although further optimization is still needed before LAD can be used in a clinical 

setting, the results from this thesis indicate that the technology can be a highly valuable 

supplement to the current solid-phase platform used in the GA-map® Dysbiosis Test.  

The use of LAD requires no culturing of bacteria, and no designated expensive equipment, as 

the process can be performed on qPCRs found in most laboratories. As no separation and 

purification step is needed, LAD is more efficient and has less risk of contamination than 

many other genotyping methods on the market today. The technology is inexpensive, easy, 

specific and rapid compared to other methods, and can provide important contributions to 

personalized treatments, nutrition and precision medicine. By adjusting the probes to fit age 

groups, populations, target of investigation, and more, LAD can become a highly versatile 

and valuable high-throughput technology. 
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Supplementary material 

Demonstrations of true positive signals detected for all probes carrying the HEX fluorophore 

that were found to be compatible with LAD in this thesis can be seen in figure S1. This figure 

shows a combination of representative melting curves collected from 20 pure culture 

samples and two negative controls.  

 

Figure S1: Combination of representative melting curves demonstrating signals from all the probes found to be 

compatible with LAD from the HEX channel. The temperature is presented on the x-axis, and goes from 22 °C to 95 °C. The 

negative first derivative of the fluorescence and temperature measurements (-dF/dT) is shown on the y-axis, and goes from 

-2000 to 800. Negative peaks indicate signal detection. Each colored line represents one pure culture sample, and as 22 

samples were investigated (in which two were negative controls), 22 colored lines are visible. The software had a limited 

number of colors available, and some samples are therefore presented with very similar, or the same, colors, making them 

hard to distinguish. However, the temperature of a peak reveals the identity of the probe. A small negative peak on a violet 

line is visible just below 30 °C, corresponding to probe Bac230. This signal was a false positive in response to L. ruminis, 

observed in all tests performed. The signal for probe Fir224, designed for the Firmicutes phylum, can be seen at around 

40 °C, and shows detection in two samples (violet and light green lines). In addition, a weak signal can be seen in a third 

sample (dark green line) which did not contain a complementary bacterium. This signal was determined to be noise, as it 

was not seen in the sample when the test was repeated. The peak for probe Eub206, designed to detect E. hallii at a 

theoretical Tm of 46.8 °C, is visible just below 50 °C in the figure (purple line). This is the same melting curve as the one 

seen in figure 5a. Probe Ali239 has a peak at almost exactly 60 °C (red line) and is detected in a sample containing an 

Alistipes species. This red line first shows a peak at 60 °C for Ali239, before a second peak is seen at roughly 65 °C for the 

UNI probe.  
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Figure S2 presents a combination of representative melting curves from the ROX channel 

collected from 22 samples (of which 20 were pure cultures and two were negative controls), 

and shows the three probes designed for that channel that were found to be compatible 

with LAD in this thesis. 

 

Figure S2: Combination of representative melting curves showing the detected signals of all the probes that were 

compatible with LAD on the ROX channel. The temperature is presented on the x-axis and goes from 22 °C to 95 °C. The 

negative derivative of the fluorescence and temperature measurements (-dF/dT) is on the y-axis and goes from -2000 to 

800. Signal detection is indicated by negative peaks. Each sample is represented by a colored line. The software had a 

limited number of colors available, and some samples are therefore presented with very similar, or the same, colors, 

making them hard to distinguish. However, the temperature of a peak reveals the identity of the probe. Probe Str138 can 

be seen to give a weak signal for two samples (red and light green lines) just after 50 °C, both of which were expected based 

on the bacterial species used. The bacteria were not perfectly complementary to the probe, and later a species that was a 

better fit was obtained, which was used in the mixed sample. This provided a deeper signal for Str138, which can be seen in 

figure 6b in this thesis. Cat187 (crimson line), designed for a theoretical Tm of 58.8 °C, demonstrates a deep signal just 

below 60 °C in response to a sample containing C. mitsuokai. Probe Eub119 (green line) provides a deep peak at exactly 

70 °C, and is the same melting curve as the one seen in figure 5b, collected from a sample containing E. rectale. The probes 

Bac155 at theoretical Tm 29 °C, and Dor124 at theoretical Tm 40.3 °C, both designed for the ROX channel, did not provide a 

distinguishable signal at any point during testing.  
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Figure S3 presents a demonstration of detected signals for all the probes found to be 

compatible with LAD on the CY5 (a) and FAM (b) channels. The representative melting curves 

shown in the figure are collected from a mixed sample, four pure cultures, and a negative 

control.  

  

Figure S3: Representative examples of melting curves showing the signals of all the probes for the CY5 (a) and FAM (b) 

channels that were found to be compatible with LAD under the current experimental setup. Both panels consist of a 

combination of melting curves collected from a mixed sample (turquoise line), four pure cultures (red, purple, blue and 

green lines), and one negative control (yellow line). The temperature is presented on the x-axis and goes from 22 °C to 95 °C 

for both panels. The negative derivative of the fluorescence and temperature measurements (-dF/dT) is shown on the y-

axis, and goes from -500 to 4500 on the CY5 channel, and from -400 to 1400 on the FAM channel. All five probes designed 

for the CY5 channel were found to be compatible with LAD under the current experimental setup, as can be seen in (a). On 

this channel the mixed sample contained species that lead to a signal with probes Pse30 (30 °C), Lac47 (50 °C) and Aci57 

(60 °C), as seen by the turquoise line. In addition, two of the four pure cultures contained species targeted by CY5-labelled 

probes, where one contained bacteria complementary to probe Lac71 (43 °C, red line), and the other to Bac91 (69 °C, light 

green line). The purple and blue lines represent samples that were not expected to provide a signal on the CY5 channel. On 

the FAM channel, presented in panel (b), Par89 (31 °C) and Bac109 (39 °C) both show deep signals on the turquoise line 

from the mixed sample. In addition, probe Act39 shows a peak on the blue line at 49.3 °C, which represents a sample 

containing a pure culture of an Actinomycetales species. The purple line represents a sample containing a Bacteroides 

species aimed at probe Bac88 (70 °C) on the FAM channel. This line shows no peak, as the species used was not perfectly 

complementary to the probe. The species was chosen because the target bacteria was not available during testing.  
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Table S1 and S2 presents the raw data of the probe peak values detected in the fecal 

samples investigated in this thesis. Table S1 shows the values for the normobiotic samples 

(DI1 and DI2), while table S2 shows the values for the dysbiotic samples (DI3-DI5).  

Table S1: Raw data of the probe peak values from the 15 normobiotic fecal samples. The samples have previously been 

classified by GA. Only the probes that were determined to be working with LAD were included in the table.  

 

Table S2: Raw data of the probe peak values from the 17 dysbiotic fecal samples. The samples have previously been 

classified by GA. Only the probes that were determined to be working with LAD were included in the table.  

 

Table S3 lists the p-values for all the probes from the Welch Two Sample t-test performed in 

this thesis.  

Table S3: p-values derived from the Welch Two Sample t-test. This test was performed to investigate the statistical 

significance of the differences in average signals detected for each probe in the normobiotic versus the dysbiotic samples. A 

p-value higher than 0.05 indicated no statistical significance, while a p-value below 0.05 meant the result was considered 

statistically significant.  



 



 

 

 


